Science.gov

Sample records for nanoparticle technology addressing

  1. Addressing Issues Related to Technology and Engineering

    ERIC Educational Resources Information Center

    Technology Teacher, 2008

    2008-01-01

    This article presents an interview with Michael Hacker and David Burghardt, codirectors of Hoftra University's Center for Technological Literacy. Hacker and Burghardt address issues related to technology and engineering. They argue that teachers need to be aware of the problems kids are facing, and how to present these problems in an engaging…

  2. Building technology services that address student needs.

    PubMed

    Le Ber, Jeanne M; Lombardo, Nancy T; Wimmer, Erin

    2015-01-01

    A 16-question technology use survey was conducted to assess incoming health sciences students' knowledge of and interest in current technologies, and to identify student device and tool preferences. Survey questions were developed by colleagues at a peer institution and then edited to match this library's student population. Two years of student responses have been compiled, compared, and reviewed as a means for informing library decisions related to technology and resource purchases. Instruction and event programming have been revised to meet student preferences. Based on the number of students using Apple products, librarians are addressing the need to become more proficient with this platform.

  3. Addressing social resistance in emerging security technologies.

    PubMed

    Mitchener-Nissen, Timothy

    2013-01-01

    In their efforts to enhance the safety and security of citizens, governments and law enforcement agencies look to scientists and engineers to produce modern methods for preventing, detecting, and prosecuting criminal activities. Whole body scanners, lie detection technologies, biometrics, etc., are all being developed for incorporation into the criminal justice apparatus. Yet despite their purported security benefits these technologies often evoke social resistance. Concerns over privacy, ethics, and function-creep appear repeatedly in analyses of these technologies. It is argued here that scientists and engineers continue to pay insufficient attention to this resistance; acknowledging the presence of these social concerns yet failing to meaningfully address them. In so doing they place at risk the very technologies and techniques they are seeking to develop, for socially controversial security technologies face restrictions and in some cases outright banning. By identifying sources of potential social resistance early in the research and design process, scientists can both engage with the public in meaningful debate and modify their security technologies before deployment so as to minimize social resistance and enhance uptake.

  4. Addressing social resistance in emerging security technologies

    PubMed Central

    Mitchener-Nissen, Timothy

    2013-01-01

    In their efforts to enhance the safety and security of citizens, governments and law enforcement agencies look to scientists and engineers to produce modern methods for preventing, detecting, and prosecuting criminal activities. Whole body scanners, lie detection technologies, biometrics, etc., are all being developed for incorporation into the criminal justice apparatus.1 Yet despite their purported security benefits these technologies often evoke social resistance. Concerns over privacy, ethics, and function-creep appear repeatedly in analyses of these technologies. It is argued here that scientists and engineers continue to pay insufficient attention to this resistance; acknowledging the presence of these social concerns yet failing to meaningfully address them. In so doing they place at risk the very technologies and techniques they are seeking to develop, for socially controversial security technologies face restrictions and in some cases outright banning. By identifying sources of potential social resistance early in the research and design process, scientists can both engage with the public in meaningful debate and modify their security technologies before deployment so as to minimize social resistance and enhance uptake. PMID:23970863

  5. Addressing Energy Poverty through Smarter Technology

    ERIC Educational Resources Information Center

    Oldfield, Eddie

    2011-01-01

    Energy poverty is a key detriment to labor productivity, economic growth, and social well-being. This article presents a qualitative review of literature on the potential role of intelligent communication technology, web-based standards, and smart grid technology to alleviate energy costs and improve access to clean distributed energy in developed…

  6. Registering Names and Addresses for Information Technology.

    ERIC Educational Resources Information Center

    Knapp, Arthur A.

    The identification of administrative authorities and the development of associated procedures for registering and accessing names and addresses of communications data systems are considered in this paper. It is noted that, for data communications systems using standards based on the Open Systems Interconnection (OSI) Reference Model specified by…

  7. Digital Citizenship: Addressing Appropriate Technology Behavior

    ERIC Educational Resources Information Center

    Ribble, Mike S.; Bailey, Gerald D.; Ross, Tweed W.

    2004-01-01

    Recently, the popular press has pointed to increasing evidence of misuse and abuse of emerging technologies in U.S. schools. Some examples include using Web sites to intimidate or threaten students, downloading music illegally from the Internet, plagiarizing information using the Internet, using cellular phones during class time, and playing games…

  8. Perfluorocarbon Nanoparticles:. A Theranostic Platform Technology

    NASA Astrophysics Data System (ADS)

    Lanza, Gregory M.; Winter, Patrick M.; Caruthers, Shelton D.; Hughes, Michael S.; Hu, Grace; Pan, Dipanjan; Schmieder, Anne H.; Pham, Christine; Wickline, Samuel A.

    2013-09-01

    Nanomedicine clearly offers unique tools to address intractable medical problems in cancer and cardiovascular disease from entirely new perspectives. Among the theranostic options emerging in this new wave of biotechnology development, the perfluorocarbon nanoparticles have shown robust potential in vivo for diagnosing, characterizing, treating and following proliferating cancers, progressive atherosclerosis, rheumatoid arthritis and much more. These molecular imaging agents have been demonstrated for use with ultrasound, MRI, CT, and SPECT/CT. Moreover, the synergism of imaging for confirmation of therapeutic delivery, for dosimetry, and for noninvasively following early treatment responses is discussed. Image-guided drug delivery based on nanotechnology is emerging as a powerful clinical opportunity, and PFC nanoparticles are among the leading technologies reaching clinical testing today with this potential.

  9. Opportunities and challenges of using technology to address health disparities.

    PubMed

    Rivers, Brian M; Bernhardt, Jay M; Fleisher, Linda; Green, Bernard Lee

    2014-03-01

    During a panel presentation at the American Association for Cancer Research Cancer Health Disparities Conference titled 'Opportunities and challenges of using technology to address health disparities', the latest scientific advances in the application and utilization of mobile technology and/or mobile-health (mHealth) interventions to address cancer health disparities were discussed. The session included: an examination of overall population trends in the uptake of technology and the potential of addressing health disparities through such media; an exploration of the conceptual issues and challenges in the construction of mHealth interventions to address disparate and underserved populations; and a presentation of pilot study findings on the acceptability and feasibility of using mHealth interventions to address prostate cancer disparities among African-American men.

  10. Reservoir technology research at LBL addressing geysers issues

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.

    1990-04-01

    The Geothermal Technology Division of the Department of Energy is redirecting a significant part of its Reservoir Technology funding to study problems now being experienced at The Geysers. These include excessive pressure drawdown and associated decline in well flow rates, corrosion due to high chloride concentration in the produced steam and high concentration of noncondensible gases in some parts of the field. Lawrence Berkeley Laboratory (LBL) is addressing some of these problems through field, laboratory and theoretical studies. 11 refs., 6 figs.

  11. Biodegradable nanoparticles for gene therapy technology

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-07-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  12. IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6)

    PubMed Central

    Jara, Antonio J.; Moreno-Sanchez, Pedro; Skarmeta, Antonio F.; Varakliotis, Socrates; Kirstein, Peter

    2013-01-01

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6. PMID:23686145

  13. IPv6 addressing proxy: mapping native addressing from legacy technologies and devices to the Internet of Things (IPv6).

    PubMed

    Jara, Antonio J; Moreno-Sanchez, Pedro; Skarmeta, Antonio F; Varakliotis, Socrates; Kirstein, Peter

    2013-05-17

    Sensors utilize a large number of heterogeneous technologies for a varied set of application environments. The sheer number of devices involved requires that this Internet be the Future Internet, with a core network based on IPv6 and a higher scalability in order to be able to address all the devices, sensors and things located around us. This capability to connect through IPv6 devices, sensors and things is what is defining the so-called Internet of Things (IoT). IPv6 provides addressing space to reach this ubiquitous set of sensors, but legacy technologies, such as X10, European Installation Bus (EIB), Controller Area Network (CAN) and radio frequency ID (RFID) from the industrial, home automation and logistic application areas, do not support the IPv6 protocol. For that reason, a technique must be devised to map the sensor and identification technologies to IPv6, thus allowing homogeneous access via IPv6 features in the context of the IoT. This paper proposes a mapping between the native addressing of each technology and an IPv6 address following a set of rules that are discussed and proposed in this work. Specifically, the paper presents a technology-dependent IPv6 addressing proxy, which maps each device to the different subnetworks built under the IPv6 prefix addresses provided by the internet service provider for each home, building or user. The IPv6 addressing proxy offers a common addressing environment based on IPv6 for all the devices, regardless of the device technology. Thereby, this offers a scalable and homogeneous solution to interact with devices that do not support IPv6 addressing. The IPv6 addressing proxy has been implemented in a multi-protocol Sensors 2013, 13 6688 card and evaluated successfully its performance, scalability and interoperability through a protocol built over IPv6.

  14. A Framework for Addressing Challenges to Classroom Technology Use

    ERIC Educational Resources Information Center

    Groff, Jennifer; Mouza, Chrystalla

    2008-01-01

    Creating effective learning environments with technology remains a challenge for teachers. Despite the tremendous push for educators to integrate technology into their classrooms, many have yet to do so and struggle to find consistent success with technology-based instruction. The challenges to effective technology integration have been…

  15. Addressing Mathematics Literacy through Technology, Innovation, Design, and Engineering

    ERIC Educational Resources Information Center

    Litowitz, Len S.

    2009-01-01

    In an era when so much emphasis is being placed on the high-stakes standardized testing of fundamental subjects such as reading, writing, and math, it makes sense to demonstrate the role technology educators play in developing such fundamental knowledge and skills in youth. While the author believes that technology education contributes to the…

  16. Microelectronic Technology and the Hearing Impaired: The Future. Keynote Address.

    ERIC Educational Resources Information Center

    Thorkildsen, Ron

    1985-01-01

    The potential of microelectronic technology for alleviating communication problems of hearing-impaired persons is discussed from a futuristic point of view. The need for computer literacy training is related to changing career opportunities. Computer literacy, artificial intelligence, and videodisc technology are described and related to training…

  17. RFID in the pharmaceutical industry: addressing counterfeits with technology.

    PubMed

    Taylor, Douglas

    2014-11-01

    The use of Radio Frequency Identification (RFID) in the pharmaceutical industry has grown in recent years. The technology has matured from its specialized tracking and retail uses to a systemic part of supply chain management in international pharmaceutical production and distribution. Counterfeit drugs, however, remain a significant challenge for governments, pharmaceutical companies, clinicians, and patients and the use of RFID to track these compounds represents an opportunity for development. This paper discusses the medical, technological, and economic factors that support widespread adoption of RFID technology in the pharmaceutical industry in an effort to prevent counterfeit medicines from harming patients and brand equity.

  18. Designing Technology to Address Parent Uncertainty in Childhood Cancer.

    PubMed

    Morrison, Caroline F; Szulczewski, Lauren; Strahlendorf, Laura F; Lane, J Blake; Mullins, Larry L; Pai, Ahna L H

    2016-01-01

    The stress and uncertainty created by a child's cancer diagnosis and treatment can affect parent and child functioning. Health technology provides a potential avenue for intervention delivery. Interviews were conducted with parents of children diagnosed with cancer to discover their needs following diagnosis and design a relevant mobile application. Treatment experience was the overarching theme. Subthemes included the emotional response, use of information, and environmental factors. Technology was used primarily to seek out information and communicate with others. Health technologies are gaining popularity and have the potential to be beneficial for patients and families throughout the treatment experience.

  19. Integrated Communications, Navigation and Surveillance Technologies Keynote Address

    NASA Technical Reports Server (NTRS)

    Lebacqz, J. Victor

    2004-01-01

    Slides for the Keynote Address present graphics to enhance the discussion of NASA's vision, the National Space Exploration Initiative, current Mars exploration, and aeronautics exploration. The presentation also focuses on development of an Air Transportation System and transformation from present systems.

  20. Information technology in health care: addressing promises and pitfalls.

    PubMed

    Stanyon, Robert

    2005-01-01

    Health information technology (HIT) and electronic medical records systems are receiving much attention in health care though only a relatively small number of health care organizations and providers have embraced the technology. This article introduces important concepts and definitions and provides the risk manager with key elements to consider when incorporating HIT principles into a proactive risk management program. A checklist is offered to assist in the assessment of electronic records systems.

  1. Addressing Learning Disabilities with UDL and Technology: Strategic Reader

    ERIC Educational Resources Information Center

    Hall, Tracey E.; Cohen, Nicole; Vue, Ge; Ganley, Patricia

    2015-01-01

    CAST created "Strategic Reader," a technology-based system blending Universal Design for Learning (UDL) and Curriculum-Based Measurement (CBM) in a digital learning environment to improve reading comprehension instruction. This experimental study evaluates the effectiveness of Strategic Reader using two treatment conditions for measuring…

  2. Special Education Technology Addressing Diversity: A Synthesis of the Literature

    ERIC Educational Resources Information Center

    Jeffs, Tara; Morrison, William F.

    2005-01-01

    With the increasing complexity of schools and society, there is great need for expanded understanding of the many dimensions of diversity within the field of assistive technology (AT). The question that lies before us is how has diversity been examined in AT research and literature? Following a research synthesis method similar to Summers (1985)…

  3. Compensated individually addressable array technology for human breast imaging

    DOEpatents

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  4. Utilisation of Nanoparticle Technology in Cancer Chemoresistance

    PubMed Central

    Ayers, Duncan; Nasti, Alessandro

    2012-01-01

    The implementation of cytotoxic chemotherapeutic drugs in the fight against cancer has played an invariably essential role for minimizing the extent of tumour progression and/or metastases in the patient and thus allowing for longer event free survival periods following chemotherapy. However, such therapeutics are nonspecific and bring with them dose-dependent cumulative adverse effects which can severely exacerbate patient suffering. In addition, the emergence of innate and/or acquired chemoresistance to the exposed cytotoxic agents undoubtedly serves to thwart effective clinical efficacy of chemotherapy in the cancer patient. The advent of nanotechnology has led to the development of a myriad of nanoparticle-based strategies with the specific goal to overcome such therapeutic hurdles in multiple cancer conditions. This paper aims to provide a brief overview and recollection of all the latest advances in the last few years concerning the application of nanoparticle technology to enhance the safe and effective delivery of chemotherapeutic agents to the tumour site, together with providing possible solutions to circumvent cancer chemoresistance in the clinical setting. PMID:23213536

  5. Nanoparticle fluorescence based technology for biological applications.

    PubMed

    Chen, Wei

    2008-03-01

    Fluorescence is widely used in biological detection and imaging. The emerging luminescent nanoparticles or quantum dots provide a new type of biological agents that can improve these applications. The advantages of luminescent nanoparticles for biological applications include their high quantum yield, color availability, good photo-stability, large surface-to-volume ratio, surface functionality, and small size. In this review article, we first introduce quantum size confinement, photoluminescence and upconversion luminescence of nanoparticles, then describe the preparation and conjugation of water soluble nanoparticles and introduce the applications of luminescence nanoparticles for in vitro and in vivo imaging, fluorescence resonance energy based detection, and the applications of luminescence nanoparticles for photodynamic activation.

  6. Provenance information as a tool for addressing engineered nanoparticle reproducibility challenges

    PubMed Central

    Baer, Donald R.; Munusamy, Prabhakaran; Thrall, Brian D.

    2016-01-01

    Nanoparticles of various types are of increasing research and technological importance in biological and other applications. Difficulties in the production and delivery of nanoparticles with consistent and well defined properties appear in many forms and have a variety of causes. Among several issues are those associated with incomplete information about the history of particles involved in research studies, including the synthesis method, sample history after synthesis, including time and nature of storage, and the detailed nature of any sample processing or modification. In addition, the tendency of particles to change with time or environmental condition suggests that the time between analysis and application is important and some type of consistency or verification process can be important. The essential history of a set of particles can be identified as provenance information and tells the origin or source of a batch of nano-objects along with information related to handling and any changes that may have taken place since it was originated. A record of sample provenance information for a set of particles can play a useful role in identifying some of the sources and decreasing the extent of particle variability and the lack of reproducibility observed by many researchers. PMID:27936809

  7. Provenance information as a tool for addressing engineered nanoparticle reproducibility challenges

    SciTech Connect

    Baer, Donald R.; Munusamy, Prabhakaran; Thrall, Brian D.

    2016-12-01

    Nanoparticles of various types are of increasing research and technological importance in biological and other applications. Difficulties in the production and delivery of nanoparticles with consistent and well defined properties appear in many forms and have a variety of causes. Among several issues are those associated with incomplete information about the history of particles involved in research studies including the synthesis method, sample history after synthesis including time and nature of storage and the detailed nature of any sample processing or modification. In addition, the tendency of particles to change with time or environmental condition suggests that the time between analysis and application is important and some type of consistency or verification process can be important. The essential history of a set of particles can be identified as provenance information tells the origin or source of a batch of nano-objects along with information related to handling and any changes that may have taken place since it was originated. A record of sample provenance information for a set of particles can play a useful role in identifying some of the sources and decreasing the extent of particle variability and the observed lack of reproducibility observed by many researchers.

  8. ALI (Autonomous Lunar Investigator): Revolutionary Approach to Exploring the Moon with Addressable Reconfigurable Technology

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.

    2005-01-01

    Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.

  9. Comic Relief: Graduate Students Address Multiple Meanings for Technology Integration with Digital Comic Creation

    ERIC Educational Resources Information Center

    Sockman, Beth Rajan; Sutton, Rhonda; Herrmann, Michele

    2016-01-01

    This study determined the usefulness of digital comic creation with 77 graduate students in a teacher technology course. Students completed an assigned reading and created digital comics that addressed technology integration concerns in the schools and society. Using practical action research, 77 student-created comics were analyzed. The findings…

  10. Disease patterns addressed by mobile health-enabling technologies--a literature review.

    PubMed

    Von Bargen, Tobias; Schwartze, Jonas; Haux, Reinhold

    2013-01-01

    Health-enabling technologies can contribute to a better living with diverse disease patterns, especially at home. Ambient Assisted Living (AAL) provides security and convenience at the main place of residence, but usually cannot be taken on the road. Mobile health-enabling technologies could overcome this barrier of immobility and enable its' users to take advantages of assistive technology with them. The presented literature review examines disease patterns, which can be addressed by mobile health-enabling technologies. Especially chronic diseases, like diabetes, are very responsive for continuous support by portable support technology.

  11. Synthesis of gold nanoparticles and silver nanoparticles via green technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Zulfiqaar; Balu, S. S.

    2012-11-01

    The proposed work describes the comparison of various methods of green synthesis for preparation of Gold and Silver nanoparticles. Pure extracts of Lemon (Citrus limon) and Tomato (Solanum lycopersicum) were mixed with aqueous solution of auric tetrachloride and silver nitrate. The resultant solutions were treated with four common techniques to assist in the reduction namely photo catalytic, thermal, microwave assisted reduction and solvo - thermal reduction. UV - Visible Spectroscopy results and STM images of the final solutions confirmed the formation of stable metallic nanoparticles. A preliminary account of the green synthesis work is presented here.

  12. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.

    PubMed

    Sani-Kast, Nicole; Scheringer, Martin; Slomberg, Danielle; Labille, Jérôme; Praetorius, Antonia; Ollivier, Patrick; Hungerbühler, Konrad

    2015-12-01

    Engineered nanoparticle (ENP) fate models developed to date - aimed at predicting ENP concentration in the aqueous environment - have limited applicability because they employ constant environmental conditions along the modeled system or a highly specific environmental representation; both approaches do not show the effects of spatial and/or temporal variability. To address this conceptual gap, we developed a novel modeling strategy that: 1) incorporates spatial variability in environmental conditions in an existing ENP fate model; and 2) analyzes the effect of a wide range of randomly sampled environmental conditions (representing variations in water chemistry). This approach was employed to investigate the transport of nano-TiO2 in the Lower Rhône River (France) under numerous sets of environmental conditions. The predicted spatial concentration profiles of nano-TiO2 were then grouped according to their similarity by using cluster analysis. The analysis resulted in a small number of clusters representing groups of spatial concentration profiles. All clusters show nano-TiO2 accumulation in the sediment layer, supporting results from previous studies. Analysis of the characteristic features of each cluster demonstrated a strong association between the water conditions in regions close to the ENP emission source and the cluster membership of the corresponding spatial concentration profiles. In particular, water compositions favoring heteroaggregation between the ENPs and suspended particulate matter resulted in clusters of low variability. These conditions are, therefore, reliable predictors of the eventual fate of the modeled ENPs. The conclusions from this study are also valid for ENP fate in other large river systems. Our results, therefore, shift the focus of future modeling and experimental research of ENP environmental fate to the water characteristic in regions near the expected ENP emission sources. Under conditions favoring heteroaggregation in these

  13. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis

    PubMed Central

    Chung, Eun Ji; Tirrell, Matthew

    2016-01-01

    Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows for easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this review, we first describe the pathogenesis of atherosclerosis and the damage caused to vascular tissue, as well as the current diagnostic and treatment options. Then we provide an overview of targeted strategies using self-assembling nanoparticles and include liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, we elaborate on and provide an overview of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles. PMID:26085109

  14. Evaluation of cost-effective aeration technology solutions to address total trihalomethane (TTHM) compliance

    EPA Science Inventory

    The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...

  15. Perspective on nanoparticle technology for biomedical use

    PubMed Central

    Raliya, Ramesh; Chadha, Tandeep Singh; Hadad, Kelsey; Biswas, Pratim

    2016-01-01

    This review gives a short overview on the widespread use of nanostructured and nanocomposite materials for disease diagnostics, drug delivery, imaging and biomedical sensing applications. Nanoparticle interaction with a biological matrix/entity is greatly influenced by its morphology, crystal phase, surface chemistry, functionalization, physicochemical and electronic properties of the particle. Various nanoparticle synthesis routes, characteristization, and functionalization methodologies to be used for biomedical applications ranging from drug delivery to molecular probing of underlying mechanisms and concepts are described with several examples (150 references). PMID:26951098

  16. What does an e-mail address add? - Doing health and technology at home.

    PubMed

    Andreassen, Hege K

    2011-02-01

    There is increasing interest in using electronic mail and other electronic health technologies (e-health technologies) in patient follow-ups. This study sheds light on patients' reception of provider-initiated e-health in their everyday environments. In a research project carried out in Norway (2005-2007), an electronic address for a hospital dermatology ward was offered to 50 patient families for improved access to expert advice from the patients' homes. Drawing on semi-structured interviews with 12 families, this paper explores how the electronic address was integrated into everyday health practice. The research illuminates how the electronic address did not only represent changes related to treatment procedures and frequency or nature of expert contact; it was also important to other practices in the everyday lives of the families of patients with chronic illness. Once in place on the patients' computers, the electronic address was ascribed at least four different roles: it was used as the intended riverbed for a flow of information, but also as a safety alarm, as a shield to the medical gaze and as a token of competence in care and parenting. The multiplicity in use and reception of an electronic address in patient settings illustrates the need to include patients' everyday practices in current professional and political discussions of e-mail and other e-health technologies. Thus this paper argues that there is a need for research on electronic patient-provider communication that moves beyond frequency of use and questions on how technology will affect medical encounters. Social science equally needs to investigate how provider-initiated e-health technologies gets involved in patients' moral and social performance of health and illness in everyday life.

  17. Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia.

    PubMed

    Andreu, Irene; Natividad, Eva; Solozábal, Laura; Roubeau, Olivier

    2015-02-24

    One current challenge of magnetic hyperthermia is achieving therapeutic effects with a minimal amount of nanoparticles, for which improved heating abilities are continuously pursued. However, it is demonstrated here that the performance of magnetite nanocubes in a colloidal solution is reduced by 84% when they are densely packed in three-dimensional arrangements similar to those found in cell vesicles after nanoparticle internalization. This result highlights the essential role played by the nanoparticle arrangement in heating performance, uncontrolled in applications. A strategy based on the elaboration of nano-objects able to confine nanocubes in a fixed arrangement is thus considered here to improve the level of control. The obtained specific absorption rate results show that nanoworms and nanospheres with fixed one- and two-dimensional nanocube arrangements, respectively, succeed in reducing the loss of heating power upon agglomeration, suggesting a change in the kind of nano-object to be used in magnetic hyperthermia.

  18. Microfluidic technologies for accelerating the clinical translation of nanoparticles

    PubMed Central

    Valencia, Pedro M.; Farokhzad, Omid C.; Karnik, Rohit; Langer, Robert

    2013-01-01

    Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent ‘batch-to-batch’, and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine. PMID:23042546

  19. Developing sustainable global health technologies: insight from an initiative to address neonatal hypothermia.

    PubMed

    Gupta, Rajesh; Patel, Rajan; Murty, Naganand; Panicker, Rahul; Chen, Jane

    2015-02-01

    Relative to drugs, diagnostics, and vaccines, efforts to develop other global health technologies, such as medical devices, are limited and often focus on the short-term goal of prototype development instead of the long-term goal of a sustainable business model. To develop a medical device to address neonatal hypothermia for use in resource-limited settings, we turned to principles of design theory: (1) define the problem with consideration of appropriate integration into relevant health policies, (2) identify the users of the technology and the scenarios in which the technology would be used, and (3) use a highly iterative product design and development process that incorporates the perspective of the user of the technology at the outset and addresses scalability. In contrast to our initial idea, to create a single device, the process guided us to create two separate devices, both strikingly different from current solutions. We offer insights from our initial experience that may be helpful to others engaging in global health technology development.

  20. Use of Technology to Address Substance Use in the Context of HIV: A Systematic Review

    PubMed Central

    Young, Sean D.; Swendeman, Dallas; Holloway, Ian W.; Reback, Cathy J.; Kao, Uyen

    2015-01-01

    Substance users are at elevated risk for HIV. HIV researchers, particularly at the intersection of HIV and substance use, have requested new methods to better understand and address this important area. New technologies, such as social media and mobile applications, are increasingly being used as research tools in studies on HIV and substance use. These technologies have the potential to build on existing recruitment methods, provide new and improved intervention methods, and introduce novel ways of monitoring and predicting new HIV cases. However, little work has been done to review and broadly explore the types of studies being conducted on the use of technologies to address HIV and substance use. This systematic literature review identified studies on this topic between 2005-2015. We identified 33 studies on this topic after excluding studies that did not fit inclusion criteria. Studies were either observational (n = 24) or interventional (n = 9), with the majority being pilot studies exploring the feasibility of using these new technologies to study HIV and substance use. We discuss the implications of this work along with limitations and recommendations for future research on this topic. PMID:26475670

  1. Nanoparticle Technology for Biorefining of Non-Food Source Feedstocks

    SciTech Connect

    Pruski, Marek; Trewyn, Brian G.; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  2. Nanoparticle therapeutics: Technologies and methods for overcoming cancer.

    PubMed

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2015-11-01

    It is anticipated that by 2030 approximately 13 million people will die of cancer. Common cancer therapy often fails due to the development of multidrug resistance (MDR), resulting in high morbidity and poor patient prognosis. Nanotechnology seeks to use drug delivery vehicles of 1-100 nm in diameter, made up of several different materials to deliver anti-cancer drugs selectively to cancer cells and potentially overcome MDR. Several technologies exist for manufacturing and functionalizing nanoparticles. When functionalized appropriately, nanoparticles have been shown to overcome several mechanisms of MDR in vivo and in vitro, reduce drug side effects and represent a promising new area of anti-cancer therapy. This review discusses the fundamental concepts of enhanced permeability and retention (EPR) effect and explores the mechanisms proposed to enhance preferential "retention" in the tumour. The overall objective of this review was to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancer.

  3. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    SciTech Connect

    Pruski, Marek; Trewyn, Brian; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  4. SERS-active nanoparticle aggregate technology for tags and seals

    SciTech Connect

    Brown, Leif O; Montoya, Velma M; Havrilla, George J; Doorn, Stephen K

    2010-06-03

    In this paper, we describe our efforts to create a modern tagging and sealing technology for international safeguards application. Our passive tagging methods are based on SANAs (SERS-Active Nanoparticle Aggregates; SERS: Surface Enhanced Raman Scattering). These SANAs offer robust spectral barcoding capability in an inexpensive tag/seal, with the possibility of rapid in-field verification that requires no human input. At INMM 2009, we introduced SANAs, and showed approaches to integrating our technology with tags under development at Sandia National Laboratories (SNL). Here, we will focus on recent LANL development work, as well as adding additional dimensionality to the barcoding technique. The field of international safeguards employs a broad array of tags, seals, and tamper-indicating devices to assist with identification, tracking, and verification of components and materials. These devices each have unique strengths suited to specific applications, and span a range of technologies from passive metal cup seals and adhesive seals to active, remotely monitored fiber optic seals. Regardless of the technology employed, essential characteristics center around security, environmental and temporal stability, ease of use, and the ability to provide confidence to all parties. Here, we present a new inexpensive tagging technology that will deliver these attributes, while forming the basis of either a new seal, or as a secure layer added to many existing devices. Our approach uses the Surface Enhanced Raman Scattering (SERS) response from SANAs (SERS-Active Nanoparticle Aggregates, Figure 1) to provide a unique identifier or signature for tagging applications. SANAs are formed from gold or silver nanoparticles in the 40-80 nm size range. A chemical dye is installed on the nanoparticle surface, and the nanoparticles are then aggregated into ensembles of {approx}100 to 500 nm diameter, prior to being coated with silica. The silica shell protects the finished SANA from

  5. Technological challenges of addressing new and more complex migrating products from novel food packaging materials.

    PubMed

    Munro, Ian C; Haighton, Lois A; Lynch, Barry S; Tafazoli, Shahrzad

    2009-12-01

    The risk assessment of migration products resulting from packaging material has and continues to pose a difficult challenge. In most jurisdictions, there are regulatory requirements for the approval or notification of food contact substances that will be used in packaging. These processes generally require risk assessment to ensure safety concerns are addressed. The science of assessing food contact materials was instrumental in the development of the concept of Threshold of Regulation and the Threshold of Toxicological Concern procedures. While the risk assessment process is in place, the technology of food packaging continues to evolve to include new initiatives, such as the inclusion of antimicrobial substances or enzyme systems to prevent spoilage, use of plastic packaging intended to remain on foods as they are being cooked, to the introduction of more rigid, stable and reusable materials, and active packaging to extend the shelf-life of food. Each new technology brings with it the potential for exposure to new and possibly novel substances as a result of migration, interaction with other chemical packaging components, or, in the case of plastics now used in direct cooking of products, degradation products formed during heating. Furthermore, the presence of trace levels of certain chemicals from packaging that were once accepted as being of low risk based on traditional toxicology studies are being challenged on the basis of reports of adverse effects, particularly with respect to endocrine disruption, alleged to occur at very low doses. A recent example is the case of bisphenol A. The way forward to assess new packaging technologies and reports of very low dose effects in non-standard studies of food contact substances is likely to remain controversial. However, the risk assessment paradigm is sufficiently robust and flexible to be adapted to meet these challenges. The use of the Threshold of Regulation and the Threshold of Toxicological Concern concepts may

  6. A review on nanoparticle-based technologies for biodetoxification.

    PubMed

    Muhammad, Faqir; Nguyen, Tuyen Duong Thanh; Raza, Ahmad; Akhtar, Bushra; Aryal, Santosh

    2017-01-31

    Nanotechnology has gained significant penetration to different fields of medicine including drug delivery, disease interrogation, targeting and bio-imaging. In recent years, efforts have been put forth to assess the use of this technology in biodetoxification. In this review, we will discuss the current status of nanostructured biomaterials/nanoparticle (NP)-based technologies as a candidate biodetoxifying agent. Patient hospitalization due to illicit drug consumption, suicidal attempts and accidental toxin exposure are major challenges in the medical field. Overdoses of drugs/toxic chemicals or exposure to bacterial toxins or poisons are conventionally treated by voiding the stomach, administering activated charcoal or by using specific antidotes, if the toxin is known. Because of the limitations of these methods for safe and effective detoxification, advancements in nanotechnology may offer novel ways in intoxication support by using nanostructured biomaterials, such as liposomes, micellar nanocarriers, liquid crystalline nanoassemblies and ligand-based NPs.

  7. Adapting Semantic Natural Language Processing Technology to Address Information Overload in Influenza Epidemic Management.

    PubMed

    Keselman, Alla; Rosemblat, Graciela; Kilicoglu, Halil; Fiszman, Marcelo; Jin, Honglan; Shin, Dongwook; Rindflesch, Thomas C

    2010-12-01

    Explosion of disaster health information results in information overload among response professionals. The objective of this project was to determine the feasibility of applying semantic natural language processing (NLP) technology to addressing this overload. The project characterizes concepts and relationships commonly used in disaster health-related documents on influenza pandemics, as the basis for adapting an existing semantic summarizer to the domain. Methods include human review and semantic NLP analysis of a set of relevant documents. This is followed by a pilot-test in which two information specialists use the adapted application for a realistic information seeking task. According to the results, the ontology of influenza epidemics management can be described via a manageable number of semantic relationships that involve concepts from a limited number of semantic types. Test users demonstrate several ways to engage with the application to obtain useful information. This suggests that existing semantic NLP algorithms can be adapted to support information summarization and visualization in influenza epidemics and other disaster health areas. However, additional research is needed in the areas of terminology development (as many relevant relationships and terms are not part of existing standardized vocabularies), NLP, and user interface design.

  8. Enterprise project management is key to success: addressing the people, process and technology dimensions of healthcare.

    PubMed

    Becker, JoAnn; Rhodes, Harry

    2007-01-01

    The world of healthcare professionals is in a constant state of transition, requiring different processes for the organization, and for completing projects and programs. Projects that manage transition are complex undertakings prone to cost and time overruns. An enterprise project management model is proposed to address the people, process and technology dimensions. It includes the five-step PMI project process, vocabulary, processes, soft skills, stakeholder expectation management, portfolio management and talent diversity. Differences in project deliverables and organizational results are discussed, along with a technique to analyze gaps from the current to the new state, which then defines the projects and programs for an organizational initiative. The role and responsibilities of an executive decision team are defined. Learning the model is needed by all members of the organization, regardless of their role or level, for successfully adapting to future changes. Finally, a case is made for healthcare organizations to implement these competencies if they are to be well-performing organizations in this continuous world of change.

  9. Silver nanoparticle ink technology: state of the art

    PubMed Central

    Rajan, Krishna; Roppolo, Ignazio; Chiappone, Annalisa; Bocchini, Sergio; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Printed electronics will bring to the consumer level great breakthroughs and unique products in the near future, shifting the usual paradigm of electronic devices and circuit boards from hard boxes and rigid sheets into flexible thin layers and bringing disposable electronics, smart tags, and so on. The most promising tool to achieve the target depends upon the availability of nanotechnology-based functional inks. A certain delay in the innovation-transfer process to the market is now being observed. Nevertheless, the most widely diffused product, settled technology, and the highest sales volumes are related to the silver nanoparticle-based ink market, representing the best example of commercial nanotechnology today. This is a compact review on synthesis routes, main properties, and practical applications. PMID:26811673

  10. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  11. Addressing sustainable contributions to GEO/GEOSS from Science and Technology Communities: the EGIDA Methodology

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.

    2012-04-01

    The European Project EGIDA (Coordinating Earth and Environmental cross-disciplinary projects to promote GEOSS) co-funded by the European Commission under the Seventh Framework programme, has started in September 2010. It aims to prepare a sustainable process of contribution to GEO/GEOSS promoting coordination of activities carried out by: the GEO Science & Technology (S&T) Committee; S&T national and European initiatives; and other S&T Communities. This will be done by supporting broader implementation and effectiveness of the GEOSS S&T Roadmap and the GEOSS mission through coherent and interoperable networking of National and European projects, and International initiatives. The definition of a general methodology for a sustainable contribution to GEO/GEOSS through the implementation of a System-of-System (re-) engineering process is one of the objectives of the EGIDA Project in order to consolidate the results of the actions carried out in support of the GEO Science and Technology Committee (STC) Road Map. The EGIDA Methodology is based on several sources including GEO activities and documents, activities of the EGIDA project in support of the GEO STC Road Map, lessons learned from the initiatives and projects already contributing, in different ways, to the building of advanced infrastructures as direct or indirect part to GEO/GEOSS. The design of the EGIDA Methodology included several steps: a) an operational definition of the EGIDA Methodology, b) the identification of the target audience for the EGIDA Methodology, c) the identification of typical scenarios for the application of the EGIDA Methodology. Basing on these design activities the EGIDA Methodology is defined as a set of two activities running in parallel: Networking Activities - to identify and address the relevant S&T community(-ies) and actors (Community Engagement) - and Technical Activities: - to guide the infrastructure development and align it with the GEO/GEOSS interoperability principles

  12. A Holistic Approach towards Information and Communication Technology (ICT) for Addressing Education Challenges in Asia and the Pacific

    ERIC Educational Resources Information Center

    Ra, Sungsup; Chin, Brian; Lim, Cher Ping

    2016-01-01

    Information and Communication Technology (ICT) offers opportunities for governments to address key education challenges of quality, equity, and efficiency. While governments and educational institutions in developed countries may have taken up these opportunities, many developing countries in Asia and the Pacific region have often missed them out.…

  13. Breaking through barriers: using technology to address executive function weaknesses and improve student achievement.

    PubMed

    Schwartz, David M

    2014-01-01

    Assistive technologies provide significant capabilities for improving student achievement. Improved accessibility, cost, and diversity of applications make integration of technology a powerful tool to compensate for executive function weaknesses and deficits and their impact on student performance, learning, and achievement. These tools can be used to compensate for decreased working memory, poor time management, poor planning and organization, poor initiation, and decreased memory. Assistive technology provides mechanisms to assist students with diverse strengths and weaknesses in mastering core curricular concepts.

  14. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    PubMed

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes.

  15. Addressing the English Language Arts Technology Standard in a Secondary Reading Methodology Course.

    ERIC Educational Resources Information Center

    Merkley, Donna J.; Schmidt, Denise A.; Allen, Gayle

    2001-01-01

    Describes efforts to integrate technology into a reading methodology course for secondary English majors. Discusses the use of e-mail, multimedia, distance education for videoconferences, online discussion technology, subject-specific software, desktop publishing, a database management system, a concept mapping program, and the use of the World…

  16. Addressing AACSB Global and Technology Requirements: Exploratory Assessment of a Marketing Management Assignment

    ERIC Educational Resources Information Center

    Greene, Scott; Bao, Yongchuan

    2009-01-01

    The Association to Advance Collegiate Schools of Business (AACSB) standards mandate knowledge of global and technology issues. Businesses desire employees with ability to analyze international markets and to be adept with technology. Taxpayers supporting public universities and organizations hiring business school graduates expect accountability…

  17. Assessing and Addressing Teachers' Attitudes Toward Information Technology in the Gifted Classroom

    ERIC Educational Resources Information Center

    Shaunessy, Elizabeth

    2005-01-01

    While the new standards recommend that technology should be available to gifted learners as a tool for learning, no research has been published related to teachers' attitudes toward information technology and the gifted or how programming for these learners has been altered to meet this charge. Data-collection efforts for this document focused on…

  18. Teacher Value Beliefs Associated with Using Technology: Addressing Professional and Student Needs

    ERIC Educational Resources Information Center

    Ottenbreit-Leftwich, Anne T.; Glazewski, Krista D.; Newby, Timothy J.; Ertmer, Peggy A.

    2010-01-01

    Studies have indicated that when teachers believe technology uses are valuable, they are more likely to incorporate those uses into their practices. This hermeneutical phenomenology study investigated the value beliefs that underlie teachers' uses of technology. To measure value beliefs, teachers' uses (and reasons for those uses) of technology…

  19. Has Research on Collaborative Learning Technologies Addressed Massiveness? A Literature Review

    ERIC Educational Resources Information Center

    Manathunga, Kalpani; Hernández-Leo, Davinia

    2015-01-01

    There is a growing interest in understanding to what extent innovative educational technologies can be used to support massive courses. Collaboration is one of the main desired elements in massive learning actions involving large communities of participants. Accumulated research in collaborative learning technologies has proposed and evaluated…

  20. Education Technologies in Addressing the Problem of Forming the Socially Active Individual

    ERIC Educational Resources Information Center

    Popova, Irina N.

    2016-01-01

    The article is devoted to the analysis of technological support of the educational process in solving the problem of forming the socially active individual. The authors studied the value of the category "social activity" and analyzed educational technologies that have an impact on its formation. The obtained results gave the possibility…

  1. New technologies address the problem areas of coiled-tubing cementing

    SciTech Connect

    Carpenter, R.B. )

    1992-05-01

    Coiled-tubing cementing has been practiced successfully on the Alaskan North Slope for several years. This paper discusses the special problems faced when this technology was applied to offshore U.S. gulf coast operations. The innovative solutions and procedures developed to improve the economic and technical success of coiled-tubing cementing are also discussed. Comparative laboratory and computer studies, as well as field case histories, will be presented to show the economic merit of this technology.

  2. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  3. New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences.

    PubMed

    Hood, Leroy E; Omenn, Gilbert S; Moritz, Robert L; Aebersold, Ruedi; Yamamoto, Keith R; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2012-09-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14-15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development.

  4. Nanoparticles: synthesis and applications in life science and environmental technology

    NASA Astrophysics Data System (ADS)

    Luong Nguyen, Hoang; Nguyen, Hoang Nam; Hai Nguyen, Hoang; Quynh Luu, Manh; Hieu Nguyen, Minh

    2015-03-01

    This work focuses on the synthesis, functionalization, and application of gold and silver nanoparticles, magnetic nanoparticles Fe3O4, combination of 4-ATP-coated silver nanoparticles and Fe3O4 nanoparticles. The synthesis methods such as chemical reduction, seeding, coprecipitation,and inverse microemulsion will be outlined. Silica- and amino-coated nanoparticles are suitable for several applications in biomedicine and the environment. The applications of the prepared nanoparticles for early detection of breast cancer cells, basal cell carcinoma, antibacterial test, arsenic removal from water, Herpes DNA separation, CD4+ cell separation and isolation of DNA of Hepatitis virus type B (HBV) and Epstein-Barr virus (EBV) are discussed. Finally, some promising perspectives will be pointed out. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  5. Applying Inkjet Technology to Dispense Colloidal Nanoparticle Fluids

    NASA Astrophysics Data System (ADS)

    O, Annie; Mohar, Harjyot; Hernandez, Victor; Estrada, Arturo; Munoz, Leonel; Fan, Sewan; Fatuzzo, Laura; Jimenez, Steven

    2014-03-01

    The inkjet technology is widely employed to reliably deliver nanomaterials onto a substrate medium for further characterization and processing. To explore the feasibility of inkjet deposition for colloids, a novel drop-on-demand fluid dispenser is constructed to eject various types of liquids to produce atomized droplets. To make structured nanomaterials on a substrate using inkjet techniques, it is essential to determine the dynamical properties of the droplets as they are being formed. These would include the ejection speed, acceleration, terminal velocity and flight trajectories. For measuring these dynamic parameters, we successfully dispensed propylene glycol solution in different mixing ratios. This forms a reference fluid for establishing a baseline for our investigations. Our experimental data suggest that rapidly ejected droplets can be accurately modeled using Newton's equations and Stokes' law. In this conference, we describe our experiments consisting of an innovative inkjet dispensing apparatus in synchronization with a high-resolution camera imaging system. Furthermore, we plan to discuss our research efforts in dispensing microdroplets for relevant materials, such as chemical colloidal suspensions containing nanoparticles and polymer based fluids. Department of Education grant number P031S90007.

  6. Addressing Research at the Intersection of Academic Literacies and New Technology

    ERIC Educational Resources Information Center

    Crook, Charles

    2005-01-01

    Academic literacies research has significantly informed educational practice across a range of disciplines. But this influence has largely been through a focus on genres of written language. The growth of new information and communication technologies demands a broader view of academic literacy and how it now informs situations of learning. This…

  7. Cultural factors influencing safety need to be addressed in design and operation of technology.

    PubMed

    Meshkati, N

    1996-10-01

    Cultural factors which influence aviation safety in aircraft design, air traffic control, and human factors training are examined. Analysis of the Avianca Flight 052 crash in New York in January, 1990, demonstrates the catastrosphic effects cultural factors can play. Cultural factors include attitude toward work and technology, organizational hierarchy, religion, and population stereotyping.

  8. Addressing the problem of glass thickness variation in the indirect slumping technology

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Wellnhofer, Christoph; Breunig, Elias; Friedrich, Peter; Winter, Anita

    2015-09-01

    The indirect hot slumping technology is being developed at Max-Planck-Institute for extraterrestrial Physics (MPE) for the manufacturing of lightweight astronomical X-ray telescopes. It consists of a thermal shaping process to replicate the figure of a suitable mould into segments of X-ray mirror shells made by glass. Several segments are aligned and mounted into elemental modules, a number of which is then assembled together to form the telescope. To obtain mirror segments of high optical quality, the realization of the slumping thermal cycle itself is of fundamental importance, but also the starting materials, primarily the mould and the glass foils, play a major role. This paper will review the MPE approach in the slumping technology development and will then concentrate on the glass, with particular regards to the problem of thickness variation.

  9. Critical Technologies: Agency Initiatives Address Some Weaknesses, but Additional Interagency Collaboration Is Needed

    DTIC Science & Technology

    2015-02-01

    investment in U.S. companies. However, these technologies can also be targets for forms of unauthorized transfer, such as theft, espionage, reverse ...might be vulnerable to exploitation—through such means as reverse engineering—when weapons leave U.S. control through export or loss on the battlefield... Logistics and the Office of the Under Secretary of Defense for Policy, and members include the Defense Security Cooperation Agency, the military

  10. [The in vivo study of the medicinal composition property of doxorubicin as a part of colloidal nanoparticles with the address fragment].

    PubMed

    Sanzhakov, M A; Ignatov, D V; Kostryukova, L V; Druzhilovskaya, O S; Medvedeva, N V; Prozorovskyi, V N; Ipatova, O M

    2016-01-01

    The use of targeted transport systems for drug delivery is a promising approach to improve pharmacokinetics of drug substances, accumulation in the lesion. In this study we have obtained and characterized the pharmaceutical composition of doxorubicin in colloidal nanoparticles equipped with targeted conjugates based on folic acid and biotin with dodecylamine. The inclusion of the address fragments into colloidal nanopartical was carried out without surface and drug substance modification The accumulation of anthracycline antibiotic doxorubicin in tumor tissue was compared in Lewis lung carcinoma mouse models after intravenous administration of the composition of colloidal nanoparticles with targeted conjugates biotin-dodecylamine and folic acid-dodecylamine or free doxorubicin. It was shown that the doxorubicin accumulation in tumor tissue when administered in drug compositions with targeted fragments are 2 times higher for the folic acid-dodecylamine conjugate and 1.4 times higher for the biotin-dodecylamine conjugate.

  11. Addressing Ethics and Technology in Business: Preparing Today's Students for the Ethical Challenges Presented by Technology in the Workplace

    ERIC Educational Resources Information Center

    Brooks, Rochelle

    2008-01-01

    The ethical development of information systems is but one of those sensitive scenarios associated with computer technology that has a tremendous impact on individuals and social life. The significance of these issues of concern cannot be overstated. However, since computer ethics is meant to be everybody's responsibility, the result can often be…

  12. Virtual Reality and Interactive Digital Game Technology: New Tools to Address Obesity and Diabetes

    PubMed Central

    “Skip” Rizzo, Albert; Lange, Belinda; Suma, Evan A; Bolas, Mark

    2011-01-01

    The convergence of the exponential advances in virtual reality (VR)-enabling technologies with a growing body of clinical research and experience has fueled the evolution of the discipline of clinical VR. This article begins with a brief overview of methods for producing and delivering VR environments that can be accessed by users for a range of clinical health conditions. Interactive digital games and new forms of natural movement-based interface devices are also discussed in the context of the emerging area of exergaming, along with some of the early results from studies of energy expenditure during the use of these systems. While these results suggest that playing currently available active exergames uses significantly more energy than sedentary activities and is equivalent to a brisk walk, these activities do not reach the level of intensity that would match playing the actual sport, nor do they deliver the recommended daily amount of exercise for children. However, these results provide some support for the use of digital exergames using the current state of technology as a complement to, rather than a replacement, for regular exercise. This may change in the future as new advances in novel full-body interaction systems for providing vigorous interaction with digital games are expected to drive the creation of engaging, low-cost interactive game-based applications designed to increase exercise participation in persons at risk for obesity. PMID:21527091

  13. Virtual reality and interactive digital game technology: new tools to address obesity and diabetes.

    PubMed

    Skip Rizzo, Albert; Lange, Belinda; Suma, Evan A; Bolas, Mark

    2011-03-01

    The convergence of the exponential advances in virtual reality (VR)-enabling technologies with a growing body of clinical research and experience has fueled the evolution of the discipline of clinical VR. This article begins with a brief overview of methods for producing and delivering VR environments that can be accessed by users for a range of clinical health conditions. Interactive digital games and new forms of natural movement-based interface devices are also discussed in the context of the emerging area of exergaming, along with some of the early results from studies of energy expenditure during the use of these systems. While these results suggest that playing currently available active exergames uses significantly more energy than sedentary activities and is equivalent to a brisk walk, these activities do not reach the level of intensity that would match playing the actual sport, nor do they deliver the recommended daily amount of exercise for children. However, these results provide some support for the use of digital exergames using the current state of technology as a complement to, rather than a replacement, for regular exercise. This may change in the future as new advances in novel full-body interaction systems for providing vigorous interaction with digital games are expected to drive the creation of engaging, low-cost interactive game-based applications designed to increase exercise participation in persons at risk for obesity.

  14. Addressing the Real-World Challenges in the Development of Propulsion IVHM Technology Experiment (PITEX)

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Chicatelli, Amy; Fulton, Christopher E.; Balaban, Edward; Sweet, Adam; Hayden, Sandra Claire; Bajwa, Anupa

    2005-01-01

    The Propulsion IVHM Technology Experiment (PITEX) has been an on-going research effort conducted over several years. PITEX has developed and applied a model-based diagnostic system for the main propulsion system of the X-34 reusable launch vehicle, a space-launch technology demonstrator. The application was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real-time on flight-like hardware. In an attempt to expose potential performance problems, these PITEX algorithms were subject to numerous real-world effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. The current research has demonstrated the potential benefits of model-based diagnostics, defined the performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems.

  15. Ecological Momentary Assessment in Behavioral Research: Addressing Technological and Human Participant Challenges

    PubMed Central

    Shiffman, Saul; Music, Edvin; Styn, Mindi A; Kriska, Andrea; Smailagic, Asim; Siewiorek, Daniel; Ewing, Linda J; Chasens, Eileen; French, Brian; Mancino, Juliet; Mendez, Dara; Strollo, Patrick; Rathbun, Stephen L

    2017-01-01

    Background Ecological momentary assessment (EMA) assesses individuals’ current experiences, behaviors, and moods as they occur in real time and in their natural environment. EMA studies, particularly those of longer duration, are complex and require an infrastructure to support the data flow and monitoring of EMA completion. Objective Our objective is to provide a practical guide to developing and implementing an EMA study, with a focus on the methods and logistics of conducting such a study. Methods The EMPOWER study was a 12-month study that used EMA to examine the triggers of lapses and relapse following intentional weight loss. We report on several studies that informed the implementation of the EMPOWER study: (1) a series of pilot studies, (2) the EMPOWER study’s infrastructure, (3) training of study participants in use of smartphones and the EMA protocol and, (4) strategies used to enhance adherence to completing EMA surveys. Results The study enrolled 151 adults and had 87.4% (132/151) retention rate at 12 months. Our learning experiences in the development of the infrastructure to support EMA assessments for the 12-month study spanned several topic areas. Included were the optimal frequency of EMA prompts to maximize data collection without overburdening participants; the timing and scheduling of EMA prompts; technological lessons to support a longitudinal study, such as proper communication between the Android smartphone, the Web server, and the database server; and use of a phone that provided access to the system’s functionality for EMA data collection to avoid loss of data and minimize the impact of loss of network connectivity. These were especially important in a 1-year study with participants who might travel. It also protected the data collection from any server-side failure. Regular monitoring of participants’ response to EMA prompts was critical, so we built in incentives to enhance completion of EMA surveys. During the first 6 months of

  16. Addressing the systems-based practice requirement with health policy content and educational technology.

    PubMed

    Nagler, Alisa; Andolsek, Kathryn; Dossary, Kristin; Schlueter, Joanne; Schulman, Kevin

    2010-01-01

    Duke University Hospital Office of Graduate Medical Education and Duke University's Fuqua School of Business collaborated to offer a Health Policy lecture series to residents and fellows across the institution, addressing the "Systems-based Practice" competency.During the first year, content was offered in two formats: live lecture and web/podcast. Participants could elect the modality which was most convenient for them. In Year Two, the format was changed so that all content was web/podcast and a quarterly live panel discussion was led by module presenters or content experts. Lecture evaluations, qualitative focus group feedback, and post-test data were analyzed.A total of 77 residents and fellows from 8 (of 12) Duke Graduate Medical Education departments participated. In the first year, post-test results were the same for those who attended the live lectures and those who participated via web/podcast. A greater number of individuals participated in Year Two. Participants from both years expressed the need for health policy content in their training programs. Participants in both years valued a hybrid format for content delivery, recognizing a desire for live interaction with the convenience of accessing web/podcasts at times and locations convenient for them. A positive unintended consequence of the project was participant networking with residents and fellows from other specialties.

  17. Electron multibeam technology for mask and wafer writing at 0.1 nm address grid

    NASA Astrophysics Data System (ADS)

    Platzgummer, Elmar; Klein, Christof; Loeschner, Hans

    2013-07-01

    IMS Nanofabrication realized a 50 keV electron multibeam proof-of-concept (POC) tool confirming writing principles with 0.1 nm address grid and lithography performance capability. The POC system achieves the predicted 5 nm 1 sigma blur across the 82 μm×82 μm array of 512×512 (262,144) programmable 20 nm beams. 24-nm half pitch (HP) has been demonstrated and complex patterns have been written in scanning stripe exposure mode. The first production worthy system for the 11-nm HP mask node is scheduled for 2014 (Alpha), 2015 (Beta), and first-generation high-volume manufacturing multibeam mask writer (MBMW) tools in 2016. In these MBMW systems the max beam current through the column is 1 μA. The new architecture has also the potential for 1× mask (master template) writing. Substantial further developments are needed for maskless e-beam direct write (EBDW) applications as a beam current of >2 mA is needed to achieve 100 wafer per hour industrial targets for 300 mm wafer size. Necessary productivity enhancements of more than three orders of magnitude are only possible by shrinking the multibeam optics such that 50 to 100 subcolumns can be placed on the area of a 300 mm wafer and by clustering 10 to 20 multicolumn tools. An overview of current EBDW efforts is provided.

  18. Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem

    SciTech Connect

    Bergman, Keren

    2014-08-28

    Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM

  19. Nanoparticle characterization: State of the art, challenges, and emerging technologies

    PubMed Central

    Cho, Eun Jung; Holback, Hillary; Liu, Karen C.; Abouelmagd, Sara A.; Park, Joonyoung; Yeo, Yoon

    2013-01-01

    Nanoparticles have received enormous attention as a promising tool to enhance target-specific drug delivery and diagnosis. Various in vitro and in vivo techniques are used to characterize a new system and predict its clinical efficacy. These techniques enable efficient comparison across nanoparticles and facilitate a product optimization process. On the other hand, we recognize their limitations as a prediction tool, which owe to inadequate applications and overly simplified test conditions. This article provides a critical review of in vitro and in vivo techniques currently used for evaluation of nanoparticles and introduces emerging techniques and models that may be used complementarily. PMID:23461379

  20. LCA of emerging technologies: addressing high uncertainty on inputs' variability when performing global sensitivity analysis.

    PubMed

    Lacirignola, Martino; Blanc, Philippe; Girard, Robin; Pérez-López, Paula; Blanc, Isabelle

    2017-02-01

    In the life cycle assessment (LCA) context, global sensitivity analysis (GSA) has been identified by several authors as a relevant practice to enhance the understanding of the model's structure and ensure reliability and credibility of the LCA results. GSA allows establishing a ranking among the input parameters, according to their influence on the variability of the output. Such feature is of high interest in particular when aiming at defining parameterized LCA models. When performing a GSA, the description of the variability of each input parameter may affect the results. This aspect is critical when studying new products or emerging technologies, where data regarding the model inputs are very uncertain and may cause misleading GSA outcomes, such as inappropriate input rankings. A systematic assessment of this sensitivity issue is now proposed. We develop a methodology to analyze the sensitivity of the GSA results (i.e. the stability of the ranking of the inputs) with respect to the description of such inputs of the model (i.e. the definition of their inherent variability). With this research, we aim at enriching the debate on the application of GSA to LCAs affected by high uncertainties. We illustrate its application with a case study, aiming at the elaboration of a simple model expressing the life cycle greenhouse gas emissions of enhanced geothermal systems (EGS) as a function of few key parameters. Our methodology allows identifying the key inputs of the LCA model, taking into account the uncertainty related to their description.

  1. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges.

    PubMed

    Ricroch, Agnès E; Hénard-Damave, Marie-Cécile

    2016-08-01

    Most of the genetically modified (GM) plants currently commercialized encompass a handful of crop species (soybean, corn, cotton and canola) with agronomic characters (traits) directed against some biotic stresses (pest resistance, herbicide tolerance or both) and created by multinational companies. The same crops with agronomic traits already on the market today will continue to be commercialized, but there will be also a wider range of species with combined traits. The timeframe anticipated for market release of the next biotech plants will not only depend on science progress in research and development (R&D) in laboratories and fields, but also primarily on how demanding regulatory requirements are in countries where marketing approvals are pending. Regulatory constraints, including environmental and health impact assessments, have increased significantly in the past decades, delaying approvals and increasing their costs. This has sometimes discouraged public research entities and small and medium size plant breeding companies from using biotechnology and given preference to other technologies, not as stringently regulated. Nevertheless, R&D programs are flourishing in developing countries, boosted by the necessity to meet the global challenges that are food security of a booming world population while mitigating climate change impacts. Biotechnology is an instrument at the service of these imperatives and a wide variety of plants are currently tested for their high yield despite biotic and abiotic stresses. Many plants with higher water or nitrogen use efficiency, tolerant to cold, salinity or water submergence are being developed. Food security is not only a question of quantity but also of quality of agricultural and food products, to be available and accessible for the ones who need it the most. Many biotech plants (especially staple food) are therefore being developed with nutritional traits, such as biofortification in vitamins and metals. The main

  2. Address to the international workshop on greenhouse gas mitigation, technologies and measures

    SciTech Connect

    Kant, A.

    1996-12-31

    The Netherlands has a long history in combatting natural forces for it`s mere survival and even creation. Around half of the country was not Yet existent around 2000 years ago: it was still below sea level that time. Building dikes and the discovery of eolic energy applied in windmills, allowing to pump water from one side of the dike to the other, are technologies that gradually shaped the country into its current form, a process that continues to materialize till the present day. Water has not always been an enemy of the country. In the Hundred Year War with Spain, during which the country was occupied territory for most of the time, the water was used to drive the Spanish armies from the country. As large parts are well below sea level breaking the dikes resulted in flooding the country which made the armoury of the Spanish army useless. In this way they had to give up the siege of several major Dutch cities that time. These events marked the gradual liberation of the Dutch territory. Consequently, in the discussion on adaption and prevention of the greenhouse effect the Netherlands has a clear stand. The greenhouse effect will occur anyway, even if countries deploy all possible counter measures at once. So their aim is to prevent the occurrence of the greenhouse effect to the highest extent possible, and to protect the most vulnerable areas meanwhile, especially the coastal zones. In order to reach these goals the Dutch government has established a Joint Implementation Experimental Programme in accordance with the provisions made by the Conference of Parties in Berlin (1995).

  3. Spinning disc processing technology: potential for large-scale manufacture of chitosan nanoparticles.

    PubMed

    Loh, Jing Wen; Schneider, Jessica; Carter, Michelle; Saunders, Martin; Lim, Lee-Yong

    2010-10-01

    Mass production of nanoparticles using a reliable cost-effective approach is a challenge in the pharmaceutical industry. In this study, the spinning disc processing (SDP) technology was used to fabricate chitosan nanoparticles, with a view to commercially produce chitosan nanoparticle-based drug delivery platforms. Chitosan solution (0.25%, w/v, in dilute acid, 27.5 mL, 1.5 mL/s) was intensely mixed with sodium tripolyphosphate solution (0.10%, w/v, in water, 20 mL, 1.1 mL/s) on the spinning disc (1000 rpm). Transmission electron microscopy and dynamic light scattering data confirmed that the nanoparticles (20 +/- 3 nm) were comparable in size and shape to those synthesised using a beaker and magnetic stirrer (31 +/- 13 nm). Larger nanoparticles (131 +/- 5 nm) were produced by increasing the chitosan and TPP feed concentrations to 0.5% and 0.125%, respectively. Drug loading further increased the size of the nanoparticles, with N-acetyl cysteine (NAC) having a greater effect (403 +/- 4 nm) than paracetamol (165 +/- 4 nm). Co-loading of both drugs increased the size of the particles to the micron range. In conclusion, the SDP is a robust technology capable of expanding the production of blank and drug-loaded chitosan nanoparticles for the biomedical and pharmaceutical industries.

  4. Shape control technology during electrochemical synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-yu; Cui, Cong-ying; Cheng, Ying-wen; Ma, Hou-yi; Liu, Duo

    2013-05-01

    Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuCl4) to an electrolyzed aqueous solution of poly( N-vinylpyrrolidone) (PVP) and KNO3, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuCl4, respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH- catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.

  5. nanoparticles

    NASA Astrophysics Data System (ADS)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  6. Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles

    NASA Astrophysics Data System (ADS)

    Roso, Martina; Sundarrajan, Subramanian; Pliszka, Damian; Ramakrishna, Seeram; Modesti, Michele

    2008-07-01

    A multicomponent membrane based on polysulfone nanofibers and titanium dioxide nanoparticles is produced by the coupling of electrospinning and electrospraying techniques. The manufactured product can satisfy a number of conflicting requirements begetting its technical and functional versatility as well as the reliability of the process. As nanoparticle dispersion is a critical issue in nanoparticle technology, their distribution and morphology have been extensively studied before and after electrospraying, and process optimization has been carried out to obtain nanoparticles uniformly spread over electrospun nanofibers. These membranes have been proved to be a good candidate for supported catalysis due to the photocatalytic activity of TiO2, tested for degradation of CEPS, a mustard agent simulant. At the same time, an effective improvement in filtering properties in terms of pressure drop has also been studied.

  7. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges

    PubMed Central

    Calderón-Jiménez, Bryan; Johnson, Monique E.; Montoro Bustos, Antonio R.; Murphy, Karen E.; Winchester, Michael R.; Vega Baudrit, José R.

    2017-01-01

    Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements. PMID:28271059

  8. Recovery of Drug Delivery Nanoparticles from Human Plasma Using an Electrokinetic Platform Technology.

    PubMed

    Ibsen, Stuart; Sonnenberg, Avery; Schutt, Carolyn; Mukthavaram, Rajesh; Yeh, Yasan; Ortac, Inanc; Manouchehri, Sareh; Kesari, Santosh; Esener, Sadik; Heller, Michael J

    2015-10-01

    The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. It is shown that this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low-density nanoliposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. This new recovery technique can be broadly applied to the recovery of nanoparticles from high conductance fluids in a wide range of applications.

  9. Assessment of Carbon- and Metal-Based Nanoparticle DNA Damage with Microfluidic Electrophoretic Separation Technology.

    PubMed

    Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M

    2015-02-01

    In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.

  10. Real-Time Imaging of Gene Delivery and Expression with DNA Nanoparticle Technologies

    NASA Astrophysics Data System (ADS)

    Sun, Wenchao; Ziady, Assem G.

    The construction of safe, efficient, and modifiable synthetic DNA nanoparticles is an emerging technology that has achieved important milestones of success in the past 5 years. Advances in chemical conjugation, purification, and controlled synthesis have allowed researchers to produce uniform and stable particles, whose physical characteristics can be well characterized and monitored. As a result of these improvements, DNA nanoparticles have now been cleared for clinical testing, and show good potential for human gene therapy. A very important recent development in the study of DNA nanoparticles is the use of small-animal imaging. Real-time imaging has become a valuable technique for tracking particle biodistribution and gene transfer efficacy. In this chapter, we discuss how bioluminescent, positron emission tomography, and magnetic resonance imaging can be used separately or in concert to study particle delivery, localization, and magnitude of gene expression in vivo.

  11. Antenna of silver nanoparticles mounted on a flexible polymer substrate constructed using inkjet print technology

    NASA Astrophysics Data System (ADS)

    Matyas, Jiri; Munster, Lukas; Olejnik, Robert; Vlcek, Karel; Slobodian, Petr; Krcmar, Petr; Urbanek, Pavel; Kuritka, Ivo

    2016-02-01

    This article describes the construction of an antenna that operates at frequencies of 1.07, 1.5, and 2.49 GHz and that is fabricated on a flexible polymer substrate using inkjet printing technology. In particular, this article is focused on the preparation and characterization of an antenna starting from the ink formulation for printing a homogeneous, electrically conductive layer using silver nanoparticles. The diameter of the prepared silver nanoparticles ranges from 50 to 200 nm. The inkjet printing technology on flexible polymer substrates offers a wide range of applications where there are high demands for flexibility. In combination with the polymer substrate, inkjet printing enables the production of more complex shapes and curves for antennas that are widely applicable not only in wearable electronic devices but also in plastic cases for portable communication devices.

  12. Development of a multilayered polymeric DNA biosensor using radio frequency technology with gold and magnetic nanoparticles.

    PubMed

    Yang, Cheng-Hao; Kuo, Long-Sheng; Chen, Ping-Hei; Yang, Chii-Rong; Tsai, Zuo-Min

    2012-01-15

    This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures.

  13. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    NASA Astrophysics Data System (ADS)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  14. Improved delivery of poorly soluble compounds using nanoparticle technology: a review.

    PubMed

    Kalepu, Sandeep; Nekkanti, Vijaykumar

    2016-06-01

    Although a large number of new drug molecules with varied therapeutic potentials have been discovered in the recent decade, yet most of them are still in developmental process. This can be attributed to the limited aqueous solubility which governs the bioavailability of such drug molecules. Hence, there is a requisite for a technology-based product (formulation) in order to overcome such issues without compromising on the therapeutic response. The purpose of this review is to provide an insight to the formulation of drug nanoparticles for enhancing solubility and dissolution velocity with concomitant enhancement in bioavailability. In the recent decade, nanonization has evolved from a concept to reality owing to its versatile applications, especially in the development of drugs having poor solubility. In this review, a relatively simple and scalable approach for the manufacture of drug nanoparticles and latest characterization techniques utilized to evaluate the drug nanoparticles are discussed. The drug nanoparticulate approach described herein provides a general applicability of the platform technology in designing a formulation for drugs associated with poor aqueous solubility.

  15. A Study on Reactive Spray Deposition Technology Processing Parameters in the Context of Pt Nanoparticle Formation

    NASA Astrophysics Data System (ADS)

    Roller, Justin M.; Maric, Radenka

    2015-12-01

    Catalytic materials are complex systems in which achieving the desired properties (i.e., activity, selectivity and stability) depends on exploiting the many degrees of freedom in surface and bulk composition, geometry, and defects. Flame aerosol synthesis is a process for producing nanoparticles with ample processing parameter space to tune the desired properties. Flame dynamics inside the reactor are determined by the input process variables such as solubility of precursor in the fuel; solvent boiling point; reactant flow rate and concentration; flow rates of air, fuel and the carrier gas; and the burner geometry. In this study, the processing parameters for reactive spray deposition technology, a flame-based synthesis method, are systematically evaluated to understand the residence times, reactant mixing, and temperature profiles of flames used in the synthesis of Pt nanoparticles. This provides a framework for further study and modeling. The flame temperature and length are also studied as a function of O2 and fuel flow rates.

  16. Socio-Technical Systems Analysis and Manufacturing Technology: Addressing "Big Brother" and Computers in Blue-Collar Work.

    ERIC Educational Resources Information Center

    Taylor, James C.

    For more than 80 years, jobs in the United States have been designed by people for others. For most of these years, the experts in job design have placed the production technology above the job holder in importance. Since the 1950s, many jobs have been redesigned around new, computer-based technology. Often, the net effect has been to make those…

  17. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    SciTech Connect

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  18. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.

    PubMed

    Sheth, Pratik; Sandhu, Harpreet; Singhal, Dharmendra; Malick, Waseem; Shah, Navnit; Kislalioglu, M Serpil

    2012-05-01

    Poor aqueous solubility of drug candidates is a major challenge for the pharmaceutical scientists involved in drug development. Particle size reduction appears as an effective and versatile option for solubility improvement. Nanonization is an attractive solution to improve the bioavailability of the poorly soluble drugs, improved therapies, in vivo imaging, in vitro diagnostics and for the production of biomaterials and active implants. In drug delivery, application of nanotechnology is commonly referred to as Nano Drug Delivery Systems (NDDS). In this article, commercially available nanosized drugs, their dosage forms and proprietors, as well as the methods used for preparation like milling, high pressure homogenization, vacuum deposition, and high temperature evaporation were listed. Unlike the traditional methods used for the particle size reduction, supercritical fluid-processing techniques offer advantages ranging from superior particle size control to clean processing. The primary focus of this review article is the use of supercritical CO2 based technologies for small particle generation. Particles that have the smooth surfaces, small particle size and distribution and free flowing can be obtained with particular SCF techniques. In almost all techniques, the dominating process variables may be thermodynamic and aerodynamic in nature, and the design of the particle collection environment. Rapid Expansion of Supercritical Solutions (RESS), Supercritical Anti Solvent (SAS) and Particles from Gas Saturated Solutions (PGSS) are three groups of processes which lead to the production of fine and monodisperse powders. Few of them may also control crystal polymorphism. Among the aforementioned processes, RESS involves dissolving a drug in a supercritical fluid (SCF) and passing it through an appropriate nozzle. Rapid depressurization of this solution causes an extremely rapid nucleation of the product. This process has been known for a long time but its application

  19. Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI).

    PubMed

    Simeonidis, K; Kaprara, E; Samaras, T; Angelakeris, M; Pliatsikas, N; Vourlias, G; Mitrakas, M; Andritsos, N

    2015-12-01

    The potential of magnetite nanoparticles to be applied in drinking water treatment for the removal of hexavalent chromium is discussed. In this study, a method for their preparation which combines the use of low-cost iron sources (FeSO4 and Fe2(SO4)3) and a continuous flow mode, was developed. The produced magnetite nanoparticles with a size of around 20 nm, appeared relatively stable to passivation providing a removal capacity of 1.8 μg Cr(VI)/mg for a residual concentration of 50 μg/L when tested in natural water at pH7. Such efficiency is explained by the reducing ability of magnetite which turns Cr(VI) to an insoluble Cr(OH)3 form. The successful operation of a small-scale system consisting of a contact reactor and a magnetic separator demonstrates a way for the practical introduction and recovery of magnetite nanoparticles in water treatment technology.

  20. How are we addressing ligament balance in TKA? A literature review of revision etiology and technological advancement.

    PubMed

    Smith, Tyler; Elson, Leah; Anderson, Christopher; Leone, William

    2016-01-01

    Despite technological advances in operative technique and component materials, the total knee arthroplasty (TKA) revision burden, in the United States, has remained static for the past decade. In light of an anticipated exponential increase in annual surgical volume, it is important to thoroughly understand contemporary challenges associated with technologically driven TKA. This descriptive literature review harvested 69 relevant publications to extrapolate patient trends, benefits, costs, and complications associated with computer-assisted surgery, patient specific instrumentation, and intra-operative sensors. Due to additional charges, a steep learning curve, and questionable cost-effectiveness, widespread use of these systems has been limited. Intra-operative sensors are a relatively recent development, and have been shown to improve both soft-tissue balance and overall functional outcomes at a relatively low price and without disrupting operative workflow. The introduction of new technology into the operating suite should be considered carefully, especially with respect to combined clinically efficacy and cost.

  1. Vault Nanoparticles Packaged with Enzymes as an Efficient Pollutant Biodegradation Technology.

    PubMed

    Wang, Meng; Abad, Danny; Kickhoefer, Valerie A; Rome, Leonard H; Mahendra, Shaily

    2015-11-24

    Vault nanoparticles packaged with enzymes were synthesized as agents for efficiently degrading environmental contaminants. Enzymatic biodegradation is an attractive technology for in situ cleanup of contaminated environments because enzyme-catalyzed reactions are not constrained by nutrient requirements for microbial growth and often have higher biodegradation rates. However, the limited stability of extracellular enzymes remains a major challenge for practical applications. Encapsulation is a recognized method to enhance enzymatic stability, but it can increase substrate diffusion resistance, lower catalytic rates, and increase the apparent half-saturation constants. Here, we report an effective approach for boosting enzymatic stability by single-step packaging into vault nanoparticles. With hollow core structures, assembled vault nanoparticles can simultaneously contain multiple enzymes. Manganese peroxidase (MnP), which is widely used in biodegradation of organic contaminants, was chosen as a model enzyme in the present study. MnP was incorporated into vaults via fusion to a packaging domain called INT, which strongly interacts with vaults' interior surface. MnP fused to INT and vaults packaged with the MnP-INT fusion protein maintained peroxidase activity. Furthermore, MnP-INT packaged in vaults displayed stability significantly higher than that of free MnP-INT, with slightly increased Km value. Additionally, vault-packaged MnP-INT exhibited 3 times higher phenol biodegradation in 24 h than did unpackaged MnP-INT. These results indicate that the packaging of MnP enzymes in vault nanoparticles extends their stability without compromising catalytic activity. This research will serve as the foundation for the development of efficient and sustainable vault-based bioremediation approaches for removing multiple contaminants from drinking water and groundwater.

  2. The Effectiveness of Different Instructional Laboratories in Addressing the Objectives of the Nebraska Industrial Technology Education Framework.

    ERIC Educational Resources Information Center

    Rogers, George E.

    2000-01-01

    Seventh-graders (n=160) were assessed before and after a 9-week industrial technology course: 67 in traditional labs with old equipment, 65 in modular labs, and 28 in contemporary, updated labs. The contemporary lab produced the greatest achievement gain, significantly better than the modular approach in a number of areas. (SK)

  3. National Institute of Justice (NIJ): improving the effectiveness of law enforcement via homeland security technology improvements (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Morgan, John S.

    2005-05-01

    Law enforcement agencies play a key role in protecting the nation from and responding to terrorist attacks. Preventing terrorism and promoting the nation"s security is the Department of Justice"s number one strategic priority. This is reflected in its technology development efforts, as well as its operational focus. The National Institute of Justice (NIJ) is the national focal point for the research, development, test and evaluation of technology for law enforcement. In addition to its responsibilities in supporting day-to-day criminal justice needs in areas such as less lethal weapons and forensic science, NIJ also provides critical support for counter-terrorism capacity improvements in state and local law enforcement in several areas. The most important of these areas are bomb response, concealed weapons detection, communications and information technology, which together offer the greatest potential benefit with respect to improving the ability to law enforcement agencies to respond to all types of crime including terrorist acts. NIJ coordinates its activities with several other key federal partners, including the Department of Homeland Security"s Science and Technology Directorate, the Technical Support Working Group, and the Department of Defense.

  4. Technology and Sexuality--What's the Connection? Addressing Youth Sexualities in Efforts to Increase Girls' Participation in Computing

    ERIC Educational Resources Information Center

    Ashcraft, Catherine

    2015-01-01

    To date, girls and women are significantly underrepresented in computer science and technology. Concerns about this underrepresentation have sparked a wealth of educational efforts to promote girls' participation in computing, but these programs have demonstrated limited impact on reversing current trends. This paper argues that this is, in part,…

  5. A case study in innovative outreach--combining training, research, and technology transfer to address real-world problems.

    PubMed Central

    Chang, D P

    1998-01-01

    Outreach, training, technology transfer, and research are often treated as programmatically distinct activities. The interdisciplinary and applied aspects of the Superfund Basic Research Program offer an opportunity to explore different models. A case study is presented that describes a collaborative outreach effort that combines all of the above. It involves the University of California's Davis and Berkeley program projects, the University of California Systemwide Toxic Substances Research and Teaching Program, the U.S. Navy's civilian workforce at the former Mare Island Naval Shipyard, Vallejo, California (MINSY), a Department of Defense (DoD) Environmental Education Demonstration Grant program, and the Private Industry Council of Napa and Sonoma counties in California. The effort applied a Superfund-developed technology to a combined waste, radium and polychlorinated biphenyl contamination, stemming from a problematic removal action at an installation/restoration site at MINSY. The effort demonstrates that opportunities for similar collaborations are possible at DoD installations. PMID:9703494

  6. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles.

    PubMed

    Leonardi, Antonio; Bucolo, Claudio; Romano, Giovanni Luca; Platania, Chiara Bianca Maria; Drago, Filippo; Puglisi, Giovanni; Pignatello, Rosario

    2014-08-15

    Addition of one or more surfactant agents is often necessary for the production of nanostructured lipid and polymeric systems. The removal of residual surfactants is a required step for technological and toxicological reasons, especially for peculiar applications, such as the ophthalmic field. This study was planned to assess the technological properties of some surfactants, commonly used for the production of lipid nanoparticles, as well as their ocular safety profile. Stable and small-size solid lipid nanoparticles were obtained using Dynasan(®) 114 as the lipid matrix and all the tested surfactants. However, from a toxicological point of view, the nanocarriers produced using Kolliphor(®) P188 were the most valuable, showing no irritant effect on the ocular surface up to the highest tested surfactant concentration (0.4%, w/v). The SLN produced using Cremophor(®) A25 and Lipoid(®) S100 were tolerated up to a surfactant concentration of 0.2% by weight, while for Tween(®) 80 and Kolliphor(®) HS 15 a maximum concentration of 0.05% can be considered totally not-irritant.

  7. AlGaInN laser diode bar and array technology for high power and individually addressable applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz

    2015-05-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Low defectivity and high uniformity GaN substrates allows arrays and bars of AlGaInN lasers with up to 20 emitters to be fabricated to obtain optical powers up to 4W at 395nm. AlGaInN laser bars are suitable for optical pumps and novel extended cavity systems for a wide range of applications. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be addressed individually allowing complex free-space and/or fibre optic system integration with a very small form-factor.

  8. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system.

  9. AlGaInN laser diode bar and array technology for high-power and individual addressable applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.

    2016-04-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications for medical, industrial, display and scientific purposes. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with high optical powers of >100mW with high reliability. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. We demonstrate the operation of monolithic AlGaInN laser bars with up to 20 emitters giving optical powers up to 4W cw at ~395nm with a common contact configuration. These bars are suitable for optical pumps and novel extended cavity systems. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.

  10. The Health Sciences and Technology Academy: an educational pipeline to address health care disparities in West Virginia.

    PubMed

    McKendall, Sherron Benson; Kasten, Kasandra; Hanks, Sara; Chester, Ann

    2014-01-01

    Health and educational disparities are national issues in the United States. Research has shown that health care professionals from underserved backgrounds are more likely than others to work in underserved areas. The Association of American Medical Colleges' Project 3000 by 2000, to increase the number of underrepresented minorities in medical schools, spurred the West Virginia School of Medicine to start the Health Sciences and Technology Academy (HSTA) in 1994 with the goal of supporting interested underrepresented high school students in pursuing college and health professions careers. The program was based on three beliefs: (1) if underrepresented high school students have potential and the desire to pursue a health professions career and are given the support, they can reach their goals, including obtaining a health professions degree; (2) underserved high school students are able to predict their own success if given the right resources; and (3) community engagement would be key to the program's success.In this Perspective, the authors describe the HSTA and its framework and philosophy, including the underlying theories and pedagogy from research in the fields of education and the behavioral/social sciences. They then offer evidence of the program's success, specifically for African American students, including graduates' high college-going rate and overwhelming intention to choose a health professions major. Finally, the authors describe the benefits of the HSTA's community partnerships, including providing mentors to students, adding legislative language providing tuition waivers and a budgetary line item devoted to the program, and securing program funding from outside sources.

  11. The Health Sciences and Technology Academy: An Educational Pipeline to Address Health Care Disparities in West Virginia

    PubMed Central

    McKendall, Sherron Benson; Kasten, Kasandra; Hanks, Sara; Chester, Ann

    2014-01-01

    Health and educational disparities are national issues in the United States. Research has shown that health care professionals from underserved backgrounds are more likely than others to work in underserved areas. The Association of American Medical Colleges’ Project 3000 by 2000, to increase the number of underrepresented minorities in medical schools, spurred the West Virginia School of Medicine to start the Health Sciences and Technology Academy (HSTA) in 1994 with the goal of supporting interested underrepresented high school students in pursuing college and health professions careers. The program was based on three beliefs: (1) if underrepresented high school students have potential and the desire to pursue a health professions career and are given the support, they can reach their goals, including obtaining a health professions degree; (2) underserved high school students are able to predict their own success if given the right resources; and (3) community engagement would be key to the program’s success. In this perspective, the authors describe the HSTA and its framework and philosophy, including the underlying theories and pedagogy from research in the fields of education and the behavioral/social sciences. They then offer evidence of the program’s success, specifically for African American students, including graduates’ high college-going rate and overwhelming intention to choose a health professions major. Finally, the authors describe the benefits of the HSTA’s community partnerships, including providing mentors to students, adding legislative language providing tuition waivers and a budgetary line item devoted to the program, and securing program funding from outside sources. PMID:24280836

  12. Global epigenetic screening technologies: a novel tool to address cancer health disparities in high-risk population groups.

    PubMed

    Guerrero-Preston, Rafael

    2008-12-01

    Racial, ethnic and class disparities in cancer incidence and mortality have been well documented. Disparities in the utilization of preventive, curative and treatment services among ethnic minorities have been reported. Screening can be effective at detecting cancer at treatable stages, but a large proportion of people at risk have not been screened or are not regularly screened, as recommended by the American Cancer Society's national guidelines. Early detection technologies have the potential of both influencing mortality from cancer, as well as enhancing primary prevention through detection and removal of lesions that could potentially develop into cancer. Cancer is an epigenetic disease characterized by the breakdown of DNA methylation and histones modification patterns. Epigenetic approaches may contribute to a reduction in cancer health disparities impacting early detection and increasing cancer treatment options. Epigenetic events represent important mechanism(s) by which gene function is selectively activated or inactivated, through genetic and non-genetic manifestations. Emerging evidence indicates that various epigenetic alterations, such as global histones modifications and DNA hypomethylation, common to most types of cancer, are modified by environmental exposures throughout the life course. A simple, easily explained and easy to understand non-invasive test, such as the DNA methylation index, that may screen for several cancer sites at once, may remove some of the existing barriers to cancer screening utilization, and contribute to the reduction of cancer disparities. Epigenetic approaches may also prove to be useful in identifying environmental and lifestyle factors that contribute to the prevalence of other chronic conditions in high risk populations, such as Puerto Rican populations in the United States and Puerto Rico.

  13. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  14. MAEA Interactive Science Programs: An Innovative Approach to Address the Under-representation of Minorities and Women in Science, Math, and Technological Fields.

    NASA Astrophysics Data System (ADS)

    Holloman, E. L.; Baynes, D. L.

    2004-12-01

    Minority Aviation Education Association Inc. (MAEA) was founded in 1992 by Darryl Lee Baynes to address the under-representation of minorities and women in all science, math, and technological fields. The organization is committed to exposing minorities and women to science, math, and technology in grades K-12. The first objective of MAEA is to educate teachers on how to integrate hands-on experiments in their class and include inquiry based learning in their science curriculum. A second objective is to educate students, teachers, and the community regarding the history of minorities in the fields of science, math, and technology, in order to provide role models in these fields. The last objective is to demonstrate the relevance of science in everyday life, with the intention of stimulating future career interest in the fields of science, math, and technology. MAEA currently offers more than 70 hands on inquiry-based programs that are aligned with the 2061 Bench Marks and National Science Standards. The programs are divided into four main categories: auditorium/classroom, enrichment and outreach, after school, and professional development. For the last 14 years, MAEA has served communities and schools across the country with remarkable success and therefore offers an alternative model for K-12 science education. This alternative is significant to the scientific community because it links the under-served population to an active academic and professional pipeline.

  15. Fe3O4 nanoparticles and nanocomposites with potential application in biomedicine and in communication technologies: Nanoparticle aggregation, interaction, and effective magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Allia, P.; Barrera, G.; Tiberto, P.; Nardi, T.; Leterrier, Y.; Sangermano, M.

    2014-09-01

    Magnetite nanoparticles with a size of 5-6 nm with potential impact on biomedicine and information/communication technologies were synthesized by thermal decomposition of Fe(acac)3 and subsequently coated with a silica shell exploiting a water-in-oil synthetic procedure. The as-produced powders (comprised of either Fe3O4 or Fe3O4@silica nanoparticles) were mixed with a photocurable resin obtaining two magnetic nanocomposites with the same nominal amount of magnetic material. The static magnetic properties of the two nanopowders and the corresponding nanocomposites were measured in the 10 K-300 K temperature range. Magnetic measurements are shown here to be able to give unambiguous information on single-particle properties such as particle size and magnetic anisotropy as well as on nanoparticle aggregation and interparticle interaction. A comparison between the size distribution functions obtained from magnetic measurements and from TEM images shows that figures estimated from properly analyzed magnetic measurements are very close to the actual values. In addition, the present analysis allows us to determine the value of the effective magnetic anisotropy and to estimate the anisotropy contribution from the surface. The Field-cooled/zero field cooled curves reveal a high degree of particle aggregation in the Fe3O4 nanopowder, which is partially reduced by silica coating and strongly decreased by dissolution in the host polymer. In all considered materials, the nanoparticles are magnetically interacting, the interaction strength being a function of nanoparticle environment and being the lowest in the nanocomposite containing bare, well-separate Fe3O4 particles. All samples behave as interacting superparamagnetic materials instead of ideal superparamagnets and follow the corresponding scaling law.

  16. Inaugural address

    NASA Astrophysics Data System (ADS)

    Joshi, P. S.

    2014-03-01

    From jets to cosmos to cosmic censorship P S Joshi Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India E-mail: psj@tifr.res.in 1. Introduction At the outset, I should like to acknowledge that part of the title above, which tries to capture the main flavour of this meeting, and has been borrowed from one of the plenary talks at the conference. When we set out to make the programme for the conference, we thought of beginning with observations on the Universe, but then we certainly wanted to go further and address deeper questions, which were at the very foundations of our inquiry, and understanding on the nature and structure of the Universe. I believe, we succeeded to a good extent, and it is all here for you in the form of these Conference Proceedings, which have been aptly titled as 'Vishwa Mimansa', which could be possibly translated as 'Analysis of the Universe'! It is my great pleasure and privilege to welcome you all to the ICGC-2011 meeting at Goa. The International Conference on Gravitation and Cosmology (ICGC) series of meetings are being organized by the Indian Association for General Relativity and Gravitation (IAGRG), and the first such meeting was planned and conducted in Goa in 1987, with subsequent meetings taking place at a duration of about four years at various locations in India. So, it was thought appropriate to return to Goa to celebrate the 25 years of the ICGC meetings. The recollections from that first meeting have been recorded elsewhere here in these Proceedings. The research and teaching on gravitation and cosmology was initiated quite early in India, by V V Narlikar at the Banares Hindu University, and by N R Sen in Kolkata in the 1930s. In course of time, this activity grew and gained momentum, and in early 1969, at the felicitation held for the 60 years of V V Narlikar at a conference in Ahmedabad, P C Vaidya proposed the formation of the IAGRG society, with V V Narlikar being the first President. This

  17. Convocation address.

    PubMed

    Kakodkar, A

    1999-07-01

    This convocation addressed by Dr. Anil Kakodkar focuses on the challenges faced by graduating students. In his speech, he emphasized the high level of excellence achieved by the industrial sector; however, he noted that there has been a loss of initiative in maximizing value addition, which was worsened by an increasing population pressure. In facing a stiff competition in the external and domestic markets, it is imperative to maximize value addition within the country in a competitive manner and capture the highest possible market share. To achieve this, high-quality human resources are central. Likewise, family planning programs should become more effective and direct available resources toward national advantage. To boost the domestic market, he suggests the need to search for strengths to achieve leadership position in those areas. First, an insight into the relationship between the lifestyles and the needs of our people and the natural resource endowment must be gained. Second, remodeling of the education system must be undertaken to prepare the people for adding the necessary innovative content in our value addition activities. Lastly, Dr. Kakodkar emphasizes the significance of developing a strong bond between parents and children to provide a sound foundation and allow the education system to grow upon it.

  18. High-Throughput Screening Platform for Engineered Nanoparticle-Mediated Genotoxicity Using CometChip Technology

    PubMed Central

    2015-01-01

    The likelihood of intentional and unintentional engineered nanoparticle (ENP) exposure has dramatically increased due to the use of nanoenabled products. Indeed, ENPs have been incorporated in many useful products and have enhanced our way of life. However, there are many unanswered questions about the consequences of nanoparticle exposures, in particular, with regard to their potential to damage the genome and thus potentially promote cancer. In this study, we present a high-throughput screening assay based upon the recently developed CometChip technology, which enables evaluation of single-stranded DNA breaks, abasic sites, and alkali-sensitive sites in cells exposed to ENPs. The strategic microfabricated, 96-well design and automated processing improves efficiency, reduces processing time, and suppresses user bias in comparison to the standard comet assay. We evaluated the versatility of this assay by screening five industrially relevant ENP exposures (SiO2, ZnO, Fe2O3, Ag, and CeO2) on both suspension human lymphoblastoid (TK6) and adherent Chinese hamster ovary (H9T3) cell lines. MTT and CyQuant NF assays were employed to assess cellular viability and proliferation after ENP exposure. Exposure to ENPs at a dose range of 5, 10, and 20 μg/mL induced dose-dependent increases in DNA damage and cytotoxicity. Genotoxicity profiles of ZnO > Ag > Fe2O3 > CeO2 > SiO2 in TK6 cells at 4 h and Ag > Fe2O3 > ZnO > CeO2 > SiO2 in H9T3 cells at 24 h were observed. The presented CometChip platform enabled efficient and reliable measurement of ENP-mediated DNA damage, therefore demonstrating the efficacy of this powerful tool in nanogenotoxicity studies. PMID:24617523

  19. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  20. Presidential address.

    PubMed

    Vohra, U

    1993-07-01

    The Secretary of India's Ministry of Health and Family Welfare serves as Chair of the Executive Council of the International Institute for Population Sciences in Bombay. She addressed its 35th convocation in 1993. Global population stands at 5.43 billion and increases by about 90 million people each year. 84 million of these new people are born in developing countries. India contributes 17 million new people annually. The annual population growth rate in India is about 2%. Its population size will probably surpass 1 billion by the 2000. High population growth rates are a leading obstacle to socioeconomic development in developing countries. Governments of many developing countries recognize this problem and have expanded their family planning programs to stabilize population growth. Asian countries that have done so and have completed the fertility transition include China, Japan, Singapore, South Korea, and Thailand. Burma, Malaysia, North Korea, Sri Lanka, and Vietnam have not yet completed the transition. Afghanistan, Bangladesh, Iran, Nepal, and Pakistan are half-way through the transition. High population growth rates put pressure on land by fragmenting finite land resources, increasing the number of landless laborers and unemployment, and by causing considerable rural-urban migration. All these factors bring about social stress and burden civic services. India has reduced its total fertility rate from 5.2 to 3.9 between 1971 and 1991. Some Indian states have already achieved replacement fertility. Considerable disparity in socioeconomic development exists among states and districts. For example, the states of Bihar, Madhya Pradesh, Rajasthan, and Uttar Pradesh have female literacy rates lower than 27%, while that for Kerala is 87%. Overall, infant mortality has fallen from 110 to 80 between 1981 and 1990. In Uttar Pradesh, it has fallen from 150 to 98, while it is at 17 in Kerala. India needs innovative approaches to increase contraceptive prevalence rates

  1. Welcome Address

    NASA Astrophysics Data System (ADS)

    Kiku, H.

    2014-12-01

    Ladies and Gentlemen, It is an honor for me to present my welcome address in the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3), as the president of Kanto Gakuin University. Particularly to those from abroad more than 17 countries, I am very grateful for your participation after long long trips from your home to Yokohama. On the behalf of the Kanto Gakuin University, we certainly welcome your visit to our university and stay in Yokohama. First I would like to introduce Kanto Gakuin University briefly. Kanto Gakuin University, which is called KGU, traces its roots back to the Yokohama Baptist Seminary founded in 1884 in Yamate, Yokohama. The seminary's founder was Albert Arnold Bennett, alumnus of Brown University, who came to Japan from the United States to establish a theological seminary for cultivating and training Japanese missionaries. Now KGU is a major member of the Kanto Gakuin School Corporation, which is composed of two kindergartens, two primary schools, two junior high schools, two senior high schools as well as KGU. In this university, we have eight faculties with graduate school including Humanities, Economics, Law, Sciences and Engineering, Architecture and Environmental Design, Human and Environmental Studies, Nursing, and Law School. Over eleven thousands students are currently learning in our university. By the way, my major is the geotechnical engineering, and I belong to the faculty of Sciences and Engineering in my university. Prof. T. Yamada, here, is my colleague in the same faculty. I know that the nuclear physics is one of the most active academic fields in the world. In fact, about half of the participants, namely, more than 50 scientists, come from abroad in this conference. Moreover, I know that the nuclear physics is related to not only the other fundamental physics such as the elementary particle physics and astrophysics but also chemistry, medical sciences, medical cares, and radiation metrology

  2. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    Ladies and Gentlemen To quote Mr Jean Terrien: "Physics must be one step ahead of metrology". A long-serving Director of the BIPM, he said these words when visiting the IMGC in 1970 as a member of the scientific board of our Institute. At that time it was still an open question whether the IMGC should start research work on the absolute measurement of silicon lattice spacing. Mr Terrien underlined the revolutionary character of x-ray interferometry and, eventually, he caused the balance needle to lean towards the ... right direction. Mr Terrien correctly foresaw that, like Michelson's interferometer of 1880, x-ray interferometry could have a prominent place in today's science and technology. And while, in the first case, after more than a century we can see instruments based on electromagnetic wave interaction within every one's reach in laboratories and, sometimes, in workshops, in the second case, twenty-five years since the first development of an x-ray interferometer we can witness its role in nanometrology. Today and tomorrow we meet to discuss how to go beyond the sixth decimal place in the value of the Avogadro constant. We are aware that the quest for this achievement requires the cooperation of scientists with complementary capabilities. I am sure that the present workshop is a very good opportunity to present and discuss results and to improve and extend existing cooperation. The new adjustment of fundamental constants envisaged by the CODATA Task Group is redoubling scientists' efforts to produce competitive values of NA. The results of the measurements of the silicon lattice spacing in terms of an optical wavelength, which were available for the 1986 adjustment, combined with the determination of silicon molar volume, demonstrate how such an NA determination produces a consistent set of other constants and opens the way to a possible redefinition of the kilogram. We shall see in these two days how far we have progressed along this road. For us at the

  3. Hansen solubility parameters of surfactant-capped silver nanoparticles for ink and printing technologies.

    PubMed

    Petersen, Jacob B; Meruga, Jeevan; Randle, James S; Cross, William M; Kellar, Jon J

    2014-12-30

    Optimal ink formulations, inclusive of nanoparticles, are often limited to matching the nanoparticle's capping agent or surface degree of polarity to the solvent of choice. Rather than relying on this single attribute, nanoparticle dispersibility was optimized by identifying the Hansen solubility parameters (HSPs) of decanoic-acid-capped 5 nm silver nanoparticles (AgNPs) by broad spectrum dispersion testing and a more specific binary solvent gradient dispersion method. From the HSPs, solvents were chosen to disperse poly(methyl methacrylate) (PMMA) and nanoparticles, give uniform evaporation profiles, and yield a phase-separated microstructure of nanoparticles on PMMA via film formation by solvent evaporation. The goal of this research was to yield a film that is reflective or transparent depending on the angle of incident light (i.e., optically variable). The nanoparticle HSPs were very close to alkanes with added small polar and hydrogen-bonding components. This led to two ink formulations: one of 90:10 vol % toluene/methyl benzoate and one containing 80:10:10 vol % toluene/p-xylene/mesitylene, both of which yielded the desired final microstructure of a nanoparticle layer on a PMMA film. This approach to nanoparticle ink formulation allows one to obtain an ink that has desirable dispersive qualities, rheology, and evaporation to give a desired printed structure.

  4. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-09

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

  5. Silver nanoparticles: a possibility for malarial and filarial vector control technology.

    PubMed

    Soni, Namita; Prakash, Soam

    2014-11-01

    Green synthesis technology is one of the rapid, reliable and best routes for the synthesis of silver nanoparticles (AgNPs). There are bioactive compounds with enormous potential in Azadirachta indica (Neem). The extraordinary mosquitoes warrant nanotechnology to integrate with novel molecules. This will be sustainable technology for future. Here, we synthesized AgNPs using aqueous extracts of leaves and bark of Az. indica (Neem). We tested AgNPs as larvicides, pupicides and adulticides against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM). The efficacy tests were then performed at different concentrations varying many hours by probit analysis. The synthesized AgNPs were spherical in shape and with varied sizes (10.47-nm leaf and 19.22-nm bark). The larvae, pupae and adults of filariasis vector C. quinquefasciatus were found to be more susceptible to our AgNPs than the malaria vector An. stephensi. The first and the second instar larvae of C. quinquefasciatus show a mortality rate of 100% after 30 min of exposure. The results against the pupa of C. quinquefasciatus were recorded as LC₅₀ 4 ppm, LC₉₀ 11 ppm and LC₉₉ 13 ppm after 3 h of exposure. In the case of adult mosquitoes, LC₅₀ 1.06 μL/cm(2), LC₉₀ 2.13 μL/cm(2) and LC₉₉ 2.4 μL/cm(2) were obtained after 4 h of exposure. These results suggest that our AgNPs are environment-friendly for controlling malarial and filarial vectors.

  6. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  7. Bioreactors addressing diabetes mellitus.

    PubMed

    Minteer, Danielle M; Gerlach, Jorg C; Marra, Kacey G

    2014-11-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies.

  8. Nanoparticle technology for treatment of Parkinson's disease: the role of surface phenomena in reaching the brain.

    PubMed

    Leyva-Gómez, Gerardo; Cortés, Hernán; Magaña, Jonathan J; Leyva-García, Norberto; Quintanar-Guerrero, David; Florán, Benjamín

    2015-07-01

    The absence of a definitive treatment for Parkinson's disease has driven the emerging investigation in the search for novel therapeutic alternatives. At present, the formulation of different drugs on nanoparticles has represented several advantages over conventional treatments. This type of multifunctional carrier, owing to its size and composition, has different interactions in biological systems that can lead to a decrease in ability to cross the blood-brain barrier. Therefore, this review focuses on the latest advances in obtaining nanoparticles for Parkinson's disease and provides an overview of technical aspects in the design of brain drug delivery of nanoparticles and an analysis of surface phenomena, a key aspect in the development of functional nanoparticles for Parkinson's disease.

  9. The Platte River - High Plains Aquifer (PR-HPA) Long Term Agroecosystem Research (LTAR) Network - Data and Technological Resources to Address Current and Emerging Issues in Agroecosystems.

    NASA Astrophysics Data System (ADS)

    Okalebo, J. A.; Wienhold, B.; Suyker, A.; Erickson, G.; Hayes, M. J.; Awada, T.

    2015-12-01

    The Platte River - High Plains Aquifer (PR-HPA) is one of 18 established Long Term Agroecosystem Research (LTAR) networks across the US. PR-HPA is a partnership between the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln (UNL), the USDA-ARS Agroecosystem Management Research Unit (AMRU) in Lincoln, and the USDA-ARS Environmental Management Research Unit (EMRU) in Clay Center, NE. The PR-HPA network encompasses 27,750 ha of research sites with data going back to the early 1900s. A partial list of on-going research projects include those encompassing long-term manuring and continuous corn (Est. 1912), dryland tillage plots (Est. 1970), soil nutrients and tillage (Est. 1983), biofuel feedstock studies (Est. 2001), and carbon sequestration study (Est. 2000). Affiliated partners include the National Drought Mitigation Center (NDMC) that develops measures to improve preparedness and adaptation to climate variability and drought; the High Plains Regional Climate Center (HPRCC) that coordinates data acquisition from over 170 automated weather stations and around 50 automated soil moisture network across NE and beyond; the AMERIFLUX and NEBFLUX networks that coordinate the water vapor and carbon dioxide flux measurements across NE with emphasis on rainfed and irrigated crop lands; the ARS Greenhouse gas Reduction through Agricultural Carbon Enhancement network (GRACEnet) and the Resilient Economic Agricultural Practices (REAP) project; and the Center for Advanced Land Management Information Technologies (CALMIT) that assists with the use of geospatial technologies for agriculture and natural resource applications. Current emphases are on addressing present-day and emerging issues related to profitability and sustainability of agroecosystems. The poster will highlight some of the ongoing and planned efforts in research pertaining to climate variability and change, water sustainability, and ecological and agronomic challenges associated

  10. Addressing challenges of training a new generation of clinician-innovators through an interdisciplinary medical technology design program: Bench-to-Bedside.

    PubMed

    Loftus, Patrick D; Elder, Craig T; D'Ambrosio, Troy; Langell, John T

    2015-01-01

    Graduate medical education has traditionally focused on training future physicians to be outstanding clinicians with basic and clinical science research skills. This focus has resulted in substantial knowledge gains, but a modest return on investment based on direct improvements in clinical care. In today's shifting healthcare landscape, a number of important challenges must be overcome to not only improve the delivery of healthcare, but to prepare future physicians to think outside the box, focus on and create healthcare innovations, and navigate the complex legal, business and regulatory hurdles of bringing innovation to the bedside. We created an interdisciplinary and experiential medical technology design competition to address these challenges and train medical students interested in moving new and innovative clinical solutions to the forefront of medicine. Medical students were partnered with business, law, design and engineering students to form interdisciplinary teams focused on developing solutions to unmet clinical needs. Over the course of six months teams were provided access to clinical and industry mentors, $500 prototyping funds, development facilities, and non-mandatory didactic lectures in ideation, design, intellectual property, FDA regulatory requirements, prototyping, market analysis, business plan development and capital acquisition. After four years of implementation, the program has supported 396 participants, seen the development of 91 novel medical devices, and launched the formation of 24 new companies. From our perspective, medical education programs that develop innovation training programs and shift incentives from purely traditional basic and clinical science research to also include high-risk innovation will see increased student engagement in improving healthcare delivery and an increase in the quality and quantity of innovative solutions to medical problems being brought to market.

  11. Precision Nanoparticles

    ScienceCinema

    John Hemminger

    2016-07-12

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  12. Precision Nanoparticles

    SciTech Connect

    John Hemminger

    2009-07-21

    A revolutionary technology that efficiently produces nanoparticles in uniform and prescribed sizes (1-100 nanometers) using supercritical fluids. INL researcher Robert Fox was joined by Idaho State University researchers Rene Rodriquez and Joshua Pak in d

  13. Stories From the Field: The Use of Information and Communication Technologies to Address the Health Needs of Underserved Populations in Latin America and the Caribbean

    PubMed Central

    Faba, Gladys; Julian, Soroya; Mejía, Felipe; Cabieses, Báltica; D'Agostino, Marcelo; Cortinois, Andrea A

    2015-01-01

    Background As their availability grew exponentially in the last 20 years, the use of information and communication technologies (ICT) in health has been widely espoused, with many emphasizing their potential to decrease health inequities. Nonetheless, there is scarce availability of information regarding ICT as tools to further equity in health, specifically in Latin American and Caribbean settings. Objective Our aim was to identify initiatives that used ICT to address the health needs of underserved populations in Latin America and Caribbean. Among these projects, explore the rationale behind the selection of ICT as a key component, probe perceptions regarding contributions to health equity, and describe the challenges faced during implementation. Methods We conducted an exploratory qualitative study. Interviews were completed via Skype or face-to-face meetings using a semistructured interview guide. Following participant consent, interviews were audio recorded and verbatim transcriptions were developed. All transcriptions were coded using ATLASti7 software. The text was analyzed for patterns, shared themes, and diverging opinions. Emerging findings were reviewed by all interviewers and shared with participants for feedback. Results We interviewed representatives from eight organizations in six Latin American and Caribbean countries that prominently employed ICT in health communication, advocacy, or surveillance projects. ICT expanded project's geographic coverage, increased their reach into marginalized or hard-to-reach groups, and allowed real-time data collection. Perceptions of contributions to health equity resided mainly in the provision of health information and linkage to health services to members of groups experiencing greater morbidity because of poverty, remote place of residence, lack of relevant public programs, and/or stigma and discrimination, and in more timely responses by authorities to the health needs of these groups as a result of the

  14. Fundamentals and Technology of Surface-enhanced Raman Spectroscopy Through the Fabrication and Manipulation of Plasmonic Gold Metal Nanoparticle Dimers

    NASA Astrophysics Data System (ADS)

    Alexander, Kristen Delane

    2011-12-01

    Surface enhanced Raman spectroscopy (SERS) was originally discovered in the 1970s with the observation that organic molecules adsorbed onto a metal surface exhibit greatly enhanced Raman scattered light intensities when illuminated with a laser source. Enhancements of approximately 10 6 over regular Raman scattering have been commonly observed and proposed applications of SERS-active sensors exist over a wide range of fields, including chemical analysis, healthcare, food safety and national security, spurring an intense scientific interest in the area. More recently, observations of single- molecule SERS have demonstrated enhancement factors greater than 10 13 at random 'hot spots', but so far, these enhancement factors are poorly understood due to lack of reproducibility and lack of methodical characterization of such spots. Theoretical calculations have shown that the dominant field enhancements are specifically localized in the crevices between metal nanoparticles and are strongly dependent on particle morphology, excitation wavelength and, perhaps above all, particle-particle coupling. The focus of this thesis is to address experimentally theoretical predictions by fabricating SERS configurations and to make definitive measurements of the SERS magnitude at interparticle hot spots. In this work, metal nanoparticles have been directed to form ordered arrays exclusively of metal nanoparticle dimers with control over orientation, size and interparticle spacing. In order to achieve unprecedented control of the material and geometric variables, elastomeric substrates were used to change particle-particle distance while holding all other physical parameters constant. This fundamental new approach to hot spot creation has opened doors to a new family of SERS substrates, where the turning on/off of a hot spot is as easy as flipping a switch. Most recently, I have demonstrated the feasibility of this approach with long nanorods that show an outstanding theoretical SERS

  15. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy.

    PubMed

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-03-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood-brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors.

  16. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy

    PubMed Central

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-01-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors. PMID:22390560

  17. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect

    Hazen, Terry

    2002-08-26

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and

  18. Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology.

    PubMed

    Dave, Shivang R; Gao, Xiaohu

    2009-01-01

    Advances in nanotechnology have pushed forward the synthesis of a variety of functional nanoparticles (NPs) such as semiconductor quantum dots (QDs), magnetic and metallic NPs. The unique electronic, magnetic, and optical properties exhibited by these nanometer-sized materials have enabled a broad spectrum of biomedical applications. In particular, iron-oxide-based magnetic NPs have proved to be highly versatile deep-tissue imaging agents, having been incorporated into clinical applications due to their biocompatibility. This Interdisciplinary Review will focus on the recent advances in strategies for the synthesis and surface modification of highly monodisperse magnetic NPs and their use in imaging, drug delivery, and innovative ultrasensitive bioassays.

  19. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system.

    PubMed

    Gao, Qihe; Liang, Qing; Yu, Fei; Xu, Jian; Zhao, Qihua; Sun, Baiwang

    2011-12-01

    Pluronic, F127, amphiphilic block copolymers, are used for several applications, including drug delivery systems. The critical micelle concentration (CMC) of F127 is about 0.26-0.8 wt% so that the utility of F127 in nano-technology based drug delivery system is limited since the nano-sized micelles could dissociate upon dilution. Herein, stearic acid (SA) was simply coupled to F127 between the carboxyl group of SA and the hydroxyl group of F127, which formed a novel copolymer named as SA-coupled F127, with significantly lower CMC. Above the CMC 6.9 × 10(-5)wt%, SA-coupled F127 self-assembled stable nanoparticles with Zeta potential -36 mV. Doxorubicin (DOX)-loaded nanoparticles were made, with drug loading (DL) 5.7 wt% and Zeta potential -36 to -39 mV, and the nanoparticles exhibited distinct shape with the size distribution from 20 to 50 nm. DOX-loaded nanoparticles were relatively stable and exhibited DOX dependant cytotoxicity toward MCF-7 cells in vitro. These results suggest that SA-coupled F127 potentially could be applied as a nano-technology based drug delivery method.

  20. Evaluating Adverse Effects of Inhaled Nanoparticles by Realistic In Vitro Technology

    PubMed Central

    Geiser, Marianne; Jeannet, Natalie; Fierz, Martin; Burtscher, Heinz

    2017-01-01

    The number of daily products containing nanoparticles (NP) is rapidly increasing. NP in powders, dispersions, or sprays are a yet unknown risk for incidental exposure, especially at workplaces during NP production and processing, and for consumers of any health status and age using NP containing sprays. We developed the nano aerosol chamber for in vitro toxicity (NACIVT), a portable instrument for realistic safety testing of inhaled NP in vitro and evaluated effects of silver (Ag) and carbon (C) NP—which belong to the most widely used nanomaterials—on normal and compromised airway epithelia. We review the development, physical performance, and suitability of NACIVT for short and long-term exposures with air-liquid interface (ALI) cell cultures in regard to the prerequisites of a realistic in vitro test system for inhalation toxicology and in comparison to other commercially available, well characterized systems. We also review doses applied to cell cultures in vitro and acknowledge that a single exposure to realistic doses of spark generated 20-nm Ag- or CNP results in small, similar cellular responses to both NP types and that cytokine release generally increased with increasing NP dose. PMID:28336883

  1. Application of Response Surface Methodology for the Technological Improvement of Solid Lipid Nanoparticles.

    PubMed

    Dal Pizzol, Carine; O'Reilly, Andre; Winter, Evelyn; Sonaglio, Diva; de Campos, Angela Machado; Creczynski-Pasa, Tânia Beatriz

    2016-02-01

    Solid lipid nanoparticles (SLN) are colloidal particles consisting of a matrix composed of solid (at room and body temperatures) lipids dispersed in aqueous emulsifier solution. During manufacture, their physicochemical properties may be affected by several formulation parameters, such as type and concentration of lipid, proportion of emulsifiers and amount of solvent. Thus, the aim of this work was to study the influence of these variables on the preparation of SLN. A D-optimal Response Surface Methodology design was used to establish a mathematical model for the optimization of SLN. A total of 30 SLN formulations were prepared using the ultrasound method, and then characterized on the basis of their physicochemical properties, including particle size, polydispersity index (PI) and Zeta Potential (s). Particle sizes ranged between 107 and 240 nm. All SLN formulations showed negative sigma and PI values below 0.28. Prediction of the optimal conditions was performed using the desirability function targeting the reduction of all responses. The optimized SLN formulation showed similar theoretical and experimental values, confirming the sturdiness and predictive ability of the mathematical model for SLN optimization.

  2. ATLes: the strategic application of Web-based technology to address learning objectives and enhance classroom discussion in a veterinary pathology course.

    PubMed

    Hines, Stephen A; Collins, Peggy L; Quitadamo, Ian J; Brahler, C Jayne; Knudson, Cameron D; Crouch, Gregory J

    2005-01-01

    A case-based program called ATLes (Adaptive Teaching and Learning Environments) was designed for use in a systemic pathology course and implemented over a four-year period. Second-year veterinary students working in small collaborative learning groups used the program prior to their weekly pathology laboratory. The goals of ATLes were to better address specific learning objectives in the course (notably the appreciation of pathophysiology), to solve previously identified problems associated with information overload and information sorting that commonly occur as part of discovery-based processes, and to enhance classroom discussion. The program was also designed to model and allow students to practice the problem-oriented approach to clinical cases, thereby enabling them to study pathology in a relevant clinical context. Features included opportunities for students to obtain additional information on the case by requesting specific laboratory tests and/or diagnostic procedures. However, students were also required to justify their diagnostic plans and to provide mechanistic analyses. The use of ATLes met most of these objectives. Student acceptance was high, and students favorably reviewed the online ''Content Links'' that made useful information more readily accessible and level appropriate. Students came to the lab better prepared to engage in an in-depth and high-quality discussion and were better able to connect clinical problems to underlying changes in tissue (lesions). However, many students indicated that the required time on task prior to lab might have been excessive relative to what they thought they learned. The classroom discussion, although improved, was not elevated to the expected level-most likely reflecting other missing elements of the learning environment, including the existing student culture and the students' current discussion skills. This article briefly discusses the lessons learned from ATLes and how similar case-based exercises might be

  3. Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication

    NASA Astrophysics Data System (ADS)

    Teoh, Wey Yang; Amal, Rose; Mädler, Lutz

    2010-08-01

    Combustion of appropriate precursor sprays in a flame spray pyrolysis (FSP) process is a highly promising and versatile technique for the rapid and scalable synthesis of nanostuctural materials with engineered functionalities. The technique was initially derived from the fundamentals of the well-established vapour-fed flame aerosols reactors that was widely practised for the manufacturing of simple commodity powders such as pigmentary titania, fumed silica, alumina, and even optical fibers. In the last 10 years however, FSP knowledge and technology was developed substantially and a wide range of new and complex products have been synthesised, attracting major industries in a diverse field of applications. Key innovations in FSP reactor engineering and precursor chemistry have enabled flexible designs of nanostructured loosely-agglomerated powders and particulate films of pure or mixed oxides and even pure metals and alloys. Unique material morphologies such as core-shell structures and nanorods are possible using this essentially one step and continuous FSP process. Finally, research challenges are discussed and an outlook on the next generation of engineered combustion-made materials is given.

  4. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations.

  5. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed.

  6. Addressing Ozone Layer Depletion

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  7. Multifunctional nanoparticles: analytical prospects.

    PubMed

    de Dios, Alejandro Simón; Díaz-García, Marta Elena

    2010-05-07

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifunctional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  8. Addressing Social Issues.

    ERIC Educational Resources Information Center

    Schoebel, Susan

    1991-01-01

    Maintains that advertising can help people become more aware of social responsibilities. Describes a successful nationwide newspaper advertising competition for college students in which ads address social issues such as literacy, drugs, teen suicide, and teen pregnancy. Notes how the ads have helped grassroots programs throughout the United…

  9. Invitational Addresses, 1965.

    ERIC Educational Resources Information Center

    Gates, Arthur I.; And Others

    The full texts of invitational addresses given at the 1965 International Reading Association (IRA) Convention in Detroit, Michigan, by six recipients of IRA citation awards are presented. Gates suggests steps IRA should take to revive and redirect reading research. McCallister discusses the implications of the changing and expanding vocabulary of…

  10. States Address Achievement Gaps.

    ERIC Educational Resources Information Center

    Christie, Kathy

    2002-01-01

    Summarizes 2 state initiatives to address the achievement gap: North Carolina's report by the Advisory Commission on Raising Achievement and Closing Gaps, containing an 11-point strategy, and Kentucky's legislation putting in place 10 specific processes. The North Carolina report is available at www.dpi.state.nc.us.closingthegap; Kentucky's…

  11. Addressing Sexual Harassment

    ERIC Educational Resources Information Center

    Young, Ellie L.; Ashbaker, Betty Y.

    2008-01-01

    This article discusses ways on how to address the problem of sexual harassment in schools. Sexual harassment--simply defined as any unwanted and unwelcome sexual behavior--is a sensitive topic. Merely providing students, parents, and staff members with information about the school's sexual harassment policy is insufficient; schools must take…

  12. Content Addressable Memory Project

    DTIC Science & Technology

    1990-11-01

    The Content Addressable M1-emory Project consists of the development of several experimental software systems on an AMT Distributed Array Processor...searching (database) compiler algorithms memory management other systems software) Linear C is an unlovely hybrid language which imports the CAM...memory from AMT’s operating system for the DAP; how- ever, other than this limitation, the memory management routines work exactly as their C counterparts

  13. Detection of food-borne pathogens by nanoparticle technology coupled to a low-cost cell reader

    NASA Astrophysics Data System (ADS)

    Noiseux, Isabelle; Bouchard, Jean-Pierre; Gallant, Pascal; Bourqui, Pascal; Cao, Honghe; Vernon, Marci; Johnson, Roger; Chen, Shu; Mermut, Ozzy

    2010-02-01

    The detection, identification and quantification of pathogenic microorganisms at low cost are of great interest to the agro-food industry. We have developed a simple, rapid, sensitive, and specific method for detection of food-borne pathogens based on use of nanoparticles alongside a low cost fluorescence cell reader for the bioassay. The nanoparticles are coupled with antibodies that allow specific recognition of the targeted Listeria in either a liquid or food matrix. The bioconjugated nanoparticles (FNP) contain thousands of dye molecules enabling significant amplification of the fluorescent signal emitted from each bacterium. The developed fluorescence Cell Reader is an LED-based reader coupled with suitable optics and a camera that acquires high resolution images. The dedicated algorithm allowed the counting of each individual nanoparticles-fluorescent bacterial cells thus enabling highly sensitive reading. The system allows, within 1 hour, the recovery and counting of 104 to 108 cfu/mL of Listeria in pure culture. However, neither the Cell Reader nor the algorithm can differentiate between the FNPs specifically-bound to the target and the residual unbound FNPs limiting sensitivity of the system. Since FNPs are too small to be washed in the bioassay, a dual tagging approach was implemented to allow online optical separation of the fluorescent background caused by free FNPs.

  14. Nanoparticles: potential biomarker harvesters.

    PubMed

    Geho, David H; Jones, Clinton D; Petricoin, Emanuel F; Liotta, Lance A

    2006-02-01

    A previously untapped bank of information resides within the low molecular weight proteomic fraction of blood. Intensive efforts are underway to harness this information so that it can be used for early diagnosis of diseases such as cancer. The physicochemical malleability and high surface areas of nanoparticle surfaces make them ideal candidates for developing biomarker harvesting platforms. Given the variety of engineering strategies afforded through nanoparticle technologies, a significant goal is to tailor nanoparticle surfaces to selectively bind a subset of biomarkers, sequestering them for later study using high sensitivity proteomic tests. To date, applications of nanoparticles have largely focused on imaging systems and drug delivery vectors. As such, biomarker harvesting is an underutilized application of nanoparticle technology and is an area of nanotechnology research that will likely undergo substantial growth.

  15. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, J. Storrs; Levy, Saul; Smith, Donald E.; Miyake, Keith M.

    1992-01-01

    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks.

  16. Silver nanoparticles: therapeutical uses, toxicity, and safety issues.

    PubMed

    dos Santos, Carolina Alves; Seckler, Marcelo Martins; Ingle, Avinash P; Gupta, Indarchand; Galdiero, Stefania; Galdiero, Massimiliano; Gade, Aniket; Rai, Mahendra

    2014-07-01

    The promises of nanotechnology have been realized to deliver the greatest scientific and technological advances in several areas. The biocidal activity of Metal nanoparticles in general and silver nanoparticles (AgNPs) depends on several morphological and physicochemical characteristics of the particles. Many of the interactions of the AgNPs with the human body are still poorly understood; consequently, the most desirable characteristics for the AgNPs are not yet well established. Therefore, the development of nanoparticles with well-controlled morphological and physicochemical features for application in human body is still an active area of interdisciplinary research. Effects of the development of technology of nanostructured compounds seem to be so large and comprehensive that probably it will impact on all fields of science and technology. However, mechanisms of safety control in application, utilization, responsiveness, and disposal accumulation still need to be further studied in-depth to ensure that the advances provided by nanotechnology are real and liable to provide solid and consistent progress. This review aims to discuss AgNPs applied in biomedicine and as promising field for insertion and development of new compounds related to medical and pharmacy technology. The review also addresses drug delivery, toxicity issues, and the safety rules concerning biomedical applications of silver nanoparticles.

  17. Addressing Environmental Health Inequalities

    PubMed Central

    Gouveia, Nelson

    2016-01-01

    Environmental health inequalities refer to health hazards disproportionately or unfairly distributed among the most vulnerable social groups, which are generally the most discriminated, poor populations and minorities affected by environmental risks. Although it has been known for a long time that health and disease are socially determined, only recently has this idea been incorporated into the conceptual and practical framework for the formulation of policies and strategies regarding health. In this Special Issue of the International Journal of Environmental Research and Public Health (IJERPH), “Addressing Environmental Health Inequalities—Proceedings from the ISEE Conference 2015”, we incorporate nine papers that were presented at the 27th Conference of the International Society for Environmental Epidemiology (ISEE), held in Sao Paulo, Brazil, in 2015. This small collection of articles provides a brief overview of the different aspects of this topic. Addressing environmental health inequalities is important for the transformation of our reality and for changing the actual development model towards more just, democratic, and sustainable societies driven by another form of relationship between nature, economy, science, and politics. PMID:27618906

  18. DNA Functionalization of Nanoparticles.

    PubMed

    Lu, Fang; Gang, Oleg

    2017-01-01

    DNA-nanoparticle conjugates are hybrid nanoscale objects that integrate different types of DNA molecules and inorganic nanoparticles with a typical architecture of a DNA shell around an inorganic core. Such incorporation provides particles with unique properties of DNA, addressability and recognition, but, at the same time, allows exploiting the properties of the particle's inorganic core. Thus, these hybrid nano-objects are advantageous for rational fabrication of functional materials and for biomedical applications. Here, we describe several established DNA functionalization procedures for different types of surface ligands and nanoparticle core materials.

  19. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  20. NANODEVICE: Novel Concepts, Methods, and Technologies for the Production of Portable, Easy-to-use Devices for the Measurement and Analysis of Airborne Engineered Nanoparticles in Workplace Air

    NASA Astrophysics Data System (ADS)

    Sirviö, Sari; Savolainen, Kai

    2011-07-01

    NANODEVICE is a research project funded by the European Commission in the context of the 7th Framework Programme. The duration is 48 months starting 1st of April 2009. Due to their unique properties, engineered nanoparticles (ENP) are now used for a myriad of novel applications, and have a great economic and technological importance. However, some of these properties, especially their surface reactivity, have raised health concerns due to their potential health effects. There is currently a shortage of field-worthy, cost-effective ways - especially in real time - for reliable assessment of exposure levels to ENP in workplace air. NANODEVICE will provide new information on the physico-chemical properties of engineered nanoparticles (ENP) and information about their toxicology. The main emphasis of the project is in the development of novel measuring devices to assess the exposure to ENP's from workplace air. The purpose of the project is also to promote the safe use of ENP through guidance, standards and education, implementing of safety objectives in ENP production and handling, and promotion of safety related collaborations through an international nanosafety forum. The main project goal is to develop innovative concepts and reliable methods for characterizing ENP in workplace air with novel, portable and easy-to-use devices suitable for workplaces.

  1. A novel technology for the detection, enrichment, and separation of trace amounts of target DNA based on amino-modified fluorescent magnetic composite nanoparticles.

    PubMed

    Wang, Guannan; Su, Xingguang

    2010-06-01

    A novel, highly sensitive technology for the detection, enrichment, and separation of trace amounts of target DNA was developed on the basis of amino-modified fluorescent magnetic composite nanoparticles (AFMN). In this study, the positively charged amino-modified composite nanoparticles conjugate with the negatively charged capture DNA through electrostatic binding. The optimal combination of AFMN and capture DNA was measured by dynamic light scattering (DLS) and UV-vis absorption spectroscopy. The highly sensitive detection of trace amounts of target DNA was achieved through enrichment by means of AFMN. The detection limit for target DNA is 0.4 pM, which could be further improved by using a more powerful magnet. Because of their different melting temperatures, single-base mismatched target DNA could be separated from perfectly complementary target DNA. In addition, the photoluminescence (PL) signals of perfectly complementary target DNA and single-base mismatched DNA as well as the hybridization kinetics of different concentrations of target DNA at different reaction times have also been studied. Most importantly, the detection, enrichment, and separation ability of AFMN was further verified with milk. Simple and satisfactory results were obtained, which show the great potential in the fields of mutation identification and clinical diagnosis.

  2. [Keynote address: Climate change

    SciTech Connect

    Forrister, D.

    1994-12-31

    Broadly speaking, the climate issue is moving from talk to action both in the United States and internationally. While few nations have adopted strict controls or stiff new taxes, a number of them are developing action plans that are making clear their intention to ramp up activity between now and the year 2000... and beyond. There are sensible, economically efficient strategies to be undertaken in the near term that offer the possibility, in many countries, to avoid more draconian measures. These strategies are by-and-large the same measures that the National Academy of Sciences recommended in a 1991 report called, Policy Implications of Greenhouse Warming. The author thinks the Academy`s most important policy contribution was how it recommended the nations act in the face of uncertain science and high risks--that cost effective measures are adopted as cheap insurance... just as nations insure against other high risk, low certainty possibilities, like catastrophic health insurance, auto insurance, and fire insurance. This insurance theme is still right. First, the author addresses how the international climate change negotiations are beginning to produce insurance measures. Next, the author will discuss some of the key issues to watch in those negotiations that relate to longer-term insurance. And finally, the author will report on progress in the United States on the climate insurance plan--The President`s Climate Action Plan.

  3. Technology

    ERIC Educational Resources Information Center

    Isman, Aytekin

    2003-01-01

    This article begins by drawing on literature to examine the various definitions of "technology" and "technique." Following a discussion of the origin of technology in education, the remaining sections of the article focus on the relationships and interaction between: (1) machines and technique; (2) science and technique; (3)…

  4. Technology.

    ERIC Educational Resources Information Center

    Giorgis, Cyndi; Johnson, Nancy J.

    2002-01-01

    Presents annotations of 30 works of children's literature that support the topic of technology and its influences on readers' daily lives. Notes some stories tell about a time when simple tools enabled individuals to accomplish tasks, and others feature visionaries who used technology to create buildings, bridges, roads, and inventions. Considers…

  5. Integrating Technology in Program Development for Children and Youth with Emotional or Behavioral Disorders. Fourth CCBD Mini-Library Series: Addressing the Diverse Needs of Children and Youth with Emotional/Behavioral Disorders--Programs That Work.

    ERIC Educational Resources Information Center

    Wilder, Lynn K., Ed.; Black, Sharon, Ed.

    This monograph presents research-based solutions to the integration of technology in programs serving students with emotional and/or behavior disorders. Chapters include: (1) "Introduction: Technology, the Great Equalizer" (Lynn K. Wilder) which considers challenges and solutions to the technology challenge; (2) "Project PEGS! Interactive CDs for…

  6. Theoretical Approaches to Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kempa, Krzysztof

    Nanoparticles can be viewed as wave resonators. Involved waves are, for example, carrier waves, plasmon waves, polariton waves, etc. A few examples of successful theoretical treatments that follow this approach are given. In one, an effective medium theory of a nanoparticle composite is presented. In another, plasmon polaritonic solutions allow to extend concepts of radio technology, such as an antenna and a coaxial transmission line, to the visible frequency range.

  7. Part I: Minicircle vector technology limits DNA size restrictions on ex vivo gene delivery using nanoparticle vectors: Overcoming a translational barrier in neural stem cell therapy.

    PubMed

    Fernandes, Alinda R; Chari, Divya M

    2016-09-28

    Genetically engineered neural stem cell (NSC) transplant populations offer key benefits in regenerative neurology, for release of therapeutic biomolecules in ex vivo gene therapy. NSCs are 'hard-to-transfect' but amenable to 'magnetofection'. Despite the high clinical potential of this approach, the low and transient transfection associated with the large size of therapeutic DNA constructs is a critical barrier to translation. We demonstrate for the first time that DNA minicircles (small DNA vectors encoding essential gene expression components but devoid of a bacterial backbone, thereby reducing construct size versus conventional plasmids) deployed with magnetofection achieve the highest, safe non-viral DNA transfection levels (up to 54%) reported so far for primary NSCs. Minicircle-functionalized magnetic nanoparticle (MNP)-mediated gene delivery also resulted in sustained gene expression for up to four weeks. All daughter cell types of engineered NSCs (neurons, astrocytes and oligodendrocytes) were transfected (in contrast to conventional plasmids which usually yield transfected astrocytes only), offering advantages for targeted cell engineering. In addition to enhancing MNP functionality as gene delivery vectors, minicircle technology provides key benefits from safety/scale up perspectives. Therefore, we consider the proof-of-concept of fusion of technologies used here offers high potential as a clinically translatable genetic modification strategy for cell therapy.

  8. Concealment of the Warfighter’s Equipment Through Enhanced Polymer Technology

    DTIC Science & Technology

    2004-12-01

    AND ADDRESS(ES) 10 . SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public...warfighter. Figure 10 illustrates a new technology developed by INVISTA that adds nanoparticles to the standard Cordura® fiber. The addition of these...Figure 10 . Light tan 492 (base color of 3-Day desert print) using Cordura® EP (Enhanced Polymer) fabric versus the U.S. Army specification. Solid

  9. The Reach Address Database (RAD)

    EPA Pesticide Factsheets

    The Reach Address Database (RAD) stores reach address information for each Water Program feature that has been linked to the underlying surface water features (streams, lakes, etc) in the National Hydrology Database (NHD) Plus dataset.

  10. Quantification of intracellular payload release from polymersome nanoparticles

    PubMed Central

    Scarpa, Edoardo; Bailey, Joanne L.; Janeczek, Agnieszka A.; Stumpf, Patrick S.; Johnston, Alexander H.; Oreffo, Richard O. C.; Woo, Yin L.; Cheong, Ying C.; Evans, Nicholas D.; Newman, Tracey A.

    2016-01-01

    Polymersome nanoparticles (PMs) are attractive candidates for spatio-temporal controlled delivery of therapeutic agents. Although many studies have addressed cellular uptake of solid nanoparticles, there is very little data available on intracellular release of molecules encapsulated in membranous carriers, such as polymersomes. Here, we addressed this by developing a quantitative assay based on the hydrophilic dye, fluorescein. Fluorescein was encapsulated stably in PMs of mean diameter 85 nm, with minimal leakage after sustained dialysis. No fluorescence was detectable from fluorescein PMs, indicating quenching. Following incubation of L929 cells with fluorescein PMs, there was a gradual increase in intracellular fluorescence, indicating PM disruption and cytosolic release of fluorescein. By combining absorbance measurements with flow cytometry, we quantified the real-time intracellular release of a fluorescein at a single-cell resolution. We found that 173 ± 38 polymersomes released their payload per cell, with significant heterogeneity in uptake, despite controlled synchronisation of cell cycle. This novel method for quantification of the release of compounds from nanoparticles provides fundamental information on cellular uptake of nanoparticle-encapsulated compounds. It also illustrates the stochastic nature of population distribution in homogeneous cell populations, a factor that must be taken into account in clinical use of this technology. PMID:27404770

  11. Quantification of intracellular payload release from polymersome nanoparticles

    NASA Astrophysics Data System (ADS)

    Scarpa, Edoardo; Bailey, Joanne L.; Janeczek, Agnieszka A.; Stumpf, Patrick S.; Johnston, Alexander H.; Oreffo, Richard O. C.; Woo, Yin L.; Cheong, Ying C.; Evans, Nicholas D.; Newman, Tracey A.

    2016-07-01

    Polymersome nanoparticles (PMs) are attractive candidates for spatio-temporal controlled delivery of therapeutic agents. Although many studies have addressed cellular uptake of solid nanoparticles, there is very little data available on intracellular release of molecules encapsulated in membranous carriers, such as polymersomes. Here, we addressed this by developing a quantitative assay based on the hydrophilic dye, fluorescein. Fluorescein was encapsulated stably in PMs of mean diameter 85 nm, with minimal leakage after sustained dialysis. No fluorescence was detectable from fluorescein PMs, indicating quenching. Following incubation of L929 cells with fluorescein PMs, there was a gradual increase in intracellular fluorescence, indicating PM disruption and cytosolic release of fluorescein. By combining absorbance measurements with flow cytometry, we quantified the real-time intracellular release of a fluorescein at a single-cell resolution. We found that 173 ± 38 polymersomes released their payload per cell, with significant heterogeneity in uptake, despite controlled synchronisation of cell cycle. This novel method for quantification of the release of compounds from nanoparticles provides fundamental information on cellular uptake of nanoparticle-encapsulated compounds. It also illustrates the stochastic nature of population distribution in homogeneous cell populations, a factor that must be taken into account in clinical use of this technology.

  12. Continuous production of fenofibrate solid lipid nanoparticles by hot-melt extrusion technology: a systematic study based on a quality by design approach.

    PubMed

    Patil, Hemlata; Feng, Xin; Ye, Xingyou; Majumdar, Soumyajit; Repka, Michael A

    2015-01-01

    This contribution describes a continuous process for the production of solid lipid nanoparticles (SLN) as drug-carrier systems via hot-melt extrusion (HME). Presently, HME technology has not been used for the manufacturing of SLN. Generally, SLN are prepared as a batch process, which is time consuming and may result in variability of end-product quality attributes. In this study, using Quality by Design (QbD) principles, we were able to achieve continuous production of SLN by combining two processes: HME technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. Fenofibrate (FBT), a poorly water-soluble model drug, was incorporated into SLN using HME-HPH methods. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm. The dissolution profile of the FBT SLN prepared by the novel HME-HPH method was faster than that of the crude FBT and a micronized marketed FBT formulation. At the end of a 5-h in vitro dissolution study, a SLN formulation released 92-93% of drug, whereas drug release was approximately 65 and 45% for the marketed micronized formulation and crude drug, respectively. Also, pharmacokinetic study results demonstrated a statistical increase in Cmax, Tmax, and AUC0-24 h in the rate of drug absorption from SLN formulations as compared to the crude drug and marketed micronized formulation. In summary, the present study demonstrated the potential use of hot-melt extrusion technology for continuous and large-scale production of SLN.

  13. Bioelectrochemistry of non-covalent immobilized alcohol dehydrogenase on oxidized diamond nanoparticles.

    PubMed

    Nicolau, Eduardo; Méndez, Jessica; Fonseca, José J; Griebenow, Kai; Cabrera, Carlos R

    2012-06-01

    Diamond nanoparticles are considered a biocompatible material mainly due to their non-cytotoxicity and remarkable cellular uptake. Model proteins such as cytochrome c and lysozyme have been physically adsorbed onto diamond nanoparticles, proving it to be a suitable surface for high protein loading. Herein, we explore the non-covalent immobilization of the redox enzyme alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae (E.C.1.1.1.1) onto oxidized diamond nanoparticles for bioelectrochemical applications. Diamond nanoparticles were first oxidized and physically characterized by X-ray diffraction (XRD), FT-IR and TEM. Langmuir isotherms were constructed to investigate the ADH adsorption onto the diamond nanoparticles as a function of pH. It was found that a higher packing density is achieved at the isoelectric point of the enzyme. Moreover, the relative activity of the immobilized enzyme on diamond nanoparticles was addressed under optimum pH conditions able to retain up to 70% of its initial activity. Thereafter, an ethanol bioelectrochemical cell was constructed by employing the immobilized alcohol dehydrogenase onto diamond nanoparticles, this being able to provide a current increment of 72% when compared to the blank solution. The results of this investigation suggest that this technology may be useful for the construction of alcohol biosensors or biofuel cells in the near future.

  14. Magnetic nanoparticles coated with polyaniline to stabilize immobilized trypsin

    NASA Astrophysics Data System (ADS)

    Maciel, J. C.; D. Mercês, A. A.; Cabrera, M.; Shigeyosi, W. T.; de Souza, S. D.; Olzon-Dionysio, M.; Fabris, J. D.; Cardoso, C. A.; Neri, D. F. M.; C. Silva, M. P.; Carvalho, L. B.

    2016-12-01

    It is reported the synthesis of magnetic nanoparticles via the chemical co-precipitation of Fe 3+ ions and their preparation by coating them with polyaniline. The electronic micrograph analysis showed that the mean diameter for the nanoparticles is ˜15 nm. FTIR, powder X-ray diffraction and Mössbauer spectroscopy were used to understand the chemical, crystallographic and 57Fe hyperfine structures for the two samples. The nanoparticles, which exhibited magnetic behavior with relatively high spontaneous magnetization at room temperature, were identified as being mainly formed by maghemite ( γFe2O3). The coated magnetic nanoparticles (sample labeled "mPANI") presented a real ability to bind biological molecules such as trypsin, forming the magnetic enzyme derivative (sample "mPANIG-Trypsin"). The amount of protein and specific activity of the immobilized trypsin were found to be 13±5 μg of protein/mg of mPANI (49.3 % of immobilized protein) and 24.1±0.7 U/mg of immobilized protein, respectively. After 48 days of storage at 4 ∘C, the activity of the immobilized trypsin was found to be 89 % of its initial activity. This simple, fast and low-cost procedure was revealed to be a promising way to prepare mPANI nanoparticles if technological applications addressed to covalently link biomolecules are envisaged. This route yields chemically stable derivatives, which can be easily recovered from the reaction mixture with a magnetic field and recyclable reused.

  15. Technology.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  16. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    NASA Astrophysics Data System (ADS)

    Zhu, Shao-Peng; Tang, Shao-Chun; Meng, Xiang-Kang

    2009-07-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability.

  17. CONTENT-ADDRESSABLE MEMORY SYSTEMS,

    DTIC Science & Technology

    The utility of content -addressable memories (CAM’s) within a general purpose computing system is investigated. Word cells within CAM may be...addressed by the character of all or a part of cell contents . Multimembered sets of word cells may be addressed simultaneously. The distributed logical...package is developed which allows simulation of CAM commands within job programs run on the IBM 7090 and derives tallies of execution times corresponding to a particular realization of a CAM system . (Author)

  18. Imaging through plasmonic nanoparticles

    PubMed Central

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-01-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems. PMID:27140618

  19. Imaging through plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tanzid, Mehbuba; Sobhani, Ali; DeSantis, Christopher J.; Cui, Yao; Hogan, Nathaniel J.; Samaniego, Adam; Veeraraghavan, Ashok; Halas, Naomi J.

    2016-05-01

    The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image. We use two distinct ways to assess transmitted image quality: the structural similarity index (SSIM), a perceptual distortion metric based on the human visual system, and the modulation transfer function (MTF), which assesses the resolvable spatial frequencies. We show that perceived image quality, as well as spatial resolution, are both dependent on the scattering and absorption cross-sections of the constituent nanoparticles. Surprisingly, we observe a nonlinear dependence of image quality on optical density by varying optical path length and nanoparticle concentration. This work is a first step toward understanding the requirements for visualizing and resolving objects through media consisting of subwavelength absorber-scatterer structures, an approach that should also prove useful in the assessment of metamaterial or metasurface-based optical imaging systems.

  20. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    PubMed

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown.

  1. Nanoparticle patterning for biomedicine.

    PubMed

    Moghimi, Seyed Moein

    2016-01-01

    Nanoparticles are being used for construction of complex and higher-order functional structures and metamaterials with applications in nanophotonics, information storage and biomedicine, to name a few. These innovations are briefly discussed within the context of future diagnostic and nanomedicine platform technologies and their possible self-assembly in vivo.

  2. Nanoparticle patterning for biomedicine

    PubMed Central

    Moghimi, Seyed Moein

    2016-01-01

    Summary Nanoparticles are being used for construction of complex and higher-order functional structures and metamaterials with applications in nanophotonics, information storage and biomedicine, to name a few. These innovations are briefly discussed within the context of future diagnostic and nanomedicine platform technologies and their possible self-assembly in vivo. PMID:28265533

  3. Nanoparticles and cars - analysis of potential sources

    PubMed Central

    2012-01-01

    Urban health is potentially affected by particle emissions. The potential toxicity of nanoparticles is heavily debated and there is an enormous global increase in research activity in this field. In this respect, it is commonly accepted that nanoparticles may also be generated in processes occurring while driving vehicles. So far, a variety of studies addressed traffic-related particulate matter emissions, but only few studies focused on potential nanoparticles. Therefore, the present study analyzed the literature with regard to nanoparticles and cars. It can be stated that, to date, only a limited amount of research has been conducted in this area and more studies are needed to 1) address kind and sources of nanoparticles within automobiles and to 2) analyse whether there are health effects caused by these nanoparticles. PMID:22726351

  4. Inorganic Nanoparticles in Cancer Therapy

    PubMed Central

    Bhattacharyya, Sanjib; Kudgus, Rachel A.; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-01-01

    Nanotechnology is an evolving field with enormous potential for biomedical applications. The growing interest to use inorganic nanoparticles in medicine is due to the unique size and shape-dependent optoelectronic properties. Herein, we will focus on gold, silver and platinum nanoparticles, discussing recent developments for therapeutic applications with regard to cancer in terms of nanoparticles being used as a delivery vehicle as well as therapeutic agents. We will also discuss some of the key challenges to be addressed in future studies. PMID:21104301

  5. A complex network approach for nanoparticle agglomeration analysis in nanoscale images

    NASA Astrophysics Data System (ADS)

    Machado, Bruno Brandoli; Scabini, Leonardo Felipe; Margarido Orue, Jonatan Patrick; de Arruda, Mauro Santos; Goncalves, Diogo Nunes; Goncalves, Wesley Nunes; Moreira, Raphaell; Rodrigues-Jr, Jose F.

    2017-02-01

    Complex networks have been widely used in science and technology because of their ability to represent several systems. One of these systems is found in Biochemistry, in which the synthesis of new nanoparticles is a hot topic. However, the interpretation of experimental results in the search of new nanoparticles poses several challenges. This is due to the characteristics of nanoparticle images and due to their multiple intricate properties; one property of recurrent interest is the agglomeration of particles. Addressing this issue, this paper introduces an approach that uses complex networks to detect and describe nanoparticle agglomerates so to foster easier and more insightful analyses. In this approach, each detected particle in an image corresponds to a vertice and the distances between the particles define a criterion for creating edges. Edges are created if the distance is smaller than a radius of interest. Once this network is set, we calculate several discrete measures able to reveal the most outstanding agglomerates in a nanoparticle image. Experimental results using images of scanning tunneling microscopy (STM) of gold nanoparticles demonstrated the effectiveness of the proposed approach over several samples, as reflected by the separability between particles in three usual settings. The results also demonstrated efficacy for both convex and non-convex agglomerates.

  6. Antimicrobial precious-metal nanoparticles and their use in novel materials.

    PubMed

    Senior, Katharina; Müller, Stefanie; Schacht, Veronika J; Bunge, Michael

    2012-12-01

    Nanotechnology offers powerful new approaches to controlling unwanted microorganisms and other potential biohazards. Engineered nanoparticles with antifungal, antimicrobial, and antiviral properties are now being developed for a variety of applications, including manufacture and maintenance of sterile surfaces, prevention and control of biological contamination, food and water safety, and treatment of infectious diseases and cancer. The great potential of antimicrobial precious-metal nanoparticles is reflected by the high number of recent publications and patent applications, which is summarized, at least in part, in this paper. This review should provide an overview and offer guidance to the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology, and may also be of interest to a broader scientific audience. Furthermore, this review covers specific topics in research and development addressing the effects of nanoparticles on microorganisms as well as novel nanotechnology-based approaches for controlling potentially pathogenic microorganisms.

  7. Self-Assembled Array of Tethered Manganese Oxide Nanoparticles for the Next Generation of Energy Storage

    NASA Astrophysics Data System (ADS)

    Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; Grant, Richard P.; Monson, Todd C.

    2017-03-01

    Many challenges must be overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. To begin addressing these challenges (and others), we report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers. The tethered array of nanoparticles, MnO in this case, bound directly to a gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). This strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles.

  8. Self-Assembled Array of Tethered Manganese Oxide Nanoparticles for the Next Generation of Energy Storage

    PubMed Central

    Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; Grant, Richard P.; Monson, Todd C.

    2017-01-01

    Many challenges must be overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. To begin addressing these challenges (and others), we report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers. The tethered array of nanoparticles, MnO in this case, bound directly to a gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). This strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles. PMID:28287183

  9. Address tracing for parallel machines

    NASA Technical Reports Server (NTRS)

    Stunkel, Craig B.; Janssens, Bob; Fuchs, W. Kent

    1991-01-01

    Recently implemented parallel system address-tracing methods based on several metrics are surveyed. The issues specific to collection of traces for both shared and distributed memory parallel computers are highlighted. Five general categories of address-trace collection methods are examined: hardware-captured, interrupt-based, simulation-based, altered microcode-based, and instrumented program-based traces. The problems unique to shared memory and distributed memory multiprocessors are examined separately.

  10. Revisiting nanoparticle technology for blood-brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes.

    PubMed

    Johnsen, Kasper Bendix; Moos, Torben

    2016-01-28

    An unmet need exists for therapeutic compounds to traverse the brain capillary endothelial cells that denote the blood-brain barrier (BBB) to deliver effective treatment to the diseased brain. The use of nanoparticle technology for targeted delivery to the brain implies that targeted liposomes encapsulating a drug of interest will undergo receptor-mediated uptake and transport through the BBB with a subsequent unfolding of the liposomal content inside the brain, hence revealing drug release to adjacent drug-demanding neurons. As transferrin receptors (TfRs) are present on brain capillary endothelial, but not on endothelial cells elsewhere in the body, the use of TfR-targeted liposomes - colloidal particulates with a phospholipid bilayer membrane - remains the most relevant strategy to obtain efficient drug delivery to the brain. However, many studies have failed to provide sufficient quantitative data to proof passage of the BBB and significant appearance of drugs inside the brain parenchyma. Here, we critically evaluate the current evidence on the use of TfR-targeted liposomes for brain drug delivery based on a thorough investigation of all available studies within this research field. We focus on issues with respect to experimental design and data analysis that may provide an explanation to conflicting reports, and we discuss possible explanations for the current lack of sufficient transcytosis across the BBB for implementation in the design of TfR-targeted liposomes. We finally provide a list of suggestions for strategies to obtain substantial uptake and transport of drug carriers at the BBB with a concomitant transport of therapeutics into the brain.

  11. Water Innovation and Technology

    EPA Pesticide Factsheets

    Water technologies are a specific sector that EPA works to address through the water technology cluster, aging infrastructure research, green infrastructure, and major industry meetings such as WEFTEC.

  12. Synchronous Energy Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.

  13. Addressing tomorrow's DMO technical challenges today

    NASA Astrophysics Data System (ADS)

    Milligan, James R.

    2009-05-01

    Distributed Mission Operations (DMO) is essentially a type of networked training that pulls in participants from all the armed services and, increasingly, allies to permit them to "game" and rehearse highly complex campaigns, using a mix of local, distant, and virtual players. The United States Air Force Research Laboratory (AFRL) is pursuing Science and Technology (S&T) solutions to address technical challenges associated with distributed communications and information management as DMO continues to progressively scale up the number, diversity, and geographic dispersal of participants in training and rehearsal exercises.

  14. Teaching Digital Natives: Promoting Information Literacy and Addressing Instructional Challenges

    ERIC Educational Resources Information Center

    Neumann, Crystal

    2016-01-01

    Technology must be used as a teaching and learning tool to help students succeed. However, educators must be proactive in identifying some of the pitfalls of technology, such as information illiteracy. The phenomenological study covers how English instructors from Indianapolis, who teach first year students, address information literacy and the…

  15. Every Other Day. Keynote Address.

    ERIC Educational Resources Information Center

    Tiller, Tom

    Schools need to be reoriented and restructured so that what is taught and learned, and the way in which it is taught and learned, are better integrated with young people's real-world experiences. Many indicators suggest that the meaningful aspects of school have been lost in the encounter with modern times. The title of this address--"Every…

  16. Agenda to address climate change

    SciTech Connect

    1998-10-01

    This document looks at addressing climate change in the 21st century. Topics covered are: Responding to climate change; exploring new avenues in energy efficiency; energy efficiency and alternative energy; residential sector; commercial sector; industrial sector; transportation sector; communities; renewable energy; understanding forests to mitigate and adapt to climate change; the Forest Carbon budget; mitigation and adaptation.

  17. Addressing Phonological Questions with Ultrasound

    ERIC Educational Resources Information Center

    Davidson, Lisa

    2005-01-01

    Ultrasound can be used to address unresolved questions in phonological theory. To date, some studies have shown that results from ultrasound imaging can shed light on how differences in phonological elements are implemented. Phenomena that have been investigated include transitional schwa, vowel coalescence, and transparent vowels. A study of…

  18. Keynote Address: Rev. Mark Massa

    ERIC Educational Resources Information Center

    Massa, Mark S.

    2011-01-01

    Rev. Mark S. Massa, S.J., is the dean and professor of Church history at the School of Theology and Ministry at Boston College. He was invited to give a keynote to begin the third Catholic Higher Education Collaborative Conference (CHEC), cosponsored by Boston College and Fordham University. Fr. Massa's address posed critical questions about…

  19. State of the Lab Address

    ScienceCinema

    King, Alex

    2016-07-12

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  20. Research strategies for addressing uncertainties

    USGS Publications Warehouse

    Busch, David E.; Brekke, Levi D.; Averyt, Kristen; Jardine, Angela; Welling, Leigh; Garfin, Gregg; Jardine, Angela; Merideth, Robert; Black, Mary; LeRoy, Sarah

    2013-01-01

    Research Strategies for Addressing Uncertainties builds on descriptions of research needs presented elsewhere in the book; describes current research efforts and the challenges and opportunities to reduce the uncertainties of climate change; explores ways to improve the understanding of changes in climate and hydrology; and emphasizes the use of research to inform decision making.

  1. Matching Alternative Addresses: a Semantic Web Approach

    NASA Astrophysics Data System (ADS)

    Ariannamazi, S.; Karimipour, F.; Hakimpour, F.

    2015-12-01

    Rapid development of crowd-sourcing or volunteered geographic information (VGI) provides opportunities for authoritatives that deal with geospatial information. Heterogeneity of multiple data sources and inconsistency of data types is a key characteristics of VGI datasets. The expansion of cities resulted in the growing number of POIs in the OpenStreetMap, a well-known VGI source, which causes the datasets to outdate in short periods of time. These changes made to spatial and aspatial attributes of features such as names and addresses might cause confusion or ambiguity in the processes that require feature's literal information like addressing and geocoding. VGI sources neither will conform specific vocabularies nor will remain in a specific schema for a long period of time. As a result, the integration of VGI sources is crucial and inevitable in order to avoid duplication and the waste of resources. Information integration can be used to match features and qualify different annotation alternatives for disambiguation. This study enhances the search capabilities of geospatial tools with applications able to understand user terminology to pursuit an efficient way for finding desired results. Semantic web is a capable tool for developing technologies that deal with lexical and numerical calculations and estimations. There are a vast amount of literal-spatial data representing the capability of linguistic information in knowledge modeling, but these resources need to be harmonized based on Semantic Web standards. The process of making addresses homogenous generates a helpful tool based on spatial data integration and lexical annotation matching and disambiguating.

  2. Toxicity of Engineered Nanoparticles in the Environment

    PubMed Central

    Maurer-Jones, Melissa A.; Gunsolus, Ian L.; Murphy, Catherine J.; Haynes, Christy L.

    2014-01-01

    While nanoparticles occur naturally in the environment and have been intentionally used for centuries, the production and use of engineered nanoparticles has seen a recent spike, which makes environmental release almost certain. Therefore, recent efforts to characterize the toxicity of engineered nanoparticles have focused on the environmental implications, including exploration of toxicity to organisms from wide-ranging parts of the ecosystem food webs. Herein, we summarize the current understanding of toxicity of engineered nanoparticles to representatives of various trophic levels, including bacteria, plants, and multicellular aquatic/terrestrial organisms, to highlight important challenges within the field of econanotoxicity, challenges that analytical chemists are expertly poised to address. PMID:23427995

  3. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Manipulation of Nanoparticles Using Dark-Field-Illumination Optical Tweezers with Compensating Spherical Aberration

    NASA Astrophysics Data System (ADS)

    Zhou, Jin-Hua; Tao, Run-Zhe; Hu, Zhi-Bin; Zhong, Min-Cheng; Wang, Zi-Qiang; Cai, Jun; Li, Yin-Mei

    2009-06-01

    Based on our previous investigation of optical tweezers with dark field illumination [Chin. Phys. Lett. 25(2008)329], nanoparticles at large trap depth are better viewed in wide field and real time for a long time, but with poor forces. Here we present the mismatched tube length to compensate for spherical aberration of an oil-immersion objective in a glass-water interface in an optical tweezers system for manipulating nanoparticles. In this way, the critical power of stable trapping particles is measured at different trap depths. It is found that trap depth is enlarged for trapping nanoparticles and trapping forces are enhanced at large trap depth. According to the measurement, 70-nm particles are manipulated in three dimensions and observed clearly at large appropriate depth. This will expand applications of optical tweezers in a nanometre-scale colloidal system.

  4. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  5. Atomic clusters with addressable complexity

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    2017-02-01

    A general formulation for constructing addressable atomic clusters is introduced, based on one or more reference structures. By modifying the well depths in a given interatomic potential in favour of nearest-neighbour interactions that are defined in the reference(s), the potential energy landscape can be biased to make a particular permutational isomer the global minimum. The magnitude of the bias changes the resulting potential energy landscape systematically, providing a framework to produce clusters that should self-organise efficiently into the target structure. These features are illustrated for small systems, where all the relevant local minima and transition states can be identified, and for the low-energy regions of the landscape for larger clusters. For a 55-particle cluster, it is possible to design a target structure from a transition state of the original potential and to retain this structure in a doubly addressable landscape. Disconnectivity graphs based on local minima that have no direct connections to a lower minimum provide a helpful way to visualise the larger databases. These minima correspond to the termini of monotonic sequences, which always proceed downhill in terms of potential energy, and we identify them as a class of biminimum. Multiple copies of the target cluster are treated by adding a repulsive term between particles with the same address to maintain distinguishable targets upon aggregation. By tuning the magnitude of this term, it is possible to create assemblies of the target cluster corresponding to a variety of structures, including rings and chains.

  6. An Address on the Population Problem: Address to the Massachusetts Institute of Technology.

    ERIC Educational Resources Information Center

    McNamara, Robert S.

    In this speech, Robert McNamara examines the background of the world population problem, analyzes its current trends, evaluates the measures available to deal with it, and suggests actions governments and others can take to help solve it. It now appears that significant fertility decline may have begun in developing countries. Data seem to…

  7. Final Report on Internet Addressable Lightswitch

    SciTech Connect

    Rubinstein, Francis; Pettler, Peter

    2001-08-27

    This report describes the work performed to develop and test a new switching system and communications network that is useful for economically switching lighting circuits in existing commercial buildings. The first section of the report provides the general background of the IBECS (Integrated Building Environmental Communications System) research and development work as well as the context for the development of the new switching system. The research and development effort that went into producing the first proof-of-concept (the IBECS Addressable Power Switch or APS) and the physical prototype of that concept is detailed in the second section. In the third section of the report, we detail the refined Powerline Carrier Based IBECS Title 24 Wall Switch system that evolved from the APS prototype. The refined system provided a path for installing IBECS switching technology in existing buildings that may not be already wired for light level switching control. The final section of the report describes the performance of the IBECS Title 24 Switch system as applied to a small demonstration in two offices at LBNL's Building 90. We learned that the new Powerline Carrier control systems (A-10 technology) that have evolved from the early X-10 systems have solved most of the noise problems that dogged the successful application of X-10 technologies in commercial buildings. We found that the new A-10 powerline carrier control technology can be reliable and effective for switching lighting circuits even in electrically noisy office environments like LBNL. Thus we successfully completed the task objectives by designing, building and demonstrating a new switching system that can provide multiple levels of light which can be triggered either from specially designed wall switches or from a digital communications network. By applying commercially available powerline carrier based technologies that communicate over the in-place lighting wiring system, this type of control can be

  8. Information Technology for Education.

    ERIC Educational Resources Information Center

    Snyder, Cathrine E.; And Others

    1990-01-01

    Eight papers address technological, behavioral, and philosophical aspects of the application of information technology to training. Topics include instructional technology centers, intelligent training systems, distance learning, automated task analysis, training system selection, the importance of instructional methods, formative evaluation and…

  9. Robust Nanoparticles

    DTIC Science & Technology

    2015-01-21

    Lawrence, Gregory M. Grason, Todd Emrick, Alfred J. Crosby. Stretching of assembled nanoparticle helical springs, Physical Chemistry Chemical...par with thermally sintered conductive adhesives. C. Examination of stretching of nanoparticle-based springs. This part of the project...examined the stretching properties of these helical ribbons, which are nanometers thick, sub-micron in width, and arbitrarily long. The force-extension

  10. 76 FR 24570 - Proposed Information Collection (Veterans Mortgage Life Insurance-Change of Address Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... AFFAIRS Proposed Information Collection (Veterans Mortgage Life Insurance--Change of Address Statement... Mortgage Life Insurance. DATES: Written comments and recommendations on the proposed collection of... information technology. Title: Veterans Mortgage Life Insurance--Change of Address Statement, VA Form...

  11. Identifying and Addressing Vaccine Hesitancy

    PubMed Central

    Kestenbaum, Lori A.; Feemster, Kristen A.

    2015-01-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as vaccine hesitant. This phenomenon has developed due to the confluence of multiple social, cultural, political and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance. PMID:25875982

  12. Identifying and addressing vaccine hesitancy.

    PubMed

    Kestenbaum, Lori A; Feemster, Kristen A

    2015-04-01

    In the 20th century, the introduction of multiple vaccines significantly reduced childhood morbidity, mortality, and disease outbreaks. Despite, and perhaps because of, their public health impact, an increasing number of parents and patients are choosing to delay or refuse vaccines. These individuals are described as "vaccine hesitant." This phenomenon has developed due to the confluence of multiple social, cultural, political, and personal factors. As immunization programs continue to expand, understanding and addressing vaccine hesitancy will be crucial to their successful implementation. This review explores the history of vaccine hesitancy, its causes, and suggested approaches for reducing hesitancy and strengthening vaccine acceptance.

  13. Nanoscale content-addressable memory

    NASA Technical Reports Server (NTRS)

    Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)

    2009-01-01

    A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.

  14. Addressing inequities in healthy eating.

    PubMed

    Friel, Sharon; Hattersley, Libby; Ford, Laura; O'Rourke, Kerryn

    2015-09-01

    What, when, where and how much people eat is influenced by a complex mix of factors at societal, community and individual levels. These influences operate both directly through the food system and indirectly through political, economic, social and cultural pathways that cause social stratification and influence the quality of conditions in which people live their lives. These factors are the social determinants of inequities in healthy eating. This paper provides an overview of the current evidence base for addressing these determinants and for the promotion of equity in healthy eating.

  15. Addressing the workforce pipeline challenge

    SciTech Connect

    Leonard Bond; Kevin Kostelnik; Richard Holman

    2006-11-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

  16. Technology transfer within NASA

    NASA Technical Reports Server (NTRS)

    St.cyr, William

    1992-01-01

    Viewgraphs on technology transfer within NASA are provided. Assessment of technology transfer process, technology being transfered, issues and barriers, and observations and suggestions are addressed. Topics covered include: technology transfer within an organization (and across organization lines/codes) and space science/instrument technology and the role of universities in the technology development/transfer process.

  17. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  18. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  19. Intermetallic nanoparticles

    SciTech Connect

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  20. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Montes Castillo, Milka Odemariz

    Extraordinary chemical and physical properties exhibited by nanomaterials, as compared to their bulk counterparts, have made the area of nanotechnology a growing realm in the past three decades. It is the nanoscale size (from 1 to 100 nm) and the morphologies of nanomaterials that provide several properties and applications not possible for the same material in the bulk. Magnetic and optical properties, as well as surface reactivity are highly dependent on the size and morphology of the nanomaterial. Diverse nanomaterials are being widely used in molecular diagnostics as well as in medicine, electronic and optical devices. Among the most studied nanomaterials, gold nanoparticles are of special interest due to their multifunctional capabilities. For instance, spherical gold nanoparticles measuring 15-20 nm in diameter have been studied due to their insulin binding properties. Also, thiol functionalized gold nanoparticles between 5 and 30 nm are used in the detection of DNA. Thus, harnessing the shape and size of gold nanoparticles plays an important role in science and technology. The synthesis of gold nanoparticles via the reduction of gold salts, using citrate or other reducing agents, has been widely studied. In recent years, algae, fungi, bacteria, and living plants have been used to reduce trivalent gold (Au3+) to its zero oxidation state (Au 0) forming gold nanoparticles of different sizes and shapes. In addition, plant biomasses have also been studied for their gold-reducing power and nanoparticle formation. Although there is information about the synthesis of the gold nanoparticles by biologically based materials; to our knowledge, the study of the use of alfalfa extracts has not been reported. This innovation represents a significant improvement; that is an environmentally friendly method that does not use toxic chemicals. Also, the problem of extracting the formed gold nanoparticles from biomaterials is addressed in this research but still remains to be

  1. Tuning NaYF4 Nanoparticles through Alkaline Earth Doping

    PubMed Central

    Chen, Xian; Peng, Dengfeng; Wang, Feng

    2013-01-01

    Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF4 nanoparticles and stabilizing cubic phase NaYF4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF4 upconversion nanoparticles. PMID:28348353

  2. Addressing concerns and achieving expectations

    SciTech Connect

    Miller, C.L.

    1995-12-01

    Approximately 2-1/2 years ago many of us were gathered here in Prague at a similar conference with a similar name, {open_quotes}Energy and Environment: Transitions in Eastern Europe.{close_quotes} Over 300 professionals from 26 nations attended. The objective of the conference was to: Facilitate the Solution of Long and Short Term Energy and Environmental Problems in Eastern Europe by Bringing Together People, ideas and technologies which could be applied to specific problems in a logical step-by-step manner. It was conceded at the time that the long term solution would consist of thoughtfully integrated steps and that the conference was the first step. We are here in the Czech Republic again this week to continue what was started. As before, this conference continues to: (1) Provide a forum to identify and discuss cost-effective environmentally acceptable energy and environmental technology options and their associated socioeconomic issues. (2) Stimulate the Formation of business partnerships (3) Identify key barrier issues hindering technology applications and identify implementation pathways that eliminate or avoid obstacles to progress.

  3. Light-driven transport of plasmonic nanoparticles on demand.

    PubMed

    Rodrigo, José A; Alieva, Tatiana

    2016-09-20

    Laser traps provide contactless manipulation of plasmonic nanoparticles (NPs) boosting the development of numerous applications in science and technology. The known trapping configurations allow immobilizing and moving single NPs or assembling them, but they are not suitable for massive optical transport of NPs along arbitrary trajectories. Here, we address this challenging problem and demonstrate that it can be handled by exploiting phase gradients forces to both confine and propel the NPs. The developed optical manipulation tool allows for programmable transport routing of NPs to around, surround or impact on objects in the host environment. An additional advantage is that the proposed confinement mechanism works for off-resonant but also resonant NPs paving the way for transport with simultaneous heating, which is of interest for targeted drug delivery and nanolithography. These findings are highly relevant to many technological applications including micro/nano-fabrication, micro-robotics and biomedicine.

  4. Commercial Nanoparticles for Stem Cell Labeling and Tracking

    PubMed Central

    Wang, Yaqi; Xu, Chenjie; Ow, Hooisweng

    2013-01-01

    Stem cell therapy provides promising solutions for diseases and injuries that conventional medicines and therapies cannot effectively treat. To achieve its full therapeutic potentials, the homing process, survival, differentiation, and engraftment of stem cells post transplantation must be clearly understood. To address this need, non-invasive imaging technologies based on nanoparticles (NPs) have been developed to track transplanted stem cells. Here we summarize existing commercial NPs which can act as contrast agents of three commonly used imaging modalities, including fluorescence imaging, magnetic resonance imaging and photoacoustic imaging, for stem cell labeling and tracking. Specifically, we go through their technologies, industry distributors, applications and existing concerns in stem cell research. Finally, we provide an industry perspective on the potential challenges and future for the development of new NP products. PMID:23946821

  5. Light-driven transport of plasmonic nanoparticles on demand

    PubMed Central

    Rodrigo, José A.; Alieva, Tatiana

    2016-01-01

    Laser traps provide contactless manipulation of plasmonic nanoparticles (NPs) boosting the development of numerous applications in science and technology. The known trapping configurations allow immobilizing and moving single NPs or assembling them, but they are not suitable for massive optical transport of NPs along arbitrary trajectories. Here, we address this challenging problem and demonstrate that it can be handled by exploiting phase gradients forces to both confine and propel the NPs. The developed optical manipulation tool allows for programmable transport routing of NPs to around, surround or impact on objects in the host environment. An additional advantage is that the proposed confinement mechanism works for off-resonant but also resonant NPs paving the way for transport with simultaneous heating, which is of interest for targeted drug delivery and nanolithography. These findings are highly relevant to many technological applications including micro/nano-fabrication, micro-robotics and biomedicine. PMID:27645257

  6. Light-driven transport of plasmonic nanoparticles on demand

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.; Alieva, Tatiana

    2016-09-01

    Laser traps provide contactless manipulation of plasmonic nanoparticles (NPs) boosting the development of numerous applications in science and technology. The known trapping configurations allow immobilizing and moving single NPs or assembling them, but they are not suitable for massive optical transport of NPs along arbitrary trajectories. Here, we address this challenging problem and demonstrate that it can be handled by exploiting phase gradients forces to both confine and propel the NPs. The developed optical manipulation tool allows for programmable transport routing of NPs to around, surround or impact on objects in the host environment. An additional advantage is that the proposed confinement mechanism works for off-resonant but also resonant NPs paving the way for transport with simultaneous heating, which is of interest for targeted drug delivery and nanolithography. These findings are highly relevant to many technological applications including micro/nano-fabrication, micro-robotics and biomedicine.

  7. Content-addressable holographic databases

    NASA Astrophysics Data System (ADS)

    Grawert, Felix; Kobras, Sebastian; Burr, Geoffrey W.; Coufal, Hans J.; Hanssen, Holger; Riedel, Marc; Jefferson, C. Michael; Jurich, Mark C.

    2000-11-01

    Holographic data storage allows the simultaneous search of an entire database by performing multiple optical correlations between stored data pages and a search argument. We have recently developed fuzzy encoding techniques for this fast parallel search and demonstrated a holographic data storage system that searches digital data records with high fidelity. This content-addressable retrieval is based on the ability to take the two-dimensional inner product between the search page and each stored data page. We show that this ability is lost when the correlator is defocussed to avoid material oversaturation, but can be regained by the combination of a random phase mask and beam confinement through total internal reflection. Finally, we propose an architecture in which spatially multiplexed holograms are distributed along the path of the search beam, allowing parallel search of large databases.

  8. Addressing viral resistance through vaccines

    PubMed Central

    Laughlin, Catherine; Schleif, Amanda; Heilman, Carole A

    2015-01-01

    Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections. PMID:26604979

  9. Addressing Failures in Exascale Computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert; Abraham, Jacob; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, J.; Bose, Pradip; Cappello, Franck; Carlson, Bill; Chien, Andrew; Coteus, Paul; DeBardeleben, Nathan; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Fazzari, Saverio; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Rob; Stearley, Jon; Van Hensbergen, Eric

    2014-01-01

    We present here a report produced by a workshop on Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  10. Addressing failures in exascale computing

    SciTech Connect

    Snir, Marc; Wisniewski, Robert W.; Abraham, Jacob A.; Adve, Sarita; Bagchi, Saurabh; Balaji, Pavan; Belak, Jim; Bose, Pradip; Cappello, Franck; Carlson, William; Chien, Andrew A.; Coteus, Paul; Debardeleben, Nathan A.; Diniz, Pedro; Engelmann, Christian; Erez, Mattan; Saverio, Fazzari; Geist, Al; Gupta, Rinku; Johnson, Fred; Krishnamoorthy, Sriram; Leyffer, Sven; Liberty, Dean; Mitra, Subhasish; Munson, Todd; Schreiber, Robert; Stearly, Jon; Van Hensbergen, Eric

    2014-05-01

    We present here a report produced by a workshop on “Addressing Failures in Exascale Computing” held in Park City, Utah, August 4–11, 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system; discuss existing knowledge on resilience across the various hardware and software layers of an exascale system; and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia; and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

  11. Light addressable photoelectrochemical cyanide sensor

    SciTech Connect

    Licht, S.; Myung, N.; Sun, Y.

    1996-03-15

    A sensor is demonstrated that is capable of spatial discrimination of cyanide with use of only a single stationary sensing element. Different spatial regions of the sensing element are light activated to reveal the solution cyanide concentration only at the point of illumination. In this light addressable photoelectrochemical (LAP) sensor the sensing element consists of an n-CdSe electrode immersed in solution, with the open-circuit potential determined under illumination. In alkaline ferro-ferri-cyanide solution, the open-circuit photopotential is highly responsive to cyanide, with a linear response of (120 mV) log [KCN]. LAP detection with a spatial resolution of {+-}1 mm for cyanide detection is demonstrated. The response is almost linear for 0.001-0.100 m cyanide with a resolution of 5 mV. 38 refs., 7 figs., 1 tab.

  12. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  13. Addressing Future Technology Challenges Through Innovation and Investment

    DTIC Science & Technology

    2012-03-01

    defense dollars dwarf the nearest competitor, they are spread across many theatres and objectives, while an adversary can concentrate on a single...change). For example, a jet engine program that started as a power plant for a hypersonic aircraft was recently re-scoped to a hybrid combustor...developed a corn -kernel-sized inertial navigation sensor, enabling GPS precision in nearly any application imaginable. Inertial navigation has always been

  14. Advanced Technologies Addressing Asia-Pacific Infectious Diseases

    DTIC Science & Technology

    2011-01-01

    particular useful for rapid diagnosis of dengue. A panel of 123 serum samples from Singapore was provided by Duke-NUS to test using the NS1 MIA assay...getting 1 red top tube, serum was separated and 140 µL was used for RNA extraction. We isolated RNA, made cDNA, and then ran RT-PCR and results...were obtained by 8 P.M.  Concurrently 24 µL of the serum sample was used for MIA assay to test for DENV NS1 antigen, and DENV IgM and IgG

  15. Time Management: Addressing and Assessing Classroom Participation Problems

    DTIC Science & Technology

    2015-01-01

    Time Management Addressing and Assessing Classroom Participation Problems Cary A. Balser Abstract While research shows that technology in...the classroom has costs, in econometrics (as in other technical courses) computer use is very nearly a necessary condition. Therefore, I used a...undergraduate institution with a clear focus on STEM, technology in the classroom is very nearly necessitated by the content in many technical courses

  16. A region addresses patient safety.

    PubMed

    Feinstein, Karen Wolk; Grunden, Naida; Harrison, Edward I

    2002-06-01

    The Pittsburgh Regional Healthcare Initiative (PRHI) is a coalition of 35 hospitals, 4 major insurers, more than 30 major and small-business health care purchasers, dozens of corporate and civic leaders, organized labor, and partnerships with state and federal government all working together to deliver perfect patient care throughout Southwestern Pennsylvania. PRHI believes that in pursuing perfection, many of the challenges facing today's health care delivery system (eg, waste and error in the delivery of care, rising costs, frustration and shortage among clinicians and workers, financial distress, overcapacity, and lack of access to care) will be addressed. PRHI has identified patient safety (nosocomial infections and medication errors) and 5 clinical areas (obstetrics, orthopedic surgery, cardiac surgery, depression, and diabetes) as ideal starting points. In each of these areas of work, PRHI partners have assembled multifacility/multidisciplinary groups charged with defining perfection, establishing region-wide reporting systems, and devising and implementing recommended improvement strategies and interventions. Many design and conceptual elements of the PRHI strategy are adapted from the Toyota Production System and its Pittsburgh derivative, the Alcoa Business System. PRHI is in the proof-of-concept phase of development.

  17. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  18. Methods and Technologies Branch (MTB)

    Cancer.gov

    The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.

  19. OPENING ADDRESS: Heterostructures in Semiconductors

    NASA Astrophysics Data System (ADS)

    Grimmeiss, Hermann G.

    1996-01-01

    Good morning, Gentlemen! On behalf of the Nobel Foundation, I should like to welcome you to the Nobel Symposium on "Heterostructures in Semiconductors". It gives me great pleasure to see so many colleagues and old friends from all over the world in the audience and, in particular, to bid welcome to our Nobel laureates, Prof. Esaki and Prof. von Klitzing. In front of a different audience I would now commend the scientific and technological importance of heterostructures in semiconductors and emphatically emphasise that heterostructures, as an important contribution to microelectronics and, hence, information technology, have changed societies all over the world. I would also mention that information technology is one of the most important global key industries which covers a wide field of important areas each of which bears its own character. Ever since the invention of the transistor, we have witnessed a fantastic growth in semiconductor technology, leading to more complex functions and higher densities of devices. This development would hardly be possible without an increasing understanding of semiconductor materials and new concepts in material growth techniques which allow the fabrication of previously unknown semiconductor structures. But here and today I will not do it because it would mean to carry coals to Newcastle. I will therefore not remind you that heterostructures were already suggested and discussed in detail a long time before proper technologies were available for the fabrication of such structures. Now, heterostructures are a foundation in science and part of our everyday life. Though this is certainly true, it is nevertheless fair to say that not all properties of heterostructures are yet understood and that further technologies have to be developed before a still better understanding is obtained. The organisers therefore hope that this symposium will contribute not only to improving our understanding of heterostructures but also to opening new

  20. Targeting therapeutics to the glomerulus with nanoparticles.

    PubMed

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease.

  1. Nanoparticle vaccines.

    PubMed

    Zhao, Liang; Seth, Arjun; Wibowo, Nani; Zhao, Chun-Xia; Mitter, Neena; Yu, Chengzhong; Middelberg, Anton P J

    2014-01-09

    Nanotechnology increasingly plays a significant role in vaccine development. As vaccine development orientates toward less immunogenic "minimalist" compositions, formulations that boost antigen effectiveness are increasingly needed. The use of nanoparticles in vaccine formulations allows not only improved antigen stability and immunogenicity, but also targeted delivery and slow release. A number of nanoparticle vaccines varying in composition, size, shape, and surface properties have been approved for human use and the number of candidates is increasing. However, challenges remain due to a lack of fundamental understanding regarding the in vivo behavior of nanoparticles, which can operate as either a delivery system to enhance antigen processing and/or as an immunostimulant adjuvant to activate or enhance immunity. This review provides a broad overview of recent advances in prophylactic nanovaccinology. Types of nanoparticles used are outlined and their interaction with immune cells and the biosystem are discussed. Increased knowledge and fundamental understanding of nanoparticle mechanism of action in both immunostimulatory and delivery modes, and better understanding of in vivo biodistribution and fate, are urgently required, and will accelerate the rational design of nanoparticle-containing vaccines.

  2. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  3. Using Prescription Drug Monitoring Programs to Address Drug Abuse.

    PubMed

    Hansen, Melissa

    2015-03-01

    (1) Forty-nine states have established prescription drug monitoring programs (PDMPs) to address misuse and abuse of controlled substances. (2) Pilot programs have shown that connecting prescribers' PDMPs using health information technology results in improved patient care. (3) Legislators can access up-to-date information about their state PDMP at the Prescription Drug Monitoring Program Training and Technical Assistance Center.

  4. Teaching Writing in a Digital Age: Addressing Issues of Access

    ERIC Educational Resources Information Center

    Cottrill, Brittany B.

    2010-01-01

    The way people write and communicate has changed both inside and outside the university, and because of this writing instructors are professionally responsible for addressing these changes in the classroom. Technologies have affected writing for thousands of years. From the invention of the printing press to the Internet, challenges to writing…

  5. An address geocoding solution for Chinese cities

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehu; Ma, Haoming; Li, Qi

    2006-10-01

    We introduce the challenges of address geocoding for Chinese cities and present a potential solution along with a prototype system that deal with these challenges by combining and extending current geocoding solutions developed for United States and Japan. The proposed solution starts by separating city addresses into "standard" addresses which meet a predefined address model and non-standard ones. The standard addresses are stored in a structured relational database in their normalized forms, while a selected portion of the non-standard addresses are stored as aliases to the standard addresses. An in-memory address index is then constructed from the address database and serves as the basis for real-time address matching. Test results were obtained from two trials conducted in the city Beijing. On average 80% matching rate were achieved. Possible improvements to the current design are also discussed.

  6. GEOSS: Addressing Big Data Challenges

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Craglia, M.; Ochiai, O.

    2014-12-01

    In the sector of Earth Observation, the explosion of data is due to many factors including: new satellite constellations, the increased capabilities of sensor technologies, social media, crowdsourcing, and the need for multidisciplinary and collaborative research to face Global Changes. In this area, there are many expectations and concerns about Big Data. Vendors have attempted to use this term for their commercial purposes. It is necessary to understand whether Big Data is a radical shift or an incremental change for the existing digital infrastructures. This presentation tries to explore and discuss the impact of Big Data challenges and new capabilities on the Global Earth Observation System of Systems (GEOSS) and particularly on its common digital infrastructure called GCI. GEOSS is a global and flexible network of content providers allowing decision makers to access an extraordinary range of data and information at their desk. The impact of the Big Data dimensionalities (commonly known as 'V' axes: volume, variety, velocity, veracity, visualization) on GEOSS is discussed. The main solutions and experimentation developed by GEOSS along these axes are introduced and analyzed. GEOSS is a pioneering framework for global and multidisciplinary data sharing in the Earth Observation realm; its experience on Big Data is valuable for the many lessons learned.

  7. Breakthrough: Fighting Cancer with Nanoparticles

    ScienceCinema

    Rozhkova, Elena

    2016-07-12

    Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. Read more at http://1.usa.gov/JAXh7Q.

  8. Laser generated nanoparticles based photovoltaics.

    PubMed

    Petridis, C; Savva, K; Kymakis, E; Stratakis, E

    2017-03-01

    The exploitation of nanoparticles (NP), synthesized via laser ablation in liquids, in photovoltaic devices is reviewed. In particular, the impact of NPs' incorporation into various building blocks within the solar cell architecture on the photovoltaic performance and stability is presented and analysed for the current state of the art photovoltaic technologies.

  9. Breakthrough: Fighting Cancer with Nanoparticles

    SciTech Connect

    Rozhkova, Elena

    2012-01-01

    Argonne nanoscientist Elena Rozhkova is studying ways to enlist nanoparticles to treat brain cancer. This nano-bio technology may eventually provide an alternative form of therapy that targets only cancer cells and does not affect normal living tissue. Read more at http://1.usa.gov/JAXh7Q.

  10. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  11. Magnetic nanoparticles in medical nanorobotics

    NASA Astrophysics Data System (ADS)

    Martel, Sylvain

    2015-02-01

    Medical nanorobotics is a field of robotics that exploits the physics at the nanoscale to implement new functionalities in untethered robotic agents aimed for ultimate operations in constrained physiological environments of the human body. The implementation of such new functionalities is achieved by embedding specific nano-components in such robotic agents. Because magnetism has been and still widely used in medical nanorobotics, magnetic nanoparticles (MNP) in particular have shown to be well suited for this purpose. To date, although such magnetic nanoparticles play a critical role in medical nanorobotics, no literature has addressed specifically the use of MNP in medical nanorobotic agents. As such, this paper presents a short introductory tutorial and review of the use of magnetic nanoparticles in the field of medical nanorobotics with some of the related main functionalities that can be embedded in nanorobotic agents.

  12. Engineering Gd-loaded nanoparticles to enhance MRI sensitivity via T1 shortening

    PubMed Central

    Bruckman, Michael A.; Yu, Xin; Steinmetz, Nicole F.

    2013-01-01

    Magnetic resonance imaging (MRI) is a noninvasive imaging technique capable of obtaining high-resolution anatomical images of the body. Major drawbacks of MRI are the low contrast agent sensitivity and inability to distinguish healthy tissue from diseased tissue, making early detection challenging. To address this technological hurdle, paramagnetic contrast agents have been developed to increase the longitudinal relaxivity (R1), leading to an increased signal-to-noise ratio. This review focuses on methods and principles that enabled the design and engineering of nanoparticles to deliver contrast agents with enhanced ionic relaxivities. Different engineering strategies and nanoparticle platforms will be compared in terms of their manufacturability, biocompatibility properties, and their overall potential to make an impact in clinical MR imaging. PMID:24158750

  13. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?

    PubMed Central

    Alkilany, Alaaldin M.

    2010-01-01

    Gold nanoparticles have attracted enormous scientific and technological interest due to their ease of synthesis, chemical stability, and unique optical properties. Proof-of-concept studies demonstrate their biomedical applications in chemical sensing, biological imaging, drug delivery, and cancer treatment. Knowledge about their potential toxicity and health impact is essential before these nanomaterials can be used in real clinical settings. Furthermore, the underlying interactions of these nanomaterials with physiological fluids is a key feature of understanding their biological impact, and these interactions can perhaps be exploited to mitigate unwanted toxic effects. In this Perspective we discuss recent results that address the toxicity of gold nanoparticles both in vitro and in vivo, and we provide some experimental recommendations for future research at the interface of nanotechnology and biological systems. PMID:21170131

  14. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices.

    PubMed

    Senesi, Andrew J; Eichelsdoerfer, Daniel J; Brown, Keith A; Lee, Byeongdu; Auyeung, Evelyn; Choi, Chung Hang J; Macfarlane, Robert J; Young, Kaylie L; Mirkin, Chad A

    2014-11-12

    The evolution of crystallite size and microstrain in DNA-mediated nanoparticle superlattices is dictated by annealing temperature and the flexibility of the interparticle bonds. This work addresses a major challenge in synthesizing optical metamaterials based upon noble metal nanoparticles by enabling the crystallization of large nanoparticles (100 nm diameter) at high volume fractions (34% metal).

  15. Stretchable nanoparticle conductors with self-organized conductive pathways

    NASA Astrophysics Data System (ADS)

    Kim, Yoonseob; Zhu, Jian; Yeom, Bongjun; di Prima, Matthew; Su, Xianli; Kim, Jin-Gyu; Yoo, Seung Jo; Uher, Ctirad; Kotov, Nicholas A.

    2013-08-01

    Research in stretchable conductors is fuelled by diverse technological needs. Flexible electronics, neuroprosthetic and cardiostimulating implants, soft robotics and other curvilinear systems require materials with high conductivity over a tensile strain of 100 per cent (refs 1, 2, 3). Furthermore, implantable devices or stretchable displays need materials with conductivities a thousand times higher while retaining a strain of 100 per cent. However, the molecular mechanisms that operate during material deformation and stiffening make stretchability and conductivity fundamentally difficult properties to combine. The macroscale stretching of solids elongates chemical bonds, leading to the reduced overlap and delocalization of electronic orbitals. This conductivity-stretchability dilemma can be exemplified by liquid metals, in which conduction pathways are retained on large deformation but weak interatomic bonds lead to compromised strength. The best-known stretchable conductors use polymer matrices containing percolated networks of high-aspect-ratio nanometre-scale tubes or nanowires to address this dilemma to some extent. Further improvements have been achieved by using fillers (the conductive component) with increased aspect ratio, of all-metallic composition, or with specific alignment (the way the fillers are arranged in the matrix). However, the synthesis and separation of high-aspect-ratio fillers is challenging, stiffness increases with the volume content of metallic filler, and anisotropy increases with alignment. Pre-strained substrates, buckled microwires and three-dimensional microfluidic polymer networks have also been explored. Here we demonstrate stretchable conductors of polyurethane containing spherical nanoparticles deposited by either layer-by-layer assembly or vacuum-assisted flocculation. High conductivity and stretchability were observed in both composites despite the minimal aspect ratio of the nanoparticles. These materials also demonstrate the

  16. Development of Novel Magnetic Nanoparticles for Hyperthermia Cancer Therapy

    PubMed Central

    Cassim, Shiraz M.; Giustini, Andrew J.; Baker, Ian; Hoopes, P. Jack

    2013-01-01

    Advances in magnetic nanoparticle hyperthermia are opening new doors in cancer therapy. As a standalone or adjuvant therapy this new modality has the opportunity significantly advance thermal medicine. Major advantages of using magnetic magnetite (Fe3O4) nanoparticles are their highly localized power deposition and the fact that the alternating magnetic fields (AMF) used to excite them can penetrate deeply into the body without harmful effect. One limitation, however, which hinders the technology, is the problem of inductive heating of normal tissue by the AMF if the frequency and fields strength are not appropriately matched to the tissue. Restricting AMF amplitude and frequency limits the heat dose which can be selectively applied to cancerous tissue via the magnetic nanoparticle, thus lowering therapeutic effect. In an effort to address this problem, particles with optimized magnetic properties must be developed. Using particles with higher saturation magnetizations and coercivity will enhance hysteresis heating increasing particle power density at milder AMF strengths and frequencies. In this study we used oil in water microemulsions to develop nanoparticles with zero-valent Fe cores and magnetite shells. The superior magnetic properties of zero-valent Fe give these particles the potential for improved SAR over pure magnetite particles. Silane and subsequently dextran have been attached to the particle surface in order to provide a biocompatible surfactant coating. The heating capability of the particles was tested in-vivo using a mouse tumor model. Although we determined that the final stage of synthesis, purification of the dextran coated particles, permits significant corrosion/oxidation of the iron core to hematite, the particles can effectively heat tumor tissue. Improving the purification procedure will allow the generation Fe/Fe3O4 with superior SAR values. PMID:24619487

  17. Programming chemistry in DNA-addressable bioreactors.

    PubMed

    Fellermann, Harold; Cardelli, Luca

    2014-10-06

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis.

  18. Programming chemistry in DNA-addressable bioreactors

    PubMed Central

    Fellermann, Harold; Cardelli, Luca

    2014-01-01

    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. PMID:25121647

  19. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  20. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents.

    PubMed

    Xie, Shuyu; Tao, Yanfei; Pan, Yuanhu; Qu, Wei; Cheng, Guyue; Huang, Lingli; Chen, Dongmei; Wang, Xu; Liu, Zhenli; Yuan, Zonghui

    2014-08-10

    Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents.

  1. Nanoparticle standards

    SciTech Connect

    Havrilla, George Joseph

    2016-12-08

    We will purchase a COTS materials printer and adapt it for solution printing of known elemental concentration solutions. A methodology will be developed to create deposits of known mass in known locations on selected substrates. The deposits will be characterized for deposited mass, physical morphology, thickness and uniformity. Once an acceptable methodology has been developed and validated, we will create round robin samples to be characterized by LGSIMS instruments at LANL, PNNL and NIST. We will demonstrate the feasibility of depositing nanoparticles in known masses with the goal of creating separated nanoparticles in known locations.

  2. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Official address. The principal office of the Commission is at Washington, DC. All communications to the Commission should be addressed to the Federal Trade Commission, 600 Pennsylvania Avenue, NW, Washington,...

  3. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Official address. The principal office of the Commission is at Washington, DC. All communications to the Commission should be addressed to the Federal Trade Commission, 600 Pennsylvania Avenue, NW, Washington,...

  4. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Official address. The principal office of the Commission is at Washington, DC. All communications to the Commission should be addressed to the Federal Trade Commission, 600 Pennsylvania Avenue, NW, Washington,...

  5. Multifunctional surface modification of gold-stabilized nanoparticles by bioorthogonal reactions.

    PubMed

    Li, Xiuru; Guo, Jun; Asong, Jinkeng; Wolfert, Margreet A; Boons, Geert-Jan

    2011-07-27

    Nanocarriers that combine multiple properties in an all-in-one system hold great promise for drug delivery. The absence of technology to assemble highly functionalized devices has, however, hindered progress in nanomedicine. To address this deficiency, we have chemically synthesized poly(ethylene oxide)-β-poly(ε-caprolactone) (PEO-b-PCL) block polymers modified at the apolar PCL terminus with thioctic acid and at the polar PEO terminus with an acylhydrazide, amine, or azide moiety. The resulting block polymers were employed to prepare nanoparticles that have a gold core, an apolar polyester layer for drug loading, a polar PEO corona to provide biocompatibility, and three different types of surface reactive groups for surface functionalization. The acylhydrazide, amine, or azide moieties of the resulting nanoparticles could be reacted with high efficiencies with modules having a ketone, isocyanate, or active ester and alkyne function, respectively. To demonstrate proof of principle of the potential of multisurface functionalization, we prepared nanoparticles that have various combinations of an oligo-arginine peptide to facilitate cellular uptake, a histidine-rich peptide to escape from lysosomes, and an Alexa Fluor 488 tag for imaging purposes. It has been shown that uptake and subcellular localization of the nanoparticles can be controlled by multisurface modification. It is to be expected that the modular synthetic methodology provides unique opportunities to establish optimal configurations of nanocarriers for disease-specific drug delivery.

  6. Exploration technology prioritization

    NASA Technical Reports Server (NTRS)

    Dula, Alex

    1992-01-01

    A series of outlines and graphs describing NASA's Space Exploration Initiative (SEI) technology prioritization are presented. Prioritization criteria and preliminary critical technology priorities for a first lunar outpost and a Mars and permanently-manned lunar mission are addressed.

  7. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  8. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  9. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  10. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  11. 47 CFR 97.23 - Mailing address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Mailing address. 97.23 Section 97.23 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO... name and mailing address. The mailing address must be in an area where the amateur service is...

  12. 37 CFR 41.10 - Correspondence addresses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false Correspondence addresses. 41... Correspondence addresses. Except as the Board may otherwise direct, (a) Appeals. Correspondence in an application... correspondence in an application or a patent involved in an appeal to the Board for which an address is...

  13. 37 CFR 41.10 - Correspondence addresses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Correspondence addresses. 41... Correspondence addresses. Except as the Board may otherwise direct, (a) Appeals. Correspondence in an application... correspondence in an application or a patent involved in an appeal to the Board for which an address is...

  14. 47 CFR 13.10 - Licensee address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Licensee address. 13.10 Section 13.10 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL RADIO OPERATORS General § 13.10 Licensee address. In accordance with § 1.923 of this chapter all applications must specify an address where...

  15. 32 CFR 516.7 - Mailing addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Mailing addresses. 516.7 Section 516.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION General § 516.7 Mailing addresses. Mailing addresses for organizations referenced...

  16. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-07-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  17. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection.

    PubMed

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  18. Addressing submarine geohazards through scientific drilling

    NASA Astrophysics Data System (ADS)

    Camerlenghi, A.

    2009-04-01

    eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.

  19. Characterization of starch nanoparticles

    NASA Astrophysics Data System (ADS)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  20. I. Textural/Structural tuning and nanoparticle stabilization of copper-containing nanocomposite materials. II. Generation of reducing agents for automotive exhaust gas purification via the processing of hydrocarbons in a PACT (plasma and catalysis integrated technologies) reactor

    NASA Astrophysics Data System (ADS)

    Xing, Yu

    This research consists of two parts. The first part deals with the preparation and properties of copper-containing nanocomposite materials. For studies of textural tuning, structural tuning, or material sintering, copper/aluminum and copper/zinc nanocomposites were prepared via various inorganic synthesis methods including conventional coprecipitation methods and a novel urea-gelation/thermal-modification method that produces narrow distributions of pore sizes, high surface areas, and significantly higher specific metal loadings. Solid-solid reaction analysis and differential scanning calorimetry (DSC) analysis were developed for the determination of the mixing homogeneities of the copper/aluminum nanocomposites. A sintering experiment at 250-600°C for 350 h under methanol-steam reforming conditions was carried out to compare the stability of supported Cu0 nanoparticles. The mixing homogeneities of CuO/Al2O3 nanocomposites significantly affected the thermal stability of their reduced Cu0 crystallites. Creation of relatively narrow distributions of pore sizes with relatively small major pore diameters (e.g., 3.5 nm) can also be used for the stabilization of supported Cu0 nanoparticles. The supported nanoparticles with a relatively small initial size cannot ensure good thermal stability. A "hereditary" character on the homogeneity of copper/aluminum nanocomposites was revealed. Stepwise reduction and reoxidation were studied for the structural tuning and purification of Cu-Al-O spinels with isotropic and gradual unit-cell contractions. The second part of the research deals with the processing of hydrocarbons. Conversion of a model hydrocarbon (n-hexane or n-octane) in an AC discharge PACT (plasma and catalysis integrated technologies) reactor was verified to be an effective method to instantly produce reducing agents (e.g., hydrogen or/and light alkanes and alkenes), at room temperature and atmospheric pressure for automotive exhaust gas purification. Effects of

  1. Enzyme Nanoparticles-Based Electronic Biosensor

    SciTech Connect

    Liu, Guodong; Lin, Yuehe; Ostatna, V.; Wang, Joseph

    2005-06-28

    A novel method for fabricating electronic biosensors based on coupling enzyme nanoparticles and self assembly technology is illustrated. Redox horseradish peroxidase nanoparticles were prepared by desolvation with ethanol and subsequent crosslinking with glutaraldehyde. The cross-linked enzyme nanoparticles were functionalized by cysteine to introduce thiol groups on the nanoparticle surface. Immobilized enzyme nanoparticle on the gold electrode by self-assembly kept redox and electrocatalytic activities, and was used to develop reagentless biosensors for H2O2 detection without promoters and mediators. The new approach is simple, low cost and circumvents complications associated with solution systems. It is a universal immobilization method for biosensor, biomedical devices, biofuel cells and enzymatic bioreactors fabrication and expected to open new opportunities for biosensor, clinical diagnostics, and for bioanalysis, in general.

  2. Educational Technology: Leadership Perspectives.

    ERIC Educational Resources Information Center

    Kearsley, Greg, Ed.; Lynch, William, Ed.

    This book addresses the topic of leadership in the use of educational technology. The four chapters of the first part discuss some of the issues associated with leadership in the use of educational technology. They include: (1) "Educational Technology Leadership in the Age of Technology: The New Skills" (Greg Kearsley and William Lynch); (2)…

  3. Educational Technology in China

    ERIC Educational Resources Information Center

    Meifeng, Liu; Jinjiao, Lv; Cui, Kang

    2010-01-01

    This paper elaborates the two different academic views of the identity of educational technology in China at the current time--advanced-technology-oriented cognition, known as Electrifying Education, and problem-solving-oriented cognition, known as Educational Technology. It addresses five main modes of educational technology in China: as a…

  4. Computer Accessibility Technology Packet.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This technology information packet includes information about the technical aspects of access to technology, legal obligations concerning technology and individuals with disabilities, and a list of resources for further information and assistance. A question and answer section addresses: barriers to educational technology for students with…

  5. Transport, Targeting and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    SciTech Connect

    Lowry, Gregory V.; Majetich, Sara; Sholl, David; Tilton, Robert D.; Matyjaszewski, Krzysztof; Liu, Yueqiang; Sarbu, Traian; Almusallam, Abdulwahab; Redden, George D.; Meakin, Paul; Rollins, Harry W.

    2004-03-31

    Recently, laboratory and field studies have demonstrated that zero-valent iron nanoparticles (colloids) can rapidly transform dissolved chlorinated organic solvents into non-toxic compounds. This technology also has the potential to address Dense Non- Aqueous Phase Liquid (DNAPL) contamination, one of DOE's primary contamination problems. This project develops and tests polymer-modified reactive nanoscale Fe0 particles for in situ delivery to chlorinated solvents that are present as DNAPLs in the subsurface. The surfaces of reactive Fe0-based nanoparticles are modified with amphiphilic block copolymers to maintain a stable suspension of the particles in water for transport in a porous matrix and to create an affinity for the water-DNAPL interface. Ultimately this will provide an improved technology to locate and eliminate DNAPL, a recalcitrant and persistent source for groundwater contamination by chlorinated solvents. Candidate polymers have been synthesized and attached to 20 nm SiO2 particles using Atom Transfer Radical Polymerization (ATRP). The physical properties (hydrodynamic radius, stability, TCE-water partitioning behavior, mobility in a porous matrix) of these nanostructures have been determined. The particles (dp {approx}102 nm) are water soluble and partition to the TCE-water interface. The physical and chemical properties (e.g. oxide phase and thickness) of Fe0 nanoparticles synthesized using different techniques and the effects of these properties on particle reactivity and efficiency have been evaluated. Numerical models (Brownian Dynamics) have been developed to predict the aqueous diffusivities of these particle-polymer nanostructures.

  6. Laser fabrication and spectroscopy of organic nanoparticles.

    PubMed

    Asahi, T; Sugiyama, T; Masuhara, H

    2008-12-01

    In working with nanoparticles, researchers still face two fundamental challenges: how to fabricate the nanoparticles with controlled size and shape and how to characterize them. In this Account, we describe recent advances in laser technology both for the synthesis of organic nanoparticles and for their analysis by single nanoparticle spectroscopy. Laser ablation of organic microcrystalline powders in a poor solvent has opened new horizons for the synthesis of nanoparticles because the powder sample is converted directly into a stable colloidal solution without additives and chemicals. By tuning laser wavelength, pulse width, laser fluence, and total shot number, we could control the size and phase of the nanoparticles. For example, we describe nanoparticle formation of quinacridone, a well-known red pigment, in water. By modifying the length of time that the sample is excited by the laser, we could control the particle size (30-120 nm) for nanosecond excitation down to 13 nm for femtosecond irradiation. We prepared beta- and gamma-phase nanoparticles from the microcrystal with beta-phase by changing laser wavelength and fluence. We present further results from nanoparticles produced from several dyes, C(60), and an anticancer drug. All the prepared colloidal solutions were transparent and highly dispersive. Such materials could be used for nanoscale device development and for biomedical and environmental applications. We also demonstrated the utility of single nanoparticle spectroscopic analysis in the characterization of organic nanoparticles. The optical properties of these organic nanoparticles depend on their size within the range from a few tens to a few hundred nanometers. We observed perylene nanoscrystals using single-particle spectroscopy coupled with atomic force microscopy. Based on these experiments, we proposed empirical equations explaining their size-dependent fluorescence spectra. We attribute the size effect to the change in elastic properties of

  7. Targeted PRINTRTM nanoparticles for effective cancer therapy

    NASA Astrophysics Data System (ADS)

    McGowan, Kelly Marie

    Conventional therapeutics for the treatment of cancer are often faced with challenges such as systemic biodistribution within the body, drug degradation in vivo, low bioavailability at the site of disease, and off-target toxicity. As such, particulate drug delivery systems have been developed with the aim of minimizing these limitations of current therapies. Through the PRINTRTM (Particle Replication in Non-wetting Templates) technology, hydrogel nanoparticles, prepared from biocompatible poly(ethylene glycol) and acid-sensitive silyl ether crosslinkers, were functionalized and conjugated with targeting ligands for the folate receptor (FR), HER2 receptor, and transferrin receptor (TfR). By conjugating specific ligands to nanoparticles to impart specificity, highly selective targeting and internalization (>80%) of nanoparticles were demonstrated in various cancer cell lines. The extent of cellular uptake of targeted nanoparticles was dependent on the surface characteristics of the nanoparticles, particle concentration, and kinetics. Because a negative surface charge reduces nonspecific cellular uptake, attaching monoclonal antibodies to the surface of negatively charged PRINT nanoparticles facilitated specific binding of the antibodies to cellular surface receptors that subsequently triggered receptor-mediated endocytosis. Additionally, the multivalent nature of nanoparticles influenced cellular uptake. Specifically, nanoparticles with a higher valence internalized more rapidly and efficiently than those with a lower valence. Nanoparticles that selectively target and accumulate within diseased cells have the potential of minimizing drug degradation under physiological conditions, enhancing bioavailability at the tumor, improving the efficacy of the drug, and reducing toxicity from systemic biodistribution. Drug delivery through targeted nanoparticles was achieved by loading nanoparticles with silyl ether-modified gemcitabine prodrugs. Covalently reacting the prodrug

  8. Multi Sensor Approach to Address Sustainable Development

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2007-01-01

    The main objectives of Earth Science research are many folds: to understand how does this planet operates, can we model her operation and eventually develop the capability to predict such changes. However, the underlying goals of this work are to eventually serve the humanity in providing societal benefits. This requires continuous, and detailed observations from many sources in situ, airborne and space. By and large, the space observations are the way to comprehend the global phenomena across continental boundaries and provide credible boundary conditions for the mesoscale studies. This requires a multiple sensors, look angles and measurements over the same spot in accurately solving many problems that may be related to air quality, multi hazard disasters, public health, hydrology and more. Therefore, there are many ways to address these issues and develop joint implementation, data sharing and operating strategies for the benefit of the world community. This is because for large geographical areas or regions and a diverse population, some sound observations, scientific facts and analytical models must support the decision making. This is crucial for the sustainability of vital resources of the world and at the same time to protect the inhabitants, endangered species and the ecology. Needless to say, there is no single sensor, which can answer all such questions effectively. Due to multi sensor approach, it puts a tremendous burden on any single implementing entity in terms of information, knowledge, budget, technology readiness and computational power. And, more importantly, the health of planet Earth and its ability to sustain life is not governed by a single country, but in reality, is everyone's business on this planet. Therefore, with this notion, it is becoming an impractical problem by any single organization/country to bear this colossal responsibility. So far, each developed country within their means has proceeded along satisfactorily in implementing

  9. Positional error in automated geocoding of residential addresses

    PubMed Central

    Cayo, Michael R; Talbot, Thomas O

    2003-01-01

    Background Public health applications using geographic information system (GIS) technology are steadily increasing. Many of these rely on the ability to locate where people live with respect to areas of exposure from environmental contaminants. Automated geocoding is a method used to assign geographic coordinates to an individual based on their street address. This method often relies on street centerline files as a geographic reference. Such a process introduces positional error in the geocoded point. Our study evaluated the positional error caused during automated geocoding of residential addresses and how this error varies between population densities. We also evaluated an alternative method of geocoding using residential property parcel data. Results Positional error was determined for 3,000 residential addresses using the distance between each geocoded point and its true location as determined with aerial imagery. Error was found to increase as population density decreased. In rural areas of an upstate New York study area, 95 percent of the addresses geocoded to within 2,872 m of their true location. Suburban areas revealed less error where 95 percent of the addresses geocoded to within 421 m. Urban areas demonstrated the least error where 95 percent of the addresses geocoded to within 152 m of their true location. As an alternative to using street centerline files for geocoding, we used residential property parcel points to locate the addresses. In the rural areas, 95 percent of the parcel points were within 195 m of the true location. In suburban areas, this distance was 39 m while in urban areas 95 percent of the parcel points were within 21 m of the true location. Conclusion Researchers need to determine if the level of error caused by a chosen method of geocoding may affect the results of their project. As an alternative method, property data can be used for geocoding addresses if the error caused by traditional methods is found to be unacceptable. PMID

  10. Computational strategies to address chromatin structure problems

    NASA Astrophysics Data System (ADS)

    Perišić, Ognjen; Schlick, Tamar

    2016-06-01

    While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.

  11. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  12. 2005 critical review summary - nanoparticles and the environment

    SciTech Connect

    Chang-Yu Wu; Pratim Biswas

    2005-06-01

    The 35th annual A&WMA Critical Review addresses the broad topic of nanoparticles and the environment. Complementing recent treatments of this topic in the literature, the review offers a broad overview of environmental origins, consequences, and applications of nanoparticles, or particles with diameters in the range of 1 to 50 or 100 nanometers. The four key elements discussed in the review are (1) sources of nanoparticles, (2) their control, (3) the application of nanoparticles in environmental and energy sectors, and (4) exposure and health effects. 18 refs., 4 figs., 1 tab.

  13. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  14. Hyperthermia Using Nanoparticles – Promises and Pitfalls

    PubMed Central

    Kaur, Punit; Aliru, Maureen L.; Chadha, Awalpreet S.; Asea, Alexzander; Krishnan, Sunil

    2016-01-01

    An ever-increasing body of literature affirms the physical and biological basis for sensitization of tumors to conventional therapies such as chemotherapy and radiation therapy by mild temperature hyperthermia. This knowledge has fueled the efforts to attain, maintain, measure and monitor temperature via technological advances. A relatively new entrant in the field of hyperthermia is nanotechnology which capitalizes on locally injected or systemically administered nanoparticles that are activated by extrinsic energy sources to generate heat. This review describes the kinds of nanoparticles available for hyperthermia generation, their activation sources, their characteristics, and the unique opportunities and challenges with nanoparticle-mediated hyperthermia. PMID:26757879

  15. Magnetic Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  16. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying.

    PubMed

    Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G

    2017-04-18

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  17. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.

    2017-04-01

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  18. Light controlled assembly of silver nanoparticles.

    PubMed

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-03-23

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed.

  19. Perturbation of physiological systems by nanoparticles.

    PubMed

    Zhang, Yi; Bai, Yuhong; Jia, Jianbo; Gao, Ningning; Li, Yang; Zhang, Ruinan; Jiang, Guibin; Yan, Bing

    2014-05-21

    Nanotechnology is having a tremendous impact on our society. However, societal concerns about human safety under nanoparticle exposure may derail the broad application of this promising technology. Nanoparticles may enter the human body via various routes, including respiratory pathways, the digestive tract, skin contact, intravenous injection, and implantation. After absorption, nanoparticles are carried to distal organs by the bloodstream and the lymphatic system. During this process, they interact with biological molecules and perturb physiological systems. Although some ingested or absorbed nanoparticles are eliminated, others remain in the body for a long time. The human body is composed of multiple systems that work together to maintain physiological homeostasis. The unexpected invasion of these systems by nanoparticles disturbs normal cell signaling, impairs cell and organ functions, and may even cause pathological disorders. This review examines the comprehensive health risks of exposure to nanoparticles by discussing how nanoparticles perturb various physiological systems as revealed by animal studies. The potential toxicity of nanoparticles to each physiological system and the implications of disrupting the balance among systems are emphasized.

  20. Light controlled assembly of silver nanoparticles

    PubMed Central

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-01-01

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed. PMID:28332582

  1. Light controlled assembly of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-03-01

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed.

  2. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems.

  3. Novel Duplicate Address Detection with Hash Function

    PubMed Central

    Song, GuangJia; Ji, ZhenZhou

    2016-01-01

    Duplicate address detection (DAD) is an important component of the address resolution protocol (ARP) and the neighbor discovery protocol (NDP). DAD determines whether an IP address is in conflict with other nodes. In traditional DAD, the target address to be detected is broadcast through the network, which provides convenience for malicious nodes to attack. A malicious node can send a spoofing reply to prevent the address configuration of a normal node, and thus, a denial-of-service attack is launched. This study proposes a hash method to hide the target address in DAD, which prevents an attack node from launching destination attacks. If the address of a normal node is identical to the detection address, then its hash value should be the same as the “Hash_64” field in the neighboring solicitation message. Consequently, DAD can be successfully completed. This process is called DAD-h. Simulation results indicate that address configuration using DAD-h has a considerably higher success rate when under attack compared with traditional DAD. Comparative analysis shows that DAD-h does not require third-party devices and considerable computing resources; it also provides a lightweight security resolution. PMID:26991901

  4. Addressing the value of art in cartographic communication

    NASA Astrophysics Data System (ADS)

    Cartwright, William E.

    Contemporary methods for depicting the earth and its cultural and natural attributes use graphic and non-graphic formats, maps and map-related artefacts, for visualizing geography and building virtual landscapes and environments. The discipline area of cartography, traditionally, has applied art (design), science and technology to map making to design and realise these products. Prior to the mid-1950s, cartographic artefacts were built under the theoretical and practical 'umbrella' of this partnership of art, science and technology. However, since then, the theory and methodology associated with visualizing geography has focused on Science and Technology, and away from Art. This 'move' away from art was accelerated by: (1) computing, computers and complete automated systems; and (2) the 'quest' to gain 'scientific legitimacy' by using scientific visualization as a lodestone for gauging the 'quality' of theories and applications. Science and Technology has been embraced by cartography as a means to ensure that what is presented is scientifically 'correct' — products are considered to 'work' if they are scientifically 'elegant', 'technologically' 'buildable' and 'deliverable' using contemporary communication systems. But, it is argued, science or technology, need not always take on primary roles, and there now is a need to address the role that design should take to facilitate the further development of contemporary cartography, especially in the areas where new media has been applied to facilitate the building of geographical visualization tools. This paper will address how, by incorporating art elements into the design criteria of geographical visualization artefacts, 'different' visualization tools might be provided using all three elements of cartography: art, science and technology.

  5. Designing synthetic RNA for delivery by nanoparticles

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, Dominika; Gendaszewska-Darmach, Edyta; Pawlowska, Roza; Chworos, Arkadiusz

    2017-03-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided.

  6. Nanoparticles--production and role in biotransformation.

    PubMed

    Mohapatra, D P; Gassara, F; Brar, S K

    2011-02-01

    Renewed interest has arisen in the manufacture of nanoparticles due to their unusually enhanced physico-chemical properties and biological activities compared to the bulk parent materials. The industrial scale production and wide variety of application of nanoparticles has resulted in broad range applications in biotechnology, more recently in the increase in efficiency of biotransformation processes. Biotransformation processes utilized to form different bio-products and nanoparticles demonstrate various roles in the bio-products formation. In order to address the issue, it is necessary to understand the different methods available for synthesis of nanoparticles and their effects on biotransformation process, an efficient process for utilization of nanoparticles. In this review, an overview of physical, chemical and biological methods for synthesis of nanoparticles and their role in biotransformation process on formation of different bio-products, such as bioethanol, biohydrogen, biodiesel, enzymes and bioplastics is outlined. In fact, the nanoparticles are going to prove revolutionary in the field of biotransformation by improving the efficiency and yield and often widening the application range.

  7. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  8. New generation of content addressable memories for associative processing

    NASA Astrophysics Data System (ADS)

    Lewis, H. G., Jr.; Giambalov, Paul

    2000-05-01

    Content addressable memories (CAMS) store both key and association data. A key is presented to the CAN when it is searched and all of the addresses are scanned in parallel to find the address referenced by the key. When a match occurs, the corresponding association is returned. With the explosion of telecommunications packet switching protocols, large data base servers, routers and search engines a new generation of dense sub-micron high throughput CAMS has been developed. The introduction of this paper presents a brief history and tutorial on CAMS, their many uses and advantages, and describes the architecture and functionality of several of MUSIC Semiconductors CAM devices. In subsequent sections of the paper we address using Associative Processing to accommodate the continued increase in sensor resolution, number of spectral bands, required coverage, the desire to implement real-time target cueing, and the data flow and image processing required for optimum performance of reconnaissance and surveillance Unmanned Aerial Vehicles (UAVs). To be competitive the system designer must provide the most computational power, per watt, per dollar, per cubic inch, within the boundaries of cost effective UAV environmental control systems. To address these problems we demonstrate leveraging DARPA and DoD funded Commercial Off-the-Shelf technology to integrate CAM based Associative Processing into a real-time heterogenous multiprocessing system for UAVs and other platforms with limited weight, volume and power budgets.

  9. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  10. Biosensors based on inorganic nanoparticles with biomimetic properties: Biomedical applications and in vivo cytotoxicity measurements

    NASA Astrophysics Data System (ADS)

    Ispas, Cristina R.

    The rapid progress of nanotechnology and advanced nanomaterials production offer significant opportunities for designing powerful biosensing devices with enhanced performances. This thesis introduces ceria (CeO 2) nanoparticles and its congeners as a new class of materials with huge potential in bioanalytical and biosensing applications. Unique redox, catalytic and oxygen storage/release properties of ceria nanoparticles, originating from their dual oxidation state are used to design biomedical sensors with high sensitivity and low oxygen dependency. This thesis describes a new approach for fabrication of implantable microbiosensors designed for monitoring neurological activity in physiological conditions. Understanding the mechanisms involved in neurological signaling and functioning is of great physiological importance. In this respect, the development of effective methods that allow accurate detection and quantification of biological analytes (i.e. L-glutamate and glucose) associated with neurological processes is of paramount importance. The performance of most analytical techniques currently used to monitor L-glutamate and glucose is suboptimal and only a limited number of approaches address the problem of operation in oxygen-restricted conditions, such as ischemic brain injury. Over the past couple of years, enzyme based biosensors have been used to investigate processes related to L-glutamate release/uptake and the glucose cycle within the brain. However, most of these sensors, based on oxidoreductase enzymes, do not work in conditions of limited oxygen availability. This thesis presents the development of a novel sensing technology for the detection of L-glutamate and glucose in conditions of oxygen deprivation. This technology provides real-time assessment of the concentrations of these analytes with high sensitivity, wide linear range, and low oxygen dependence. The fabrication, characterization and optimization of enzyme microbiosensors are discussed

  11. 49 CFR 1102.1 - How addressed.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false How addressed. 1102.1 Section 1102.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE COMMUNICATIONS § 1102.1 How addressed. All communications...

  12. 49 CFR 1102.1 - How addressed.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false How addressed. 1102.1 Section 1102.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE COMMUNICATIONS § 1102.1 How addressed. All communications...

  13. 49 CFR 1102.1 - How addressed.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false How addressed. 1102.1 Section 1102.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE COMMUNICATIONS § 1102.1 How addressed. All communications...

  14. 49 CFR 1102.1 - How addressed.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false How addressed. 1102.1 Section 1102.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE COMMUNICATIONS § 1102.1 How addressed. All communications...

  15. 49 CFR 1102.1 - How addressed.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false How addressed. 1102.1 Section 1102.1 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION RULES OF PRACTICE COMMUNICATIONS § 1102.1 How addressed. All communications...

  16. Public Address Systems. Specifications - Installation - Operation.

    ERIC Educational Resources Information Center

    Palmer, Fred M.

    Provisions for public address in new construction of campus buildings (specifications, installations, and operation of public address systems), are discussed in non-technical terms. Consideration is given to microphones, amplifiers, loudspeakers and the placement and operation of various different combinations. (FS)

  17. 49 CFR 369.6 - Address.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS REPORTS OF MOTOR CARRIERS § 369.6 Address. The following address must be used by motor carriers when submitting a report, requesting an exemption from filing...

  18. 16 CFR 0.2 - Official address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Official address. 0.2 Section 0.2 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ORGANIZATION § 0.2... 20580, unless otherwise specifically directed. The Commission's Web site address is www.ftc.gov....

  19. Approaches for Resolving Dynamic IP Addressing.

    ERIC Educational Resources Information Center

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  20. 37 CFR 41.10 - Correspondence addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Correspondence addresses. 41....10 Correspondence addresses. Except as the Board may otherwise direct, (a) Appeals. Correspondence in... all other correspondence in an application or a patent involved in an appeal to the Board for which...

  1. 37 CFR 41.10 - Correspondence addresses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Correspondence addresses. 41....10 Correspondence addresses. Except as the Board may otherwise direct, (a) Appeals. Correspondence in... all other correspondence in an application or a patent involved in an appeal to the Board for which...

  2. 37 CFR 41.10 - Correspondence addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Correspondence addresses. 41....10 Correspondence addresses. Except as the Board may otherwise direct, (a) Appeals. Correspondence in... all other correspondence in an application or a patent involved in an appeal to the Board for which...

  3. History Forum Addresses Creation/Evolution Controversy.

    ERIC Educational Resources Information Center

    Schweinsberg, John

    1997-01-01

    A series of programs entitled Creationism and Evolution: The History of a Controversy was presented at the University of Alabama in Huntsville. The controversy was addressed from an historical and sociological, rather than a scientific perspective. Speakers addressed the evolution of scientific creationism, ancient texts versus sedimentary rocks…

  4. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Address searches. 674.44 Section 674.44 Education..., DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If mail... litigation; (2) The account is assigned to the United States; or (3) The account is written off under §...

  5. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false Address searches. 674.44 Section 674.44 Education..., DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If mail... litigation; (2) The account is assigned to the United States; or (3) The account is written off under §...

  6. Forms of Address in Chilean Spanish

    ERIC Educational Resources Information Center

    Bishop, Kelley; Michnowicz, Jim

    2010-01-01

    The present investigation examines possible social and linguistic factors that influence forms of address used in Chilean Spanish with various interlocutors. A characteristic of the Spanish of Chile is the use of a variety of forms of address for the second person singular, "tu", "vos", and "usted", with corresponding…

  7. Image compression using address-vector quantization

    NASA Astrophysics Data System (ADS)

    Nasrabadi, Nasser M.; Feng, Yushu

    1990-12-01

    A novel vector quantization scheme, the address-vector quantizer (A-VQ), is proposed which exploits the interblock correlation by encoding a group of blocks together using an address-codebook (AC). The AC is a set of address-codevectors (ACVs), each representing a combination of addresses or indices. Each element of the ACV is an address of an entry in the LBG-codebook, representing a vector-quantized block. The AC consists of an active (addressable) region and an inactive (nonaddressable) region. During encoding the ACVs in the AC are reordered adaptively to bring the most probable ACVs into the active region. When encoding an ACV, the active region is checked, and if such an address combination exists, its index is transmitted to the receiver. Otherwise, the address of each block is transmitted individually. The SNR of the images encoded by the A-VQ method is the same as that of a memoryless vector quantizer, but the bit rate is by a factor of approximately two.

  8. Ceramic water filters impregnated with silver nanoparticles as a point-of-use water-treatment intervention for HIV-positive individuals in Limpopo Province, South Africa: a pilot study of technological performance and human health benefits.

    PubMed

    Abebe, Lydia Shawel; Smith, James A; Narkiewicz, Sophia; Oyanedel-Craver, Vinka; Conaway, Mark; Singo, Alukhethi; Amidou, Samie; Mojapelo, Paul; Brant, Julia; Dillingham, Rebecca

    2014-06-01

    Waterborne pathogens present a significant threat to people living with the human immunodeficiency virus (PLWH). This study presents a randomized, controlled trial that evaluates whether a household-level ceramic water filter (CWF) intervention can improve drinking water quality and decrease days of diarrhea in PLWH in rural South Africa. Seventy-four participants were randomized in an intervention group with CWFs and a control group without filters. Participants in the CWF arm received CWFs impregnated with silver nanoparticles and associated safe-storage containers. Water and stool samples were collected at baseline and 12 months. Diarrhea incidence was self-reported weekly for 12 months. The average diarrhea rate in the control group was 0.064 days/week compared to 0.015 days/week in the intervention group (p < 0.001, Mann-Whitney). Median reduction of total coliform bacteria was 100% at enrollment and final collection. CWFs are an acceptable technology that can significantly improve the quality of household water and decrease days of diarrhea for PLWH in rural South Africa.

  9. Automated measurement of printer effective addressability

    NASA Astrophysics Data System (ADS)

    Cooper, Brian E.; Eid, Ahmed H.; Rippetoe, Edward E.

    2014-01-01

    When evaluating printer resolution, addressability is a key consideration. Addressability defines the maximum number of spots or samples within a given distance, independent of the size of the spots when printed. Effective addressability is the addressability demonstrated by the final, printed output. It is the minimum displacement possible between the centers of printed objects. In this paper, we present a measurement procedure for effective addressability that offers an automated way to experimentally determine the addressability of the printed output. It requires printing, scanning, and measuring a test target. The effective addressability test target contains two types of elements, repeated to fill the page: fiducial lines and line segments. The fiducial lines serve as a relative reference for the incremental displacements of the individual line segments, providing a way to tolerate larger-scale physical distortions in the printer. An ordinary reflection scanner captures the printed test target. By rotating the page on the scanner, it is possible to measure effective addressability well beyond the scanner's sampling resolution. The measurement algorithm computes the distribution of incremental displacements, forming either a unimodal or bimodal histogram. In the latter case, the mean of the second (non-zero) peak indicates the effective addressability. In the former case, the printer successfully rendered the target's resolution, requiring another iteration of the procedure after increasing the resolution of the test target. The algorithm automatically estimates whether the histogram is unimodal or bimodal and computes parameters describing the quality of the measured histogram. Several experiments have refined the test target and measurement procedure, including two round-robin evaluations by the ISO WG4 committee. Results include an analysis of approximately 150 printed samples. The effective addressability attribute and measurement procedure are included in

  10. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.

    PubMed

    Zhang, Hui; Guo, Peixuan

    2014-05-15

    Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described.

  11. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  12. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy

    PubMed Central

    Taylor, Jack; Huefner, Anna; Li, Li; Wingfield, Jonathan

    2016-01-01

    Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of high SERS enhancement for intracellular probing while microfluidic technologies are being utilised to reproducibly synthesise nanoparticle (NP) probes at large scale and in high throughput. Sophisticated multivariate analysis techniques unlock the wealth of previously unattainable biomolecular information contained within large and multidimensional SERS datasets. Thus, with suitable combination of experimental techniques and analytics, SERS boasts enormous potential for cell based assays and to expand our understanding of the intracellular environment. In this review we trace the pathway to utilisation of nanomaterials for intracellular SERS. Thus we review and assess nanoparticle synthesis methods, their toxicity and cell interactions before presenting significant developments in intracellular SERS methodologies and how identified challenges can be addressed. PMID:27479539

  13. Process-generated nanoparticles from ceramic tile sintering: Emissions, exposure and environmental release.

    PubMed

    Fonseca, A S; Maragkidou, A; Viana, M; Querol, X; Hämeri, K; de Francisco, I; Estepa, C; Borrell, C; Lennikov, V; de la Fuente, G F

    2016-09-15

    The ceramic industry is an industrial sector in need of significant process changes, which may benefit from innovative technologies such as laser sintering of ceramic tiles. Such innovations result in a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles. This study addresses this issue aiming to characterise particle formation, release mechanisms and their impact on personal exposure during a tile sintering activity in an industrial-scale pilot plant, as a follow-up of a previous study in a laboratory-scale plant. In addition, possible particle transformations in the exhaust system, the potential for particle release to the outdoor environment, and the effectiveness of the filtration system were also assessed. For this purpose, a tiered measurement strategy was conducted. The main findings evidence that nanoparticle emission patterns were strongly linked to temperature and tile chemical composition, and mainly independent of the laser treatment. Also, new particle formation (from gaseous precursors) events were detected, with nanoparticles <30nm in diameter being formed during the thermal treatment. In addition, ultrafine and nano-sized airborne particles were generated and emitted into workplace air during sintering process on a statistically significant level. These results evidence the risk of occupational exposure to ultrafine and nanoparticles during tile sintering activity since workers would be exposed to concentrations above the nano reference value (NRV; 4×10(4)cm(-3)), with 8-hour time weighted average concentrations in the range of 1.4×10(5)cm(-3) and 5.3×10(5)cm(-3). A potential risk for nanoparticle and ultrafine particle release to the environment was also identified, despite the fact that the efficiency of the filtration system was successfully tested and evidenced a >87% efficiency in particle number concentrations removal.

  14. Physiologically important metal nanoparticles and their toxicity.

    PubMed

    Sengupta, Jayeeta; Ghosh, Sourav; Datta, Poulami; Gomes, Aparna; Gomes, Antony

    2014-01-01

    Nanotechnology has been setting benchmarks for the last two decades, but the origins of this technology reach back to ancient history. Today, nanoparticles of both metallic and non-metallic origin are under research and development for applications in various fields of biology/therapeutics. Physiologically important metals are of concern because they are compatible with the human system in terms of absorption, assimilation, excretion, and side effects. There are several physiologically inorganic metals that are present in the human body with a wide range of biological activities. Some of these metals are magnesium, chromium, manganese, iron, cobalt, copper, zinc, selenium and molybdenum. These metals are synthesized in the form of nanoparticles by different physical and chemical methods. Physiologically important nanoparticles are currently under investigation for their bio-medical applications as well as for therapeutics. Along with the applicative aspects of nanoparticles, another domain that is of great concern is the risk assessment of these nanoparticles to avoid unnecessary hazards. It has been seen that these nanoparticles have been shown to possess toxicity in biological systems. Conventional physical and chemical methods of metal nanoparticle synthesis may be one possible reason for nanoparticle toxicity that can be overcome by synthesis of nanoparticles from biological sources. This review is an attempt to establish metal nanoparticles of physiological importance to be the best candidates for future nanotechnological tools and medicines, owing to the acceptability and safety in the human body. This can only be successful if these particles are synthesized with a better biocompatibility and low or no toxicity.

  15. The synthesis and characterization of iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  16. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    SciTech Connect

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  17. Addressing Your Child's Weight at the Doctor

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  18. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  19. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  20. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  1. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  2. 7 CFR 504.5 - Address.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... USER FEES § 504.5 Address. Deposits of and requests for microbial patent cultures should be directed to the Curator, ARS Patent Culture Collection, Northern Regional Research Center, USDA-ARS, 1815...

  3. 76 FR 27020 - Representative and Address Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE United States Patent and Trademark Office Representative and Address Provisions ACTION: Proposed collection; comment request. SUMMARY: The United States Patent and Trademark Office (USPTO), as part of...

  4. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  5. Toxicity of silver and gold nanoparticles on marine microalgae.

    PubMed

    Moreno-Garrido, Ignacio; Pérez, Sara; Blasco, Julián

    2015-10-01

    The increased use of nanomaterials in several novel industrial applications during the last decade has led to a rise in concerns about the potential toxic effects of released engineered nanoparticles (NPs) into the environment, as their potential toxicity to aquatic organisms is just beginning to be recognised. Toxicity of metallic nanoparticles to aquatic organisms, including microalgae, seems to be related to their physical and chemical properties, as well as their behaviour in the aquatic media where processes of dissolution, aggregation and agglomeration can occur. Although the production of these particles has increased considerably in recent years, data on their toxicity on microalgae, especially those belonging to marine or estuarine environments remain scarce and scattered. The literature shows a wide variation of results on toxicity, mainly due to the different methodology used in bioassays involving microalgae. These can range for up to EC50 data, in the case of AgNPs, representing five orders of magnitude. The importance of initial cellular density is also addressed in the text, as well as the need for keeping test conditions as close as possible to environmental conditions, in order to increase their environmental relevance. This review focuses on the fate and toxicity of silver, gold, and gold-silver alloy nanoparticles on microalgae, as key organisms in aquatic ecosystems. It is prompted by their increased production and use, and taking into account that oceans and estuaries are the final sink for those NPs. The design of bioassays and further research in the field of microalgae nanoecotoxicology is discussed, with a brief survey on newly developed technology of green (algae mediated) production of Ag, Au and Ag-Au bimetallic NPs, as well as some final considerations about future research on this field.

  6. Optical Addressing And Clocking Of RAM's

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R.; Nixon, Robert H.; Bergman, Larry A.; Esener, Sadik

    1989-01-01

    Proposed random-access-memory (RAM) addressing system, in which memory linked optically to read/write logic circuits, greatly increases computer operating speed. System - comprises addressing circuits including numerous lasers as signal sources, numerous optical gates including optical detectors associated with memory cells, and holographic element to direct light signals to desired memory-cell locations - applied to high-capacity digital systems, supercomputers, and complex microcircuits.

  7. 75 FR 20523 - New Animal Drugs; Change of Sponsor's Name and Address

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 510 New Animal Drugs; Change of Sponsor's Name and Address AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug... Laboratories (Aust) Pty. Ltd. to Parnell Technologies Pty. Ltd. In addition, the sponsor's mailing address...

  8. Examining How Web Designers' Activity Systems Address Accessibility: Activity Theory as a Guide

    ERIC Educational Resources Information Center

    Russell, Kyle

    2014-01-01

    While accessibility of information technologies is often acknowledged as important, it is frequently not well addressed in practice. The purpose of this study was to examine the work of web developers and content managers to explore why and how accessibility is or is not addressed as an objective as websites are planned, built and maintained.…

  9. Biosynthesis of gold nanoparticles: A green approach.

    PubMed

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed.

  10. Contextual analysis of machine-printed addresses

    NASA Astrophysics Data System (ADS)

    Cullen, Peter B.; Ho, Tin K.; Hull, Jonathan J.; Prussak, Michal; Srihari, Sargur N.

    1992-08-01

    The assignment of a nine digit ZIP Code (ZIP + 4 Code) to the digital image of a machine printed address block is a problem of central importance in automated mail sorting. This problem is especially difficult since most addresses do not contain ZIP + 4 Codes and often the information that must be read to match an address to one of the 28 million entries in the ZIP + 4 file is either erroneous, incomplete, or missing altogether. This paper discusses a system for interpreting a machine printed address and assigning a ZIP + 4 Code that uses a constraint satisfaction approach. Words in an address block are first segmented and parsed to assign probable semantic categories. Word images are then recognized by a combination of digit, character, and word recognition algorithms. The control structure uses a constraint satisfaction problem solving approach to match the recognition results to an entry in the ZIP + 4 file. It is shown how this technique can both determine correct responses as well as compensate for incomplete or erroneous information. Experimental results demonstrate the success of this system. In a recent test on over 1000 machine printed address blocks, the ZIP + 4 encode rate was over 73 percent. This compares to the success rate of current postal OCRs which is about 45 percent. Additionally, the word recognition algorithm recognizes over 92 percent of the input images (over 98 percent in the top 10 choices.

  11. Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis.

    PubMed

    Sriram, Muthu Irulappan; Kalishwaralal, Kalimuthu; Gurunathan, Sangiliyandi

    2012-01-01

    Owing to the wide-ranging applications of noble metal nanoparticles in diverse areas of science and technology, different methods have been proposed for their synthesis. Here, we describe the methods for the intracellular biosynthesis of silver and gold nanoparticles using the bacterium Bacillus licheniformis KK2 and this same procedure can be followed for other bacteria as well. The biological synthesis of nanoparticles is highly eco-friendly and possesses distinct advantages such as enhanced stability, better control over the size, shape, and monodispersity of the nanoparticles, when compared with the more traditional physical and chemical methods which often involves the use of hazardous chemicals creating environmental concern.

  12. Spectral Induced Polarization Measurements of Nanoparticles in Laboratory Column Experiments

    EPA Science Inventory

    Nano sized materials are prevalent in consumer goods, manufacturing, industrial processes, and remediation technologies. The intentional and accidental introduction of nanoparticles (NP) into the subsurface pose a potential risk to the environment and public health. This resea...

  13. A Technology Checkup.

    ERIC Educational Resources Information Center

    Sydow, James A.; Kirkpatrick, Clark M.

    1996-01-01

    A technology audit compares a school district's plans and expectations for technology with actual deployment and use. The audit addresses information systems; operational environment; administrative, teaching, and learning applications; student, finance, and human resources systems; technology; infrastructure; office automation and productivity…

  14. Technology Performance Exchange

    SciTech Connect

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  15. Engineering tailored nanoparticles with microbes: quo vadis?

    PubMed

    Prasad, Ram; Pandey, Rishikesh; Barman, Ishan

    2016-01-01

    In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies.

  16. Multistate resistive switching in silver nanoparticle films

    PubMed Central

    Sandouk, Eric J; Gimzewski, James K; Stieg, Adam Z

    2015-01-01

    Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current–voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal–insulator–metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates. Activation required a forming step achieved through application of a bias voltage. Once activated, the nanoparticle films exhibited controllable resistive switching between multiple discrete low resistance states that depended on operational parameters including the applied bias voltage, temperature and sweep frequency. The films’ resistance switching behavior is shown here to be the result of nanofilament formation due to formative electromigration effects. Because of their tunable and distinct resistance states, scalability and ease of fabrication, nanoparticle films have a potential place in memory technology as resistive random access memory cells. PMID:27877824

  17. Carbon Nanoparticle-based Fluorescent Bioimaging Probes

    PubMed Central

    Bhunia, Susanta Kumar; Saha, Arindam; Maity, Amit Ranjan; Ray, Sekhar C.; Jana, Nikhil R.

    2013-01-01

    Fluorescent nanoparticle-based imaging probes have advanced current labelling technology and are expected to generate new medical diagnostic tools based on their superior brightness and photostability compared with conventional molecular probes. Although significant progress has been made in fluorescent semiconductor nanocrystal-based biological labelling and imaging, the presence of heavy metals and the toxicity issues associated with heavy metals have severely limited the application potential of these nanocrystals. Here, we report a fluorescent carbon nanoparticle-based, alternative, nontoxic imaging probe that is suitable for biological staining and diagnostics. We have developed a chemical method to synthesise highly fluorescent carbon nanoparticles 1–10 nm in size; these particles exhibit size-dependent, tunable visible emission. These carbon nanoparticles have been transformed into various functionalised nanoprobes with hydrodynamic diameters of 5–15 nm and have been used as cell imaging probes. PMID:23502324

  18. Liquid crystals from mesogens containing gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Lewandowski, Wiktor; Gorecka, Ewa

    Long-range ordered structures made of nanoparticles are perspective materials for future optical, electronic and sensing technologies. Conspicuous physicochemical features of nanoparticle aggregates originate from distant-dependent collective interactions, therefore lately a lot of attention was put to the development of assembly strategies allowing control over nanoparticle spatial distribution. In this chapter we will focus on the assembly process based on using thermotropic liquid-crystalline molecules as surface nanoparticle ligands. First, we discuss architectural parameters that inuence structure and thermal properties of the aggregates. Then, we show that this approach enables formation of assemblies with metamaterial characteristic, gives access to dynamic materials with light-, magneto- and thermo-responsive behavior and allows formation of aggregates with unique structures, which all make this strategy an attractive object of research.

  19. Methods and apparatus for transparent display using up-converting nanoparticles

    SciTech Connect

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-10-04

    Disclosed herein are transparent color displays with nanoparticles made with nonlinear materials and/or designed to exhibit optical resonances. These nanoparticles are embedded in or hosted on a transparent substrate, such as a flexible piece of clear plastic or acrylic. Illuminating the nanoparticles with invisible light (e.g., infrared or ultraviolet light) causes them to emit visible light. For example, a rare-earth doped nanoparticle may emit visible light when illuminated simultaneoulsy with a first infrared beam at a first wavelength .lamda..sub.1 and a second infrared beam at a second wavelength .lamda..sub.2. And a frequency-doubling nanoparticle may emit visible light when illuminated with a single infrared beam at the nanoparticle's resonant frequency. Selectively addressing these nanoparticles with appropiately selected pump beams yields visible light emitted from the nanoparticles hosted by the transparent substrate in a desired pattern.

  20. Plan for addressing issues relating to oil shale plant siting

    SciTech Connect

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  1. Nanoparticle-based theranostic agents

    PubMed Central

    Xie, Jin; Lee, Seulki; Chen, Xiaoyuan

    2010-01-01

    Theranostic nanomedicine is emerging as a promising therapeutic paradigm. It takes advantage of the high capacity of nanoplatforms to ferry cargo and loads onto them both imaging and therapeutic functions. The resulting nanosystems, capable of diagnosis, drug delivery and monitoring of therapeutic response, are expected to play a significant role in the dawning era of personalized medicine, and much research effort has been devoted toward that goal. A convenience in constructing such function-integrated agents is that many nanoplatforms are already, themselves, imaging agents. Their well developed surface chemistry makes it easy to load them with pharmaceutics and promote them to be theranostic nanosystems. Iron oxide nanoparticles, quantum dots, carbon nanotubes, gold nanoparticles and silica nanoparticles, have been previously well investigated in the imaging setting and are candidate nanoplatforms for building up nanoparticle-based theranostics. In the current article, we will outline the progress along this line, organized by the category of the core materials. We will focus on construction strategies and will discuss the challenges and opportunities associated with this emerging technology. PMID:20691229

  2. Radiolabeled Nanoparticles for Multimodality Tumor Imaging

    PubMed Central

    Xing, Yan; Zhao, Jinhua; Conti, Peter S.; Chen, Kai

    2014-01-01

    Each imaging modality has its own unique strengths. Multimodality imaging, taking advantages of strengths from two or more imaging modalities, can provide overall structural, functional, and molecular information, offering the prospect of improved diagnostic and therapeutic monitoring abilities. The devices of molecular imaging with multimodality and multifunction are of great value for cancer diagnosis and treatment, and greatly accelerate the development of radionuclide-based multimodal molecular imaging. Radiolabeled nanoparticles bearing intrinsic properties have gained great interest in multimodality tumor imaging over the past decade. Significant breakthrough has been made toward the development of various radiolabeled nanoparticles, which can be used as novel cancer diagnostic tools in multimodality imaging systems. It is expected that quantitative multimodality imaging with multifunctional radiolabeled nanoparticles will afford accurate and precise assessment of biological signatures in cancer in a real-time manner and thus, pave the path towards personalized cancer medicine. This review addresses advantages and challenges in developing multimodality imaging probes by using different types of nanoparticles, and summarizes the recent advances in the applications of radiolabeled nanoparticles for multimodal imaging of tumor. The key issues involved in the translation of radiolabeled nanoparticles to the clinic are also discussed. PMID:24505237

  3. Enzymatically Controlled Vacancies in Nanoparticle Crystals

    SciTech Connect

    Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.; Lee, Byeongdu; Schatz, George C.; Mirkin, Chad A.

    2016-08-01

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.

  4. Extraction of chlorpyrifos and malathion from water by metal nanoparticles.

    PubMed

    Nair, A Sreekumaran; Pradeep, T

    2007-06-01

    The nanoparticles of gold and silver in solution state and supported over activated alumina are effective systems for the quantitative removal of chlorpyrifos and malathion, two common pesticides found in surface waters of developing nations, from water. In the solution phase, these pesticides adsorb onto the nanoparticles' surfaces and upon interaction for a long time, the nanoparticles with adsorbed pesticides precipitate. In contrast, complete removal of these pesticides occurs when contaminated water is passed over nanoparticles supported on alumina. A prototype of an on-line filter was made using a column of activated alumina powder loaded with silver nanoparticles and the device was used for pesticide removal for extended periods. We believe that the method has great technological potential in drinking water purification, especially using silver nanoparticles.

  5. Addressing Cyberbullying as a Media Literacy Issue

    ERIC Educational Resources Information Center

    Bhat, Christine Suniti; Chang, Shih-Hua; Linscott, Jamie A.

    2010-01-01

    Background: The Asian region accounts for the highest number of internet and mobile cell phones consumers among the regions of the world. As the use of information and communications technology becomes more and more widespread, the misuse of such technology becomes a concern. Cyberbullying, or bullying using information and communications…

  6. The electrochemisty of surface modified <10 nm metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Roberts, Joseph J. P.

    Chapter One provides a general introduction of the research on metal oxide nanoparticles (MOx), highlighting their synthesis, surface modification, and functionalization. Emphasis is given to the different synthetic route for producing small (<10 nm) MOx nanoparticles with narrow size distributions. Different methods for modifying their surface with small organic molecules are discussed with focus given to silanes and phosphates. Furthermore, functionalizing surface modified nanoparticles for specific functions is addressed, with markers for analytically relevant nanoscale quantification being the primary focus. Chapter Two describes in detail the thermal degradation synthesis used for the generation of small MOx nanoparticles. It demonstrates the versatile of the synthesis by successfully synthesizing ZrO 2 and IrO2 nanoparticles. Preliminary work involving the formation of Bi2S3, Bi2O3, and RuO2 nanomaterials is also addressed. The solvothermal synthesis of indium tin oxide (ITO) is also shown for comparison to ITO produced by thermal degradation. Chapter Three details the surface modification of ITO nanoparticles and subsequent electrochemical tagging with a ferrocene moiety. ITO nanoparticles were synthesized via thermal degradation. These nanoparticles underwent a ligand exchange with a covalently binding mondentate silane terminated with a primary amine. Acyl chloride coupling between the amine and chlorocarbonylferrocene provided an electrochemical tag to quantify the level of surface modification. Electrochemisty of the quasi-diffusing nanoparticles was evaluated via cyclic voltammetry (CV), chronoamperometry (CA), and mircodisk electrode (microE) experiments. Chapter Four investigates spectroscopic tagging of ITO and ZrO2 nanoparticles as well as electrochemical tagging of ZrO 2 and IrO2 nanoparticles. An unbound azo-dye was synthesized and attempts were made to attach the dye to the surface of ITO nanoparticles. Imine couple between a spectroscopic tag

  7. Biometrics Technology

    DTIC Science & Technology

    2012-03-13

    biometrics technology this paper will address is the smart card . DoD implemented the Common Access Card (CAC) for active and reserve military...of the CAC was the smart card or automated chip card that was developed in the late 1960s in Europe by a German engineer named Helmut Grottup. 37 The... smart card quickly received broad acceptance in Europe over the past three decades before being commercialization in the U.S. The smart card’s

  8. Earth abundant bimetallic nanoparticles for heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Senn, Jonathan F., Jr.

    Polymer exchange membrane fuel cells have the potential to replace current fossil fuel-based technologies in terms of emissions and efficiency, but CO contamination of H2 fuel, which is derived from steam methane reforming, leads to system inefficiency or failure. Solutions currently under development are bimetallic nanoparticles comprised of earth-abundant metals in different architectures to reduce the concentration of CO by PROX during fuel cell operation. Chapter One introduces the Pt-Sn and Co-Ni bimetallic nanoparticle systems, and the intermetallic and core-shell architectures of interest for catalytic evaluation. Application, theory, and studies associated with the efficacy of these nanoparticles are briefly reviewed. Chapter Two describes the concepts of the synthetic and characterization methods used in this work. Chapter Three presents the synthetic, characterization, and catalytic findings of this research. Pt, PtSn, PtSn2, and Pt 3Sn nanoparticles have been synthesized and supported on gamma-Al2O3. Pt3Sn was shown to be an effective PROX catalyst in various gas feed conditions, such as the gas mixture incorporating 0.1% CO, which displayed a light-off temperatures of ˜95°C. Co and Ni monometallic and CoNi bimetallic nanoparticles have been synthesized and characterized, ultimately leading to the development of target Co Ni core-shell nanoparticles. Proposed studies of catalytic properties of these nanoparticles in preferential oxidation of CO (PROX) reactions will further elucidate the effects of different crystallographic phases, nanoparticle-support interactions, and architecture on catalysis, and provide fundamental understanding of catalysis with nanoparticles composed of earth abundant metals in different architectures.

  9. Addressing Learning Style Criticism: The Unified Learning Style Model Revisited

    NASA Astrophysics Data System (ADS)

    Popescu, Elvira

    Learning style is one of the individual differences that play an important but controversial role in the learning process. This paper aims at providing a critical analysis regarding learning styles and their use in technology enhanced learning. The identified criticism issues are addressed by reappraising the so called Unified Learning Style Model (ULSM). A detailed description of the ULSM components is provided, together with their rationale. The practical applicability of the model in adaptive web-based educational systems and its advantages versus traditional learning style models are also outlined.

  10. STS-85 Cmdr Brown addresses media during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Commander Curtis L. Brown, Jr., addresses the news media at a briefing at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  11. Silicon nanoparticles: applications in cell biology and medicine

    PubMed Central

    O’Farrell, Norah; Houlton, Andrew; Horrocks, Benjamin R

    2006-01-01

    In this review, we describe the synthesis, physical properties, surface functionalization, and biological applications of silicon nanoparticles (also known as quantum dots). We compare them against current technologies, such as fluorescent organic dyes and heavy metal chalcogenide-based quantum dots. In particular, we examine the many different methods that can be used to both create and modify these nanoparticles and the advantages they may have over current technologies that have stimulated research into designing silicon nanoparticles for in vitro and in vivo applications. PMID:17722279

  12. Frequency addressable beams for land mobile communications

    NASA Technical Reports Server (NTRS)

    Thompson, J. D.; Dubellay, G. G.

    1988-01-01

    Satellites used for mobile communications need to serve large numbers of small, low cost terminals. The most important parameters affecting the capacity of such systems are the satellite equivalent isotropically radiated power (EIRP) and gain to noise temperature ratio (G/T) and available bandwidth. Satellites using frequency addressed beams provide high EIRP and G/T with high-gain antenna beams that also permit frequency reuse over the composite coverage area. Frequency addressing is easy to implement and compatible with low-cost terminals and offers higher capacity than alternative approaches.

  13. Shared address collectives using counter mechanisms

    DOEpatents

    Blocksome, Michael; Dozsa, Gabor; Gooding, Thomas M; Heidelberger, Philip; Kumar, Sameer; Mamidala, Amith R; Miller, Douglas

    2014-02-18

    A shared address space on a compute node stores data received from a network and data to transmit to the network. The shared address space includes an application buffer that can be directly operated upon by a plurality of processes, for instance, running on different cores on the compute node. A shared counter is used for one or more of signaling arrival of the data across the plurality of processes running on the compute node, signaling completion of an operation performed by one or more of the plurality of processes, obtaining reservation slots by one or more of the plurality of processes, or combinations thereof.

  14. Cheaper Adjoints by Reversing Address Computations

    DOE PAGES

    Hascoët, L.; Utke, J.; Naumann, U.

    2008-01-01

    The reverse mode of automatic differentiation is widely used in science and engineering. A severe bottleneck for the performance of the reverse mode, however, is the necessity to recover certain intermediate values of the program in reverse order. Among these values are computed addresses, which traditionally are recovered through forward recomputation and storage in memory. We propose an alternative approach for recovery that uses inverse computation based on dependency information. Address storage constitutes a significant portion of the overall storage requirements. An example illustrates substantial gains that the proposed approach yields, and we show use cases in practical applications.

  15. Keynote Address for 6th International Symposium on Digital Earth

    NASA Technical Reports Server (NTRS)

    Bambacus, Myra

    2009-01-01

    NASA is committed to collaborating with not only our National Partners but also with our International Partners to help make our world a better place. We do this through the sharing of our discoveries and working together so that we can address uncertainties in predictions and forecasts that impact how we live on our home planet. NASA is committed to a Digital Earth as it enables our research to focus on cross disciplinary analysis. The mainstream Information Technologies along with the Digital Earth concepts have allowed this interdisciplinary research that is so critical to societal benefits. The technologies have been discovered and in many cases implemented, but we must forge ahead together to continue to advance all that is possible to fully extend our earth observations for the sake of humankind.

  16. Economics, Environmental Science and Technology.

    ERIC Educational Resources Information Center

    Greenwald, Martin

    1992-01-01

    Issues of the state of the economy, fuel consumption, environmental protection, interdependence, and global competition are relevant to technology education and must be addressed to shape the economic and technological future of the United States. (SK)

  17. Naming and Address in Afghan Society.

    ERIC Educational Resources Information Center

    Miran, M. Alam

    Forms of address in Afghan society reflect the relationships between the speakers as well as the society's structure. In Afghan Persian, or Dari, first, second, and last names have different semantic dimensions. Boys' first names usually consist of two parts or morphemes, of which one may be part of the father's name. Girls' names usually consist…

  18. Problem Solvers: Solutions--The Inaugural Address

    ERIC Educational Resources Information Center

    Dause, Emily

    2014-01-01

    Fourth graders in Miss Dause's and Mrs. Hicks's mathematics classes at South Mountain Elementary School in Dillsburg, Pennsylvania, worked with the data from the Inauagural Address problem that was previously published published in the February 2013 issue of "Teaching Children Mathematics". This activity allowed students to showcase…

  19. 21 CFR 600.2 - Mailing addresses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Mailing addresses. 600.2 Section 600.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS... (HFM-99), Center for Biologics Evaluation and Research, Food and Drug Administration, 1401...

  20. 21 CFR 600.2 - Mailing addresses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Mailing addresses. 600.2 Section 600.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS... (HFM-99), Center for Biologics Evaluation and Research, Food and Drug Administration, 1401...

  1. 21 CFR 600.2 - Mailing addresses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Mailing addresses. 600.2 Section 600.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS... (HFM-99), Center for Biologics Evaluation and Research, Food and Drug Administration, 1401...

  2. Transition through Teamwork: Professionals Address Student Access

    ERIC Educational Resources Information Center

    Bube, Sue Ann; Carrothers, Carol; Johnson, Cinda

    2016-01-01

    Prior to 2013, there was no collaboration around the transition services for deaf and hard of hearing students in Washington State. Washington had numerous agencies providing excellent support, but those agencies were not working together. It was not until January 29, 2013, when pepnet 2 hosted the Building State Capacity to Address Critical…

  3. Addressing Student Debt in the Classroom

    ERIC Educational Resources Information Center

    Perkins, David; Johnston, Tim; Lytle, Rick

    2016-01-01

    Student debt is a national concern. The authors address debt in the classroom to enhance students' understanding of the consequences of debt and the need for caution when financing their education. However, student feedback indicates this understanding has a delayed effect on borrowing behavior and underscores the importance of making difficult…

  4. Preservice Educators' Confidence in Addressing Sexuality Education

    ERIC Educational Resources Information Center

    Wyatt, Tammy Jordan

    2009-01-01

    This study examined 328 preservice educators' level of confidence in addressing four sexuality education domains and 21 sexuality education topics. Significant differences in confidence levels across the four domains were found for gender, academic major, sexuality education philosophy, and sexuality education knowledge. Preservice educators…

  5. Native Women at Risk: Addressing Cancer Prevention.

    ERIC Educational Resources Information Center

    Thiemann, Kay M. B.

    1994-01-01

    Discusses outcomes of a conference that brought together representatives from Indian tribes, state health departments, the Indian Health Service, the Mayo Clinic, and the American Cancer Society, to address the high rate of cervical cancer among American Indian women. Describes barriers to health care and plans to promote cancer screening among…

  6. 50 CFR 18.78 - Mailing address.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Mailing address. 18.78 Section 18.78 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... PLANTS (CONTINUED) MARINE MAMMALS Notice and Hearing on Section 103 Regulations § 18.78 Mailing...

  7. 34 CFR 674.44 - Address searches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Due Diligence § 674.44 Address searches. (a) If mail... litigation; (2) The account is assigned to the United States; or (3) The account is written off under §...

  8. Address Systems in "The Plum Plum Pickers"

    ERIC Educational Resources Information Center

    Geuder, Patricia A.

    1975-01-01

    The address systems in Raymond Barrio's "The Plum Plum Pickers" imply sociolinguistic differences between the Chicano and the Anglo characters. The kinds of sociolinguistic situations, the number of dyadic patterns, and the quantity of the dyadic patterns strongly suggest the differences. (Author)

  9. Addressing Psychosocial Factors with Library Mentoring

    ERIC Educational Resources Information Center

    Farrell, Bridget; Alabi, Jaena; Whaley, Pambanisha; Jenda, Claudine

    2017-01-01

    The majority of articles on mentoring in the library and information science field address career development by emphasizing the orientation process for new librarians and building the requisite skills for a specific job. Few articles deal with the psychological and social challenges that many early-career and minority librarians face, which can…

  10. Addressing South Africa's Engineering Skills Gaps

    ERIC Educational Resources Information Center

    Hall, Jonathan; Sandelands, Eric

    2009-01-01

    Purpose: This paper aims to provide a case study of how engineering skills gaps are being addressed by Murray & Roberts in South Africa. Design/methodology/approach: The paper focuses on skills challenges in South Africa from a reflective practitioner perspective, exploring a case example from an industry leader. Findings: The paper explores…

  11. Rational Rhymes for Addressing Common Childhood Issues

    ERIC Educational Resources Information Center

    Warren, Jeffrey M.

    2011-01-01

    Music-based interventions are valuable tools counselors can use when working with children. Specific types of music-based interventions, such as songs or rhymes, can be especially pertinent in addressing the thoughts, feelings, and behaviors of children. Rational-emotive behavior therapy (REBT) provides a therapeutic framework that encourages…

  12. How Sociology Texts Address Gun Control

    ERIC Educational Resources Information Center

    Tonso, William R.

    2004-01-01

    William R. Tonso has chosen an issue that he knows something about to examine how sociology textbooks address controversy. Appealing for gun control is fashionable, but it is at odds with a fondness that ordinary Americans have for their firearms--one that is supported by a growing body of research on deterrence to crime. There are two sides to…

  13. 40 CFR 98.9 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... submitted to the following address: (a) For U.S. mail. Director, Climate Change Division, 1200 Pennsylvania Ave., NW., Mail Code: 6207J, Washington, DC 20460. (b) For package deliveries. Director, Climate Change Division, 1310 L St, NW., Washington, DC 20005....

  14. 40 CFR 98.9 - Addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... submitted to the following address: (a) For U.S. mail. Director, Climate Change Division, 1200 Pennsylvania Ave., NW., Mail Code: 6207J, Washington, DC 20460. (b) For package deliveries. Director, Climate Change Division, 1310 L St, NW., Washington, DC 20005....

  15. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.174 Addresses. (a) The detergent additive sample..., 2565 Plymouth Road, Ann Arbor, Michigan 48105. (b) Other detergent registration and certification data, and certain other information which may be specified in this subpart, shall be sent to:...

  16. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.174 Addresses. (a) The detergent additive sample..., 2565 Plymouth Road, Ann Arbor, Michigan 48105. (b) Other detergent registration and certification data, and certain other information which may be specified in this subpart, shall be sent to:...

  17. 78 FR 35149 - Addresses of Regional Offices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR... Addresses of Regional Offices AGENCY: Fish and Wildlife Service, Interior. ACTION: Final rule. SUMMARY: We... offices in our regulations at title 50 of the Code of Federal Regulations. We are also making...

  18. EPA Addresses Environmental Justice in Houston

    EPA Pesticide Factsheets

    DALLAS - (Oct. 8, 2015) Today, the U.S. Environmental Protection Agency (EPA) announced Texas Environmental Justice Advocacy Services (t.e.j.a.s.) was selected as a grant recipient to address environmental justice (EJ) issues in the Manchester area

  19. Federal Offices That Address Women's Issues.

    ERIC Educational Resources Information Center

    Weber, Patricia A.; And Others

    This directory contains a listing of federal offices that address women's issues. Among the departments and agencies included are: the executive branch and the executive agencies departments of agriculture, commerce, defense (Air Force, Army, Coast Guard, Marine Corps, National Guard and Navy), education, health and human services, housing and…

  20. 37 CFR 301.2 - Official addresses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Copyright Royalty Board, P.O. Box 70977, Southwest Station, Washington, DC 20024-0977. (b) If hand delivered... Building, 101 Independence Avenue, SE., Washington, DC 20559-6000. (c) If hand delivered by a commercial...., Washington, DC, Monday through Friday, between 8:30 a.m. and 4 p.m., and be addressed as follows:...

  1. 37 CFR 301.2 - Official addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Copyright Royalty Board, P.O. Box 70977, Southwest Station, Washington, DC 20024-0977. (b) If hand delivered... Building, 101 Independence Avenue, SE., Washington, DC 20559-6000. (c) If hand delivered by a commercial...., Washington, DC, Monday through Friday, between 8:30 a.m. and 4 p.m., and be addressed as follows:...

  2. Autocheck: Addressing the Problem of Rural Transportation.

    ERIC Educational Resources Information Center

    Payne, Guy A.

    This paper describes a project implemented by a social worker from the Glynn County School District in rural Georgia to address transportation problems experienced by students and their families. The project aims to assist families who are unable to keep appointments or attend other important events due to unreliable transportation. A county needs…

  3. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.174 Addresses. (a) The detergent additive sample..., 2565 Plymouth Road, Ann Arbor, Michigan 48105. (b) Other detergent registration and certification data, and certain other information which may be specified in this subpart, shall be sent to:...

  4. 40 CFR 80.174 - Addresses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.174 Addresses. (a) The detergent additive sample..., 2565 Plymouth Road, Ann Arbor, Michigan 48105. (b) Other detergent registration and certification data, and certain other information which may be specified in this subpart, shall be sent to:...

  5. Addressing Deaf Culture in the Classroom.

    ERIC Educational Resources Information Center

    Pagliaro, Claudia

    2001-01-01

    The importance of recognizing the culture of deaf people is often overlooked when addressing issues of student diversity in the schools. Including the culture of deaf students can add vitality and energy to the educational environment, providing an alternative and unique perspective. This paper describes deafness, explains deaf culture, and…

  6. 50 CFR 228.8 - Mailing address.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Mailing address. 228.8 Section 228.8 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... the Presiding Officer, c/o Assistant Administrator, National Marine Fisheries Service, 1315...

  7. Near infrared imaging with nanoparticles.

    PubMed

    Altinoğlu, Erhan I; Adair, James H

    2010-01-01

    Near infrared imaging has presented itself as a powerful diagnostic technique with potential to serve as a minimally invasive, nonionizing method for sensitive, deep tissue diagnostic imaging. This potential is further realized with the use of nanoparticle (NP)-based near infrared (NIR) contrast agents that are not prone to the rapid photobleaching and instability of their organic counterparts. This review discusses applications that have successfully demonstrated the utility of nanoparticles for NIR imaging, including NIR-emitting semiconductor quantum dots (QDs), resonant gold nanoshells, and dye-encapsulating nanoparticles. NIR QDs demonstrate superior optical performance with exceptional fluorescence brightness stability. However, the heavy metal composition and high propensity for toxicity hinder future application in clinical environments. NIR resonant gold nanoshells also exhibit brilliant signal intensities and likewise have none of the photo- or chemical-instabilities characteristic of organic contrast agents. However, concerns regarding ineffectual clearance and long-term accumulation in nontarget organs are a major issue for this technology. Finally, NIR dye-encapsulating nanoparticles synthesized from calcium phosphate (CP) also demonstrate improved optical performances by shielding the component dye from undesirable environmental influences, thereby enhancing quantum yields, emission brightness, and fluorescent lifetime. Calcium phosphate nanoparticle (CPNP) contrast agents are neither toxic, nor have issues with long-term sequestering, as they are readily dissolved in low pH environments and ultimately absorbed into the system. Though perhaps not as optically superior as QDs or nanoshells, these are a completely nontoxic, bioresorbable option for NP-based NIR imaging that still effectively improves the optical performance of conventional organic agents.

  8. Nanoparticles for Retinal Gene Therapy

    PubMed Central

    Conley, Shannon M.; Naash, Muna I.

    2010-01-01

    Ocular gene therapy is becoming a well-established field. Viral gene therapies for the treatment of Leber’s congentinal amaurosis (LCA) are in clinical trials, and many other gene therapy approaches are being rapidly developed for application to diverse ophthalmic pathologies. Of late, development of non-viral gene therapies has been an area of intense focus and one technology, polymer-compacted DNA nanoparticles, is especially promising. However, development of pharmaceutically and clinically viable therapeutics depends not only on having an effective and safe vector but also on a practical treatment strategy. Inherited retinal pathologies are caused by mutations in over 220 genes, some of which contain over 200 individual disease-causing mutations, which are individually very rare. This review will focus on both the progress and future of nanoparticles and also on what will be required to make them relevant ocular pharmaceutics. PMID:20452457

  9. Chemically Functional Alkanethiol Derivitized Magnetic Nanoparticles

    DTIC Science & Technology

    2003-01-01

    agents in medical imaging technologies7, and ’spintronics’ 8 (i.e., spin-based data transfer and storage). For example, Co and FePt nanoparticles have been...with a personal computer. Pt microelectrodes (25pin diameter) were created by flame-sealing Pt microwire (Alfa Aesar) in glass capillaries. The sealed

  10. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    DOEpatents

    Gala, Alan; Ohmacht, Martin

    2014-09-02

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memory access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.

  11. Microplastics: addressing ecological risk through lessons learned.

    PubMed

    Syberg, Kristian; Khan, Farhan R; Selck, Henriette; Palmqvist, Annemette; Banta, Gary T; Daley, Jennifer; Sano, Larissa; Duhaime, Melissa B

    2015-05-01

    Plastic litter is an environmental problem of great concern. Despite the magnitude of the plastic pollution in our water bodies, only limited scientific understanding is available about the risk to the environment, particularly for microplastics. The apparent magnitude of the problem calls for quickly developing sound scientific guidance on the ecological risks of microplastics. The authors suggest that future research into microplastics risks should be guided by lessons learned from the more advanced and better understood areas of (eco) toxicology of engineered nanoparticles and mixture toxicity. Relevant examples of advances in these two fields are provided to help accelerate the scientific learning curve within the relatively unexplored area of microplastics risk assessment. Finally, the authors advocate an expansion of the "vector effect" hypothesis with regard to microplastics risk to help focus research of microplastics environmental risk at different levels of biological and environmental organization.

  12. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  13. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2012-01-01

    Oral delivery is the most common method for drug administration. However, poor solubility, stability, and bioavailability of many drugs make achieving therapeutic levels via the gastrointestinal (GI) tract challenging. Drug delivery must overcome numerous hurdles, including the acidic gastric environment and the continuous secretion of mucus that protects the GI tract. Nanoparticle drug carriers that can shield drugs from degradation and deliver them to intended sites within the GI tract may enable more efficient and sustained drug delivery. However, the rapid secretion and shedding of GI tract mucus can significantly limit the effectiveness of nanoparticle drug delivery systems. Many types of nanoparticles are efficiently trapped in and rapidly removed by mucus, making controlled release in the GI tract difficult. This review addresses the protective barrier properties of mucus secretions, how mucus affects the fate of orally administered nanoparticles, and recent developments in nanoparticles engineered to penetrate the mucus barrier. PMID:22212900

  14. Long-term effects of nanoparticles on nutrition and metabolism.

    PubMed

    Chen, Nan; Wang, Hui; Huang, Qing; Li, Jiang; Yan, Juan; He, Dannong; Fan, Chunhai; Song, Haiyun

    2014-09-24

    Nanoparticles have shown great potential in biological and biomedical applications due to their distinct physical and chemical properties. In the meanwhile, the biosafety of nanoparticles has also raised intense concerns worldwide. To address such concerns, great efforts have been made to examine short-term effects of nanoparticles on cell survival and proliferation. More recently, exploration of long-term effects of nanomaterials, particularly those with promising biomedical applications in vivo, has aroused significant interest. For example, gold nanoparticles (AuNPs) are generally considered non-toxic to cell growth, whereas recent studies suggest that AuNPs might have long-term effects on cellular metabolism and energy homeostasis. In this Review, recent advances in this direction are summarized. Further, possible mechanisms under which nanoparticles regulate metabolic signaling pathways, potential long-term effects on cellular anabolic or catabolic processes, and their implications in human health and metabolic disorders are discussed.

  15. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    PubMed

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  16. Molecular Imprinting of Polymeric Core-Shell Nanoparticles

    DTIC Science & Technology

    2002-04-05

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013604 TITLE: Molecular Imprinting of Polymeric Core-Shell Nanoparticles...Soc. Symp. Proc. Vol. 723 © 2002 Materials Research Society M3.2 MOLECULAR IMPRINTING OF POLYMERIC CORE-SHELL NANOPARTICLES Natalia P~rez Moral and...rebinding was performed in an organic solvent. INTRODUCTION Molecularly imprinted polymers ( MIPs ) address the need for robust, simple, fast and efficient

  17. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Quinlivan, John T.; Wilson, Robert D.; Smith, Peter J.; Johnson, Ronald W.

    1984-01-01

    Toppics addressed include: advanced composites on Boeing commercial aircraft; composite wing durability; damage tolerance technology development; heavily loaded wing panel design; and pressure containment and damage tolerance in fuselages.

  18. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    James, A. M.

    1984-01-01

    Topics addressed include: strength and hygrothermal response of L-1011 fin components; wing fuel containment and damage tolerance development; impact dynamics; acoustic transmission; fuselage structure; composite transport wing technology development; spar/assembly concepts.

  19. Understanding the Benefits and Limitations of Magnetic Nanoparticle Heating for Improved Applications in Cancer Hyperthermia and Biomaterial Cryopreservation

    NASA Astrophysics Data System (ADS)

    Etheridge, Michael L.

    The current work focused on the ability of magnetic nanoparticles to produce heat in the presence of an applied alternating magnetic field. Magnetic nanoparticle hyperthermia applications utilize this behavior to treat cancer and this approach has received clinical approval in the European Union, but significant developments are necessary for this technology to have a chance for wider-spread acceptance. Here then we begin by investigating some of the important limitations of the current technology. By characterizing the ability of superparamagnetic and ferromagnetic nanoparticles to heat under a range of applied fields, we are able to determine the optimal field settings for clinical application and make recommendations on the highest impact strategies to increase heating. In addition, we apply these experimentally determined limits to heating in a series of heat transfer models, to demonstrate the therapeutic impact of nanoparticle concentration, target volume, and delivery strategy. Next, we attempt to address one of the key questions facing the field- what is the impact of biological aggregation on heating? Controlled aggregate populations are produced and characterized in ionic and protein solutions and their heating is compared with nanoparticles incubated in cellular suspensions. Through this investigation we are able to demonstrate that aggregation is responsible for up to a 50% decrease in heating. However, more importantly, we are able to demonstrate that the observed reductions in heating correlate with reductions in longitudinal relaxation (T1) measured by sweep imaging with Fourier transformation (SWIFT) magnetic resonance imaging (MRI), providing a potential platform to account for these aggregation effects and directly predict heating in a clinical setting. Finally, we present a new application for magnetic nanoparticle heating, in the thawing of cryopreserved biomaterials. A number of groups have demonstrated the ability to rapidly cool and preserve

  20. Dynamic Nanoparticle Assemblies for Biomedical Applications.

    PubMed

    Li, Fangyuan; Lu, Jingxiong; Kong, Xueqian; Hyeon, Taeghwan; Ling, Daishun

    2017-02-22

    Designed synthesis and assembly of nanoparticles assisted by their surface ligands can create "smart" materials with programmed responses to external stimuli for biomedical applications. These assemblies can be designed to respond either exogenously (for example, to magnetic field, temperature, ultrasound, light, or electric pulses) or endogenously (to pH, enzymatic activity, or redox gradients) and play an increasingly important role in a diverse range of biomedical applications, such as biosensors, drug delivery, molecular imaging, and novel theranostic systems. In this review, the recent advances and challenges in the development of stimuli-responsive nanoparticle assemblies are summarized; in particular, the application-driven design of surface ligands for stimuli-responsive nanoparticle assemblies that are capable of sensing small changes in the disease microenvironment, which induce the related changes in their physico-chemical properties, is described. Finally, possible future research directions and problems that have to be addressed are briefly discussed.

  1. Inorganic nanoparticles engineered to attack bacteria.

    PubMed

    Miller, Kristen P; Wang, Lei; Benicewicz, Brian C; Decho, Alan W

    2015-11-07

    Antibiotics were once the golden bullet to constrain infectious bacteria. However, the rapid and continuing emergence of antibiotic resistance (AR) among infectious microbial pathogens has questioned the future utility of antibiotics. This dilemma has recently fueled the marriage of the disparate fields of nanochemistry and antibiotics. Nanoparticles and other types of nanomaterials have been extensively developed for drug delivery to eukaryotic cells. However, bacteria have very different cellular architectures than eukaryotic cells. This review addresses the chemistry of nanoparticle-based antibiotic carriers, and how their technical capabilities are now being re-engineered to attack, kill, but also non-lethally manipulate the physiologies of bacteria. This review also discusses the surface functionalization of inorganic nanoparticles with small ligand molecules, polymers, and charged moieties to achieve drug loading and controllable release.

  2. Anisotropic Nanoparticles and Anisotropic Surface Chemistry.

    PubMed

    Burrows, Nathan D; Vartanian, Ariane M; Abadeer, Nardine S; Grzincic, Elissa M; Jacob, Lisa M; Lin, Wayne; Li, Ji; Dennison, Jordan M; Hinman, Joshua G; Murphy, Catherine J

    2016-02-18

    Anisotropic nanoparticles are powerful building blocks for materials engineering. Unusual properties emerge with added anisotropy-often to an extraordinary degree-enabling countless new applications. For bottom-up assembly, anisotropy is crucial for programmability; isotropic particles lack directional interactions and can self-assemble only by basic packing rules. Anisotropic particles have long fascinated scientists, and their properties and assembly behavior have been the subjects of many theoretical studies over the years. However, only recently has experiment caught up with theory. We have begun to witness tremendous diversity in the synthesis of nanoparticles with controlled anisotropy. In this Perspective, we highlight the synthetic achievements that have galvanized the field, presenting a comprehensive discussion of the mechanisms and products of both seed-mediated and alternative growth methods. We also address recent breakthroughs and challenges in regiospecific functionalization, which is the next frontier in exploiting nanoparticle anisotropy.

  3. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing

  4. Clickable molecularly imprinted nanoparticles.

    PubMed

    Xu, Changgang; Ye, Lei

    2011-06-07

    Terminal alkynyl and azide groups are introduced on the surface of molecularly imprinted core-shell nanoparticles using precipitation polymerization. These clickable groups enable simple nanoparticle conjugation and surface modification under mild reaction conditions, opening new opportunities for nanoparticle-based assays and chemical sensing.

  5. Shape tunable plasmonic nanoparticles

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan Homer

    2017-03-07

    Noble metal nanoparticles and methods of their use are provided. Certain aspects provided solid noble metal nanoparticles tuned to the near infrared. The disclosed nanoparticles can be used in molecular imaging, diagnosis, and treatment. Methods for imaging cells are also provided.

  6. Synthesizing nanoparticles by mimicking nature | Science ...

    EPA Pesticide Factsheets

    As particulate matter with at least one dimension that is less than 100 nm, nanoparticles are the minuscule building blocks of new commercial products and consumer materials in the emerging field of nanotechnology. Nanoparticles are being discovered and introduced in the marketplace at a very fast pace. Also, commercial interest in nanotechnology has significantly increased, translating into more than a multibillion-dollar investment from public and private sources. Among several unique properties, nanoparticles have an exceptionally large surface area–to-volume ratio, which is the most important of the characteristics that are responsible for their widespread use in an array of industries. Unfortunately, their small size and corresponding high surface area often create a number of problems. For instance, the outer layer of atoms may have a different composition, and therefore a different chemistry, from the rest of the particle. Furthermore, nanoparticle surfaces are sensitive to changes in redox conditions, pH, ionic strength, and the types of microorganisms present. The synthesis of metal nanoparticles has been the subject of intense research, primarily because of their unique properties and their potential applications from a technological point of view. The optical, magnetic, electronic, and catalytic properties of these materials depend on their morphology and size distribution. Noble-metal nanoparticles are of particular interest because of their close-

  7. Phytosynthesis of nanoparticles: concept, controversy and application

    NASA Astrophysics Data System (ADS)

    Husen, Azamal; Siddiqi, Khwaja Salahuddin

    2014-05-01

    Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles.

  8. Phytosynthesis of nanoparticles: concept, controversy and application

    PubMed Central

    2014-01-01

    Nanotechnology is an exciting and powerful discipline of science; the altered properties of which have offered many new and profitable products and applications. Agriculture, food and medicine sector industries have been investing more in nanotechnology research. Plants or their extracts provide a biological synthesis route of several metallic nanoparticles which is more eco-friendly and allows a controlled synthesis with well-defined size and shape. The rapid drug delivery in the presence of a carrier is a recent development to treat patients with nanoparticles of certain metals. The engineered nanoparticles are more useful in increasing the crop production, although this issue is still in infancy. This is simply due to the unprecedented and unforeseen health hazard and environmental concern. The well-known metal ions such as zinc, iron and copper are essential constituents of several enzymes found in the human system even though the indiscriminate use of similar other metal nanoparticle in food and medicine without clinical trial is not advisable. This review is intended to describe the novel phytosynthesis of metal and metal oxide nanoparticles with regard to their shape, size, structure and diverse application in almost all fields of medicine, agriculture and technology. We have also emphasized the concept and controversial mechanism of green synthesis of nanoparticles. PMID:24910577

  9. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum.

    PubMed

    Aromal, S Aswathy; Vidhu, V K; Philip, Daizy

    2012-01-01

    The synthesis of metal nanoparticles of different sizes, shapes, chemical composition and controlled monodispersity is an important area of research in nanotechnology because of their interesting physical properties and technological applications. Present work describes an eco-friendly method for the synthesis of spherical gold nanoparticles using aqueous extract of Macrotyloma uniflorum. The effects of quantity of extract, temperature and pH on the formation of nanoparticles are studied. The nanoparticles are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles with fcc phase is evident from HRTEM images, SAED and XRD patterns. Synthesized nanoparticles have size in the range 14-17nm. FTIR spectrum indicates the presence of different functional groups present in the bio-molecule capping the nanoparticles. The possible mechanism leading to the formation of gold nanoparticles is suggested.

  10. Silver Nanoparticle Transport Through Soil: Illuminating the Pore-Scale Processes

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Willson, C. S.; Gerhard, J.; O'Carroll, D. M.

    2015-12-01

    in order to fully describe nanoparticle ransport. References 1. Molnar, I.L., et al., Method for Obtaining Silver Nanoparticle Concentrations within a Porous Medium via Synchrotron X-ray Computed Microtomography. Environmental Science & Technology, 2014. 48(2): p. 1114-1122.

  11. Catalytic kinetics of single gold nanoparticles observed via optical microwell arrays

    NASA Astrophysics Data System (ADS)

    Mayer, Kathryn M.; Shnipes, Jason; Davis, Douglas; Walt, David R.

    2015-02-01

    Catalytic activities and kinetics are measured at the single-particle level for gold nanoparticles catalyzing a fluorogenic oxidation reaction. This measurement is accomplished by confining the reactions in optically addressable microwell arrays. Citrate-capped gold nanoparticles are isolated in sealed ˜70 fL microwells along with a substrate, and the accumulation of a fluorescent product over time is observed. Thousands of reactions are measured in parallel. Catalytic activities are calculated for each nanoparticle and the activity distribution is analyzed.

  12. SUSTAINABILITY PERSPECTIVE AND CHEMISTRY-BASED TECHNOLOGIES

    EPA Science Inventory

    Inefficient technologies create adverse and societal impacts while consuming material and energy resources. Yet technology enterprises are the strongest enabler of sustainability. Technologies that will address the complex concerns of these impacts and the consequences of the u...

  13. Address block localization based on graph theory

    NASA Astrophysics Data System (ADS)

    Gaceb, Djamel; Eglin, Véronique; Lebourgeois, Frank; Emptoz, Hubert

    2008-01-01

    An efficient mail sorting system is mainly based on an accurate optical recognition of the addresses on the envelopes. However, the localizing of the address block (ABL) should be done before the OCR recognition process. The location step is very crucial as it has a great impact on the global performance of the system. Currently, a good localizing step leads to a better recognition rate. The limit of current methods is mainly caused by modular linear architectures used for ABL: their performances greatly depend on each independent module performance. We are presenting in this paper a new approach for ABL based on a pyramidal data organization and on a hierarchical graph coloring for classification process. This new approach presents the advantage to guarantee a good coherence between different modules and reduces both the computation time and the rejection rate. The proposed method gives a very satisfying rate of 98% of good locations on a set of 750 envelope images.

  14. Optically addressed asymmetric Fabry-Perot modulator

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Maserjian, J.

    1991-01-01

    A low power, high contrast optically addressed modulator, operating with normal incidence, has been fabricated. Optically controlled reflection modulation is achieved through optically induced absorption modulation in a periodically delta-doped InGaAs/GaAs multiple quantum well structure inserted in an integrated asymmetric Fabry-Perot resonator. A contrast ratio over 60:1 was measured using a spectrally matched low power InGaAs/GaAs quantum well laser to generate the write (control) signal. The insertion loss for the normally off modulator is 4.6 dB at the highest write signal power (30 mW) used. The device lends itself to the fabrication of arrays for optically addressed spatial light modulation.

  15. Addressing Medical Errors in Hand Surgery

    PubMed Central

    Johnson, Shepard P.; Adkinson, Joshua M.; Chung, Kevin C.

    2014-01-01

    Influential think-tank such as the Institute of Medicine has raised awareness about the implications of medical errors. In response, organizations, medical societies, and institutions have initiated programs to decrease the incidence and effects of these errors. Surgeons deal with the direct implications of adverse events involving patients. In addition to managing the physical consequences, they are confronted with ethical and social issues when caring for a harmed patient. Although there is considerable effort to implement system-wide changes, there is little guidance for hand surgeons on how to address medical errors. Admitting an error is difficult, but a transparent environment where patients are notified of errors and offered consolation and compensation is essential to maintain trust. Further, equipping hand surgeons with a guide for addressing medical errors will promote compassionate patient interaction, help identify system failures, provide learning points for safety improvement, and demonstrate a commitment to ethically responsible medical care. PMID:25154576

  16. Matrix-addressable electrochromic display cell

    NASA Astrophysics Data System (ADS)

    Beni, G.; Schiavone, L. M.

    1981-04-01

    We report an electrochromic display cell with intrinsic matrix addressability. The cell, based on a sputtered iridium oxide film (SIROF) and a tantalum-oxide hysteretic counterelectrode, has electrochromic parameters (i.e., response times, operating voltages, and contrast) similar to those of other SIROF display devices, but in addition, has short-circuit memory and voltage threshold. Memory and threshold are sufficiently large to allow, in principle, multiplexing of electrochromic display panels of large-screen TV pixel size.

  17. Addressing the United States Debt and Deficit

    DTIC Science & Technology

    2010-03-01

    effectively with the American debt and deficit, by first describing the background of our current government approach to the economy , then examining the...to address the problem of deficit financing and the associated debt in a positive manner and thereby strengthen the economy of the United States...current government approach to the economy , then examining the current projections for United States’ spending from 2009 through 2019 and examining what

  18. Increasing hope by addressing clients' outcome expectations.

    PubMed

    Swift, Joshua K; Derthick, Annie O

    2013-09-01

    Addressing clients' outcome expectations is an important clinical process that can lead to a strong therapeutic alliance, more positive treatment outcomes, and decreased rates of premature termination from psychotherapy. Five interventions designed to foster appropriate outcome expectations are discussed, including presenting a convincing treatment rationale, increasing clients' faith in their therapists, expressing faith in clients, providing outcome education, and comparing progress with expectations. Clinical examples and research support are provided for each.

  19. Aboriginal health promotion through addressing employment discrimination.

    PubMed

    Ferdinand, Angeline S; Paradies, Yin; Perry, Ryan; Kelaher, Margaret

    2014-01-01

    The Localities Embracing and Accepting Diversity (LEAD) program aimed to improve the mental health of Aboriginal Victorians by addressing racial discrimination and facilitating social and economic participation. As part of LEAD, Whittlesea Council adopted the Aboriginal Employment Pathways Strategy (AEPS) to increase Aboriginal employment and retention within the organisation. The Aboriginal Cultural Awareness Training Program was developed to build internal cultural competency and skills in recruiting and retaining Aboriginal staff. Analysis of surveys conducted before (pre; n=124) and after (post; n=107) the training program indicated a significant increase in participant understanding across all program objectives and in support of organisational policies to improve Aboriginal recruitment and retention. Participants ended the training with concrete ideas about intended changes, as well as how these changes could be supported by their supervisors and the wider organisation. Significant resources have since been allocated to implementing the AEPS over 5 years. In line with principles underpinning the National Aboriginal and Torres Strait Islander Health Plan 2013-23, particularly the focus on addressing racism as a determinant of health, this paper explores the AEPS and training program as promising approaches to health promotion through addressing barriers to Aboriginal employment. Possible implications for other large organisations are also considered.

  20. Innovative Legal Approaches to Address Obesity

    PubMed Central

    Pomeranz, Jennifer L; Teret, Stephen P; Sugarman, Stephen D; Rutkow, Lainie; Brownell, Kelly D

    2009-01-01

    Context: The law is a powerful public health tool with considerable potential to address the obesity issue. Scientific advances, gaps in the current regulatory environment, and new ways of conceptualizing rights and responsibilities offer a foundation for legal innovation. Methods: This article connects developments in public health and nutrition with legal advances to define promising avenues for preventing obesity through the application of the law. Findings: Two sets of approaches are defined: (1) direct application of the law to factors known to contribute to obesity and (2) original and innovative legal solutions that address the weak regulatory stance of government and the ineffectiveness of existing policies used to control obesity. Specific legal strategies are discussed for limiting children's food marketing, confronting the potential addictive properties of food, compelling industry speech, increasing government speech, regulating conduct, using tort litigation, applying nuisance law as a litigation strategy, and considering performance-based regulation as an alternative to typical regulatory actions. Finally, preemption is an overriding issue and can play both a facilitative and a hindering role in obesity policy. Conclusions: Legal solutions are immediately available to the government to address obesity and should be considered at the federal, state, and local levels. New and innovative legal solutions represent opportunities to take the law in creative directions and to link legal, nutrition, and public health communities in constructive ways. PMID:19298420

  1. Global-Address Space Networking (GASNet) Library

    SciTech Connect

    Welcome, Michael L.; Bell, Christian S.

    2011-04-06

    GASNet (Global-Address Space Networking) is a language-independent, low-level networking layer that provides network-independent, high-performance communication primitives tailored for implementing parallel global address space SPMD languages such as UPC and Titanium. The interface is primarily intended as a compilation target and for use by runtime library writers (as opposed to end users), and the primary goals are high performance, interface portability, and expressiveness. GASNet is designed specifically to support high-performance, portable implementations of global address space languages on modern high-end communication networks. The interface provides the flexibility and extensibility required to express a wide variety of communication patterns without sacrificing performance by imposing large computational overheads in the interface. The design of the GASNet interface is partitioned into two layers to maximize porting ease without sacrificing performance: the lower level is a narrow but very general interface called the GASNet core API - the design is basedheavily on Active Messages, and is implemented directly on top of each individual network architecture. The upper level is a wider and more expressive interface called GASNet extended API, which provides high-level operations such as remote memory access and various collective operations. This release implements GASNet over MPI, the Quadrics "elan" API, the Myrinet "GM" API and the "LAPI" interface to the IBM SP switch. A template is provided for adding support for additional network interfaces.

  2. Addressing language barriers to healthcare in India.

    PubMed

    Narayan, Lalit

    2013-01-01

    In spite of a growing recognition of the importance of doctor-patient communication, the issue of language barriers to healthcare has received very little attention in India. The Indian population speaks over 22 major languages with English used as the lingua franca for biomedicine. Large-scale internal migration has meant that health workers are encountering increasing instances of language discordance within clinical settings. Research done predominantly in the West has shown language discordance to significantly affect access to care, cause problems of comprehension and adherence, and decrease the satisfaction and quality of care. Addressing language barriers to healthcare in India requires a stronger political commitment to providing non-discriminatory health services, especially to vulnerable groups such as illiterate migrant workers. Research will have to address three broad areas: the ways in which language barriers affect health and healthcare, the efficacy of interventions to overcome language barriers, and the costs of language barriers and efforts to overcome them. There is a need to address such barriers in health worker education and clinical practice. Proven strategies such as hiring multilingual healthcare workers, providing language training to health providers, employing in situ translators or using telephone interpretation services will have to be evaluated for their appropriateness to the Indian context. Internet-based initiatives, the proliferation of mobile phones and recent advances in machine translation promise to contribute to the solution.

  3. Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties.

    PubMed

    Lewandowski, Wiktor; Wójcik, Michał; Górecka, Ewa

    2014-05-19

    Nanoparticle ordered aggregates are promising candidates for future application in a variety of sensing, optical and electronic technologies, mainly based on collective interactions between individual nano-building blocks. Physicochemical properties of such assemblies depend on nanoparticle spacing, therefore a lot of effort throughout the last years was put on development of assembly methods allowing control over aggregates structure. In this minireview we describe efficient self-assembly process based on the utilization of liquid-crystalline ligands grafted onto nanoparticle surface. We show strategies used to synthesize liquid-crystalline nanoparticles as well as discuss parameters influencing structural and thermal characteristic of aggregates. It is also demonstrated that the liquid-crystalline approach offers access to dynamic self-assembly and metamaterials with anisotropic plasmonic properties, which makes this strategy unique among others.

  4. Polymer decorated gold nanoparticles in nanomedicine conjugates.

    PubMed

    Capek, Ignác

    2017-02-15

    Noble metal, especially gold nanoparticles and their conjugates with biopolymers have immense potential for disease diagnosis and therapy on account of their surface plasmon resonance (SPR) enhanced light scattering and absorption. Conjugation of noble metal nanoparticles to ligands specifically targeted to biomarkers on diseased cells allows molecular-specific imaging and detection of disease. The development of smart gold nanoparticles (AuNPs) that can deliver therapeutics at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating cancer tumors. We highlight some of the promising classes of targeting systems that are under development for the delivery of gold nanoparticles. Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups to conjugate targeting ligands, cell receptors or drugs. Using targeted nanoparticles to deliver chemotherapeutic agents in cancer therapy offers many advantages to improve drug/gene delivery and to overcome many problems associated with conventional radiotherapy and chemotherapy. The targeted nanoparticles were found to be effective in killing cancer cells which were studied using various anticancer assays. Cell morphological analysis shows the changes occurred in cancer cells during the treatment with AuNPs. The results determine the influence of particle size and concentration of AuNPs on their absorption, accumulation, and cytotoxicity in model normal and cancer cells. As the mean particle diameter of the AuNPs decreased, their rate of absorption by the intestinal epithelium cells increased. These results provide important insights into the relationship between the dimensions of AuNPs and their gastrointestinal uptake and potential cytotoxicity. Furthermore gold nanoparticles efficiently convert the absorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. We also review

  5. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the gamma-proteobacterium, Shewanella oneidensis

    SciTech Connect

    Doktycz, Mitchel John; Moon, Ji Won; Meyer III, Harry M; Hensley, Dale K; Phelps, Tommy Joe; Pelletier, Dale A

    2011-01-01

    Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size- and shape-dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs has become a priority. In the present article we report for the first time on the efficient generation of extracellular silver sulfide (Ag{sub 2}S) nanoparticles by the metal-reducing bacterium Shewanella oneidensis. The particles are reasonably monodispersed and homogeneously shaped. They are produced under ambient temperatures and pressures at high yield, 85% theoretical maximum. UV-visible and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical and surface properties, purity and crystallinity of the synthesized particles. Further characterization revealed that the particles consist of spheres with a mean diameter of 9 {+-} 3.5 nm, and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these biogenic Ag{sub 2}S nanoparticles on Gram-negative (Escherichia coli and S. oneidensis) and Gram-positive (Bacillus subtilis) bacterial systems, as well as eukaryotic cell lines including mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells, showed that the particles were non-inhibitory and non-cytotoxic to any of these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag{sub 2}S nanoparticles. These particles are dispersible and biocompatible, thus providing excellent potential for use in optical imaging, electronic devices and solar cell applications.

  6. Surface Characterization of Nanoparticles: critical needs and significant challenges

    PubMed Central

    Baer, D. R.

    2013-01-01

    There is a growing recognition that nanoparticles and other nanostructured materials are sometimes inadequately characterized and that this may limit or even invalidate some of the conclusions regarding particle properties and behavior. A number of international organizations are working to establish the essential measurement requirements that enable adequate understanding of nanoparticle properties for both technological applications and for environmental health issues. Our research on the interaction of iron metal-core oxide-shell nanoparticles with environmental contaminants and studies of the behaviors of ceria nanoparticles, with a variety of medical, catalysis and energy applications, have highlighted a number of common nanoparticle characterization challenges that have not been fully recognized by parts of the research community. This short review outlines some of these characterization challenges based on our research observations and using other results reported in the literature. Issues highlighted include: 1) the importance of surfaces and surface characterization, 2) nanoparticles are often not created equal – subtle differences in synthesis and processing can have large impacts; 3) nanoparticles frequently change with time having lifetime implications for products and complicating understanding of health and safety impacts; 4) the high sensitivity of nanoparticles to their environment complicates characterization and applications in many ways; 5) nanoparticles are highly unstable and easily altered (damaged) during analysis. PMID:25342927

  7. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts

    PubMed Central

    Alili, Lirija; Chapiro, Swetlana; Marten, Gernot U.; Schmidt, Annette M.; Zanger, Klaus; Brenneisen, Peter

    2015-01-01

    Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS) and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles. PMID:26090418

  8. Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors

    NASA Astrophysics Data System (ADS)

    Teigell Beneitez, Nuria; Missinne, Jeroen; Schleipen, Jean; Orsel, Joke; Prins, Menno W. J.; Van Steenberge, Geert

    2014-02-01

    We present a polymer optical waveguide integration technology for the detection of nanoparticles in an evanescent field based biosensor. In the proposed biosensor concept, super-paramagnetic nanoparticles are used as optical contrast labels. The nanoparticles capture target molecules from a sample fluid and bind to the sensor surface with biological specificity. The surface-bound nanoparticles are then detected using frustration of an evanescent field. In the current paper we elaborate on the polymer waveguides which are used to generate a well-defined optical field for nanoparticle detection.

  9. [Nanoparticle: a nightmare for the future].

    PubMed

    Berk, Serdar; Akkurt, Ibrahim

    2012-01-01

    Nanotechnology is a new discipline where 1-100 nanometers long particles are used, with an extensive field of application including physics, chemistry, electronics, energy production, biology, and medicine. Just as in every innovation, the effects of this technology and its products on environment and health are wondered. Lungs are the major port of entry and target of the nanoparticles in human body. This review will discuss, in the light of the literature, the possible adverse effects of nanoparticles on living beings and especially on respiratory system.

  10. Teaching Mathematics That Addresses Learners' Multiple Intelligences

    ERIC Educational Resources Information Center

    Gouws, E.; Dicker, A-M.

    2011-01-01

    To meet the demands of our highly technological and globally competitive society, it is becoming increasingly important for all learners in South Africa to obtain skills and knowledge in mathematics. However, South Africa performed the worst of all the countries who participated in the Trends in International Mathematics and Science Study (TIMMS).…

  11. Integrated Lyrical Writing: Addressing Writing via Ballads

    ERIC Educational Resources Information Center

    Lytle, Alan

    2011-01-01

    Using songs in a language class takes advantage of the natural connection between students and music. This article describes a project that develops writing and speaking through song, using technology to help build students' knowledge of U.S. culture as well as their ability to communicate using descriptive, narrative, and expository rhetorical…

  12. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chamorro, Susana; Gutiérrez, Lucía; Vaquero, María Pilar; Verdoy, Dolores; Salas, Gorka; Luengo, Yurena; Brenes, Agustín; José Teran, Francisco

    2015-05-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.

  13. Site-directed nanoparticle labeling of cytochrome c

    PubMed Central

    Aubin-Tam, Marie-Eve; Hwang, Wonmuk; Hamad-Schifferli, Kimberly

    2009-01-01

    Although nanoparticle-protein conjugates have been synthesized for numerous applications, bioconjugation remains a challenge, often resulting in denaturation or loss of protein function. This is partly because the protein–nanoparticle interface is poorly understood, which impedes the use of nanoparticles in nanomedicine. Although the effects of nanoparticle ligand and material on protein structure have been explored, the choice of the labeling site on the protein has not yet been systematically studied. To address this issue, we label cytochrome c site-specifically with a negatively charged Au nanoparticle via a covalent thiol–Au bond. The attachment site is controlled by cysteine mutations of surface residues. The effect of labeling on protein structure is probed by circular dichroism. Protein unfolding is the most severe when the nanoparticle is attached to the N- and C-terminal foldon, the core motif of cytochrome c. Also, when the nanoparticle is attached in the vicinity of charged residues, the amount of structural damage is greater because of salt-dependent electrostatic interactions with charged ligand bis(p-sulfonatophenyl) phenylphosphine on the nanoparticle. Molecular dynamics simulations also elucidate local to global structural perturbation depending on labeling site. These results suggest that the labeling site must be considered as one of the main design criteria for nanoparticle–protein conjugates. PMID:19251670

  14. Addressing Risks to Advance Mental Health Research

    PubMed Central

    Iltis, Ana S.; Misra, Sahana; Dunn, Laura B.; Brown, Gregory K.; Campbell, Amy; Earll, Sarah A.; Glowinski, Anne; Hadley, Whitney B.; Pies, Ronald; DuBois, James M.

    2015-01-01

    Objective Risk communication and management are essential to the ethical conduct of research, yet addressing risks may be time consuming for investigators and institutional review boards (IRBs) may reject study designs that appear too risky. This can discourage needed research, particularly in higher risk protocols or those enrolling potentially vulnerable individuals, such as those with some level of suicidality. Improved mechanisms for addressing research risks may facilitate much needed psychiatric research. This article provides mental health researchers with practical approaches to: 1) identify and define various intrinsic research risks; 2) communicate these risks to others (e.g., potential participants, regulatory bodies, society); 3) manage these risks during the course of a study; and 4) justify the risks. Methods As part of a National Institute of Mental Health (NIMH)-funded scientific meeting series, a public conference and a closed-session expert panel meeting were held on managing and disclosing risks in mental health clinical trials. The expert panel reviewed the literature with a focus on empirical studies and developed recommendations for best practices and further research on managing and disclosing risks in mental health clinical trials. IRB review was not required because there were no human subjects. The NIMH played no role in developing or reviewing the manuscript. Results Challenges, current data, practical strategies, and topics for future research are addressed for each of four key areas pertaining to management and disclosure of risks in clinical trials: identifying and defining risks, communicating risks, managing risks during studies, and justifying research risks. Conclusions Empirical data on risk communication, managing risks, and the benefits of research can support the ethical conduct of mental health research and may help investigators better conceptualize and confront risks and to gain IRB approval. PMID:24173618

  15. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  16. Optical addressing technique for a CMOS RAM

    NASA Technical Reports Server (NTRS)

    Wu, W. H.; Bergman, L. A.; Allen, R. A.; Johnston, A. R.

    1988-01-01

    Progress on optically addressing a CMOS RAM for a feasibility demonstration of free space optical interconnection is reported in this paper. The optical RAM chip has been fabricated and functional testing is in progress. Initial results seem promising. New design and SPICE simulation of optical gate cell (OGC) circuits have been carried out to correct the slow fall time of the 'weak pull down' OGC, which has been characterized experimentally. Methods of reducing the response times of the photodiodes and the associated circuits are discussed. Even with the current photodiode, it appears that an OGC can be designed with a performance that is compatible with a CMOS circuit such as the RAM.

  17. Addressing the water budget with SMOS

    NASA Astrophysics Data System (ADS)

    Kerr, Y. H.; AlBitar, A.; Tomer, S. K.; Merlin, O.; Pellarin, T.

    2012-12-01

    SMOS, a L Band radiometer using aperture synthesis to achieve a good spatial resolution, was successfully launched on November 2, 2009. It was developed and made under the leadership of the European Space Agency (ESA) as an Earth Explorer Opportunity mission. It is a joint program with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric,radiometer in the 1400-1427 MHz h protected band. This wavelength penetrates well through the vegetation and the atmosphere is almost transparent enabling to infer both soil moisture and vegetation water content. SMOS achieves an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) with multi angular-dual polarized (or fully polarized) brightness temperatures over the globe and with a revisit time smaller than 3 days. SMOS as been now acquiring data for almost 2 years. The data quality exceeds what was expected, showing very good sensitivity and stability. The data is however very much impaired by man made emission in the protected band, leading to degraded measurements in several areas including parts of Europe and of China. However, many different international teams are now addressing cal val activities in various parts of the world, with notably large field campaigns either on the long time scale or over specific targets to address the specific issues. In parallel different teams are now starting addressing data use in various fields including hydrology. It requires coupling with other models and or disaggregation to address soil moisture distribution over watersheds. Significant new results were obtained for floods and drought events, together with new potential applications in terms of precipitation monitoring This paper thus gives an overview of the science goals of the SMOS mission, a description of its main elements, and a taste of the first results including

  18. Addressing the underperformance of faculty and staff.

    PubMed

    Kenner, Carole; Pressler, Jana L

    2006-01-01

    Many new nursing leaders assuming work as deans, assistant deans, or interim deans have limited education, experience, or background to prepare them for the job. To assist new deans and those aspiring to be deans, the authors of this department, both deans, offer survival tips based on their personal experiences and insights. They address common issues, challenges, and opportunities that face academic executive teams, such as negotiating an executive contract, obtaining faculty lines, building effective work teams, managing difficult employees, and creating nimble organizational structure to respond to changing consumer, healthcare delivery, and community needs. The authors welcome counterpoint discussions with readers.

  19. A Task Force to Address Bullying.

    PubMed

    Keller, Ronald; Budin, Wendy C; Allie, Tammy

    2016-02-01

    Bullying in the workplace can create a dysfunctional environment that is associated with serious physical and psychological harm to the person being bullied. Nurses' experience with bullying has gained considerable attention in recent years, and warrants further discussion. Nurse leaders need to develop and implement effective bullying prevention initiatives that will foster the functioning of a professional and productive staff in a healthy work environment. The aim of this article is to review workplace bullying as experienced by nurses, and describe how nurses at a Magnet-designated academic medical center developed and implemented a bullying task force to address the problem.

  20. Nanoparticles in discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep

    The self-assembly of disc-shaped molecules creates discotic liquid crystals (DLCs). These nanomaterials of the sizes ranging from 2-6 nm are emerging as a new class of organic semiconducting materials. The unique geometry of columnar mesophases formed by discotic molecules is of great importance to study the one-dimensional charge and energy migration in organized systems. A number of applications of DLCs, such as, one-dimensional conductor, photoconductor, photovoltaic solar cells, light emitting diodes and gas sensors have been reported. The conductivity along the columns in columnar mesophases has been observed to be several orders of magnitude greater than in perpendicular direction and, therefore, DLCs are described as molecular wires. On the other hand, the fields of nanostructured materials, such as gold nanoparticles, quantum dots, carbon nanotubes and graphene, have received tremendous development in the past decade due to their technological and fundamental interest. Recently the hybridization of DLCs with various metallic and semiconducting nanoparticles has been realized to alter and improve their properties. These nanocomposites are not only of basic science interest but also lead to novel materials for many device applications. This article provides an overview on the development in the field of newly immersed discotic nanoscience. After a brief introduction of DLCs, the article will cover the inclusion of various zero-, one- and two-dimensional nanoparticles in DLCs. Finally, an outlook into the future of this newly emerging intriguing field of discotic nanoscience research will be provided.

  1. Nanoparticles for Brain Drug Delivery

    PubMed Central

    Masserini, Massimo

    2013-01-01

    The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments. PMID:25937958

  2. Cryomilling for the fabrication of doxorubicin-containing silica-nanoparticle/polycaprolactone nanocomposite films

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Lim, Jing; Han, Yiyuan; Wang, Lifeng; Chong, Mark Seow Khoon; Teoh, Swee-Hin; Xu, Chenjie

    2016-01-01

    Bionanocomposites need to have a homogeneous distribution of nanomaterials in the polymeric matrix to achieve consistent mechanical and biological functions. However, a significant challenge lies in achieving the homogeneous distribution of nanomaterials, particularly through a solvent-free approach. This report introduces a technology to address this need. Specifically, cryomilling, a solvent-free, low-temperature processing method, was applied to generate a bionanocomposite film with well-dispersed nanoparticles. As a proof-of-concept, polycaprolactone (PCL) and doxorubicin-containing silica nanoparticles (Si-Dox) were processed through cryomilling and subsequently heat pressed to form the PCL/Si-Dox (cPCL/Si-Dox) film. Homogeneous distribution of Si-Dox was observed under both confocal imaging and atomic force microscopy imaging. The mechanical properties of cPCL/Si-Dox were comparable to those of the pure PCL film. Subsequent in vitro release profiles suggested that sustained release of Dox from the cPCL/Si-Dox film was achievable over 50 days. When human cervical cancer cells were seeded directly on these films, uptake of Dox was observed as early as day 1 and significant inhibition of cell growth was recorded on day 5.Bionanocomposites need to have a homogeneous distribution of nanomaterials in the polymeric matrix to achieve consistent mechanical and biological functions. However, a significant challenge lies in achieving the homogeneous distribution of nanomaterials, particularly through a solvent-free approach. This report introduces a technology to address this need. Specifically, cryomilling, a solvent-free, low-temperature processing method, was applied to generate a bionanocomposite film with well-dispersed nanoparticles. As a proof-of-concept, polycaprolactone (PCL) and doxorubicin-containing silica nanoparticles (Si-Dox) were processed through cryomilling and subsequently heat pressed to form the PCL/Si-Dox (cPCL/Si-Dox) film. Homogeneous

  3. Noninvasive Thermal Ablation of Osteomyelitis-Causing Bacteria Using Functionalized Nanoparticles

    DTIC Science & Technology

    2011-09-01

    9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research And Materiel...nanoparticle complex was then purified. A fraction of the complex was further conjugated to a fluorescent dye and specific binding of the complex to...streptococcal cells, but not non-target cells, was observed by both bright field and fluorescent microscopy. Next, the nanoparticles were exposed to

  4. Multi-port, optically addressed RAM

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)

    1989-01-01

    A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.

  5. Addressing Science Use Cases with HELIO

    NASA Astrophysics Data System (ADS)

    Bentley, R. D.; Aboudarham, J.; Csillaghy, A.; Jacquey, C.; Hapgood, M. A.; Messerotti, M.; Gallagher, P.; Bocchialini, K.; Hurlburt, N. E.; Roberts, D.; Sanchez Duarte, L.

    2009-12-01

    The Heliophysics Integrated Observatory (HELIO) is a new VO project funded under the EC's Seventh Framework Programme (FP7). It includes thirteen partners scattered over six countries and is led by University College London. HELIO is designed to support the heliophysics community and is based on a Service Oriented Architecture. The services developed by and integrated into HELIO can be used to address a wide range of science problems; they can be used individually or as part of a work-flow driven search engine that can use a propagation (or other) model to help locate obervations that describe interesting phenomena. We will describe and discuss how the components of HELIO could be used to address science use cases, particularly how a user can adapt the work flow to their own science interests. Networking is one of the three Activities of the HELIO Integrated Infrastructure Initiatives (I3) project. Within this activity we plan to involve the community in all aspects of the design and testing of the HELIO system, including determining which data and metadata should be included, how the quality and content of metadata can be included, etc. We are investigating ways of making HELIO "domain-aware" so that researchers who are specialists in one of the communities that constitute heliophysics can easily identify, access and use data they need from the other communities. We will discuss how the community can help us develop this capability.

  6. Addressing Asthma Health Disparities: A Multilevel Challenge

    PubMed Central

    Canino, Glorisa; McQuaid, Elizabeth L.; Rand, Cynthia S.

    2009-01-01

    Substantial research has documented pervasive disparities in the prevalence, severity, and morbidity of asthma among minority populations compared to non-Latino whites. The underlying causes of these disparities are not well understood, and as a result, the leverage points to address them remain unclear. A multilevel framework for integrating research in asthma health disparities is proposed in order to advance both future research and clinical practice. The components of the proposed model include health care policies and regulations, operation of the health care system, provider/clinician-level factors, social/environmental factors, and individual/family attitudes and behaviors. The body of research suggests that asthma disparities have multiple, complex and inter-related sources. Disparities occur when individual, environmental, health system, and provider factors interact with one another over time. Given that the causes of asthma disparities are complex and multilevel, clinical strategies to address these disparities must therefore be comparably multilevel and target many aspects of asthma care. Clinical Implications: Several strategies that could be applied in clinical settings to reduce asthma disparities are described including the need for routine assessment of the patient’s beliefs, financial barriers to disease management, and health literacy, and the provision of cultural competence training and communication skills to health care provider groups. PMID:19447484

  7. Surgical Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This surgical technology program guide presents the standard curriculum for technical institutes in Georgia. The curriculum addresses the minimum competencies for a surgical technology program. The program guide is designed to relate primarily to the development of those skills needed by individuals in the field to provide services in the…

  8. School Security Technologies

    ERIC Educational Resources Information Center

    Schneider, Tod

    2010-01-01

    Over the past decade electronic security technology has evolved from an exotic possibility into an essential safety consideration. Before resorting to high-tech security solutions, school officials should think carefully about the potential for unintended consequences. Technological fixes may be mismatched to the problems being addressed. They can…

  9. Assembly of surface engineered nanoparticles for functional materials

    NASA Astrophysics Data System (ADS)

    Yu, Xi

    Nanoparticles are regarded as exciting new building blocks for functional materials due to their fascinating physical properties because of the nano-confinement. Organizing nanoparticles into ordered hierarchical structures are highly desired for constructing novel optical and electrical artificial materials that are different from their isolated state or thermodynamics random ensembles. My research integrates the surface chemistry of nanoparticles, interfacial assembly and lithography techniques to construct nanoparticle based functional structures. We designed and synthesized tailor-made ligands for gold, semiconductor and magnetic nanoparticle, to modulate the assembly process and collective properties of the assembled structures, by controlling the key parameters such as particle-interface interaction, dielectric environments and inter-particle coupling etc. Top-down technologies such as micro contact printing, photolithography and nanoimprint lithography are used to guide the assembly into arbitrarily predesigned structures for potential device applications.

  10. Electrokinetics of nanoparticle gel-electrophoresis.

    PubMed

    Hill, Reghan J

    2016-09-28

    Gel-electrophoresis has been demonstrated in recent decades to successfully sort a great variety of nanoparticles according to their size, charge, surface chemistry, and corona architecture. However, quantitative theoretical interpetations have been limited by the number and complexity of factors that influence particle migration. Theoretical models have been fragmented and incomplete with respect to their counterparts for free-solution electrophoresis. This paper unifies electrokinetic models that address complex nanoparticle corona architectures, corona and gel charge regulation (e.g., by the local pH), multi-component electrolytes, and non-linear electrostatics and relaxation effects. By comprehensively addressing the electrokinetic aspects of the more general gel-electrophoresis problem, in which short-ranged steric interactions are significant, a stage is set to better focus on the physicochemical and steric factors. In this manner, it is envisioned that noparticle gel-electrophoresis may eventually be advanced from a nanoparticle-characterization tool to one that explicitly probes the short-ranged interactions of nanoparticles with soft networks, such as synthetic gels and biological tissues. In this paper, calculations are undertaken that identify a generalized Hückel limit for nanoparticles in low-conductivity gels, and a new Smoluchowski limit for polyelectrolyte-coated particles in high-conductivity gels that is independent of the gel permeability. Also of fundamental interest is a finite, albeit small, electrophoretic mobility for uncharged particles in charged gels. Electrophoretic mobilities and drag coefficients (with electroviscous effects) for nanoparticles bearing non-uniform coronas show that relaxation effects are typically weak for the small nanoparticles (radius ≈3-10 nm) to which gel-electrophoresis has customarily been applied, but are profound for the larger nanoparticles (radius ≳ 40 nm in low conductivity gels) to which passivated gel

  11. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  12. Silver nanoparticles and their orthopaedic applications.

    PubMed

    Brennan, S A; Ní Fhoghlú, C; Devitt, B M; O'Mahony, F J; Brabazon, D; Walsh, A

    2015-05-01

    Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

  13. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  14. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity.

    PubMed

    Perche, F; Yi, Y; Hespel, L; Mi, P; Dirisala, A; Cabral, H; Miyata, K; Kataoka, K

    2016-06-01

    Current technology of siRNA delivery relies on pharmaceutical dosage forms to route maximal doses of siRNA to the tumor. However, this rationale does not address intracellular bottlenecks governing silencing activity. Here, we tested the impact of hydroxychloroquine conjugation on the intracellular fate and silencing activity of siRNA conjugated PEGylated gold nanoparticles. Addition of hydroxychloroquine improved endosomal escape and increased siRNA guide strand distribution to the RNA induced silencing complex (RISC), both crucial obstacles to the potency of siRNA. This modification significantly improved gene downregulation in cellulo. Altogether, our data suggest the benefit of this modification for the design of improved siRNA delivery systems.

  15. Addressing health literacy in patient decision aids

    PubMed Central

    2013-01-01

    Background Effective use of a patient decision aid (PtDA) can be affected by the user’s health literacy and the PtDA’s characteristics. Systematic reviews of the relevant literature can guide PtDA developers to attend to the health literacy needs of patients. The reviews reported here aimed to assess: 1. a) the effects of health literacy / numeracy on selected decision-making outcomes, and b) the effects of interventions designed to mitigate the influence of lower health literacy on decision-making outcomes, and 2. the extent to which existing PtDAs a) account for health literacy, and b) are tested in lower health literacy populations. Methods We reviewed literature for evidence relevant to these two aims. When high-quality systematic reviews existed, we summarized their evidence. When reviews were unavailable, we conducted our own systematic reviews. Results Aim 1: In an existing systematic review of PtDA trials, lower health literacy was associated with lower patient health knowledge (14 of 16 eligible studies). Fourteen studies reported practical design strategies to improve knowledge for lower health literacy patients. In our own systematic review, no studies reported on values clarity per se, but in 2 lower health literacy was related to higher decisional uncertainty and regret. Lower health literacy was associated with less desire for involvement in 3 studies, less question-asking in 2, and less patient-centered communication in 4 studies; its effects on other measures of patient involvement were mixed. Only one study assessed the effects of a health literacy intervention on outcomes; it showed that using video to improve the salience of health states reduced decisional uncertainty. Aim 2: In our review of 97 trials, only 3 PtDAs overtly addressed the needs of lower health literacy users. In 90% of trials, user health literacy and readability of the PtDA were not reported. However, increases in knowledge and informed choice were reported in those studies

  16. STS-85 Cmdr Brown addresses media during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-85 Commander Curtis L. Brown, Jr., addresses the news media at a briefing at Launch Pad 39A while the other members of the flight crew in the background prepare to field questions during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. They are (back row, from left): Pilot Kent V. Rominger; Payload Commander N. Jan Davis; Mission Specialist Stephen K. Robinson; Payload Specialist Bjarni V. Tryggvason; and Mission Specialist Robert L. Curbeam, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.

  17. How healthcare IT can address the nursing shortage.

    PubMed

    Krohn, Rick

    2006-01-01

    But if applied correctly, IT can play an important role in redefining the way nursing is conducted. It can do so by introducing flexible models of nursing education to increase the pool of qualified nursing professionals; automating and standardizing nursing workflows; eliminating paperwork; supporting patient care delivery models that address the needs of an older workforce; establishing point-of-care clinical decision support tools to improve patient safety; and making health, wellness, and patient education information available. If healthcare IT solutions are deployed in direct response to nursing's ills, particularly job dissatisfaction, the positive image of nursing can be restored, once again making it a career of choice. IT can further reverse the tide of nursing defections, which continually drain the healthcare industry of experienced and dedicated professionals. Finally, both individually and collectively, healthcare IT technologies can reorient nursing activity back towards its principal role of delivering quality patient care.

  18. Addressing Questions on Life in Terrestrial Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Hedlund, Brian P.; Li, Wen-Jun; Zhang, Chuanlun

    2013-09-01

    A binational research team met on the campus of Yunnan University in Kunming, China, to discuss recent progress and future plans to leverage binational support to address major questions on life in terrestrial geothermal systems. The symposium included about 90 faculty, postdocs, and students from China and about 30 faculty, postdocs, students, and high school teachers from the United States. The introductory session reviewed the progress of the Tengchong PIRE project funded by the U.S. National Science Foundation (NSF) Partnerships for International Research and Education (PIRE) program (OISE-0836450). It also introduced a new collaborative project funded as a Key Project of International Cooperation by the Chinese Ministry of Science and Technology (MOST, 2013DFA31980), which is the first project funded through a memorandum of understanding between NSF and MOST to promote China-U.S. collaboration.

  19. The case for addressing explosive weapons: conflict, violence and health.

    PubMed

    Rappert, Brian; Moyes, Richard; Lang, Iain

    2012-12-01

    In recent years, states and non-governmental organizations have expressed concern about the humanitarian consequences of the category of technologies labelled 'explosive weapons', particularly in relation to their use in populated areas. This article seeks to outline the magnitude of these consequences as well as what can be done to reduce harms. In particular, it makes a case for how health approaches could help prevent the harms associated with this category of weapons. Attention is given to the types of evidence and argument that might be required to characterize explosive weapons. An overarching aim is to consider how alternative ways of understanding weapons and violence can create new opportunities for addressing harms from conflict.

  20. Nanoparticle additives for multiphase systems: Synthesis, formulation and characterization

    NASA Astrophysics Data System (ADS)

    Kanniah, Vinod

    Study on nanoparticle additives in multiphase systems (liquid, polymer) are of immense interest in developing new product applications. Critical challenges for nanoparticle additives include their synthesis, formulation and characterization. These challenges are addressed in three application areas: nanofluids for engine lubrication, ultrathin nanocomposites for optical devices, and nanoparticle size distribution characterization. Nanoparticle additives in oligomer mixtures can be used to develop extended temperature range motor oils. A model system includes poly(alpha-olefin) based oligomers with a modest fraction of poly(dimethylsiloxane) oligomers along with graphite as nanoparticle additive. Partition coefficients of each oligomer are determined since the oligomer mixture phase separated at temperatures less than -15 °C. Also, the surface of graphite additive is quantitatively analyzed and modified via silanization for each oligomer. Thus, upon separation of the oligomer mixture, each functionalized graphite additive migrates to its preferred oligomers and forms a uniform dispersion. Similarly, nanoparticle additives in polymer matrices can be used to develop new low haze ultrathin film optical coatings. A model system included an acrylate monomer as the continuous phase with monodisperse or bidisperse mixtures of silica nanoparticles deposited on glass and polycarbonate substrates. Surface (root mean squared roughness, Wenzel's contact angle) and optical properties (haze) of these self assembled experimental surfaces were compared to simulated surface structures. Manipulating the size ratios of silica nanoparticle mixtures varied the average surface roughness and the height distributions, producing multimodal structures with different packing fractions. In both nanofluid and nanocomposite applications, nanoparticle additives tend to aggregate/agglomerate depending on various factors including the state of nanoparticles (powder, dispersion). A set of well

  1. Research and Technology, 1995

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report presents some of the challenging research and technology accomplished at NASA Ames Research Center during FY95. The accomplishments address almost all goals of NASA's four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Sciences, Human Exploration and Development of Space, and Mission to Planet Earth. The report's primary purpose is to inform stakeholders, customers, partners, colleagues, contractors, employees, and the American people in general about the scope and diversity of the research and technology activities. Additionally, the report will enable the reader to know how these goals are being addressed.

  2. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    The field of nanotechnology is rapidly expanding across disciplines as each new development is realized. New exciting technologies are being driven by advances in the application of nanotechnology; including biochemical, optical, and semiconductors research. This thesis will focus on the use of silver nanoparticles as optical labels on cells, methods of forming different small structures of silver nanoparticles, as well as the use of silver nanoparticles in the development of a photovoltaic cell. Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry and biotinylated antibodies targeting cell surface receptors were bound to the nanoparticle surface. The nanoparticle labels exhibited long-term stability under physiological conditions without aggregation or silver ion leaching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared to unlabeled cells. Dimers of silver nanoparticles have been fabricated by first immobilizing a monolayer of single silver nanoparticles onto poly(4-vinylpyridine) covered glass slides. The monolayer was then exposed to adenine, which has two amines which will bind to silver. The nanoparticle monolayer, now modified with adenine, is exposed to a second suspension of nanoparticles which will bind with the amine modified monolayer. Finally, a thin silica shell is formed about the structure via solgel chemistry to prevent dissolution or aggregation upon sonication/striping. Circular arrays of silver nanoparticels are developed using a

  3. Addressing Health Disparities through Multi-institutional, Multidisciplinary Collaboratories

    PubMed Central

    Fleming, Erik S.; Perkins, James; Easa, David; Conde, José G.; Baker, Richard S.; Southerland, William M.; Dottin, Robert; Benabe, Julio E.; Ofili, Elizabeth O.; Bond, Vincent C.; McClure, Shelia A.; Sayre, Michael H.; Beanan, Maureen J.; Norris, Keith C.

    2009-01-01

    The national research leadership has recently become aware of the tremendous potential of translational research as an approach to address health disparities. The Research Centers in Minority Institutions (RCMI) Translational Research Network (RTRN) is a research network that supports multi-institutional, multidisciplinary collaboration with a focus on key diseases and conditions for which disproportionately adverse racial and ethnic health disparities exist. The RTRN is designed to facilitate the movement of scientific advances across the translational research spectrum by providing researchers at different institutions with the infrastructure and tools necessary to collaborate on interdisciplinary and transdisciplinary research projects relating to specific health outcomes for which major racial/ethnic disparities exist. In the past, the difficulty of overcoming the restrictions imposed by time and space have made it difficult to carry out this type of large-scale, multilevel collaboration efficiently. To address this formidable challenge, the RTRN will deploy a translational research cluster system that uses “cyber workspaces” to bring researchers with similar interests together by using online collaboratory technology. These virtual meeting environments will provide a number of tools, including videoconferences (seminars, works in progress, meetings); project management tools (WebCT, Microsoft Share Point); and posting areas for projects, concepts, and other research and educational activities. This technology will help enhance access to resources across institutions with a common mission, minimize many of the logistical hurdles that impede intellectual exchange, streamline the planning and implementation of innovative interdisciplinary research, and assess the use of protocols and practices to assist researchers in interacting across and within cyber workspaces. PMID:18646341

  4. How is environmental conflict addressed by SIA?

    SciTech Connect

    Barrow, C.J.

    2010-09-15

    The fields of Environmental Conflict Management (ECM), Environmental Conflict Resolution (ECR), and Peace and Conflict Impact Assessment (PCIA) have become well established; however, as yet there has not been much use of Social Impact Assessment (SIA) to manage environmental conflicts. ECM, ECR and PCIA are mainly undertaken when problems are advanced or, more likely, have run their course (post-conflict). This paper examines how conflict is addressed by SIA and whether there is potential to develop it for more proactive assessment of conflicts (pre-conflict or while things develop). SIA has the potential to identify and clarify the cause(s) of environmental and natural resources conflicts, and could possibly enable some avoidance or early mitigation. A promising approach may be for 'conflict-aware' SIA to watch for critical conflict stages or thresholds and to monitor stakeholders. Effective conflict-aware SIA might also significantly contribute to efforts to achieve sustainable development.

  5. Applying evolutionary biology to address global challenges.

    PubMed

    Carroll, Scott P; Jørgensen, Peter Søgaard; Kinnison, Michael T; Bergstrom, Carl T; Denison, R Ford; Gluckman, Peter; Smith, Thomas B; Strauss, Sharon Y; Tabashnik, Bruce E

    2014-10-17

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development.

  6. Professional Culture and Climate: Addressing Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia

    2016-10-01

    Unconscious bias reflects expectations or stereotypes that influence our judgments of others (regardless of our own group). Everyone has unconscious biases. The end result of unconscious bias can be an accumulation of advantage or disadvantage that impacts the long term career success of individuals, depending on which biases they are subject to. In order to foster a professional culture and climate, being aware of these unconscious biases and mitigating against them is a first step. This is particularly important when judgements are needed, such as in cases for recruitment, choice of speakers for conferences, and even reviewing papers submitted for publication. This presentation will cover how unconscious bias manifests itself, what evidence exists to demonstrate it exists, and ways it can be addressed.

  7. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  8. Advancing efforts to address youth violence involvement.

    PubMed

    Weist, M D; Cooley-Quille, M

    2001-06-01

    Discusses the increased public attention on violence-related problems among youth and the concomitant increased diversity in research. Youth violence involvement is a complex construct that includes violence experienced in multiple settings (home, school, neighborhood) and in multiple forms (as victims, witnesses, perpetrators, and through family members, friends, and the media). Potential impacts of such violence involvement are considerable, including increased internalizing and externalizing behaviors among youth and future problems in school adjustment and life-course development. This introductory article reviews key dimensions of youth-related violence, describes an American Psychological Association Task Force (Division 12) developed to advance relevant research, and presents examples of national resources and efforts that attempt to address this critical public health issue.

  9. Presidential address, 2001. Advice to young surgeons.

    PubMed

    MacFarlane, John K

    2002-04-01

    In his 2001 presidential address to the Canadian Association of General Surgeons, the author offers advice to young surgeons, based on his lifetime experience as a surgical educator, researcher and practitioner. He offers the following samples of wisdom for young surgeons: they should be prepared for a lifetime of learning and be willing and able to adapt to new advances; they should listen to their patients as they describe their presenting complaints and not be tempted to interrupt; they should take time in an emergency situation and remember that split-second decisions can affect the patient for a lifetime; they should be willing to take advice from fellow professionals; they should take time to maintain a quality family life and take adequate time away from the workplace; they should be active be a role model in their community; and, finally, they should get involved and adopt an advocacy role in their profession.

  10. Presidential address, 2001. Advice to young surgeons

    PubMed Central

    MacFarlane, John K.

    2002-01-01

    In his 2001 presidential address to the Canadian Association of General Surgeons, the author offers advice to young surgeons, based on his lifetime experience as a surgical educator, researcher and practitioner. He offers the following samples of wisdom for young surgeons: they should be prepared for a lifetime of learning and be willing and able to adapt to new advances; they should listen to their patients as they describe their presenting complaints and not be tempted to interrupt; they should take time in an emergency situation and remember that split-second decisions can affect the patient for a lifetime; they should be willing to take advice from fellow professionals; they should take time to maintain a quality family life and take adequate time away from the workplace; they should be active be a role model in their community; and, finally, they should get involved and adopt an advocacy role in their profession. PMID:11939654

  11. SkBQ - prooxidant addressed to mitochondria.

    PubMed

    Vyssokikh, M Y; Chernyak, B V; Domnina, L V; Esipov, D S; Ivanova, O Y; Korshunova, G A; Symonyan, R A; Skulachev, M V; Zinevich, T V; Skulachev, V P

    2013-12-01

    Oxidative stress and mitochondrial dysfunction are the key links in the chain of development of pathologies associated with the violation of cellular energy metabolism. Development of mitochondria-addressed compounds highly specific for chemical processes is one of the most promising ways to develop approaches to the treatment of inherited and age-related diseases with mitochondrial etiology. Correlation of structure and chemical activity of the test compounds from a class of lipophilic cations revealed the key role of substituents in the aromatic ring of 1,4-benzoquinones in the manifestation of high antioxidant properties. In this work, it is shown that a synthesized benzoquinone derivative conjugated in position 6 with membrane-penetrating cation of decyltriphenylphosphonium and with substituents at position 2, 3, and 5 (SkBQ) has much lower antioxidant and significantly higher prooxidant activity in comparison with similar derivatives of plasto- and toluquinone SkQ1 and SkQT1 in experiments on isolated mitochondria. At the same time, SkBQ, like SkQ1 and SkQT1, can be reduced by the respiratory chain in the center i of complex III and decrease the mitochondrial membrane potential. In cell cultures of human fibroblasts, it was revealed that SkBQ does not protect cells from apoptosis induced by hydrogen peroxide. Under the same conditions, SkQ1 and SkQT1 exhibit a powerful protective effect. Thus, SkBQ can be seen as a mitochondria-addressed prooxidant. The possibility of using SkBQ as an anticancer drug for the treatment of cancers such as prostate cancer whose cells are sensitive to mitochondrial reactive oxygen species is discussed.

  12. Integrated optical addressing of an ion qubit

    NASA Astrophysics Data System (ADS)

    Mehta, Karan K.; Bruzewicz, Colin D.; McConnell, Robert; Ram, Rajeev J.; Sage, Jeremy M.; Chiaverini, John

    2016-12-01

    The long coherence times and strong Coulomb interactions afforded by trapped ion qubits have enabled realizations of the necessary primitives for quantum information processing and the highest-fidelity quantum operations in any qubit to date. Although light delivery to each individual ion in a system is essential for general quantum manipulations and readout, experiments so far have employed optical systems that are cumbersome to scale to even a few tens of qubits. Here we demonstrate lithographically defined nanophotonic waveguide devices for light routing and ion addressing that are fully integrated within a surface-electrode ion trap chip. Ion qubits are addressed at multiple locations via focusing grating couplers emitting through openings in the trap electrodes to ions trapped 50 μm above the chip; using this light, we perform quantum coherent operations on the optical qubit transition in individual 88Sr+ ions. The grating focuses the beam to a diffraction-limited spot near the ion position with 2 μm 1/e2 radius along the trap axis, and we measure crosstalk errors between 10-2 and 4 × 10-4 at distances 7.5-15 μm from the beam centre. Owing to the scalability of the planar fabrication technique employed, together with the tight focusing and stable alignment afforded by the integration of the optics within the trap chip, this approach presents a path to creating the optical systems required for large-scale trapped-ion quantum information processing.

  13. Addressing the Tension Between Strong Perimeter Control an Usability

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.; Kolano, Paul Z.; Keller, Chris

    2006-01-01

    This paper describes a strong perimeter control system for a general purpose processing system, with the perimeter control system taking significant steps to address usability issues, thus mitigating the tension between strong perimeter protection and usability. A secure front end enforces two-factor authentication for all interactive access to an enclave that contains a large supercomputer and various associated systems, with each requiring their own authentication. Usability is addressed through a design in which the user has to perform two-factor authentication at the secure front end in order to gain access to the enclave, while an agent transparently performs public key authentication as needed to authenticate to specific systems within the enclave. The paper then describes a proxy system that allows users to transfer files into the enclave under script control, when the user is not present to perform two-factor authentication. This uses a pre-authorization approach based on public key technology, which is still strongly tied to both two-factor authentication and strict control over where files can be transferred on the target system. Finally the paper describes an approach to support network applications and systems such as grids or parallel file transfer protocols that require the use of many ports through the perimeter. The paper describes a least privilege approach that dynamically opens ports on a host-specific, if-authorized, as-needed, just-in-time basis.

  14. Electrochemical Nanoparticle Sizing Via Nano-Impacts: How Large a Nanoparticle Can be Measured?

    PubMed Central

    Bartlett, Thomas R; Sokolov, Stanislav V; Compton, Richard G

    2015-01-01

    The field of nanoparticle (NP) sizing encompasses a wide array of techniques, with electron microscopy and dynamic light scattering (DLS) having become the established methods for NP quantification; however, these techniques are not always applicable. A new and rapidly developing method that addresses the limitations of these techniques is the electrochemical detection of NPs in solution. The ‘nano-impacts’ technique is an excellent and qualitative in situ method for nanoparticle characterization. Two complementary studies on silver and silver bromide nanoparticles (NPs) were used to assess the large radius limit of the nano-impact method for NP sizing. Noting that by definition a NP cannot be larger than 100 nm in diameter, we have shown that the method quantitatively sizes at the largest limit, the lower limit having been previously reported as ∼6 nm.1 PMID:26491639

  15. Nanoparticles and direct immunosuppression

    PubMed Central

    Ngobili, Terrika A

    2016-01-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  16. Magnetic nanoparticles for biomedical NMR-based diagnostics

    PubMed Central

    Shao, Huilin; Yoon, Tae-Jong; Liong, Monty

    2010-01-01

    Summary Rapid and accurate measurements of protein biomarkers, pathogens and cells in biological samples could provide useful information for early disease diagnosis, treatment monitoring, and design of personalized medicine. In general, biological samples have only negligible magnetic susceptibility. Thus, using magnetic nanoparticles for biosensing not only enhances sensitivity but also effectively reduces sample preparation needs. This review focuses on the use of magnetic nanoparticles for in vitro detection of biomolecules and cells based on magnetic resonance effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits magnetic nanoparticles as proximity sensors, which modulate the spin–spin relaxation time of water molecules surrounding molecularly-targeted nanoparticles. By developing more effective magnetic nanoparticle biosensors, DMR detection limits for various target moieties have been considerably improved over the last few years. Already, a library of magnetic nanoparticles has been developed, in which a wide range of targets, including DNA/mRNA, proteins, small molecules/drugs, bacteria, and tumor cells, have been quantified. More recently, the capabilities of DMR technology have been further advanced with new developments such as miniaturized nuclear magnetic resonance detectors, better magnetic nanoparticles and novel conjugational methods. These developments have enabled parallel and sensitive measurements to be made from small volume samples. Thus, the DMR technology is a highly attractive platform for portable, low-cost, and efficient biomolecular detection within a biomedical setting. PMID:21977404

  17. Addressing hypertext design and conversion issues

    NASA Technical Reports Server (NTRS)

    Glusko, Robert J.

    1990-01-01

    Hypertext is a network of information units connected by relational links. A hypertext system is a configuration of hardware and software that presents a hypertext to users and allows them to manage and access the information that it contains. Hypertext is also a user interface concept that closely supports the ways that people use printed information. Hypertext concepts encourage modularity and the elimination of redundancy in data bases because information can be stored only once but viewed in any appropriate context. Hypertext is such a hot idea because it is an enabling technology in that workstations and personal computers finally provide enough local processing power for hypertext user interfaces.

  18. Aptamer-Functionalized Nanoparticles for Medical Applications: Challenges and Opportunities

    PubMed Central

    Xiao, Zeyu; Farokhzad, Omid C.

    2012-01-01

    With advances in aptamer selection technologies and nanomedicine, aptamer-functionalized nanoparticles are being explored as promising platforms for targeted therapeutic and diagnostic applications. In this Perspective, we outline recent progress in this field, as exemplified by Bamrungsap et al. in this issue of ACS Nano. Furthermore, we highlight the challenges and opportunities in translating current proof-of-concept designs into in vivo applications, with emphasis on the intrinsic properties of aptamers and their interplay with nanoparticles. With continuous efforts, we expect aptamer-functionalized nanoparticles to advance from preclinical into clinical development for further evaluation. PMID:22574989

  19. Immunogenicity and ecotoxicity of engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa Ann

    The growing use of nanoscale materials in commercially available products and therapeutics has created an urgent need to determine the toxicity of these materials so that they may be designed and employed safely. As nanoparticles have unique physical and chemical properties, the challenges in determining their physiological and environmental impact have been numerous. It is, therefore, the goal of my thesis work to employ sensitive analytical tools to fundamentally understand the how nanoparticles interact with immunologically and ecologically relevant models. My project approaches nanotoxicity studies starting with a relevant model system exposed to well-characterized nanoparticles to (1) determine if cells/organisms survive exposure using traditional toxicological assays and, if the majority survives exposure, (2) use sensitive analytical tools to determine if there are changes to critical cell/organism function. If perturbation of function is detected, (3) the mechanism or cause of changes in cell function should be determined, including assessment of nanoparticle uptake and localization. Once a mechanism of interaction is determined, this process could begin again with a modified particle that may address the toxic response. Chapter Two describes the impact of metal oxide (TiO2 and SiO2) nanoparticles on mast cells, critical immune system cells, and utilizes the sensitive technique of carbon-fiber microelectrode amperometry (CFMA) to monitor changes in the important mast cell function of exocytosis. Chapter Three expands upon Chapter Two and examines in more detail the mechanism by which TiO2 nanoparticles impact exocytotic cell function, completing the process nanotoxicity described above. From these studies, it was determined that, while nanoparticles do not decrease the viability of mast cells, there are significant changes to exocytosis upon nanoparticle exposure, and in the case of TiO2, these changes in exocytosis are correlated to nanoparticle

  20. [Titanium dioxide nanoparticles: occupational exposure limits].

    PubMed

    Swidwińska-Gajewska, Anna Maria; Czerczak, Sławomir

    2014-01-01

    Titanium dioxide (TiO2) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO2 nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titanium dioxide. Due to the absence of separate fraction of nanoobjects and appropriate measurement methods the maximum admissible concentrations (MAC) for particles < 100 nm and nano-TiO2 cannot be established. In the world there are 2 proposals of occupational exposure levels for titanium dioxide nanoparticles: 0.3 mg/m3, proposed by the National Institute for Occupational Safety and Health (NIOSH), and 0.6 mg/m3, proposed by experts of the New Energy and Industrial Technology Development Organization (NEDO). The authors of this article, based on the available data and existing methods for hygiene standards binding in Poland, concluded that the MAC value of 0.3 mg/m3 for nanoparticles TiO2 in the workplace air can be accepted.