Sample records for nanoparticle-based drug delivery

  1. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders.

    PubMed

    Mittal, Rahul; Patel, Amit P; Jhaveri, Vasanti M; Kay, Sae-In S; Debs, Luca H; Parrish, James M; Pan, Debbie R; Nguyen, Desiree; Mittal, Jeenu; Jayant, Rahul Dev

    2018-03-01

    The emergent field of nanoparticles has presented a wealth of opportunities for improving the treatment of human diseases. Recent advances have allowed for promising developments in drug delivery, diagnostics, and therapeutics. Modified delivery systems allow improved drug delivery over traditional pH, microbe, or receptor dependent models, while antibody association allows for more advanced imaging modalities. Nanoparticles have potential clinical application in the field of gastroenterology as they offer several advantages compared to the conventional treatment systems including target drug delivery, enhanced treatment efficacy, and reduced side effects. Areas covered: The aim of this review article is to summarize the recent advancements in developing nanoparticle technologies to treat gastrointestinal diseases. We have covered the application of nanoparticles in various gastrointestinal disorders including inflammatory bowel disease and colorectal cancer. We also have discussed how the gut microbiota affects the nanoparticle based drug delivery in the gastrointestinal tract. Expert opinion: Nanoparticles based drug delivery offers a great platform for targeted drug delivery for gastrointestinal disorders. However, it is influenced by the presence of microbiota, drug interaction with nanoparticles, and cytotoxicity of nanoparticles. With the advancements in nanoparticle technology, it may be possible to overcome these barriers leading to efficient drug delivery for gastrointestinal disorders based on nanoparticle platform.

  2. Silk Fibroin-Based Nanoparticles for Drug Delivery

    PubMed Central

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  3. Nanoparticle-based drug delivery to the vagina: a review

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2014-01-01

    Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted. PMID:24830303

  4. Magnetic nanoparticle-based drug delivery for cancer therapy.

    PubMed

    Tietze, Rainer; Zaloga, Jan; Unterweger, Harald; Lyer, Stefan; Friedrich, Ralf P; Janko, Christina; Pöttler, Marina; Dürr, Stephan; Alexiou, Christoph

    2015-12-18

    Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Introduction for Design of Nanoparticle Based Drug Delivery Systems.

    PubMed

    Edgar, Jun Yan Chan; Wang, Hui

    2017-01-01

    Conventional drug delivery systems contain numerous limitations such as limited targeting, low therapeutic indices, poor water solubility, and the induction of drug resistances. In order to overcome the drawbacks of conventional pathway of drug delivery, nanoparticle delivery systems are therefore designed and used as the drug carriers. Nanoparticle based drug delivery systems have been rapidly growing and are being applied to various sections of biomedicine. Drug nanocarriers based on dendrimers, liposomes, self-assembling peptides, watersoluble polymers, and block copolymer micelles are the most extensively studied types of drug delivery systems and some of them are being used in clinical therapy. In particular for cancer therapy, antineoplastic drugs are taking advantage of nanoparticulate drug carriers to improve the cure efficacy. Nanoparticle based drug carriers are capable of improving the therapeutic effectiveness of the drugs by using active targeting for the site-specific delivery, passive targeting mechanisms such as enhanced permeability and retention (EPR), de novo synthesis and uptake of low density liposome in cancer cells or by being water-soluble to improve the suboptimal pharmacokinetics in limited water-soluble delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy

    DTIC Science & Technology

    2014-02-01

    Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0167 5c... Nanotechnologies in Living Systems”, Moscow Region, Russia, September, 2011. 3. “Ionic nanogels for drug delivery in cancer ”. NanoDDS’12; Atlantic City, New...AD Award Number: W81XWH-11-1-0167 TITLE: Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast

  7. A sight on protein-based nanoparticles as drug/gene delivery systems.

    PubMed

    Salatin, Sara; Jelvehgari, Mitra; Maleki-Dizaj, Solmaz; Adibkia, Khosro

    2015-01-01

    Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.

  8. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  9. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    NASA Astrophysics Data System (ADS)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  10. Recent progress on nanoparticle-based drug delivery systems for cancer therapy

    PubMed Central

    Xin, Yanru; Yin, Mingming; Zhao, Liyuan; Meng, Fanling; Luo, Liang

    2017-01-01

    The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years. PMID:28884040

  11. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    PubMed Central

    Nitta, Sachiko Kaihara; Numata, Keiji

    2013-01-01

    There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed. PMID:23344060

  12. Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy

    DTIC Science & Technology

    2014-02-01

    Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast Cancer Therapy” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0166 5c... Nanotechnologies in Living Systems”, Moscow Region, Russia, September, 2011. 3. “Ionic nanogels for drug delivery in cancer ”. NanoDDS’12; Atlantic City, New...AD Award Number: W81XWH-11-1-0166 TITLE: Mechanism-Based Enhanced Delivery of Drug-Loaded Targeted Nanoparticles for Breast

  13. Recent advances in inorganic nanoparticle-based drug delivery systems.

    PubMed

    Murakami, Tatsuya; Tsuchida, Kunihiro

    2008-02-01

    Drug delivery systems, designed to enhance drug efficacy and reduce their adverse effects, have evolved accompanied by the development of novel materials. Nanotechnology is an emerging scientific area that has created a variety of intriguing inorganic nanoparticles. In this review, we focus on the feasibility of inorganic nanoparticles, including iron oxide nanoparticles, gold nanoparticles, fullerenes and carbon nanohorns, as drug carriers, and summarize recent advances in this field.

  14. Photo-synthesis of protein-based nanoparticles and the application in drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jinbing; Wang, Hongyang; Cao, Yi

    Recently, protein-based nanoparticles as drug delivery systems have attracted great interests due to the excellent behavior of high biocompatibility and biodegradability, and low toxicity. However, the synthesis techniques are generally costly, chemical reagents introduced, and especially present difficulties in producing homogeneous monodispersed nanoparticles. Here, we introduce a novel physical method to synthesize protein nanoparticles which can be accomplished under physiological condition only through ultraviolet (UV) illumination. By accurately adjusting the intensity and illumination time of UV light, disulfide bonds in proteins can be selectively reduced and the subsequent self-assembly process can be well controlled. Importantly, the co-assembly can also bemore » dominated when the proteins mixed with either anti-cancer drugs, siRNA, or active targeting molecules. Both in vitro and in vivo experiments indicate that our synthesized protein–drug nanoparticles (drug-loading content and encapsulation efficiency being ca. 8.2% and 70%, respectively) not only possess the capability of traditional drug delivery systems (DDS), but also have a greater drug delivery efficiency to the tumor sites and a better inhibition of tumor growth (only 35% of volume comparing to the natural growing state), indicating it being a novel drug delivery system in tumor therapy.« less

  15. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  16. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    PubMed

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  17. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  18. Protein nanoparticles as drug delivery carriers for cancer therapy.

    PubMed

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  19. Recent trends in drug delivery system using protein nanoparticles.

    PubMed

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  20. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.

    PubMed

    Ju, Zhigang; Sun, Wei

    2017-11-01

    With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.

  1. Diatomite silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  2. Diatomite silica nanoparticles for drug delivery.

    PubMed

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. 87.85.J81.05.Rm; 61.46. + w.

  3. Light-sensitive Lipid-based Nanoparticles for Drug Delivery: Design Principles and Future Considerations for Biological Applications

    PubMed Central

    Yavlovich, Amichai; Smith, Brandon; Gupta, Kshitij; Blumenthal, Robert; Puri, Anu

    2011-01-01

    Radiation-based therapies aided by nanoparticles have been developed since decades, and can be primarily categorized into two main platforms. First, delivery of payload of photo-reactive drugs (photosensitizers) using the conventional nanoparticles, and second, design and development of photo-triggerable nanoparticles (primarily liposomes) to attain light-assisted on-demand drug delivery. The main focus of this review is to provide an update of the history, current status and future applications of photo-triggerable lipid-based nanoparticles (light-sensitive liposomes). We will begin with a brief overview on the applications of liposomes for delivery of photosensitizers, including the choice of photosensitizers for photodynamic therapy, as well as the currently available light sources (lasers) used for these applications. The main segment of this review will encompass the details on the strategies to develop photo-triggerable designer liposomes for their drug delivery function. The principles underlying the assembly of photoreactive lipids into nanoparticles (liposomes) and photo-triggering mechanisms will be presented. We will also discuss factors that limit the applications of these liposomes for in vivo triggered drug delivery and emerging concepts that may lead to the biologically viable photo-activation strategies. We will conclude with our view point on the future perspectives of light-sensitive liposomes in the clinic. PMID:20939770

  4. Diatomite silica nanoparticles for drug delivery

    PubMed Central

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. PACS 87.85.J81.05.Rm; 61.46. + w PMID:25024689

  5. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance.

    PubMed

    Liu, Juan; Wei, Tuo; Zhao, Jing; Huang, Yuanyu; Deng, Hua; Kumar, Anil; Wang, Chenxuan; Liang, Zicai; Ma, Xiaowei; Liang, Xing-Jie

    2016-06-01

    By its unique advantages over traditional medicine, nanomedicine has offered new strategies for cancer treatment. In particular, the development of drug delivery strategies has focused on nanoscale particles to improve bioavailability. However, many of these nanoparticles are unable to overcome tumor resistance to chemotherapeutic agents. Recently, new opportunities for drug delivery have been provided by oligonucleotides that can self-assemble into three-dimensional nanostructures. In this work, we have designed and developed functional DNA nanostructures to deliver the chemotherapy drug doxorubicin (Dox) to resistant cancer cells. These nanostructures have two components. The first component is a DNA aptamer, which forms a dimeric G-quadruplex nanostructure to target cancer cells by binding with nucleolin. The second component is double-stranded DNA (dsDNA), which is rich in -GC- base pairs that can be applied for Dox delivery. We demonstrated that Dox was able to efficiently intercalate into dsDNA and this intercalation did not affect the aptamer's three-dimensional structure. In addition, the Aptamer-dsDNA (ApS) nanoparticle showed good stability and protected the dsDNA from degradation in bovine serum. More importantly, the ApS&Dox nanoparticle efficiently reversed the resistance of human breast cancer cells to Dox. The mechanism circumventing doxorubicin resistance by ApS&Dox nanoparticles may be predominantly by cell cycle arrest in S phase, effectively increased cell uptake and decreased cell efflux of doxorubicin. Furthermore, the ApS&Dox nanoparticles could effectively inhibit tumor growth, while less cardiotoxicity was observed. Overall, this functional DNA nanostructure provides new insights into the design of nanocarriers to overcome multidrug resistance through targeted drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The importance of nanoparticle shape in cancer drug delivery.

    PubMed

    Truong, Nghia P; Whittaker, Michael R; Mak, Catherine W; Davis, Thomas P

    2015-01-01

    Nanoparticles have been successfully used for cancer drug delivery since 1995. In the design of commercial nanoparticles, size and surface characteristics have been exploited to achieve efficacious delivery. However, the design of optimized drug delivery platforms for efficient delivery to disease sites with minimal off-target effects remains a major research goal. One crucial element of nanoparticle design influencing both pharmacokinetics and cell uptake is nanoparticle morphology (both size and shape). In this succinct review, the authors collate the recent literature to assess the current state of understanding of the influence of nanoparticle shape on the effectiveness of drug delivery with a special emphasis on cancer therapy. This review draws on studies that have focused on the role of nonspherical nanoparticles used for cancer drug delivery. In particular, the authors summarize the influence of nanoparticle shape on biocirculation, biodistribution, cellular uptake and overall drug efficacy. By comparing spherical and nonspherical nanoparticles, they establish some general design principles to serve as guidelines for developing the next generation of nanocarriers for drug delivery. Pioneering studies on nanoparticles show that nonspherical shapes show great promise as cancer drug delivery vectors. Filamentous or worm-like micelles together with other rare morphologies such as needles or disks may become the norm for next-generation drug carriers, though at present, traditional spherical micelles remain the dominant shape of nanocarriers described in the literature due to synthesis and testing difficulties. The few reports that do exist describing nonspherical nanoparticles show a number of favorable properties that should encourage more efforts to develop facile and versatile nanoparticle synthesis methodologies with the flexibility to create different shapes, tunable sizes and adaptable surface chemistries. In addition, the authors note that there is a

  7. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery

    PubMed Central

    Gao, Weiwei; Zhang, Yue; Zhang, Qiangzhe; Zhang, Liangfang

    2016-01-01

    Nanoparticles have offered a unique set of properties for drug delivery including high drug loading capacity, combinatorial delivery, controlled and sustained drug release, prolonged stability and lifetime, and targeted delivery. To further enhance therapeutic index, especially for localized application, nanoparticles have been increasingly combined with hydrogels to form a hybrid biomaterial system for controlled drug delivery. Herein, we review recent progresses in engineering such nanoparticle-hydrogel hybrid system (namely ‘NP-gel’) with a particular focus on its application for localized drug delivery. Specifically, we highlight four research areas where NP-gel has shown great promises, including (1) passively controlled drug release, (2) stimuli-responsive drug delivery, (3) site-specific drug delivery, and (4) detoxification. Overall, integrating therapeutic nanoparticles with hydrogel technologies creates a unique and robust hybrid biomaterial system that enables effective localized drug delivery. PMID:26951462

  8. Review: nanoparticles in delivery of cardiovascular drugs.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Qureshi, Faiza

    2007-10-01

    Everything in nature is built upward from the atomic level to define limits and structures to everything. Nanomedicines marked the field of medicine from nanobiotechnology, biological micro-electromechanical systems, microfluidics, biosensors, drug delivery, microarrays to tissue microengineering. Since then nanoparticles has overcome many challenges from blood brain barrier to targeting tumors. Where solid biodegradable nanoparticles were a step up liposome, targeting nanoparticles opened a whole new field for drug delivery. In this article, we attempt to discuss how the pioneered technique is serving in the drug delivery to cardiovascular system and how with the manipulation of their properties, nanoparticles can be made to fulfill desired function. Also how nanocarriers are improving molecular imaging to help improve diagnosis and treatment of cardiovascular disease is focused in this article.

  9. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives.

    PubMed

    Gholipourmalekabadi, Mazaher; Mobaraki, Mohammadmahdi; Ghaffari, Maryam; Zarebkohan, Amir; Omrani, Vahid Fallah; Urbanska, Aleksandra M; Seifalian, Alexander

    2017-01-01

    Drug delivery systems are effective and attractive methods which allow therapeutic substances to be introduced into the body more effectively and safe by having tunable delivery rate and release target site. Gold nanoparticles (AuNPs) have a myriad of favorable physical, chemical, optical, thermal and biological properties that make them highly suitable candidates as non-toxic carriers for drug and gene delivery. The surface modifications of AuNPs profoundly improve their circulation, minimize aggregation rates, enhance attachment to therapeutic molecules and target agents due to their nano range size which further increases their ability to cross cell membranes and reduce overall cytotoxicity. This comprehensive article reviews the applications of the AuNPs in drug delivery systems along with their corresponding surface modifications. The highlighting results obtained from the preclinical trial are promising and next five years have huge possibility move to the clinical setting. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Calcium carbonate nanoparticles as cancer drug delivery system.

    PubMed

    Maleki Dizaj, Solmaz; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro; Lotfipour, Farzaneh

    2015-01-01

    Calcium carbonate (CaCO3) has broad biomedical utilizations owing to its availability, low cost, safety, biocompatibility, pH-sensitivity and slow biodegradability. Recently, there has been widespread interest in their application as drug delivery systems for different groups of drugs. Among them, CaCO3 nanoparticles have exhibited promising potential as drug carriers targeting cancer tissues and cells. The pH-dependent properties, alongside the potential to be functionalized with targeting agents give them the unique property that can be used in targeted delivery systems for anticancer drugs. Also, due to the slow degradation of CaCO3 matrices, these nanoparticles can be used as sustained release systems to retain drugs in cancer tissues for longer times after administration. Development of drug delivery carriers using CaCO3 nanoparticles has been reviewed. The current state of CaCO3 nanoparticles as cancer drug delivery systems with focus on their special properties like pH-sensitivity and biodegradability has also been evaluated. According to our review, CaCO3 nanoparticles, owing to their special characteristics, will have a potential role in safe and efficient cancer treatment in future.

  11. Magnetically responsive nanoparticles for drug delivery applications using low magnetic field strengths.

    PubMed

    McGill, Shayna L; Cuylear, Carla L; Adolphi, Natalie L; Osiński, Marek; Smyth, Hugh D C

    2009-03-01

    The purpose of this study is to investigate the potential of magnetic nanoparticles for enhancing drug delivery using a low oscillating magnetic field (OMF) strength. We investigated the ability of magnetic nanoparticles to cause disruption of a viscous biopolymer barrier to drug delivery and the potential to induce triggered release of drug conjugated to the surfaces of these particles. Various magnetic nanoparticles were screened for thermal response under a 295-kHz OMF with an amplitude of 3.1 kA/m. Based on thermal activity of particles screened, we selected the nanoparticles that displayed desired characteristics for evaluation in a simplified model of an extracellular barrier to drug delivery, using lambda DNA/HindIII. Results indicate that nanoparticles could be used to induce DNA breakage to enhance local diffusion of drugs, despite low temperatures of heating. Additional studies showed increased diffusion of quantum dots in this model by single-particle tracking methods. Bimane was conjugated to the surface of magnetic nanoparticles. Fluorescence and transmission electron microscope images of the conjugated nanoparticles indicated little change in the overall appearance of the nanoparticles. A release study showed greater drug release using OMF, while maintaining low bulk heating of the samples (T = 30 degrees C). This study indicates that lower magnetic field strengths may be successfully utilized for drug delivery applications as a method for drug delivery transport enhancement and drug release switches.

  12. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery

    PubMed Central

    An, Fei-Fei; Zhang, Xiao-Hong

    2017-01-01

    Biosafety is the primary concern in clinical translation of nanomedicine. As an intrinsic ingredient of human blood without immunogenicity and encouraged by its successful clinical application in Abraxane, albumin has been regarded as a promising material to produce nanoparticles for bioimaging and drug delivery. The strategies for synthesizing albumin-based nanoparticles could be generally categorized into five classes: template, nanocarrier, scaffold, stabilizer and albumin-polymer conjugate. This review introduces approaches utilizing albumin in the preparation of nanoparticles and thereby provides scientists with knowledge of goal-driven design on albumin-based nanomedicine. PMID:29109768

  13. Nanoparticles and nanofibers for topical drug delivery

    PubMed Central

    Goyal, Ritu; Macri, Lauren K.; Kaplan, Hilton M.; Kohn, Joachim

    2016-01-01

    This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has—and will continue to have — a profound impact on both clinical outcomes and the development of new products. PMID:26518723

  14. Drug delivery with topically applied nanoparticles: science fiction or reality.

    PubMed

    Lademann, J; Richter, H; Meinke, M C; Lange-Asschenfeldt, B; Antoniou, C; Mak, W C; Renneberg, R; Sterry, W; Patzelt, A

    2013-01-01

    The efficacy of topically applied drugs is determined by their action mechanism and their potential capacity of passing the skin barrier. Nanoparticles are assumed to be efficient carrier systems for drug delivery through the skin barrier. For flexible nanoparticles like liposomes, this effect has been well demonstrated. The penetration properties of solid nanoparticles are currently under intensive investigation. The crucial advantage of nanoparticles over non-particulate substances is their capability to penetrate deeply into the hair follicles where they can be stored for several days. There is no evidence, yet, that solid particles ≥40 nm are capable of passing through the healthy skin barrier. Therefore and in spite of the long-standing research efforts in this field, commercially available solid nanoparticle-based products for drug delivery through the healthy skin are still missing. Nevertheless, the prospects for the clinical use of nanoparticles in drug delivery are tremendous. They can be designed as transport systems delivering drugs efficiently into the hair follicles in the vicinity of specific target structures. Once deposited at these structures, specific signals might trigger the release of the drugs and exert their effects on the target cells. In this article, examples of such triggered drug release are presented. © 2013 S. Karger AG, Basel.

  15. Recent advancement of gelatin nanoparticles in drug and vaccine delivery.

    PubMed

    Sahoo, Nityananda; Sahoo, Ranjan Ku; Biswas, Nikhil; Guha, Arijit; Kuotsu, Ketousetuo

    2015-11-01

    Novel drug delivery system using nanoscale materials with a broad spectrum of applications provides a new therapeutic foundation for technological integration and innovation. Nanoparticles are suitable drug carrier for various routes of administration as well as rapid recognition by the immune system. Gelatin, the biological macromolecule is a versatile drug/vaccine delivery carrier in pharmaceutical field due to its biodegradable, biocompatible, non-antigenicity and low cost with easy availability. The surface of gelatin nanoparticles can be modified with site-specific ligands, cationized with amine derivatives or, coated with polyethyl glycols to achieve targeted and sustained release drug delivery. Compared to other colloidal carriers, gelatin nanoparticles are better stable in biological fluids to provide the desired controlled and sustained release of entrapped drug molecules. The current review highlights the different formulation aspects of gelatin nanoparticles which affect the particle characteristics like zeta potential, polydispersity index, entrapment efficacy and drug release properties. It has also given emphasis on the major applications of gelatin nanoparticles in drug and vaccine delivery, gene delivery to target tissues and nutraceutical delivery for improving the poor bioavailabity of bioactive phytonutrients. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Micelles and Nanoparticles for Ultrasonic Drug and Gene Delivery

    PubMed Central

    Husseini, Ghaleb A.; Pitt, William G.

    2008-01-01

    Drug delivery research employing micelles and nanoparticles has expanded in recent years. Of particular interest is the use of these nanovehicles that deliver high concentrations of cytotoxic drugs to diseased tissues selectively, thus reducing the agent’s side effects on the rest of the body. Ultrasound, traditionally used in diagnostic medicine, is finding a place in drug delivery in connection with these nanoparticles. In addition to their non-invasive nature and the fact that they can be focused on targeted tissues, acoustic waves have been credited with releasing pharmacological agents from nanocarriers, as well as rendering cell membranes more permeable. In this article, we summarize new technologies that combine the use of nanoparticles with acoustic power both in drug and gene delivery. Ultrasonic drug delivery from micelles usually employs polyether block copolymers, and has been found effective in vivo for treating tumors. Ultrasound releases drug from micelles, most probably via shear stress and shock waves from collapse of cavitation bubbles. Liquid emulsions and solid nanoparticles are used with ultrasound to deliver genes in vitro and in vivo. The small packaging allows nanoparticles to extravasate into tumor tissues. Ultrasonic drug and gene delivery from nano-carriers has tremendous potential because of the wide variety of drugs and genes that could be delivered to targeted tissues by fairly non-invasive means. PMID:18486269

  17. Lipid nanoparticles as drug/gene delivery systems to the retina.

    PubMed

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  18. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles.

    PubMed

    Zununi Vahed, Sepideh; Fathi, Nazanin; Samiei, Mohammad; Maleki Dizaj, Solmaz; Sharifi, Simin

    2018-06-21

    Based on exceptional advantages of aptamers, increasing attention has been presented in the utilize of them as targeted ligands for cancer drug delivery. Recently, the progress of aptamer- targeted nanoparticles has presented new therapeutic systems for several types of cancer with decreased toxicity and improved efficacy. We highlight some of the promising formulations of aptamer-conjugated polymeric nanoparticles for specific targeted drug delivery to cancer cells. This review paper focuses on the current progresses in the use of the novel strategies to aptamer-targeted drug delivery for chemotherapy. An extensive literature review was performed using internet database, mainly PubMed based on MeSH keywords. The searches included full-text publications written in English without any limitation in date. The abstracts, reviews, books as well as studies without obvious relating of aptamers as targeted ligands for cancer drug delivery were excluded from the study. The reviewed literature revealed that aptamers with ability to modify and conjugate to various molecules can be used as targeted cancer therapy agents. However, development of aptamers unique to each individual's tumor to the development of personalized medicine seems to be needed.

  19. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  20. Nanobiotechnology-based drug delivery in brain targeting.

    PubMed

    Dinda, Subas C; Pattnaik, Gurudutta

    2013-01-01

    Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity

  1. Principles of nanoparticle design for overcoming biological barriers to drug delivery

    PubMed Central

    Blanco, Elvin; Shen, Haifa; Ferrari, Mauro

    2016-01-01

    Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery. PMID:26348965

  2. Magnetic core-shell nanoparticles for drug delivery by nebulization.

    PubMed

    Verma, Navin Kumar; Crosbie-Staunton, Kieran; Satti, Amro; Gallagher, Shane; Ryan, Katie B; Doody, Timothy; McAtamney, Colm; MacLoughlin, Ronan; Galvin, Paul; Burke, Conor S; Volkov, Yuri; Gun'ko, Yurii K

    2013-01-23

    Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery

  3. Magnetic core-shell nanoparticles for drug delivery by nebulization

    PubMed Central

    2013-01-01

    Background Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. Results Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. Conclusion We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  4. Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer

    PubMed Central

    Wang, Yichao; Li, Puwang; Truong-Dinh Tran, Thao; Zhang, Juan; Kong, Lingxue

    2016-01-01

    The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide) (PLGA) and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA) and European Medicine Agency (EMA), making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs) have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined. PMID:28344283

  5. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    PubMed

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  6. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    NASA Astrophysics Data System (ADS)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  7. Magnetic Nanomaterials for Hyperthermia-based Therapy and Controlled Drug Delivery

    PubMed Central

    Kumar, Challa S. S. R.; Mohammad, Faruq

    2011-01-01

    Previous attempts to review the literature on magnetic nanomaterials for hyperthermia-based therapy focused primarily on magnetic fluid hyperthermia (MFH) using mono metallic/metal oxide nanoparticles. The term “Hyperthermia” in the literature was also confined only to include use of heat for therapeutic applications. Recently, there have been a number of publications demonstrating magnetic nanoparticle-based hyperthermia to generate local heat resulting in the release of drugs either bound to the magnetic nanoparticle or encapsulated within polymeric matrices. In this review article, we present a case for broadening the meaning of the term “hyperthermia” by including thermotherapy as well as magnetically modulated controlled drug delivery. We provide a classification for controlled drug delivery using hyperthermia: Hyperthermia-based controlled Drug delivery through Bond Breaking (DBB) and Hyperthermia-based controlled Drug delivery through Enhanced Permeability (DEP). The review also covers, for the first time, core-shell type magnetic nanomaterials, especially nanoshells prepared using layer-by-layer self-assembly, for the application of hyperthermia-based therapy and controlled drug delivery. The highlight of the review article is to portray potential opportunities in the combination of hyperthermia-based therapy and controlled drug release paradigms for successful application in personalized medicine. PMID:21447363

  8. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    NASA Astrophysics Data System (ADS)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  9. Selenium nanoparticles: potential in cancer gene and drug delivery.

    PubMed

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  10. Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Stimphil, Emmanuel; Nagesetti, Abhignyan; Guduru, Rakesh; Stewart, Tiffanie; Rodzinski, Alexandra; Liang, Ping; Khizroev, Sakhrat

    2017-06-01

    In regard to cancer therapy, magnetoelectric nanoparticles (MENs) have proven to be in a class of its own when compared to any other nanoparticle type. Like conventional magnetic nanoparticles, they can be used for externally controlled drug delivery via application of a magnetic field gradient and image-guided delivery. However, unlike conventional nanoparticles, due to the presence of a non-zero magnetoelectric effect, MENs provide a unique mix of important properties to address key challenges in modern cancer therapy: (i) a targeting mechanism driven by a physical force rather than antibody matching, (ii) a high-specificity delivery to enhance the cellular uptake of therapeutic drugs across the cancer cell membranes only, while sparing normal cells, (iii) an externally controlled mechanism to release drugs on demand, and (iv) a capability for image guided precision medicine. These properties separate MEN-based targeted delivery from traditional biotechnology approaches and lay a foundation for the complementary approach of technobiology. The biotechnology approach stems from the underlying biology and exploits bioinformatics to find the right therapy. In contrast, the technobiology approach is geared towards using the physics of molecular-level interactions between cells and nanoparticles to treat cancer at the most fundamental level and thus can be extended to all the cancers. This paper gives an overview of the current state of the art and presents an ab initio model to describe the underlying mechanisms of cancer treatment with MENs from the perspective of basic physics.

  11. Protein-Based Nanomedicine Platforms for Drug Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They aremore » ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are

  12. Nanoparticles in the ocular drug delivery

    PubMed Central

    Zhou, Hong-Yan; Hao, Ji-Long; Wang, Shuang; Zheng, Yu; Zhang, Wen-Song

    2013-01-01

    Ocular drug transport barriers pose a challenge for drug delivery comprising the ocular surface epithelium, the tear film and internal barriers of the blood-aqueous and blood-retina barriers. Ocular drug delivery efficiency depends on the barriers and the clearance from the choroidal, conjunctival vessels and lymphatic. Traditional drug administration reduces the clinical efficacy especially for poor water soluble molecules and for the posterior segment of the eye. Nanoparticles (NPs) have been designed to overcome the barriers, increase the drug penetration at the target site and prolong the drug levels by few internals of drug administrations in lower doses without any toxicity compared to the conventional eye drops. With the aid of high specificity and multifunctionality, DNA NPs can be resulted in higher transfection efficiency for gene therapy. NPs could target at cornea, retina and choroid by surficial applications and intravitreal injection. This review is concerned with recent findings and applications of NPs drug delivery systems for the treatment of different eye diseases. PMID:23826539

  13. Manufacture and Drug Delivery Applications of Silk Nanoparticles.

    PubMed

    Wongpinyochit, Thidarat; Johnston, Blair F; Seib, F Philipp

    2016-10-08

    Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.

  14. Nanoparticle hardness controls the internalization pathway for drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2015-01-01

    Nanoparticle (NP)-based drug delivery systems offer fundamental advantages over current therapeutic agents that commonly display a longer circulation time, lower toxicity, specific targeted release, and greater bioavailability. For successful NP-based drug delivery it is essential that the drug-carrying nanocarriers can be internalized by the target cells and transported to specific sites, and the inefficient internalization of nanocarriers is often one of the major sources for drug resistance. In this work, we use the dissipative particle dynamics simulation to investigate the effect of NP hardness on their internalization efficiency. Three simplified models of NP platforms for drug delivery, including polymeric NP, liposome and solid NP, are designed here to represent increasing nanocarrier hardness. Simulation results indicate that NP hardness controls the internalization pathway for drug delivery. Rigid NPs can enter the cell by a pathway of endocytosis, whereas for soft NPs the endocytosis process can be inhibited or frustrated due to wrapping-induced shape deformation and non-uniform ligand distribution. Instead, soft NPs tend to find one of three penetration pathways to enter the cell membrane via rearranging their hydrophobic and hydrophilic segments. Finally, we show that the interaction between nanocarriers and drug molecules is also essential for effective drug delivery.

  15. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    PubMed Central

    Mohammed, Munawar A.; Syeda, Jaweria T. M.; Wasan, Kishor M.; Wasan, Ellen K.

    2017-01-01

    The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies. PMID:29156634

  16. pH-sensitive Eudragit nanoparticles for mucosal drug delivery.

    PubMed

    Yoo, Jin-Wook; Giri, Namita; Lee, Chi H

    2011-01-17

    Drug delivery via vaginal epithelium has suffered from lack of stability due to acidic and enzymatic environments. The biocompatible pH-sensitive nanoparticles composed of Eudragit S-100 (ES) were developed to protect loaded compounds from being degraded under the rigorous vaginal conditions and achieve their therapeutically effective concentrations in the mucosal epithelium. ES nanoparticles containing a model compound (sodium fluorescein (FNa) or nile red (NR)) were prepared by the modified quasi-emulsion solvent diffusion method. Loading efficiencies were found to be 26% and 71% for a hydrophilic and a hydrophobic compound, respectively. Both hydrophilic and hydrophobic model drugs remained stable in nanoparticles at acidic pH, whereas they are quickly released from nanoparticles upon exposure at physiological pH. The confocal study revealed that ES nanoparticles were taken up by vaginal cells, followed by pH-responsive drug release, with no cytotoxic activities. The pH-sensitive nanoparticles would be a promising carrier for the vaginal-specific delivery of various therapeutic drugs including microbicides and peptides/proteins. Published by Elsevier B.V.

  17. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery.

    PubMed

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-04-10

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release.

  18. Iron Oxide Nanoparticles for Magnetically-Guided and Magnetically-Responsive Drug Delivery

    PubMed Central

    Estelrich, Joan; Escribano, Elvira; Queralt, Josep; Busquets, Maria Antònia

    2015-01-01

    In this review, we discuss the recent advances in and problems with the use of magnetically-guided and magnetically-responsive nanoparticles in drug delivery and magnetofection. In magnetically-guided nanoparticles, a constant external magnetic field is used to transport magnetic nanoparticles loaded with drugs to a specific site within the body or to increase the transfection capacity. Magnetofection is the delivery of nucleic acids under the influence of a magnetic field acting on nucleic acid vectors that are associated with magnetic nanoparticles. In magnetically-responsive nanoparticles, magnetic nanoparticles are encapsulated or embedded in a larger colloidal structure that carries a drug. In this last case, an alternating magnetic field can modify the structure of the colloid, thereby providing spatial and temporal control over drug release. PMID:25867479

  19. Magnetite Nanoparticles Coated with Rifampicin and Chlortetracycline for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Nǎdejde, Claudia; Ciurlicǎ, Ecaterina Foca-nici; Creangǎ, Dorina; Cârlescu, Aurelian; Bǎdescu, Vasile

    2010-12-01

    Four types of biocompatible magnetic fluids based on superparamagnetic nanoparticles with Fe3O4 cores were functionalized with antibiotics (rifampicin or chlortetracycline) as potential candidates for in vivo biomedical applications, such as magnetically controlled drug delivery. The synthesis consisted in coprecipitation of iron oxide in basic, as well as in acid medium, followed by the dispersion of the resulted magnetite nanoparticles in aqueous solution containing the antibiotic. The chosen method to prepare the magnetite-core/drug-shell systems avoided intermediate organic coating of the magnetic nanoparticles. Comparative analysis of the rheological features of the aqueous magnetic fluid samples was performed. The structural features of the coated magnetic particles were investigated by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometry (VSM). Good crystallinity and adequate stability in time were evidenced. Drug delivery curves were spectrophotometrically provided.

  20. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  1. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system.

    PubMed

    Gao, Qihe; Liang, Qing; Yu, Fei; Xu, Jian; Zhao, Qihua; Sun, Baiwang

    2011-12-01

    Pluronic, F127, amphiphilic block copolymers, are used for several applications, including drug delivery systems. The critical micelle concentration (CMC) of F127 is about 0.26-0.8 wt% so that the utility of F127 in nano-technology based drug delivery system is limited since the nano-sized micelles could dissociate upon dilution. Herein, stearic acid (SA) was simply coupled to F127 between the carboxyl group of SA and the hydroxyl group of F127, which formed a novel copolymer named as SA-coupled F127, with significantly lower CMC. Above the CMC 6.9 × 10(-5)wt%, SA-coupled F127 self-assembled stable nanoparticles with Zeta potential -36 mV. Doxorubicin (DOX)-loaded nanoparticles were made, with drug loading (DL) 5.7 wt% and Zeta potential -36 to -39 mV, and the nanoparticles exhibited distinct shape with the size distribution from 20 to 50 nm. DOX-loaded nanoparticles were relatively stable and exhibited DOX dependant cytotoxicity toward MCF-7 cells in vitro. These results suggest that SA-coupled F127 potentially could be applied as a nano-technology based drug delivery method. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Delivery of RNA interference therapeutics using polycation-based nanoparticles.

    PubMed

    Howard, Kenneth Alan

    2009-07-25

    RNAi-based therapies are dependent on extracellular and intracellular delivery of RNA molecules for enabling target interaction. Polycation-based nanoparticles (or polyplexes) formed by self-assembly with RNA can be used to modulate pharmacokinetics and intracellular trafficking to improve the therapeutic efficacy of RNAi-based therapeutics. This review describes the application of polyplexes for extracellular and intracellular delivery of synthetic RNA molecules. Focus is given to routes of administration and silencing effects in animal disease models. The inclusion of functional components into the nanoparticle for controlling cellular trafficking and RNA release is discussed. This work highlights the versatile nature of polycation-based nanoparticles to fulfil the delivery requirements for RNA molecules with flexibility in design to evolve alongside an expanding repertoire of RNAi-based drugs.

  3. Magnetic nanoparticle drug delivery systems for targeting tumor

    NASA Astrophysics Data System (ADS)

    Mody, Vicky V.; Cox, Arthur; Shah, Samit; Singh, Ajay; Bevins, Wesley; Parihar, Harish

    2014-04-01

    Tumor hypoxia, or low oxygen concentration, is a result of disordered vasculature that lead to distinctive hypoxic microenvironments not found in normal tissues. Many traditional anti-cancer agents are not able to penetrate into these hypoxic zones, whereas, conventional cancer therapies that work by blocking cell division are not effective to treat tumors within hypoxic zones. Under these circumstances the use of magnetic nanoparticles as a drug delivering agent system under the influence of external magnetic field has received much attention, based on their simplicity, ease of preparation, and ability to tailor their properties for specific biological applications. Hence in this review article we have reviewed current magnetic drug delivery systems, along with their application and clinical status in the field of magnetic drug delivery.

  4. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.

    PubMed

    Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir

    2016-09-28

    Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.

    PubMed

    El-Sherbiny, Ibrahim M; Elbaz, Nancy M; Sedki, Mohammed; Elgammal, Abdulaziz; Yacoub, Magdi H

    2017-02-01

    Magnetic nanoparticles (MNPs) have gained much attention due to their unique properties such as biocompatibility and biodegradability as well as magnetic and heat-medicated characteristics. Due to these inherent properties, MNPs have been widely used in various biomedical applications including targeted drug delivery and hyperthermia-based therapy. Hyperthermia is a promising approach for the thermal activation therapy of several diseases, including pulmonary diseases. Additionally, due to their large loading capacity and controlled release ability, several MNP-based drug delivery systems have been emerged for treatment of cystic fibrosis and lung cancer. This review provides an overview on the unique properties of MNPs and magnetic-mediated hyperthermia with emphasis on the recent biomedical applications of MNPs in treatment of both lung cancer and cystic fibrosis.

  6. An overview of drug delivery vehicles for cancer treatment: Nanocarriers and nanoparticles including photovoltaic nanoparticles.

    PubMed

    Chowdhury, Silvia; Yusof, Faridah; Salim, Wan Wardatul Amani Wan; Sulaiman, Nadzril; Faruck, Mohammad Omer

    2016-11-01

    Cancer is a complicated disease for which finding a cure presents challenges. In recent decades, new ways to treat cancer are being sought; one being nanomedicine, which manipulates nanoparticles to target a cancer and release drugs directly to the cancer cells. A number of cancer treatments based on nanomedicine are under way and mostly are in preclinical trials owing to challenges in administration, safety, and effectiveness. One alternative method for drug delivery is the use of photovoltaic nanoparticles, which has the potential to deliver drugs via light activation. The concepts are based on standard photovoltaic cell that holds opposite charges on its surfaces and releases drugs when charge intensity or polarity changes upon photo-stimulation such as from a laser source or sunlight. This review will cover some recent progress in cancer treatment using nanoparticles, including photovoltaic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Magnetic Nanoparticles for Multi-Imaging and Drug Delivery

    PubMed Central

    Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo

    2013-01-01

    Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479

  8. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems.

    PubMed

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-02-23

    Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.

  9. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic

    PubMed Central

    Puri, Anu; Loomis, Kristin; Smith, Brandon; Lee, Jae-Ho; Yavlovich, Amichai; Heldman, Eli; Blumenthal, Robert

    2010-01-01

    In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We

  10. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery.

    PubMed

    Fay, Francois; McLaughlin, Kirsty M; Small, Donna M; Fennell, Dean A; Johnston, Patrick G; Longley, Daniel B; Scott, Christopher J

    2011-11-01

    Colloidal nanoparticle drug delivery systems have attracted much interest for their ability to enable effective formulation and delivery of therapeutic agents. The selective delivery of these nanoparticles to the disease site can be enhanced by coating the surface of the nanoparticles with targeting moieties, such as antibodies. In this current work, we demonstrate that antibodies on the surface of the particles can also elicit key biological effects. Specifically, we demonstrate the induction of apoptosis in colorectal HCT116 cancer cells using PLGA nanoparticles coated with Conatumumab (AMG 655) death receptor 5-specific antibodies (DR5-NP). We show that DR5-NP preferentially target DR5-expressing cells and present a sufficient density of antibody paratopes to induce apoptosis via DR5, unlike free AMG 655 or non-targeted control nanoparticles. We also demonstrate that DR5-targeted nanoparticles encapsulating the cytotoxic drug camptothecin are effectively targeted to the tumour cells, thereby producing enhanced cytotoxic effects through simultaneous drug delivery and apoptosis induction. These results demonstrate that antibodies on nanoparticulate surfaces can be exploited for dual modes of action to enhance the therapeutic utility of the modality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Development and characterization of multifunctional nanoparticles for drug delivery to cancer cells

    NASA Astrophysics Data System (ADS)

    Nahire, Rahul Rajaram

    Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image

  12. Solid lipid nanoparticles for ocular drug delivery.

    PubMed

    Seyfoddin, Ali; Shaw, John; Al-Kassas, Raida

    2010-01-01

    Ocular drug delivery remains challenging because of the complex nature and structure of the eye. Conventional systems, such as eye drops and ointments, are inefficient, whereas systemic administration requires high doses resulting in significant toxicity. There is a need to develop novel drug delivery carriers capable of increasing ocular bioavailability and decreasing both local and systemic cytotoxicity. Nanotechnology is expected to revolutionize ocular drug delivery. Many nano-structured systems have been employed for ocular drug delivery and yielded some promising results. Solid lipid nanoparticles (SLNs) have been looked at as a potential drug carrier system since the 1990s. SLNs do not show biotoxicity as they are prepared from physiological lipids. SLNs are especially useful in ocular drug delivery as they can enhance the corneal absorption of drugs and improve the ocular bioavailability of both hydrophilic and lipophilic drugs. SLNs have another advantage of allowing autoclave sterilization, a necessary step towards formulation of ocular preparations. This review outlines in detail the various production, characterization, sterilization, and stabilization techniques for SLNs. In-vitro and in-vivo methods to study the drug release profile of SLNs have been explained. Special attention has been given to the nature of lipids and surfactants commonly used for SLN production. A summary of previous studies involving the use of SLNs in ocular drug delivery is provided, along with a critical evaluation of SLNs as a potential ocular delivery system.

  13. ZnO nanoparticles applied to bioimaging and drug delivery.

    PubMed

    Xiong, Huan-Ming

    2013-10-04

    The last decade has seen significant achievements in biomedical diagnosis and therapy at the levels of cells and molecules. Nanoparticles with luminescent or magnetic properties are used as detection probes and drug carriers, both in vitro and in vivo. ZnO nanoparticles, due to their good biocompatibility and low cost, have shown promising potential in bioimaging and drug delivery. The recent exciting progress on the biomedical applications of ZnO-based nanomaterials is reviewed here, along with discussions on the advantages and limitations of these advanced materials and suggestions for improving methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  15. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro.

    PubMed

    Yu, Chenchen; Hu, Yan; Duan, Jinhong; Yuan, Wei; Wang, Chen; Xu, Haiyan; Yang, Xian-Da

    2011-01-01

    MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.

  16. Recent Advances in Nanoparticle-Based Targeted Drug-Delivery Systems Against Cancer and Role of Tumor Microenvironment.

    PubMed

    Ashfaq, Usman Ali; Riaz, Muhammad; Yasmeen, Erum; Yousaf, Muhammad Zubair

    2017-01-01

    Cancer is one of the major causes of death worldwide. The silent activation of cellular factors responsible for deviation from normal regulatory pathways leads to the development of cancer. Nano-biotechnology is a novel drug-delivery system with high potential of efficacy and accuracy to target lethal cancers. Various biocompatible nanoparticle (NP)-based drug-delivery systems such as liposomes, dendrimers, micelles, silica, quantum dots, and magnetic, gold, and carbon nanotubes have already been reported for successful targeted cancer treatment. NPs are functionalized with different biological molecules, peptides, antibody, and protein ligands for targeted drug delivery. These systems include a hydrophilic central core, a target-oriented biocompatible outer layer, and a middle hydrophobic core where the drug destined to reach target site resides. Most of the NPs have the ability to maintain their structural shape and are constructed according to the cancer microenvironment. The self-assembling and colloidal properties of NPs have caused them to become the best vehicles for targeted drug delivery. The tumor microenvironment (TME) plays a major role in cancer progression, detection, and treatment. Due to its continuous complex behavior, the TME can hinder delivery systems, thus halting cancer treatment. Nonetheless, a successful biophysiological interaction between the NPs and the TME results in targeted release of drugs. Currently, a number of drugs and NP-based delivery systems against cancer are in clinical and preclinical trials and a few have been approved by Food and Drug Administration (FDA); for example: taxol, doxil, cerubidine, and adrucil. This review summarizes topical advances about the drugs being used for cancer treatment, their targeted delivery systems based on NPs, and the role of TME in this connection.

  17. Gold nanoparticles to improve HIV drug delivery.

    PubMed

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy.

  18. Nanostructured porous Si-based nanoparticles for targeted drug delivery

    PubMed Central

    Shahbazi, Mohammad-Ali; Herranz, Barbara; Santos, Hélder A.

    2012-01-01

    One of the backbones in nanomedicine is to deliver drugs specifically to unhealthy cells. Drug nanocarriers can cross physiological barriers and access different tissues, which after proper surface biofunctionalization can enhance cell specificity for cancer therapy. Recent developments have highlighted the potential of mesoporous silica (PSiO2) and silicon (PSi) nanoparticles for targeted drug delivery. In this review, we outline and discuss the most recent advances on the applications and developments of cancer therapies by means of PSiO2 and PSi nanomaterials. Bio-engineering and fine tuning of anti-cancer drug vehicles, high flexibility and potential for sophisticated release mechanisms make these nanostructures promising candidates for “smart” cancer therapies. As a result of their physicochemical properties they can be controllably loaded with large amounts of drugs and coupled to homing molecules to facilitate active targeting. The main emphasis of this review will be on the in vitro and in vivo studies. PMID:23507894

  19. Current and emerging lipid-based systems for transdermal drug delivery.

    PubMed

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  20. Mucus-penetrating nanoparticles for vaginal and gastrointestinal drug delivery

    NASA Astrophysics Data System (ADS)

    Ensign-Hodges, Laura

    A method that could provide more uniform and longer-lasting drug delivery to mucosal surfaces holds the potential to greatly improve the effectiveness of prophylactic and therapeutic approaches for numerous diseases and conditions, including sexually transmitted infections and inflammatory bowel disease. However, the body's natural defenses, including adhesive, rapidly cleared mucus linings coating nearly all entry points to the body not covered by skin, has limited the effectiveness of drug and gene delivery by nanoscale delivery systems. Here, we investigate the use of muco-inert mucus-penetrating nanoparticles (MPP) for improving vaginal and gastrointestinal drug delivery. Conventional hydrophobic nanoparticles strongly adhere to mucus, facilitating rapid clearance from the body. Here, we demonstrate that mucoadhesive polystyrene nanoparticles (conventional nanoparticles, CP) become mucus-penetrating in human cervicovaginal mucus (CVM) after pretreatment with sufficient concentrations of Pluronic F127. Importantly, the diffusion rate of large MPP did not change in F127 pretreated CVM, implying there is no affect on the native pore structure of CVM. Additionally, there was no increase in inflammatory cytokine release in the vaginal tract of mice after daily application of 1% F127 for one week. Importantly, HSV virus remains adherent in F127-pretreated CVM. Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that hypotonically-induced fluid uptake could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We evaluated hypotonic formulations for delivering water-soluble drugs and for drug delivery with MPP. Hypotonic formulations markedly increased the rate at which drugs and MPP reached the epithelial surface. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that isotonic formulations

  1. Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs

    NASA Astrophysics Data System (ADS)

    Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong

    2013-02-01

    Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.

  2. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    PubMed

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.

    PubMed

    Calixto, Giovana Maria Fioramonti; Bernegossi, Jéssica; de Freitas, Laura Marise; Fontana, Carla Raquel; Chorilli, Marlus

    2016-03-11

    Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which compromises the clinical use of several molecules. Incorporation of PSs in nanostructured drug delivery systems, such as polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), gold nanoparticles (AuNPs), hydrogels, liposomes, liquid crystals, dendrimers, and cyclodextrin is a potential strategy to overcome this difficulty. Additionally, nanotechnology-based drug delivery systems may improve the transcytosis of a PS across epithelial and endothelial barriers and afford the simultaneous co-delivery of two or more drugs. Based on this, the application of nanotechnology in medicine may offer numerous exciting possibilities in cancer treatment and improve the efficacy of available therapeutics. Therefore, the aim of this paper is to review nanotechnology-based drug delivery systems for photodynamic therapy of cancer.

  4. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    PubMed Central

    Bennet, Devasier; Marimuthu, Mohana; Kim, Sanghyo; An, Jeongho

    2012-01-01

    Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactideco-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system. PMID:22888222

  5. Gold nanoparticles to improve HIV drug delivery

    PubMed Central

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Background: Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Results & Conclusion: Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy. PMID:26132521

  6. Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice

    PubMed Central

    Zhang, Baozhen; Tan, Lunbo; Yu, Yan; Wang, Baobei; Chen, Zhilong; Han, Jinyu; Li, Mengxia; Chen, Jie; Xiao, Tianxia; Ambati, Balamurali K; Cai, Lintao; Yang, Qing; Nayak, Nihar R; Zhang, Jian; Fan, Xiujun

    2018-01-01

    Rationale: The availability of therapeutics to treat pregnancy complications is severely lacking, mainly due to the risk of harm to the fetus. In placental malaria, Plasmodium falciparum-infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) on the surfaces of trophoblasts. Based on this principle, we have developed a method for targeted delivery of payloads to the placenta using a synthetic placental CSA-binding peptide (plCSA-BP) derived from VAR2CSA, a CSA-binding protein expressed on IEs. Methods: A biotinylated plCSA-BP was used to examine the specificity of plCSA-BP binding to mouse and human placental tissue in tissue sections in vitro. Different nanoparticles, including plCSA-BP-conjugated nanoparticles loaded with indocyanine green (plCSA-INPs) or methotrexate (plCSA-MNPs), were administered intravenously to pregnant mice to test their efficiency at drug delivery to the placenta in vivo. The tissue distribution and localization of the plCSA-INPs were monitored in live animals using an IVIS imaging system. The effect of plCSA-MNPs on fetal and placental development and pregnancy outcome were examined using a small-animal high-frequency ultrasound (HFUS) imaging system, and the concentrations of methotrexate in fetal and placental tissues were measured using high-performance liquid chromatography (HPLC). Results: plCSA-BP binds specifically to trophoblasts and not to other cell types in the placenta or to CSA-expressing cells in other tissues. Moreover, we found that intravenously administered plCSA-INPs accumulate in the mouse placenta, and ex vivo analysis of the fetuses and placentas confirmed placenta-specific delivery of these nanoparticles. We also demonstrate successful delivery of methotrexate specifically to placental cells by plCSA-BP-conjugated nanoparticles, resulting in dramatic impairment of placental and fetal development. Importantly, plCSA-MNPs treatment had no apparent adverse effects on maternal

  7. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery.

    PubMed

    Xia, Xiao-Xia; Wang, Ming; Lin, Yinan; Xu, Qiaobing; Kaplan, David L

    2014-03-10

    Silk-elastin-like protein polymers (SELPs) combine the mechanical and biological properties of silk and elastin. These properties have led to the development of various SELP-based materials for drug delivery. However, SELPs have rarely been developed into nanoparticles, partially due to the complicated fabrication procedures, nor assessed for potential as an anticancer drug delivery system. We have recently constructed a series of SELPs (SE8Y, S2E8Y, and S4E8Y) with various ratios of silk to elastin blocks and described their capacity to form micellar-like nanoparticles upon thermal triggering. In this study, we demonstrate that doxorubicin, a hydrophobic antitumor drug, can efficiently trigger the self-assembly of SE8Y (SELPs with silk to elastin ratio of 1:8) into uniform micellar-like nanoparticles. The drug can be loaded in the SE8Y nanoparticles with an efficiency around 6.5% (65 ng doxorubicin/μg SE8Y), S2E8Y with 6%, and S4E8Y with 4%, respectively. In vitro studies with HeLa cell lines demonstrate that the protein polymers are not cytotoxic (IC50 > 200 μg/mL), while the doxorubicin-loaded SE8Y nanoparticles showed a 1.8-fold higher cytotoxicity than the free drug. Confocal laser scanning microscopy (CLSM) and flow cytometry indicate significant uptake of the SE8Y nanoparticles by the cells and suggest internalization of the nanoparticles through endocytosis. This study provides an all-aqueous, facile method to prepare nanoscale, drug-loaded SELPs packages with potential for tumor cell treatments.

  8. Secondary nuclear targeting of mesoporous silica nano-particles for cancer-specific drug delivery based on charge inversion

    PubMed Central

    Wang, Xiyong; Fan, Xiaobo; Wu, Guoqiu

    2016-01-01

    A novel multifunctional nano-drug delivery system based on reversal of peptide charge was successfully developed for anticancer drug delivery and imaging. Mesoporous silica nano-particles (MSN) ~50 nm in diameter were chosen as the drug reservoirs, and their surfaces were modified with HIV-1 transactivator peptide-fluorescein isothiocyanate (TAT-FITC) and YSA-BHQ1. The short TAT peptide labeled with FITC was used to facilitate intranuclear delivery, while the YSA peptide tagged with the BHQ1 quencher group was used to specifically bind to the tumor EphA2 membrane receptor. Citraconic anhydride (Cit) was used to invert the charge of the TAT peptide in neutral or weak alkaline conditions so that the positively charged YSA peptide could combine with the TAT peptide through electrostatic attraction. The FITC fluorescence was quenched by the spatial approach of BHQ1 after the two peptides bound to each other. However, the Cit-amino bond was unstable in the acidic atmosphere, so the positive charge of the TAT peptide was restored and the positively charged YSA moiety was repelled. The FITC fluorescence was recovered after the YSA-BHQ1 moiety was removed, and the TAT peptide led the nano-particles into the nucleolus. This nano-drug delivery system was stable at physiological pH, rapidly released the drug in acidic buffer, and was easily taken up by MCF-7 cells. Compared with free doxorubicin hydrochloride at an equal concentration, this modified MSN loaded with doxorubicin molecules had an equivalent inhibitory effect on MCF-7 cells. This nano-drug delivery system is thus a promising method for simultaneous cancer diagnosis and therapy. PMID:27661121

  9. Secondary nuclear targeting of mesoporous silica nano-particles for cancer-specific drug delivery based on charge inversion.

    PubMed

    Zhao, Jianwen; Zhao, Fengfeng; Wang, Xiyong; Fan, Xiaobo; Wu, Guoqiu

    2016-10-25

    A novel multifunctional nano-drug delivery system based on reversal of peptide charge was successfully developed for anticancer drug delivery and imaging. Mesoporous silica nano-particles (MSN) ~50 nm in diameter were chosen as the drug reservoirs, and their surfaces were modified with HIV-1 transactivator peptide-fluorescein isothiocyanate (TAT-FITC) and YSA-BHQ1. The short TAT peptide labeled with FITC was used to facilitate intranuclear delivery, while the YSA peptide tagged with the BHQ1 quencher group was used to specifically bind to the tumor EphA2 membrane receptor. Citraconic anhydride (Cit) was used to invert the charge of the TAT peptide in neutral or weak alkaline conditions so that the positively charged YSA peptide could combine with the TAT peptide through electrostatic attraction. The FITC fluorescence was quenched by the spatial approach of BHQ1 after the two peptides bound to each other. However, the Cit-amino bond was unstable in the acidic atmosphere, so the positive charge of the TAT peptide was restored and the positively charged YSA moiety was repelled. The FITC fluorescence was recovered after the YSA-BHQ1 moiety was removed, and the TAT peptide led the nano-particles into the nucleolus. This nano-drug delivery system was stable at physiological pH, rapidly released the drug in acidic buffer, and was easily taken up by MCF-7 cells. Compared with free doxorubicin hydrochloride at an equal concentration, this modified MSN loaded with doxorubicin molecules had an equivalent inhibitory effect on MCF-7 cells. This nano-drug delivery system is thus a promising method for simultaneous cancer diagnosis and therapy.

  10. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.

    PubMed

    Wang, Mingxin; You, Chaoqun; Gao, Zhiguo; Wu, Hongshuai; Sun, Baiwang; Zhu, Xiaoli; Chen, Renjie

    2018-08-01

    The functionalized nanoparticles have been widely studied and reported as carriers of drug transport recently. Furthermore, many groups have focused more on developing novel and efficient treatment methods, such as photodynamic therapy and photothermal therapy, since both therapies have shown inspiring potential in the application of antitumor. The mentioned treatments exhibited the superiority of cooperative manner and showed the ability to compensate for the adverse effects caused by conventional monotherapy in proposed strategies. In view of the above descriptions, we formulated a thermosensitive drug delivery system, which achieved the enhanced delivery of cisplatin and two photosensitizers (ICG and Ce6) by dual-targeting traction. Drawing on the thin film hydration method, cisplatin and photosensitizers were encapsulated inside nanoparticles. Meanwhile, the targeting peptide cRGD and targeting molecule folate can be modified on the surface of nanoparticles to realize the active identification of tumor cells. The measurements of dynamic light scattering showed that the prepared nanoparticles had an ideal dispersibility and uniform particle size of 102.6 nm. On the basis of the results observed from confocal laser scanning microscope, the modified nanoparticles were more efficient endocytosed by MCF-7 cells as a contrast to SGC-7901 cells. Photothermal conversion-triggered drug release and photo-therapies produced a significant apoptosis rate of 85.9% on MCF-7 cells. The distinguished results made it believed that the formulated delivery system had conducted great efforts and innovations for the realization of concise collaboration and provided a promising strategy for the treatment of breast cancer.

  11. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases

    PubMed Central

    Zhang, Zheng; Tsai, Pei-Chin; Ramezanli, Tannaz; Michniak-Kohn, Bozena B.

    2013-01-01

    Human skin not only functions as a permeation barrier (mainly due to the stratum corneum layer), but also provides a unique delivery pathway for therapeutic and other active agents. These compounds penetrate via intercellular, intracellular and transappendageal routes, resulting in topical delivery (into skin strata) and transdermal delivery (to subcutaneous tissues and into the systemic circulation). Passive and active permeation enhancement methods have been widely applied to increase the cutaneous penetration. The pathology, pathogenesis and topical treatment approaches of dermatological diseases, such as psoriasis, contact dermatitis, and skin cancer, are then discussed. Recent literature has demonstrated that nanoparticles-based topical delivery systems can be successful in treating these skin conditions. The studies are reviewed starting with the nanoparticles based on natural polymers specially chitosan, followed by those made of synthetic, degradable (aliphatic polyesters) and non-degradable (polyarylates) polymers; emphasis is given to nanospheres made of polymers derived from naturally occurring metabolites, the tyrosine-derived nanospheres (TyroSpheres™). In summary, the nanoparticles-based topical delivery systems combine the advantages of both the nano-sized drug carriers and the topical approach, and are promising for the treatment of skin diseases. For the perspectives, the penetration of ultra-small nanoparticles (size smaller than 40 nm) into skin strata, the targeted delivery of the encapsulated drugs to hair follicle stem cells, and the combination of nanoparticles and microneedle array technologies for special applications such as vaccine delivery are discussed. PMID:23386536

  12. Size matters: gold nanoparticles in targeted cancer drug delivery

    PubMed Central

    Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A

    2013-01-01

    Cancer is the current leading cause of death worldwide, responsible for approximately one quarter of all deaths in the USA and UK. Nanotechnologies provide tremendous opportunities for multimodal, site-specific drug delivery to these disease sites and Au nanoparticles further offer a particularly unique set of physical, chemical and photonic properties with which to do so. This review will highlight some recent advances, by our laboratory and others, in the use of Au nanoparticles for systemic drug delivery to these malignancies and will also provide insights into their rational design, synthesis, physiological properties and clinical/preclinical applications, as well as strategies and challenges toward the clinical implementation of these constructs moving forward. PMID:22834077

  13. A Critical Review of Lipid-based Nanoparticles for Taxane Delivery

    PubMed Central

    Feng, Lan; Mumper, Russell J.

    2012-01-01

    Nano-based delivery systems have attracted a great deal of attention in the past two decades as a strategy to overcome the low therapeutic index of conventional anticancer drugs and delivery barriers in solid tumors. Myriads of preclinical studies have been focused on developing nano-based formulations to effectively deliver taxanes, one of the most important and most prescribed anticancer drug types in the clinic. Given the hydrophobic property of taxanes, lipid-based NPs, serve as a viable alternative delivery system. This critical review will provide an overview and perspective of the advancement of lipid-based nanoparticles for taxane delivery. Currently available formulations of taxanes and their drawbacks as well as criteria for idea taxane delivery system will be discussed. PMID:22796606

  14. Targeted and Controlled Anticancer Drug Delivery and Release with Magnetoelectric Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodzinski, Alexandra

    A major challenge of cancer treatment is successful discrimination of cancer cells from healthy cells. Nanotechnology offers multiple venues for efficient cancer targeting. Magnetoelectric nanoparticles (MENs) are a novel, multifaceted, physics-based cancer treatment platform that enables high specificity cancer targeting and externally controlled loaded drug release. The unique magnetoelectric coupling of MENs allows them to convert externally applied magnetic fields into intrinsic electric signals, which allows MENs to both be drawn magnetically towards the cancer site and to electrically interface with cancer cells. Once internalized, the MEN payload release can be externally triggered with a magnetic field. MENs uniquely allow for discrete manipulation of the drug delivery and drug release mechanisms to allow an unprecedented level of control in cancer targeting. In this study, we demonstrate the physics behind the MEN drug delivery platform, test the MEN drug delivery platform for the first time in a humanized mouse model of cancer, and characterize the biodistribution and clearance of MENs. We found that MENs were able to fully cure the model cancer, which in this case was human ovarian carcinoma treated with paclitaxel. When compared to conventional magnetic nanoparticles and FDA approved organic PLGA nanoparticles, MENs are the highest performing treatment, even in the absence of peripheral active targeting molecules. We also mapped the movement through peripheral organs and established clearance trends of the MENs. The MENs cancer treatment platform has immense potential for future medicine, as it is generalizable, personalizable, and readily traceable in the context of treating essentially any type of cancer.

  15. Thiomers and thiomer-based nanoparticles in protein and DNA drug delivery.

    PubMed

    Hauptstein, Sabine; Bernkop-Schnürch, Andreas

    2012-09-01

    Thanks to advances in biotechnology, more and more highly efficient protein- and DNA-based drugs have been developed. Unfortunately, these kinds of drugs underlie poor non-parental bioavailability. To overcome hindrances like low mucosal permeability and enzymatic degradation polymeric excipients are utilized as drug carrier whereat thiolated excipients showed several promising qualities in comparison to the analogical unmodified polymer. The article deals with the comparatively easy modification of well-established polymers like chitosan or poly(acrylates) to synthesize thiomers. Further, the recently developed "next generation" thiomers e.g. preactivated or S-protected thiomers are introduced. Designative properties like mucoadhesion, uptake and permeation enhancement, efflux pump inhibition and protection against enzymatic degradation will be discussed and differences between first and next generation thiomers will be pointed out. Additionally, nanoparticles prepared with thiomers will be dealt with regarding to protein and DNA drug delivery as thiomers seem to be a promising approach to avoid parenteral application. Properties of thiomers per se and results of in vivo studies carried out so far for peptide and DNA drugs demonstrate their potential as multifunctional excipients. However, further investigations and optimizations have to be done before establishing a carrier system ready for clinical approval.

  16. Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery.

    PubMed

    Holden, Christopher A; Yuan, Quan; Yeudall, W Andrew; Lebman, Deborah A; Yang, Hu

    2010-02-02

    Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein-labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.

  17. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    PubMed Central

    Hu, Yan; Ke, Lei; Chen, Hao; Zhuo, Ma; Yang, Xinzhou; Zhao, Dan; Zeng, Suying; Xiao, Xincai

    2017-01-01

    To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. PMID:29200852

  18. Nano-Advantage in Enhanced Drug Delivery with Biodegradable Nanoparticles: Contribution of Reduced Clearance

    PubMed Central

    Kadam, Rajendra S.; Bourne, David W. A.

    2012-01-01

    The aim of this study was to investigate the contribution of reduced apparent clearance to the enhanced exposure reported for biodegradable nanoparticles after extravascular and intravascular routes of administration. Plasma concentration profiles for drug and nanoparticle formulations after administration by intravenous, intraduodenal, and oral routes were extracted from the literature. Data were fit to pharmacokinetic models using BOOMER. The compartmental pharmacokinetic analysis of literature data for six drugs (camptothecin, 9-nitrocamptothecin, epirubicin, vinpocetine, clozapine, and cyclosporine) showed that the encapsulation of drug molecules in nanoparticles significantly reduced the apparent clearance and prolonged the apparent circulation half-life compared with those for the plain drug. Positively charged nanoparticles assessed in this study had lower apparent clearance, lower elimination rate constant values, and longer apparent circulation half-life than neutral and negatively charged nanoparticles. After oral administration, a reduction in apparent clearance contributed substantially to elevations in plasma drug exposure with nanoparticles. For the drugs and delivery systems examined, the nano-advantage in drug delivery enhancement can be explained, in part, by reduced clearance. PMID:22498894

  19. Functionalized nanoparticles for AMF-induced gene and drug delivery

    NASA Astrophysics Data System (ADS)

    Biswas, Souvik

    The properties and broad applications of nano-magnetic colloids have generated much interest in recent years. Specially, Fe3O4 nanoparticles have attracted a great deal of attention since their magnetic properties can be used for hyperthermia treatment or drug targeting. For example, enhanced levels of intracellular gene delivery can be achieved using Fe3O4 nano-vectors in the presence of an external magnetic field, a process known as 'magnetofection'. The low cytotoxicity, tunable particle size, ease of surface functionalization, and ability to generate thermal energy using an external alternating magnetic field (AMF) are properties have propelled Fe3O4 research to the forefront of nanoparticle research. The strategy of nanoparticle-mediated, AMF-induced heat generation has been used to effect intracellular hyperthermia. One application of this 'magnetic hyperthermia' is heat activated local delivery of a therapeutic effector (e.g.; drug or polynucleotide). This thesis describes the development of a magnetic nano-vector for AMF-induced, heat-activated pDNA and small molecule delivery. The use of heat-inducible vectors, such as heat shock protein ( hsp) genes, is a promising mode of gene therapy that would restrict gene expression to a local region by focusing a heat stimulus only at a target region. We thus aimed to design an Fe3O4 nanoparticle-mediated gene transfer vehicle for AMF-induced localized gene expression. We opted to use 'click' oximation techniques to assemble the magnetic gene transfer vector. Chapter 2 describes the synthesis, characterization, and transfection studies of the oxime ether lipid-based nano-magnetic vectors MLP and dMLP. The synthesis and characterization of a novel series of quaternary ammonium aminooxy reagents (2.1--2.4) is described. These cationic aminooxy compounds were loaded onto nanoparticles for ligation with carbonyl groups and also to impart a net positive charge on the nanoparticle surface. Our studies indicated that the

  20. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Nanomaterials in cancer-therapy drug delivery system.

    PubMed

    Zhang, Gen; Zeng, Xin; Li, Ping

    2013-05-01

    Nanomaterials can enhance the delivery and treatment efficiency of anti-cancer drugs, and the mechanisms of the tumor-reducing activity of nanomaterials with cancer drug have been investigated. The task for drug to reach pathological areas has facilitated rapid advances in nanomedicine. Herein, we summarize promising findings with respect to cancer therapeutics based on nano-drug delivery vectors. Relatively high toxicity of uncoated nanoparticles restricts the use of these materials in humans. In order to reduce toxicity, many approaches have focused on the encapsulation of nanoparticles with biocompatible materials. Efficient delivery systems have been developed that utilized nanoparticles loaded with high dose of cancer drug in the presence of bilayer molecules. Well-established nanotechnologies have been designed for drug delivery with specific bonding. Surface-modified nanoparticles as vehicles for drug delivery system that contains multiple nano-components, each specially designed to achieve aimed task for the emerging application delivery of therapeutics. Drug-coated polymer nanoparticles could efficiently increase the intracellular accumulation of anti-cancer drugs. This review also introduces the nanomaterials with drug on the induction of apoptosis in cancer cells in vitro and in vivo. Direct interactions between the particles and cellular molecules to cause adverse biological responses are also discussed.

  2. Production of nanoparticle drug delivery systems with microfluidics tools.

    PubMed

    Khan, Ikram Ullah; Serra, Christophe A; Anton, Nicolas; Vandamme, Thierry F

    2015-04-01

    Nowadays the development of composite nano- and microparticles is an extensively studied area of research. This interest is growing because of the potential use of such particles in drug delivery systems. Indeed they can be used in various medical disciplines depending upon their sizes and their size distribution, which determine their final biomedical applications. Amongst the different techniques to produce nanoparticles, microfluidic techniques allow preparing particles having a specific size, a narrow size distribution and high encapsulation efficiency with ease. This review covers the general description of microfluidics, its techniques, advantages and disadvantages with focus on the encapsulation of active principles in polymeric nanoparticles as well as on pure drug nanoparticles. Polymeric nanoparticles constitute the majority of the examples reported; however lipid nanoparticulate systems (DNA, SiRNA nanocarriers) are very comparable and their formulation processes are in most cases exactly similar. Accordingly this review focuses also on active ingredient nanoparticles formulated by nanoprecipitation processes in microfluidic devices in general. It also provides detailed description of the different geometries of most common microfluidic devices and the crucial parameters involved in techniques designed to obtain the desired properties. Although the classical fabrication of nanoparticles drug delivery systems in batch is extremely well-described and developed, their production with microfluidic tools arises today as an emerging field with much more potential. In this review we present and discuss these new possibilities for biomedical applications through the current emerging developments.

  3. Charge-reversal nanoparticles: novel targeted drug delivery carriers.

    PubMed

    Chen, Xinli; Liu, Lisha; Jiang, Chen

    2016-07-01

    Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).

  4. Lipid nanoparticles for the delivery of poorly water-soluble drugs.

    PubMed

    Bunjes, Heike

    2010-11-01

    This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water-soluble drugs, with a main focus on the parenteral and peroral use of these carriers. A short historical background of the development of colloidal lipid emulsions and solid lipid nanoparticles is provided and their similarities and differences are highlighted. With regard to drug incorporation, parameters such as the chemical nature of the particle matrix and the physicochemical nature of the drug, effects of drug partition and the role of the particle interface are discussed. Since, because of the crystalline nature of their lipid core, solid lipid nanoparticles display some additional important features compared to emulsions, their specificities are introduced in more detail. This mainly includes their solid state behaviour (crystallinity, polymorphism and thermal behaviour) and the consequences of their usually non-spherical particle shape. Since lipid nanoemulsions and -suspensions are also considered as potential means to alter the pharmacokinetics of incorporated drug substances, some underlying basic considerations, in particular concerning the drug-release behaviour of such lipid nanodispersions on dilution, are addressed as well. Colloidal lipid emulsions and solid lipid nanoparticles are interesting options for the delivery of poorly water-soluble drug substances. Their specific physicochemical properties need, however, to be carefully considered to provide a rational basis for their development into effective carrier systems for a given delivery task. © 2010 The Author. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  5. Nanoparticle Delivery Enhancement With Acoustically Activated Microbubbles

    PubMed Central

    Mullin, Lee B; Phillips, Linsey C; Dayton, Paul A

    2013-01-01

    The application of microbubbles and ultrasound to deliver nanoparticle carriers for drug and gene delivery is an area that has expanded greatly in recent years. Under ultrasound exposure, microbubbles can enhance nanoparticle delivery by increasing cellular and vascular permeability. In this review, the underlying mechanisms of enhanced nanoparticle delivery with ultrasound and microbubbles and various proposed delivery techniques are discussed. Additionally, types of nanoparticles currently being investigated in preclinical studies, as well as the general limitations and benefits of a microbubble-based approach to nanoparticle delivery are reviewed. PMID:23287914

  6. Surface functionalized mesoporous silica nanoparticles for intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Vivero-Escoto, Juan Luis

    Mesoporous silica nanoparticles (MSNs) are a highly promising platform for intracellular controlled release of drugs and biomolecules. Despite that the application of MSNs in the field of intracellular drug delivery is still at its infancy very exciting breakthroughs have been achieved in the last years. A general review of the most recent progress in this area of research is presented, including a description of the latest findings on the pathways of entry into live mammalian cells together with the intracellular trafficking, a summary on the contribution of MSNs to the development of site-specific drug delivery systems, a report on the biocompatibility of this material in vitro andin vivo, and a discussion on the most recent breakthroughs in the synthesis and application of stimuli-responsive mesoporous silica-based delivery vehicles. A gold nanoparticles (AuNPs)-capped MSNs-based intracellular photoinduced drug delivery system (PR-AuNPs-MSNs) for the controlled release of anticancer drug inside of human fibroblast and liver cells was synthesized and characterized. We found that the mesoporous channels of MSNs could be efficiently capped by the photoresponsive AuNPs without leaking the toxic drug, paclitaxel, inside of human cells. Furthermore, we demonstrated that the cargo-release property of this PR-AuNPs-MSNs system could be easily photo-controlled under mild and biocompatible conditions in vitro. In collaboration with Renato Mortera (a visiting student from Italy), a MSNs based intracellular delivery system for controlled release of cell membrane impermeable cysteine was developed. A large amount of cysteine molecules were covalently attached to the silica surface of MSNs through cleavable disulfide linkers. These cysteine-containing nanoparticles were efficiently endocytosed by human cervical cancer cells HeLa. These materials exhibit 450 times higher cell growth inhibition capability than that of the conventional N-acetylcysteine prodrug. The ability to

  7. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery

    NASA Astrophysics Data System (ADS)

    Dehaini, Diana; Fang, Ronnie H.; Luk, Brian T.; Pang, Zhiqing; Hu, Che-Ming J.; Kroll, Ashley V.; Yu, Chun Lai; Gao, Weiwei; Zhang, Liangfang

    2016-07-01

    Lipid-polymer hybrid nanoparticles, consisting of a polymeric core coated by a layer of lipids, are a class of highly scalable, biodegradable nanocarriers that have shown great promise in drug delivery applications. Here, we demonstrate the facile synthesis of ultra-small, sub-25 nm lipid-polymer hybrid nanoparticles using an adapted nanoprecipitation approach and explore their utility for targeted delivery of a model chemotherapeutic. The fabrication process is first optimized to produce a monodisperse population of particles that are stable under physiological conditions. It is shown that these ultra-small hybrid nanoparticles can be functionalized with a targeting ligand on the surface and loaded with drug inside the polymeric matrix. Further, the in vivo fate of the nanoparticles after intravenous injection is characterized by examining the blood circulation and biodistribution. In a final proof-of-concept study, targeted ultra-small hybrid nanoparticles loaded with the cancer drug docetaxel are used to treat a mouse tumor model and demonstrate improved efficacy compared to a clinically available formulation of the drug. The ability to synthesize a significantly smaller version of the established lipid-polymer hybrid platform can ultimately enhance its applicability across a wider range of applications.

  8. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    PubMed

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  9. Evaluation of Organogel Nanoparticles as Drug Delivery System for Lipophilic Compounds.

    PubMed

    Martin, Baptiste; Brouillet, Fabien; Franceschi, Sophie; Perez, Emile

    2017-05-01

    The purpose of the study was to evaluate organogel nanoparticles as a drug delivery system by investigating their stability, according to the formulation strategy, and their release profile. The gelled nanoparticles were prepared by hot emulsification (above the gelation temperature) of an organogel in water, and cooling at room temperature. In the first step, we used DLS and DSC to select the most suitable formulations by optimizing the proportion of ingredients (HSA, PVA, castor oil) to obtain particles of the smallest size and greatest stability. Then, two lipophilic drug models, indomethacin and ketoconazole were entrapped in the nanoparticles made of castor oil gelled by 12-hydroxystearic acid. Thermal studies (DSC) confirmed that there was no significant alteration of gelling due to the entrapped drugs, even at 3% w/w. Very stable dispersions were obtained (>3 months), with gelled oil nanoparticles presenting a mean diameter between 250 and 300 nm. High encapsulation efficiency (>98%) was measured for indomethacin and ketoconazole. The release profile determined by in vitro dialysis showed an immediate release of the drug from the organogel nanoparticles, due to rapid diffusion. The study demonstrates the interest of these gelled oil nanoparticles for the encapsulation and the delivery of lipophilic active compounds.

  10. Breakable mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  11. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs

    PubMed Central

    Ezzati Nazhad Dolatabadi, Jafar; Valizadeh, Hadi; Hamishehkar, Hamed

    2015-01-01

    In recent years, nanomaterials have been widely applied as advanced drug and gene delivery nanosystems. Among them, solid lipid nanoparticles (SLNs) have attracted great attention as colloidal drug delivery systems for incorporating hydrophilic or lipophilic drugs and various macromolecules as well as proteins and nucleic acids. Therefore, SLNs offer great promise for controlled and site specific drug and gene delivery. This article includes general information about SLN structures and properties, production procedures, characterization. In addition, recent progress on development of drug and gene delivery systems using SLNs was reviewed. PMID:26236652

  12. Anti-P-glycoprotein conjugated nanoparticles for targeting drug delivery in cancer treatment.

    PubMed

    Iangcharoen, Pantiwa; Punfa, Wanisa; Yodkeeree, Supachai; Kasinrerk, Watchara; Ampasavate, Chadarat; Anuchapreeda, Songyot; Limtrakul, Pornngarm

    2011-10-01

    Targeting therapeutics to specific sites can enhance the efficacy of drugs, reduce required doses as well as unwanted side effects. In this work, using the advantages of the specific affinity of an immobilized antibody to membrane P-gp in two different nanoparticle formulations were thus developed for targeted drug delivery to multi-drug resistant cervical carcinoma (KB-V1) cells. Further, this was compared to the human drug sensitive cervical carcinoma cell line (KB-3-1) cells. The two nanoparticle preparations were: NP1, anti-P-gp conjugated with poly (DL-lactic-coglycolic acid) (PLGA) nanoparticle and polyethylene glycol (PEG); NP2, anti-P-gp conjugated to a modified poloxamer on PLGA nanoparticles. The cellular uptake capacity of nanoparticles was confirmed by fluorescent microscopy. Comparing with each counterpart core particles, there was a higher fluorescence intensity of the targeted nanoparticles in KBV1 cells compared to KB-3-1 cells suggesting that the targeted nanoparticles were internalized into KB-V1 cells to a greater extent than KB-3-1 cell. The results had confirmed the specificity and the potential of the developed targeted delivery system for overcoming multi-drug resistance induced by overexpression of P-gp on the cell membrane.

  13. Role of Nanoparticles in Drug Delivery and Regenerative Therapy for Bone Diseases.

    PubMed

    Gera, Sonia; Sampathi, Sunitha; Dodoala, Sujatha

    2017-01-01

    Osteoporosis is a disease characterized by progressive bone loss due to aging and menopause in women leading to bone fragility with increased susceptibility towards fractures. The silent disease weakens the bone by altering its microstructure and mass. Therapy is based on either promoting strength (via osteoblast action) or preventing disease (via osteoclast action). Current therapy with different drugs belonging to antiresorptive, anabolic and hormonal classification suffers from poor pharmacokinetic and pharmacodynamic profile. Nanoparticles provide breakthrough as an alternative therapeutic carrier and biomedical imaging tool in bone diseases. The current review highlights bone physiology and pathology along with potential applications of nanoparticles in osteoporosis through use of organic and inorganic particles for drug delivery, biomedical imaging as well as bone tissue regeneration therapy. Inorganic nanoparticles of gold, cerium, platinum and silica have effects on osteoblastic and osteoclastic lineage. Labelling and tracking of bone cells by quantum dots and gold nanoparticles are advanced and non-invasive techniques. Incorporation of nanoparticles into the scaffolds is a more recent technique for improving mechanical strength as well as regeneration during bone grafting. Promising results by in vitro and in vivo studies depicts effects of nanoparticles on biochemical markers and biomechanical parameters during osteoporosis suggesting the bright future of nanoparticles in bone applications. Any therapy which improves the drug profile and delivery to bone tissue will be promising approach. Superparamagnetic, gold, mesoporous silica nanoparticles and quantum dots provide golden opportunities for biomedical imaging by replacing the traditional invasive radionuclide techniques. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Contrast Ultrasound Targeted Treatment of Gliomas in Mice via Drug-Bearing Nanoparticle Delivery and Microvascular Ablation

    PubMed Central

    Burke, Caitlin W.; Price, Richard J.

    2010-01-01

    We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas. PMID:21206463

  15. Contrast ultrasound targeted treatment of gliomas in mice via drug-bearing nanoparticle delivery and microvascular ablation.

    PubMed

    Burke, Caitlin W; Price, Richard J

    2010-12-15

    We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas.

  16. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery.

    PubMed

    Zhang, Lin; Sang, Yuan; Feng, Jing; Li, Zhaoming; Zhao, Aili

    2016-08-01

    Oral colon-targeted drug delivery has attracted many researchers because of its distinct advantages of increasing the bioavailability of the drug at the target site and reducing the side effects. Polysaccharides that are precisely activated by the physiological environment of the colon hold greater promise for colon targeting. Considerable research efforts have been directed towards developing polysaccharide-based micro/nanocarriers. Types of polysaccharides for colon targeting and in vitro/in vivo assessments of polysaccharide-based carriers for oral colon-targeted drug delivery are summarised. Polysaccharide-based microspheres have gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon (colon cancer, inflammatory bowel disease (IBD), amoebiasis and irritable bowel syndrome (IBS)), but also for it's potential for the delivery of anti-rheumatoid arthritis and anti-chronic stable angina drugs. Besides, Polysaccharide-based micro/nanocarriers such as microbeads, microcapsules, microparticles, nanoparticles, nanogels and nanospheres are also introduced in this review.

  17. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.

    PubMed

    Martins, João Pedro; Torrieri, Giulia; Santos, Hélder A

    2018-05-01

    Nanoparticles are anticipated to overcome persistent challenges in efficient drug delivery, but the limitations associated with conventional methods of preparation are resulting in slow translation from research to clinical applications. Due to their enormous potential, microfluidic technologies have emerged as an advanced approach for the development of drug delivery systems with well-defined physicochemical characteristics and in a reproducible manner. Areas covered: This review provides an overview of microfluidic devices and materials used for their manufacturing, together with the flow patterns and regimes commonly used for nanoparticle preparation. Additionally, the different geometries used in droplet microfluidics are reviewed, with particular attention to the co-flow geometry used for the production of nanoparticles. Finally, this review summarizes the main and most recent nanoparticulate systems prepared using microfluidics, including drug nanosuspensions, polymeric, lipid, structured, and theranostic nanoparticles. Expert opinion: The production of nanoparticles at industrial scale is still a challenge, but the microfluidic technologies bring exciting opportunities to develop drug delivery systems that can be engineered in an easy, cost-effective and reproducible manner. As a highly interdisciplinary research field, more efforts and general acceptance are needed to allow for the translation of nanoparticulate drug delivery systems from academic research to the clinical practice.

  18. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review.

    PubMed

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

  19. Carrageenan Based Bionanocomposites as Drug Delivery Tool with Special Emphasis on the Influence of Ferromagnetic Nanoparticles

    PubMed Central

    Saba, Ain Us; Nawazish, Shamyla; Akhtar, Fahad; Rashid, Rehana; Mir, Sadullah; Nasir, Bushra; Afzal, Samina; Pervaiz, Fahad

    2017-01-01

    Over the past few years, considerable attention has been focused on carrageenan based bionanocomposites due to their multifaceted properties like biodegradability, biocompatibility, and nontoxicity. Moreover, these composites can be tailored according to the desired purpose by using different nanofillers. The role of ferromagnetic nanoparticles in drug delivery is also discussed here in detail. Moreover, this article also presents a short review of recent research on the different types of the carrageenan based bionanocomposites and applications. PMID:28303171

  20. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems

    PubMed Central

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-01-01

    Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914

  1. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles.

    PubMed

    Sato, Itaru; Umemura, Masanari; Mitsudo, Kenji; Fukumura, Hidenobu; Kim, Jeong-Hwan; Hoshino, Yujiro; Nakashima, Hideyuki; Kioi, Mitomu; Nakakaji, Rina; Sato, Motohiko; Fujita, Takayuki; Yokoyama, Utako; Okumura, Satoshi; Oshiro, Hisashi; Eguchi, Haruki; Tohnai, Iwai; Ishikawa, Yoshihiro

    2016-04-22

    We previously investigated the utility of μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)) nanoparticles as a new anti-cancer agent for magnet-guided delivery with anti-cancer activity. Fe(Salen) nanoparticles should rapidly heat up in an alternating magnetic field (AMF), and we hypothesized that these single-drug nanoparticles would be effective for combined hyperthermia-chemotherapy. Conventional hyperthermic particles are usually made of iron oxide, and thus cannot exhibit anti-cancer activity in the absence of an AMF. We found that Fe(Salen) nanoparticles induced apoptosis in cultured cancer cells, and that AMF exposure enhanced the apoptotic effect. Therefore, we evaluated the combined three-fold strategy, i.e., chemotherapy with Fe(Salen) nanoparticles, magnetically guided delivery of the nanoparticles to the tumor, and AMF-induced heating of the nanoparticles to induce local hyperthermia, in a rabbit model of tongue cancer. Intravenous administration of Fe(Salen) nanoparticles per se inhibited tumor growth before the other two modalities were applied. This inhibition was enhanced when a magnet was used to accumulate Fe(Salen) nanoparticles at the tongue. When an AMF was further applied (magnet-guided chemotherapy plus hyperthermia), the tumor masses were dramatically reduced. These results indicate that our strategy of combined hyperthermia-chemotherapy using Fe(Salen) nanoparticles specifically delivered with magnetic guidance represents a powerful new approach for cancer treatment.

  2. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Beiranvand, Siavash; Eatemadi, Ali; Karimi, Arash

    2016-06-01

    Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.

  3. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles.

    PubMed

    Beiranvand, Siavash; Eatemadi, Ali; Karimi, Arash

    2016-12-01

    Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.

  4. Nanocarriers for cancer-targeted drug delivery.

    PubMed

    Kumari, Preeti; Ghosh, Balaram; Biswas, Swati

    2016-01-01

    Nanoparticles as drug delivery system have received much attention in recent years, especially for cancer treatment. In addition to improving the pharmacokinetics of the loaded poorly soluble hydrophobic drugs by solubilizing them in the hydrophobic compartments, nanoparticles allowed cancer specific drug delivery by inherent passive targeting phenomena and adopted active targeting strategies. For this reason, nanoparticles-drug formulations are capable of enhancing the safety, pharmacokinetic profiles and bioavailability of the administered drugs leading to improved therapeutic efficacy compared to conventional therapy. The focus of this review is to provide an overview of various nanoparticle formulations in both research and clinical applications with a focus on various chemotherapeutic drug delivery systems for the treatment of cancer. The use of various nanoparticles, including liposomes, polymeric nanoparticles, dendrimers, magnetic and other inorganic nanoparticles for targeted drug delivery in cancer is detailed.

  5. Photoacoustic microscopy imaging for microneedle drug delivery

    NASA Astrophysics Data System (ADS)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2018-02-01

    The recent development of novel transdermal drug delivery systems (TDDS) using microneedle technology allows micron-sized conduits to be formed within the outermost skin layers attracting keen interest in skin as an interface for localized and systemic delivery of therapeutics. In light of this, researchers are using microneedles as tools to deliver nanoparticle formulations to targeted sites for effective therapy. However, in such studies the use of traditional histological methods are employed for characterization and do not allow for the in vivo visualization of drug delivery mechanism. Hence, this study presents a novel imaging technology to characterize microneedle based nanoparticle delivery systems using optical resolution-photoacoustic microscopy (OR-PAM). In this study in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and the spatial distribution of the nanoparticles in the tissue was successfully illustrated. Characterization of parameters that are relevant in drug delivery studies such as penetration depth, efficiency of delivered gold nanoparticles were monitored using the system. Photoacoustic microscopy proves an ideal tool for the characterization studies of microneedle properties and the studies shows microneedles as an ideal tool for precise and controlled drug delivery.

  6. Sodium deoxycholate-decorated zein nanoparticles for a stable colloidal drug delivery system

    PubMed Central

    Gagliardi, Agnese; Paolino, Donatella; Iannone, Michelangelo; Palma, Ernesto

    2018-01-01

    Background The use of biopolymers is increasing in drug delivery, thanks to the peculiar properties of these compounds such as their biodegradability, availability, and the possibility of modulating their physico-chemical characteristics. In particular, protein-based systems such as albumin are able to interact with many active compounds, modulating their biopharmaceutical properties. Zein is a protein of 20–40 kDa made up of many hydrophobic amino acids, generally regarded as safe (GRAS) and used as a coating material. Methods In this investigation, zein was combined with various surfactants in order to obtain stable nanosystems by means of the nanoprecipitation technique. Specific parameters, eg, temperature, pH value, Turbiscan Stability Index, serum stability, in vitro cytotoxicity and entrapment efficiency of various model compounds were investigated, in order to identify the nanoformulation most useful for a systemic drug delivery application. Results The use of non-ionic and ionic surfactants such as Tween 80, poloxamer 188, and sodium deoxycholate allowed us to obtain nanoparticles characterized by a mean diameter of 100–200 nm when a protein concentration of 2 mg/mL was used. The surface charge was modulated by means of the protein concentration and the nature of the stabilizer. The most suitable nanoparticle formulation to be proposed as a colloidal drug delivery system was obtained using sodium deoxycholate (1.25% w/v) because it was characterized by a narrow size distribution, a good storage stability after freeze-drying and significant feature of retaining lipophilic and hydrophilic compounds. Conclusion The sodium deoxycholate-coated zein nanoparticles are stable biocompatible colloidal carriers to be used as useful drug delivery systems. PMID:29430179

  7. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release.

    PubMed

    Zhang, Min; Liu, Jia; Kuang, Ying; Li, Qilin; Zheng, Di-Wei; Song, Qiongfang; Chen, Hui; Chen, Xueqin; Xu, Yanglin; Li, Cao; Jiang, Bingbing

    2017-05-01

    In this work, dextran, a polysaccharide with excellent biocompatibility, is applied as the "gatekeeper" to fabricate the pH-sensitive dextran/mesoporous silica nanoparticles (MSNs) based drug delivery systems for controlled intracellular drug release. Dextran encapsulating on the surface of MSNs is oxidized by NaIO 4 to obtain three kinds of dextran dialdehydes (PADs), which are then coupled with MSNs via pH-sensitive hydrazone bond to fabricate three kinds of drug carriers. At pH 7.4, PADs block the pores to prevent premature release of anti-cancer drug doxorubicin hydrochloride (DOX). However, in the weakly acidic intracellular environment (pH∼5.5) the hydrazone can be ruptured; and the drug can be released from the carriers. The drug loading capacity, entrapment efficiency and release rates of the drug carriers can be adjusted by the amount of NaIO 4 applied in the oxidation reaction. And from which DOX@MSN-NH-N=C-PAD 10 is chosen as the most satisfactory one for the further in vitro cytotoxicity studies and cellular uptake studies. The results demonstrate that DOX@MSN-NH-N=C-PAD 10 with an excellent pH-sensitivity can enter HeLa cells to release DOX intracellular due to the weakly acidic pH intracellular and kill the cells. In our opinion, the ingenious pH-sensitive drug delivery systems have application potentials for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microemulsions based transdermal drug delivery systems.

    PubMed

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  9. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery.

    PubMed

    Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R

    2013-04-01

    Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system

    NASA Astrophysics Data System (ADS)

    Chen, Huabing; Xiao, Ling; Du, Danrong; Mou, Dongsheng; Xu, Huibi; Yang, Xiangliang

    2010-01-01

    We report a novel facile method for preparing stable nanoparticles with inner spherical solid spheres and an outer hydrogel matrix using a hot O/W hydrogel-thickened microemulsion with spontaneous stability. The nanoparticles with average diameters of about 30.0 nm and 100.0 nm were constructed by cooling the hot hydrogel-thickened microemulsion at different temperatures, respectively. We explained the application of these nanoparticles by actualizing the cutaneous delivery of drug-loaded nanoparticles. The in vitro skin permeation studies showed that the nanoparticles could significantly reduce the penetration of model drugs through skin and resulted in their dermal uptakes in skin. The sol-gel process of TEOS was furthermore used in the template of HTM to regulate the particle size of nanoparticles. The coating of silica on the surface of nanoparticles could regulate the penetration of drug into skin from dermal delivery to transdermal delivery. This strategy provides a facile method to produce nanoparticles with long-term stability and ease of manufacture, which might have a promising application in drug delivery.

  11. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Heidegger, Simon; Gößl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2015-12-01

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized

  12. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review

    PubMed Central

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms. PMID:29520143

  13. A palladium label to monitor nanoparticle-assisted drug delivery of a photosensitizer into tumor spheroids by elemental bioimaging.

    PubMed

    Niehoff, Ann-Christin; Moosmann, Aline; Söbbing, Judith; Wiehe, Arno; Mulac, Dennis; Wehe, Christoph A; Reifschneider, Olga; Blaske, Franziska; Wagner, Sylvia; Sperling, Michael; von Briesen, Hagen; Langer, Klaus; Karst, Uwe

    2014-01-01

    In this study, the cellular uptake of the second generation photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP) was investigated using laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) at a spatial resolution of 10 μm. To achieve high sensitivity, the photosensitizer was tagged with palladium. As a tumor model system, a 3D cell culture of the TKF-1 cell line was used. These tumor spheroids were incubated with the Pd-tagged photosensitizer embedded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles to investigate the efficiency of nanoparticle based drug delivery. An accumulation of the drug in the first cell layers of the tumor spheroid was observed. In the case of nanoparticle based drug delivery, a significantly more homogeneous distribution of the photosensitizer was achieved, compared to tumor spheroids incubated with the dissolved photosensitizer without the nanoparticular drug delivery system. The infiltration depth of the Pd-tagged photosensitizer could not be increased with rising incubation time, which can be attributed to the adsorption of the photosensitizer onto cellular components.

  14. Bilirubin Nanoparticle-Assisted Delivery of a Small Molecule-Drug Conjugate for Targeted Cancer Therapy.

    PubMed

    Lee, Soyoung; Lee, Yonghyun; Kim, Hyungjun; Lee, Dong Yun; Jon, Sangyong

    2018-06-11

    Despite growing interest in targeted cancer therapy with small molecule drug conjugates (SMDCs), the short half-life of these conjugates in blood associated with their small size has limited their efficacy in cancer therapy. In this report, we propose a new approach for improving the antitumor efficacy of SMDCs based on nanoparticle-assisted delivery. Ideally, a nanoparticle-based delivery vehicle would prolong the half-life of an SMDC in blood and then release it in response to stimuli in the tumor microenvironment (TME). In this study, PEGylated bilirubin-based nanoparticles (BRNPs) were chosen as an appropriate delivery carrier because of their ability to release drugs in response to TME-associated reactive oxygen species (ROS) through rapid particle disruption. As a model SMDC, ACUPA-SN38 was synthesized by linking the prostate-specific membrane antigen (PSMA)-targeting ligand, ACUPA, to the chemotherapeutic agent, SN38. ACUPA-SN38 was loaded into BRNPs using a film-formation and rehydration method. The resulting ACUPA-SN38@BRNPs exhibited ROS-mediated particle disruption and rapid release of the SMDC, resulting in greater cytotoxicity toward PSMA-overexpressing prostate cancer cells (LNCaP) than toward ROS-unresponsive ACUPA-SN38@Liposomes. In a pharmacokinetic study, the circulation time of ACUPA-SN38@BRNPs in blood was prolonged by approximately 2-fold compared with that of the SMDC-based micellar nanoparticles. Finally, ACUPA-SN38@BRNPs showed greater antitumor efficacy in a PSMA-overexpressing human prostate xenograft tumor model than SN38@BRNPs or the SMDC alone. Collectively, these findings suggest that BRNPs are a viable delivery carrier option for various cancer-targeting SMDCs that suffer from short circulation half-life and limited therapeutic efficacy.

  15. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    PubMed Central

    Shrivastav, Anupama; Kim, Hae-Yeong; Kim, Young-Rok

    2013-01-01

    Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system. PMID:23984383

  16. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook.

    PubMed

    Song, Yuanhui; Li, Yihong; Xu, Qien; Liu, Zhe

    With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H 2 O 2 . Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment.

  17. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Ding, Xingwei; Li, Jinghua; Luo, Zhong; Hu, Yan; Liu, Junjie; Dai, Liangliang; Zhou, Jun; Hou, Changjun; Cai, Kaiyong

    2015-04-01

    To reduce the toxic side effects of traditional chemotherapeutics in vivo, we designed and constructed a biocompatible, matrix metalloproteinases (MMPs) responsive drug delivery system based on mesoporous silica nanoparticles (MSNs). MMPs substrate peptide containing PLGLAR (sensitive to MMPs) was immobilized onto the surfaces of amino-functionalized MSNs via an amidation reaction, serving as MMPs sensitive intermediate linker. Bovine serum albumin was then covalently coupled to linker as end-cap for sealing the mesopores of MSNs. Lactobionic acid was further conjugated to the system as targeting motif. Doxorubicin hydrochloride was used as the model anticancer drug in this study. A series of characterizations revealed that the system was successfully constructed. The peptide-functionalized MSNs system demonstrated relatively high sensitivity to MMPs for triggering drug delivery, which was potentially important for tumor therapy since the tumor’s microenvironment overexpressed MMPs in nature. The in vivo experiments proved that the system could efficiently inhibit the tumor growth with minimal side effects. This study provides an approach for the development of the next generation of nanotherapeutics toward efficient cancer treatment.

  18. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear

    NASA Astrophysics Data System (ADS)

    Yu, Zhan; Yu, Min; Zhang, Zhibao; Hong, Ge; Xiong, Qingqing

    2014-07-01

    Nanoparticles have attracted increasing attention for local drug delivery to the inner ear recently. Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method followed by glutaraldehyde fixation or heat denaturation. The nanoparticles were spherical in shape with an average diameter of 492 nm. The heat-denatured nanoparticles had good cytocompatibility. The nanoparticles could adhere on and penetrate through the round window membrane of guinea pigs. The nanoparticles were analyzed as drug carriers to investigate the loading capacity and release behaviors. Rhodamine B was used as a model drug in this paper. Rhodamine B-loaded nanoparticles showed a controlled release profile and could be deposited on the osseous spiral lamina. We considered that the bovine serum albumin nanoparticles may have potential applications in the field of local drug delivery in the treatment of inner ear disorders.

  19. Sonochemically synthesized biocompatible zirconium phosphate nanoparticles for pH sensitive drug delivery application.

    PubMed

    Kalita, Himani; Prashanth Kumar, B N; Konar, Suraj; Tantubay, Sangeeta; Kr Mahto, Madhusudan; Mandal, Mahitosh; Pathak, Amita

    2016-03-01

    The present work reports the synthesis of biocompatible zirconium phosphate (ZP) nanoparticles as nanocarrier for drug delivery application. The ZP nanoparticles were synthesized via a simple sonochemical method in the presence of cetyltrimethylammonium bromide and their efficacy for the delivery of drugs has been tested through various in-vitro experiments. The particle size and BET surface area of the nanoparticles were found to be ~48 nm and 206.51 m(2)/g respectively. The conventional MTT assay and cellular localization studies of the particles, performed on MDA-MB-231 cell lines, demonstrate their excellent biocompatibility and cellular internalization behavior. The loading of curcumin, an antitumor drug, onto the ZP nanoparticles shows the rapid drug uptake ability of the particles, while the drug release study, performed at two different pH values (at 7.4 and 5) depicts pH sensitive release-profile. The MTT assay and cellular localization studies revealed higher cellular inhibition and better bioavailability of the nanoformulated curcumin compared to free curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease

    PubMed Central

    Fonseca-Santos, Bruno; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2015-01-01

    Alzheimer’s disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood–brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. PMID:26345528

  1. Nanocomposites for neurodegenerative diseases: hydrogel-nanoparticle combinations for a challenging drug delivery.

    PubMed

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Rodilossi, Serena; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2011-12-01

    Neurodegenerative disorders are expected to strike social and health care systems of developed countries heavily in the coming decades. Alzheimer's and Parkinson's diseases (AD/PD) are the most prevalent neurodegenerative pathologies, and currently their available therapy is only symptomatic. However, innovative potential drugs are actively under development, though their efficacy is sometimes limited by poor brain bioavailability and/or sustained peripheral degradation. To partly overcome these constraints, the development of drug delivery devices made by biocompatible and easily administrable materials might be a great adjuvant. In particular, materials science can provide a powerful tool to design hydrogels and nanoparticles as basic components of more complex nanocomposites that might ameliorate drug or cell delivery in AD/PD. This kind of approach is particularly promising for intranasal delivery, which might increase brain targeting of neuroprotective molecules or proteins. Here we review these issues, with a focus on nanoparticles as nanocomponents able to carry and tune drug release in the central nervous system, without ignoring warnings concerning their potential toxicity.

  2. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

    PubMed

    Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester

    2015-05-26

    Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.

  3. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  4. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery.

    PubMed

    Thamphiwatana, Soracha; Fu, Victoria; Zhu, Jingying; Lu, Diannan; Gao, Weiwei; Zhang, Liangfang

    2013-10-01

    We report a novel pH-responsive gold nanoparticle-stabilized liposome system for gastric antimicrobial delivery. By adsorbing small chitosan-modified gold nanoparticles (diameter ~10 nm) onto the outer surface of negatively charged phospholipid liposomes (diameter ~75 nm), we show that at gastric pH the liposomes have excellent stability with limited fusion ability and negligible cargo releases. However, when the stabilized liposomes are present in an environment with neutral pH, the gold stabilizers detach from the liposomes, resulting in free liposomes that can actively fuse with bacterial membranes. Using Helicobacter pylori as a model bacterium and doxycycline as a model antibiotic, we demonstrate such pH-responsive fusion activity and drug release profile of the nanoparticle-stabilized liposomes. Particularly, at neutral pH the gold nanoparticles detach, and thus the doxycycline-loaded liposomes rapidly fuse with bacteria and cause superior bactericidal efficacy as compared to the free doxycycline counterpart. Our results suggest that the reported liposome system holds a substantial potential for gastric drug delivery; it remains inactive (stable) in the stomach lumen but actively interacts with bacteria once it reaches the mucus layer of the stomach where the bacteria may reside.

  5. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook

    PubMed Central

    Song, Yuanhui; Li, Yihong; Xu, Qien; Liu, Zhe

    2017-01-01

    With the development of nanotechnology, the application of nanomaterials in the field of drug delivery has attracted much attention in the past decades. Mesoporous silica nanoparticles as promising drug nanocarriers have become a new area of interest in recent years due to their unique properties and capabilities to efficiently entrap cargo molecules. This review describes the latest advances on the application of mesoporous silica nanoparticles in drug delivery. In particular, we focus on the stimuli-responsive controlled release systems that are able to respond to intracellular environmental changes, such as pH, ATP, GSH, enzyme, glucose, and H2O2. Moreover, drug delivery induced by exogenous stimuli including temperature, light, magnetic field, ultrasound, and electricity is also summarized. These advanced technologies demonstrate current challenges, and provide a bright future for precision diagnosis and treatment. PMID:28053526

  6. A New Carbon Nanotube-Based Breast Cancer Drug Delivery System: Preparation and In Vitro Analysis Using Paclitaxel.

    PubMed

    Shao, Wei; Paul, Arghya; Rodes, Laetitia; Prakash, Satya

    2015-04-01

    Paclitaxel (PTX) is one of the most important drugs for breast cancer; however, the drug effects are limited by its systematic toxicity and poor water solubility. Nanoparticles have been applied for delivery of cancer drugs to overcome their limitations. Toward this goal, a novel single-walled carbon nanotube (SWNT)-based drug delivery system was developed by conjugation of human serum albumin (HSA) nanoparticles for loading of antitumor agent PTX. The nanosized macromolecular SWNT-drug carrier (SWNT-HSA) was characterized by TEM, UV-Vis-NIR spectrometry, and TGA. The SWNT-based drug carrier displayed high intracellular delivery efficiency (cell uptake rate of 80%) in breast cancer MCF-7 cells, as examined by fluorescence-labeled drug carriers, suggesting the needle-shaped SWNT-HSA drug carrier was able to transport drugs across cell membrane despite its macromolecular structure. The drug loading on SWNT-based drug carrier was through high binding affinity of PTX to HSA proteins. The PTX formulated with SWNT-HSA showed greater growth inhibition activity in MCF-7 breast cancer cells than PTX formulated with HSA nanoparticle only (cell viability of 63 vs 70% in 48 h and 53 vs 62% in 72 h). The increased drug efficacy could be driven by SWNT-mediated cell internalization. These data suggest that the developed SWNT-based antitumor agent is functional and effective. However, more studies for in vivo drug delivery efficacy and other properties are needed before this delivery system can be fully realized.

  7. Synthesis and characterization of polylactide/doxorubicin/magnetic nanoparticles composites for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhlanga, Nikiwe; Ray, Suprakas Sinha; DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, 0001

    Magnetic iron oxide nanoparticles have potential to transform conventional therapeutics, through targeted delivery by external magnetic field modulation. Conventional drug delivery lacks specificity; both normal and infected cells are exposed to toxic drugs. Consequently, the toxicity towards healthy cells leads to detrimental side effects which are formidable. However, iron oxide research in biomedicine has been hindered by their lack of stability. This study reports on the stabilization of iron oxide by polylactide (PLA). Besides affording stable iron oxide, PLA is also good for sustained delivery of the drug. PLA/doxorubicin/magnetic nanoparticles (PLA/DOX/MNPs) spheres were synthesized by solvent evaporation method and DOXmore » anticancer drug was encapsulated. The spheres were characterized using scanning electron microscope, Fourier transform infrared microscope, thermogravimetric analyzer and UV-visible spectroscopy, which ascertained formation of the anticipated spheres and incorporation of DOX. In vitro drug release studies were carried out in both phosphate buffer (pH 7.4) and acetate buffer (pH 4.6) and they showed the same trend in both mediums. Drug release kinetics followed Higuchi model, which proved drug release by diffusion via a diffusion gradient.« less

  8. PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.

    PubMed

    Du, Jiang-bo; Song, Yan-feng; Ye, Wei-liang; Cheng, Ying; Cui, Han; Liu, Dao-zhou; Liu, Miao; Zhang, Bang-le; Zhou, Si-yuan

    2014-08-01

    The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.

  9. Surfactant-based drug delivery systems for treating drug-resistant lung cancer.

    PubMed

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S R; Goyal, Amit K

    2016-01-01

    Among all cancers, lung cancer is the major cause of deaths. Lung cancer can be categorized into two classes for prognostic and treatment purposes: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Both categories of cancer are resistant to certain drugs. Various mechanisms behind drug resistance are over-expression of superficial membrane proteins [glycoprotein (P-gp)], lung resistance-associated proteins, aberration of the intracellular enzyme system, enhancement of the cell repair system and deregulation of cell apoptosis. Structure-performance relationships and chemical compatibility are consequently major fundamentals in surfactant-based formulations, with the intention that a great deal investigation is committed to this region. With the purpose to understand the potential of P-gp in transportation of anti-tumor drugs to cancer cells with much effectiveness and specificity, several surfactant-based delivery systems have been developed which may include microspheres, nanosized drug carriers (nanoparticles, nanoemulsions, stealth liposomes, nanogels, polymer-drug conjugates), novel powders, hydrogels and mixed micellar systems intended for systemic and/or localized delivery.

  10. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.

    PubMed

    Masood, Farha

    2016-03-01

    A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Tumor Penetrating Theranostic Nanoparticles for Enhancement of Targeted and Image-guided Drug Delivery into Peritoneal Tumors following Intraperitoneal Delivery.

    PubMed

    Gao, Ning; Bozeman, Erica N; Qian, Weiping; Wang, Liya; Chen, Hongyu; Lipowska, Malgorzata; Staley, Charles A; Wang, Y Andrew; Mao, Hui; Yang, Lily

    2017-01-01

    The major obstacles in intraperitoneal (i.p.) chemotherapy of peritoneal tumors are fast absorption of drugs into the blood circulation, local and systemic toxicities, inadequate drug penetration into large tumors, and drug resistance. Targeted theranostic nanoparticles offer an opportunity to enhance the efficacy of i.p. therapy by increasing intratumoral drug delivery to overcome resistance, mediating image-guided drug delivery, and reducing systemic toxicity. Herein we report that i.p. delivery of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (IONPs) led to intratumoral accumulation of 17% of total injected nanoparticles in an orthotopic mouse pancreatic cancer model, which was three-fold higher compared with intravenous delivery. Targeted delivery of near infrared dye labeled IONPs into orthotopic tumors could be detected by non-invasive optical and magnetic resonance imaging. Histological analysis revealed that a high level of uPAR targeted, PEGylated IONPs efficiently penetrated into both the peripheral and central tumor areas in the primary tumor as well as peritoneal metastatic tumor. Improved theranostic IONP delivery into the tumor center was not mediated by nonspecific macrophage uptake and was independent from tumor blood vessel locations. Importantly, i.p. delivery of uPAR targeted theranostic IONPs carrying chemotherapeutics, cisplatin or doxorubicin, significantly inhibited the growth of pancreatic tumors without apparent systemic toxicity. The levels of proliferating tumor cells and tumor vessels in tumors treated with the above theranostic IONPs were also markedly decreased. The detection of strong optical signals in residual tumors following i.p. therapy suggested the feasibility of image-guided surgery to remove drug-resistant tumors. Therefore, our results support the translational development of i.p. delivery of uPAR-targeted theranostic IONPs for image-guided treatment of peritoneal tumors.

  12. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery.

    PubMed

    Pan, Dipanjan; Pham, Christine T N; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a 'Grail Quest' by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made 'made the turn' toward meaningful translational success. © 2015 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  13. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery

    PubMed Central

    Pan, Dipanjan; Pham, Christine TN; Weilbaecher, Katherine N; Tomasson, Michael H; Wickline, Samuel A; Lanza, Gregory M

    2016-01-01

    Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a ‘magic bullet’ to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a ‘Grail Quest’ by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made ‘made the turn’ toward meaningful translational success. PMID:26296541

  14. A facile strategy for fine-tuning the stability and drug release of stimuli-responsive cross-linked micellar nanoparticles towards precision drug delivery.

    PubMed

    Xiao, Kai; Lin, Tzu-Yin; Lam, Kit S; Li, Yuanpei

    2017-06-14

    Precision drug delivery has a great impact on the application of precision oncology for better patient care. Here we report a facile strategy for fine-tuning the stability, drug release and responsiveness of stimuli-responsive cross-linked nanoparticles towards precision drug delivery. A series of micellar nanoparticles with different levels of intramicellar disulfide crosslinkages could be conveniently produced with a mixed micelle approach. These micellar nanoparticles were all within a size range of 25-40 nm so that they could take full advantage of the enhanced permeability and retention (EPR) effect for tumor-targeted drug delivery. The properties of these nanoparticles such as critical micelle concentration (CMC), stability, drug release and responsiveness to a reductive environment could be well correlated with the levels of crosslinking (LOC). Compared to the micellar nanoparticles with a LOC at 0% that caused the death of animals of two species (mouse and rat) due to the acute toxicity such as hemolysis, the nanoparticles at all other levels of crosslinking were much safer to be administered into animals. The in vitro antitumor efficacy of micellar nanoparticles crosslinked at lower levels (20% & 50%) were much more effective than that of 100% crosslinked micellar nanoparticles in SKOV-3 ovarian cancer cells.

  15. Biodegradable thermoresponsive polymeric magnetic nanoparticles: a new drug delivery platform for doxorubicin

    NASA Astrophysics Data System (ADS)

    Andhariya, Nidhi; Chudasama, Bhupendra; Mehta, R. V.; Upadhyay, R. V.

    2011-04-01

    The use of nanoparticles as drug delivery systems for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The aim of this study is to construct a novel drug delivery platform comprising a magnetic core and biodegradable thermoresponsive shell of tri-block-copolymer. Oleic acid-coated Fe3O4 nanoparticles and hydrophilic anticancer drug "doxorubicin" are encapsulated with PEO-PLGA-PEO (polyethylene oxide-poly d, l lactide-co-glycolide-polyethylene oxide) tri-block-copolymer. Structural, magnetic, and physical properties of Fe3O4 core are determined by X-ray diffraction, vibrating sample magnetometer, and transmission electron microscopy techniques, respectively. The hydrodynamic size of composite nanoparticles is determined by dynamic light scattering and is found to be 36.4 nm at 25 °C. The functionalization of magnetic core with various polymeric chain molecules and their weight proportions are determined by Fourier transform infrared spectroscopy and thermogravimetric analysis, respectively. Encapsulation of doxorubicin into the polymeric magnetic nanoparticles, its loading efficiency, and kinetics of drug release are investigated by UV-vis spectroscopy. The loading efficiency of drug is 89% with a rapid release for the initial 7 h followed by the sustained release over a period of 36 h. The release of drug is envisaged to occur in response to the physiological temperature by deswelling of thermoresponsive PEO-PLGA-PEO block-copolymer. This study demonstrates that temperature can be exploited successfully as an external parameter to control the release of drug.

  16. Poly(styrene)-b-poly(DL-lactide) copolymer-based nanoparticles for anticancer drug delivery

    PubMed Central

    Lee, Jae-Young; Kim, Jung Sun; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-01-01

    Poly(styrene)-b-poly(DL-lactide) (PS-PDLLA) copolymer-based nanoparticles (NPs) of a narrow size distribution, negative zeta potential, and spherical shape were fabricated for the delivery of docetaxel (DCT). The particle size was consistently maintained in serum for 24 hours and a sustained drug release pattern was observed for 10 days in the tested formulations. The cytotoxicity of the developed blank NPs was negligible in prostate cancer (PC-3) cells. Cellular uptake and distribution of the constructed NPs containing a hydrophobic fluorescent dye was monitored by confocal laser scanning microscopy (CLSM) for 24 hours. Anti-tumor efficacy of the PS-PDLLA/DCT NPs in PC-3 cells was significantly more potent than that of the group treated with commercially available DCT, Taxotere® (P<0.05). Blood biochemistry tests showed that no serious toxicity was observed with the blank NPs in the liver and kidney. In a pharmacokinetic study of DCT in rats, in vivo clearance of PS-PDLLA/DCT NPs decreased while the half-life in blood increased compared to the Taxotere-treated group (P<0.05). The PS-PDLLA NPs are expected to be a biocompatible and efficient nano-delivery system for anticancer drugs. PMID:24940058

  17. Formulating nanoparticles by flash nanoprecipitation for drug delivery and sustained release

    NASA Astrophysics Data System (ADS)

    Liu, Ying

    This dissertation provides a fundamental understanding of the process for generating nanoparticles with controlled size distribution and of predicting nanoparticle stability for drug delivery and sustained release. We developed and characterized a novel technology to generate organic and inorganic nanoparticles protected by biocompatible and biodegradable polymers with precisely controlled size and size distribution. Computational fluid mechanics (CFD) together with experimental results provided details of the micromixing in the mixer. The particle size dependence on Reynolds number and supersaturation was illustrated. The study of the fundamental mass transfer phenomena leading to Ostwald ripening enables quantitative prediction of the time evolution of nanoparticles with monodistribution and relatively broader multi-distribution using beta-carotene and polystyrene-b-poly(ethylene oxide) (PS-b-PEO) as a model system. Negatively charged latex particles were used to exam the attachment of the diblock copolymer, PS-b-PEO, on the surface. The stability provided by the Columbic repulsion was replaced by steric stabilization. The attachment of the block copolymers on the surface of the colloids depends on the flow field, i.e. Reynolds number, of the mixing process. The slow degradation of poly(epsilon-caprolactone) (PCL) and poly(gamma-methyl-epsilon-caprolactone) (PMCL) was demonstrated. The slow degradation ensures long-term stability and long-term blood circulation of the polymeric nanoparticles. As a practical application, we formulate the anti-tuberculosis drug, rifampicin, into nanoparticles by conjugation to other hydrophobic molecules (such as vitamin E, PCL and 2-ethylhexyl vinyl ether) by pH sensitive cleavable chemical bonds to increase the drug loading, return stability of the nanoparticle suspension, and control drug release. The in vitro release profiles were provided by using HPLC and E.coli growth inhibition on LB agar plates. The prodrug nanoparticle

  18. Study of magnetic silk fibroin nanoparticles for massage-like transdermal drug delivery

    PubMed Central

    Chen, Ai-Zheng; Chen, Lin-Qing; Wang, Shi-Bin; Wang, Ya-Qiong; Zha, Jun-Zhe

    2015-01-01

    A synergistic approach by the combination of magnetic nanoparticles with an alternating magnetic field for transdermal drug delivery was investigated. Methotrexate-loaded silk fibroin magnetic nanoparticles were prepared using suspension-enhanced dispersion by supercritical CO2. The physiochemical properties of the magnetic nanoparticles were characterized. In vitro studies on drug permeation across skin were performed under different magnetic fields in comparison with passive diffusion. The permeation flux enhancement factor was found to increase under a stationary magnetic field, while an alternating magnetic field enhanced drug permeation more effectively; the combination of stationary and alternating magnetic fields, which has a massage-like effect on the skin, achieved the best result. The mechanistic studies using attenuated total reflection Fourier-transform infrared spectroscopy demonstrate that an alternating magnetic field can change the ordered structure of the stratum corneum lipid bilayers from the gel to the lipid-crystalline state, which can increase the fluidity of the stratum corneum lipids, thus enhancing skin penetration. Compared with the other groups, the fluorescence signal with a bigger area detected in deeper regions of the skin also reveals that the simulated massage could enhance the drug permeation across the skin by increasing the follicular transport. The combination of magnetic nanoparticles with stationary/alternating magnetic fields has potential for effective massage-like transdermal drug delivery. PMID:26229467

  19. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment

    PubMed Central

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects. PMID:28255348

  20. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.

    PubMed

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.

  1. Functionally engineered nanosized particles in pharmaceutics: improved oral delivery of poorly water-soluble drugs.

    PubMed

    Ozeki, Tetsuya; Tagami, Tatsuaki

    2013-01-01

    The development of drug nanoparticles has attracted substantial attention because of their potential to improve the dissolution rate and oral availability of poorly water-soluble drugs. This review summarizes the recent articles that discussed nanoparticle-based oral drug delivery systems. The preparation methods were categorized as top-down and bottom-up methods, which are common methods for preparing drug nanoparticles. In addition, methods of handling drug nanoparticles (e.g., one-step preparation of nanocomposites which are microparticles containing drug nanoparticles) were introduced for the effective preservation of drug nanoparticles. The carrier-based preparation of drug nanoparticles was also introduced as a potentially promising oral drug delivery system.

  2. Calcium silicate-based drug delivery systems.

    PubMed

    Zhu, Ying-Jie; Guo, Xiao-Xuan; Sham, Tsun-Kong

    2017-02-01

    Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.

  3. Polyphosphoester nanoparticles as biodegradable platform for delivery of multiple drugs and siRNA

    PubMed Central

    Elzeny, Hadeel; Zhang, Fuwu; Ali, Esraa N; Fathi, Heba A; Zhang, Shiyi; Li, Richen; El-Mokhtar, Mohamed A; Hamad, Mostafa A; Wooley, Karen L; Elsabahy, Mahmoud

    2017-01-01

    Delivery of multiple therapeutics and/or diagnostic agents to diseased tissues is challenging and necessitates the development of multifunctional platforms. Among the various strategies for design of multifunctional nanocarriers, biodegradable polyphosphoester (PPE) polymers have been recently synthesized via a rapid and simple synthetic strategy. In addition, the chemical structure of the polymer could be tuned to form nanoparticles with varying surface chemistries and charges, which have shown exceptional safety and biocompatibility as compared to several commercial agents. The purpose of this study was to exploit a mixture of PPE nanoparticles of cationic and neutral surface charges for multiple delivery of anticancer drugs (ie, sorafenib and paclitaxel) and nucleic acids (ie, siRNA). Cationic PPE polymers could efficiently complex siRNA, and the stability of the nanoparticles could be maintained in physiological solutions and upon freeze-drying and were able to deliver siRNA in vivo when injected intravenously in mice. Commercially available cationic polyethylenimine polymer had LD50 of ca. 61.7 mg/kg in mice, whereas no animal died after injection of the cationic PPE polymer at a dose of >130 mg/kg. Neutral PPE nanoparticles were able to encapsulate two hydrophobic drugs, namely, sorafenib and paclitaxel, which are commonly used for the treatment of hepatocellular carcinoma. Mixing the neutral and cationic PPE nanoparticles did not result in any precipitation, and the size characteristics of both types of nanoparticles were maintained. Hence, PPE polymers might have potential for the delivery of multiple drugs and diagnostic agents to diseased tissues via simple synthesis of the individual polymers and assembly into nanoparticles that can host several drugs while being mixed in the same administration set, which is of importance for industrial and clinical development. PMID:28260861

  4. Polyphosphoester nanoparticles as biodegradable platform for delivery of multiple drugs and siRNA.

    PubMed

    Elzeny, Hadeel; Zhang, Fuwu; Ali, Esraa N; Fathi, Heba A; Zhang, Shiyi; Li, Richen; El-Mokhtar, Mohamed A; Hamad, Mostafa A; Wooley, Karen L; Elsabahy, Mahmoud

    2017-01-01

    Delivery of multiple therapeutics and/or diagnostic agents to diseased tissues is challenging and necessitates the development of multifunctional platforms. Among the various strategies for design of multifunctional nanocarriers, biodegradable polyphosphoester (PPE) polymers have been recently synthesized via a rapid and simple synthetic strategy. In addition, the chemical structure of the polymer could be tuned to form nanoparticles with varying surface chemistries and charges, which have shown exceptional safety and biocompatibility as compared to several commercial agents. The purpose of this study was to exploit a mixture of PPE nanoparticles of cationic and neutral surface charges for multiple delivery of anticancer drugs (ie, sorafenib and paclitaxel) and nucleic acids (ie, siRNA). Cationic PPE polymers could efficiently complex siRNA, and the stability of the nanoparticles could be maintained in physiological solutions and upon freeze-drying and were able to deliver siRNA in vivo when injected intravenously in mice. Commercially available cationic polyethylenimine polymer had LD 50 of ca. 61.7 mg/kg in mice, whereas no animal died after injection of the cationic PPE polymer at a dose of >130 mg/kg. Neutral PPE nanoparticles were able to encapsulate two hydrophobic drugs, namely, sorafenib and paclitaxel, which are commonly used for the treatment of hepatocellular carcinoma. Mixing the neutral and cationic PPE nanoparticles did not result in any precipitation, and the size characteristics of both types of nanoparticles were maintained. Hence, PPE polymers might have potential for the delivery of multiple drugs and diagnostic agents to diseased tissues via simple synthesis of the individual polymers and assembly into nanoparticles that can host several drugs while being mixed in the same administration set, which is of importance for industrial and clinical development.

  5. Recent Trends in Nanotechnology-Based Drugs and Formulations for Targeted Therapeutic Delivery.

    PubMed

    Iqbal, Hafiz M N; Rodriguez, Angel M V; Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep

    2017-01-01

    In the recent past, a wider spectrum of nanotechnologybased drugs or drug-loaded devices and systems has been engineered and investigated with high interests. The key objective is to help for an enhanced/better quality of patient life in a secure way by avoiding/limiting drug abuse, or severe adverse effects of some in practice traditional therapies. Various methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, nanoparticles-based therapeutic agents are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable therapeutic drug delivery system (DDS) for multipurpose applications is essential and a core demand to tackle many human health related diseases. In this context, nanotechnology-based several advanced DDS have been engineered with novel characteristics for biomedical, pharmaceutical and cosmeceutical applications that include but not limited to the enhanced/improved bioactivity, bioavailability, drug efficacy, targeted delivery, and therapeutically safer with an extra advantage of overcoming demerits of traditional drug formulations/designs. This review work is focused on recent trends/advances in nanotechnology-based drugs and formulations designed for targeted therapeutic delivery. Moreover, information is also reviewed and given from recent patents and summarized or illustrated diagrammatically to depict a better understanding. Recent patents covering various nanotechnology-based approaches for several applications have also been reviewed. The drug-loaded nanoparticles are among versatile candidates with multifunctional characteristics for potential applications in biomedical, and tissue engineering sector. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Elegant pH-Responsive Nanovehicle for Drug Delivery Based on Triazine Dendrimer Modified Magnetic Nanoparticles.

    PubMed

    Landarani-Isfahani, Amir; Moghadam, Majid; Mohammadi, Shima; Royvaran, Maryam; Moshtael-Arani, Naimeh; Rezaei, Saghar; Tangestaninejad, Shahram; Mirkhani, Valiollah; Mohammadpoor-Baltork, Iraj

    2017-08-29

    Owing to properties of magnetic nanoparticles and elegant three-dimensional macromolecule architectural features, dendrimeric structures have been investigated as nanoscale drug delivery systems. In this work, a novel magnetic nanocarrier, generation two (G2) triazine dendrimer modified Fe 3 O 4 @SiO 2 magnetic nanoparticles (MNP-G2), was designed, fabricated, and characterized by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The prepared MNP-G2 nanosystem offers a new formulation that combines the unique properties of MNPs and triazine dendrimer as a biocompatible material for biomedical applications. To demonstrate the potential of MNP-G2, the nanoparticles were loaded with methotrexate (MTX), a proven chemotherapy drug. The MTX-loaded MNP-G2 (MNP-G2/MTX) exhibited a high drug-loading capacity of MTX and the excellent ability for controlled drug release. The cytotoxicity of MNP-G2/MTX using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide based assay and MCF-7, HeLa, and Caov-4 cell lines revealed that MNP-G2/MTX was more active against the tumor cells than the free drug in a mildly acidic environment. The results of hemolysis, hemagglutination, and coagulation assays confirmed the good blood safety of MNP-G2/MTX. Moreover, the cell uptake and intracellular distribution of MNP-G2/MTX were studied by flow cytometry analysis and confocal laser scanning microscopy (CLSM). This research suggests that MNP-G2/MTX with good biocompatibility and degradability can be selected as an ideal and effective drug carrier in targeted biomedicine studies especially anticancer applications.

  7. 'Smart' nanoparticles as drug delivery systems for applications in tumor therapy.

    PubMed

    Fang, Zhi; Wan, Lin-Yan; Chu, Liang-Yin; Zhang, Yan-Qiong; Wu, Jiang-Feng

    2015-01-01

    In the therapy of clinical diseases such as cancer, it is important to deliver drugs directly to tumor sites in order to maximize local drug concentration and reduce side effects. This objective may be realized by using 'smart' nanoparticles (NPs) as drug delivery systems, because they enable dramatic conformational changes in response to specific physical/chemical stimuli from the diseased cells for targeted and controlled drug release. In this review, we first briefly summarize the characteristics of 'smart' NPs as drug delivery systems in medical therapy, and then discuss their targeting transport, transmembrane and endosomal escape behaviors. Lastly, we focus on the applications of 'smart' NPs as drug delivery systems for tumor therapy. Biodegradable 'smart' NPs have the potential to achieve maximum efficacy and drug availability at the desired sites, and reduce the harmful side effects for healthy tissues in tumor therapy. It is necessary to select appropriate NPs and modify their characteristics according to treatment strategies of tumor therapy.

  8. Application of Chitosan and its Derivatives in Nanocarrier Based Pulmonary Drug Delivery Systems.

    PubMed

    Dua, Kamal; Bebawy, Mary; Awasthi, Rajendra; Tekade, Rakesh K; Tekade, Muktika; Gupta, Gaurav; De Jesus Andreoli Pinto, Terezinha; Hansbro, Philip M

    2017-01-01

    The respiratory tract as a non-invasive route of drug administration is gaining increasing attention in the present time on achieving both local and the systemic therapeutic effects. Success in achieving pulmonary delivery, requires overcoming barriers including mucociliary clearance and uptake by macrophages. An effective drug delivery system delivers the therapeutically active moieties at the right time and rate to target sites. A major limitation associated with most of the currently available conventional and controlled release drug delivery devices is that not all the drug candidates are well absorbed uniformly locally or systemically. We searched and reviewed the literature focusing on chitosan and chitosan derivative based nanocarrier systems used in pulmonary drug delivery. We focused on the applications of chitosan in the development of nanoparticles for this purpose. Chitosan, a natural linear bio-polyaminosaccharide is central in the development of novel drug delivery systems (NDDS) including nanoparticles for use in the treatment of various respiratory diseases. It achieves this through its unique properties of biodegradability, biocompatibility, mucoadhesivity and its ability to enhance macromolecule permeation across membranes. It also achieves sustained and targeted effects, primary requirements for an effective pulmonary drug delivery system. This review highlights the applications and importance of chitosan with special emphasis on nanotechnology, employed in the management of respiratory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and pulmonary fibrosis. This review will be of interest to both the biological and formulation scientists as it provides a summary on the utility of chitosan in pulmonary drug delivery systems. At present, there are no patented chitosan based controlled release products available for pulmonary drug delivery and so this area has enormous potential in the field of respiratory science

  9. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

    PubMed

    Mohammed, Leena; Ragab, Doaa; Gomaa, Hassan

    2016-01-01

    Engineered magnetic nanoparticles (MNPs) possess unique properties and hold great potential in biomedicine and clinical applications. With their magnetic properties and their ability to work at cellular and molecular level, MNP have been applied both in-vitro and in-vivo in targeted drug delivery and imaging. Focusing on Iron Oxide Superparamagnetic nanoparticles (SPIONs), this paper elaborates on the recent advances in development of hybrid polymeric-magnetic nanoparticles. Their main applications in drug delivery include Chemotherapeutics, Hyperthermia treatment, Radio-therapeutics, Gene delivary, and Biotheraputics. Physiochemical properties such as size, shape, surface and magnetic properties are key factors in determining their behavior. Additionally tailoring SPIONs surface is often vital for desired cell targetting and improved efficiency. Polymer coating is specifically reviewed with brief discussion of SPIONs administration routes. Commonly used drug release models for describing release mechanisms and the nanotoxicity aspects are also discussed. This review focus on superparamagnetic nanoparticles coated with different types of polymers starting with the key physiochemical features that dominate their behavior. The importance of surface modification is addressed. Subsequently, the major classes of polymer modified iron oxide nanoparticles is demonstrated according to their clinical use and application. Clinically approved nanoparticles are then addressed and the different routes of administration are mentioned. Lastly, mathematical models of drug release profile of the common used nanoparticles are addressed. MNPs emerging in recent medicine are remarkable for both imaging and therapeutics, particularly, as drug carriers for their great potential in targeted delivery and cancer treatment. Targeting ability and biocompatibility can be improved though surface coating which provides a mean to alter the surface features including physical characteristics and

  10. Targeted Intracellular Delivery of Antituberculosis Drugs to Mycobacterium tuberculosis-Infected Macrophages via Functionalized Mesoporous Silica Nanoparticles

    PubMed Central

    Lee, Bai-Yu; Xue, Min; Thomas, Courtney R.; Meng, Huan; Ferris, Daniel; Nel, Andre E.; Zink, Jeffrey I.

    2012-01-01

    Delivery of antituberculosis drugs by nanoparticles offers potential advantages over free drug, including the potential to target specifically the tissues and cells that are infected by Mycobacterium tuberculosis, thereby simultaneously increasing therapeutic efficacy and decreasing systemic toxicity, and the capacity for prolonged release of drug, thereby allowing less-frequent dosing. We have employed mesoporous silica nanoparticle (MSNP) drug delivery systems either equipped with a polyethyleneimine (PEI) coating to release rifampin or equipped with cyclodextrin-based pH-operated valves that open only at acidic pH to release isoniazid (INH) into M. tuberculosis-infected macrophages. The MSNP are internalized efficiently by human macrophages, traffic to acidified endosomes, and release high concentrations of antituberculosis drugs intracellularly. PEI-coated MSNP show much greater loading of rifampin than uncoated MSNP and much greater efficacy against M. tuberculosis-infected macrophages. MSNP were devoid of cytotoxicity at the particle doses employed for drug delivery. Similarly, we have demonstrated that the isoniazid delivered by MSNP equipped with pH-operated nanovalves kill M. tuberculosis within macrophages significantly more effectively than an equivalent amount of free drug. These data demonstrate that MSNP provide a versatile platform that can be functionalized to optimize the loading and intracellular release of specific drugs for the treatment of tuberculosis. PMID:22354311

  11. Recovery of Drug Delivery Nanoparticles from Human Plasma using an Electrokinetic Platform Technology

    PubMed Central

    Ibsen, Stuart; Sonnenberg, Avery; Schutt, Carolyn; Mukthavaram, Rajesh; Yeh, Yasan; Ortac, Inanc; Manouchehri, Sareh; Kesari, Santosh; Esener, Sadik

    2015-01-01

    The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here we present the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. We show this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low density nano-liposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. We believe that this new recovery technique is broadly applicable to the recovery of nanoparticles from high conductance fluids in a wide range of applications. PMID:26274918

  12. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment.

    PubMed

    Jain, Vikas; Jain, Shikha; Mahajan, S C

    2015-01-01

    Cancer is defined as an uncontrolled growth of abnormal cells. Current treatment strategies for cancer include combination of radiation, chemotherapy and surgery. The long-term use of conventional drug delivery systems for cancer chemotherapy leads to fatal damage of normal proliferate cells and this is particularly used for the management of solid tumors, where utmost tumor cells are not invaded quickly. A targeted drug delivery system (TDDS) is a system, which releases the drug at a preselected biosite in a controlled manner. Nanotechnology based delivery systems are making a significant impact on cancer treatment and the polymers play key role in the development of nanopraticlulate carriers for cancer therapy. Some important technological advantages of nanotherapeutic drug delivery systems (NDDS) include prolonged half-life, improved bio-distribution, increased circulation time of the drug, controlled and sustained release of the drug, versatility of route of administration, increased intercellular concentration of drug and many more. This review covers the current research on polymer based anticancer agents, the rationale for development of these polymer therapeutical systems and discusses the benefits and challenges of cancer nanomedicines including polymer-drug conjugates, micelles, dendrimers, immunoconjugates, liposomes, nanoparticles.

  13. Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles.

    PubMed

    Numata, Keiji; Yamazaki, Shoya; Naga, Naofumi

    2012-05-14

    We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.

  14. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.

    PubMed

    Tao, Cuilian; Zhu, Yufang

    2014-11-07

    Magnetic mesoporous silica (MMS) nanoparticles with controllable magnetization have been synthesized by encapsulating Fe3O4 nanoparticles in a mesoporous silica matrix. The structure, magnetic heating capacity and drug delivery ability of MMS nanoparticles were evaluated. The results showed that MMS nanoparticles had an average particle size of 150 nm and showed low cytotoxicity and efficient cell uptake ability. MMS nanoparticles exhibited a sustained drug release in the medium of pH 5.0, but a very slow release in the medium of pH 7.4. On the other hand, MMS nanoparticles could controllably generate heat to reach the hyperthermia temperature within a short time upon exposure to an alternating magnetic field due to the superparamagnetic behavior and controllable magnetization. Therefore, MMS nanoparticles could provide a promising multifunctional platform for the combination of chemotherapy and hyperthermia for cancer therapy.

  15. Design and Synthesis of Self-Assembled Polymeric Nanoparticles for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Logie, Jennifer

    Current chemotherapeutics are plagued by poor solubility and selectivity, requiring toxic excipients in formulations and causing a number of dose limiting side effects. Nanoparticle delivery has emerged as a strategy to more effectively deliver chemotherapeutics to the tumour site. Specifically, polymeric micelles enable the solubilization of hydrophobic small molecule drugs within the core and mitigate the necessity of excipients. Notwithstanding the significant progress made in polymeric micelle delivery, translation is limited by poor stability and low drug loading. In this work, a rational design approach is used to chemically modify poly(D,L-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-graft-poly(ethylene glycol) (P(LA-co-TMCC)-g-PEG) in order to overcome these limitations and effectively deliver drug to tumours. The PEG density of the polymer system was optimized to enhance the stability of our polymeric micelles. Higher PEG densities permitted the lyophilization of micelles and enhanced the serum stability of the system. To increase the drug loading of our system, we facilitated specific intermolecular interactions within the micelle core. For drugs that form colloidal aggregates, such as pentyl-PABC doxazolidine, polymers were used to stabilize the colloidal core against aggregation and protein adsorption. For more challenging molecules, where self-assembly cannot be controlled, such as docetaxel, we modified the polymeric backbone with a peptide from the binding site of the drug to achieve loadings five times higher than those achieved in conventional micelle systems. This novel docetaxel nanoparticle was assessed in vivo in an orthotopic mouse model of breast cancer, where it showed a wider therapeutic index than the conventional ethanolic polysorbate 80 formulation. The improved tolerability of this formulation enabled higher dosing regimens and led to heightened efficacy and survival in this mouse model. Combined, these studies validated P

  16. Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context

    NASA Astrophysics Data System (ADS)

    de Angelis, F.; Pujia, A.; Falcone, C.; Iaccino, E.; Palmieri, C.; Liberale, C.; Mecarini, F.; Candeloro, P.; Luberto, L.; de Laurentiis, A.; Das, G.; Scala, G.; di Fabrizio, E.

    2010-10-01

    Multitasking nanoparticles are gaining great attention for smart drug delivery systems. The exploration of the nano-scale opens new concrete opportunities for revealing new properties and undiscovered cell-particle interactions. Here we present a biodegradable nanoporous silicon nanoparticle that can be successfully employed for in vivo targeted drug delivery and sustained release. The bare nanoporous nanocarriers can be accurately designed and fabricated with an effective control of porosity, surface chemistry and particle size, up to a few nm. The proposed nanoparticles exhibit several remarkable features including high payload, biodegradability, no toxicity, and multiple loading in water without the need of additional chemical reagents at room temperature. The targeting strategy is based on phage display technology that was successfully used to discover cell surface binding peptide for murine B lymphoma A20 cell line. The peptide used in combination with the nanoporous nanoparticles allows an efficient in vivo targeting, a sustained release and a sensible therapeutic effect.Multitasking nanoparticles are gaining great attention for smart drug delivery systems. The exploration of the nano-scale opens new concrete opportunities for revealing new properties and undiscovered cell-particle interactions. Here we present a biodegradable nanoporous silicon nanoparticle that can be successfully employed for in vivo targeted drug delivery and sustained release. The bare nanoporous nanocarriers can be accurately designed and fabricated with an effective control of porosity, surface chemistry and particle size, up to a few nm. The proposed nanoparticles exhibit several remarkable features including high payload, biodegradability, no toxicity, and multiple loading in water without the need of additional chemical reagents at room temperature. The targeting strategy is based on phage display technology that was successfully used to discover cell surface binding peptide for

  17. Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery

    NASA Astrophysics Data System (ADS)

    Nui Pham, Xuan; Phuoc Nguyen, Tan; Nhung Pham, Tuyet; Thuy Nga Tran, Thi; Van Thi Tran, Thi

    2016-12-01

    In this work anti-cancer drug curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles was modified by chitosan (CS). The magnetic iron oxide nanoparticles were synthesized by using reverse micro-emulsion (water-in-oil) method. The magnetic nanoparticles without loaded drug and drug-loaded magnetic nanoparticles were characterized by XRD, FTIR, TG-DTA, SEM, TEM, and VSM techniques. These nanoparticles have almost spherical shape and their diameter varies from 8 nm to 17 nm. Measurement of VSM at room temperature showed that iron oxide nanoparticles have superparamagnetic properties. In vitro drug loading and release behavior of curcumin drug-loaded CS-Fe3O4 nanoparticles were studied by using UV-spectrophotometer. In addition, the cytotoxicity of the modified nanoparticles has shown anticancer activity against A549 cell with IC50 value of 73.03 μg/ml. Therefore, the modified magnetic nanoparticles can be used as drug delivery carriers on target in the treatment of cancer cells.

  18. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    PubMed

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  19. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

    PubMed Central

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  20. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Sun, Minjie; Ping, Qineng; Ying, Zhi; Liu, Wen

    2010-01-01

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  1. Gold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery

    PubMed Central

    Sathish Kumar, Kannaiyan; Jaikumar, Vasudevan

    2011-01-01

    The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. The drug-entrapped nanocapsules were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) studies indicated the absence of chemical interactions between the drug, polymer and metal nanoparticles. The drug loaded nanoparticles are spherical in shape and had average diameter in the range of 100-300 nm. Drug release study showed that the acidic media provided a faster release than the phosphate buffer media. These findings were also compared statistically through calculating mean, standard deviation and coefficient of variation for various polymer nanocapsules. However, the drug release for gold nanoparticles/anticancer drug (Au-cis) incorporated ethylcellulose nanocapsules was controlled and slow compared to iron oxide nanoparticles-cisplatin incorporated ethylcellulose nanocapsules. Hence, gold nanoparticles act as good trapping agents which slow down the rate of drug release from nanocapsules. PMID:24250373

  2. Multi-ligand nanoparticles for targeted drug delivery to the injured vascular wall

    NASA Astrophysics Data System (ADS)

    Kona, Soujanya

    Pathological conditions like coronary artery disease, acute myocardial infarction, stroke, and peripheral artery diseases as well as cardiovascular interventions used in the treatment of coronary artery diseases such as angioplasty and stenting damage/injure the blood vessel wall, leading to inflamed or activated endothelial cells that have been implicated in events leading to thrombosis, inflammation, and restenosis. Oral administration of anti-coagulant and anti-inflammatory drugs causes systemic toxicity, bleeding, patient incompliance, and inadequate amounts of drugs at the injured area. Though drug-eluting stents have shown therapeutic benefits, complications such as in-stent restenosis and late thrombosis still remain and are a cause for concern. Rapid growth in the field of nanotechnology and nanoscience in recent years has paved the way for new targeted and controlled drug delivery strategies. In this perspective, the development of biodegradable nanoparticles for targeted intracellular drug delivery to the inflamed endothelial cells may offer an improved avenue for treatment of cardiovascular diseases. The major objective of this research was to develop "novel multi-ligand nanoparticles," as drug carriers that can efficiently target and deliver therapeutic agents to the injured/inflamed vascular cells under dynamic flow conditions. Our approach mimics the natural binding ability of platelets to injured/activated endothelial cells through glycoprotein Ib (GPIb) bound to P-selectin expressed on inflamed endothelial cells and to the subendothelium through GPIb binding to von Willebrand factor (vWF) deposited onto the injured vascular wall. Our design also exploits the natural cell membrane translocation ability of the internalizing cell peptide - trans-activating transcriptor (TAT) to enhance the nanoparticle uptake by the targeted cells. Our hypothesis is that these multi-ligand nanoparticles would show an increased accumulation at the injury site since GPIb

  3. Cytocompatible chitosan-graft-mPEG-based 5-fluorouracil-loaded polymeric nanoparticles for tumor-targeted drug delivery.

    PubMed

    Antoniraj, M Gover; Ayyavu, Mahesh; Henry, Linda Jeeva Kumari; Nageshwar Rao, Goutham; Natesan, Subramanian; Sundar, D Sathish; Kandasamy, Ruckmani

    2018-03-01

    Biodegradable materials like chitosan (CH) and methoxy polyethylene glycol (mPEG) are widely being used as drug delivery carriers for various therapeutic applications. In this study, copolymer (CH-g-mPEG) of CH and carboxylic acid terminated mPEG was synthesized by carbodiimide-mediated acid amine reaction. The resultant hydrophilic copolymer was characterized by Fourier transform infrared spectroscopy and 1 H NMR studies, revealing its relevant functional bands and proton peaks, respectively. Blank polymeric nanoparticles (B-PNPs) and 5-fluorouracil loaded polymeric nanoparticles (5-FU-PNPs) were formulated by ionic gelation method. Furthermore, folic acid functionalized FA-PNPs and FA-5-FU-PNPs were prepared for folate receptor-targeted drug delivery. FA-5-FU-PNPs were characterized by particle size, zeta potential, and in vitro drug release studies, resulting in 197.7 nm, +29.9 mv, and sustained drug release of 88% in 24 h, respectively. Cytotoxicity studies were performed for FA-PNPs and FA-5-FU-PNPs in MCF-7 cell line, which exhibited a cell viability of 80 and 41%, respectively. In vitro internalization studies were carried out for 5-FU-PNPs and FA-5-FU-PNPs which demonstrated increased cellular uptake of FA-5-FU-PNPs by receptor-mediated transport. Significant (p < .01) reduction (1.5-fold) of reactive oxygen species (ROS) accumulation was observed in lipopolysaccharides-stimulated RAW264.7 macrophages, revealing its potent antioxidant property. From the obtained results, it is concluded that folic acid functionalization of 5-FU-PNPs is an ideal approach for sustained and targeted drug delivery, thereby influencing better therapeutic effect.

  4. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents.

    PubMed

    Angelova, Angelina; Garamus, Vasil M; Angelov, Borislav; Tian, Zhenfen; Li, Yawen; Zou, Aihua

    2017-11-01

    The present work highlights recent achievements in development of nanostructured dispersions and biocolloids for drug delivery applications. We emphasize the key role of biological small-angle X-ray scattering (BioSAXS) investigations for the nanomedicine design. A focus is given on controlled encapsulation of small molecular weight phytochemical drugs in lipid-based nanocarriers as well as on encapsulation of macromolecular siRNA, plasmid DNA, peptide and protein pharmaceuticals in nanostructured nanoparticles that may provide efficient intracellular delivery and triggered drug release. Selected examples of utilisation of the BioSAXS method for characterization of various types of liquid crystalline nanoorganizations (liposome, spongosome, cubosome, hexosome, and nanostructured lipid carriers) are discussed in view of the successful encapsulation and protection of phytochemicals and therapeutic biomolecules in the hydrophobic or the hydrophilic compartments of the nanocarriers. We conclude that the structural design of the nanoparticulate carriers is of crucial importance for the therapeutic outcome and the triggered drug release from biocolloids. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Protein-Based Drug-Delivery Materials

    PubMed Central

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review. PMID:28772877

  6. Protein-Based Drug-Delivery Materials.

    PubMed

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-05-09

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function-including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments-are summarized at the end of this review.

  7. tLyP-1-conjugated mesoporous silica nanoparticles for tumor targeting and penetrating hydrophobic drug delivery

    NASA Astrophysics Data System (ADS)

    Xu, Baiyao; Ju, Yang; Song, Guanbin; Cui, Yanbin

    2013-12-01

    Mesoporous silica nanoparticles (MSNs) are among the most appealing candidates for targeted drug delivery, a process for which it is essential that nanoparticles be internalized into targeted cells with high speed and efficiency. Therefore, it is necessary to conjugate a targeting ligand to the surface of a nanocarrier in order to trigger rapid receptor-mediated endocytosis and effective cellular uptake, which occurs following recognition and selective binding to a target cell's membrane receptor. Here, a tumor targeting and penetrating drug delivery system (DDS) based on MSNs ( 100 nm in size) is described. The MSNs were functionalized by engrafting with the tumor-homing and penetrating peptide tLyP-1. The fabricated MSN-tLyP-1 loaded with camptothecin (CPT) showed a robust targeting and penetrating efficiency to HeLa cells and MCF-7 cells and induced the death of these cells. Moreover, the adverse side effect of CPT on human mesenchymal stem cells (hMSCs) was minimized, because the nanoparticles were selectively targeted to the tumor cells, and little hydrophobic CPT was released into the culture medium or blood. The results indicate that the MSN-tLyP-1 DDS has great potential for the delivery of hydrophobic anticancer drugs to target tumors.

  8. Nanoparticles Made From Xyloglucan-Block-Polycaprolactone Copolymers: Safety Assessment for Drug Delivery.

    PubMed

    Mazzarino, Letícia; Loch-Neckel, Gecioni; Dos Santos Bubniak, Lorena; Ourique, Fabiana; Otsuka, Issei; Halila, Sami; Curi Pedrosa, Rozangela; Santos-Silva, Maria Cláudia; Lemos-Senna, Elenara; Curti Muniz, Edvani; Borsali, Redouane

    2015-09-01

    Xyloglucan-block-polycaprolactone (XGO-PCL) copolymer nanoparticles have been proposed as nanocarriers for drug delivery. However, the possible harmful effects of exposure to nanoparticles still remain a concern. Therefore, the aim of this study is to evaluate the potential toxicity of XGO-PCL nanoparticles using in vitro and in vivo assays. Cytotoxicity and genotoxicity studies were conducted on MRC-5 human fetal lung fibroblast cells upon exposure to XGO-PCL nanoparticles. No significant reduction in the cell viability and no DNA damage were observed at the different concentrations tested. Erythrocyte toxicity was assessed by the incubation of nanoparticles with human blood. XGO-PCL nanoparticles induced a hemolytic ratio of less than 1%, indicating good blood compatibility. Finally, the subacute toxicity of XGO-PCL nanoparticles (10 mg/kg/day) was evaluated in BALB/c mice when administered orally or intraperitoneally for 14 days. Results of the in vivo toxicity study showed no clinical signs of toxicity, mortality, weight loss, or hematological and biochemical alterations after treatment with nanoparticles. Also, microscopic analysis of the major organs revealed no histopathological abnormalities, corroborating the previous results. Thus, it can be concluded that XGO-PCL nanoparticles induced no effect indicative of toxicity, indicating their potential use as drug delivery systems. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. A novel self-assembled nanoparticle platform based on pectin-eight-arm polyethylene glycol-drug conjugates for co-delivery of anticancer drugs.

    PubMed

    Liu, Yanxue; Liu, Kefeng; Li, Xiaomin; Xiao, Shangzhen; Zheng, Dan; Zhu, Pengbo; Li, Chunxiao; Liu, Jing; He, Jing; Lei, Jiandu; Wang, Luying

    2018-05-01

    The application of non-toxic carriers to increase drug loading, multi-drug delivery, and extremely small size of nano-drugs to construct a tremendous transmission system is the goal for all researchers to be pursued. The proposal of natural pectin nano-platform for delivery of multiple drugs is critical for biomedical research, especially a particle size of below 100nm with high yield. Here we design a new core-shell structure pectin-eight-arm polyethylene glycol-ursolic acid/hydrooxycampothecin nanoparticle (Pec-8PUH NPs) through a special self-assembly method for stabilizing and dispersing particles, improving water-solubility, and achieving drug controlled release. The obtained Pec-8PUH NPs possessed appropriate size (~91nm), drug-loaded efficiency and encapsulation efficiency through the regulation of eight-arm polyethylene glycol. In addition, Pec-8PUH NPs could enhance cell cytotoxicity, shorten blood retention time (7.3-fold UA, 7.2-fold HCPT) and more effective cellular uptake than free drugs, which exhibited an obvious synergistic effect of UA and HCPT by the co-delivery. 4T1 tumor-bearing mice also showed a higher survival rate than free UA and free HCPT. The result further shows that this novel drug delivery system has a promising potential for anti-cancer combination therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Recovery of Drug Delivery Nanoparticles from Human Plasma Using an Electrokinetic Platform Technology.

    PubMed

    Ibsen, Stuart; Sonnenberg, Avery; Schutt, Carolyn; Mukthavaram, Rajesh; Yeh, Yasan; Ortac, Inanc; Manouchehri, Sareh; Kesari, Santosh; Esener, Sadik; Heller, Michael J

    2015-10-01

    The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. It is shown that this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low-density nanoliposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. This new recovery technique can be broadly applied to the recovery of nanoparticles from high conductance fluids in a wide range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biomedical Properties Study of Modified Chitosan Nanoparticles for Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Saboktakin, Mohammad Reza

    2013-09-01

    The purpose of this review is to discuss and summarize some of the interesting findings and applications of modified chitosan (MCS) and their derivatives in different areas of drug delivery. This review highlights the important applications of MCS in the design of various novel delivery systems like liposomes, microspheres, microcapsules, and nanoparticles. In addition to their well-known effects on drug solubility and dissolution, bioavailability, safety, and stability, their uses as recipients in drug formulation are also discussed. This review also focuses on various factors influencing inclusion complex formation because an understanding of the same is necessary for proper handling of these versatile materials. Some important considerations in selecting MCS in drug formulation such as their commercial availability, regulatory status, and patent status are also summarized.

  12. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes

    PubMed Central

    Devulapally, Rammohan; Paulmurugan, Ramasamy

    2013-01-01

    Advances in nanotechnology have provided powerful and efficient tools in development of cancer diagnosis and therapy. There are numerous nanocarriers that are currently approved for clinical use in cancer therapy. In recent years, biodegradable polymer nanoparticles (NPs) have attracted a considerable attention for their ability to function as a possible carrier for target-specific delivery of various drugs, genes, proteins, peptides, vaccines, and other biomolecules in humans without much toxicity. This review will specifically focus on the recent advances in polymer-based nanocarriers for various drugs and small silencing RNA’s loading and delivery to treat different types of cancer. PMID:23996830

  13. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles.

    PubMed

    Baek, Seonmi; Singh, Rajendra K; Khanal, Dipesh; Patel, Kapil D; Lee, Eun-Jung; Leong, Kam W; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-09-14

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  14. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles

    NASA Astrophysics Data System (ADS)

    Baek, Seonmi; Singh, Rajendra K.; Khanal, Dipesh; Patel, Kapil D.; Lee, Eun-Jung; Leong, Kam W.; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-08-01

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  15. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery.

    PubMed

    Parodi, Alessandro; Molinaro, Roberto; Sushnitha, Manuela; Evangelopoulos, Michael; Martinez, Jonathan O; Arrighetti, Noemi; Corbo, Claudia; Tasciotti, Ennio

    2017-12-01

    The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles. Copyright © 2017. Published by Elsevier Ltd.

  16. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    PubMed

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    NASA Astrophysics Data System (ADS)

    Mandal, Biman B.; Kundu, S. C.

    2009-09-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  18. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery.

    PubMed

    Mandal, Biman B; Kundu, S C

    2009-09-02

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  19. Multifunctional nanoparticles for drug/gene delivery in nanomedicine

    NASA Astrophysics Data System (ADS)

    Seale, Mary-Margaret; Zemlyanov, Dimitry; Cooper, Christy L.; Haglund, Emily; Prow, Tarl W.; Reece, Lisa M.; Leary, James F.

    2007-02-01

    Multifunctional nanoparticles hold great promise for drug/gene delivery. Multilayered nanoparticles can act as nanomedical systems with on-board "molecular programming" to accomplish complex multi-step tasks. For example, the targeting process has only begun when the nanosystem has found the correct diseased cell of interest. Then it must pass the cell membrane and avoid enzymatic destruction within the endosomes of the cell. Since the nanosystem is only about one millionth the volume of a human cell, for it to have therapeutic efficacy with its contained package, it must deliver that drug or gene to the appropriate site within the living cell. The successive de-layering of these nanosystems in a controlled fashion allows the system to accomplish operations that would be difficult or impossible to do with even complex single molecules. In addition, portions of the nanosystem may be protected from premature degradation or mistargeting to non-diseased cells. All of these problems remain major obstacles to successful drug delivery with a minimum of deleterious side effects to the patient. This paper describes some of the many components involved in the design of a general platform technology for nanomedical systems. The feasibility of most of these components has been demonstrated by our group and others. But the integration of these interacting sub-components remains a challenge. We highlight four components of this process as examples. Each subcomponent has its own sublevels of complexity. But good nanomedical systems have to be designed/engineered as a full nanomedical system, recognizing the need for the other components.

  20. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system.

    PubMed

    Dorniani, Dena; Hussein, Mohd Zobir Bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

  1. Advancements in ocular drug delivery.

    PubMed

    Weiner, Alan L; Gilger, Brian C

    2010-11-01

    This review covers both noninvasive and invasive ophthalmic drug delivery systems that can have application to therapy of veterinary ophthalmic diseases. Noninvasive approaches include gel technologies, permeation enhancement via pro-drug development, solubilization agents and nanoparticle technologies, iontophoresis, microneedles, drug-eluting contact lenses and eye misters, and microdroplets. More invasive systems include both eroding implants and noneroding technologies that encompass diffusion based systems, active pumps, intraocular lenses, suprachoroidal drug delivery, and episcleral reservoirs. In addition to addressing the physiologic challenges of achieving the necessary duration of delivery, tissue targeting and patient compliance, the commercial development factors of biocompatibility, sterilization, manufacturability and long-term stability will be discussed. © 2010 American College of Veterinary Ophthalmologists.

  2. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders.

    PubMed

    Ong, Wei-Yi; Shalini, Suku-Maran; Costantino, Luca

    2014-01-01

    Many potential drugs for the treatment of neurological diseases are unable to reach the brain in sufficient enough concentrations to be therapeutic because of the blood brain barrier. On the other hand, direct delivery of drugs to the brain provides the possibility of a greater therapeutic-toxic ratio than with systemic drug delivery. The use of intranasal delivery of therapeutic agents to the brain provides a means of bypassing the blood brain barrier in a non-invasive manner. In this respect, nanosized drug carriers were shown to enhance the delivery of drugs to CNS compared to equivalent drug solution formulations. Neurological conditions that have been studied in animal models that could benefit from nose-to-brain delivery of nanotherapeutics include pain, epilepsy, neurodegenerative disease and infectious diseases. The delivery of drugs to the brain via the nose-to-brain route holds great promise, on the basis of preclinical research by means of drug delivery systems such as polymeric nanoparticles and clinical data related to intranasal delivery to CNS of large molecular weight biologics administered in solution, but safety issues about toxicity on nasal mucosa, Np transport into the brain, delivery only to specific brain regions and variability in the adsorbed dose still represent research topics that need to be considered, with a view of clinical translation of these delivery systems.

  3. Current Strategies for Brain Drug Delivery

    PubMed Central

    Dong, Xiaowei

    2018-01-01

    The blood-brain barrier (BBB) has been a great hurdle for brain drug delivery. The BBB in healthy brain is a diffusion barrier essential for protecting normal brain function by impeding most compounds from transiting from the blood to the brain; only small molecules can cross the BBB. Under certain pathological conditions of diseases such as stroke, diabetes, seizures, multiple sclerosis, Parkinson's disease and Alzheimer disease, the BBB is disrupted. The objective of this review is to provide a broad overview on current strategies for brain drug delivery and related subjects from the past five years. It is hoped that this review could inspire readers to discover possible approaches to deliver drugs into the brain. After an initial overview of the BBB structure and function in both healthy and pathological conditions, this review re-visits, according to recent publications, some questions that are controversial, such as whether nanoparticles by themselves could cross the BBB and whether drugs are specifically transferred to the brain by actively targeted nanoparticles. Current non-nanoparticle strategies are also reviewed, such as delivery of drugs through the permeable BBB under pathological conditions and using non-invasive techniques to enhance brain drug uptake. Finally, one particular area that is often neglected in brain drug delivery is the influence of aging on the BBB, which is captured in this review based on the limited studies in the literature. PMID:29556336

  4. In Vivo Tumor Targeting and Image-Guided Drug Delivery with Antibody-Conjugated, Radiolabeled Mesoporous Silica Nanoparticles

    PubMed Central

    Chen, Feng; Hong, Hao; Zhang, Yin; Valdovinos, Hector F.; Shi, Sixiang; Kwon, Glen S.; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo

    2013-01-01

    Since the first use of biocompatible mesoporous silica (mSiO2) nanoparticles as drug delivery vehicles, in vivo tumor targeted imaging and enhanced anti-cancer drug delivery has remained a major challenge. In this work, we describe the development of functionalized mSiO2 nanoparticles for actively targeted positron emission tomography (PET) imaging and drug delivery in 4T1 murine breast tumor-bearing mice. Our structural design involves the synthesis, surface functionalization with thiol groups, PEGylation, TRC105 antibody (specific for CD105/endoglin) conjugation, and 64Cu-labeling of uniform 80 nm sized mSiO2 nanoparticles. Systematic in vivo tumor targeting studies clearly demonstrated that 64Cu-NOTA-mSiO2-PEG-TRC105 could accumulate prominently at the 4T1 tumor site via both the enhanced permeability and retention effect and TRC105-mediated binding to tumor vasculature CD105. As a proof-of-concept, we also demonstrated successful enhanced tumor targeted delivery of doxorubicin (DOX) in 4T1 tumor-bearing mice after intravenous injection of DOX-loaded NOTA-mSiO2-PEG-TRC105, which holds great potential for future image-guided drug delivery and targeted cancer therapy. PMID:24083623

  5. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia

    NASA Astrophysics Data System (ADS)

    Yu, Xia; Zhu, Yufang

    2016-01-01

    We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO2), and the rattle-type structured MMS nanoparticles (MCN/mSiO2) were obtained after the removal of the carbon layers from MCN@C/mSiO2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO2 nanoparticles, but the MCN/mSiO2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy.

  6. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia.

    PubMed

    Yu, Xia; Zhu, Yufang

    2016-01-01

    We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO 2 ), and the rattle-type structured MMS nanoparticles (MCN/mSiO 2 ) were obtained after the removal of the carbon layers from MCN@C/mSiO 2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO 2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO 2 nanoparticles, but the MCN/mSiO 2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO 2 and MCN/mSiO 2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy.

  7. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  8. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery.

    PubMed

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Poly(lactic- co -glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, "PolyDots"), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene- b -ethylene oxide) (PS- b -PEO) micelles. PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS- b -PEO micelles (ie, ~7%). Increasing the PLGA:PS- b -PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications.

  9. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting

    PubMed Central

    Palmer, Brian C.; DeLouise, Lisa A.

    2017-01-01

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701

  10. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting.

    PubMed

    Palmer, Brian C; DeLouise, Lisa A

    2016-12-15

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  11. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications

    PubMed Central

    Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area. PMID:23512013

  12. Multifunctional Enveloped Mesoporous Silica Nanoparticles for Subcellular Co-delivery of Drug and Therapeutic Peptide

    PubMed Central

    Luo, Guo-Feng; Chen, Wei-Hai; Liu, Yun; Lei, Qi; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-01-01

    A multifunctional enveloped nanodevice based on mesoporous silica nanoparticle (MSN) was delicately designed for subcellular co-delivery of drug and therapeutic peptide to tumor cells. Mesoporous silica MCM-41 nanoparticles were used as the core for loading antineoplastic drug topotecan (TPT). The surface of nanoparticles was decorated with mitochondria-targeted therapeutic agent (Tpep) containing triphenylphosphonium (TPP) and antibiotic peptide (KLAKLAK)2 via disulfide linkage, followed by coating with a charge reversal polyanion poly(ethylene glycol)-blocked-2,3-dimethylmaleic anhydride-modified poly(L-lysine) (PEG-PLL(DMA)) via electrostatic interaction. It was found that the outer shielding layer could be removed at acidic tumor microenvironment due to the degradation of DMA blocks and the cellular uptake was significantly enhanced by the formation of cationic nanoparticles. After endocytosis, due to the cleavage of disulfide bonds in the presence of intracellular glutathione (GSH), pharmacological agents (Tpep and TPT) could be released from the nanoparticles and subsequently induce specific damage of tumor cell mitochondria and nucleus respectively with remarkable synergistic antitumor effect. PMID:25317538

  13. Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide.

    PubMed

    Luo, Guo-Feng; Chen, Wei-Hai; Liu, Yun; Lei, Qi; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2014-08-14

    A multifunctional enveloped nanodevice based on mesoporous silica nanoparticle (MSN) was delicately designed for subcellular co-delivery of drug and therapeutic peptide to tumor cells. Mesoporous silica MCM-41 nanoparticles were used as the core for loading antineoplastic drug topotecan (TPT). The surface of nanoparticles was decorated with mitochondria-targeted therapeutic agent (Tpep) containing triphenylphosphonium (TPP) and antibiotic peptide (KLAKLAK)2 via disulfide linkage, followed by coating with a charge reversal polyanion poly(ethylene glycol)-blocked-2,3-dimethylmaleic anhydride-modified poly(L-lysine) (PEG-PLL(DMA)) via electrostatic interaction. It was found that the outer shielding layer could be removed at acidic tumor microenvironment due to the degradation of DMA blocks and the cellular uptake was significantly enhanced by the formation of cationic nanoparticles. After endocytosis, due to the cleavage of disulfide bonds in the presence of intracellular glutathione (GSH), pharmacological agents (Tpep and TPT) could be released from the nanoparticles and subsequently induce specific damage of tumor cell mitochondria and nucleus respectively with remarkable synergistic antitumor effect.

  14. One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Li, Zhenhua; Liu, Zhen; Yin, Meili; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    A simple and ``green'' strategy has been reported for the first time to fabricate upconversion nanoparticles (UCNPs) by utilizing nucleotides as bio-templates. The influence of the functionalities present on the nucleotide on the production of nanoparticles was investigated in detail. Through the effects of nucleotides, the obtained nanoparticles possessed a porous structure. The use of the as-prepared UCNPs for cell imaging, drug delivery and versatile therapy applications were demonstrated. In view of the bright up-conversion luminescence as well as the excellent biocompatibility, and the good colloidal stability of the as-prepared UCNPs, we envision that our synthesis protocol might advance both the fields of UCNPs and biomolecule-based nanotechnology for future studies.A simple and ``green'' strategy has been reported for the first time to fabricate upconversion nanoparticles (UCNPs) by utilizing nucleotides as bio-templates. The influence of the functionalities present on the nucleotide on the production of nanoparticles was investigated in detail. Through the effects of nucleotides, the obtained nanoparticles possessed a porous structure. The use of the as-prepared UCNPs for cell imaging, drug delivery and versatile therapy applications were demonstrated. In view of the bright up-conversion luminescence as well as the excellent biocompatibility, and the good colloidal stability of the as-prepared UCNPs, we envision that our synthesis protocol might advance both the fields of UCNPs and biomolecule-based nanotechnology for future studies. Electronic supplementary information (ESI) available: Supporting figures. See DOI: 10.1039/c3nr04255c

  15. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery

    NASA Astrophysics Data System (ADS)

    Tansık, Gülistan; Yakar, Arzu; Gündüz, Ufuk

    2014-01-01

    One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an external magnetic field. Thus, the drug can be carried to the targeted site safely. The aim of this study is to prepare poly( dl-lactic- co-glycolic acid) (PLGA)-coated magnetic nanoparticles and load anti-cancer drug, doxorubicin to them. For this purpose, magnetite (Fe3O4) iron oxide nanoparticles were synthesized as a magnetic core material (MNP) and then coated with oleic acid. Oleic acid-coated MNP (OA-MNP) was encapsulated into PLGA. Effects of different OA-MNP/PLGA ratios on magnetite entrapment efficiency were investigated. Doxorubicin-loaded magnetic polymeric nanoparticles (DOX-PLGA-MNP) were prepared. After the characterization of prepared nanoparticles, their cytotoxic effects on MCF-7 cell line were studied. PLGA-coated magnetic nanoparticles (PLGA-MNP) had a proper size and superparamagnetic character. The highest magnetite entrapment efficiency of PLGA-MNP was estimated as 63 % at 1:8 ratio. Cytotoxicity studies of PLGA-MNP did not indicate any notable cell death between the concentration ranges of 2 and 125 μg/ml. Drug loading efficiency was estimated as 32 %, and it was observed that DOX-PLGA-MNP showed significant cytotoxicity on MCF-7 cells compared to PLGA-MNP. The results showed that prepared nanoparticles have desired size and superparamagnetic characteristics without serious toxic effects on cells. These nanoparticles may be suitable for targeted drug delivery applications.

  16. Microspheres and Nanotechnology for Drug Delivery.

    PubMed

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.

  17. Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery.

    PubMed

    Park, Jinho; Kadasala, Naveen Reddy; Abouelmagd, Sara A; Castanares, Mark A; Collins, David S; Wei, Alexander; Yeo, Yoon

    2016-09-01

    Nanoparticle (NP)-based approaches to cancer drug delivery are challenged by the heterogeneity of the enhanced permeability and retention (EPR) effect in tumors and the premature attrition of payload from drug carriers during circulation. Here we show that such challenges can be overcome by a magnetophoretic approach to accelerate NP delivery to tumors. Payload-bearing poly(lactic-co-glycolic acid) NPs were converted into polymer-iron-oxide nanocomposites (PINCs) by attaching colloidal Fe3O4 onto the surface, via a simple surface modification method using dopamine polymerization. PINCs formed stable dispersions in serum-supplemented medium and responded quickly to magnetic field gradients above 1 kG/cm. Under the field gradients, PINCs were rapidly transported across physical barriers and into cells and captured under flow conditions similar to those encountered in postcapillary venules, increasing the local concentration by nearly three orders of magnitude. In vivo magnetophoretic delivery enabled PINCs to accumulate in poorly vascularized subcutaneous SKOV3 xenografts that did not support the EPR effect. In vivo magnetic resonance imaging, ex vivo fluorescence imaging, and tissue histology all confirmed that the uptake of PINCs was higher in tumors exposed to magnetic field gradients, relative to negative controls. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Prabha, G.; Raj, V.

    2016-06-01

    In the present research work, the anticancer drug 'curcumin' is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3O4) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183-390 nm with a zeta potential value of 26-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix.

  19. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy.

    PubMed

    Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Sreejith, Raveendran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Fukuda, Takahiro; Hasumura, Takashi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair

    2014-06-01

    Microbial exopolysaccharides (EPSs) are highly heterogeneous polymers produced by fungi and bacteria that have garnered considerable attention and have remarkable potential in various fields, including biomedical research. The necessity of biocompatible materials to coat and stabilize nanoparticles is highly recommended for successful application of the same in biomedical regime. In our study we have coated magnetic nanoparticles (MNPs) with two bacterial EPS-mauran (MR) and gellan gum (GG). The biocompatibility of EPS coated MNPs was enhanced and we have made it multifunctional by attaching targeting moiety, folate and with encapsulation of a potent anticancerous drug, 5FU. We have conjugated an imaging moiety along with nanocomposite to study the effective uptake of nanoparticles. It was also observed that the dye labeled folate targeted nanoparticles could effectively enter into cancer cells and the fate of nanoparticles was tracked with Lysotracker. The biocompatibility of EPS coated MNPs and synergistic effect of magnetic hyperthermia and drug for enhanced antiproliferation of cancer cells was also evaluated. More than 80% of cancer cells was killed within a period of 60 min when magnetic hyperthermia (MHT) was applied along with drug loaded EPS coated MNPs, thus signifying the combined effect of drug loaded MNPs and MHT. Our results suggests that MR and GG coated MNPs exhibited excellent biocompatibility with low cell cytotoxicity, high therapeutic potential, and superparamagnetic behavior that can be employed as prospective candidates for bacterial EPS based targeted drug delivery, cancer cell imaging and for MHT for killing cancer cells within short period of time.

  20. Peptide and protein delivery using new drug delivery systems.

    PubMed

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  1. Delivery of Fluorescent Nanoparticles to the Brain.

    PubMed

    Shimoni, Olga; Shi, Bingyang; Adlard, Paul A; Bush, Ashley I

    2016-11-01

    Nanotechnology applications in neuroscience promises to deliver significant scientific and technological breakthroughs, providing answers to unresolved questions regarding the processes occurring in the brain. In this perspective, we provide a short background on two distinct fluorescent nanoparticles and summarize several studies focussed on achieving delivery of these into the brain and their interaction with brain tissue. Furthermore, we discuss challenges and opportunities for further development of nanoparticle-based therapies for targeting delivery of drugs across the blood-brain barrier.

  2. Comprehensive study of the drug delivery properties of poly(l-lactide)-poly(ethylene glycol) nanoparticles in rats and tumor-bearing mice.

    PubMed

    Shalgunov, Vladimir; Zaytseva-Zotova, Daria; Zintchenko, Arkadi; Levada, Tatiana; Shilov, Yuri; Andreyev, Dmitry; Dzhumashev, Dzhangar; Metelkin, Evgeny; Urusova, Alexandra; Demin, Oleg; McDonnell, Kevin; Troiano, Greg; Zale, Stephen; Safarovа, Elmira

    2017-09-10

    Nanoparticles made of polylactide-poly(ethylene glycol) block-copolymer (PLA-PEG) are promising vehicles for drug delivery due to their biodegradability and controllable payload release. However, published data on the drug delivery properties of PLA-PEG nanoparticles are heterogeneous in terms of nanoparticle characteristics and mostly refer to low injected doses (a few mg nanoparticles per kg body weight). We have performed a comprehensive study of the biodistribution of nanoparticle formulations based on PLA-PEG nanoparticles of ~100nm size at injected doses of 30 to 140mg/kg body weight in healthy rats and nude tumor-bearing mice. Nanoparticle formulations differed by surface PEG coverage and by release kinetics of the encapsulated model active pharmaceutical ingredient (API). Increase in PEG coverage prolonged nanoparticle circulation half-life up to ~20h in rats and ~10h in mice and decreased retention in liver, spleen and lungs. Circulation half-life of the encapsulated API grew monotonously as the release rate slowed down. Plasma and tissue pharmacokinetics was dose-linear for inactive nanoparticles, but markedly dose-dependent for the model therapeutic formulation, presumably because of the toxic effects of released API. A mathematical model of API distribution calibrated on the data for inactive nanoparticles and conventional API form correctly predicted the distribution of the model therapeutic formulation at the lowest investigated dose, but for higher doses the toxic action of the released API had to be explicitly modelled. Our results provide a coherent illustration of the ability of controllable-release PLA-PEG nanoparticles to serve as an effective drug delivery platform to alter API biodistribution. They also underscore the importance of physiological effects of released drug in determining the biodistribution of therapeutic drug formulations at doses approaching tolerability limits. Copyright © 2017 The Authors. Published by Elsevier B.V. All

  3. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Erlei

    2011-12-01

    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  4. Development of Inhalable Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Microparticulate System for Antituberculosis Drug Delivery.

    PubMed

    Miranda, Margarida S; Rodrigues, Márcia T; Domingues, Rui M A; Costa, Rui R; Paz, Elvira; Rodríguez-Abreu, Carlos; Freitas, Paulo; Almeida, Bernardo G; Carvalho, Maria Alice; Gonçalves, Carine; Ferreira, Catarina M; Torrado, Egídio; Reis, Rui L; Pedrosa, Jorge; Gomes, Manuela E

    2018-05-23

    Tuberculosis (TB) is an infectious disease which affects millions of people worldwide. Inhalable polymeric dry powders are promising alternatives as anti-TB drug carriers to the alveoli milieu and infected macrophages, with potential to significantly improve the therapeutics efficiency. Here, the development of a magnetically responsive microparticulate system for pulmonary delivery of an anti-TB drug candidate (P3) is reported. Microparticles (MPs) are developed based on a cast method using calcium carbonate sacrificial templates and incorporate superparamagnetic iron oxide nanoparticles to concentrate MPs in alveoli and enable drug on demand release upon actuation of an external alternate magnetic field (AMF). The MPs are shown to be suitable for P3 delivery to the lower airways and for alveolar macrophage phagocytosis. The developed MPs reveal unique and promising features to be used as an inhalable dry powder allowing the AMF control over dosage and frequency of drug delivery anticipating improved TB treatments. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery.

    PubMed

    Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok Kumar; Kesharwani, Prashant; Gupta, Lokesh; Iyer, Arun K; Gupta, Umesh

    2016-01-01

    Nanotechnological advancement has become a key standard for the diagnosis and treatment of several complex disorders such as cancer by utilizing the enhanced permeability and retention effect and tumor-specific targeting. Synthesis and designing the formulation of active agents in terms of their efficient delivery is of prime importance for healthcare. The use of nanocarriers has resolved the undesirable characteristics of anticancer drugs such as low solubility and poor permeability in cells. Several types of nanoparticles (NPs) have been designed with the use of various polymers along or devoid of surface engineering for targeting tumor cells. All NPs include polymers in their framework and, of these, polylactide-co-glycolide (PLGA) is biodegradable and Food and Drug Administration approved for human use. PLGA has been used extensively in the development of NPs for anticancer drug delivery. The extensive use of PLGA NPs is promising for cancer therapy, with higher efficiency and less adverse effects. The present review focused on recent developments regarding PLGA NPs, the methods used for their preparation, their characterization, and their utility in the delivery of chemotherapeutic agents.

  6. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: Synthesis, characterization and evaluation for targeted drug delivery.

    PubMed

    Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar

    2016-07-25

    Diabetes mellitus represents a major metabolic disorder affecting millions of people all over the world. Currently available therapeutic treatments are not good enough to control the long-term complications of diabetes. Active targeting via inclusion of a specific ligand on the nanoparticles provides effective therapeutic approach in different diseases. However, such specific drug delivery systems have not been explored much in diabetes due to lack of suitable biological targets in this disorder. Our objective is to synthesize a ligand-tagged drug-loaded nanoparticle for delivery of the drug at specific sites to enhance its therapeutic efficiency in diabetic condition. The nanoparticles have been prepared by using biocompatible ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester) dimers. Although advanced glycation end products (AGEs) are the root causes of diabetic complications, argpyrimidine, an AGE, possesses antioxidant and reducing activities. AGE interacts selectively with its cell surface receptors (RAGE), which are significantly increased in diabetic condition. We have selected RAGE as the target of argpyrimidine, which is tagged on the nanoparticles as a ligand. Rutin, having anti-hyperglycemic and anti-glycating activities, has been used for nanoencapsulation. Rutin-loaded argpyrimidine-tagged nanoparticles have been synthesized and characterized. We have demonstrated the drug releasing capacity and target specificity of the synthesised drug delivery system under ex vivo and in vivo conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. pH-Sensitive nanoparticles as smart carriers for selective intracellular drug delivery to tumor.

    PubMed

    Li, Xin-Xin; Chen, Jing; Shen, Jian-Min; Zhuang, Ran; Zhang, Shi-Qi; Zhu, Zi-Yun; Ma, Jing-Bo

    2018-05-05

    Herein, a smart pH-sensitive nanoparticle (DGL-PEG-Tat-KK-DMA-DOX) was prepared to achieve the selective intracellular drug delivery. In this nanoparticle, a PEG-grafted cell penetrating peptide (PEG-Tat-KK) was designed and acted as the cell penetrating segment. By introducing the pH-sensitive amide bonds between the peptide and blocking agent (2,3-dimethylmaleic anhydride, DMA), the controllable moiety (PEG-Tat-KK-DMA) endowed the nanoparticle with a charge-switchable shell and temporarily blocked penetrating function, thus improving the specific internalization. Besides, dendrigraft poly-L-lysine (DGL) used as the skeleton can greatly improve the drug loading because of the highly dendritic framework. Under the stimuli of acidic pH, this nanoparticle exhibited a remarkable charge-switchable property. The drug release showed an expected behavior with little release in the neutral pH media but relatively fast release in the acidic media. The in vitro experiments revealed that the cellular uptake and cytotoxicity were significantly enhanced after the pH was decreased. In vivo biodistribution and antitumor research indicated that the nanoparticle had noteworthy specificity and antitumor efficacy with a tumor inhibition rate of 79.7%. These results verified this nanoparticle could efficiently improve the selective intracellular delivery and possessed a great potential in tumor treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Dendritic polymer-based nanodevices for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Gurdag, Sezen; Khandare, Jayant; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are unimolecular micellar nanostructures, characterized by globular shape ( ˜ 20 nm) and large density of functional groups at periphery. The tailorable end groups make them ideal for conjugation with drugs, ligands, and imagining agents, making them an attractive molecular nanodevices for drug delivery. Compared to linear polymers and nanoparticles, these nanodevices enter cells rapidly, carrying drugs and delivering them inside cells. Performance of nanodevices prepared for asthma and cancer drug delivery will be discussed. Our conjugation procedure produced very high drug payloads. Dendritic polymer-drug conjugates were very effective in transporting methotrexate (a chemotherapy drug) into both sensitive (CCRF-CEM cell line) and resistant cell line (CEM-MTX). The conjugate nanodevice was 3 times more effective than free drug in the sensitive line, and 9 times more effective in the resistant cell line (based on IC50). The physics of cell entry and drug release from these nanodevices are being investigated. The conjugates appear to enter cells through endocytosis, with the rate of entry dependent on end-group, molecular weight, the pH of the medium, and the cancerous nature of the cells.

  9. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited

    PubMed Central

    Xu, Peisheng; Gullotti, Emily; Tong, Ling; Highley, Christopher B.; Errabelli, Divya R.; Hasan, Tayyaba; Cheng, Ji-Xin; Kohane, Daniel S.; Yeo, Yoon

    2008-01-01

    We reexamined the cellular drug delivery mechanism by poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) to determine their utility and limitations as an intracellular drug delivery system. First, we prepared PLGA NPs which physically encapsulated Nile red (a hydrophobic fluorescent dye), in accordance with the usual procedure for labeling PLGA NPs, incubated them with mesothelial cells, and observed an increase in the intracellular fluorescence. We then prepared NPs from PLGA chemically conjugated to a fluorescent dye and observed their uptake by the mesothelial cells using confocal microscopy. We also used Coherent Anti-Stokes Raman Scattering (CARS) microscopy to image cellular uptake of unlabeled PLGA NPs. Results of this study coherently suggest that PLGA NPs (i) are not readily taken up by cells, but (ii) deliver the payload to cells by extracellular drug release and/or direct drug transfer to contacting cells, which are contrasted with the prevalent view. From this alternative standpoint, we analyzed cytotoxicities of doxorubicin and paclitaxel delivered by PLGA NPs and compared with those of free drugs. Finally, we revisit previous findings in the literature and discuss potential strategies to achieve efficient drug delivery to the target tissues using PLGA NPs. PMID:19035785

  10. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.

    PubMed

    Acharya, Sarbari; Sahoo, Sanjeeb K

    2011-03-18

    As mortality due to cancer continues to rise, advances in nanotechnology have significantly become an effective approach for achieving efficient drug targeting to tumour tissues by circumventing all the shortcomings of conventional chemotherapy. During the past decade, the importance of polymeric drug-delivery systems in oncology has grown exponentially. In this context, poly(lactic-co-glycolic acid) (PLGA) is a widely used polymer for fabricating 'nanoparticles' because of biocompatibility, long-standing track record in biomedical applications and well-documented utility for sustained drug release, and hence has been the centre of focus for developing drug-loaded nanoparticles for cancer therapy. Such PLGA nanoparticles have also been used to develop proteins and peptides for nanomedicine, and nanovaccines, as well as a nanoparticle-based drug- and gene-delivery system for cancer therapy, and nanoantigens and growth factors. These drug-loaded nanoparticles extravasate through the tumour vasculature, delivering their payload into the cells by the enhanced permeability and retention (EPR) effect, thereby increasing their therapeutic effect. Ongoing research about drug-loaded nanoparticles and their delivery by the EPR effect to the tumour tissues has been elucidated in this review with clarity. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy.

    PubMed

    Li, Juan; Shen, Zheyu; Ma, Xuehua; Ren, Wenzhi; Xiang, Lingchao; Gong, An; Xia, Tian; Guo, Junming; Wu, Aiguo

    2015-03-11

    By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy. The PNBL-NPY can actively recognize and bind to the Y1 receptors that are significantly overexpressed on the surface of the breast cancer cells, and the drug-loaded nanoparticles are delivered directly into the cancer cells through internalization. This system is highly selective and able to distinguish the breast cancer cells from the normal cells, due to normal breast cells that express Y2 receptors only. It is anticipated that this study may provide a guidance in the development of Y1 receptor-based nanoparticulate drug delivery system for a safer and more efficient breast cancer therapy.

  12. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

    PubMed Central

    Dorniani, Dena; Hussein, Mohd Zobir bin; Kura, Aminu Umar; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2013-01-01

    Background Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. Methods and results We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate “burst release” and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line. Conclusion Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and

  13. Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery

    PubMed Central

    Nabar, Gauri M; Mahajan, Kalpesh D; Calhoun, Mark A; Duong, Anthony D; Souva, Matthew S; Xu, Jihong; Czeisler, Catherine; Puduvalli, Vinay K; Otero, José Javier; Wyslouzil, Barbara E; Winter, Jessica O

    2018-01-01

    Purpose Poly(lactic-co-glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Methods Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, “PolyDots”), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles. Results PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS-b-PEO micelles (ie, ~7%). Increasing the PLGA:PS-b-PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. Conclusion Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications. PMID:29391794

  14. The delivery of poly(lactic acid)-poly(ethylene glycol) nanoparticles loaded with non-toxic drug to overcome drug resistance for the treatment of neuroblastoma

    NASA Astrophysics Data System (ADS)

    Dhulekar, Jhilmil

    Neuroblastoma is a rare cancer of the sympathetic nervous system. A neuroblastoma tumor develops in the nerve tissue and is diagnosed in infants and children. Approximately 10.2 per million children under the age of 15 are affected in the United States and is slightly more common in boys. Neuroblastoma constitutes 6% of all childhood cancers and has a long-term survival rate of only 15%. There are approximately 700 new cases of neuroblastoma each year in the United States. With such a low rate of survival, the development of more effective treatment methods is necessary. A number of therapies are available for the treatment of these tumors; however, clinicians and their patients face the challenges of systemic side effects and drug resistance of the tumor cells. The application of nanoparticles has the potential to provide a safer and more effective method of delivery drugs to tumors. The advantage of using nanoparticles for drug delivery is the ability to specifically or passively target tumors while reducing the harmful side effects of chemotherapeutics. Drug delivery via nanoparticles can also allow for lower dosage requirements with controlled release of the drugs, which can further reduce systemic toxicity. The aim of this research was to develop a polymeric nanoparticle drug delivery system for the treatment of high-risk neuroblastoma. Nanoparticles composed of a poly(lactic acid)-poly(ethylene glycol) block copolymer were formulated to deliver a non-toxic drug in combination with Temozolomide, a commonly used chemotherapeutic drug for the treatment of neuroblastoma. The non-toxic drug acts as an inhibitor to the DNA-repair protein present in neuroblastoma cells that is responsible for inducing drug resistance in the cells, which would potentially allow for enhanced temozolomide activity. A variety of studies were completed to prove the nanoparticles' low toxicity, loading abilities, and uptake into cells. Additionally, studies were performed to determine the

  15. Lipid-Based Nanoparticles as a Potential Delivery Approach in the Treatment of Rheumatoid Arthritis

    PubMed Central

    Chuang, Shih-Yi; Lin, Chih-Hung; Huang, Tse-Hung

    2018-01-01

    Rheumatoid arthritis (RA), a chronic and joint-related autoimmune disease, results in immune dysfunction and destruction of joints and cartilages. Small molecules and biological therapies have been applied in a wide variety of inflammatory disorders, but their utility as a therapeutic agent is limited by poor absorption, rapid metabolism, and serious side effects. To improve these limitations, nanoparticles, which are capable of encapsulating and protecting drugs from degradation before they reach the target site in vivo, may serve as drug delivery systems. The present research proposes a platform for different lipid nanoparticle approaches for RA therapy, taking advantage of the newly emerging field of lipid nanoparticles to develop a targeted theranostic system for application in the treatment of RA. This review aims to present the recent major application of lipid nanoparticles that provide a biocompatible and biodegradable delivery system to effectively improve RA targeting over free drugs via the presentation of tissue-specific targeting of ligand-controlled drug release by modulating nanoparticle composition. PMID:29342965

  16. Nanoparticle drug-delivery systems for peritoneal cancers: a case study of the design, characterization and development of the expansile nanoparticle.

    PubMed

    Colby, Aaron H; Oberlies, Nicholas H; Pearce, Cedric J; Herrera, Victoria L M; Colson, Yolonda L; Grinstaff, Mark W

    2017-05-01

    Nanoparticle (NP)-based drug-delivery systems are frequently employed to improve the intravenous administration of chemotherapy; however, few reports explore their application as an intraperitoneal therapy. We developed a pH-responsive expansile nanoparticle (eNP) specifically designed to leverage the intraperitoneal route of administration to treat intraperitoneal malignancies, such as mesothelioma, ovarian, and pancreatic carcinomatoses. This review describes the design, evaluation, and evolution of the eNP technology and, specifically, a Materials-Based Targeting paradigm that is unique among the many active- and passive-targeting strategies currently employed by NP-delivery systems. pH-responsive eNP swelling is responsible for the extended residence at the target tumor site as well as the subsequent improvement in tumoral drug delivery and efficacy observed with paclitaxel-loaded eNPs (PTX-eNPs) compared to the standard clinical formulation of paclitaxel, Taxol®. Superior PTX-eNP efficacy is demonstrated in two different orthotopic models of peritoneal cancer-mesothelioma and ovarian cancer; in a third model-of pancreatic cancer-PTX-eNPs demonstrated comparable efficacy to Taxol with reduced toxicity. Furthermore, the unique structural and responsive characteristics of eNPs enable them to be used in three additional treatment paradigms, including: treatment of lymphatic metastases in breast cancer; use as a highly fluorescent probe to visually guide the resection of peritoneal implants; and, in a two-step delivery paradigm for concentrating separately administered NP and drug at a target site. This case study serves as an important example of using the targeted disease-state's pathophysiology to inform the NP design as well as the method of use of the delivery system. WIREs Nanomed Nanobiotechnol 2017, 9:e1451. doi: 10.1002/wnan.1451 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  17. Nanoparticles Effectively Target Rapamycin Delivery to Sites of Experimental Aortic Aneurysm in Rats.

    PubMed

    Shirasu, Takuro; Koyama, Hiroyuki; Miura, Yutaka; Hoshina, Katsuyuki; Kataoka, Kazunori; Watanabe, Toshiaki

    2016-01-01

    Several drugs targeting the pathogenesis of aortic aneurysm have shown efficacy in model systems but not in clinical trials, potentially owing to the lack of targeted drug delivery. Here, we designed a novel drug delivery system using nanoparticles to target the disrupted aortic aneurysm micro-structure. We generated poly(ethylene glycol)-shelled nanoparticles incorporating rapamycin that exhibited uniform diameter and long-term stability. When injected intravenously into a rat model in which abdominal aortic aneurysm (AAA) had been induced by infusing elastase, labeled rapamycin nanoparticles specifically accumulated in the AAA. Microscopic analysis revealed that rapamycin nanoparticles were mainly distributed in the media and adventitia where the wall structures were damaged. Co-localization of rapamycin nanoparticles with macrophages was also noted. Rapamycin nanoparticles injected during the process of AAA formation evinced significant suppression of AAA formation and mural inflammation at 7 days after elastase infusion, as compared with rapamycin treatment alone. Correspondingly, the activities of matrix metalloproteinases and the expression of inflammatory cytokines were significantly suppressed by rapamycin nanoparticle treatment. Our findings suggest that the nanoparticle-based delivery system achieves specific delivery of rapamycin to the rat AAA and might contribute to establishing a drug therapy approach targeting aortic aneurysm.

  18. Peptides for Specific Intracellular Delivery and Targeting of Nanoparticles: Implications for Developing Nanoparticle-Mediated Drug Delivery

    DTIC Science & Technology

    2010-01-01

    for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist. Update 8(6), 381–402 (2005). 89 Smith BR, Cheng Z...component can be realized. Select examples from the literature have already demonstrated the feasibility of generating hybrid NP–peptide constructs in...peptide-mediated delivery of NP-based imaging agents (fluorescence and magnetic resonance), drug-delivery vehicles, therapeutic proteins and nucleic

  19. Protamine-based nanoparticles as new antigen delivery systems.

    PubMed

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Spray-Dried Nanoparticle-in-Microparticle Delivery Systems (NiMDS) for Gene Delivery, Comprising Polyethylenimine (PEI)-Based Nanoparticles in a Poly(Vinyl Alcohol) Matrix.

    PubMed

    Schulze, Jan; Kuhn, Stephanie; Hendrikx, Stephan; Schulz-Siegmund, Michaela; Polte, Tobias; Aigner, Achim

    2018-03-01

    Nucleic acid-based therapies rely on efficient formulations for nucleic acid protection and delivery. As nonviral strategies, polymeric and lipid-based nanoparticles have been introduced; however, biological efficacy and biocompatibility as well as poor storage properties due to colloidal instability and their unavailability as ready-to-use systems are still major issues. Polyethylenimine is the most widely explored and promising candidate for gene delivery. Polyethylenimine-based polyplexes and their combination with liposomes, lipopolyplexes, are efficient for DNA or siRNA delivery in vitro and in vivo. In this study, a highly potent spray-dried nanoparticle-in-microparticle delivery system is presented for the encapsulation of polyethylenimine-based polyplexes and lipopolyplexes into poly(vinyl alcohol) microparticles, without requiring additional stabilizing agents. This easy-to-handle gene delivery device allows prolonged nanoparticle storage and protection at ambient temperature. Biological analyses reveal further advantages regarding profoundly reduced cytotoxicity and enhanced transfection efficacies of polyethylenimine-based nanoparticles from the nanoparticle-in-microparticle delivery system over their freshly prepared counterparts, as determined in various cell lines. Importantly, this nanoparticle-in-microparticle delivery system is demonstrated as ready-to-use dry powder to be an efficient device for the inhalative delivery of polyethylenimine-based lipopolyplexes in vivo, as shown by transgene expression in mice after only one administration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor.

    PubMed

    Kobes, Joseph E; Daryaei, Iman; Howison, Christine M; Bontrager, Jordan G; Sirianni, Rachael W; Meuillet, Emmanuelle J; Pagel, Mark D

    2016-09-01

    This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE-PLGA-427 and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole-body biodistribution in an orthotopic model of MIA PaCa-2 pancreatic cancer. Anatomical magnetic resonance imaging (MRI) was used to noninvasively assess the effects of 4 weeks of nanoparticle drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors and an elimination of primary pancreatic tumor in 68% of the mice. These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of MIA PaCa-2 pancreatic cancer.

  2. Synthesis and characterization of polymer-coated manganese ferrite nanoparticles as controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Zhao, Dexing; Ma, Yingying; Zhang, Zhixiao; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Zhang, Zheng

    2018-01-01

    In this study, monodisperse and superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been synthesized by a one-pot sonochemical method using polyvinylpyrrolidone (PVP) as stabilizer. The as-prepared MnFe2O4 nanoparticles were investigated systematically by TEM, XRD, FTIR, XPS, SQUID and MTT. The TEM observation showed that the PVP-coated MnFe2O4 nanoparticles had uniform dispersion with narrow particle size distribution. The magnetization curves demonstrated superparamagnetic properties of the coated MnFe2O4 nanoparticles with good hydrophilicity at room temperature. The in vitro cytotoxicity experiments exhibited negligible cytotoxicity of the obtained PVP-coated MnFe2O4 nanoparticles even at the high concentration of 150 μg/mL after 24 h treatment. More importantly, anti-cancer model drug of doxorubicin hydrochloride (DOX) was loaded on the surface of MnFe2O4 nanoparticles. The drug loading capacity of the developed nanocarrier reached 0.45 mg/mg and the loaded DOX exhibited interesting pH-dependent release behavior. In conclusion, the as-prepared PVP-coated MnFe2O4 nanoparticles were proposed as a potential candidate for controlled drug delivery.

  3. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery.

    PubMed

    Lu, Wei; Zhang, Yan; Tan, Yu-Zhen; Hu, Kai-Li; Jiang, Xin-Guo; Fu, Shou-Kuan

    2005-10-20

    In this paper, a novel drug carrier for brain delivery, cationic bovine serum albumin (CBSA) conjugated with poly(ethyleneglycol)-poly(lactide) (PEG-PLA) nanoparticle (CBSA-NP), was developed and its effects were evaluated. The copolymers of methoxy-PEG-PLA and maleimide-PEG-PLA were synthesized by ring opening polymerization of D,L-lactide initiated by methoxy-PEG and maleimide-PEG, respectively, which were applied to prepare pegylated nanoparticles by means of double emulsion and solvent evaporation procedure. Native bovine serum albumin (BSA) was cationized and thiolated, followed by conjugation through the maleimide function located at the distal end of PEG surrounding the nanoparticle's surface. Transmission electron micrograph (TEM) and dynamic light scattering results showed that CBSA-NP had a round and regular shape with a mean diameter around 100 nm. Surface nitrogen was detected by X-ray photoelectron spectroscopy (XPS), and colloidal gold stained around the nanoparticle's surface was visualized in TEM, which proved that CBSA was covalently conjugated onto its surface. To evaluate the effects of brain delivery, BSA conjugated with pegylated nanoparticles (BSA-NP) was used as the control group and 6-coumarin was incorporated into the nanoparticles as the fluorescent probe. The qualitative and quantitative results of CBSA-NP uptake experiment compared with those of BSA-NP showed that rat brain capillary endothelial cells (BCECs) took in much more CBSA-NP than BSA-NP at 37 degrees C, at different concentrations and time incubations. After a dose of 60 mg/kg CBSA-NP or BSA-NP injection in mice caudal vein, fluorescent microscopy of brain coronal sections showed a higher accumulation of CBSA-NP in the lateral ventricle, third ventricle and periventricular region than that of BSA-NP. There was no difference on BCECs' viability between CBSA-conjugated and -unconjugated pegylated nanoparticles. The significant results in vitro and in vivo showed that CBSA-NP was

  4. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  5. Polymer-Coated Hollow Mesoporous Silica Nanoparticles for Triple-Responsive Drug Delivery.

    PubMed

    Zhang, Yuanyuan; Ang, Chung Yen; Li, Menghuan; Tan, Si Yu; Qu, Qiuyu; Luo, Zhong; Zhao, Yanli

    2015-08-19

    In this study, pH, reduction and light triple-responsive nanocarriers based on hollow mesoporous silica nanoparticles (HMSNs) modified with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) were developed via surface-initiated atom transfer radical polymerization. Both reduction-cleavable disulfide bond and light-cleavable o-nitrobenzyl ester were used as the linkages between HMSNs and pH-sensitive PDEAEMA polymer caps. A series of characterization techniques were applied to characterize and confirm the structures of the intermediates and final nanocarriers. Doxorubicin (DOX) was easily encapsulated into the nanocarriers with a high loading capacity, and quickly released in response to the stimuli of reducing agent, acid environment or UV light irradiation. In addition, flow cytometry analysis, confocal laser scanning microscopy observations and cytotoxicity studies indicated that the nanocarriers were efficiently internalized by HeLa cancer cells, exhibiting (i) enhanced release of DOX into the cytoplasm under external UV light irradiation, (ii) better cytotoxicity against HeLa cells, and (iii) superior control over drug delivery and release. Thus, the triple-responsive nanocarriers present highly promising potentials as a drug delivery platform for cancer therapy.

  6. Co-delivery nanoparticles with characteristics of intracellular precision release drugs for overcoming multidrug resistance

    PubMed Central

    Zhang, DanDan; Kong, Yan Yan; Sun, Jia Hui; Huo, Shao Jie; Zhou, Min; Gui, Yi Ling; Mu, Xu; Chen, Huan; Yu, Shu Qin; Xu, Qian

    2017-01-01

    Combination chemotherapy in clinical practice has been generally accepted as a feasible strategy for overcoming multidrug resistance (MDR). Here, we designed and successfully prepared a co-delivery system named S-D1@L-D2 NPs, where denoted some smaller nanoparticles (NPs) carrying a drug doxorubicin (DOX) were loaded into a larger NP containing another drug (vincristine [VCR]) via water-in-oil-in-water double-emulsion solvent diffusion-evaporation method. Chitosan-alginate nanoparticles carrying DOX (CS-ALG-DOX NPs) with a smaller diameter of about 20 nm formed S-D1 NPs; vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-modified poly(lactic-co-glycolic acid) nanoparticles carrying VCR (TPGS-PLGA-VCR NPs) with a larger diameter of about 200 nm constituted L-D2 NPs. Some CS-ALG-DOX NPs loaded into TPGS-PLGA-VCR NPs formed CS-ALG-DOX@TPGS-PLGA-VCR NPs. Under the acidic environment of cytosol and endosome or lysosome in MDR cell, CS-ALG-DOX@TPGS-PLGA-VCR NPs released VCR and CS-ALG-DOX NPs. VCR could arrest cell cycles at metaphase by inhibiting microtubule polymerization in the cytoplasm. After CS-ALG-DOX NPs escaped from endosome, they entered the nucleus through the nuclear pore and released DOX in the intra-nuclear alkaline environment, which interacted with DNA to stop the replication of MDR cells. These results indicated that S-D1@L-D2 NPs was a co-delivery system of intracellular precision release loaded drugs with pH-sensitive characteristics. S-D1@L-D2 NPs could obviously enhance the in vitro cytotoxicity and the in vivo anticancer efficiency of co-delivery drugs, while reducing their adverse effects. Overall, S-D1@L-D2 NPs can be considered an innovative platform for the co-delivery drugs of clinical combination chemotherapy for the treatment of MDR tumor. PMID:28356731

  7. Carrier-Based Drug Delivery System for Treatment of Acne

    PubMed Central

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  8. Development of drug delivery systems based on nanostructured porous silicon loaded with the anti-tumoral drug emodin adsorbed on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Hernández, Margarita; Recio, Gonzalo; Sevilla, Paz; Torres-Costa, Vicente; García-Ramos, José V.; Domingo, Concepción; Martín-Palma, Raúl J. J.

    2012-10-01

    A study of the fluorescence and Raman spectra of a new and complex drug delivery system formed by emodin adsorbed on silver nanoparticles embedded into a matrix of porous silicon is here reported. Several experimental methods of inclusion of the drug-silver set inside the pores, without previous functionalization of porous silicon, have been tested in order to optimize the conditions for the fluorescence detection of emodin. In this sense, we have also added bovine serum albumin to the system, finding that the presence of the protein enhances the fluores-cence signal from emodin.

  9. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies.

    PubMed

    Ulbrich, Karel; Holá, Kateřina; Šubr, Vladimir; Bakandritsos, Aristides; Tuček, Jiří; Zbořil, Radek

    2016-05-11

    Targeted delivery combined with controlled drug release has a pivotal role in the future of personalized medicine. This review covers the principles, advantages, and drawbacks of passive and active targeting based on various polymer and magnetic iron oxide nanoparticle carriers with drug attached by both covalent and noncovalent pathways. Attention is devoted to the tailored conjugation of targeting ligands (e.g., enzymes, antibodies, peptides) to drug carrier systems. Similarly, the approaches toward controlled drug release are discussed. Various polymer-drug conjugates based, for example, on polyethylene glycol (PEG), N-(2-hydroxypropyl)methacrylamide (HPMA), polymeric micelles, and nanoparticle carriers are explored with respect to absorption, distribution, metabolism, and excretion (ADME scheme) of administrated drug. Design and structure of superparamagnetic iron oxide nanoparticles (SPION) and condensed magnetic clusters are classified according to the mechanism of noncovalent drug loading involving hydrophobic and electrostatic interactions, coordination chemistry, and encapsulation in porous materials. Principles of covalent conjugation of drugs with SPIONs including thermo- and pH-degradable bonds, amide linkage, redox-cleavable bonds, and enzymatically-cleavable bonds are also thoroughly described. Finally, results of clinical trials obtained with polymeric and magnetic carriers are analyzed highlighting the potential advantages and future directions in targeted anticancer therapy.

  10. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    PubMed Central

    Miele, Evelina; Spinelli, Gian Paolo; Miele, Ermanno; Di Fabrizio, Enzo; Ferretti, Elisabetta; Tomao, Silverio; Gulino, Alberto

    2012-01-01

    During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and

  11. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yi, Huqiang; Liu, Peng; Sheng, Nan; Gong, Ping; Ma, Yifan; Cai, Lintao

    2016-03-01

    Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible

  12. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-12-01

    Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.

  13. Multiplexed mRNA Sensing and Combinatorial-Targeted Drug Delivery Using DNA-Gold Nanoparticle Dimers.

    PubMed

    Kyriazi, Maria-Eleni; Giust, Davide; El-Sagheer, Afaf H; Lackie, Peter M; Muskens, Otto L; Brown, Tom; Kanaras, Antonios G

    2018-04-24

    The design of nanoparticulate systems which can perform multiple synergistic functions in cells with high specificity and selectivity is of great importance in applications. Here we combine recent advances in DNA-gold nanoparticle self-assembly and sensing to develop gold nanoparticle dimers that are able to perform multiplexed synergistic functions within a cellular environment. These dimers can sense two mRNA targets and simultaneously or independently deliver one or two DNA-intercalating anticancer drugs (doxorubicin and mitoxantrone) in live cells. Our study focuses on the design of sophisticated nanoparticle assemblies with multiple and synergistic functions that have the potential to advance sensing and drug delivery in cells.

  14. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery.

    PubMed

    Niedermayer, Stefan; Weiss, Veronika; Herrmann, Annika; Schmidt, Alexandra; Datz, Stefan; Müller, Katharina; Wagner, Ernst; Bein, Thomas; Bräuchle, Christoph

    2015-05-07

    A highly stable modular platform, based on the sequential covalent attachment of different functionalities to the surface of core-shell mesoporous silica nanoparticles (MSNs) for targeted drug delivery is presented. A reversible pH-responsive cap system based on covalently attached poly(2-vinylpyridine) (PVP) was developed as drug release mechanism. Our platform offers (i) tuneable interactions and release kinetics with the cargo drug in the mesopores based on chemically orthogonal core-shell design, (ii) an extremely robust and reversible closure and release mechanism based on endosomal acidification of the covalently attached PVP polymer block, (iii) high colloidal stability due to a covalently coupled PEG shell, and (iv) the ability to covalently attach a wide variety of dyes, targeting ligands and other functionalities at the outer periphery of the PEG shell. The functionality of the system was demonstrated in several cell studies, showing pH-triggered release in the endosome, light-triggered endosomal escape with an on-board photosensitizer, and efficient folic acid-based cell targeting.

  15. Nanofibers based tissue engineering and drug delivery approaches for myocardial regeneration.

    PubMed

    Joshi, Jyotsna; Kothapalli, Chandrasekhar R

    2015-01-01

    Human heart has endogenous regenerative capability; however, the intrinsic repair mechanism is not sufficient to overcome the impact placed by adverse pathological conditions, such as myocardial infarction (MI). In such circumstances, the damaged tissue initiates a series of remodeling process which results in the deterioration of structural, functional, and mechanical properties of the myocardium. To address such adverse conditions, clinical approaches ranging from surgical interventions, pharmaceutical drugs, and device implantation are administered which have played significant role in reducing the mortality rate. However, these approaches do not replace the lost cardiomyocytes, or restore the degraded structure-function relationship of the myocardium. In this aspect, cell-based therapy has gained substantial interest as a potential clinical approach for myocardial regeneration; however this method is impeded by lower graft retention and poor cell viability. To overcome these limitations, biomaterials are being developed as "trojan horses", i.e., vehicles for homing and deploying cells, and as matrices for delivering specific biological, mechanical, and chemical cues intended for tissue regeneration. Similarly, several candidate drugs, potent synthetic and biological molecules, and advanced drug delivery systems are being examined to provide exogenous cues in a controlled fashion to the diseased myocardium. In this article, we review biomaterials-based drug delivery systems for myocardial regeneration, specifically on the applications of hydrogels, microgels, nanoparticles, and nanofibers in the field. The prime focus of the article is on nanofibers-based drug delivery systems that is gaining considerable attention as a biomimetic pharmacological approach. We highlight literature on fabrication methods of self-assembling and electrospun nanofibers, drug incorporation methods and release kinetics, and in vitro and in vivo outcomes from nanofiber-based drug

  16. Improved Treatment of Pancreatic Cancer With Drug Delivery Nanoparticles Loaded With a Novel AKT/PDK1 Inhibitor

    PubMed Central

    Kobes, Joseph E.; Daryaei, Iman; Howison, Christine M.; Bontrager, Jordan G.; Sirianni, Rachael W.; Meuillet, Emmanuelle J.; Pagel, Mark D.

    2015-01-01

    Objectives This research study sought to improve the treatment of pancreatic cancer by improving the drug delivery of a promising AKT/PDK1 inhibitor, PHT-427, in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Methods PHT-427 was encapsulated in single-emulsion and double-emulsion PLGA nanoparticles (SE- and DE-PLGA-427). The drug release rate was evaluated to assess the effect of the second PLGA layer of DE-PLGA-427. Ex vivo cryo-imaging and drug extraction from ex vivo organs was used to assess the whole body biodistribution in an orthotopic model of MiaPaCa-2 pancreatic cancer. Anatomical MRI was used to noninvasively assess the effects of four weeks of nanoparticle-drug treatment on tumor size, and diffusion-weighted MRI longitudinally assessed changes in tumor cellularity. Results DE-PLGA-427 showed delayed drug release and longer drug retention in the pancreas relative to SE-PLGA-427. Diffusion-weighted MRI indicated a consistent decrease in cellularity during drug treatment with both types of drug-loaded nanoparticles. Both SE- and DE-PLGA-427 showed a 6-fold and 4-fold reduction in tumor volume relative to untreated tumors, and an elimination of primary pancreatic tumor in 68% of the mice. Conclusions These results indicated that the PLGA nanoparticles improved drug delivery of PHT-427 to pancreatic tumors, which improved the treatment of Mia PaCa-2 pancreatic cancer. PMID:26918875

  17. Nanoparticles Effectively Target Rapamycin Delivery to Sites of Experimental Aortic Aneurysm in Rats

    PubMed Central

    Shirasu, Takuro; Koyama, Hiroyuki; Miura, Yutaka; Hoshina, Katsuyuki; Kataoka, Kazunori; Watanabe, Toshiaki

    2016-01-01

    Several drugs targeting the pathogenesis of aortic aneurysm have shown efficacy in model systems but not in clinical trials, potentially owing to the lack of targeted drug delivery. Here, we designed a novel drug delivery system using nanoparticles to target the disrupted aortic aneurysm micro-structure. We generated poly(ethylene glycol)-shelled nanoparticles incorporating rapamycin that exhibited uniform diameter and long-term stability. When injected intravenously into a rat model in which abdominal aortic aneurysm (AAA) had been induced by infusing elastase, labeled rapamycin nanoparticles specifically accumulated in the AAA. Microscopic analysis revealed that rapamycin nanoparticles were mainly distributed in the media and adventitia where the wall structures were damaged. Co-localization of rapamycin nanoparticles with macrophages was also noted. Rapamycin nanoparticles injected during the process of AAA formation evinced significant suppression of AAA formation and mural inflammation at 7 days after elastase infusion, as compared with rapamycin treatment alone. Correspondingly, the activities of matrix metalloproteinases and the expression of inflammatory cytokines were significantly suppressed by rapamycin nanoparticle treatment. Our findings suggest that the nanoparticle-based delivery system achieves specific delivery of rapamycin to the rat AAA and might contribute to establishing a drug therapy approach targeting aortic aneurysm. PMID:27336852

  18. Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery.

    PubMed

    Łukasiewicz, Sylwia; Szczepanowicz, Krzysztof; Błasiak, Ewa; Dziedzicka-Wasylewska, Marta

    2015-06-16

    The use of polymeric nanoparticles (NPs) in pharmacology provides many benefits because this approach can increase the efficacy and selectivity of active compounds. However, development of new nanocarriers requires better understanding of the interactions between NPs and the immune system, allowing for the optimization of NP properties for effective drug delivery. Therefore, in the present study, we focused on the investigation of the interactions between biocompatible polymeric NPs and a murine macrophage cell line (RAW 264.7) and a human monocytic leukemia cell line (THP-1). NPs based on a liquid core with polyelectrolyte shells were prepared by sequential adsorption of polyelectrolytes (LbL) using AOT (docusate sodium salt) as the emulsifier and the biocompatible polyelectrolytes polyanion PGA (poly-l-glutamic acid sodium salt) and polycation PLL (poly l-lysine). The average size of the obtained NPs was 80 nm. Pegylated external layers were prepared using PGA-g-PEG (PGA grafted by PEG poly(ethylene glycol)). The influence of the physicochemical properties of the NPs (charge, size, surface modification) on viability, phagocytosis potential, and endocytosis was studied. Internalization of NPs was determined by flow cytometry and confocal microscopy. Moreover, we evaluated whether addition of PEG chains downregulates particle uptake by phagocytic cells. The presented results confirm that the obtained PEG-grafted NPs are promising candidates for drug delivery.

  19. Liposomal nanoparticles as a drug delivery vehicle against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Dhule, Santosh Subhashrao

    The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-gamma-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded gamma-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. The second part of this study examines the anti-tumor potential of curcumin and C6 ceramide (C6) against osteosarcoma cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with systems with curcumin alone. Interestingly, C6-curcumin liposomes were found to be less toxic on untransformed human cells in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G 2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. Using pegylated liposomes to increase the plasma half-life and tagging

  20. Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release.

    PubMed

    Zhang, Yang; Xu, Juan

    2018-01-01

    This paper proposes a novel type of multifunctional envelope-type mesoporous silica nanoparticle (MSN) to achieve cancer cell targeting and drug-controlled release. In this system, MSNs were first modified by active targeting moiety hyaluronic acid (HA) for breast cancer cell targeting and hyaluronidases (Hyal)-induced intracellular drug release. Then gelatin, a proteinaceous biopolymer, was grafted onto the MSNs to form a capping layer via glutaraldehyde-mediated cross-linking. To shield against unspecific uptake of cells and prolong circulation time, the nanoparticles were further decorated with poly(ethylene glycol) polymers (PEG) to obtain MSN@HA-gelatin-PEG (MHGP). Doxorubicin (DOX), as a model drug, was loaded into PEMSN to assess the breast cancer cell targeting and drug release behaviours. In vitro study revealed that PEG chains protect the targeting ligand and shield against normal cells. After reaching the breast cancer cells, MMP-2 overpressed by cells hydrolyses gelatin layer to deshield PEG and switch on the function of HA. As a result, DOX-loaded MHGP was selectively trapped by cancer cells through HA receptor-mediated endocytosis and subsequently release DOX due to Hyal-catalysed degradation of HA. This system presents successful bienzyme-responsive targeting drug delivery in an optimal fashion and provides potential applications for targeted cancer therapy.

  1. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Urries, Inmaculada; Muñoz, Cristina; Gomez, Leyre; Marquina, Clara; Sebastian, Victor; Arruebo, Manuel; Santamaria, Jesus

    2014-07-01

    PEGylated magneto-plasmonic nanoparticles with a hollow or semi-hollow interior have been successfully synthesized and their physico-chemical characteristics have been investigated. The hollow interior space can be used to store drugs or other molecules of interest whereas magnetic characterization shows their potential as contrast agents in magnetic resonance imaging (MRI) applications. In addition, their plasmonic characteristics in the near infrared (NIR) region make them efficient in photothermal applications producing high temperature gradients after short irradiation times. We show that by controlling the etching conditions the inner silica shell can be selectively dissolved to achieve a hollow or semi-hollow interior without compromising the magnetic or plasmonic characteristics of the resulting nanoparticles. Magnetic measurements and transmission electron microscopy observations have been used to demonstrate the precise control during the etching process and to select an optimal concentration of the etching reagent and contact time to preserve the inner superparamagnetic iron oxide-based nanoparticles and the plasmonic properties of the constructs. Drug loading capabilities were also evaluated for both semi-hollow and as-synthesized nanoparticles using Rhodamine B isothiocyanate as a model compound. The nanoparticles produced could be potentially used as ``theranostic'' nanoparticles with both imaging capabilities and a dual therapeutic function (drug delivery and hyperthermia).

  2. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications.

    PubMed

    Urries, Inmaculada; Muñoz, Cristina; Gomez, Leyre; Marquina, Clara; Sebastian, Victor; Arruebo, Manuel; Santamaria, Jesus

    2014-08-07

    PEGylated magneto-plasmonic nanoparticles with a hollow or semi-hollow interior have been successfully synthesized and their physico-chemical characteristics have been investigated. The hollow interior space can be used to store drugs or other molecules of interest whereas magnetic characterization shows their potential as contrast agents in magnetic resonance imaging (MRI) applications. In addition, their plasmonic characteristics in the near infrared (NIR) region make them efficient in photothermal applications producing high temperature gradients after short irradiation times. We show that by controlling the etching conditions the inner silica shell can be selectively dissolved to achieve a hollow or semi-hollow interior without compromising the magnetic or plasmonic characteristics of the resulting nanoparticles. Magnetic measurements and transmission electron microscopy observations have been used to demonstrate the precise control during the etching process and to select an optimal concentration of the etching reagent and contact time to preserve the inner superparamagnetic iron oxide-based nanoparticles and the plasmonic properties of the constructs. Drug loading capabilities were also evaluated for both semi-hollow and as-synthesized nanoparticles using Rhodamine B isothiocyanate as a model compound. The nanoparticles produced could be potentially used as "theranostic" nanoparticles with both imaging capabilities and a dual therapeutic function (drug delivery and hyperthermia).

  3. Carbohydrate Nanoparticles for Brain Delivery.

    PubMed

    Lalatsa, A; Barbu, E

    2016-01-01

    Many brain tumors and neurological diseases can greatly benefit from the use of emerging nanotechnologies based on targeted nanomedicines that are able to noninvasively transport highly potent and specific pharmaceuticals across the blood-brain barrier. Carbohydrates have received considerable interest as materials for drug carriers due to their natural origin and inherent biodegradability and biocompatibility, as well as due to their hydrophilic character and ease of chemical modification combined with low cost and the possibility for large-scale manufacturing. This chapter provides an overview of the latest research involving the use of carbohydrate-based nanoparticles for drug delivery to the central nervous system. After reviewing the challenges posed by delivering drugs into the brain, the current state-of-the-art approaches for delivery of actives across the blood-brain barrier, including invasive and noninvasive strategies, are presented. A particular focus has been placed on chitosan polymers as they are among the most promising carbohydrate nanocarriers for the preparation and testing of chitosan-based nanomedicines that led, in preclinical proof-of-concept studies, to enhanced brain drug levels and increased pharmacodynamics responses after intravenous, nasal, and oral administration. While chitosan nanoparticles are to date among the most studied and most promising carriers, approaches based on other polysaccharides such as dextran, pullulan, and cellulose warrant further research in the attempt to advance the existing technologies for overcoming the blood-brain barrier. © 2016 Elsevier Inc. All rights reserved.

  4. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy

    DTIC Science & Technology

    2012-10-01

    studying potential toxicity of nanoparticles. We have shown that A-dmDT(390)-scfbDb(PSMA), a single chain Fv fragments of antibody with diphtheria toxin...smart’ agents activated by specific enzymes , or based on the expression of detectable reporters [3, 4]. These molecular imaging capabilities, in...understanding of these interactions will greatly assist in the design of smart drugs and targeted CAs delivery, with great potential for molecular-based

  5. Multifunctional platinum-based nanoparticles for biomedical applications.

    PubMed

    Cheng, Qinqin; Liu, Yangzhong

    2017-03-01

    Platinum-based anticancer drugs play a central role in current cancer therapy. However, their applicability and efficacy are limited by drug resistance and adverse effects. Nanocarrier-based platinum drug delivery systems are promising alternatives to circumvent the disadvantages of bare platinum drugs. The various properties of nanoparticle chemistry allow for the trend toward multiple functionality. Nanoparticles preferentially accumulate at the tumor site through passive targeting, and the attachment of tumor targeting moieties further enhances their tumor-specific localization as well as tumor cell uptake. The introduction of stimuli-responsive groups into drug delivery systems can further achieve spatially and temporally controlled drug release in response to specific stimuli. Combination therapy strategies have been used to promote synergetic efficacy and overcome the resistance of platinum drugs. The tumor-localized drug delivery strategies exhibit benefits for preventing local tumor recurrence. In addition, the combination of platinum drugs and imaging agents in one unity allows the cancer diagnostics for real-time monitoring the distribution of drug-loaded nanoparticles inside the body and tumor. This review discusses recent scientific advances in multifunctional nanoparticle formulations of platinum drugs, and these designs exhibit new potential of multifunctional nanoparticles for delivering platinum-based anticancer drugs. WIREs Nanomed Nanobiotechnol 2017, 9:e1410. doi: 10.1002/wnan.1410 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  6. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery.

    PubMed

    Guo, Jianwei; Gao, Xiaoling; Su, Lina; Xia, Huimin; Gu, Guangzhi; Pang, Zhiqing; Jiang, Xinguo; Yao, Lei; Chen, Jun; Chen, Hongzhuan

    2011-11-01

    Targeted delivery of therapeutic nanoparticles in a disease-specific manner represents a potentially powerful technology especially when treating infiltrative brain tumors such as gliomas. We developed a nanoparticulate drug delivery system decorated with AS1411 (Ap), a DNA aptamer specifically binding to nucleolin which was highly expressed in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood vessels, as the targeting ligand to facilitate anti-glioma delivery of paclitaxel (PTX). Ap was conjugated to the surface of PEG-PLGA nanoparticles (NP) via an EDC/NHS technique. With the conjugation confirmed by Urea PAGE and XPS, the resulting Ap-PTX-NP was uniformly round with particle size at 156.0 ± 54.8 nm and zeta potential at -32.93 ± 3.1 mV. Ap-nucleolin interaction significantly enhanced cellular association of nanoparticles in C6 glioma cells, and increased the cytotoxicity of its payload. Prolonged circulation and enhanced PTX accumulation at the tumor site was achieved for Ap-PTX-NP, which eventually obtained significantly higher tumor inhibition on mice bearing C6 glioma xenografts and prolonged animal survival on rats bearing intracranial C6 gliomas when compared with PTX-NP and Taxol(®). The results of this contribution demonstrated the potential utility of AS1411-functionalized nanoparticles for a therapeutic application in the treatment of gliomas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  8. A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery.

    PubMed

    Hou, Jie; Guo, Chunlei; Shi, Yuzhi; Liu, Ergang; Dong, Weibing; Yu, Bo; Liu, Shiyuan; Gong, Junbo

    2017-11-25

    A novel high drug loading pH-cleavable polymer hybrid nanoparticle was prepared via doxorubicin (DOX) grafted onto PEGylated, mussel-inspired polydopamine (PDA) and then coated onto hollow silica nanoparticles for drug delivery. A series of characterization shed light on the formation mechanisms of PDA coatings on hollow silica. We hypothesized that dopamine was first absorbed onto the surface of hollow silica and then began self-polymerization. A Dox-containing thiol moiety was fabricated with conjugation between doxorubicin hydrochloride and Mercaptopropionyalkali with a pH-cleavable hydrozone bond. Using a Michael addition reaction, several Dox-containing thiol moieties were grafted onto the surface of the PDA. The drug loading capacity can reach 35.43%. It can minimize the metabolic problem of silica. The released behavior of Dox can be significantly enhanced at endosomal pH compared to physiological pH. After folate modification, nanoparticles can lead to more cellular endocytosis. Meanwhile animal assays showed that more Dox accumulated in tumor tissue, which can enhanced the cytotoxicity to 4T1 cancer cells with a targeting group compared to free DOX and untargeted groups. Meanwhile, the tumor growth was significantly inhibited. This promising material shows a promising future as a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri

  10. Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery.

    PubMed

    Nogueira, Daniele R; Scheeren, Laís E; Pilar Vinardell, M; Mitjans, Montserrat; Rosa Infante, M; Rolim, Clarice M B

    2015-12-01

    The pH-responsive delivery systems have brought new advances in the field of functional nanodevices and might allow more accurate and controllable delivery of specific cargoes, which is expected to result in promising applications in different clinical therapies. Here we describe a family of chitosan-TPP (tripolyphosphate) nanoparticles (NPs) for intracellular drug delivery, which were designed using two pH-sensitive amino acid-based surfactants from the family N(α),N(ε)-dioctanoyl lysine as bioactive compounds. Low and medium molecular weight chitosan (LMW-CS and MMW-CS, respectively) were used for NP preparation, and it was observed that the size distribution for NPs with LMW-CS were smaller (~168 nm) than that for NPs prepared with MMW-CS (~310 nm). Hemolysis assay demonstrated the pH-dependent biomembrane disruptional capability of the constructed NPs. The nanostructures incorporating the surfactants cause negligible membrane permeabilization at pH7.4. However, at acidic pH, prevailing in endosomes, membrane-destabilizing activity in an erythrocyte lysis assay became evident. When pH decreased to 6.6 and 5.4, hemolytic capability of chitosan NPs increased along with the raise of concentration. Furthermore, studies with cell culture showed that these pH-responsive NPs displayed low cytotoxic effects against 3T3 fibroblasts. The influence of chitosan molecular weight, chitosan to TPP weight ratio, nanoparticle size and nature of the surfactant counterion on the membrane-disruptive properties of nanoparticles was discussed in detail. Altogether, the results achieved here showed that by inserting the lysine-based amphiphiles into chitosan NPs, pH-sensitive membranolytic and potentially endosomolytic nanocarriers were developed, which, therefore, demonstrated ideal feasibility for intracellular drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles.

    PubMed

    Patel, Ashaben; Patel, Mitesh; Yang, Xiaoyan; Mitra, Ashim K

    2014-01-01

    Proteins and peptides are widely indicated in many diseased states. Parenteral route is the most commonly em- ployed method of administration for therapeutic proteins and peptides. However, requirement of frequent injections due to short in vivo half-life results in poor patient compliance. Non-invasive drug delivery routes such as nasal, transdermal, pulmonary, and oral offer several advantages over parenteral administration. Intrinsic physicochemical properties and low permeability across biological membrane limit protein delivery via non-invasive routes. One of the strategies to improve protein and peptide absorption is by delivering through nanostructured delivery carriers. Among nanocarriers, polymeric nanoparticles (NPs) have demonstrated significant advantages over other delivery systems. This article summarizes the application of polymeric NPs for protein and peptide drug delivery following oral, nasal, pulmonary, parenteral, transder mal, and ocular administrations.

  12. Recent Advances in Protein and Peptide Drug Delivery: A Special Emphasis on Polymeric Nanoparticles

    PubMed Central

    Patel, Ashaben; Patel, Mitesh; Yang, Xiaoyan; Mitra, Ashim K.

    2015-01-01

    Proteins and peptides are widely indicated in many diseased states. Parenteral route is the most commonly employed method of administration for therapeutic proteins and peptides. However, requirement of frequent injections due to short in vivo half-life results in poor patient compliance. Non-invasive drug delivery routes such as nasal, transdermal, pulmonary, and oral offer several advantages over parenteral administration. Intrinsic physicochemical properties and low permeability across biological membrane limit protein delivery via non-invasive routes. One of the strategies to improve protein and peptide absorption is by delivering through nanostructured delivery carriers. Among nanocarriers, polymeric nanoparticles (NPs) have demonstrated significant advantages over other delivery systems. This article summarizes the application of polymeric NPs for protein and peptide drug delivery following oral, nasal, pulmonary, parenteral, transdermal, and ocular administrations. PMID:25106908

  13. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  14. Activation of caspase-dependent apoptosis by intracellular delivery of cytochrome c-based nanoparticles

    PubMed Central

    2014-01-01

    Background Cytochrome c is an essential mediator of apoptosis when it is released from the mitochondria to the cytoplasm. This process normally takes place in response to DNA damage, but in many cancer cells (i.e., cancer stem cells) it is disabled due to various mechanisms. However, it has been demonstrated that the targeted delivery of Cytochrome c directly to the cytoplasm of cancer cells selective initiates apoptosis in many cancer cells. In this work we designed a novel nano-sized smart Cytochrome c drug delivery system to induce apoptosis in cancer cells upon delivery. Results Cytochrome c was precipitated with a solvent-displacement method to obtain protein nanoparticles. The size of the Cytochrome c nanoparticles obtained was 100-300 nm in diameter depending on the conditions used, indicating good potential to passively target tumors by the Enhanced Permeability and Retention effect. The surface of Cytochrome c nanoparticles was decorated with poly (lactic-co-glycolic) acid-SH via the linker succinimidyl 3-(2-pyridyldithio) propionate to prevent premature dissolution during delivery. The linker connecting the polymer to the protein nanoparticle contained a disulfide bond thus allowing polymer shedding and subsequent Cytochrome c release under intracellular reducing conditions. A cell-free caspase-3 assay revealed more than 80% of relative caspase activation by Cytochrome c after nanoprecipitation and polymer modification when compared to native Cytochrome c. Incubation of HeLa cells with the Cytochrome c based-nanoparticles showed significant reduction in cell viability after 6 hours while native Cytochrome c showed none. Confocal microscopy confirmed the induction of apoptosis in HeLa cells when they were stained with 4’,6-diamidino-2-phenylindole and propidium iodide after incubation with the Cytochrome c-based nanoparticles. Conclusions Our results demonstrate that the coating with a hydrophobic polymer stabilizes Cytochrome c nanoparticles allowing

  15. Redox and pH dual-responsive mesoporous silica nanoparticles for site-specific drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Cui, Yu; Huang, Jiahao; Di, Donghua; Dong, Yanyan; Zhang, Xiaojing; Zhao, Qinfu; Han, Ning; Gao, Yikun; Jiang, Tongying; Wang, Siling

    2015-11-01

    In this paper, a mesoporous silica nanoparticles (MSN)-based redox and pH dual-responsive delivery system (MSN-SS-PAA) was developed for site-specific drug delivery, in which poly(acrylic acid) (PAA), a polyanion polymer, was grafted on the outlets of MSN via the cleavable disulfide bonds. PAA was chosen as a gatekeeper to block drugs within the mesopores of MSN mainly because PAA possesses many favorable features, such as appropriate molecular weight to block the entrances of MSNs, good biocompatibility, and ability to prolong the blood circulation time and improve the dispersing stability of MSN in physiological conditions. RhB, a fluorescent dye, was used as a model drug. In vitro release profiles indicated that RhB was markedly blocked within the mesopores in the absence of GSH or in pH 7.4 PBS; however, the release of RhB was dramatically increased after the addition of GSH or in pH 5.0 PBS. Moreover, the release of RhB was further improved in the simultaneous presence of GSH and pH 5.0 PBS. This paper provided an exploration of stimuli-responsive delivery system and the results demonstrated that MSN-SS-PAA exhibiting dual-responsive drug release property can be further considered as a promising candidate for cancer therapy.

  16. Ketamine nano-delivery based on poly-lactic-co-glycolic acid (PLGA) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hirano, Sota; Bovi, Michele; Romeo, Alessandro; Guzzo, Flavia; Chiamulera, Cristiano; Perduca, Massimiliano

    2018-04-01

    This work describes a novel method for the generation of a ketamine nano-delivery, to improve brain blood barrier permeability and increase drug therapeutic window as anaesthetic, analgesic and potential antidepressant. The approach herein described is based on ketamine-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles coupled to an apolipoprotein E (ApoE) peptide for delivery to the central nervous system. PLGA particles were synthesized with amount of drug, coupled with the ApoE peptide on the surface, and validated by physical characterization. The produced nanodevice showed a good colloidal stability in water, confirmed by zeta potential measurements, with a diameter in the range of 185-205 nm. The ketamine encapsulation was verified by liquid chromatography-mass spectrometry analyses obtaining an encapsulation efficiency up to 21.2 ± 3.54%. Once the occurrence of ApoE peptide functionalization was confirmed with fluorescence spectroscopy, the thermal stability and morphological information were obtained by differential scanning calorimetry and further dynamic light scattering measurements. The spherical shape and a rough nanoparticles surface were observed by atomic force microscopy. The reliability of this approach may be further developed as a protocol to be used to generate PLGA nanoparticles greater than 100 nm able to better penetrate blood brain barrier and release a neuroactive molecule at lower doses.

  17. Light-switchable systems for remotely controlled drug delivery.

    PubMed

    Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung

    2017-12-10

    Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Design of eudragit RL nanoparticles by nanoemulsion method as carriers for ophthalmic drug delivery of ketotifen fumarate

    PubMed Central

    Soltani, Saieede; Zakeri-Milani, Parvin; Barzegar-Jalali, Mohammad; Jelvehgari, Mitra

    2016-01-01

    Objective(s): Ketotifen fumarate (KF) is a selective and noncompetitive histamine antagonist (H1-receptor) that is used topically in the treatment of allergic conditions of rhinitis and conjunctivitis. The aim of this study was to formulate and improve an ophthalmic delivery system of KF. Ocular nanoparticles were prepared with the objective of reducing the frequency of administration and obtaining controlled release to improve the anti-inflammatory drug delivery. Materials and Methods: In the present study, ocular KF loaded Eudragit RL 100 nanoparticles were prepared using O/W solvent diffusion method. The nanoparticles were evaluated for particle size, entrapment efficiency, surface morphology, X-ray diffraction (XRD), Fourier transform spectroscopy (FTIR), and differential scanning calorimetry (DSC). In vitro release and permeation studies were also carried out on nanoparticles. Results: An average size range of 182 to 314.30 nm in diameter was obtained and encapsulation efficiency up to 95.0% was observed for all the formulations. Drug release for all formulations after 24 hr was between 65.51% and 88.82% indicating effective controlled release property of KF. The mechanism of drug release for best formulation was found to be fickian diffusion mechanism. KF nanoparticles containing high polymer concentration (1:15) presented a faster drug release and a higher drug penetration; on the contrary, nanoparticles containing low polymer concentration (1:7.5) were able to give a more sustained release of the drug and thus a slower KF permeation through the cornea. Conclusion: The study revealed that KF NPs were capable of releasing the drug for a prolonged period of time and increasing the ocular bioavailability. PMID:27403262

  19. Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells

    NASA Astrophysics Data System (ADS)

    Durgadas, C. V.; Sharma, C. P.; Paul, W.; Rekha, M. R.; Sreenivasan, K.

    2012-09-01

    This study refers an aqueous synthesis of methotrexate (MTX)-conjugated gold nanoparticles (GNPs), their interaction with HepG2 cells, and the use of Raman imaging to observe cellular internalization and drug delivery. GNPs of average size 3.5-5 nm were stabilized using the amine terminated bifunctional biocompatible copolymer and amended by conjugating MTX, an anticancer drug. The nanoparticles were released MTX at a faster rate in acidic pH and subsequently found to form aggregates. The Raman signals of cellular components were found to be enhanced by the aggregated particles enabling the mapping to visualize site-specific drug delivery. The methodology seems to have potential in optimizing the characteristics of nanodrug carriers for emptying the cargo precisely at specified sites.

  20. Development In Drug Targeting And Delivery In Cervical Cancer.

    PubMed

    Aggarwal, Urvashi; Goyal, Amit Kumar; Rath, Goutam

    2017-10-09

    Cervical cancer is the second most common cancer in women. Standard treatment options available for cervical cancer including chemotherapy, surgery and radiation therapy associated with their own side effects and toxicities. Tumor-targeted delivery of anticancer drugs is perhaps one of the most appropriate strategies to achieve optimal outcomes from treatment and improve quality of life. Recently nanocarriers based drug delivery systems owing to their unique properties have been extensively investigated for anticancer drug delivery. In addition to that addressing the anatomical significance of cervical cancer, various local drug delivery strategies for the cancer treatment are introduced like: gels, nanoparticles, polymeric films, rods and wafers, lipid based nanocarrier. Localized drug delivery systems allows passive drug targeting results in high drug concentration at the target site. Further they can be tailor made to achieve both sustained and controlled release behavior, substantially improving therapeutic outcomes and minimizing side effects. This review summarizes the meaningful advances in drug delivery strategies to treat cervical cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.

    PubMed

    Islam, Mohammad Aminul; Barua, Sutapa; Barua, Dipak

    2017-11-25

    Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.

  2. Trojan particles: Large porous carriers of nanoparticles for drug delivery

    PubMed Central

    Tsapis, N.; Bennett, D.; Jackson, B.; Weitz, D. A.; Edwards, D. A.

    2002-01-01

    We have combined the drug release and delivery potential of nanoparticle (NP) systems with the ease of flow, processing, and aerosolization potential of large porous particle (LPP) systems by spray drying solutions of polymeric and nonpolymeric NPs into extremely thin-walled macroscale structures. These hybrid LPPs exhibit much better flow and aerosolization properties than the NPs; yet, unlike the LPPs, which dissolve in physiological conditions to produce molecular constituents, the hybrid LPPs dissolve to produce NPs, with the drug release and delivery advantages associated with NP delivery systems. Formation of the large porous NP (LPNP) aggregates occurs via a spray-drying process that ensures the drying time of the sprayed droplet is sufficiently shorter than the characteristic time for redistribution of NPs by diffusion within the drying droplet, implying a local Peclet number much greater than unity. Additional control over LPNPs physical characteristics is achieved by adding other components to the spray-dried solutions, including sugars, lipids, polymers, and proteins. The ability to produce LPNPs appears to be largely independent of molecular component type as well as the size or chemical nature of the NPs. PMID:12200546

  3. Role of Nanodiamonds in Drug Delivery and Stem Cell Therapy.

    PubMed

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Jafri, Mohammad Alam; Rasool, Mahmood; Ahmad, Waseem; Kashif Zaidi, Syed

    2016-09-01

    The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Nanodiamonds (NDs) have contributed significantly in the development of highly efficient and successful drug delivery systems, and in stem cell therapy. Drug delivery through NDs is an intricate and complex process that deserves special attention to unravel underlying molecular mechanisms in order to overcome certain bottlenecks associated with it. It has already been established that NDs based drug delivery systems have excellent biocompatibility, nontoxicity, photostability and facile surface functionalization properties. There is mounting evidence that suggests that such conjugated delivery systems well retain the properties of nanoparticles like small size, large surface area to volume ratio that provide greater biocatalytic activity to the attached drug in terms of selectivity, loading and stability. NDs based drug delivery systems may form the basis for the development of effective novel drug delivery vehicles with salient features that may facilitate their utility in fluorescence imaging, target specificity and sustainedrelease.

  4. Biopolymer mediated nanoparticles synthesized from Adenia hondala for enhanced tamoxifen drug delivery in breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Varadharajaperumal, Pradeepa; Subramanian, Balakumar; Santhanam, Amutha

    2017-09-01

    Silver nanoparticles (AgNPs) are an important class of nanomaterials, which have used as antimicrobial and disinfectant agents due to their detrimental effect on target cells. In the present study it was explored to deliver a novel tamoxifen drug system that can be used in breast cancer treatment, based on chitosan coated silver nanoparticles on MCF-7 human breast cancer cells. AgNPs synthesized from Adenia hondala tuber extract were used to make the chitosan coated AgNPs (Ch-AgNPs), in which the drug tamoxifen was loaded on chitosan coated silver nanoparticles (Tam-Ch-AgNPs) to construct drug loaded nanoparticles as drug delivery system. The morphology and characteristics of the Ch-AgNPs were investigated by UV, FTIR, zeta potential and FESEM. Furthermore, the toxicity of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs was evaluated through cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3, DNA laddering, and TUNEL assay in human breast cancer cells (MCF-7) and HBL-100 continuous cell line as a control. Treatment of cancer cells with various concentrations of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs for 24 h revealed that Tam-Ch-AgNPs could inhibit cell viability and induce significant membrane leakage in a dose-dependent manner. Cells exposed to Tam-Ch-AgNPs showed increased reactive oxygen species and hydroxyl radical production when compared to AgNPs, Ch-AgNPs. Furthermore, the apoptotic effects of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs were confirmed by activation of caspase-3 and DNA nuclear fragmentation. The present findings suggest that Tam-Ch-AgNPs could contribute to the development of a suitable anticancer drug delivery.

  5. Colloidal drug delivery system: amplify the ocular delivery.

    PubMed

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  6. Advanced Analgesic Drug Delivery and Nanobiotechnology.

    PubMed

    Stoicea, Nicoleta; Fiorda-Diaz, Juan; Joseph, Nicholas; Shabsigh, Muhammad; Arias-Morales, Carlos; Gonzalez-Zacarias, Alicia A; Mavarez-Martinez, Ana; Marjoribanks, Stephen; Bergese, Sergio D

    2017-07-01

    Transdermal administration of analgesic medications offers several benefits over alternative routes of administration, including a decreased systemic drug load with fewer side effects, and avoidance of drug degradation by the gastrointestinal tract. Transdermal administration also offers a convenient mode of drug administration over an extended period of time, particularly desirable in pain medicine. A transdermal administration route may also offer increased safety for drugs with a narrow therapeutic window. The primary barrier to transdermal drug absorption is the skin itself. Transdermal nanotechnology offers a novel method of achieving enhanced dermal penetration with an extended delivery profile for analgesic drugs, due to their small size and relatively large surface area. Several materials have been used to enhance drug duration and transdermal penetration. The application of nanotechnology in transdermal delivery of analgesics has raised new questions regarding safety and ethical issues. The small molecular size of nanoparticles enables drug delivery to previously inaccessible body sites. To ensure safety, the interaction of nanoparticles with the human body requires further investigation on an individual drug basis, since different formulations have unique properties and side effects.

  7. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.

    PubMed

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2008-08-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP comprises three distinct functional components: (i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; (ii) a hydrophilic polymeric shell with antibiofouling properties to enhance NP stability and systemic circulation half-life; and (iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up.

  8. Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform

    PubMed Central

    Zhang, Liangfang; Chan, Juliana M; Gu, Frank X; Rhee, June-Wha; Wang, Andrew Z; Radovic-Moreno, Aleksandar F; Alexis, Frank; Langer, Robert; Farokhzad, Omid C

    2014-01-01

    We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP is comprised of three distinct functional components: i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; ii) a hydrophilic polymeric shell with anti-biofouling properties to enhance NP stability and systemic circulation half-life; and iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up PMID:19206374

  9. Design of pH-sensitive methotrexate prodrug-targeted curcumin nanoparticles for efficient dual-drug delivery and combination cancer therapy.

    PubMed

    Xie, Jiajiang; Fan, Zhongxiong; Li, Yang; Zhang, Yinying; Yu, Fei; Su, Guanghao; Xie, Liya; Hou, Zhenqing

    2018-01-01

    We designed acid-labile methotrexate (MTX) targeting prodrug self-assembling nanoparticles loaded with curcumin (CUR) drug for simultaneous delivery of multi-chemotherapeutic drugs and combination cancer therapy. A dual-acting MTX, acting as both an anticancer drug and as a tumor-targeting ligand, was coupled to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aldehyde(polyethylene glycol)-2000] via Schiff's base reaction. The synthesized prodrug conjugate (DSPE-PEG-Imine-MTX) could be self-assembled into micellar nanoparticles (MTX-Imine-M) in aqueous solution, which encapsulated CUR into their core by hydrophobic interactions (MTX-Imine-M-CUR). The prepared MTX-Imine-M-CUR nanoparticles were composed of an inner hydrophobic DSPE/CUR core and an outside hydrophilic bishydroxyl poly (ethyleneglycol) (PEG) shell with a self-targeting MTX prodrug corona. The imine linker between 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[aldehyde(polyethyleneglycol)-2000] and MTX, as a dynamic covalent bond, was strong enough to remain intact in physiological pH, even though it is rapidly cleaved in acidic pH. The MTX-Imine-M-CUR could codeliver MTX and CUR selectively and efficiently into the cancer cells via folate receptor-mediated endocytosis followed by the rapid intracellular release of CUR and the active form of MTX via the acidity of endosomes/lysosomes. Moreover, the MTX-Imine-M-CUR resulted in significantly higher in vitro and in vivo anticancer activity than pH-insensitive DSPE-PEGAmide-MTX assembling nanoparticles loaded with CUR (MTX-Amide-M-CUR), MTX unconjugated DSPE-PEG assembling micellar nanoparticles loaded with CUR (M-CUR), combination of both free drugs, and individual free drugs. The smart system provided a simple, yet feasible, drug delivery strategy for targeted combination chemotherapy.

  10. Gelatin modified lipid nanoparticles for anti- viral drug delivery.

    PubMed

    K S, Joshy; S, Snigdha; Kalarikkal, Nandakumar; Pothen, Laly A; Thomas, Sabu

    2017-10-01

    The major challenges to clinical application of zidovudine are its moderate aqueous solubility and relative short half-life and serious side effects due to frequent administrations. We investigated the preparation of zidovudine-loaded nanoparticles based on lipids which were further modified with the polymer gelatin. Formulation and stability of the modified nanoparticles were analysed from the physico-chemical characterizations. The interactions of nanoparticles with blood components were tested by haemolysis and aggregation studies. The drug content and entrapment efficiencies were assessed by UV analysis. The effect of nanoparticles on protein adsorption was assessed by native polyacrylamide gel electrophoresis (PAGE). In vitro release studies showed a sustained release profile of zidovudine. In vitro cytotoxicity and cellular uptake of the zidovudine-loaded nanoparticles were performed in MCF-7 and neuro 2a brain cells. The enhanced cellular internalization of drug loaded modified nanoparticles in both the cell lines were revealed by fluorescence microscopy. Hence the present study focuses on the feasibility of zidovudine-loaded polymer modified lipid nanoparticles as carriers for safe and efficient HIV/AIDS therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A novel delivery vector for targeted delivery of the antiangiogenic drug paclitaxel to angiogenic blood vessels: TLTYTWS-conjugated PEG-PLA nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Fei; Mo, Xiao-hui; Zhao, Jian; Liang, Hui; Chen, Zhong-jian; Wang, Xiu-li

    2017-02-01

    Antiangiogenesis has been widely accepted as an attractive strategy to combat tumor growth, invasion, and metastasis. An actively targeting nanoparticle-based drug delivery system (nano-DDS) would provide an alternative method to achieve antiangiogenic antitumor therapy. In the present study, our group fabricated novel nano-DDS, TLTYTWS (TS) peptide-modified poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (TS-NPs) encapsulating a drug with antiangiogenic potential, paclitaxel (Ptx) (TS-Ptx-NPs). The nanoparticles were uniformly spherical and had a unimodal particle size distribution and slightly negative zeta potential. TS-NPs accumulated significantly in human umbilical vein endothelial cells (HUVECs) via energy-dependent and caveolae- and lipid raft-mediated endocytosis and improved the antiproliferative, antimigratory, and antitube-forming abilities of paclitaxel in vitro. Following intravenous administration, TS-Ptx-NPs presented favorable pharmacokinetic profiles. Melanoma distribution assays confirmed that TS-NPs achieved higher accumulation and penetration at melanoma sites. These results collectively indicated that TLTYTWS-decorated nanoparticles can be considered to be a promising nano-DDS for chemotherapies targeting tumor angiogenesis and have great potential to improve the efficacy of antiangiogenic therapy in melanoma tumor-bearing nude mice.

  12. Controlled drug delivery systems: past forward and future back.

    PubMed

    Park, Kinam

    2014-09-28

    Controlled drug delivery technology has progressed over the last six decades. This progression began in 1952 with the introduction of the first sustained release formulation. The 1st generation of drug delivery (1950-1980) focused on developing oral and transdermal sustained release systems and establishing controlled drug release mechanisms. The 2nd generation (1980-2010) was dedicated to the development of zero-order release systems, self-regulated drug delivery systems, long-term depot formulations, and nanotechnology-based delivery systems. The latter part of the 2nd generation was largely focused on studying nanoparticle formulations. The Journal of Controlled Release (JCR) has played a pivotal role in the 2nd generation of drug delivery technologies, and it will continue playing a leading role in the next generation. The best path towards a productive 3rd generation of drug delivery technology requires an honest, open dialog without any preconceived ideas of the past. The drug delivery field needs to take a bold approach to designing future drug delivery formulations primarily based on today's necessities, to produce the necessary innovations. The JCR provides a forum for sharing the new ideas that will shape the 3rd generation of drug delivery technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Design and development of hyaluronan-functionalized polybenzofulvene nanoparticles as CD44 receptor mediated drug delivery system

    NASA Astrophysics Data System (ADS)

    Licciardi, Mariano; Scialabba, Cinzia; Giammona, Gaetano; Paolino, Marco; Razzano, Vincenzo; Grisci, Giorgio; Giuliani, Germano; Makovec, Francesco; Cappelli, Andrea

    2017-06-01

    A tri-component polymer brush (TCPB ), composed of a polybenzofulvene copolymer bearing low molecular weight hyaluronic acid (HA) on the surface of its cylindrical brush-like backbone and oligo-PEG fractions, was employed in the preparation of 350 nm nanostructured drug delivery systems capable of delivering the anticancer drug doxorubicin. The obtained drug delivery systems were characterized on the basis of drug loading and release, dimensions and zeta potential, morphology and in vitro cell activity, and uptake on three different human cell lines, namely the bronchial epithelial 16HBE, the breast adenocarcinoma MCF-7, and the colon cancer HCT116 cells. Finally, the ability of doxorubicin-loaded TCPB nanoparticles (DOXO-TCPB) to be internalized into cancer cells by CD44 receptor mediated uptake was assessed by means of uptake studies in HCT cells. These data were supported by anti-CD44-FITC staining assay. The proposed TCPB nanostructured drug delivery systems have many potential applications in nanomedicine, including cancer targeted drug delivery.

  14. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    PubMed

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems

    NASA Astrophysics Data System (ADS)

    Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu

    2015-11-01

    Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied

  16. Genetically engineered nanocarriers for drug delivery.

    PubMed

    Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew

    2014-01-01

    Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins.

  17. Genetically engineered nanocarriers for drug delivery

    PubMed Central

    Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew

    2014-01-01

    Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. PMID:24741309

  18. Drug Synergy of Tenofovir and Nanoparticle-Based Antiretrovirals for HIV Prophylaxis

    PubMed Central

    Chaowanachan, Thanyanan; Krogstad, Emily; Ball, Cameron; Woodrow, Kim A.

    2013-01-01

    Background The use of drug combinations has revolutionized the treatment of HIV but there is no equivalent combination product that exists for prevention, particularly for topical HIV prevention. Strategies to combine chemically incompatible agents may facilitate the discovery of unique drug-drug activities, particularly unexplored combination drug synergy. We fabricated two types of nanoparticles, each loaded with a single antiretroviral (ARV) that acts on a specific step of the viral replication cycle. Here we show unique combination drug activities mediated by our polymeric delivery systems when combined with free tenofovir (TFV). Methodology/Principal Findings Biodegradable poly(lactide-co-glycolide) nanoparticles loaded with efavirenz (NP-EFV) or saquinavir (NP-SQV) were individually prepared by emulsion or nanoprecipitation techniques. Nanoparticles had reproducible size (d ∼200 nm) and zeta potential (-25 mV). The drug loading of the nanoparticles was approximately 7% (w/w). NP-EFV and NP-SQV were nontoxic to TZM-bl cells and ectocervical explants. Both NP-EFV and NP-SQV exhibited potent protection against HIV-1 BaL infection in vitro. The HIV inhibitory effect of nanoparticle formulated ARVs showed up to a 50-fold reduction in the 50% inhibitory concentration (IC50) compared to free drug. To quantify the activity arising from delivery of drug combinations, we calculated combination indices (CI) according to the median-effect principle. NP-EFV combined with free TFV demonstrated strong synergistic effects (CI50 = 0.07) at a 1∶50 ratio of IC50 values and additive effects (CI50 = 1.05) at a 1∶1 ratio of IC50 values. TFV combined with NP-SQV at a 1∶1 ratio of IC50 values also showed strong synergy (CI50 = 0.07). Conclusions ARVs with different physicochemical properties can be encapsulated individually into nanoparticles to potently inhibit HIV. Our findings demonstrate for the first time that combining TFV with either NP-EFV or NP

  19. Predicting drug loading in PLA-PEG nanoparticles.

    PubMed

    Meunier, M; Goupil, A; Lienard, P

    2017-06-30

    Polymer nanoparticles present advantageous physical and biopharmaceutical properties as drug delivery systems compared to conventional liquid formulations. Active pharmaceutical ingredients (APIs) are often hydrophobic, thus not soluble in conventional liquid delivery. Encapsulating the drugs in polymer nanoparticles can improve their pharmacological and bio-distribution properties, preventing rapid clearance from the bloodstream. Such nanoparticles are commonly made of non-toxic amphiphilic self-assembling block copolymers where the core (poly-[d,l-lactic acid] or PLA) serves as a reservoir for the API and the external part (Poly-(Ethylene-Glycol) or PEG) serves as a stealth corona to avoid capture by macrophage. The present study aims to predict the drug affinity for PLA-PEG nanoparticles and their effective drug loading using in silico tools in order to virtually screen potential drugs for non-covalent encapsulation applications. To that end, different simulation methods such as molecular dynamics and Monte-Carlo have been used to estimate the binding of actives on model polymer surfaces. Initially, the methods and models are validated against a series of pigments molecules for which experimental data exist. The drug affinity for the core of the nanoparticles is estimated using a Monte-Carlo "docking" method. Drug miscibility in the polymer matrix, using the Hildebrand solubility parameter (δ), and the solvation free energy of the drug in the PLA polymer model is then estimated. Finally, existing published ALogP quantitative structure-property relationships (QSPR) are compared to this method. Our results demonstrate that adsorption energies modelled by docking atomistic simulations on PLA surfaces correlate well with experimental drug loadings, whereas simpler approaches based on Hildebrand solubility parameters and Flory-Huggins interaction parameters do not. More complex molecular dynamics techniques which use estimation of the solvation free energies both in

  20. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come

    PubMed Central

    Yingchoncharoen, Phatsapong; Kalinowski, Danuta S.

    2016-01-01

    Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles. PMID:27363439

  1. Controllable delivery of hydrophilic and hydrophobic drugs from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats.

    PubMed

    Song, Botao; Wu, Chengtie; Chang, Jiang

    2012-11-01

    Co-delivery of several drugs has been regarded as an alternative strategy for achieving enhanced therapeutic effect. In this study, a co-delivery system based on the electrospun poly(lactic-co-glycolic acid) (PLGA)/mesoporous silica nanoparticles (MSNs) composite mat was designed for the co-encapsulation and prolonged release of one hydrophilic and one hydrophobic drug simultaneously. MSNs were chosen to load the hydrophobic model drug fluorescein (FLU) and hydrophilic model drug rhodamine B (RHB), respectively (named as RHB-loaded MSNs and FLU-loaded MSNs). Two kinds of drug-loaded MSNs were incorporated into the polymer matrix to form a fibrous structure by blending electrospinning. The effect of the weight ratios for the two kinds of drug-loaded MSNs and the initial PLGA concentrations on the drug release kinetics were systematically investigated. The results showed that both model drugs RHB and FLU maintained sustained delivery with controllable release kinetics during the releasing period, and the release kinetics was closely dependent on the loading ratios of two drug-loaded MSNs and the initial PLGA concentrations in the composite mats. The results suggest that the co-drug delivery system may be used for wound dressing that requires the combined therapy of several kinds of drugs. Copyright © 2012 Wiley Periodicals, Inc.

  2. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

    PubMed Central

    Zeng, Ni; Gao, Xiaoling; Hu, Quanyin; Song, Qingxiang; Xia, Huimin; Liu, Zhongyang; Gu, Guangzhi; Jiang, Mengyin; Pang, Zhiqing; Chen, Hongzhuan; Chen, Jun; Fang, Liang

    2012-01-01

    Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents. PMID:22888230

  3. Implications of protein- and Peptide-based nanoparticles as potential vehicles for anticancer drugs.

    PubMed

    Elzoghby, Ahmed O; Elgohary, Mayada M; Kamel, Nayra M

    2015-01-01

    Protein-based nanocarriers have gained considerable attention as colloidal carrier systems for the delivery of anticancer drugs. Protein nanocarriers possess various advantages including their low cytotoxicity, abundant renewable sources, high drug-binding capacity, and significant uptake into the targeted tumor cells. Moreover, the unique protein structure offers the possibility of site-specific drug conjugation and tumor targeting using various ligands modifying the surface of protein nanocarriers. In this chapter, we highlight the most important applications of protein nanoparticles (NPs) for the delivery of anticancer drugs. We examine the various techniques that have been utilized for the preparation of anticancer drug-loaded protein NPs. Finally, the current chapter also reviews the major outcomes of the in vitro and in vivo investigations of surface-modified tumor-targeted protein NPs. © 2015 Elsevier Inc. All rights reserved.

  4. Mucoadhesive and thermogelling systems for vaginal drug delivery.

    PubMed

    Caramella, Carla M; Rossi, Silvia; Ferrari, Franca; Bonferoni, Maria Cristina; Sandri, Giuseppina

    2015-09-15

    This review focuses on two formulation approaches, mucoadhesion and thermogelling, intended for prolonging residence time on vaginal mucosa of medical devices or drug delivery systems, thus improving their efficacy. The review, after a brief description of the vaginal environment and, in particular, of the vaginal secretions that strongly affect in vivo performance of vaginal formulations, deals with the above delivery systems. As for mucoadhesive systems, conventional formulations (gels, tablets, suppositories and emulsions) and novel drug delivery systems (micro-, nano-particles) intended for vaginal administration to achieve either local or systemic effect are reviewed. As for thermogelling systems, poly(ethylene oxide-propylene oxide-ethylene oxide) copolymer-based and chitosan-based formulations are discussed as thermogelling systems. The methods employed for functional characterization of both mucoadhesive and thermogelling drug delivery systems are also briefly described. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Drug Delivery in Cancer Therapy, Quo Vadis?

    PubMed

    Lu, Zheng-Rong; Qiao, Peter

    2018-03-22

    The treatment of malignancies has undergone dramatic changes in the past few decades. Advances in drug delivery techniques and nanotechnology have allowed for new formulations of old drugs, so as to improve the pharmacokinetics, to enhance accumulation in solid tumors, and to reduce the significant toxic effects of these important therapeutic agents. Here, we review the published clinical data in cancer therapy of several major drug delivery systems, including targeted radionuclide therapy, antibody-drug conjugates, liposomes, polymer-drug conjugates, polymer implants, micelles, and nanoparticles. The clinical outcomes of these delivery systems from various phases of clinical trials are summarized. The success and limitations of the drug delivery strategies are discussed based on the clinical observations. In addition, the challenges in applying drug delivery for efficacious cancer therapy, including physical barriers, tumor heterogeneity, drug resistance, and metastasis, are discussed along with future perspectives of drug delivery in cancer therapy. In doing so, we intend to underscore that efficient delivery of cancer therapeutics to solid malignancies remains a major challenge in cancer therapy, and requires a multidisciplinary approach that integrates knowledge from the diverse fields of chemistry, biology, engineering, and medicine. The overall objective of this review is to improve our understanding of the clinical fate of commonly investigated drug delivery strategies, and to identify the limitations that must be addressed in future drug delivery strategies, toward the pursuit of curative therapies for cancer.

  6. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery.

    PubMed

    Zhou, Zilan; Badkas, Apurva; Stevenson, Max; Lee, Joo-Youp; Leung, Yuet-Kin

    2015-06-20

    A dual functional nano-scaled drug carrier, comprising of a targeting ligand and pH sensitivity, has been made in order to increase the specificity and efficacy of the drug delivery system. The nanoparticles are made of a tri-block copolymer, poly(d,l lactide-co-glycolide) (PLGA)-b-poly(l-histidine) (PHis)-b-polyethylene glycol (PEG), via nano-precipitation. To provide the nanoparticle feature of endolysosomal escape and pH sensitivity, poly(l-histidine) was chosen as a proton sponge polymer. Herceptin, which specifically binds to HER2 antigen, was conjugated to the nanoparticles through click chemistry. The nanoparticles were characterized via dynamic light scattering (DLS) and transmission electron microscopy (TEM). Both methods showed the sizes of about 100nm with a uniform size distribution. The pH sensitivity was assessed by drug releases and size changes at different pH conditions. As pH decreased from 7.4 to 5.2, the drug release rate accelerated and the size significantly increased. During in vitro tests against human breast cancer cell lines, MCF-7 and SK-BR-3 showed significantly increased uptake for Herceptin-conjugated nanoparticles, as compared to non-targeted nanoparticles. Herceptin-conjugated pH-sensitive nanoparticles showed the highest therapeutic effect, and thus validated the efficacy of a combined approach of pH sensitivity and active targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Novel galactosylated biodegradable nanoparticles for hepatocyte-delivery of oridonin.

    PubMed

    Wang, Ying; Liu, Xinquan; Liu, Guangpu; Guo, Hejian; Li, Caiyun; Zhang, Yongchun; Zhang, Fang; Zhao, Zhongxi; Cheng, Huiling

    2016-04-11

    Nanoparticles based on the newly synthesized copolymers of linear PLGA blocked with two TPGS ends and galactosylated TPGS were successfully constructed as carriers of oridonin for liver-targeting. The novel copolymers were characterized by (1)H-NMR and TGA. The drug-loaded nanoparticles were prepared by a nanoprecipitation technique and characterized in terms of physicochemical properties, such as particle size, zeta potential, morphology, encapsulation efficiency, in vitro drug release behavior and physical state of the entrapped drug. The ORI-Gal-PT NPs were found to have the highest antitumor efficacy in comparison with the oridonin solution and non-galactosylated nanoparticles and induced a higher apoptotic rate of tumor cells. The targeting nanoparticles could enhance the therapeutic effect of oridonin by increasing uptake of the nanoparticles through asialoglycoprotein receptor-mediated endocytosis. The ORI-Gal-PT NPs system could be a highly promising drug delivery system to be used in liver cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Magnetic and pH-sensitive nanoparticles for antitumor drug delivery.

    PubMed

    Yu, Shufang; Wu, Guolin; Gu, Xin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2013-03-01

    A dually responsive nanocarrier with multilayer core-shell architecture was prepared based on Fe(3)O(4)@SiO(2) nanoparticles coated with mPEG-poly(l-Asparagine). Imidazole groups (pK(a)∼6.0) were tethered to the side chains of poly(l-Asparagine) segments by aminolysis. These nanoparticles were expected to be sensitive to both magnetic field and pH environment. The obtained materials were characterized with FTIR, dynamic light scattering, ζ-potential, TEM, TGA and hysteresis loop analysis. It was found that this Fe(3)O(4)@SiO(2)-polymer complex can form nano-scale core-shell-corona trilayer particles (∼250 nm) in aqueous solution. The Fe(3)O(4)@SiO(2), poly(L-Asparagine) and mPEG segments serve as a super-paramagnetic core, a pH-sensitive shell, and a hydrophilic corona, respectively. An antitumor agent, doxorubicin (DOX), was successfully loaded into the nanocarrier via combined actions of hydrophobic interaction and hydrogen bonding. The drug release profiles displayed a pH-dependent behavior. DOX release rate increased significantly as the ambient pH dropped from the physiological pH (7.4) to acidic (5.5). This is most likely due to protonation and a change in hydrophilicity of the imidazole groups in the poly(l-Asparagine) segments. This new approach may serve as a promising platform to formulate magnetic targeted drug delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. PLGA/polymeric liposome for targeted drug and gene co-delivery.

    PubMed

    Wang, Hanjie; Zhao, Peiqi; Su, Wenya; Wang, Sheng; Liao, Zhenyu; Niu, Ruifang; Chang, Jin

    2010-11-01

    Chemotherapy is one of the most effective approaches to treat cancers in the clinic, but the problems, such as multidrug resistance (MDR), low bioavailability and toxicity, severely constrain the further application of chemotherapy. Our group recently reported that cationic PLGA/folate coated PEGlated polymeric liposome core-shell nanoparticles (PLGA/FPL NPs). It was self-assembled from a hydrophobic PLGA core and a hydrophilic folate coated PEGlated lipid shell for targeting co-delivery of drug and gene. Hydrophobic drugs can be incorporated into the core and the cationic shell of the drug-loaded nanoparticles can be used to bind DNA. The drug-loaded PLGA/FPL NPs/DNA complexes offer advantages to overcome these problems mentioned above, such as co-delivery of drugs and DNA to improving the chemosensitivity of cancer cells at a gene level, and targeting delivery of drug to the cancer tissue that enhance the bioavailability and reduce the toxicity. The experiment showed that nanoparticles have core-shell structure with nanosize, sustained drug release profile and good DNA-binding ability. Importantly, the core-shell nanoparticles achieve the possibility of co-delivering drugs and genes to the same cells with high gene transfection and drug delivery efficiency. Our data suggest that the PLGA/FPL NPs may be a useful drug and gene co-delivery system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    NASA Astrophysics Data System (ADS)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  11. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    PubMed

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2016-06-01

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  12. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis - a critical review.

    PubMed

    Singh, Jagdeep; Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2015-08-11

    From the early sixteenth and seventeenth centuries to the present day of life, tuberculosis (TB) still is a global health threat with some new emergence of resistance. This type of emergence poses a vital challenge to control TB cases across the world. Mortality and morbidity rates are high due to this new face of TB. The newer nanotechnology-based drug-delivery approaches involving micro-metric and nano-metric carriers are much needed at this stage. These delivery systems would provide more advantages over conventional systems of treatment by producing enhanced therapeutic efficacy, uniform distribution of drug molecule to the target site, sustained and controlled release of drug molecules and lesser side effects. The main aim to develop these novel drug-delivery systems is to improve the patient compliance and reduce therapy time. This article reviews and elaborates the new concepts and drug-delivery approaches for the treatment of TB involving solid-lipid particulate drug-delivery systems (solid-lipid micro- and nanoparticles, nanostructured lipid carriers), vesicular drug-delivery systems (liposomes, niosomes and liposphere), emulsion-based drug-delivery systems (micro and nanoemulsion) and some other novel drug-delivery systems for the effective treatment of tuberculosis and role of immunomodulators as an adjuvant therapy for management of MDR-TB and XDR-TB.

  13. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodzinski, Alexandra; Guduru, Rakesh; Liang, Ping; Hadjikhani, Ali; Stewart, Tiffanie; Stimphil, Emmanuel; Runowicz, Carolyn; Cote, Richard; Altman, Norman; Datar, Ram; Khizroev, Sakhrat

    2016-02-01

    It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry.

  14. Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination.

    PubMed

    Augustine, Robin; Ashkenazi, Dana Levin; Arzi, Roni Sverdlov; Zlobin, Vita; Shofti, Rona; Sosnik, Alejandro

    2018-05-01

    Nanonizationhas been extensively investigated to increase theoral bioavailability of hydrophobicdrugsin general andantiretrovirals(ARVs)used inthe therapy of the human immunodeficiency virus (HIV) infection in particular. Weanticipatedthatin the caseofprotease inhibitors, a family of pH-dependent ARVsthatdisplay high aqueous solubility undertheacidconditionsof thestomach andextremely low solubilityunder the neutral ones ofthe small intestine, this strategy might failowing to an uncontrolled dissolution-re-precipitation process that will take place along the gastrointestinal tract.To tackle thisbiopharmaceutical challenge, in this work, wedesigned, produced and fully characterized a novelNanoparticle-in-MicroparticleDelivery System(NiMDS)comprised of pure nanoparticlesofthefirst-line protease inhibitor darunavir(DRV) and itsboosting agentritonavir (RIT) encapsulated within film-coated microparticles.For this, a clinically relevant combination of pure DRV and RIT nanoparticles wassynthesized by a sequential nanoprecipitation/solvent diffusion and evaporation method employing sodium alginateas viscosity stabilizer. Then, pure nanoparticles were encapsulated within calcium alginate/chitosanmicroparticlesthat were film-coated with a series ofpoly(methacrylate) copolymers with differential solubility in the gastrointestinal tract. This coating ensured full stability under gastric-like pH and sustained drug release under intestinal one. PharmacokineticstudiesconductedinalbinoSpragueDawleyratsshowed that DRV/RIT-loadedNiMDSs containing 17% w/w drug loading based on dry weight significantlyincreasedthe oral bioavailabilityof DRVby 2.3-foldwith respect to both theunprocessedandthenanonized DRV/RIT combinations that showed statistically similar performance. Moreover, they highlighted the limited advantage of only drugnanonizationto improve the oral pharmacokinetics of protease inhibitors and the potential of our novel delivery approach to improve the oral pharmacokinetics of

  15. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634

  16. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier.

    PubMed

    Gil, Eun Seok; Wu, Linfeng; Xu, Lichong; Lowe, Tao Lu

    2012-11-12

    Novel biodegradable polymeric nanoparticles composed of β-cyclodextrin and poly(β-amino ester) segments have been developed for sustained drug delivery across the blood-brain barrier (BBB). The nanoparticles have been synthesized by cross-linking β-cyclodextrin with poly(β-amino ester) via the Michael addition method. The chemical, physical, and degradation properties of the nanoparticles have been characterized by matrix-assisted laser desoption/ionization time-of-flight, attenuated total reflectance Fourier transform infrared spectroscopy, nuclear magnetic resonance, dynamic light scattering, and atomic force microscopy techniques. Bovine and human brain microvascular endothelial cell monolayers have been constructed as in vitro BBB models. Preliminary results show that the nanoparticles do not affect the integrity of the in vitro BBB models, and the nanoparticles have much higher permeability than dextran control across the in vitro BBB models. Doxorubicin has been loaded into the nanoparticles with a loading efficiency of 86%, and can be released from the nanoparticles for at least one month. The developed β-cyclodextrin-poly(β-amino ester) nanoparticles might be useful as drug carriers for transporting drugs across the BBB to treat chronic diseases in the brain.

  17. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    PubMed

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route.

    PubMed

    Lauterbach, Andreas; Müller-Goymann, Christel C

    2015-11-01

    Lipid nanoparticles (LN) such as solid lipid nanoparticles (SLN) and nanolipid carriers (NLC) feature several claimed benefits for topical drug therapy including biocompatible ingredients, drug release modification, adhesion to the skin, and film formation with subsequent hydration of the superficial skin layers. However, penetration and permeation into and across deeper skin layers are restricted due to the barrier function of the stratum corneum (SC). As different kinds of nanoparticles provide the potential for penetration into hair follicles (HF) LN are applicable drug delivery systems (DDS) for this route in order to enhance the dermal and transdermal bioavailability of active pharmaceutical ingredients (API). Therefore, this review addresses the HF as application site, published formulations of LN which showed follicular penetration (FP), and characterization methods in order to identify and quantify the accumulation of API delivered by the LN in the HF. Since LN are based on lipids that appear in human sebum which is the predominant medium in HF an increased localization of the colloidal carriers as well as a promoted drug release may be assumed. Therefore, sebum-like lipid material and a size of less or equal 640 nm are appropriate specifications for FP of particulate formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Smart Cancer Cell Targeting Imaging and Drug Delivery System by Systematically Engineering Periodic Mesoporous Organosilica Nanoparticles.

    PubMed

    Lu, Nan; Tian, Ying; Tian, Wei; Huang, Peng; Liu, Ying; Tang, Yuxia; Wang, Chunyan; Wang, Shouju; Su, Yunyan; Zhang, Yunlei; Pan, Jing; Teng, Zhaogang; Lu, Guangming

    2016-02-10

    The integration of diagnosis and therapy into one nanoplatform, known as theranostics, has attracted increasing attention in the biomedical areas. Herein, we first present a cancer cell targeting imaging and drug delivery system based on engineered thioether-bridged periodic mesoporous organosilica nanoparticles (PMOs). The PMOs are stably and selectively conjugated with near-infrared fluorescence (NIRF) dye Cyanine 5.5 (Cy5.5) and anti-Her2 affibody on the outer surfaces to endow them with excellent NIRF imaging and cancer targeting properties. Also, taking the advantage of the thioether-group-incorporated mesopores, the release of chemotherapy drug doxorubicin (DOX) loaded in the PMOs is responsive to the tumor-related molecule glutathione (GSH). The drug release percentage reaches 84.8% in 10 mM of GSH solution within 24 h, which is more than 2-fold higher than that without GSH. In addition, the drug release also exhibits pH-responsive, which reaches 53.6% at pH 5 and 31.7% at pH 7.4 within 24 h. Confocal laser scanning microscopy and flow cytometry analysis demonstrate that the PMOs-based theranostic platforms can efficiently target to and enter Her2 positive tumor cells. Thus, the smart imaging and drug delivery nanoplatforms induce high tumor cell growth inhibition. Meanwhile, the Cy5.5 conjugated PMOs perform great NIRF imaging ability, which could monitor the intracellular distribution, delivery and release of the chemotherapy drug. In addition, cell viability and histological assessments show the engineered PMOs have good biocompatibility, further encouraging the following biomedical applications. Over all, the systemically engineered PMOs can serve as a novel cancer cell targeting imaging and drug delivery platform with NIRF imaging, GSH and pH dual-responsive drug release, and high tumor cell targeting ability.

  20. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret.

    PubMed

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.

  1. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret

    PubMed Central

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    2016-01-01

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs. PMID:27822034

  2. A novel local anti-colorectal cancer drug delivery system: negative lipidoid nanoparticles with a passive target via a size-dependent pattern

    NASA Astrophysics Data System (ADS)

    Ding, Weifeng; Wang, Feng; Zhang, Jianfeng; Guo, Yibing; Ju, Shaoqing; Wang, Huimin

    2013-09-01

    The nontoxic, targeted and effective delivery of nucleic acid drugs remains an important challenge for clinical development. Here, we describe a novel negative lipidoid nanoparticle delivery system, providing entrapment-based transfection agents for local delivery of siRNA to the colorectal cancer focus. The delivery system was synthesized with lipidoid material 98N12-5(1), mPEG2000-C12/C14 glyceride and cholesterol at a desired molar ratio to realize the anionic surface charge of particles, which could alleviate to a larger degree the inflammatory response and immune stimulation of the organism, embodying dramatic biocompatibility. In particular, mPEG2000-C12/C14 glyceride was selected to ameliorate the stability of the delivery system and protection of nucleic acids by extending the tail length of the carbons, crucial also to neutralize the positive charge of 98N12-5(1) to form a resultant anionic particle. In vivo experiments revealed that a particle size of 90 nm perfectly realized a passive target in a size-dependent manner and did not affect the function of the liver and kidneys by a local delivery method, enema. We clarified that the uptake of negative lipidoid nanoparticles internalized through a lipid raft endocytotic pathway with low cytotoxicity, strong biocompatibility and high efficacy. This study suggests that negative lipidoid nanoparticles with enema delivery costitute, uniquely and appropriately, a local anti-colorectal cancer nucleic acid drug delivery platform, and the application of similar modes may be feasible in other therapeutic settings.

  3. Formulation/preparation of functionalized nanoparticles for in vivo targeted drug delivery.

    PubMed

    Gu, Frank; Langer, Robert; Farokhzad, Omid C

    2009-01-01

    Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D: ,L: -lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

  4. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.

    PubMed

    Valo, Hanna; Arola, Suvi; Laaksonen, Päivi; Torkkeli, Mika; Peltonen, Leena; Linder, Markus B; Serimaa, Ritva; Kuga, Shigenori; Hirvonen, Jouni; Laaksonen, Timo

    2013-09-27

    Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    PubMed

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  7. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.

    PubMed

    Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A

    2017-11-25

    Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nanomedicine Drug Delivery across Mucous Membranes

    NASA Astrophysics Data System (ADS)

    Lancina, Michael George, III

    Control over the distribution of therapeutic compounds is a complex and somewhat overlooked field of pharmaceutical research. When swallowing a pill or receiving an injection, it is commonly assumed that drug will spread throughout the body in a more or less uniform concentration and find its way to wherever it is needed. In truth, drug biodistribuition is highly non-uniform and dependent on a large number of factors. The development of advanced drug delivery systems to control biodistribution can produce significant advances in clinical treatments without the need to discover new therapeutic compounds. This work focuses on a number of nanostructured materials designed to improve drug delivery by direct and efficient transfer of drugs across one of the body's external mucous membranes. Chapter 1 outlines the central concept that unites these studies: nanomaterials and cationic particles can be used to delivery therapeutic compounds across mucous membranes. Special attention is given to dendritic nanoparticles. In chapter 2, uses for dendrimers in ocular drug delivery are presented. The studies are divided into two main groups: topical and injectable formulations. Chapter 3 does not involve dendrimers but instead another cationic particle used in transmembrane drug delivery, chitosan. Next, a dendrimer based nanofiber mat was used to deliver anti-glaucoma drugs in chapter 4. A three week in vivo efficacy trial showed dendrimer nanofiber mats outperformed traditional eye drops in terms of intra-ocular pressure decrease in a normotensive rat model. Finally, we have developed a new dendrimer based anti-glaucoma drug in chapter 5. Collectively, these studies demonstrate some of the potential applications for nanotechnology to improve transmembrane drug delivery. These particles and fibers are able to readily adhere and penetrate across epithelial cell lays. Utilizing these materials to improve drug absorption through these portals has the potential to improve the

  9. Advanced Drug Delivery Systems for Transdermal Delivery of Non-Steroidal Anti-Inflammatory Drugs: A Review.

    PubMed

    Kumar, Lalit; Verma, Shivani; Singh, Mehakjot; Tamanna, Tamanna; Utreja, Puneet

    2018-06-04

    Transdermal route of delivery of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) has several advantages over other routes like reduced adverse effects, less systemic absorption, and avoidance of first pass effect and degradation in the gastrointestinal tract (GIT). Transdermal route is also beneficial for drugs having a narrow therapeutic index. The skin acts as the primary barrier for transdermal delivery of various therapeutic molecules. Various advanced nanocarrier systems offer several advantages like improved dermal penetration along with an extended drug release profile due to their smaller size and high surface area. Various nanocarrier explored for transdermal delivery of NSAIDs are liposomes, niosomes, ethosomes, polymeric nanoparticles (NPs), solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), dendrimers, nanosuspensions/nanoemulsion, and nanofibers Objectives: In the present review, our major aim was to explore the therapeutic potential of advanced nanocarrier systems enlisted above for transdermal delivery of NSAIDs. All literature search regarding advanced nanocarrier systems for transdermal delivery of NSAIDs was done using Google Scholar and Pubmed. Advanced nanocarrier have shown various advantages like reduced side effect, low dosing frequency, high skin permeation, and ease of application over conventional transdermal delivery systems of NSAIDs in various preclinical studies. However, clinical exploration of advanced nanocarrier systems for transdermal delivery of NSAIDs is still a challenge. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier.

    PubMed

    Tosi, G; Bortot, B; Ruozi, B; Dolcetta, D; Vandelli, M A; Forni, F; Severini, G M

    2013-01-01

    Nanomedicine is certainly one of the scientific and technological challenges of the coming years. In particular, biodegradable nanoparticles formulated from poly (D,L-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted delivery of different agents, including recombinant proteins, plasmid DNA, and low molecular weight compounds. PLGA NPs present some very attractive properties such as biodegradability and biocompatibility, protection of drug from degradation, possibility of sustained release, and the possibility to modify surface properties to target nanoparticles to specific organs or cells. Moreover, PLGA NPs have received the FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, thus reducing the time for human clinical applications. This review in particular deals on surface modification of PLGA NPs and their possibility of clinical applications, including treatment for brain pathologies such as brain tumors and Lysosomal Storage Disorders with neurological involvement. Since a great number of pharmacologically active molecules are not able to cross the Blood-Brain Barrier (BBB) and reach the Central Nervous System (CNS), new brain targeted polymeric PLGA NPs modified with glycopeptides (g7- NPs) have been recently produced. In this review several in vivo biodistribution studies and pharmacological proof-of evidence of brain delivery of model drugs are reported, demonstrating the ability of g7-NPs to create BBB interaction and trigger an efficacious BBB crossing. Moreover, another relevant development of NPs surface engineering was achieved by conjugating to the surface of g7-NPs, some specific and selective antibodies to drive NPs directly to a specific cell type once inside the CNS parenchyma.

  11. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come.

    PubMed

    Yingchoncharoen, Phatsapong; Kalinowski, Danuta S; Richardson, Des R

    2016-07-01

    Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls

    NASA Astrophysics Data System (ADS)

    Hossain, Shaolie S.; Hossainy, Syed F. A.; Bazilevs, Yuri; Calo, Victor M.; Hughes, Thomas J. R.

    2012-02-01

    The majority of heart attacks occur when there is a sudden rupture of atherosclerotic plaque, exposing prothrombotic emboli to coronary blood flow, forming clots that can cause blockages of the arterial lumen. Diseased arteries can be treated with drugs delivered locally to vulnerable plaques. The objective of this work was to develop a computational tool-set to support the design and analysis of a catheter-based nanoparticulate drug delivery system to treat vulnerable plaques and diffuse atherosclerosis. A three-dimensional mathematical model of coupled mass transport of drug and drug-encapsulated nanoparticles was developed and solved numerically utilizing isogeometric finite element analysis. Simulations were run on a patient-specific multilayered coronary artery wall segment with a vulnerable plaque and the effect of artery and plaque inhomogeneity was analyzed. The method captured trends observed in local drug delivery and demonstrated potential for optimizing drug design parameters, including delivery location, nanoparticle surface properties, and drug release rate.

  13. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  14. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles.

    PubMed

    Wang, Yichao; Li, Puwang; Chen, Lijue; Gao, Weimin; Zeng, Fanbo; Kong, Ling Xue

    2015-02-01

    The incorporation of a high percentage of targeting molecules into drug delivery system is one of the important methods for improving efficacy of targeting therapeutic drugs to cancer cells. PLGA-based drug delivery carriers with folic acid (FA) as targeting molecule have a low targeting efficiency due to a low FA conjugation ratio. In this work, we fabricated a FA-conjugated PLGA system using a crosslinker 1, 3-diaminopropane and have achieved a high conjugation ratio of 46.7% (mol/mol). The as-prepared PLGA-based biomaterial was used to encapsulate therapeutic drug 5-fluorouracil (5-FU) into nanoparticles. In the in vitro experiments, an IC₅₀ of 5.69 µg/mL has been achieved for 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles on HT-29 cancer cells and is significantly lower than that of 5-FU and 5-FU loaded PLGA nanoparticles which only have an IC₅₀ of 22.9 and 14.17 µg/mL, respectively. The fluorescent microscopy images showed that nanoparticles with FA are largely taken up by HT-29 cancer cells and the targeting nanoparticles have more affinity to cancer cells than the pure drugs and untreated nanoparticles. Therefore, the 1, 3-diaminopropane can facilitate the conjugation of FA to PLGA to form a novel polymer and 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles can be a highly efficient system for specific delivery of drugs to cancer cells.

  15. Nano-Chitosan Particles in Anticancer Drug Delivery: An Up-to-Date Review.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya

    2017-01-01

    Cancer is one of the most awful lethal diseases all over the world and the success of its current chemotherapeutic treatment strategies is limited due to several associated drawbacks. The exploration of cancer cell physiology and its microenvironment has exposed the potential of various classes of nanocarriers to deliver anticancer chemotherapeutic agents at the tumor target site. These nanocarriers must evade the immune surveillance system and achieve target selectivity. Besides, they must gain access into the interior of cancerous cells, evade endosomal entrapment and discharge the drugs in a sustained manner. Chitosan, the second naturally abundant polysaccharide is a biocompatible, biodegradable and mucoadhesive cationic polymer which has been exploited extensively in the last few years in the effective delivery of anticancer chemotherapeutics to the target tumor cells. Therapeutic agent-loaded surface modified chitosan nanoparticles are established to be more stable, permeable and bioactive. This review will provide an up-to-date evidence-based background on recent pharmaceutical advancements in the transformation of chitosan nanoparticles for smart anticancer therapeutic drug delivery. • Efforts to improve cancer chemotherapy by exploiting the intrinsic differences between normal and neoplastic cells to achieve maximum effective drug delivery to target cancer cells through bioengineered chitosan nano delivery vectors are discussed. • The easy manipulation of surface characteristics of chitosan based nanoparticles by various functionalization methods to achieve targeted drug delivery proves its potential to be an essential tool for the advancement of anticancer drug-delivery vectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Composite nanoparticles for gene delivery.

    PubMed

    Wang, Yuhua; Huang, Leaf

    2014-01-01

    Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle-lipid-based composite nanoparticles will be classified based on the components and reviewed in details.

  17. Nanoparticle mediated non-covalent drug delivery☆

    PubMed Central

    Doane, Tennyson; Burda, Clemens

    2013-01-01

    The use of nanoparticles (NPs) for enhanced drug delivery has been heavily explored during the last decade. Within the field, it is has become increasingly apparent that the physical properties of the particles themselves dictate their efficacy, and the relevant non-covalent chemistry at the NP interface also influences how drugs are immobilized and delivered. In this review, we reflect on the physical chemistry of NP mediated drug delivery (and more specifically, non-covalent drug delivery) at the three main experimental stages of drug loading, NP–drug conjugate transport, and the resulting cellular drug delivery. Through a critical evaluation of advances in drug delivery within the last decade, an outlook for biomedical applications of nanoscale transport vectors will be presented. PMID:22664231

  18. Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery.

    PubMed

    Park, Ju-Hwan; Lee, Jae-Young; Termsarasab, Ubonvan; Yoon, In-Soo; Ko, Seung-Hak; Shim, Jae-Seong; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-10-01

    A hyaluronic acid-ceramide (HACE) nanostructure embedded with docetaxel (DCT)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) was fabricated for tumor-targeted drug delivery. NPs with a narrow size distribution and negative zeta potential were prepared by embedding DCT-loaded PLGA NPs into a HACE nanostructure (DCT/PLGA/HACE). DCT-loaded PLGA and DCT/PLGA/HACE NPs were characterized by solid-state techniques, including Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). A sustained drug release pattern from the NPs developed was observed and negligible cytotoxicity was seen in NIH3T3 cells (normal fibroblast, CD44 receptor negative) and MDA-MB-231 cells (breast cancer cells, CD44 receptor positive). PLGA/HACE NPs containing coumarin 6, used as a fluorescent dye, exhibited improved cellular uptake efficiency, based on the HA-CD44 receptor interaction, compared to plain PLGA NPs. Cyanine 5.5 (Cy5.5)-labeled PLGA/HACE NPs were injected intravenously into a MDA-MB-231 tumor xenograft mouse model and demonstrated enhanced tumor targetability, compared with Cy5.5-PLGA NPs, according to a near-infrared fluorescence (NIRF) imaging study. Considering these experimental results, the DCT/PLGA/HACE NPs developed may be useful as a tumor-targeted drug delivery system. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles.

    PubMed

    Wang, Xin; Yang, Chenchen; Zhang, Yajun; Zhen, Xu; Wu, Wei; Jiang, Xiqun

    2014-08-01

    Selectively activating tumor vessels to increase drug delivery and reduce interstitial fluid pressure of tumors is actively pursued. Here we developed a vasoactive peptide-decorated chitosan nanoparticles for enhancing drug accumulation and penetration in subcutaneous tumor and lung metastasis. The vasoactive peptide used here is bradykinin-potentiating peptide (BPP) containing 9 amino acid residues and the drug is bioreductively sensitive platinum(IV) compound which becomes cisplatin in intracellular reductive environments. Both peptide and drug are covalently linked with chitosan nanoparticles with a diameter of 120 nm. We demonstrate that BPP-decorated chitosan nanoparticles increase the tumorous vascular permeability and reduce the interstitial fluid pressure of tumor simultaneously, both of which improve the penetration of nanoparticles in tumor tissues. The in vivo biodistribution and tumor inhibition examinations demonstrate that the BPP-decorated nanoparticle formulation has more superior efficacy in enhancing drug accumulation in tumor, restraining tumor growth and prolonging the lifetime of tumor-bearing mice than free drug and non-decorated nanoparticle formulation. Meanwhile, the drug accumulation in the lung with metastasis reaches 17% and 20% injected dose per gram of lung for the chitosan nanoparticles without and with BPP decoration, respectively, which is 10-fold larger than that of free cisplatin. The examination of lung metastasis inhibition further indicates that BPP-decorated chitosan nanoparticle formulations can more effectively inhibit lung metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Initial observations of cell-mediated drug delivery to the deep lung.

    PubMed

    Kumar, Arun; Glaum, Mark; El-Badri, Nagwa; Mohapatra, Shyam; Haller, Edward; Park, Seungjoo; Patrick, Leslie; Nattkemper, Leigh; Vo, Dawn; Cameron, Don F

    2011-01-01

    Using current methodologies, drug delivery to small airways, terminal bronchioles, and alveoli (deep lung) is inefficient, especially to the lower lungs. Urgent lung pathologies such as acute respiratory distress syndrome (ARDS) and post-lung transplantation complications are difficult to treat, in part due to the methodological limitations in targeting the deep lung with high efficiency drug distribution to the site of pathology. To overcome drug delivery limitations inhibiting the optimization of deep lung therapy, isolated rat Sertoli cells preloaded with chitosan nanoparticles were use to obtain a high-density distribution and concentration (92%) of the nanoparticles in the lungs of mice by way of the peripheral venous vasculature rather than the more commonly used pulmonary route. Additionally, Sertoli cells were preloaded with chitosan nanoparticles coupled with the anti-inflammatory compound curcumin and then injected intravenously into control or experimental mice with deep lung inflammation. By 24 h postinjection, most of the curcumin load (∼90%) delivered in the injected Sertoli cells was present and distributed throughout the lungs, including the perialveloar sac area in the lower lungs. This was based on the high-density, positive quantification of both nanoparticles and curcumin in the lungs. There was a marked positive therapeutic effect achieved 24 h following curcumin treatment delivered by this Sertoli cell nanoparticle protocol (SNAP). Results identify a novel and efficient protocol for targeted delivery of drugs to the deep lung mediated by extratesticular Sertoli cells. Utilization of SNAP delivery may optimize drug therapy for conditions such as ARDS, status asthmaticus, pulmonary hypertension, lung cancer, and complications following lung transplantation where the use of high concentrations of anti-inflammatory drugs is desirable, but often limited by risks of systemic drug toxicity.

  1. A Review of Nanoparticle Photosensitizer Drug Delivery Uptake Systems for Photodynamic Treatment of Lung Cancer.

    PubMed

    Gift, Mokwena Mpho; Ann, Kruger Cherie; Ivan, Mfouo-Tynga; Heidi, Abrahamse

    2018-03-24

    Lung cancer is a leading cause of cancer related deaths worldwide and so current research is focused on trying to improve treatment modalities, such as photodynamic therapy (PDT). PDT has 3 fundamental factors, namely a photosensitizer (PS) drug, light and oxygen. When a PS drug is administered to a patient, it can either passively or actively accumulate within a tumour site and once exposed to a specific wavelength of light, it is stimulated to produce reactive oxygen species (ROS), resulting in tumour destruction. However, the efficacy of ROS generation for tumour destruction is highly dependent on the accumulation of the PS in tumour cells. Thus PS selective / targeted uptake and delivery in tumour cells is a crucial factor in PDT cancer drug absorption studies. Generally, within non-targeted drug delivery mechanisms, only small amounts of PS is able to passively accumulates in tumour sites due to the enhanced permeability and retention (EPR) effect and the remainder distributes into healthy tissues, causing side effects. Thus to improve the efficacy of PDT, research is currently focused on the development of specific receptor based photosynthetic nanocarrier drugs, which promotes the active uptake and absorption of PS drugs in tumour sites only, avoiding unwanted side effects. The aim of this review is to focus on current non-targeted passive versus specifically active targeted PS nanoparticle drug delivery systems, that have been investigated for the PDT treatment of lung cancer and so to deduce its efficacy and recent advancements. Copyright © 2018. Published by Elsevier B.V.

  2. Nanothermite-Based Microsystem for Drug Delivery and Cell Transfection

    DTIC Science & Technology

    2008-12-01

    micropyrotechnic-based system in which a nanothermite energy source is coupled to a biological target for gene transfer and drug delivery ... delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system . Shock Waves, 12, 23-30. Kodama, T., M...1 NANOTHERMITE-BASED MICROSYSTEM FOR DRUG DELIVERY AND CELL TRANSFECTION S. Apperson, R. Thiruvengadathan, A. Bezmelnitsyn, K. Gangopadhyay, S

  3. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  4. Magnetic Nanoparticles with Dual Functional Properties: Drug Delivery and Magnetic Resonance Imaging

    PubMed Central

    Jain, Tapan K.; Richey, John; Strand, Michelle; Leslie-Pelecky, Diandra L.; Flask, Chris; Labhasetwar, Vinod

    2008-01-01

    There is significant interest in recent years in developing MNPs having multifunctional characteristics with complimentary roles. In this study, we investigated the drug delivery and magnetic resonance imaging (MRI) properties of our novel oleic acid-coated iron-oxide and pluronic-stabilized magnetic nanoparticles (MNPs). The drug incorporation efficiency of doxorubicin and paclitaxel (alone or in combination) in MNPs was 74–95%; the drug release was sustained and the incorporated drugs had marginal effects on physical (size and zeta potential) or magnetization properties of the MNPs. The drugs in combination incorporated in MNPs demonstrated highly synergistic antiproliferative activity in breast cancer cells. The T2 relaxivity (r2) was higher for our MNPs than Feridex IV, whereas the T1 relaxivity (r1) was better for Feridex IV than for our MNPs, suggesting greater sensitivity of our MNPs than Feridex IV in T2 weighted imaging. The circulation half-life (t1/2), determined from the changes in the MRI signal intensity in carotid arteries in mice, was longer for our MNPs than Feridex IV (t1/2 = 31.2 vs 6.4 min). MNPs with combined characteristics of MRI and drug delivery could be of high clinical significance in the treatment of various disease conditions. PMID:18649936

  5. Incorporation of photosenzitizer hypericin into synthetic lipid-based nano-particles for drug delivery and large unilamellar vesicles with different content of cholesterol

    NASA Astrophysics Data System (ADS)

    Joniova, Jaroslava; Blascakova, Ludmila; Jancura, Daniel; Nadova, Zuzana; Sureau, Franck; Miskovsky, Pavol

    2014-08-01

    Low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are attractive natural occurring vehicles for drug delivery and targeting to cancer tissues. The capacity of both types of the lipoproteins to bind hydrophobic drugs and their functionality as drug carriers have been examined in several studies and it has been also shown that mixing of anticancer drugs with LDL or HDL before administration led to an increase of cytotoxic effects of the drugs in the comparison when the drugs were administered alone. However, a difficult isolation of the lipoproteins in large quantity from a biological organism as well as a variability of the composition and size of these molecules makes practical application of LDL and HDL as drug delivery systems quite complicated. Synthetic LDL and HDL and large unilamellar vesicles (LUV) are potentially suitable candidates to substitute the native lipoproteins for targeted and effective drug delivery. In this work, we have studied process of an association of potent photosensitizer hypericin (Hyp) with synthetic lipid-based nano-particles (sLNP) and large unilamellar vesicles (LUV) containing various amount of cholesterol. Cholesterol is one of the main components of both LDL and HDL particles and its presence in biological membranes is known to be a determining factor for membrane properties. It was found that the behavior of Hyp incorporation into sLNP particles with diameter ca ~ 90 nm is qualitatively very similar to that of Hyp incorporation into LDL (diameter ca. 22 nm) and these particles are able to enter U-87 MG cells by endocytosis. The presence of cholesterol in LUV influences the capacity of these vesicles to incorporate Hyp into their structure.

  6. Nanoparticles engineered to bind cellular motors for efficient delivery.

    PubMed

    Dalmau-Mena, Inmaculada; Del Pino, Pablo; Pelaz, Beatriz; Cuesta-Geijo, Miguel Ángel; Galindo, Inmaculada; Moros, María; de la Fuente, Jesús M; Alonso, Covadonga

    2018-03-30

    Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding peptides could be used to functionalize nanoparticles for drug delivery applications. Here, we show that gold nanoparticles modified with dynein-binding delivery sequences become mobile, powered by molecular motor proteins. Modified nanoparticles showed dynamic properties, such as travelling the cytosol, crossing intracellular barriers and shuttling the nuclear membrane. Furthermore, nanoparticles were transported from one cell to another through cell-to-cell contacts and quickly spread to distant cells through cell projections. The capacity of these motor-bound nanoparticles to spread to many cells and increasing cellular retention, thus avoiding losses and allowing lower dosage, could make them candidate carriers for drug delivery.

  7. Nanotechnology based approaches for anti-diabetic drugs delivery.

    PubMed

    Kesharwani, Prashant; Gorain, Bapi; Low, Siew Yeng; Tan, Siew Ann; Ling, Emily Chai Siaw; Lim, Yin Khai; Chin, Chuan Ming; Lee, Pei Yee; Lee, Chun Mey; Ooi, Chun Haw; Choudhury, Hira; Pandey, Manisha

    2018-02-01

    Nanotechnology science has been diverged its application in several fields with the advantages to operate with nanometric range of objects. Emerging field of nanotechnology has been also being approached and applied in medical biology for improved efficacy and safety. Increased success in therapeutic field has focused several approaches in the treatment of the common metabolic disorder, diabetes. The development of nanocarriers for improved delivery of different oral hypoglycemic agents compared to conventional therapies includes nanoparticles (NPs), liposomes, dendrimer, niosomes and micelles, which produces great control over the increased blood glucose level and thus becoming an eye catching and most promising technology now-a-days. Besides, embellishment of nanocarriers with several ligands makes it more targeted delivery with the protection of entrapped hypoglycaemic agents against degradation, thereby optimizing prolonged blood glucose lowering effect. Thus, nanocarriers of hypoglycemic agents provide the aim towards improved diabetes management with minimized risk of acute and chronic complications. In this review, we provide an overview on distinctive features of each nano-based drug delivery system for diabetic treatment and current NPs applications in diabetes management. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: functionalization, conjugation and drug release kinetics.

    PubMed

    Rana, S; Gallo, A; Srivastava, R S; Misra, R D K

    2007-03-01

    Superparamagnetic nickel ferrite nanoparticles functionalized with polyvinyl alcohol, polyethylene oxide and polymethacrylic acid (PMAA) polymers and subsequently conjugated with doxorubicin anti-cancer drug are studied for their use as a magnetic carrier for drug delivery. Fourier transform infrared spectroscopy enabled examination of the ability of the nanoparticles to be functionalized with polymers and conjugated with doxorubicin drug. The functionalized polymer-coated nanocrystalline nickel ferrites retain the magnetic characteristics of non-functionalized nanocrystalline nickel ferrites (superparamagnetism, absence of hysteresis, remanence and coercivity at room temperature), encouraging their application as a magnetic carrier for drug delivery. The PMAA-coated nanoferrites are demonstrated as being a potentially superior magnetically targeted drug carrier based on FTIR results and drug release kinetics in the absence and presence of an external magnetic field.

  9. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery.

    PubMed

    Dobson, J

    2006-02-01

    The recent emphasis on the development of non-viral transfection agents for gene delivery has led to new physics and chemistry-based techniques, which take advantage of charge interactions and energetic processes. One of these techniques which shows much promise for both in vitro and in vivo transfection involves the use of biocompatible magnetic nanoparticles for gene delivery. In these systems, therapeutic or reporter genes are attached to magnetic nanoparticles, which are then focused to the target site/cells via high-field/high-gradient magnets. The technique promotes rapid transfection and, as more recent work indicates, excellent overall transfection levels as well. The advantages and difficulties associated with magnetic nanoparticle-based transfection will be discussed as will the underlying physical principles, recent studies and potential future applications.

  10. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.

    PubMed

    Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S

    2016-12-10

    Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Advanced imaging approaches for characterizing nanoparticle delivery and dispersion in skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prow, Tarl W.; Yamada, Miko; Dang, Nhung; Evans, Conor L.

    2017-02-01

    The purpose of this research was to develop advanced imaging approaches to characterise the combination of elongated silica microparticles (EMP) and nanoparticles to control topical delivery of drugs and peptides. The microparticles penetrate through the epidermis and stop at the dermal-epidermal junction (DEJ). In this study we incorporated a fluorescent lipophilic dye, DiI, as a hydrophobic drug surrogate into the nanoparticle for visualization with microscopy. In another nanoparticle-based approach we utilized a chemically functionalized melanin nanoparticle for peptide delivery. These nanoparticles were imaged by coherent anti-Stoke Raman scattering (CARS) microscopy to characterize the delivery of these nanoparticles into freshly excised human skin. We compared four different coating approaches to combine EMP and nanoparticles. These data showed that a freeze-dried formulation with cross-linked alginate resulted in 100% of the detectable nanoparticle retained on the EMP. When this dry form of EMP-nanoparticle was applied to excised, living human abdominal skin, the EMP penetrated to the DEJ followed by controlled release of the nanoparticles. This formulation resulted in a sustained release profile, whereas a freeze-dried formulation without crosslinking showed an immediate burst-type release profile. These data show that advanced imaging techniques can give unique, label free data that shows promise for clinical investigations.

  12. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery.

    PubMed

    Chan, Juliana M; Zhang, Liangfang; Yuet, Kai P; Liao, Grace; Rhee, June-Wha; Langer, Robert; Farokhzad, Omid C

    2009-03-01

    Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, stability, drug release properties and cytotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various formulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system.

  13. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics

    PubMed Central

    Elzoghby, Ahmed O; Helmy, Maged W; Samy, Wael M; Elgindy, Nazik A

    2013-01-01

    A novel particulate delivery matrix based on ionically crosslinked casein (CAS) nanoparticles was developed for controlled release of the poorly soluble anticancer drug flutamide (FLT). Nanoparticles were fabricated via oil-in-water emulsification then stabilized by ionic crosslinking of the positively charged CAS molecules below their isoelectric point, with the polyanionic crosslinker sodium tripolyphosphate. With the optimal preparation conditions, the drug loading and incorporation efficiency achieved were 8.73% and 64.55%, respectively. The nanoparticles exhibited a spherical shape with a size below 100 nm and a positive zeta potential (+7.54 to +17.3 mV). FLT was molecularly dispersed inside the nanoparticle protein matrix, as revealed by thermal analysis. The biodegradability of CAS nanoparticles in trypsin solution could be easily modulated by varying the sodium tripolyphosphate crosslinking density. A sustained release of FLT from CAS nanoparticles for up to 4 days was observed, depending on the crosslinking density. After intravenous administration of FLT-CAS nanoparticles into rats, CAS nanoparticles exhibited a longer circulation time and a markedly delayed blood clearance of FLT, with the half-life of FLT extended from 0.88 hours to 14.64 hours, compared with drug cosolvent. The results offer a promising method for tailoring biodegradable, drug-loaded CAS nanoparticles as controlled, long-circulating drug delivery systems of hydrophobic anticancer drugs in aqueous vehicles. PMID:23658490

  14. Nanoparticle-mediated drug delivery for treating melanoma

    PubMed Central

    Mundra, Vaibhav; Li, Wei; Mahato, Ram I

    2015-01-01

    Melanoma originated from melanocytes is the most aggressive type of skin cancer with limited treatment options. New targeted therapeutic options with the discovery of BRAF and MEK inhibitors have shown significant survival benefits. Despite the recent progress, development of chemoresistance and systemic toxicity remains a challenge for treating metastatic melanoma. While the response from the first line of treatment against melanoma using dacarbazine remains only 5–10%, the prolonged use of targeted therapy against mutated oncogene BRAF develops chemoresistance. In this review, we will discuss the nanoparticle-based strategies for encapsulation and conjugation of drugs to the polymer for maximizing their tumor distribution through enhanced permeability and retention effect. We will also highlight photodynamic therapy and design of melanoma-targeted nanoparticles. PMID:26244818

  15. Nanoengineered drug delivery systems for enhancing antibiotic therapy.

    PubMed

    Kalhapure, Rahul S; Suleman, Nadia; Mocktar, Chunderika; Seedat, Nasreen; Govender, Thirumala

    2015-03-01

    Formulation scientists are recognizing nanoengineered drug delivery systems as an effective strategy to overcome limitations associated with antibiotic drug therapy. Antibiotics encapsulated into nanodelivery systems will contribute to improved management of patients with various infectious diseases and to overcoming the serious global burden of antibiotic resistance. An extensive review of several antibiotic-loaded nanocarriers that have been formulated to target drugs to infectious sites, achieve controlled drug release profiles, and address formulation challenges, such as low-drug entrapment efficiencies, poor solubility and stability is presented in this paper. The physicochemical properties and the in vitro/in vivo performances of various antibiotic-loaded delivery systems, such as polymeric nanoparticles, micelles, dendrimers, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanohybirds, nanofibers/scaffolds, nanosheets, nanoplexes, and nanotubes/horn/rods and nanoemulsions, are highlighted and evaluated. Future studies that will be essential to optimize formulation and commercialization of these antibiotic-loaded nanosystems are also identified. The review presented emphasizes the significant formulation progress achieved and potential that novel nanoengineered antibiotic drug delivery systems have for enhancing the treatment of patients with a range of infections. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harush-Frenkel, Oshrat; Bivas-Benita, Maytal; Nassar, Taher

    Nanoparticle (NP) based drug delivery systems provide promising opportunities in the treatment of lung diseases. Here we examined the safety and tolerability of pulmonary delivered NPs consisting of PEG-PLA as a function of particle surface charge. The rationale for such a comparison should be attributed to the differential pulmonary toxicity of positively and negatively charged PEG-PLA NP. Thus, the local and systemic effects of pulmonary administered NPs were investigated following 5 days of daily endotracheal instillation to BALB/c mice that were euthanized on the eighth or nineteenth day of the experiment. We collected bronchoalveolar lavages and studied hematological as wellmore » as histochemistry parameters. Notably, the cationic stearylamine based PEG-PLA NPs elicited increased local and systemic toxic effects both on the eighth and nineteenth day. In contrast, anionic NPs of similar size were much better tolerated with local inflammatory effects observed only on the eighth experimental day after pulmonary instillation. No systemic toxicity effect was observed although a moderate change was noted in the platelet count that was not considered to be of clinical significance. No pathological observations were detected in the internal organs following instillation of anionic NPs. Overall these observations suggest that anionic PEG-PLA NPs are useful pulmonary drug carriers that should be considered as a promising therapeutic drug delivery system.« less

  17. Design of dendrimer-based drug delivery nanodevices with enhanced therapeutic efficacies

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam

    2007-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, `peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. They have significant potential compared to liposomes and nanoparticles, because of the reduced macrophage update, increased cellular transport, and the ability to modulate the local environment through functional groups. We are developing nanodevices based on dendritic systems for drug delivery, that contain a high drug payload, ligands, and imaging agents, resulting in `smart' drug delivery devices that can target, deliver, and signal. In collaboration with the Children's Hospital of Michigan, Karmanos Cancer Institute, and College of Pharmacy, we are testing the in vitro and in vivo response of these nanodevices, by adapting the chemistry for specific clinical applications such as asthma and cancer. These materials are characterized by UV/Vis spectroscopy, flow cytometry, fluorescence/confocal microscopy, and appropriate animal models. Our results suggest that: (1) We can prepare drug-dendrimer conjugates with drug payloads of greater than 50%, for a variety of drugs; (2) The dendritic polymers are capable of transporting and delivering drugs into cells faster than free drugs, with superior therapeutic efficiency. This can be modulated by the surface functionality of the dendrimer; (3) For chemotherapy drugs, the conjugates are a factor of 6-20 times more effective even in drug-resistant cell lines; (4) For corticosteroidal drugs, the dendritic polymers provide higher drug residence times in the lung, allowing for passive targeting. The ability of the drug-dendrimer-ligand conjugates to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.

  18. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y. S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe3O4) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY'S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis.

  19. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery.

    PubMed

    Zhao, Jingjing; Zhang, Bo; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Pang, Zhiqing

    2015-07-15

    Glioblastoma multiforme (GBM) is the most aggressive central nervous system (CNS) tumor because of its fast development, poor prognosis, difficult control and terrible mortality. Poor penetration and retention in the glioblastoma parenchyma were crucial challenges in GBM nanomedicine therapy. Nanoparticle diameter can significantly influence the delivery efficiency in tumor tissue. Decreasing nanoparticle size can improve the nanoparticle penetration in tumor tissue but decrease the nanoparticle retention effect. Therefore, small nanoparticles with high retention effect in tumor are urgently needed for effective GBM drug delivery. In present study, a small nanoparticle drug delivery system was developed by conjugating fibrin-binding peptide CREKA to Polyamidoamine (PAMAM) dendrimer, where PEGylated PAMAM is used as drug carrier due to its small size and good penetration in tumor and CREKA is used to target the abundant fibrin in GBM for enhanced retention in tumor. In vitro binding ability tests demonstrated that CREKA can significantly enhanced nanoparticle binding with fibrin. In vivo fluorescence imaging of GBM bearing nude mice, ex vivo brain imaging and frozen slices fluorescence imaging further revealed that the CREKA-modified PAMAM achieved higher accumulation and deeper penetration in GBM tissue than unmodified one. These results indicated that the CREKA-modified PAMAM could penetrate the GBM tissue deeply and enhance the retention effect, which was a promising strategy for brain tumor therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Leukocytes as carriers for targeted cancer drug delivery.

    PubMed

    Mitchell, Michael J; King, Michael R

    2015-03-01

    Metastasis contributes to over 90% of cancer-related deaths. Numerous nanoparticle platforms have been developed to target and treat cancer, yet efficient delivery of these systems to the appropriate site remains challenging. Leukocytes, which share similarities to tumor cells in terms of their transport and migration through the body, are well suited to serve as carriers of drug delivery systems to target cancer sites. This review focuses on the use and functionalization of leukocytes for therapeutic targeting of metastatic cancer. Tumor cell and leukocyte extravasation, margination in the bloodstream, and migration into soft tissue are discussed, along with the potential to exploit these functional similarities to effectively deliver drugs. Current nanoparticle-based drug formulations for the treatment of cancer are reviewed, along with methods to functionalize delivery vehicles to leukocytes, either on the surface and/or within the cell. Recent progress in this area, both in vitro and in vivo, is also discussed, with a particular emphasis on targeting cancer cells in the bloodstream as a means to interrupt the metastatic process. Leukocytes interact with cancer cells both in the bloodstream and at the site of solid tumors. These interactions can be utilized to effectively deliver drugs to targeted areas, which can reduce both the amount of drug required and various nonspecific cytotoxic effects within the body. If drug delivery vehicle functionalization does not interfere with leukocyte function, this approach may be utilized to neutralize tumor cells in the bloodstream to prevent the formation of new metastases, and also to deliver drugs to metastatic sites within tissues.

  1. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging.

    PubMed

    Chen, Yan; Ai, Kelong; Liu, Jianhua; Sun, Guoying; Yin, Qi; Lu, Lehui

    2015-08-01

    A novel multifunctional envelope-type mesoporous silica nanoparticle (MEMSN) system combining the merits of pH-responsiveness, non-toxicity and biological specificity, is demonstrated for drug delivery and magnetic resonance imaging (MRI). This system is constructed by immobilizing acetals on the surface of mesoporous silica, and then coupling to ultra small lanthanide doped upconverting nanoparticle, which act as a gate keeper. The anticancer drug DOX is thus locked in the pores, and its burst release can be achieved under acidic environment on account of the hydrolyzation reactions of acetals. The nanogated drug release system is highly efficacious for cancer therapy both in vitro and in vivo. Importantly, the nanocomposite could be harmlessly metabolized and degraded into apparently non-toxic products within a few days. The nanoscale effect of the system allows for passive tumor targeting and increased tumor accumulation of the probes via the enhanced permeation and retention (EPR) effect, which is visualized by MRI in vivo. Therefore, such nanosystem should be of great significance in the future development of highly efficient and tumor targeted drug delivery vehicles for cancer chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  3. Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics.

    PubMed

    Paramasivam, Gokul; Kayambu, Namitharan; Rabel, Arul Maximus; Sundramoorthy, Ashok K; Sundaramurthy, Anandhakumar

    2017-02-01

    Anisotropic nanoparticles have fascinated scientists and engineering communities for over a century because of their unique physical and chemical properties. In recent years, continuous advances in design and fabrication of anisotropic nanoparticles have opened new avenues for application in various areas of biology, chemistry and physics. Anisotropic nanoparticles have the plasmon absorption in the visible as well as near-infrared (NIR) region, which enables them to be used for crucial applications such as biological imaging, medical diagnostics and therapy ("theranostics"). Here, we describe the progress in anisotropic nanoparticles achieved since the millennium in the area of preparation including various shapes and modification of the particle surface, and in areas of application by providing examples of applications in biosensing, bio-imaging, drug delivery and theranostics. Furthermore, we also explain various mechanisms involved in cellular uptake of anisotropic nanoparticles, and conclude with our opinion on various obstacles that limit their applications in biomedical field. Anisotropy at the molecular level has always fascinated scientists and engineering communities for over a century, however, the research on novel methods through which shape and size of nanoparticles can be precisely controlled has opened new avenues for anisotropic nanoparticles in various areas of biology, chemistry and physics. In this manuscript, we describe progress achieved since the millennium in the areas of preparation of various shapes of anisotropic nanoparticles, investigate various methods involved in modifying the surface of these NPs, and provide examples of applications in biosensing and bio-imaging, drug delivery and theranostics. We also present mechanisms involved in cellular uptake of nanoparticles, describe different methods of preparation of anisotropic nanoparticles including biomimetic and photochemical synthesis, and conclude with our opinion on various

  4. Advances of blood cell-based drug delivery systems.

    PubMed

    Sun, Yanan; Su, Jing; Liu, Geyi; Chen, Jianjun; Zhang, Xiumei; Zhang, Ran; Jiang, Minhan; Qiu, Mingfeng

    2017-01-01

    Blood cells, including erythrocytes, leukocytes and platelets are used as drug carriers in a wide range of applications. They have many unique advantages such as long life-span in circulation (especially erythrocytes), target release capacities (especially platelets), and natural adhesive properties (leukocytes and platelets). These properties make blood cell based delivery systems, as well as their membrane-derived carriers, far superior to other drug delivery systems. Despite the advantages, the further development of blood cell-based delivery systems was hindered by limitations in the source, storage, and mass production. To overcome these problems, synthetic biomaterials that mimic blood cell and nanocrystallization of blood cells have been developed and may represent the future direction for blood cell membrane-based delivery systems. In this paper, we review recent progress of the rising blood cell-based drug delivery systems, and also discuss their challenges and future tendency of development. Copyright © 2016. Published by Elsevier B.V.

  5. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    PubMed

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform.

    PubMed

    Hou, Lin; Shan, Xiaoning; Hao, Lisha; Feng, Qianhua; Zhang, Zhenzhong

    2017-05-01

    with multi-mechanism therapy may be a promising method for cancer treatment. In recent years, localized cancer treatment using different biomaterials has attracted increasing attention for effective inhibition of tumor growth. However, it is still challenging for this kind of system to achieve a high drug loading, overcome biological barriers from the site of injection to the site of action, and combine synergetic therapy with diagnosis without adversely affecting the formation process. This study provides a localized diffusion molecular retention (DMR) tumor targeting drug delivery system based on hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) entrapment of anticancer drug for the first time, which can achieve high drug loading, improve local drug accumulation and retention, accomplish synergistic combination of chemo-phototherapy, and finally enhance antitumor effect. In addition, HMCuS NPs also possesses the property suitable for photoacoustic imaging, which could offer us a theranostic platform. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Towards magnetic-enhanced cellular uptake, MRI and chemotherapeutics delivery by magnetic mesoporous silica nanoparticles.

    PubMed

    Liu, Qian; Zhang, Jixi; Xia, Weiliang; Gu, Hongchen

    2012-10-01

    A type of nanoparticle with three functional modalities was prepared with the aim of providing a multifunctional drug delivery system. The nanoparticle was 50 nm in size, with 2.7 nm mesopores and a magnetic nanocrystal core, which was further doped with FITC to enable the tracking of cellular uptake. We demonstrated that the internalization of the nanoparticles in tumor cells could be enhanced by applying an external magnetic field and furthermore, this kind of nanoparticle could be used in magnetic targeted drug delivery. With high transverse relaxivity, the magnetic nanoparticles shortened proton relaxation time and induced high magnetic resonance imaging contrast in tumor cells. Studies on anticancer drug loading and delivery capacity of anticancer drugs also showed that this type of nanoparticles could load water-soluble doxorubicin, and produce a prominent inhibitive effect against tumor cells. Taken together, the presented nanoparticles could become a promising agent in cancer theranostics.

  8. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications.

    PubMed

    Rahmani, Sahar; Villa, Carlos H; Dishman, Acacia F; Grabowski, Marika E; Pan, Daniel C; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J; Muzykantov, Vladimir R; Lahann, Joerg

    2015-01-01

    Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I(125) radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site.

  9. Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications

    PubMed Central

    Rahmani, Sahar; Villa, Carlos H.; Dishman, Acacia F.; Grabowski, Marika E.; Pan, Daniel C.; Durmaz, Hakan; Misra, Asish C; Colón-Meléndez, Laura; Solomon, Michael J.; Muzykantov, Vladimir R.; Lahann, Joerg

    2016-01-01

    Background Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs. Purpose Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported. Methods EHD co-jetting is used to create nanoparticles, which are characterized at each stage with scanning electron microscopy (SEM), structured illumination microscopy (SIM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Surface immobilization techniques are used to incorporate polyethylene glycol (PEG) and I125 radiolabels into the nanoparticles. Particles are injected in mice and the particle distribution after 1, 4 and 24 hours is assessed. Results and discussion Nanoparticles with an average diameter of 105.7 nm are prepared by EHD co-jetting. The particles contain functional chemical groups for further surface modification and radiolabeling. The density of PEG molecules attached to the surface of nanoparticles is determined to range between 0.02 and 6.04 ligands per square nanometer. A significant fraction of the nanoparticles (1.2% injected dose per mass of organ) circulates in the blood after 24 h. Conclusion EHD co-jetting is a versatile method for the fabrication of nanoparticles for drug delivery. Circulation of the nanoparticles for 24 h is a pre-requisite for subsequent studies to explore defined targeting of the nanoparticles to a specific anatomic site. PMID:26453170

  10. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  11. Fluoride loaded polymeric nanoparticles for dental delivery.

    PubMed

    Nguyen, Sanko; Escudero, Carlos; Sediqi, Nadia; Smistad, Gro; Hiorth, Marianne

    2017-06-15

    The overall aim of the present paper was to develop fluoride loaded nanoparticles based on the biopolymers chitosan, pectin, and alginate, for use in dental delivery. First, the preparation of nanoparticles in the presence of sodium fluoride (NaF) as the active ingredient by ionic gelation was investigated followed by an evaluation of their drug entrapment and release properties. Chitosan formed stable, spherical, and monodisperse nanoparticles in the presence of NaF and tripolyphoshate as the crosslinker, whereas alginate and pectin were not able to form any definite nanostructures in similar conditions. The fluoride loading capacity was found to be 33-113ppm, and the entrapment efficiency 3.6-6.2% for chitosan nanoparticles prepared in 0.2-0.4% (w/w) NaF, respectively. A steady increase in the fluoride release was observed for chitosan nanoparticles prepared in 0.2% NaF both in pH5 and 7 until it reached a maximum at time point 4h and maintained at this level for at least 24h. Similar profiles were observed for formulations prepared in 0.4% NaF; however the fluoride was released at a higher level at pH5. The low concentration, but continuous delivery of fluoride from the chitosan nanoparticles, with possible expedited release in acidic environment, makes these formulations highly promising as dental delivery systems in the protection against caries development. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nanobiotechnology and its applications in drug delivery system: a review.

    PubMed

    Khan, Imran; Khan, Momin; Umar, Muhammad Naveed; Oh, Deog-Hwan

    2015-12-01

    Nanobiotechnology holds great potential in various regimes of life sciences. In this review, the potential applications of nanobiotechnology in various sectors of nanotechnologies, including nanomedicine and nanobiopharmaceuticals, are highlighted. To overcome the problems associated with drug delivery, nanotechnology has gained increasing interest in recent years. Nanosystems with different biological properties and compositions have been extensively investigated for drug delivery applications. Nanoparticles fabricated through various techniques have elevated therapeutic efficacy, provided stability to the drugs and proved capable of targeting the cells and controlled release inside the cell. Polymeric nanoparticles have shown increased development and usage in drug delivery as well as in diagnostics in recent decades.

  13. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance.

    PubMed

    Yhee, Ji Young; Song, Seungyong; Lee, So Jin; Park, Sung-Gurl; Kim, Ki-Suk; Kim, Myung Goo; Son, Sejin; Koo, Heebeom; Kwon, Ick Chan; Jeong, Ji Hoon; Jeong, Seo Young; Kim, Sun Hwa; Kim, Kwangmeyung

    2015-01-28

    P-glycoprotein (Pgp) mediated multi-drug resistance (MDR) is a major cause of failure in chemotherapy. In this study, small interfering RNA (siRNA) for Pgp down-regulation was delivered to tumors to overcome MDR in cancer. To achieve an efficient siRNA delivery in vivo, self-polymerized 5'-end thiol-modified siRNA (poly-siRNA) was incorporated in tumor targeting glycol chitosan nanoparticles. Pgp-targeted poly-siRNA (psi-Pgp) and thiolated glycol chitosan polymers (tGC) formed stable nanoparticles (psi-Pgp-tGC NPs), and the resulting nanoparticles protected siRNA molecules from enzymatic degradation. The psi-Pgp-tGC NPs could release functional siRNA molecules after cellular delivery, and they were able to facilitate siRNA delivery to Adriamycin-resistant breast cancer cells (MCF-7/ADR). After intravenous administration, the psi-Pgp-tGC NPs accumulated in MCF-7/ADR tumors and down-regulated P-gp expression to sensitize cancer cells. Consequently, chemo-siRNA combination therapy significantly inhibited tumor growth without systemic toxicity. These psi-Pgp-tGC NPs showed great potential as a supplementary therapeutic agent for drug-resistant cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine

    PubMed Central

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-01-01

    Layered hydroxides (LHs) have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life. PMID:24802876

  15. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    PubMed

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  16. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents.

    PubMed

    Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih

    2016-11-01

    Polysaccharide-based nanoparticles have fascinated attention as a vesicle of different pharmaceutical agents due to their unique multi-functional groups in addition to their physicochemical properties, including biocompatibility and biodegradability. The existence of multi-functional groups on the polysaccharide backbone permits facile chemical or biochemical modification to synthesize polysaccharide based nanoparticles with miscellaneous structures. Polysaccharide-based nanogels have high water content, large surface area for multivalent bioconjugation, tunable size, and interior network for the incorporation of different pharmaceutical agents. These unique properties offer great potential for the utilization of polysaccharide-based nanogels in the drug delivery systems. Hence, this review describes chemistry of certain common polysaccharides, several methodologies used to synthesize polysaccharide nanoparticles and primarily focused on the polysaccharide (or polysaccharide derivative) based nanogels as the carrier of pharmaceutical agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Fabrication and characterization of an inorganic gold and silica nanoparticle mediated drug delivery system for nitric oxide

    NASA Astrophysics Data System (ADS)

    Das, Amitava; Mukherjee, Priyabrata; Singla, Sumit K.; Guturu, Praveen; Frost, Megan C.; Mukhopadhyay, Debabrata; Shah, Vijay H.; Ranjan Patra, Chitta

    2010-07-01

    Nitric oxide (NO) plays an important role in inhibiting the development of hepatic fibrosis and its ensuing complication of portal hypertension by inhibiting human hepatic stellate cell (HSC) activation. Here we have developed a gold nanoparticle and silica nanoparticle mediated drug delivery system containing NO donors, which could be used for potential therapeutic application in chronic liver disease. The gold nanoconjugates were characterized using several physico-chemical techniques such as UV-visible spectroscopy and transmission electron microscopy. Silica nanoconjugates were synthesized and characterized as reported previously. NO released from gold and silica nanoconjugates was quantified under physiological conditions (pH = 7.4 at 37 °C) for a substantial period of time. HSC proliferation and the vascular tube formation ability, manifestations of their activation, were significantly attenuated by the NO released from these nanoconjugates. This study indicates that gold and silica nanoparticle mediated drug delivery systems for introducing NO could be used as a strategy for the treatment of hepatic fibrosis or chronic liver diseases, by limiting HSC activation.

  18. Convection-Enhanced Delivery of Carboplatin PLGA Nanoparticles for the Treatment of Glioblastoma.

    PubMed

    Arshad, Azeem; Yang, Bin; Bienemann, Alison S; Barua, Neil U; Wyatt, Marcella J; Woolley, Max; Johnson, Dave E; Edler, Karen J; Gill, Steven S

    2015-01-01

    We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.

  19. Convection-Enhanced Delivery of Carboplatin PLGA Nanoparticles for the Treatment of Glioblastoma

    PubMed Central

    Arshad, Azeem; Yang, Bin; Bienemann, Alison S.; Barua, Neil U.; Wyatt, Marcella J.; Woolley, Max; Johnson, Dave E.; Edler, Karen J.; Gill, Steven S.

    2015-01-01

    We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas. PMID:26186224

  20. In Vivo Delivery of Nanoparticles into Plant Leaves.

    PubMed

    Wu, Honghong; Santana, Israel; Dansie, Joshua; Giraldo, Juan P

    2017-12-14

    Plant nanobiotechnology is an interdisciplinary field at the interface of nanotechnology and plant biology that aims to utilize nanomaterials as tools to study, augment or impart novel plant functions. The delivery of nanoparticles to plants in vivo is a key initial step to investigate plant nanoparticle interactions and the impact of nanoparticles on plant function. Quantum dots are smaller than plant cell wall pores, have versatile surface chemistry, bright fluorescence and do not photobleach, making them ideal for the study of nanoparticle uptake, transport, and distribution in plants by widely available confocal microscopy tools. Herein, we describe three different methods for quantum dot delivery into leaves of living plants: leaf lamina infiltration, whole shoot vacuum infiltration, and root to leaf translocation. These methods can be potentially extended to other nanoparticles, including nanosensors and drug delivery nanoparticles. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles.

    PubMed

    Bhardwaj, Ankur; Mehta, Shuchi; Yadav, Shailendra; Singh, Sudheer K; Grobler, Anne; Goyal, Amit Kumar; Mehta, Abhinav

    2016-09-01

    The present study aimed to develop lipid-polymer hybrid nanoparticles (LPNs) for the combined pulmonary delivery of isoniazid (INH) and ciprofloxacin hydrochloride (CIP HCl). Drug-loaded LPNs were prepared by the double-emulsification solvent evaporation method using the three-factor three-level Box-Behnken design. The optimized formulation had a size of 111.81 ± 1.2 nm, PDI of 0.189 ± 1.4, and PDE of 63.64 ± 2.12% for INH-loaded LPN, and a size of 172.23 ± 2.31 nm, PDI of 0.169 ± 1.23, and PDE of 68.49 ± 2.54% for CIP HCl-loaded LPN. Drug release was found to be sustained and controlled at lower pH and followed the Peppas model. The in vitro uptake study in alveolar macrophage (AM) showed that uptake of the drugs was increased significantly if administered in the form of LPN. The stability study proved the applications of adding PLGA in LPN as the polymeric core, which leads to a much more stable product as compared to other novel drug delivery systems. Spray drying was done to produce an inhalable, dry, powdered form of drug-loaded LPN. The spray-dried (SD) powder was equally capable of producing nano-aggregates having morphology, density, flowability and reconstitutibility in the range ideal for inhaled drug delivery. The nano aggregates produced by spray drying manifested their aerosolization efficiency in terms of the higher emitted dose and fine particle fraction with lower mass median aerodynamic diameter. The in vivo study using pharmacokinetic and pharmacodynamic approaches revealed that maximum internalization efficiency was achieved by delivering LPN in SD powdered forms by pulmonary route.

  2. Phase-shift, stimuli-responsive drug carriers for targeted delivery

    PubMed Central

    O’Neill, Brian E; Rapoport, Natalya

    2011-01-01

    The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed. PMID:22059114

  3. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    PubMed

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells

    PubMed Central

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-01-01

    The objective of the work was to develop a multifunctional nanomedicine based on a folate-conjugated lipid nanoparticles loaded with paclitaxel and curcumin. The novel system combines therapeutic advantageous of efficient targeted delivery via folate and timed-release of curcumin and paclitaxel via 2-hydroxypropyl-ß-cyclodextrin, thereby overcoming multidrug resistance in breast cancer cells (MCF-7/ADR). The faster release of curcumin from the folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables sufficient p-glycoprotein inhibition, which allows increased cellular uptake and cytotoxicity of paclitaxel. In western blot assay, curcumin can efficiently inhibit the expression of p-glycoprotein, conformed the enhancement of cytotoxicity by paclitaxel. Furthermore, folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles exhibited increased uptake of paclitaxel and curcumin into MCF-7/ADR cells through the folate receptor-mediated internalization. Taken together, these results indicate that folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables the enhanced, folate-targeted delivery of multiple anticancer drugs by inhibiting the multi-drug resistance efficiently, which may also serve as a useful nano-system for co-delivery of other anticancer drugs. PMID:28423731

  5. Nanocarriers in ocular drug delivery: an update review.

    PubMed

    Wadhwa, Sheetu; Paliwal, Rishi; Paliwal, Shivani Rai; Vyas, S P

    2009-01-01

    Controlled drug delivery to eye is one of the most challenging fields of pharmaceutical research. Low drug-contact time and poor ocular bioavailability due to drainage of solution, tear turnover and its dilution or lacrimation are the problems associated with conventional systems. In addition, anatomical barriers and physiological conditions of eye are also important parameters which control designing of drug delivery systems. Nanosized carriers like micro/nano-suspensions, liposome, niosome, dendrimer, nanoparticles, ocular inserts, implants, hydrogels and prodrug approaches have been developed for this purpose. These novel systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. Conventional delivery systems get diluted with tear, washed away through the lacrimal gland and usually require administering at regular time intervals whereas nanocarriers release drug at constant rate for a prolonged period of time and thus enhance its absorption and site specific delivery. This review presents an overview of the various aspects of the ocular drug delivery, with special emphasis on nanocarrier based strategies, including structure of eye, its barriers, delivery routes and the challenges/limitations associated with development of novel nanocarriers. The recent progresses in therapy of ocular disease like gene therapy have also been included so that future options should also be considered from the delivery point of view. Recent progress in the delivery of proteins and peptides via ocular route has also been incorporated for reader benefit.

  6. Cholesterol-modified poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery.

    PubMed

    Lee, Jeong-Jun; Lee, Song Yi; Park, Ju-Hwan; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-07-25

    Poly(lactide-co-glycolide)-cholesterol (PLGA-C)-based nanoparticles (NPs) were developed for the tumor-targeted delivery of curcumin (CUR). PLGA-C/CUR NPs with ∼200nm mean diameter, narrow size distribution, and neutral zeta potential were fabricated by a modified emulsification-solvent evaporation method. The existence of cholesterol moiety in PLGA-C copolymer was confirmed by proton nuclear magnetic resonance ((1)H NMR) analysis. In vitro stability of developed NPs after 24h incubation was confirmed in phosphate buffered saline (PBS) and serum media. Sustained (∼6days) and pH-responsive drug release profiles from PLGA-C NPs were presented. Blank PLGA and PLGA-C NPs exhibited a negligible cytotoxicity in Hep-2 (human laryngeal carcinoma) cells in the tested concentration range. According to the results of flow cytometry and confocal laser scanning microscopy (CLSM) studies, PLGA-C NPs presented an improved cellular accumulation efficiency, compared to PLGA NPs, in Hep-2 cells. Enhanced in vivo tumor targetability of PLGA-C NPs, compared to PLGA NPs, in Hep-2 tumor-xenografted mouse model was also verified by a real-time near-infrared fluorescence (NIRF) imaging study. Developed PLGA-C NPs may be a candidate of efficient and biocompatible nanosystems for tumor-targeted drug delivery and cancer imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug—Efavirenz

    PubMed Central

    Jenita, Josephine Leno; Chocalingam, Vijaya; Wilson, Barnabas

    2014-01-01

    Purpose of the study: The antiretroviral therapy (ART) has dramatically improved human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) treatment, prevention and also has been found to increase the lifespan of HIV/AIDS patients by providing durable control of the HIV replication in patients. Efavirenz is a non-nucleoside reverse transcriptase inhibitor of HIV-1. The purpose of this study is to formulate efavirenz-loaded bovine serum albumin nanoparticles to improve efavirenz delivery into various organs. Materials and Methods: Nanoparticles were prepared by desolvation technique and coated with polysorbate 80. Ethanol, glutaraldehyde, and mannitol were used as desolvating, cross linking agent, and cryoprotectant, respectively. Drug to polymer ratio was chosen at five levels from 1:2, 1:3, 1:4, 1:5, and 1:6 (by weight). The formulated nanoparticles were characterized for Fourier Transform Infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) studies, entrapment efficiency, particle size, surface charge, surface morphology, in vitro drug release, release kinetics, stability studies, and biodistribution studies. Results and Major Conclusion: The particle size of the prepared formulations was found below 250nm with narrow size distribution, spherical in shape and showed good entrapment efficiency (45.62-72.49%). The in vitro drug release indicated biphasic release and its data were fitted to release kinetics models and release pattern was Fickian diffusion controlled release profile. The prepared nanoparticles increased efavirenz delivery into various organs by several fold in comparison with the free drug. PMID:25126528

  8. Inorganic Nanoporous Membranes for Immunoisolated Cell-Based Drug Delivery

    PubMed Central

    Mendelsohn, Adam; Desai, Tejal

    2014-01-01

    Materials advances enabled by nanotechnology have brought about promising approaches to improve the encapsulation mechanism for immunoisolated cell-based drug delivery. Cell-based drug delivery is a promising treatment for many diseases but has thus far achieved only limited clinical success. Treatment of insulin dependent diabetes mellitus (IDDM) by transplantation of pancreatic β-cells represents the most anticipated application of cell-based drug delivery technology. This review outlines the challenges involved with maintaining transplanted cell viability and discusses how inorganic nanoporous membranes may be useful in achieving clinical success. PMID:20384222

  9. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs.

    PubMed

    Lee, Jae-Young; Park, Ju-Hwan; Lee, Jeong-Jun; Lee, Song Yi; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-10-20

    Polyethylene glycol (PEG)-decorated chondroitin sulfate A-deoxycholic acid (CSD) nanoparticles (NPs) were fabricated for the selective delivery of doxorubicin (DOX) to ovarian cancer. CSD-PEG was synthesized via amide bond formation between the NH2 group of methoxypolyethylene glycol amine and the COOH group of CSD. CSD-PEG/DOX NPs with a 247nm mean diameter, negative zeta potential, and >90% drug encapsulation efficiency were prepared. Sustained and pH-dependent DOX release profiles from CSD-PEG NPs were observed in dissolution tests. Endocytosis of NPs by SKOV-3 cells (CD44 receptor-positive human ovarian cancer cells), based on the CSA-CD44 receptor interaction, was determined by flow cytometry and confocal laser scanning microscopy (CLSM) studies. PEGylation of NPs also resulted in reduced drug clearance (CL) in vivo and improved relative bioavailability, compared to non-PEGylated NPs, as determined by the pharmacokinetic study performed after intravenous administration in rats. Developed CSD-PEG NPs can be a promising delivery vehicle for the therapy of CD44 receptor-expressing ovarian cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: ibuprofen.

    PubMed

    Hassani Najafabadi, Alireza; Abdouss, Majid; Faghihi, Shahab

    2014-08-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ((1)HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and (1)HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature.

    PubMed

    Dutta, Sujan; Parida, Sheetal; Maiti, Chiranjit; Banerjee, Rakesh; Mandal, Mahitosh; Dhara, Dibakar

    2016-04-01

    Efficient and controlled delivery of therapeutics to tumor cells is one of the important issues in cancer therapy. In the present work, a series of pH- and temperature-responsive polymer grafted iron oxide nanoparticles were prepared by simple coupling of aminated iron oxide nanoparticle with poly(N-isopropylacrylamide-ran-poly(ethylene glycol) methyl ether acrylate)-block-poly(acrylic acid) (P(NIPA-r-PEGMEA)-b-PAA). For this, three water soluble block polymers were prepared via reversible addition fragmentation transfer (RAFT) polymerization technique. At first, three different block copolymers were prepared by polymerizing mixture of NIPA and PEGMEA (with varying mole ratio) in presence of poly(tert-butyl acrylate) (PtBA) macro chain transfer agent. Subsequently, P(NIPA-r-PEGMEA)-b-PAA copolymers were synthesized by hydrolyzing tert-butyl acrylate groups of the P(NIPA-r-PEGMEA)-b-PtBA copolymers. The resulting polymers were then grafted to iron oxide nanoparticles, and these functionalized nanoparticles were thoroughly characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), zeta potential measurements, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). Doxorubicin (DOX), an anti-cancer drug, was loaded into the polymer coated nanoparticles and its release behavior was subsequently studied at different pH and temperatures. The drug release pattern revealed a sustained release of DOX preferentially at the desired lysosomal pH of cancer cells (pH 5.0) and slightly above the physiological temperature depending upon the composition of the copolymers. The potential anticancer activity of the polymer grafted DOX loaded nanoparticles were established by MTT assay and apoptosis study of cervical cancer ME 180cells in presence of the nanoparticles. Thus, these particles can be utilized for controlled delivery of anticancer

  12. Leukocytes as carriers for targeted cancer drug delivery

    PubMed Central

    Mitchell, Michael J

    2017-01-01

    Introduction Metastasis contributes to over 90% of cancer-related deaths. Numerous nanoparticle platforms have been developed to target and treat cancer, yet efficient delivery of these systems to the appropriate site remains challenging. Leukocytes, which share similarities to tumor cells in terms of their transport and migration through the body, are well suited to serve as carriers of drug delivery systems to target cancer sites. Areas covered This review focuses on the use and functionalization of leukocytes for therapeutic targeting of metastatic cancer. Tumor cell and leukocyte extravasation, margination in the bloodstream, and migration into soft tissue are discussed, along with the potential to exploit these functional similarities to effectively deliver drugs. Current nanoparticle-based drug formulations for the treatment of cancer are reviewed, along with methods to functionalize delivery vehicles to leukocytes, either on the surface and/or within the cell. Recent progress in this area, both in vitro and in vivo, is also discussed, with a particular emphasis on targeting cancer cells in the bloodstream as a means to interrupt the metastatic process. Expert opinion Leukocytes interact with cancer cells both in the bloodstream and at the site of solid tumors. These interactions can be utilized to effectively deliver drugs to targeted areas, which can reduce both the amount of drug required and various nonspecific cytotoxic effects within the body. If drug delivery vehicle functionalization does not interfere with leukocyte function, this approach may be utilized to neutralize tumor cells in the bloodstream to prevent the formation of new metastases, and also to deliver drugs to metastatic sites within tissues. PMID:25270379

  13. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    PubMed

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  14. Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release

    PubMed Central

    Wang, Juan; Yin, Zhuping; Xue, Xiang; Kundu, Subhas C.; Mo, Xiumei; Lu, Shenzhou

    2016-01-01

    Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. PMID:27916946

  15. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Subia, B.; Kundu, S. C.

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.

  16. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer.

    PubMed

    Vu, Binh Thanh; Shahin, Sophia Allaf; Croissant, Jonas; Fatieiev, Yevhen; Matsumoto, Kotaro; Le-Hoang Doan, Tan; Yik, Tammy; Simargi, Shirleen; Conteras, Altagracia; Ratliff, Laura; Jimenez, Chiara Mauriello; Raehm, Laurence; Khashab, Niveen; Durand, Jean-Olivier; Glackin, Carlotta; Tamanoi, Fuyuhiko

    2018-06-04

    New therapy development is critically needed for ovarian cancer. We used the chicken egg CAM assay to evaluate efficacy of anticancer drug delivery using recently developed biodegradable PMO (periodic mesoporous organosilica) nanoparticles. Human ovarian cancer cells were transplanted onto the CAM membrane of fertilized eggs, resulting in rapid tumor formation. The tumor closely resembles cancer patient tumor and contains extracellular matrix as well as stromal cells and extensive vasculature. PMO nanoparticles loaded with doxorubicin were injected intravenously into the chicken egg resulting in elimination of the tumor. No significant damage to various organs in the chicken embryo occurred. In contrast, injection of free doxorubicin caused widespread organ damage, even when less amount was administered. The lack of toxic effect of nanoparticle loaded doxorubicin was associated with specific delivery of doxorubicin to the tumor. Furthermore, we observed excellent tumor accumulation of the nanoparticles. Lastly, a tumor could be established in the egg using tumor samples from ovarian cancer patients and that our nanoparticles were effective in eliminating the tumor. These results point to the remarkable efficacy of our nanoparticle based drug delivery system and suggests the value of the chicken egg tumor model for testing novel therapies for ovarian cancer.

  17. The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems.

    PubMed

    Tortorella, Stephanie; Karagiannis, Tom C

    2014-01-01

    Anticancer therapeutic research aims to improve clinical management of the disease through the development of strategies that involve currently-relevant treatment options and targeted delivery. Tumour-specific and -targeted delivery of compounds to the site of malignancy allows for enhanced cellular uptake, increased therapeutic benefit with high intratumoural drug concentrations, and decreased systemic exposure. Due to the upregulation of transferrin receptor expression in a wide variety of cancers, its function and its highly efficient recycling pathway, strategies involving the selective targeting of the receptor are well documented. Direct conjugation and immunotoxin studies using the transferrin peptide or anti-transferrin receptor antibodies as the targeting moiety have established the capacity to enhance cellular uptake, cross the blood brain barrier, limit systemic toxicity and reverse multi-drug resistance. Limitations in direct conjugation, including the difficulty in linking an adequate amount of therapeutic compound to the ligand or antibody have identified the requirement to develop novel delivery methods. The application of nanoparticulate theory in the development of functional drug delivery systems has proven to be most promising, with the ability to selectively modify size-dependent properties and surface chemistry. The transferrin modification on a range of nanoparticle formulations enhances selective cellular uptake through transferrin-mediated processes, and increases therapeutic benefit through the ability to encapsulate high concentrations of relevant drug to the tumour site. Although ineffective in crossing the blood brain barrier in its free form, chemotherapeutic compounds including doxorubicin, may be loaded into transferrin-conjugated nanocarriers and impart cytotoxic effects in glioma cells in vitro and in vivo. Additionally, transferrin-targeted nanoparticles may be used in selective diagnostic applications with enhanced selectivity and

  18. Modern Micro and Nanoparticle-Based Imaging Techniques

    PubMed Central

    Ryvolova, Marketa; Chomoucka, Jana; Drbohlavova, Jana; Kopel, Pavel; Babula, Petr; Hynek, David; Adam, Vojtech; Eckschlager, Tomas; Hubalek, Jaromir; Stiborova, Marie; Kaiser, Jozef; Kizek, Rene

    2012-01-01

    The requirements for early diagnostics as well as effective treatment of insidious diseases such as cancer constantly increase the pressure on development of efficient and reliable methods for targeted drug/gene delivery as well as imaging of the treatment success/failure. One of the most recent approaches covering both the drug delivery as well as the imaging aspects is benefitting from the unique properties of nanomaterials. Therefore a new field called nanomedicine is attracting continuously growing attention. Nanoparticles, including fluorescent semiconductor nanocrystals (quantum dots) and magnetic nanoparticles, have proven their excellent properties for in vivo imaging techniques in a number of modalities such as magnetic resonance and fluorescence imaging, respectively. In this article, we review the main properties and applications of nanoparticles in various in vitro imaging techniques, including microscopy and/or laser breakdown spectroscopy and in vivo methods such as magnetic resonance imaging and/or fluorescence-based imaging. Moreover the advantages of the drug delivery performed by nanocarriers such as iron oxides, gold, biodegradable polymers, dendrimers, lipid based carriers such as liposomes or micelles are also highlighted. PMID:23202187

  19. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    PubMed

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  20. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    PubMed

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Opportunities and Challenges for Niosomes as Drug Delivery Systems.

    PubMed

    Thakkar, Miloni; Brijesh, S

    2016-01-01

    With the increase in drug resistance observed in most infectious diseases as well as some forms of cancer, and with the chances of development of new drug molecules to address this issue looking bleak, one of the most plausible ways to disease treatment is combination therapy. Combination therapy would ensure delay in drug resistance, if utilized rationally. However, the biggest difficulty in employing combination therapy are adverse effects due to potential drug-drug interactions and patient compliance due to multiple routes of administration or multiple dosing that may be required. To overcome these issues, researchers have utilized nanoparticle-based systems that can hold multiple drugs in a single carrier. There are several nanocarrier systems available for such purposes. However, the focus of this review will be non-ionic surfactant-based systems (niosomes) for delivery of multiple therapeutic agents. Niosomes are artificially prepared drug delivery carriers. They are structurally similar to liposomes albeit more stable than them. Literature pertaining to combination drug delivery and various drug delivery systems was reviewed. It was conceptualized that many of the methods used to prepare various types of carriers for combination delivery of drugs may be used for niosomal systems as well. We envisage that niosomes may effectively be utilized to package older drugs in newer ways. The review will thus focus on techniques that may be used for the formulation of niosomes, ways to encapsulate multiple-drug moieties, and challenges associated in preparing and optimizing such systems.

  2. Design challenges in nanoparticle-based platforms: Implications for targeted drug delivery systems

    NASA Astrophysics Data System (ADS)

    Mullen, Douglas Gurnett

    Characterization and control of heterogeneous distributions of nanoparticle-ligand components are major design challenges for nanoparticle-based platforms. This dissertation begins with an examination of poly(amidoamine) (PAMAM) dendrimer-based targeted delivery platform. A folic acid targeted modular platform was developed to target human epithelial cancer cells. Although active targeting was observed in vitro, active targeting was not found in vivo using a mouse tumor model. A major flaw of this platform design was that it did not provide for characterization or control of the component distribution. Motivated by the problems experienced with the modular design, the actual composition of nanoparticle-ligand distributions were examined using a model dendrimer-ligand system. High Pressure Liquid Chromatography (HPLC) resolved the distribution of components in samples with mean ligand/dendrimer ratios ranging from 0.4 to 13. A peak fitting analysis enabled the quantification of the component distribution. Quantified distributions were found to be significantly more heterogeneous than commonly expected and standard analytical parameters, namely the mean ligand/nanoparticle ratio, failed to adequately represent the component heterogeneity. The distribution of components was also found to be sensitive to particle modifications that preceded the ligand conjugation. With the knowledge gained from this detailed distribution analysis, a new platform design was developed to provide a system with dramatically improved control over the number of components and with improved batch reproducibility. Using semi-preparative HPLC, individual dendrimer-ligand components were isolated. The isolated dendrimer with precise numbers of ligands were characterized by NMR and analytical HPLC. In total, nine different dendrimer-ligand components were obtained with degrees of purity ≥80%. This system has the potential to serve as a platform to which a precise number of functional molecules

  3. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases.

    PubMed

    Vij, Neeraj; Min, Taehong; Bodas, Manish; Gorde, Aakruti; Roy, Indrajit

    2016-11-01

    The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Facile solvothermal synthesis of mesostructured Fe3O4/chitosan nanoparticles as delivery vehicles for pH-responsive drug delivery and magnetic resonance imaging contrast agents.

    PubMed

    Zhao, Guanghui; Wang, Jianzhi; Peng, Xiaomen; Li, Yanfeng; Yuan, Xuemei; Ma, Yingxia

    2014-02-01

    We report a facile fabrication of a host-metal-guest coordination-bonding system in a mesostructured Fe3O4/chitosan nanoparticle that can act as a pH-responsive drug-delivery system. The mesostructured Fe3O4/chitosan was synthesized by a solvothermal approach with iron(III) chloride hexahydrate as a precursor, ethylene glycol as a reducing agent, ammonium acetate as a porogen, and chitosan as a surface-modification agent. Subsequently, doxorubicin (DOX), acting as a model drug (guest), was loaded onto the mesostructured Fe3O4/chitosan nanoparticles, with chitosan acting as a host molecule to form the NH2-Zn(II)-DOX coordination architecture. The release of DOX can be achieved through the cleavage of coordination bonds that are sensitive to variations in external pH under weakly acidic conditions. The pH-responsive nature of the nanoparticles was confirmed by in vitro releases and cell assay tests. Furthermore, the relaxation efficiency of the nanoparticles as high-performance magnetic resonance imaging contrast agents was also investigated. Experimental results confirm that the synthesized mesostructured Fe3O4/chitosan is a smart nanovehicle for drug delivery owing to both its pH-responsive nature and relaxation efficiency. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of mesoscale simulation to explore the aggregate morphology of pH-sensitive nanoparticles used as the oral drug delivery carriers under different conditions.

    PubMed

    Wang, Yan; Chen, Bo Zhi; Liu, Yue Jin; Wu, Zhi Min; Guo, Xin Dong

    2017-03-01

    The pH-sensitive nanoparticles are selected as the potentially promising oral protein and peptide drug carriers due to their excellent performance. With the poly (lactic-co-glycolic acid)/hydroxypropyl methylcellulose phthalate (PLGA/HP55) nanoparticle as a model nanoparticle, the structure-property relationship of nanoparticles with different conditions is investigated by dissipative particle dynamics (DPD) simulations in our work. In the oral drug delivery system, the poly (lactic-co-glycolic acid) (PLGA) is hydrophobic polymer, hydroxypropyl methylcellulose phthalate (HP55) is pH-sensitive enteric polymer which used to protect the nanoparticles through the stomach and polyvinyl alcohol (PVA) is hydrophilic polymer as the stabilizer. It can be seen from DPD simulations that all polymer molecules form spherical core-shell nanoparticles with stabilizer PVA molecules adsorbed on the outer surface of the PLGA/HP55 matrix at certain compositions. The DPD simulation study can provide microscopic insight into the formation and morphological changes of pH-sensitive nanoparticles which is useful for the design of new materials for high-efficacy oral drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Nanostructures for protein drug delivery.

    PubMed

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery.

  7. Silica nanoparticles as vehicles for therapy delivery in neurological injury

    NASA Astrophysics Data System (ADS)

    Schenk, Desiree

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDA-approved hypertension drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Nanoparticles made from silica provide distinct advantages. They form porous networks that can carry therapeutic molecules throughout the body. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica nanoparticles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The

  8. Nanoparticle bioconjugate for controlled cellular delivery of doxorubicin

    NASA Astrophysics Data System (ADS)

    Sangtani, Ajmeeta; Petryayeva, Eleonora; Wu, Miao; Susumu, Kimihiro; Oh, Eunkeu; Huston, Alan L.; Lasarte-Aragones, Guillermo; Medintz, Igor L.; Algar, W. Russ; Delehanty, James B.

    2018-02-01

    Nanoparticle (NP)-mediated drug delivery offers the potential to overcome limitations of systemic delivery, including the ability to specifically target cargo and control release of NP-associated drug cargo. Doxorubicin (DOX) is a widely used FDA-approved cancer therapeutic; however, multiple side effects limit its utility. Thus, there is wide interest in modulating toxicity after cell delivery. Our goal here was to realize a NP-based DOX-delivery system that can modulate drug toxicity by controlling the release kinetics of DOX from the surface of a hard NP carrier. To achieve this, we employed a quantum dot (QD) as a central scaffold which DOX was appended via three different peptidyl linkages (ester, disulfide, hydrazone) that are cleavable in response to various intracellular conditions. Attachment of a cell penetrating peptide (CPP) containing a positively charged polyarginine sequence facilitates endocytosis of the ensemble. Polyhistidine-driven metal affinity coordination was used to self-assemble both peptides to the QD surface, allowing for fine control over both the ratio of peptides attached to the QD as well as DOX dose delivered to cells. Microplate-based Förster resonance energy transfer assays confirmed the successful ratiometric assembly of the conjugates and functionality of the linkages. Cell delivery experiments and cytotoxicity assays were performed to compare the various cleavable linkages to a control peptide where DOX is attached through an amide bond. The role played by various attachment chemistries used in QD-peptide-drug assemblies and their implications for the rationale in design of NPbased constructs for drug delivery is described here.

  9. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery

    PubMed Central

    Zhang, Peipei; Xia, Junfei; Luo, Sida

    2018-01-01

    Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery. PMID:29670013

  10. Poly(lactic-co-glycolic) Acid/Solutol HS15-Based Nanoparticles for Docetaxel Delivery.

    PubMed

    Cho, Hyun-Jong; Park, Ju-Hwan; Kim, Dae-Duk; Yoon, In-Soo

    2016-02-01

    Docetaxel (DCT) is one of anti-mitotic chemotherapeutic agents and has been used for the treatment of gastric cancer as well as head and neck cancer, breast cancer and prostate cancer. Poly(lactic- co-glycolic) acid (PLGA) is one of representative biocompatible and biodegradable polymers, and polyoxyl 15 hydroxystearate (Solutol HS15) is a nonionic solubilizer and emulsifying agent. In this investigation, PLGA/Solutol HS15-based nanoparticles (NPs) for DCT delivery were fabricated by a modified emulsification-solvent evaporation method. PLGA/Solutol HS15/DCT NPs with about 169 nm of mean diameter, narrow size distribution, negative zeta potential, and spherical morphology were prepared. The results of solid-state studies revealed the successful dispersion of DCT in PLGA matrix and its amorphization during the preparation process of NPs. According to the result of in vitro release test, emulsifying property of Solutol HS15 seemed to contribute to the enhanced drug release from NPs at physiological pH. All these findings imply that developed PLGA/Solutol HS15-based NP can be a promising local anticancer drug delivery system for cancer therapy.

  11. Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs

    NASA Astrophysics Data System (ADS)

    Jain, Vaibhav; Bharatam, Prasad V.

    2014-02-01

    Nanoparticle based drug delivery systems are gaining popularity due to their wide spectrum advantages over traditional drug delivery systems; among them, dendrimeric nano-vectors are the most widely explored carriers for pharmaceutical and biomedical applications. The precise mechanism of encapsulation of drug molecules inside the dendritic matrix, delivery of drugs into specific cells, interactions of nano-formulation with biological targets and proteins, etc. present a substantial challenge to the scientific understanding of the subject. Computational methods complement experimental techniques in the design and optimization of drug delivery systems, thus minimizing the investment in drug design and development. Significant progress in computer simulations could facilitate an understanding of the precise mechanism of encapsulation of bioactive molecules and their delivery. This review summarizes the pharmacoinformatic studies spanning from quantum chemical calculations to coarse-grained simulations, aimed at providing better insight into dendrimer-drug interactions and the physicochemical parameters influencing the binding and release mechanism of drugs.

  12. Ultrasound-enhanced drug delivery for cancer.

    PubMed

    Mo, Steven; Coussios, Constantin-C; Seymour, Len; Carlisle, Robert

    2012-12-01

    Ultrasound, which has traditionally been used as a diagnostic tool, is increasingly being used in non-invasive therapy and drug delivery. Of particular interest to this review is the rapidly accumulating evidence that ultrasound may have a key role to play both in improving the targeting and the efficacy of drug delivery for cancer. Currently available ultrasound-triggerable vehicles are first described, with particular reference to the ultrasonic mechanism that can activate release and the suitability of the size range of the vehicle used for drug delivery. Further mechanical and thermal effects of ultrasound that can enhance extravasation and drug distribution following release are then critically reviewed. Acoustic cavitation is found to play a potentially key role both in achieving targeted drug release and enhanced extravasation at modest pressure amplitudes and acoustic energies, whilst simultaneously enabling real-time monitoring of the drug delivery process. The next challenge in ultrasound-enhanced drug delivery will thus be to develop a new generation of drug-carrying nanoparticles which are of the right size range for delivery to tumours, yet still capable of achieving initiation of cavitation activity and drug release at modest acoustic pressures and energies that have no safety implications for the patient.

  13. The pathogenicity of Aspergillus fumigatus, drug resistance, and nanoparticle delivery.

    PubMed

    Szalewski, David A; Hinrichs, Victoria S; Zinniel, Denise K; Barletta, Raúl G

    2018-03-27

    The genus Aspergillus includes fungal species that cause major health issues of significant economic importance. These microorganisms are also the culprit for production of carcinogenic aflatoxins in grain storages, contaminating crops, and economically straining the production process. Aspergillus fumigatus is a very important pathogenic species, being responsible for high human morbidity and mortality on a global basis. The prevalence of these infections in immunosuppressed individuals is on the rise, and physicians struggle with the diagnosis of these deadly pathogens. Several virulence determinants facilitate fungal invasion and evasion of the host immune response. Metabolic functions are also important for virulence and drug resistance, since they allow fungi to obtain nutrients for their own survival and growth. Following a positive diagnostic identification, mortality rates remain high due, in part, to emerging resistance to frequently used antifungal drugs. In this review, we discuss the role of the main virulence, drug target, and drug resistance determinants. We conclude with the review of new technologies being developed to treat aspergillosis. In particular, microsphere and nanoparticle delivery systems are discussed in the context of improving drug bioavailability. Aspergillus will likely continue to cause problematic infections in immunocompromised patients, so it is imperative to improve treatment options.

  14. HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules.

    PubMed

    Tomcin, Stephanie; Kelsch, Annette; Staff, Roland H; Landfester, Katharina; Zentel, Rudolf; Mailänder, Volker

    2016-04-15

    We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles' core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic drug model without the necessity of nanoparticle uptake. In addition, CLSM studies and quantitative calculations using the image processing program Volocity® show the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake. Our findings offer the possibility to combine the advantages of a fast release for hydrophobic and a controlled release for an amphiphilic molecule therefore pointing to the possibility to a 'multi-step and multi-site' targeting by one nanocarrier. We describe thoroughly how different components of a nanocarrier end up in cells. This enables different cargos of a nanocarrier having a consecutive release and delivery of distinct components. Most interestingly we demonstrate individual kinetics of distinct components of such a system: first the release of a fluorescent hydrophobic drug model at contact with the cell membrane without the necessity of nanoparticle uptake. Secondly, the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake occurs. This offers the possibility to combine the advantages of a fast release for a hydrophobic substance at the time of interaction of the nanoparticle with the cell surface and a controlled release for an amphiphilic molecule later on therefore

  15. Malaria treatment using novel nano-based drug delivery systems.

    PubMed

    Baruah, Uday Krishna; Gowthamarajan, Kuppusamy; Vanka, Ravisankar; Karri, Veera Venkata Satyanarayana Reddy; Selvaraj, Kousalya; Jojo, Gifty M

    2017-08-01

    We reside in an era of technological innovation and advancement despite which infectious diseases like malaria remain to be one of the greatest threats to the humans. Mortality rate caused by malaria disease is a huge concern in the twenty-first century. Multiple drug resistance and nonspecific drug targeting of the most widely used drugs are the main reasons/drawbacks behind the failure in malarial therapy. Dose-related toxicity because of high doses is also a major concern. Therefore, to overcome these problems nano-based drug delivery systems are being developed to facilitate site-specific or target-based drug delivery and hence minimizing the development of resistance progress and dose-dependent toxicity issues. In this review, we discuss about the shortcomings in treating malaria and how nano-based drug delivery systems can help in curtailing the infectious disease malaria.

  16. Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery.

    PubMed

    Chen, Shu; Li, Ying; Guo, Chen; Wang, Jing; Ma, Junhe; Liang, Xiangfeng; Yang, Liang-Rong; Liu, Hui-Zhou

    2007-12-04

    In this study, temperature-responsive magnetite/polymer nanoparticles were developed from iron oxide nanoparticles and poly(ethyleneimine)-modified poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer. The particles were characterized by TEM, XRD, DLS, VSM, FTIR, and TGA. A typical product has an approximately 20 nm magnetite core and an approximately 40 nm hydrodynamic diameter with a narrow size distribution and is superparamagnetic with large saturation magnetization (51.34 emu/g) at room temperature. The most attractive feature of the nanoparticles is their temperature-responsive volume-transition property. DLS results indicated that their average hydrodynamic diameter underwent a sharp decrease from 45 to 25 nm while evaluating the temperature from 20 to 35 degrees C. The temperature-dependent evolution of the C-O stretching band in the FTIR spectra of the aqueous nanoparticles solution revealed that thermo-induced self-assembly of the immobilized block copolymers occurred on the magnetite solid surfaces, which is accompanied by a conformational change from a fully extended state to a highly coiled state of the copolymer. Consequently, the copolymer shell could act as a temperature-controlled "gate" for the transit of guest substance. The uptake and release of both hydrophobic and hydrophilic model drugs were well controlled by switching the transient opening and closing of the polymer shell at different temperatures. A sustained release of about 3 days was achieved in simulated human body conditions. In primary mouse experiments, drug-entrapped magnetic nanoparticles showed good biocompatibility and effective therapy for spinal cord damage. Such intelligent magnetic nanoparticles are attractive candidates for widespread biomedical applications, particularly in controlled drug-targeting delivery.

  17. Enhancing Tumor Cell Response to Chemotherapy through the Targeted Delivery of Platinum Drugs Mediated by Highly Stable, Multifunctional Carboxymethylcellulose-Coated Magnetic Nanoparticles.

    PubMed

    Medříková, Zdenka; Novohradsky, Vojtech; Zajac, Juraj; Vrána, Oldřich; Kasparkova, Jana; Bakandritsos, Aristides; Petr, Martin; Zbořil, Radek; Brabec, Viktor

    2016-07-04

    The fabrication of nanoparticles using different formulations, and which can be used for the delivery of chemotherapeutics, has recently attracted considerable attention. We describe herein an innovative approach that may ultimately allow for the selective delivery of anticancer drugs to tumor cells by using an external magnet. A conventional antitumor drug, cisplatin, has been incorporated into new carboxymethylcellulose-stabilized magnetite nanoparticles conjugated with the fluorescent marker Alexa Fluor 488 or folic acid as targeting agent. The magnetic nanocarriers possess exceptionally high biocompatibility and colloidal stability. These cisplatin-loaded nanoparticles overcome the resistance mechanisms typical of free cisplatin. Moreover, experiments aimed at the localization of the nanoparticles driven by an external magnet in a medium that mimics physiological conditions confirmed that this localization can inhibit tumor cell growth site-specifically. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    PubMed

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  19. Controlled Fabrication of Gelatin Nanoparticles as Drug Carriers

    NASA Astrophysics Data System (ADS)

    Jahanshahi, M.; Sanati, M. H.; Minuchehr, Z.; Hajizadeh, S.; Babaei, Z.

    2007-08-01

    In recent years, significant effort has been devoted to develop nanotechnology for drug delivery since it offers a suitable means of delivering small molecular weight drugs, as well as macromolecules such as proteins, peptides or genes by either localized or targeted delivery to the tissue of interest. Nanotechnology focuses on formulating therapeutic agents in biocompatible nanocomposites such as nanoparticles, nanocapsules, micellar systems, and conjugates. Protein nanoparticles (BSA, HAS and gelatin) generally vary in size from 50-300 nm and they hold certain advantages such as greater stability during storage, stability in vivo, non-toxicity, non-antigen and ease to scale up during manufacture over the other drug delivery systems. The primary structure of gelatin offers many possibilities for chemical modification and covalent drug attachment. Here nanoparticles of gelatin type A were prepared by a two-step desolvation method as a colloidal drug delivery system and the essential parameters in fabrication were considered. Gelatin was dissolved in 25 mL distilled water under room temperature range. Then acetone was added to the gelatin solution as a desolvating agent to precipitate the high molecular weight (HMW) gelatin. The supernatant was discarded and the HMW gelatin re-dissolved by adding 25 mL distilled water and stirring at 600 rpm. Acetone were added drop-wise to form nanoparticles. At the end of the process, glutaraldehyde solution was used for preparing nanoparticles as a cross-linking agent, and stirred for 12h at 600 rpm. For purification stage we use centrifuge with 600rpm for 3 times. The objective of the present study is consideration of some factors such as temperature, gelatin concentration, agitation speed and the amount of acetone and their effects on size and distribution of nanoparticles. Among the all conditions, 60° C, 50 mg/ml gelatin concentration, 75 ml acetone had the best result and the nanoparticle size was under 170 nm. The effect

  20. Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels

    NASA Astrophysics Data System (ADS)

    Hoshiar, Ali Kafash; Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok; Yoon, Jungwon

    2017-04-01

    Magnetic-guided targeted drug delivery (TDD) systems can enhance the treatment of diverse diseases. Despite the potential and promising results of nanoparticles, aggregation prevents precise particle guidance in the vasculature. In this study, we developed a simulation platform to investigate aggregation during steering of nanoparticles using a magnetic field function. The magnetic field function (MFF) comprises a positive and negative pulsed magnetic field generated by electromagnetic coils, which prevents adherence of particles to the vessel wall during magnetic guidance. A commonly used Y-shaped vessel was simulated and the performance of the MFF analyzed; the experimental data were in agreement with the simulation results. Moreover, the effects of various parameters on magnetic guidance were evaluated and the most influential identified. The simulation results presented herein will facilitate more precise guidance of nanoparticles in vivo.

  1. Patenting of nanopharmaceuticals in drug delivery: no small issue.

    PubMed

    du Toit, Lisa Claire; Pillay, Viness; Choonara, Yahya E; Pillay, Samantha; Harilall, Sheri-lee

    2007-01-01

    Nanotechnology is a rapidly evolving interdisciplinary field based on the manipulation of matter on a submicron scale, encompassing matter between 1 and 100 nanometers (nm). The currently registered nanotechnology patents comprise 35 countries being involved in the global distribution of these patents. Close to 3000 patents were issued in the USA since 1996 with the term 'nano' in the patents, with a considerable number having application in nanomedicine. The large majority of therapeutic patents are focused on drug delivery systems, highlighting an important application globally. Nanopharmaceutical patents are centered mainly on non-communicable diseases, with cancer receiving the greatest focus, followed by hepatitis. Drug delivery systems employing nanotechnology have the ability to allow superior drug absorption, controlled drug release and reduced side-effects, enhancing the effectiveness of existing drug delivery systems. Nanoparticle-based drug delivery systems may be among the first types of products to generate serious nanotechnology patent disputes as the multi-billion dollar pharmaceutical industry begins to adopt them. This review article aimed to locate patented nanopharmaceuticals in drug delivery online, employing pertinent key terms while searching the patent databases. Awarded and pending patents in the past 20 years pertaining to nanopharmaceutical or nano-enabled systems such as micelles, nanoemulsions, nanogels, liposomes, nanofibres, dendrimer technology and polymer therapeutics are presented in the review article, providing an overview of the diversity of the patent applications.

  2. Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs.

    PubMed

    Jung, Bom; Shim, Man-Kyu; Park, Min-Ju; Jang, Eun Hyang; Yoon, Hong Yeol; Kim, Kwangmeyung; Kim, Jong-Ho

    2017-03-30

    This study presented the development of hydrophobically modified polysialic acid (HPSA) nanoparticles, a novel anticancer drug nanocarrier that increases therapeutic efficacy without causing nonspecific toxicity towards normal cells. HPSA nanoparticles were prepared by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling between N-deacetylated polysialic acid (PSA) and 5β-cholanic acid. The physicochemical characteristics of HPSA nanoparticles (zeta-potential, morphology and size) were measured, and in vitro cytotoxicity and cellular uptake of PSA and HPSA nanoparticles were tested in A549 cells. In vivo cancer targeting of HPSA nanoparticles was evaluated by labeling PSA and HPSA nanoparticles with Cy5.5, a near-infrared fluorescent dye, for imaging. HPSA nanoparticles showed improved cancer-targeting ability compared with PSA. Doxorubicin-loaded HPSA (DOX-HPSA) nanoparticles were prepared using a simple dialysis method. An analysis of the in vitro drug-release profile and drug-delivery behavior showed that DOX was effectively released from DOX-HPSA nanoparticles. In vivo cancer therapy with DOX-HPSA nanoparticles in mice showed antitumor effects that resembled those of free DOX. Moreover, DOX-HPSA nanoparticles had low toxicity toward other organs, reflecting their tumor-targeting property. Hence, HPSA nanoparticles are considered a potential nanocarrier for anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals.

    PubMed

    Puglia, Carmelo; Bonina, Francesco

    2012-04-01

    Lipid nanoparticles are innovative carrier systems developed as an alternative to traditional vehicles such as emulsions, liposomes and polymeric nanoparticles. Solid lipid nanoparticles (SLN) and the newest nanostructured lipid carriers (NLC) show important advantages for dermal application of cosmetics and pharmaceuticals. This article focuses on the main features of lipid nanoparticles, in terms of their preparation and recent advancements. A detailed review of the literature is presented, introducing the importance of these systems in the topical delivery of drugs and active substances. Lipid nanoparticles are able to enhance drug penetration into the skin, allowing increased targeting to the epidermis and consequently increasing treatment efficiency and reducing the systemic absorption of drugs and cosmetic actives. The complete biodegradation of lipid nanoparticles and their biocompatible chemical nature have secured them the title of 'nanosafe carriers.' SLN and NLC represent a new technological era, which has been taken over by the cosmetic and pharmaceutical industry, which will open new channels for effective topical delivery of substances.

  4. Direct Macromolecular Drug Delivery to Cerebral Ischemia Area using Neutrophil-Mediated Nanoparticles

    PubMed Central

    Zhang, Chun; Ling, Cheng-li; Pang, Liang; Wang, Qi; Liu, Jing-xin; Wang, Bing-shan; Liang, Jian-ming; Guo, Yi-zhen; Qin, Jing; Wang, Jian-xin

    2017-01-01

    Delivery of macromolecular drugs to the brain is impeded by the blood brain barrier. The recruitment of leukocytes to lesions in the brain, a typical feature of neuroinflammation response which occurs in cerebral ischemia, offers a unique opportunity to deliver drugs to inflammation sites in the brain. In the present study, cross-linked dendrigraft poly-L-lysine (DGL) nanoparticles containing cis-aconitic anhydride-modified catalase and modified with PGP, an endogenous tripeptide that acts as a ligand with high affinity to neutrophils, were developed to form the cl PGP-PEG-DGL/CAT-Aco system. Significant binding efficiency to neutrophils, efficient protection of catalase enzymatic activity from degradation and effective transport to receiver cells were revealed in the delivery system. Delivery of catalase to ischemic subregions and cerebral neurocytes in MCAO mice was significantly enhanced, which obviously reducing infarct volume in MCAO mice. Thus, the therapeutic outcome of cerebral ischemia was greatly improved. The underlying mechanism was found to be related to the inhibition of ROS-mediated apoptosis. Considering that neuroinflammation occurs in many neurological disorders, the strategy developed here is not only promising for treatment of cerebral ischemia but also an effective approach for various CNS diseases related to inflammation. PMID:28900508

  5. Regulatory aspects in the pharmaceutical development of nanoparticle drug delivery systems designed to cross the intestinal epithelium and M-cells.

    PubMed

    Hussain, Nasir

    2016-11-30

    This article reviews the field of oral uptake of nanoparticles across the gastrointestinal epithelium for the period 2006-2016. Analysis is conducted from the viewpoint of i) M-cell genetics and model development, ii) drug targeting to Peyer's patches and M-cells, and iii) physicochemical interactions of nanoparticles in the intestinal milieu. In light of these recent developments, regulatory considerations in the development of orally-absorbable nanoparticle drug products are discussed and focused on Module 3.2.P sub-sections of the Common Technical Document. Particular attention is paid to novel excipients, ligands and the non-standard method of manufacture. The novelty of this drug delivery system demands not only a multi-disciplinary scientific and regulatory approach but also a risk-adjusted consideration for a system defined by both processes and specifications. Given the current state of scientific development in the field it is suggested (in the author's personal opinion) that the design of nanoparticulate drug delivery systems should be kept as simple as possible (from a regulatory and manufacturing perspective) and to target the entire gastrointestinal epithelium. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  6. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    PubMed Central

    Dinarvand, R; Sepehri, N; Manoochehri, S; Rouhani, H; Atyabi, F

    2011-01-01

    The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA), a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects. PMID:21720501

  7. Functionalization of protein-based nanocages for drug delivery applications.

    PubMed

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  8. Nanobiotechnology: Cell Membrane-Based Delivery Systems.

    PubMed

    Zhang, Pengfei; Liu, Gang; Chen, Xiaoyuan

    2017-04-01

    The increasingly rapid pace of research in the field of bioinspired drug delivery systems is revealing the promise of cell membrane-based nanovesicles for biomedical applications. Those cell membrane-based nanoparticles combine the natural functionalities of cell plasma membranes and the bioengineering flexibility of synthetic nanomaterials, and such versatility provides a means of designing exciting new drug formulations for personalized treatment in future nanomedicine.

  9. Electrostimulated Release of Neutral Drugs from Polythiophene Nanoparticles: Smart Regulation of Drug-Polymer Interactions.

    PubMed

    Puiggalí-Jou, Anna; Micheletti, Paolo; Estrany, Francesc; Del Valle, Luis J; Alemán, Carlos

    2017-09-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles are loaded with curcumin and piperine by in situ emulsion polymerization using dodecyl benzene sulfonic acid both as a stabilizer and a doping agent. The loaded drugs affect the morphology, size, and colloidal stability of the nanoparticles. Furthermore, kinetics studies of nonstimulated drug release have evidenced that polymer···drug interactions are stronger for curcumin than for piperine. This observation suggests that drug delivery systems based on combination of the former drug with PEDOT are much appropriated to show an externally tailored release profile. This is demonstrated by comparing the release profiles obtained in presence and absence of electrical stimulus. Results indicate that controlled and time-programmed release of curcumin is achieved in a physiological medium by applying a negative voltage of -1.25 V to loaded PEDOT nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thiolated chitosans: useful excipients for oral drug delivery.

    PubMed

    Werle, Martin; Bernkop-Schnürch, Andreas

    2008-03-01

    To improve the bioavailability of orally administered drugs, formulations based on polymers are of great interest for pharmaceutical technologists. Thiolated chitosans are multifunctional polymers that exhibit improved mucoadhesive, cohesive and permeation-enhancing as well as efflux-pump-inhibitory properties. They can be synthesized by derivatization of the primary amino groups of chitosan with coupling reagents bearing thiol functions. Various data gained in-vitro as well as in-vivo studies clearly demonstrate the potential of thiolated chitosans for oral drug delivery. Within the current review, the synthesis and characterization of thiolated chitosans so far developed is summarized. Features of thiolated chitosans important for oral drug delivery are discussed as well. Moreover, different formulation approaches, such as matrix tablets and micro-/nanoparticles, as well as the applicability of thiolated chitosans for the oral delivery of various substance classes including peptides and efflux pump substrates, are highlighted.

  11. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system.

    PubMed

    Wang, Xin; Teng, Zhaogang; Wang, Haiyan; Wang, Chunyan; Liu, Ying; Tang, Yuxia; Wu, Jiang; Sun, Jin; Wang, Hai; Wang, Jiandong; Lu, Guangming

    2014-01-01

    Resistance to cytotoxic chemotherapy is the main cause of therapeutic failure and death in women with breast cancer. Overexpression of various members of the superfamily of adenosine triphosphate binding cassette (ABC)-transporters has been shown to be associated with multidrug resistance (MDR) phenotype in breast cancer cells. MDR1 protein promotes the intracellular efflux of drugs. A novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents. Doxorubicin (DOX) is an anthracycline antibiotic commonly used in breast cancer chemotherapy and a substrate for ABC-mediated drug efflux. In the present study, we developed breast cancer MCF-7 cells with overexpression of MDR1 and designed mesoporous silica nanoparticles (MSNs) which were used as a drug delivery system. We tested the efficacy of DOX in the breast cancer cell line MCF-7/MDR1 and in a MCF-7/MDR1 xenograft nude mouse model using the MSNs drug delivery system. Our data show that drug resistance in the human breast cancer cell line MCF-7/MDR1 can be overcome by treatment with DOX encapsulated within mesoporous silica nanoparticles.

  12. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Spadaro, Salvatore; Santoro, Marco; Barreca, Francesco; Scala, Angela; Grimato, Simona; Neri, Fortunato; Fazio, Enza

    2018-02-01

    A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.

  13. Recent advances in ophthalmic drug delivery

    PubMed Central

    Kompella, Uday B; Kadam, Rajendra S; Lee, Vincent HL

    2011-01-01

    Topical ocular drug bioavailability is notoriously poor, in the order of 5% or less. This is a consequence of effective multiple barriers to drug entry, comprising nasolacrimal drainage, epithelial drug transport barriers and clearance from the vasculature in the conjunctiva. While sustained drug delivery to the back of the eye is now feasible with intravitreal implants such as Vitrasert™ (~6 months), Retisert™ (~3 years) and Iluvien™ (~3 years), currently there are no marketed delivery systems for long-term drug delivery to the anterior segment of the eye. The purpose of this article is to summarize the resurgence in interest to prolong and improve drug entry from topical administration. These approaches include mucoadhesives, viscous polymer vehicles, transporter-targeted prodrug design, receptor-targeted functionalized nanoparticles, iontophoresis, punctal plug and contact lens delivery systems. A few of these delivery systems might be useful in treating diseases affecting the back of the eye. Their effectiveness will be compared against intravitreal implants (upper bound of effectiveness) and trans-scleral systems (lower bound of effectiveness). Refining the animal model by incorporating the latest advances in microdialysis and imaging technology is key to expanding the knowledge central to the design, testing and evaluation of the next generation of innovative ocular drug delivery systems. PMID:21399724

  14. Enhanced Delivery of Chemotherapy to Tumors Using a Multi-Component Nanochain with Radiofrequency-Tunable Drug Release

    PubMed Central

    Peiris, Pubudu M.; Bauer, Lisa; Toy, Randall; Tran, Emily; Pansky, Jenna; Doolittle, Elizabeth; Schmidt, Erik; Hayden, Elliott; Mayer, Aaron; Keri, Ruth A.; Griswold, Mark A.; Karathanasis, Efstathios

    2012-01-01

    While nanoparticles maximize the amount of chemotherapeutic drug in tumors relative to normal tissues, nanoparticle-based drugs are not accessible to the majority of cancer cells because nanoparticles display patchy, near-perivascular accumulation in tumors. To overcome the limitations of current drugs in their molecular or nanoparticle form, we developed a nanoparticle based on multi-component nanochains to deliver drug to the majority of cancer cells throughout a tumor while reducing off-target delivery. The nanoparticle is composed of three magnetic nanospheres and one doxorubicin-loaded liposome assembled in a 100-nm-long chain. These nanoparticles display prolonged blood circulation and significant intratumoral deposition in tumor models in rodents. Furthermore, the magnetic particles of the chains serve as a mechanical transducer to transfer radiofrequency energy to the drug-loaded liposome. The defects on the liposomal walls trigger the release of free drug capable of spreading throughout the entire tumor, which results in a wide-spread anticancer effect. PMID:22486623

  15. Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Huan-Lei; Fan, Peng-Fei; Guo, Xia-Sheng; Tu, Juan; Ma, Yong; Zhang, Dong

    2016-12-01

    Transdermal drug delivery (TDD) can effectively bypass the first-pass effect. In this paper, ultrasound-facilitated TDD on fresh porcine skin was studied under various acoustic parameters, including frequency, amplitude, and exposure time. The delivery of yellow-green fluorescent nanoparticles and high molecular weight hyaluronic acid (HA) in the skin samples was observed by laser confocal microscopy and ultraviolet spectrometry, respectively. The results showed that, with the application of ultrasound exposures, the permeability of the skin to these markers (e.g., their penetration depth and concentration) could be raised above its passive diffusion permeability. Moreover, ultrasound-facilitated TDD was also tested with/without the presence of ultrasound contrast agents (UCAs). When the ultrasound was applied without UCAs, low ultrasound frequency will give a better drug delivery effect than high frequency, but the penetration depth was less likely to exceed 200 μm. However, with the help of the ultrasound-induced microbubble cavitation effect, both the penetration depth and concentration in the skin were significantly enhanced even more. The best ultrasound-facilitated TDD could be achieved with a drug penetration depth of over 600 μm, and the penetration concentrations of fluorescent nanoparticles and HA increased up to about 4-5 folds. In order to get better understanding of ultrasound-facilitated TDD, scanning electron microscopy was used to examine the surface morphology of skin samples, which showed that the skin structure changed greatly under the treatment of ultrasound and UCA. The present work suggests that, for TDD applications (e.g., nanoparticle drug carriers, transdermal patches and cosmetics), protocols and methods presented in this paper are potentially useful. Project partially supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 81473692, 81673995, 11374155, 11574156, 11274170, 11274176, 11474001

  16. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells.

    PubMed

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells.

  17. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology.

    PubMed

    Spivak, Mykola Ya; Bubnov, Rostyslav V; Yemets, Ilya M; Lazarenko, Liudmyla M; Tymoshok, Natalia O; Ulberg, Zoia R

    2013-07-29

    Nanoscale gold particles (AuNPs) have wide perspectives for biomedical applications because of their unique biological properties, as antioxidative activity and potentials for drug delivery. The aim was to test effects of AuNPs using suggested heart failure rat model to compare with proved medication Simdax, to test gold nanoparticle for drug delivery, and to test sonoporation effect to increase nanoparticles delivery into myocardial cells. We performed biosafety and biocompatibility tests for AuNPs and conjugate with Simdax. For in vivo tests, we included Wistar rats weighing 180-200 g (n = 54), received doxorubicin in cumulative dose of 12.0 mg/kg to model advance heart failure, registered by ultrasonography. We formed six groups: the first three groups of animals received, respectively, 0.06 ml Simdax, AuNPs, and conjugate (AuNPs-Simdax), intrapleurally, and the second three received them intravenously. The seventh group was control (saline). We performed dynamic assessment of heart failure regression in vivo measuring hydrothorax. Sonoporation of gold nanoparticles to cardiomyocytes was tested. We designed and constructed colloidal, spherical gold nanoparticles, AuNPs-Simdax conjugate, both founded biosafety (in cytotoxicity, genotoxicity, and immunoreactivity). In all animals of the six groups after the third day post-medication injection, no ascites and liver enlargement were registered (P < 0.001 vs controls). Conjugate injection showed significantly higher hydrothorax reduction than Simdax injection only (P < 0.01); gold nanoparticle injection showed significantly higher results than Simdax injection (P < 0.05). AuNPs and conjugate showed no significant difference for rat recovery. Difference in rat life continuity was significant between Simdax vs AuNPs (P < 0.05) and Simdax vs conjugate (P < 0.05). Sonoporation enhances AuNP transfer into the cell and mitochondria that were highly localized, superior to controls (P < 0.01 for both). Gold nanoparticles of

  18. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface.

    PubMed

    Priyadarshini, Balasankar Meera; Mitali, Kakran; Lu, Thong Beng; Handral, Harish K; Dubey, Nileshkumar; Fawzy, Amr S

    2017-07-01

    To characterize and deliver fabricated CHX-loaded PLGA-nanoparticles inside micron-sized dentinal-tubules of demineralized dentin-substrates and resin-dentin interface. Nanoparticles fabricated by emulsion evaporation were assessed in-vitro by different techniques. Delivery of drug-loaded nanoparticles to demineralized dentin substrates, interaction with collagen matrix, and ex-vivo CHX-release profiles using extracted teeth connected to experimental setup simulating pulpal hydrostatic pressure were investigated. Furthermore, nanoparticles association/interaction with a commercial dentin-adhesive applied to demineralized dentin substrates were examined. The results showed that the formulated nanoparticles demonstrated attractive physicochemical properties, low cytotoxicity, potent antibacterial efficacy, and slow degradation and gradual CHX release profiles. Nanoparticles delivered efficiently inside dentinal-tubules structure to sufficient depth (>10μm) against the simulated upward pulpal hydrostatic-pressure, even after bonding-resins infiltration and were attached/retained on collagen-fibrils. These results verified the potential significance of this newly introduced drug-delivery therapeutic strategy for future clinical applications and promote for a new era of future dental research. This innovative drug-delivery strategy has proven to be a reliable method for delivering treatments that could be elaborated for other clinical applications in adhesive and restorative dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Bile Acid-Based Drug Delivery Systems for Enhanced Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and Release.

    PubMed

    Cunningham, Alexander J; Robinson, Mattieu; Banquy, Xavier; Leblond, Jeanne; Zhu, X X

    2018-03-05

    Doxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were grafted from the cholic acid (CA) core yielding a star-shaped block copolymer with 4 arms (CA-(PAGE- b-PEG) 4 ) and then loaded with Dox via a nanoprecipitation technique. A high Dox loading of 14 wt % was achieved via electrostatic as opposed to hydrophobic interactions with or without oleic acid as a cosurfactant. The electrostatic interactions confer a pH responsiveness to the system. 50% of the loaded Dox was released at pH 5 in comparison to 12% at pH 7.4. The nanoparticles with Dox loaded via hydrophobic interactions did not show such a pH responsiveness. The systems with Dox loaded via electrostatic interactions showed the lowest IC 50 and highest cellular internalization, indicating the pre-eminence of this interaction in Dox loading. The blank formulations are biocompatible and did not show cytotoxicity up to 0.17 mg/mL. The new functionalized star block copolymers based on cholic acid show great potential as drug delivery carriers.

  20. Advances in silica based nanoparticles for targeted cancer therapy.

    PubMed

    Yang, Yannan; Yu, Chengzhong

    2016-02-01

    Targeted delivery of anticancer drug specifically to tumor site without damaging normal tissues has been the dream of all scientists fighting against cancer for decades. Recent breakthrough on nanotechnology based medicines has provided a possible tool to solve this puzzle. Among diverse nanomaterials that are under development and extensive study, silica based nanoparticles with vast advantages have attracted great attention. In this review, we concentrate on the recent progress using silica based nanoparticles, particularly mesoporous silica nanoparticles (MSNs), for targeted drug delivery applications. First, we discuss the passive targeting capability of silica based nanoparticles in relation to their physiochemical properties. Then, we focus on the recent advances of active targeting strategies involving tumor cell targeting, vascular targeting, nuclear targeting and multistage targeting, followed by an introduction to magnetic field directed targeting approach. We conclude with our personal perspectives on the remaining challenges and the possible future directions. Chemotherapy has been one of the mainstays of cancer treatment. The advances in nanotechnology has allowed the development of novel carrier systems for the delivery of anticancer drugs. Mesoporous silica has shown great promise in this respect. In this review article, the authors provided a comprehensive overview of the use of this nanoparticle in both passive, as well as active targeting in the field of oncology. The advantages of this particle were further discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery.

    PubMed

    Li, Haihong; Wei, Ruoyan; Yan, Gui-Hua; Sun, Ji; Li, Chunju; Wang, Haifang; Shi, Liyi; Capobianco, John A; Sun, Lining

    2018-02-07

    Exploring novel drug delivery systems with good stability and new structure to integrate pillararene and upconversion nanoparticles (UCNPs) into one system continues to be an important challenge. Herein, we report a novel preparation of a supramolecular upconversion nanosystem via the host-guest complexation based on carboxylate-based pillar[5]arene (WP5) and 15-carboxy-N,N,N-trialkylpentadecan-1-ammonium bromide (1)-functionalized UCNPs to produce WP5⊃1-UCNPs that can be loaded with the chemotherapeutic drug doxorubicin (DOX). Importantly, the WP5 on the surface of the drug-loaded nanosystem can be efficiently protonated under acidic conditions, resulting in the collapse of the nanosystem and drug release. Moreover, cellular uptake confirms that the nanosystem can enter human cervical cancer (HeLa) cells, resulting in drug accumulation in the cells. More importantly, cytotoxicity experiments demonstrated the excellent biocompatibility of WP5⊃1-UCNPs without loading DOX and that the nanosystem DOX-WP5⊃1-UCNPs exhibited an ability of killing HeLa cells effectively. We also investigated magnetic resonance imaging and upconversion luminescence imaging, which may be employed as visual imaging agents in cancer diagnosis and treatment. Thus, in the present work, we show a simple yet powerful strategy to combine UCNPs and pillar[5]arene to produce a unified nanosystem for dual-mode bioimaging-guided therapeutic applications.

  2. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    PubMed

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Designed Synthesis of Nanostructured Magnetic Hydroxyapatite Based Drug Nanocarrier for Anti-Cancer Drug Delivery toward the Treatment of Human Epidermoid Carcinoma

    PubMed Central

    Govindan, Bharath; Swarna Latha, Beeseti; Nagamony, Ponpandian; Ahmed, Faheem; Saifi, Muheet Alam; Harrath, Abdel Halim; Alwasel, Saleh; Mansour, Lamjed; Alsharaeh, Edreese H.

    2017-01-01

    Superparamagnetic Fe3O4 nanoparticles on hydroxyapatite nanorod based nanostructures (Fe3O4/HAp) were synthesized using hydrothermal techniques at 180 °C for 12 h and were used as drug delivery nanocarriers for cancer cell therapeutic applications. The synthesized Fe3O4/HAp nanocomposites were characterized by X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET)-analysis, and vibrating sample magnetometry (VSM). The morphologies of the Fe3O4/HAp nanocomposites show 15 nm Fe3O4 nanoparticles dispersed in the form of rods. The BET result shows that the synthesized samples have a high specific surface area of 80 m2 g−1 with mesoporous structures. Magnetic measurements revealed that the sample has high saturation magnetization of 18 emu/g with low coercivity. The Fe3O4/HAp nanocomposites had a large specific surface area (SSA), high mesoporous volume, and good magnetic property, which made it a suitable nanocarrier for targeted drug delivery systems. The chemotherapeutic agent, andrographolide, was used to investigate the drug delivery behavior of the Fe3O4/HAp nanocomposites. The human epidermoid skin cancer cells (A431) were used as the model targeting cell lines by treating with andrographolide loaded Fe3O4/HAp nanosystems and were further evaluated for their antiproliferative activities and the induction of apoptosis. Also, the present nanocomposite shows better biocompatibility, therefore it can be used as suitable drug vehicle for cancer therapy applications. PMID:28587317

  4. In vitro and ex vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine.

    PubMed

    das Neves, José; Araújo, Francisca; Andrade, Fernanda; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2013-07-01

    Prevention strategies such as the development of microbicides are thought to be valuable in the fight against HIV/AIDS. Despite recent achievements, there is still a long road ahead in the field, particularly at the level of drug formulation. Drug nanocarriers based on polymers may be useful in enhancing local drug delivery while limiting systemic exposure. We prepared differently surface-engineered poly(ε-caprolactone) (PCL) nanoparticles (NPs) and tested their ability to modulate the permeability and retention of dapivirine in cell monolayers and pig vaginal and rectal mucosa. NPs coated with poly(ethylene oxide) (PEO) were shown able to reduce permeability across monolayers/tissues, while modification of nanosystems with cetyl trimethylammonium bromide (CTAB) enhanced transport. In the case of coating NPs with sodium lauryl sulfate (SLS), dapivirine permeability was unchanged. All NPs increased monolayer/tissue drug retention as compared to unformulated dapivirine. This fact was associated, at least partially, to the ability of NPs to be taken up by cells or penetrate mucosal tissue. Cell and tissue toxicity was also affected differently by NPs: PEO modification decreased the in vitro (but not ex vivo) toxicity of dapivirine, while higher toxicity was generally observed for NPs coated with SLS or CTAB. Overall, presented results support that PCL nanoparticles are capable of modulating drug permeability and retention in cell monolayers and mucosal tissues relevant for vaginal and rectal delivery of microbicides. In particular, PEO-modified dapivirine-loaded PCL NPs may be advantageous in increasing drug residence at epithelial cell lines/mucosal tissues, which may potentially increase the efficacy of microbicide drugs.

  5. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module

    PubMed Central

    Lee, Hyunjae; Song, Changyeong; Hong, Yong Seok; Kim, Min Sung; Cho, Hye Rim; Kang, Taegyu; Shin, Kwangsoo; Choi, Seung Hong; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-01-01

    Electrochemical analysis of sweat using soft bioelectronics on human skin provides a new route for noninvasive glucose monitoring without painful blood collection. However, sweat-based glucose sensing still faces many challenges, such as difficulty in sweat collection, activity variation of glucose oxidase due to lactic acid secretion and ambient temperature changes, and delamination of the enzyme when exposed to mechanical friction and skin deformation. Precise point-of-care therapy in response to the measured glucose levels is still very challenging. We present a wearable/disposable sweat-based glucose monitoring device integrated with a feedback transdermal drug delivery module. Careful multilayer patch design and miniaturization of sensors increase the efficiency of the sweat collection and sensing process. Multimodal glucose sensing, as well as its real-time correction based on pH, temperature, and humidity measurements, maximizes the accuracy of the sensing. The minimal layout design of the same sensors also enables a strip-type disposable device. Drugs for the feedback transdermal therapy are loaded on two different temperature-responsive phase change nanoparticles. These nanoparticles are embedded in hyaluronic acid hydrogel microneedles, which are additionally coated with phase change materials. This enables multistage, spatially patterned, and precisely controlled drug release in response to the patient’s glucose level. The system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus. PMID:28345030

  6. Mustard-inspired delivery shuttle for enhanced blood-brain barrier penetration and effective drug delivery in glioma therapy.

    PubMed

    Wang, Nan; Sun, Pei; Lv, Mingming; Tong, Gangsheng; Jin, Xin; Zhu, Xinyuan

    2017-05-02

    Effective penetration through the blood-brain barrier (BBB) remains a challenge for the treatment of many brain diseases. In this study, a small molecule, sinapic acid (SA), extracted from mustard, was selected as a novel bioinspired BBB-permeable ligand for efficient drug delivery in glioma treatment. SA was conjugated on the surface of zwitterionic polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-encapsulated bovine serum albumin (BSA)-based nanoparticles, yielding nBSA-SA. The PMPC shell serves as a protective layer to prolong the in vivo blood circulation time with a better chance to cross the BBB. Furthermore, temozolomide (TMZ), which can be loaded onto the nanoparticles via electrostatic interactions with acrylic acid (AA) to generate AA-nBSA-SA-TMZ, was applied as an excellent chemotherapeutic drug for glioma therapy. The obtained nanoparticles with a distinct size show great BBB permeability. Through the mechanism study, it was found that the cell internalization of the SA-conjugated nanoparticles is an energy-dependent process with only transient disruption of the BBB. The biological evaluation results unambiguously suggest that drug-loaded nanoparticles can lead to strong apoptosis on the tumor site and increase the median survival time of glioma-bearing mice. Overall, this novel BBB-permeable ligand SA paves the way for the delivery of cargo into the brain and provides a powerful nanoplatform for glioma therapy via intravenous administration.

  7. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs.

    PubMed

    Khan, Tabassum; Gurav, Pranav

    2017-01-01

    delivery systems like liposomes, functionalized nanoparticles (NPs), application of polymer conjugates, as illustrated in the graphical abstract along with their advantages over conventional drug delivery systems supported by enhanced biological activity in in vitro and in vivo anticancer assays.

  8. Controlled release of metformin from chitosan-based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems.

    PubMed

    Shariatinia, Zahra; Zahraee, Zahra

    2017-09-01

    Biocompatible nanocomposite films based on blended chitosan and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (BP) polymers containing metformin (MET) drug and MCM-41 or MCM-41-APS (APS=aminopropylsilane) nanoparticles (NPs) were designed and fabricated in order to prepare novel drug delivery systems which are useful for controlled drug release purposes. The total pore volume and mesopore volume of MCM-41 were measured equal to 1.08 and 1.05 cm 3 /g but those of MCM-41-APS were 0.54 and 0.26 cm 3 /g indicating smaller values for the APS functionalized material. The film thickness was the highest for CS-BP-G-10%MET (70μm) but it was the smallest for the CS-BP-G-4%MCM-41 (49μm). For all of the films, the swelling percent was the highest in acidic medium but it was decreased in PBS and the least water uptake occurred in the alkaline environment. The lowest and the highest water uptake was observed for the films incorporated with 4%MCM-41NPs and 4%MCM-41-APS-10%MET, respectively. The SEM micrographs of the films after three days water uptake in pH=4 medium exhibited that all of the films were stable against cracking and/or tearing. It was found that increasing the MCM-41 or MCM-41-APS amount within the films decreased the elongation at break but enhanced the tensile stress. The release of the MET was sharply increased within ∼22-24h (burst release) but after that the drug release was slowly enhanced during 15days (sustained release). Finally, it was concluded that the film 4% MCM-41-APS-10%MET NPs was the most promising drug delivery system because it had improved hydrophilicity, hydrolytic stability, biocompatibility, mechanical and drug release properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Efficient pH Dependent Drug Delivery to Target Cancer Cells by Gold Nanoparticles Capped with Carboxymethyl Chitosan

    PubMed Central

    Madhusudhan, Alle; Reddy, Gangapuram Bhagavanth; Venkatesham, Maragoni; Veerabhadram, Guttena; Kumar, Dudde Anil; Natarajan, Sumathi; Yang, Ming-Yeh; Hu, Anren; Singh, Surya S.

    2014-01-01

    Doxorubicin (DOX) was immobilized on gold nanoparticles (AuNPs) capped with carboxymethyl chitosan (CMC) for effective delivery to cancer cells. The carboxylic group of carboxymethyl chitosan interacts with the amino group of the doxorubicin (DOX) forming stable, non-covalent interactions on the surface of AuNPs. The carboxylic group ionizes at acidic pH, thereby releasing the drug effectively at acidic pH suitable to target cancer cells. The DOX loaded gold nanoparticles were effectively absorbed by cervical cancer cells compared to free DOX and their uptake was further increased at acidic conditions induced by nigericin, an ionophore that causes intracellular acidification. These results suggest that DOX loaded AuNPs with pH-triggered drug releasing properties is a novel nanotheraputic approach to overcome drug resistance in cancer. PMID:24821542

  10. An Overview of Clinical and Commercial Impact of Drug Delivery Systems

    PubMed Central

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. PMID:24747160

  11. An overview of clinical and commercial impact of drug delivery systems.

    PubMed

    Anselmo, Aaron C; Mitragotri, Samir

    2014-09-28

    Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles-A Platform for Drug Development.

    PubMed

    Wickström, Henrika; Hilgert, Ellen; Nyman, Johan O; Desai, Diti; Şen Karaman, Didem; de Beer, Thomas; Sandler, Niklas; Rosenholm, Jessica M

    2017-11-21

    Mesoporous silica nanoparticles (MSNs) have shown great potential in improving drug delivery of poorly water soluble (BCS class II, IV) and poorly permeable (BCS class III, IV) drugs, as well as facilitating successful delivery of unstable compounds. The nanoparticle technology would allow improved treatment by reducing adverse reactions of currently approved drugs and possibly reintroducing previously discarded compounds from the drug development pipeline. This study aims to highlight important aspects in mesoporous silica nanoparticle (MSN) ink formulation development for digital inkjet printing technology and to advice on choosing a method (2D/3D) for nanoparticle print deposit characterization. The results show that both unfunctionalized and polyethyeleneimine (PEI) surface functionalized MSNs, as well as drug-free and drug-loaded MSN-PEI suspensions, can be successfully inkjet-printed. Furthermore, the model BCS class IV drug remained incorporated in the MSNs and the suspension remained physically stable during the processing time and steps. This proof-of-concept study suggests that inkjet printing technology would be a flexible deposition method of pharmaceutical MSN suspensions to generate patterns according to predefined designs. The concept could be utilized as a versatile drug screening platform in the future due to the possibility of accurately depositing controlled volumes of MSN suspensions on various materials.

  13. Calcium phosphate ceramics in drug delivery

    NASA Astrophysics Data System (ADS)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  14. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery.

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Chevalier, Yves

    2017-10-05

    Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Recent advances of chitosan nanoparticles as drug carriers

    PubMed Central

    Wang, Jun Jie; Zeng, Zhao Wu; Xiao, Ren Zhong; Xie, Tian; Zhou, Guang Lin; Zhan, Xiao Ri; Wang, Shu Ling

    2011-01-01

    Chitosan nanoparticles are good drug carriers because of their good biocompatibility and biodegradability, and can be readily modified. As a new drug delivery system, they have attracted increasing attention for their wide applications in, for example, loading protein drugs, gene drugs, and anticancer chemical drugs, and via various routes of administration including oral, nasal, intravenous, and ocular. This paper reviews published research on chitosan nanoparticles, including its preparation methods, characteristics, modification, in vivo metabolic processes, and applications. PMID:21589644

  16. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery

    NASA Astrophysics Data System (ADS)

    Terracciano, Monica; Shahbazi, Mohammad-Ali; Correia, Alexandra; Rea, Ilaria; Lamberti, Annalisa; de Stefano, Luca; Santos, Hélder A.

    2015-11-01

    Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL-1 after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL-1 and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles

  17. Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery.

    PubMed

    Zhu, Xuan; Su, Meiqin; Tang, Shaoheng; Wang, Lingsong; Liang, Xinfang; Meng, Feihong; Hong, Ying; Xu, Zhiran

    2012-01-01

    The goal of the present study was to synthesize mucoadhesive polymer - thiolated chitosan (TCS) from chitosan (CS), then prepared CS/TCS-sodium alginate nanoparticles (CS/TCS-SA NPs), determined which was more potential for ocular drug delivery. A new method for preparing TCS was developed, and the characteristics were determined using Fourier transform infrared spectroscopy and the degree of thiol immobilized was measured by Ellman's reagent. Human corneal epithelium (HCE) cells were incubated with different concentrations of TCS for 48 h to determine the cell viabilities. CS/TCS-SA NPs were prepared and optimized by a modified ionic gelation method. The particle sizes, zeta potentials, Scanning electron microscopy images, mucoadhesion, in vitro cell uptake and in vivo studies of the two types of NP were compared. The new method enabled a high degree of thiol substitution of TCS, up to 1,411.01±4.02 μmol/g. In vitro cytocompatibility results suggest that TCS is nontoxic. Compared to CS-SA NPs, TCS-SA NPs were more stable, with higher mucoadhesive properties and could deliver greater amounts of drugs into HCE cells in vitro and cornea in vivo. TCS-SA NPs have better delivery capability, suggesting they have good potential for ocular drug delivery applications.

  18. Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Besheer, Ahmed; Engert, Julia

    2015-03-01

    Micro- and nanoparticles in drug and vaccine delivery have opened up new possibilities in pharmaceutics. In the past, researchers focused mainly on particle size, surface chemistry and the use of various materials to control particle characteristics and functions. Lately, shape has been acknowledged as an important design parameter having an impact on the interaction with biological systems. In this review, we report on the latest developments in fabrication methods to tailor particle geometry, summarize analytical techniques for non-spherical particles and highlight the most important findings regarding their interaction with biological systems and their potential applications in drug delivery. The impact of shape on particle internalization into different cell types and particle biodistribution has been extensively studied in the past. Current research focuses on shape-dependent uptake mechanisms and applications for tumour therapy and vaccination. Different fabrication methods can be used to produce a variety of different particle types and shapes. Key challenges will be the transfer of new non-spherical particle fabrication methods from lab-scale to industrial large-scale production. Not all techniques may be scalable for the production of high quantities of particles. It will also be challenging to transfer the promising in vitro findings to suitable in vivo models.

  19. An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gayam, Srivardhan Reddy; Venkatesan, Parthiban; Sung, Yi-Ming; Sung, Shuo-Yuan; Hu, Shang-Hsiu; Hsu, Hsin-Yun; Wu, Shu-Pao

    2016-06-01

    The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this smart biocompatible carrier system showed obvious uptake and consequent release of the drug in tumor cells, could selectively induce the tumor cell death and enhance the capability of inhibition of tumor growth in vivo. The controlled drug delivery system demonstrated its use as a potential theranostic material.The synthesis and characterization of an NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles (MSNPs) for on-command delivery applications has been described in this paper. Gatekeeping of MSNPs is achieved by the integration of mechanically interlocked rotaxane nanovalves on the surface of MSNPs. The rotaxane nanovalve system is composed of a linear stalk anchoring on the surface of MSNPs, an α-cyclodextrin ring that encircles it and locks the payload ``cargo'' molecules in the mesopores, and a benzoquinone stopper incorporated at the end of the stalk. The gate opening and controlled release of the cargo are triggered by cleavage of the benzoquinone stopper using an endogenous NQO1 enzyme. In addition to having efficient drug loading and controlled release mechanisms, this

  20. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.

    PubMed

    Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng

    2017-11-01

    Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.

  1. The Effect of Cage Shape on Nanoparticle-Based Drug Carriers: Anticancer Drug Release and Efficacy via Receptor Blockade Using Dextran-Coated Iron Oxide Nanocages.

    PubMed

    Rampersaud, Sham; Fang, Justin; Wei, Zengyan; Fabijanic, Kristina; Silver, Stefan; Jaikaran, Trisha; Ruiz, Yuleisy; Houssou, Murielle; Yin, Zhiwei; Zheng, Shengping; Hashimoto, Ayako; Hoshino, Ayuko; Lyden, David; Mahajan, Shahana; Matsui, Hiroshi

    2016-12-14

    Although a range of nanoparticles have been developed as drug delivery systems in cancer therapeutics, this approach faces several important challenges concerning nanocarrier circulation, clearance, and penetration. The impact of reducing nanoparticle size on penetration through leaky blood vessels around tumor microenvironments via enhanced permeability and retention (EPR) effect has been extensively examined. Recent research has also investigated the effect of nanoparticle shape on circulation and target binding affinity. However, how nanoparticle shape affects drug release and therapeutic efficacy has not been previously explored. Here, we compared the drug release and efficacy of iron oxide nanoparticles possessing either a cage shape (IO-NCage) or a solid spherical shape (IO-NSP). Riluzole cytotoxicity against metastatic cancer cells was enhanced 3-fold with IO-NCage. The shape of nanoparticles (or nanocages) affected the drug release point and cellular internalization, which in turn influenced drug efficacy. Our study provides evidence that the shape of iron oxide nanoparticles has a significant impact on drug release and efficacy.

  2. Solid Lipid Nanoparticles of Guggul Lipid as Drug Carrier for Transdermal Drug Delivery

    PubMed Central

    Gaur, Praveen Kumar; Mishra, Shikha; Purohit, Suresh

    2013-01-01

    Diclofenac sodium loaded solid lipid nanoparticles (SLNs) were formulated using guggul lipid as major lipid component and analyzed for physical parameters, permeation profile, and anti-inflammatory activity. The SLNs were prepared using melt-emulsion sonication/low temperature-solidification method and characterized for physical parameters, in vitro drug release, and accelerated stability studies, and formulated into gel. Respective gels were compared with a commercial emulgel (CEG) and plain carbopol gel containing drug (CG) for ex vivo and in vivo drug permeation and anti-inflammatory activity. The SLNs were stable with optimum physical parameters. GMS nanoparticle 1 (GMN-1) and stearic acid nanoparticle 1 (SAN-1) gave the highest in vitro drug release. Guggul lipid nanoparticle gel 3 (GLNG-3) showed 104.68 times higher drug content than CEG in receptor fluid. The enhancement ratio of GLNG-3 was 39.43 with respect to CG. GLNG-3 showed almost 8.12 times higher C max than CEG at 4 hours. The AUC value of GLNG-3 was 15.28 times higher than the AUC of CEG. GLNG-3 showed edema inhibition up to 69.47% in the first hour. Physicochemical properties of major lipid component govern the properties of SLN. SLN made up of guggul lipid showed good physical properties with acceptable stability. Furthermore, it showed a controlled drug release profile along with a promising permeation profile. PMID:24058913

  3. Computational design of nanoparticle drug delivery systems for selective targeting

    NASA Astrophysics Data System (ADS)

    Duncan, Gregg A.; Bevan, Michael A.

    2015-09-01

    Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting

  4. Silica based hybrid materials for drug delivery and bioimaging.

    PubMed

    Bagheri, Elnaz; Ansari, Legha; Abnous, Khalil; Taghdisi, Seyed Mohammad; Charbgoo, Fahimeh; Ramezani, Mohammad; Alibolandi, Mona

    2018-05-10

    Silica hybrid materials play an important role in improvement of novel progressive functional nanomaterials. Study in silica hybrid functional materials is supported by growing interest in providing intelligent materials that combine best of the inorganic silica structure along with organic or biological realms. Hybrid silica materials do not only provide fantastic opportunities for the design of novel materials for research but their represented unique properties open versatile applications specifically in nanomedicine since it was recognized by US FDA as a safe material for human trials. By combining various materials with different characteristics along with silica NPs as building blocks, silica-based hybrid vehicles were developed. In this regard, silica-based hybrid materials have shown great capabilities as unique carriers for bioimaging and/or drug delivery purposes. In the aforementioned hybrid systems, silica was preferred as a main building block of the hybrid structure, which is easily functionalized with different materials, bio-molecules and targeting ligands while providing biocompatibility for the system. This review will cover a full description of different hybrids of silica nanoparticles including silica-polymer, silica-protein, silica-peptide, silica-nucleic acid, silica-gold, silica-quantum dot, and silica-magnetic nanoparticles and their applications as therapeutic or imaging systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    PubMed

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydrodynamic interactions for complex-shaped nanocarriers in targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Yaohong; Eckmann, David; Radhakrishnan, Ravi; Ayyaswamy, Portonovo

    2014-11-01

    Nanocarrier motion in a blood vessel involves hydrodynamic and Brownian interactions, which collectively dictate the efficacy in targeted drug delivery. The shape of nanocarriers plays a crucial role in drug delivery. In order to quantify the flow and association properties of elliptical nanoparticles, we have developed an arbitrary Lagrangian-Eulerian framework with capabilities to simulate the hydrodynamic motion of nanoparticles of arbitrary shapes. We introduce the quaternions for rotational motion, and two collision models, namely, (a) an impulse-based model for wall-particle collision, and (b) the short-range repulsive Gay-Berne potential for particle-particle collision. We also study the red blood cell and nanocarrier (such as ellipsoid) interactions. We compare our results with those obtained for a hard sphere model for both RBCs and nanocarriers. Supported by NIH through grant U01-EB016027.

  7. Enhanced Intratumoral Delivery of SN38 as a Tocopherol Oxyacetate Prodrug Using Nanoparticles in a Neuroblastoma Xenograft Model.

    PubMed

    Nguyen, Ferro; Alferiev, Ivan; Guan, Peng; Guerrero, David T; Kolla, Venkatadri; Moorthy, Ganesh S; Chorny, Michael; Brodeur, Garrett M

    2018-06-01

    Purpose: Currently, <50% of high-risk pediatric solid tumors like neuroblastoma can be cured, and many survivors experience serious or life-threatening toxicities, so more effective, less toxic therapy is needed. One approach is to target drugs to tumors using nanoparticles, which take advantage of the enhanced permeability of tumor vasculature. Experimental Design: SN38, the active metabolite of irinotecan (CPT-11), is a potent therapeutic agent that is readily encapsulated in polymeric nanoparticles. Tocopherol oxyacetate (TOA) is a hydrophobic mitocan that was linked to SN38 to significantly increase hydrophobicity and enhance nanoparticle retention. We treated neuroblastomas with SN38-TOA nanoparticles and compared the efficacy with the parent prodrug CPT-11 using a mouse xenograft model. Results: Nanoparticle treatment induced prolonged event-free survival (EFS) in most mice, compared with CPT-11. This was shown for both SH-SY5Y and IMR-32 neuroblastoma xenografts. Enhanced efficacy was likely due to increased and sustained drug levels of SN38 in the tumor compared with conventional CPT-11 delivery. Interestingly, when recurrent CPT-11-treated tumors were re-treated with SN38-TOA nanoparticles, the tumors transformed from undifferentiated neuroblastomas to maturing ganglioneuroblastomas. Furthermore, these tumors were infiltrated with Schwann cells of mouse origin, which may have contributed to the differentiated histology. Conclusions: Nanoparticle delivery of SN38-TOA produced increased drug delivery and prolonged EFS compared to conventional delivery of CPT-11. Also, lower total dose and drug entrapment in nanoparticles during circulation should decrease toxicity. We propose that nanoparticle-based delivery of a rationally designed prodrug is an attractive approach to enhance chemotherapeutic efficacy in pediatric and adult tumors. Clin Cancer Res; 24(11); 2585-93. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. Advances in drug delivery system for platinum agents based combination therapy.

    PubMed

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-12-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy.

  9. Discovery and Delivery of Synergistic Chemotherapy Drug Combinations to Tumors

    NASA Astrophysics Data System (ADS)

    Camacho, Kathryn Militar

    Chemotherapy combinations for cancer treatments harbor immense therapeutic potentials which have largely been untapped. Of all diseases, clinical studies of drug combinations are the most prevalent in oncology, yet their effectiveness is disputable, as complete tumor regressions are rare. Our research has been devoted towards developing delivery vehicles for combinations of chemotherapy drugs which elicit significant tumor reduction yet limit toxicity in healthy tissue. Current administration methods assume that chemotherapy combinations at maximum tolerable doses will provide the greatest therapeutic effect -- a presumption which often leads to unprecedented side effects. Contrary to traditional administration, we have found that drug ratios rather than total cumulative doses govern combination therapeutic efficacy. In this thesis, we have developed nanoparticles to incorporate synergistic ratios of chemotherapy combinations which significantly inhibit cancer cell growth at lower doses than would be required for their single drug counterparts. The advantages of multi-drug incorporation in nano-vehicles are many: improved accumulation in tumor tissue via the enhanced permeation and retention effect, limited uptake in healthy tissue, and controlled exposure of tumor tissue to optimal synergistic drug ratios. To exploit these advantages for polychemotherapy delivery, two prominent nanoparticles were investigated: liposomes and polymer-drug conjugates. Liposomes represent the oldest class of nanoparticles, with high drug loading capacities and excellent biocompatibility. Polymer-drug conjugates offer controlled drug incorporations through reaction stoichiometry, and potentially allow for delivery of precise ratios. Here, we show that both vehicles, when armed with synergistic ratios of chemotherapy drugs, significantly inhibit tumor growth in an aggressive mouse breast carcinoma model. Furthermore, versatile drug incorporation methods investigated here can be broadly

  10. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues

    PubMed Central

    Lai, Samuel K.; Wang, Ying-Ying; Hanes, Justin

    2009-01-01

    Mucus is a viscoelastic and adhesive gel that protects the lung airways, gastrointestinal (GI) tract, vagina, eye and other mucosal surfaces. Most foreign particulates, including conventional particle-based drug delivery systems, are efficiently trapped in human mucus layers by steric obstruction and/or adhesion. Trapped particles are typically removed from the mucosal tissue within seconds to a few hours depending on anatomical location, thereby strongly limiting the duration of sustained drug delivery locally. A number of debilitating diseases could be treated more effectively and with fewer side effects if drugs and genes could be more efficiently delivered to the underlying mucosal tissues in a controlled manner. This review first describes the tenacious mucus barrier properties that have precluded the efficient penetration of therapeutic particles. It then reviews the design and development of new mucus-penetrating particles that may avoid rapid mucus clearance mechanisms, and thereby provide targeted or sustained drug delivery for localized therapies in mucosal tissues. PMID:19133304

  11. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug.

    PubMed

    Sahoo, Banalata; Devi, K Sanjana P; Banerjee, Rakesh; Maiti, Tapas K; Pramanik, Panchanan; Dhara, Dibakar

    2013-05-01

    Targeted and efficient delivery of therapeutics to tumor cells is one of the key issues in cancer therapy. In the present work, we report a temperature and pH dual responsive core-shell nanoparticles comprising smart polymer shell coated on magnetic nanoparticles as an anticancer drug carrier and cancer cell-specific targeting agent. Magnetite nanoparticles (MNPs), prepared by a simple coprecipitation method, was surface modified by introducing amine groups using 3-aminopropyltriethoxysilane. Dual-responsive poly(N-isopropylacrylamide)-block-poly(acrylic acid) copolymer, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, was then attached to the amine-functionalized MNPs via EDC/NHS method. Further, to accomplish cancer-specific targeting properties, folic acid was tethered to the surface of the nanoparticles. Thereafter, rhodamine B isothiocyanate was conjugated to endow fluorescent property to the MNPs required for cellular imaging applications. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), zeta potential, vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) measurements, and FTIR, UV-vis spectral analysis. Doxorubicin (DOX), an anticancer drug used for the present study, was loaded into the nanoparticles and its release behavior was subsequently studied. Result showed a sustained release of DOX preferentially at the desired lysosomal pH and temperature condition. The biological activity of the DOX-loaded MNPs was studied by MTT assay, fluorescence microscopy, and apoptosis. Intracellular-uptake studies revealed preferential uptake of these nanoparticles into cancer cells (HeLa cells) compared to normal fibroblast cells (L929 cells). The in vitro apoptosis study revealed that

  12. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts.

    PubMed

    Zhong, Yinan; Zhang, Jian; Cheng, Ru; Deng, Chao; Meng, Fenghua; Xie, Fang; Zhong, Zhiyuan

    2015-05-10

    The existence of drug resistance poses a major obstacle for the treatment of various malignant human cancers. Here, we report on reduction-sensitive reversibly crosslinked hyaluronic acid (HA) nanoparticles based on HA-Lys-LA conjugates (Lys: l-lysine methyl ester, LA: lipoic acid) for active targeting delivery of doxorubicin (DOX) to CD44+ breast cancers in vitro and in vivo, effectively overcoming drug resistance (ADR). HA-Lys-LA with degrees of substitution of 5, 10 and 28% formed robust nano-sized nanoparticles (152-219nm) following auto-crosslinking. DOX-loaded crosslinked nanoparticles revealed inhibited DOX release under physiological conditions while fast drug release in the presence of 10mM glutathione (GSH). Notably, MTT assays showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles possessed an apparent targetability and a superior antitumor activity toward CD44 receptor overexpressing DOX-resistant MCF-7 human breast cancer cells (MCF-7/ADR). The in vivo pharmacokinetics and biodistribution studies in MCF-7/ADR tumor xenografts in nude mice showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles had a prolonged circulation time and a remarkably high accumulation in the tumor (12.71%ID/g). Notably, DOX-loaded crosslinked HA-Lys-LA10 nanoparticles exhibited effective inhibition of tumor growth while continuous tumor growth was observed for mice treated with free drug. The Kaplan-Meier survival curves showed that in contrast to control groups, all mice treated with DOX-loaded crosslinked HA-Lys-LA10 nanoparticles survived over an experimental period of 44days. Importantly, DOX-loaded crosslinked HA nanoparticles caused low side effects. The reversibly crosslinked hyaluronic acid nanoparticles with excellent biocompatibility, CD44-targetability, and effective reversal of drug resistance have a great potential in cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dual tumor-targeted poly(lactic-co-glycolic acid)–polyethylene glycol–folic acid nanoparticles: a novel biodegradable nanocarrier for secure and efficient antitumor drug delivery

    PubMed Central

    Chen, Jia; Wu, Qi; Luo, Li; Wang, Yi; Zhong, Yuan; Dai, Han-Bin; Sun, Da; Luo, Mao-Ling; Wu, Wei; Wang, Gui-Xue

    2017-01-01

    Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic-co-glycolic acid) (PLGA)–polyethylene glycol (PEG)–folic acid (FA) copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug) loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei. In addition, all hemolysis, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, and zebrafish-development experiments demonstrated that PLGA-PEG-FA nanoparticles were biocompatible and secure for biomedical applications, even at high polymer concentration (0.1 mg/mL), both in vitro and in vivo. Therefore, PLGA-PEG-FA nanoparticles provide a feasible controlled-release platform for secure and efficient antitumor drug delivery. PMID:28848351

  14. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates.

    PubMed

    Abdelaziz, Hadeer M; Gaber, Mohamed; Abd-Elwakil, Mahmoud M; Mabrouk, Moustafa T; Elgohary, Mayada M; Kamel, Nayra M; Kabary, Dalia M; Freag, May S; Samaha, Magda W; Mortada, Sana M; Elkhodairy, Kadria A; Fang, Jia-You; Elzoghby, Ahmed O

    2018-01-10

    There is progressive evolution in the use of inhalable drug delivery systems (DDSs) for lung cancer therapy. The inhalation route offers many advantages, being non-invasive method of drug administration as well as localized delivery of anti-cancer drugs to tumor tissue. This article reviews various inhalable colloidal systems studied for tumor-targeted drug delivery including polymeric, lipid, hybrid and inorganic nanocarriers. The active targeting approaches for enhanced delivery of nanocarriers to lung cancer cells were illustrated. This article also reviews the recent advances of inhalable microparticle-based drug delivery systems for lung cancer therapy including bioresponsive, large porous, solid lipid and drug-complex microparticles. The possible strategies to improve the aerosolization behavior and maintain the critical physicochemical parameters for efficient delivery of drugs deep into lungs were also discussed. Therefore, a strong emphasis is placed on the approaches which combine the merits of both nanocarriers and microparticles including inhalable nanocomposites and nanoaggregates and on the optimization of such formulations using the proper techniques and carriers. Finally, the toxicological behavior and market potential of the inhalable anti-cancer drug delivery systems are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents.

    PubMed

    Maranhão, Raul C; Vital, Carolina G; Tavoni, Thauany M; Graziani, Silvia R

    2017-10-01

    The toxicity of chemotherapeutic agents, resulting from their low pharmacological index, introduces considerable discomfort and risk to cancer patients. Among several strategies to reduce the toxicity of chemotherapeutic agents, targeted drug delivery is the most promising one. Areas covered: Liposomes, micelles, albumin-based, polymeric, dendritic and lipid core nanoparticles have been used as carriers to concentrate anticancer drugs in neoplastic tissues, and clinical studies of those preparations are reviewed. In most clinical studies, drug delivery systems reduced drug toxicity. Lipid core nanoparticles (LDE) that bind to cell lipoprotein receptors have the ability to concentrate in neoplastic tissues and were the first artificial non-liposomal system shown in in vivo studies to possess targeting properties. The toxicity reduction achieved by LDE as vehicle of carmustine, etoposide and paclitaxel was singularly strong. Expert opinion: The reduced toxicity offered by drug delivery systems has expanded treatment population that may benefit from chemotherapy including feeble, overtreated and elderly patients that would otherwise be offered palliative therapy. Drug delivery systems may either prolong the duration of treatments or allow increases in drug dose.

  16. Polymeric nanoparticles - Influence of the glass transition temperature on drug release.

    PubMed

    Lappe, Svenja; Mulac, Dennis; Langer, Klaus

    2017-01-30

    The physico-chemical characterisation of nanoparticles is often lacking the determination of the glass transition temperature, a well-known parameter for the pure polymer carrier. In the present study the influence of water on the glass transition temperature of poly (DL-lactic-co-glycolic acid) nanoparticles was assessed. In addition, flurbiprofen and mTHPP as model drugs were incorporated in poly (DL-lactic-co-glycolic acid), poly (DL-lactic acid), and poly (L-lactic acid) nanoparticles. For flurbiprofen-loaded nanoparticles a decrease in the glass transition temperature was observed while mTHPP exerted no influence on this parameter. Based on this observation, the release behaviour of the drug-loaded nanoparticles was investigated at different temperatures. For all preparations an initial burst release was measured that could be attributed to the drug adsorbed to the large nanoparticle surface. At temperatures above the glass transition temperature an instant drug release of the nanoparticles was observed, while at lower temperatures less drug was released. It could be shown that the glass transition temperature of drug loaded nanoparticles in suspension more than the corresponding temperature of the pure polymer is the pivotal parameter when characterising a nanostructured drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems

    PubMed Central

    Wen, Ru; Umeano, Afoma C.; Francis, Lily; Sharma, Nivita; Tundup, Smanla; Dhar, Shanta

    2016-01-01

    Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease. PMID:27258316

  18. Targeting of drugs and nanoparticles to tumors

    PubMed Central

    Bhatia, Sangeeta N.; Sailor, Michael J.

    2010-01-01

    The various types of cells that comprise the tumor mass all carry molecular markers that are not expressed or are expressed at much lower levels in normal cells. These differentially expressed molecules can be used as docking sites to concentrate drug conjugates and nanoparticles at tumors. Specific markers in tumor vessels are particularly well suited for targeting because molecules at the surface of blood vessels are readily accessible to circulating compounds. The increased concentration of a drug in the site of disease made possible by targeted delivery can be used to increase efficacy, reduce side effects, or achieve some of both. We review the recent advances in this delivery approach with a focus on the use of molecular markers of tumor vasculature as the primary target and nanoparticles as the delivery vehicle. PMID:20231381

  19. Development of Multifunctional Nanoparticles for Targeted Drug Delivery and Non-invasive Imaging of Therapeutic Effect

    PubMed Central

    Sajja, Hari Krishna; East, Michael P.; Mao, Hui; Wang, Andrew Y.; Nie, Shuming; Yang, Lily

    2011-01-01

    Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by non-invasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine. PMID:19275541

  20. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy.

    PubMed

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2015-04-01

    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release.

    PubMed

    Khutale, Ganesh V; Casey, Alan

    2017-10-01

    A nanoparticle drug carrier system has been developed to alter the cellular uptake and chemotherapeutic performance of an available chemotherapeutic drug. The system comprises of a multifunctional gold nanoparticle based drug delivery system (Au-PEG-PAMAM-DOX) as a novel platform for intracellular delivery of doxorubicin (DOX). Spherical gold nanoparticles were synthesized by a gold chloride reduction, stabilized with thiolated polyethylene glycol (PEG) and then covalently coupled with a polyamidoamine (PAMAM) G4 dendrimer. Further, conjugation of an anti-cancer drug doxorubicin to the dendrimer via amide bond resulted in Au-PEG-PAMAM-DOX drug delivery system. Acellular drug release studies proved that DOX released from Au-PEG-PAMAM-DOX at physiological pH was negligible but it was significantly increased at a weak acidic milieu. The intracellular drug release was monitored with confocal laser scanning microscopy analysis. In vitro viability studies showed an increase in the associated doxorubicin cytotoxicity not attributed to carrier components indicating the efficiency of the doxorubicin was improved, upon conjugation to the nano system. As such it is postulated that the developed pH triggered multifunctional doxorubicin-gold nanoparticle system, could lead to a promising platform for intracellular delivery of variety of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    PubMed Central

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  3. Nanomedicines for Back of the Eye Drug Delivery, Gene Delivery, and Imaging

    PubMed Central

    Kompella, Uday B.; Amrite, Aniruddha C.; Ravi, Rashmi Pacha; Durazo, Shelley A.

    2013-01-01

    Treatment and management of diseases of the posterior segment of the eye such as diabetic retinopathy, retinoblastoma, retinitis pigmentosa, and choroidal neovascularization is a challenging task due to the anatomy and physiology of ocular barriers. For instance, traditional routes of drug delivery for therapeutic treatment are hindered by poor intraocular penetration and/or rapid ocular elimination. One possible approach to improve ocular therapy is to employ nanotechnology. Nanomedicines, products of nanotechnology, having at least one dimension in the nanoscale include nanoparticles, micelles, nanotubes, and dendrimers, with and without targeting ligands, are making a significant impact in the fields of ocular drug delivery, gene delivery, and imaging, the focus of this review. Key applications of nanotechnology discussed in this review include a) bioadhesive nanomedicines; b) functionalized nanomedicines that enhance target recognition and/or cell entry; c) nanomedicines capable of controlled release of the payload; d) nanomedicines capable of enhancing gene transfection and duration of transfection; f) nanomedicines responsive to stimuli including light, heat, ultrasound, electrical signals, pH, and oxidative stress; g) diversely sized and colored nanoparticles for imaging, and h) nanowires for retinal prostheses. Additionally, nanofabricated delivery systems including implants, films, microparticles, and nanoparticles are described. Although the above nanomedicines may be administered by various routes including topical, intravitreal, intravenous, transscleral, suprachoroidal, and subretinal routes, each nanomedicine should be tailored for the disease, drug, and site of administration. In addition to the nature of materials used in nanomedicine design, depending on the site of nanomedicine administration, clearance and toxicity are expected to differ. PMID:23603534

  4. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    NASA Astrophysics Data System (ADS)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  5. Self-Assembled Cubic Liquid Crystalline Nanoparticles for Transdermal Delivery of Paeonol

    PubMed Central

    Li, Jian-Chun; Zhu, Na; Zhu, Jin-Xiu; Zhang, Wen-Jing; Zhang, Hong-Min; Wang, Qing-Qing; Wu, Xiao-Xiang; Wang, Xiu; Zhang, Jin; Hao, Ji-Fu

    2015-01-01

    Background The aim of this study was to optimize the preparation method for self-assembled glyceryl monoolein-based cubosomes containing paeonol and to characterize the properties of this transdermal delivery system to improve the drug penetration ability in the skin. Material/Methods In this study, the cubic liquid crystalline nanoparticles loaded with paeonol were prepared by fragmentation of glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel by high-pressure homogenization. We evaluated the Zeta potential of these promising skin-targeting drug-delivery systems using the Malvern Zeta sizer examination, and various microscopies and differential scanning calorimetry were also used for property investigation. Stimulating studies were evaluated based on the skin irritation reaction score standard and the skin stimulus intensity evaluation standard for paeonol cubosomes when compared with commercial paeonol ointment. In vitro tests were performed on excised rat skins in an improved Franz diffusion apparatus. The amount of paeonol over time in the in vitro penetration and retention experiments both was determined quantitatively by HPLC. Results Stimulating studies were compared with the commercial ointment which indicated that the paeonol cubic liquid crystalline nanoparticles could reduce the irritation in the skin stimulating test. Thus, based on the attractive characteristics of the cubic crystal system of paeonol, we will further exploit the cosmetic features in the future studies. Conclusions The transdermal delivery system of paeonol with low-irritation based on the self-assembled cubic liquid crystalline nanoparticles prepared in this study might be a promising system of good tropical preparation for skin application. PMID:26517086

  6. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    PubMed

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  7. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  8. Cancer nanomedicine: a review of recent success in drug delivery.

    PubMed

    Tran, Stephanie; DeGiovanni, Peter-Joseph; Piel, Brandon; Rai, Prakash

    2017-12-11

    Cancer continues to be one of the most difficult global healthcare problems. Although there is a large library of drugs that can be used in cancer treatment, the problem is selectively killing all the cancer cells while reducing collateral toxicity to healthy cells. There are several biological barriers to effective drug delivery in cancer such as renal, hepatic, or immune clearance. Nanoparticles loaded with drugs can be designed to overcome these biological barriers to improve efficacy while reducing morbidity. Nanomedicine has ushered in a new era for drug delivery by improving the therapeutic indices of the active pharmaceutical ingredients engineered within nanoparticles. First generation nanomedicines have received widespread clinical approval over the past two decades, from Doxil ® (liposomal doxorubicin) in 1995 to Onivyde ® (liposomal irinotecan) in 2015. This review highlights the biological barriers to effective drug delivery in cancer, emphasizing the need for nanoparticles for improving therapeutic outcomes. A summary of different nanoparticles used for drug delivery applications in cancer are presented. The review summarizes recent successes in cancer nanomedicine in the clinic. The clinical trials of Onivyde leading to its approval in 2015 by the Food and Drug Adminstration are highlighted as a case study in the recent clinical success of nanomedicine against cancer. Next generation nanomedicines need to be better targeted to specifically destroy cancerous tissue, but face several obstacles in their clinical development, including identification of appropriate biomarkers to target, scale-up of synthesis, and reproducible characterization. These hurdles need to be overcome through multidisciplinary collaborations across academia, pharmaceutical industry, and regulatory agencies in order to achieve the goal of eradicating cancer. This review discusses the current use of clinically approved nanomedicines, the investigation of nanomedicines in clinical

  9. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  10. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses

    PubMed Central

    Chakravarty, Prerona; Qian, Wei; El-Sayed, Mostafa A.; Prausnitz, Mark R.

    2010-01-01

    A major barrier to drug and gene delivery is crossing the cell's plasma membrane. Physical forces applied to cells via electroporation1, ultrasound2 and laser-irradiation3–6 generate nanoscale holes in the plasma membrane for direct delivery of drugs into the cytoplasm. Inspired by previous work showing that laser excitation of carbon nanoparticles can drive the carbon-steam reaction to generate highly controlled shock waves7–10, here we show carbon black (CB) nanoparticles activated by femtosecond laser pulses can facilitate the delivery of small molecules, proteins and DNA into two types of cells. Our initial results suggest that interaction between the laser energy and CB nanoparticles may generate photoacoustic forces by chemical reaction to create transient holes in the membrane for delivery. PMID:20639882

  11. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs.

    PubMed

    Gothwal, Avinash; Khan, Iliyas; Gupta, Umesh

    2016-01-01

    Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.

  12. Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer

    NASA Astrophysics Data System (ADS)

    Zubris, Kimberly Ann Veronica

    Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to

  13. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems

    PubMed Central

    Karimi, Mahdi; Ghasemi, Amir; Zangabad, Parham Sahandi; Rahighi, Reza; Moosavi Basri, S. Masoud; Mirshekari, H.; Amiri, M.; Pishabad, Z. Shafaei; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A. R.; Haghani, L.; Bahrami, S.; Hamblin, Michael R.

    2016-01-01

    New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive “smart” MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications. PMID:26776487

  14. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.

    PubMed

    Karimi, Mahdi; Ghasemi, Amir; Sahandi Zangabad, Parham; Rahighi, Reza; Moosavi Basri, S Masoud; Mirshekari, H; Amiri, M; Shafaei Pishabad, Z; Aslani, A; Bozorgomid, M; Ghosh, D; Beyzavi, A; Vaseghi, A; Aref, A R; Haghani, L; Bahrami, S; Hamblin, Michael R

    2016-03-07

    New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.

  15. Nanotechnology controlled drug delivery for treating bone diseases.

    PubMed

    Yang, Lei; Webster, Thomas J

    2009-08-01

    Rapid developments at the intersection of nanotechnology and controlled drug delivery have triggered exceptional growth in treating various bone diseases. As a result, over the past decade, nanotechnology has contributed tremendously to controlling drug delivery for treating various bone diseases, and in many cases, has led to increased bone regeneration. In this review paper, the recent experimental progress towards using nanotechnology to treat bone-specific diseases is reviewed. Novel applications of different types of nanomaterials (from nanoparticles to 3D nanostructured scaffolds) for treating bone diseases are summarized. In addition, fundamental principles for utilizing nanomaterials to create better drug delivery systems, especially for treating bone diseases and regenerating bone, are emphasized.

  16. Anti-Cancer Drug Delivery Using Carbohydrate-Based Polymers.

    PubMed

    Ranjbari, Javad; Mokhtarzadeh, Ahad; Alibakhshi, Abbas; Tabarzad, Maryam; Hejazi, Maryam; Ramezani, Mohammad

    2018-02-12

    Polymeric drug delivery systems in the form of nanocarriers are the most interesting vehicles in anticancer therapy. Among different types of biocompatible polymers, carbohydrate-based polymers or polysaccharides are the most common natural polymers with complex structures consisting of long chains of monosaccharide or disaccharide units bound by glycosidic linkages. Their appealing properties such as availability, biocompatibility, biodegradability, low toxicity, high chemical reactivity, facile chemical modification and low cost led to their extensive applications in biomedical and pharmaceutical fields including development of nano-vehicles for delivery of anti-cancer therapeutic agents. Generally, reducing systemic toxicity, increasing short half-lives and tumor localization of agents are the top priorities for a successful cancer therapy. Polysaccharide-based or - coated nanosystems with respect to their advantageous features as well as accumulation in tumor tissue due to enhanced permeation and retention (EPR) effect can provide promising carrier systems for the delivery of noblest impressive agents. Most challenging factor in cancer therapy was the toxicity of anti-cancer therapeutic agents for normal cells and therefore, targeted delivery of these drugs to the site of action can be considered as an interesting therapeutic strategy. In this regard, several polysaccharides exhibited selective affinity for specific cell types, and so they can act as a targeting agent in drug delivery systems. Accordingly, different aspects of polysaccharide applications in cancer treatment or diagnosis were reviewed in this paper. In this regard, after a brief introduction of polysaccharide structure and its importance, the pharmaceutical usage of carbohydrate-based polymers was considered according to the identity of accompanying active pharmaceutical agents. It was also presented that the carbohydrate based polymers have been extensively considered as promising materials in

  17. Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy.

    PubMed

    Wei, Yi; Gao, Li; Wang, Lu; Shi, Lin; Wei, Erdong; Zhou, Baotong; Zhou, Li; Ge, Bo

    2017-11-01

    We reported a simple polydopamine (PDA)-based surface modification method to prepare novel targeted doxorubicin-loaded mesoporous silica nanoparticles and peptide CSNRDARRC conjugation (DOX-loaded MSNs@PDA-PEP) for enhancing the therapeutic effects on bladder cancer. Drug-loaded NPs were characterized in terms of size, size distribution, zeta potential, transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area and drug loading content. In vitro drug release indicated that DOX-loaded MSNs@PDA and MSNs@PDA-PEP had similar release kinetic profiles of DOX. The PDA coating well controlled DOX release and was highly sensitive to pH value. Confocal laser scanning microscopy (CLSM) showed that drug-loaded MSNs could be internalized by human bladder cancer cell line HT-1376, and DOX-loaded MSNs@PDA-PEP had the highest cellular uptake efficiency due to ligand-receptor recognition. The antitumor effects of DOX-loaded nanoparticles were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that targeted nanocarriers DOX-loaded MSNs@PDA-PEP were significantly superior to free DOX and DOX-loaded MSNs@PDA. The novel DOX-loaded MSNs@PDA-PEP, which specifically recognized HT-1376 cells, can be used as a potential targeted drug delivery system for bladder cancer therapy.

  18. Liposome-based drug co-delivery systems in cancer cells.

    PubMed

    Zununi Vahed, Sepideh; Salehi, Roya; Davaran, Soodabeh; Sharifi, Simin

    2017-02-01

    Combination therapy and nanotechnology offer a promising therapeutic method in cancer treatment. By improving drug's pharmacokinetics, nanoparticulate systems increase the drug's therapeutic effects while decreasing its adverse side effects related to high dosage. Liposomes are extensively used as drug delivery systems and several liposomal nanomedicines have been approved for clinical applications. In this regard, liposome-based combination chemotherapy (LCC) opens a novel avenue in drug delivery research and has increasingly become a significant approach in clinical cancer treatment. This review paper focuses on LCC strategies including co-delivery of: two chemotherapeutic drugs, chemotherapeutic agent with anti-cancer metals, and chemotherapeutic agent with gene agents and ligand-targeted liposome for co-delivery of chemotherapeutic agents. Definitely, the multidisciplinary method may help improve the efficacy of cancer therapy. An extensive literature review was performed mainly using PubMed. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Novel drug delivery system: an immense hope for diabetics.

    PubMed

    Rai, Vineet Kumar; Mishra, Nidhi; Agrawal, Ashish Kumar; Jain, Sanyog; Yadav, Narayan Prasad

    2016-09-01

    Existing medication systems for the treatment of diabetes mellitus (DM) are inconvenient and troublesome for effective and safe delivery of drugs to the specific site. Therefore, investigations are desired to deliver antidiabetics using novel delivery approaches followed by their commercialization. The present review aims to provide a compilation on the latest development in the field of novel drug delivery systems (NDDSs) for antidiabetics with special emphasis on particulate, vesicular and miscellaneous systems. Review of literature (restricted to English language only) was done using electronic databases like Pubmed® and Scirus, i.e. published during 2005-2013. The CIMS/MIMS India Medical Drug Information eBook was used regarding available marketed formulation of antidiabetic drugs. Keywords used were "nanoparticle", "microparticle", "liposomes", "niosomes", "transdermal systems", "insulin", "antidiabetic drugs" and "novel drug delivery systems". Single inclusion was made for one article. If in vivo study was not done then article was seldom included in the manuscript. The curiosity to develop NDDSs of antidiabetic drugs with special attention to the nanoparticulate system followed by microparticulate and lipid-based system is found to emerge gradually to overcome the problems associated with the conventional dosage forms and to win the confidence of end users towards the higher acceptability. In the current scientific panorama when the area of novel drug delivery system has been recognized for its palpable benefits, unique potential of providing physical stability, sustained and site-specific drug delivery for a scheduled period of time can open new vistas for precise, safe and quality treatment of DM.

  20. Design of Novel Ophthalmic Formulation Containing Drug Nanoparticles and Its Usefulness as Anti-glaucoma Drugs.

    PubMed

    Nagai, Noriaki

    2016-01-01

    The ophthalmic application of drugs is the primary route of administration for the therapy of glaucoma; however, in traditional formulations, only small amounts of the administered drug penetrate the cornea to reach the desired intraocular tissue due to corneal barriers. Recently, nanoparticulate drug delivery is expected as a technology to overcome the difficulties in delivering drugs across biological barriers (improvement of bioavailability). In this study, we attempted to establish a new method for preparing solid drug nanoparticles by using a bead mill and various additives, and succeeded in preparing a high quality dispersion containing drug nanoparticles. For a more concrete example, a mean particle size of disulfiram (DSF) treated with bead mill is 183 nm. The corneal penetration and corneal residence time of DSF from the ophthalmic dispersion containing DSF nanoparticles were significantly higher than those from a 2-hydroxypropyl-β-cyclodextrin solution containing DSF (DSF solution). It is known that the administration of DSF has intraocular pressure (IOP)-reducing effects. The IOP-reducing effects of the ophthalmic dispersion containing DSF nanoparticles were significantly greater than those of the DSF solution in rabbits (the IOP was enhanced by placing the rabbits in a dark room for 5 h). In addition, the ophthalmic dispersion containing DSF nanoparticles is better tolerated by corneal epithelial cells than DSF solution. It is possible that dispersions containing DSF nanoparticles provide new possibilities for effectively treating glaucoma, and that ocular drug delivery systems using drug nanoparticles may expand their usage for therapy in the ophthalmologic field.