Sample records for nanoparticle-based solid phase

  1. Solid phase monofunctionalization of gold nanoparticles using ionic exchange resin as polymer support.

    PubMed

    Zou, Jianhua; Dai, Qiu; Wang, Jinhai; Liu, Xiong; Huo, Qun

    2007-07-01

    A solid phase modification method using anionic exchange resin as polymer support was developed for the synthesis of monofunctional gold nanoparticles. Based on a "catch and release" mechanism to control the number of functional groups attached to the nanoparticle surface, bifunctional thiol ligands with a carboxylic acid end group were first immobilized at a controlled density on anionic exchange resin through electrostatic interactions. Gold nanoparticles were then immobilized to the anionic exchange resin by a one-to-one place exchange reaction between resin-bound thiol ligands and butanethiol-protected gold nanoparticles in solution. After cleaving off from the resin under mild conditions, gold nanoparticles with a single carboxyl group attached to the surface were obtained as the major product. Experimental conditions such as the solvents used for ligand loading and solid phase place exchange reaction, and the loading density of the ligands, were found to play a critical role towards the successful synthesis of monofunctional nanoparticles. Overall, the noncovalent bond-based ligand immobilization technique reported here greatly simplified the process of solid phase monofunctionalization of nanoparticles compared to a previously reported covalent bond-based ligand immobilization technique.

  2. Solid-phase synthesis of molecularly imprinted nanoparticles.

    PubMed

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey

    2016-03-01

    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  3. Encapsulated Solid-Liquid Phase Change Nanoparticles as Thermal Barcodes for Highly Sensitive Detections of Multiple Lung Cancer Biomarkers

    DTIC Science & Technology

    2012-10-01

    5e. TASK NUMBER LC90061 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...transduction mechanism based on solid- liquid phase change nanoparticles works for the detection of multiple proteins. A series of metal and alloy...early stage. With the support from DOD-LCRP, we have proved the new signal transduction mechanism based on solid-liquid phase change nanoparticles works

  4. Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.

    PubMed

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-17

    Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.

    PubMed

    Piletska, Elena; Yawer, Heersh; Canfarotta, Francesco; Moczko, Ewa; Smolinska-Kempisty, Katarzyna; Piletsky, Stanislav S; Guerreiro, Antonio; Whitcombe, Michael J; Piletsky, Sergey A

    2017-09-14

    Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

  6. New immobilisation protocol for the template used in solid-phase synthesis of MIP nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Muhammad, Turghun; Yakup, Burabiye; Piletsky, Sergey A.

    2017-06-01

    As a novel imprinting method, solid-phase synthesis has proven to be a promising approach to prepare polymer nanoparticles with specific recognition sites for a template molecule. In this method, imprinted polymer nanoparticles were synthesized using template immobilized on a solid support. Herein, preparation of immobilized templates on quartz chips through homogeneous route was reported as an efficient alternative strategy to heterogeneous one. The template molecule indole-3-butyric acid (IBA) was reacted with 3-aminopropyltriethoxysilane (APTES) to produce silylated template (IBA-APTES), and it was characterized by IR, 1H NMR and GC-MS. Then, the silylated template molecule was grafted onto the activated surfaces of quartz chip to prepare immobilized template (SiO2@IBA-APTES). The immobilization was confirmed by contact angle, XPS, UV and fluorescence measurement. Immobilization protocol has shown good reproducibility and stability of the immobilized template. MIP nanoparticles were prepared with high selectivity toward the molecule immobilized onto the solid surface. This provides a new approach for the development of molecularly imprinted nanoparticles.

  7. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template - "Plastic Antibodies".

    PubMed

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A

    2013-06-13

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.

  8. Aptamer-functionalized Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri.

    PubMed

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin

    2017-07-01

    The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. [Preparation of Oenothera biennis Oil Solid Lipid Nanoparticles Based on Microemulsion Technique].

    PubMed

    Piao, Lin-mei; Jin, Yong; Cui, Yan-lin; Yin, Shou-yu

    2015-06-01

    To study the preparation of Oenothera biennis oil solid lipid nanoparticles and its quality evaluation. The solid lipid nanoparticles were prepared by microemulsion technique. The optimum condition was performed based on the orthogonal design to examine the entrapment efficiency, the mean diameter of the particles and so on. The optimal preparation of Oenothera biennis oil solid lipid nanoparticles was as follows: Oenothera biennis dosage 300 mg, glycerol monostearate-Oenothera biennis (2: 3), Oenothera biennis -RH/40/PEG-400 (1: 2), RH-40/PEG-400 (1: 2). The resulting nanoparticles average encapsulation efficiency was (89.89 ± 0.71)%, the average particle size was 44.43 ± 0.08 nm, and the Zeta potential was 64.72 ± 1.24 mV. The preparation process is simple, stable and feasible.

  10. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles.

    PubMed

    Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A

    2014-07-23

    We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.

  11. Anti-Adhesive Behaviors between Solid Hydrate and Liquid Aqueous Phase Induced by Hydrophobic Silica Nanoparticles.

    PubMed

    Min, Juwon; Baek, Seungjun; Somasundaran, P; Lee, Jae W

    2016-09-20

    This study introduces an "anti-adhesive force" at the interface of solid hydrate and liquid solution phases. The force was induced by the presence of hydrophobic silica nanoparticles or one of the common anti-agglomerants (AAs), sorbitan monolaurate (Span 20), at the interface. The anti-adhesive force, which is defined as the maximum pushing force that does not induce the formation of a capillary bridge between the cyclopentane (CP) hydrate particle and the aqueous solution, was measured using a microbalance. Both hydrophobic silica nanoparticles and Span 20 can inhibit adhesion between the CP hydrate probe and the aqueous phase because silica nanoparticles have an aggregative property at the interface, and Span 20 enables the hydrate surface to be wetted with oil. Adding water-soluble sodium dodecyl sulfate (SDS) to the nanoparticle system cannot affect the aggregative property or the distribution of silica nanoparticles at the interface and, thus, cannot change the anti-adhesive effect. However, the combined system of Span 20 and SDS dramatically reduces the interfacial tension: emulsion drops were formed at the interface without any energy input and were adsorbed on the CP hydrate surface, which can cause the growth of hydrate particles. Silica nanoparticles have a good anti-adhesive performance with a relatively smaller dosage and are less influenced by the presence of molecular surfactants; consequently, these nanoparticles may have a good potential for hydrate inhibition as AAs.

  12. High-throughput multipesticides residue analysis in earthworms by the improvement of purification method: Development and application of magnetic Fe3 O4 -SiO2 nanoparticles based dispersive solid-phase extraction.

    PubMed

    Sun, Yuhan; Qi, Peipei; Cang, Tao; Wang, Zhiwei; Wang, Xiangyun; Yang, Xuewei; Wang, Lidong; Xu, Xiahong; Wang, Qiang; Wang, Xinquan; Zhao, Changshan

    2018-06-01

    As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high-throughput multipesticides residue analytical method for earthworms using solid-liquid extraction with acetonitrile as the solvent and magnetic material-based dispersive solid-phase extraction for purification. Magnetic Fe 3 O 4 nanoparticles were modified with a thin silica layer to form Fe 3 O 4 -SiO 2 nanoparticles, which were fully characterized by field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffractometry, and vibrating sample magnetometry. The Fe 3 O 4 -SiO 2 nanoparticles were used as the separation media in dispersive solid-phase extraction with primary secondary amine and ZrO 2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of azoxystrobin and chlorothalonil using a methacrylate-based polymer modified with gold nanoparticles as solid-phase extraction sorbent.

    PubMed

    Catalá-Icardo, Mónica; Gómez-Benito, Carmen; Simó-Alfonso, Ernesto Francisco; Herrero-Martínez, José Manuel

    2017-01-01

    This paper describes a novel and sensitive method for extraction, preconcentration, and determination of two important widely used fungicides, azoxystrobin, and chlorothalonil. The developed methodology is based on solid-phase extraction (SPE) using a polymeric material functionalized with gold nanoparticles (AuNPs) as sorbent followed by high-performance liquid chromatography (HPLC) with diode array detector (DAD). Several experimental variables that affect the extraction efficiency such as the eluent volume, sample flow rate, and salt addition were optimized. Under the optimal conditions, the sorbent provided satisfactory enrichment efficiency for both fungicides, high selectivity and excellent reusability (>120 re-uses). The proposed method allowed the detection of 0.05 μg L -1 of the fungicides and gave satisfactory recoveries (75-95 %) when it was applied to drinking and environmental water samples (river, well, tap, irrigation, spring, and sea waters).

  14. Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template – “Plastic Antibodies”

    PubMed Central

    Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.

    2016-01-01

    Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870

  15. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.

    PubMed

    Dan, Nily

    2014-11-25

    Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.

  16. Magnetic dispersive solid-phase extraction based on modified magnetic nanoparticles for the detection of cocaine and cocaine metabolites in human urine by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Yang, Feiyu; Zou, Yun; Ni, Chunfang; Wang, Rong; Wu, Min; Liang, Chen; Zhang, Jiabin; Yuan, Xiaoliang; Liu, Wenbin

    2017-11-01

    An easy-to-handle magnetic dispersive solid-phase extraction procedure was developed for preconcentration and extraction of cocaine and cocaine metabolites in human urine. Divinyl benzene and vinyl pyrrolidone functionalized silanized Fe 3 O 4 nanoparticles were synthesized and used as adsorbents in this procedure. Scanning electron microscopy, vibrating sample magnetometry, and infrared spectroscopy were employed to characterize the modified adsorbents. A high-performance liquid chromatography with mass spectrometry method for determination of cocaine and its metabolites in human urine sample has been developed with pretreatment of the samples by magnetic dispersive solid-phase extraction. The obtained results demonstrated the higher extraction capacity of the prepared nanoparticles with recoveries between 75.1 to 105.7% and correlation coefficients higher than 0.9971. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.10 ng/mL. The proposed magnetic dispersive solid-phase extraction method provided a rapid, environmentally friendly and magnetic stuff recyclable approach and it was confirmed that the prepared adsorbents material was a kind of highly effective extraction materials for the trace cocaine and cocaine metabolites analyses in human urine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A.

    PubMed

    Lin, Zhenkun; Cheng, Wenjing; Li, Yanyan; Liu, Zhiren; Chen, Xiangping; Huang, Changjiang

    2012-03-30

    Leakage of the residual template molecules is one of the biggest challenges for application of molecularly imprinted polymer (MIP) in solid-phase extraction (SPE). In this study, bisphenol F (BPF) was adopted as a dummy template to prepare MIP of bisphenol A (BPA) with a superparamagnetic core-shell nanoparticle as the supporter, aiming to avoid residual template leakage and to increase the efficiency of SPE. Characterization and test of the obtained products (called mag-DMIP beads) revealed that these novel nanoparticles not only had excellent magnetic property but also displayed high selectivity to the target molecule BPA. As mag-DMIP beads were adopted as the adsorbents of solid-phase extraction for detecting BPA in real water samples, the recoveries of spiked samples ranged from 84.7% to 93.8% with the limit of detection of 2.50 pg mL(-1), revealing that mag-DMIP beads were efficient SPE adsorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Magnetic solid-phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Ding, Xueqin; Huang, Yanhua; Li, Na; Wen, Qian

    2016-01-01

    As a new type of green solvent, four kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) have been synthesized, and then a core-shell structure magnetic graphene oxide (Fe3O4-NH2@GO) nanoparticles have been prepared and coated with the ChCl-based DESs. Magnetic solid-phase extraction (MSPE) based Fe3O4-NH2@GO@DES was studied for the first time for the extraction of proteins. The characteristic results of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) indicated the successful preparation of Fe3O4-NH2@GO@DES. The concentrations of proteins in studies were determined by a UV-vis spectrophotometer. The advantages of Fe3O4-NH2@GO@DES in protein extraction were compared with Fe3O4-NH2@GO and Fe3O4-NH2, and Fe3O4-NH2@GO@ChCl-glycerol was selected as the suitable extraction solvent. The influence factors of the extraction process such as the pH value, the temperature, the extraction time, the concentration of protein and the amount of Fe3O4-NH2@GO@ChCl-glycerol were evaluated. Desorption experimental result showed 98.73% of BSA could be eluted from the solid extractant with 0.1 mol/L Na2HPO4 solution contained 1 mol/L NaCl. Besides, the conformation of BSA was not changed during the elution by the investigation of circular dichromism (CD) spectra. Furthermore, the analysis of real sample demonstrated that the prepared magnetic nanoparticles did have extraction ability on proteins in bovine whole blood. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  20. Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp

    NASA Astrophysics Data System (ADS)

    Li, Shi-na; Ma, Rui-xin; Wang, Cheng-yan

    2018-03-01

    The Cu2MoS4 nanoparticles were prepared using a relatively simple and convenient solid-phase process, which was applied for the first time. The crystalline structure, morphology, and optical properties of Cu2MoS4 nanoparticles were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and UV-vis spectrophotometry. Cu2MoS4 nanoparticles having a band gap of 1.66 eV exhibits good photocatalytic activity in the degradation of methylene blue, which indicates that this simple process may be critical to facilitate the cheap production of photocatalysts.

  1. Gas chromatographic detection of some nitro explosive compounds in soil samples after solid-phase microextraction with carbon ceramic copper nanoparticle fibers.

    PubMed

    Farhadi, Khalil; Bochani, Shayesteh; Hatami, Mehdi; Molaei, Rahim; Pirkharrati, Hossein

    2014-07-01

    In this research, a new solid-phase microextraction fiber based on carbon ceramic composites with copper nanoparticles followed by gas chromatography with flame ionization detection was applied for the extraction and determination of some nitro explosive compounds in soil samples. The proposed method provides an overview of trends related to synthesis of solid-phase microextraction sorbents and their applications in preconcentration and determination of nitro explosives. The sorbents were prepared by mixing of copper nanoparticles with a ceramic composite produced by mixture of methyltrimethoxysilane, graphite, methanol, and hydrochloric acid. The prepared sorbents were coated on copper wires by dip-coating method. The prepared nanocomposites were evaluated statistically and provided better limits of detection than the pure carbon ceramic. The limit of detection of the proposed method was 0.6 μg/g with a linear response over the concentration range of 2-160 μg/g and square of correlation coefficient >0.992. The new proposed fiber has been demonstrated to be a suitable, inexpensive, and sensitive candidate for extraction of nitro explosive compounds in contaminated soil samples. The constructed fiber can be used more than 100 times without the need for surface generation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles.

    PubMed

    Zhang, Ying; Kuang, Min; Zhang, Lijuan; Yang, Pengyuan; Lu, Haojie

    2013-06-04

    In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.

  3. Graphene oxide decorated with silver nanoparticles as a coating on a stainless-steel fiber for solid-phase microextraction.

    PubMed

    Wang, Licheng; Hou, Xiudan; Li, Jubai; Liu, Shujuan; Guo, Yong

    2015-07-01

    A novel graphene oxide decorated with silver nanoparticles coating on a stainless-steel fiber for solid-phase microextraction was prepared. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid-phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single-fiber repeatability and fiber-to-fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4-116.3% with relative standard deviations less than 16.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A solid-phase microextraction fiber with carbon nanoparticles as sorbent material prepared by a simple flame-based preparation process.

    PubMed

    Sun, Min; Feng, Juanjuan; Qiu, Huamin; Fan, Lulu; Li, Leilei; Luo, Chuannan

    2013-07-26

    A novel carbon nanoparticles-coated solid-phase microextraction (SPME) fiber was prepared via a simple and low-cost flame-based preparation process, with stainless steel wire as support. Surface characteristic of the fiber was studied with scanning electron microscope. A nano-scaled brushy structure was observed. Coupled to gas chromatography (GC), the fiber was used to extract phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Analytical performances of the proposed method were investigated under the optimum extraction conditions (extraction temperature, 40°C; content of KCl, 30% (w/v); extraction time, 50min for PAEs and 40min for PAHs) and compared with other reports for the same analytes. Calibration ranges were 0.06-500μgL(-1) for di-n-butyl phthalate (DBP), and 0.1-300μgL(-1) for di-cyclohexyl phthalate (DCHP) and di-(2-ethyl-hexyl) phthalate (DEHP). For the eight PAHs, good linearity was obtained ranging from 0.01 to 150μgL(-1). Limits of detection were 0.005μgL(-1) for three PAEs and 0.001-0.003μgL(-1) for eight PAHs. The fiber exhibited excellent stability. It can be used for 100 times with RSDs of extraction efficiency less than 22.4%. The as-established SPME-GC method was applied to determine PAEs in food-wrap and PAHs in cigarette ash and snow water, and satisfactory results were obtained. The carbon nanoparticles-coated SPME fiber was efficient for sampling of organic compounds from aqueous samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Functionalized nanoparticles based solid-phase membrane micro-tip extraction and high-performance liquid chromatography analyses of vitamin B complex in human plasma.

    PubMed

    Ali, Imran; Kulsum, Umma; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Saleem, Kishwar

    2016-07-01

    Iron nanoparticles were prepared by a green method following functionalization using 1-butyl-3-methylimidazolium bromide. 1-Butyl-3-methylimidazole iron nanoparticles were characterized using FTIR spectroscopy, energy dispersive X-ray fluorescence, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The nanoparticles were used in solid-phase membrane micro-tip extraction to separate vitamin B complex from plasma before high-performance liquid chromatography. The optimum conditions obtained were sorbent (15 mg), agitation time (30 min), pH (9.0), desorbing solvent [water (5 mL) + methanol (5 mL) + sodium hydroxide (0.1 N) + acetic acid (d = 1.05 kg/L, pH 5.5), desorbing volume (10 mL) and desorption time (30 min). The percentage recoveries of all the eight vitamin B complex were from 60 to 83%. A high-performance liquid chromatography method was developed using a PhE column (250 × 4.6 mm, 5.0 μm) and water/acetonitrile (95:5, v/v; pH 4.0 with 0.1% formic acid) mobile phase. The flow rate was 1.0 mL/min with detection at 270 and 210 nm. The values of the capacity, separation and resolution factor were 0.57-39.47, 1.12-6.00 and 1.84-26.26, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economic and reproducible. The developed method can be applied for analyzing these drugs in biological and environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    NASA Astrophysics Data System (ADS)

    Triplett, Michael D.; Rathman, James F.

    2009-04-01

    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, β-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of β-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. β-Carotene entrapment efficiency averaged 40%. β-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  7. Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports.

    PubMed

    Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli

    2006-06-29

    A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.

  8. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE PAGES

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; ...

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO 3 nanoparticles. (Y 0.77,Gd 0.23)Ba 2Cu 3O y films were grown on metal substrates with different concentration of BaZrO 3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO 3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10 22/m 3), the irreversibility field (H irr) continues to increase with no signmore » of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high H irr, namely H irr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  9. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  10. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.

    PubMed

    Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A

    2014-11-12

    Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.

  11. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.

    2016-12-01

    Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  12. Behavior of TiO₂ nanoparticles during incineration of solid paint waste: a lab-scale test.

    PubMed

    Massari, Andrea; Beggio, Marta; Hreglich, Sandro; Marin, Riccardo; Zuin, Stefano

    2014-10-01

    In order to assess the potential impacts posed by products containing engineered nanoparticles, it is essential to generate more data about the release of these particles from products' life cycle. Although first studies were performed to investigate the release of nanoparticles from use phase, very few data are available on the potential release from recycling or disposal of nano-enhanced products. In this work, we investigated the behavior of TiO2 nanoparticles from incineration of solid paint waste containing these particles. Solid paint debris with and without TiO2 nanoparticles were treated in a lab scale incineration plant at 950°C (combustion temperature) and in oxidizing atmosphere. The obtained ashes were also vitrified with additives and the release of Ti was finally evaluated by leaching test. From our incineration lab-scale experiment, we did not observe a release of TiO2 nanoparticles into the atmosphere, and Ti was attached to the surface of obtained solid residues (i.e. ashes). The characterization of ashes showed that TiO2 nanoparticles reacted during the incineration to give calcium titanate. Finally, a very low release of Ti was measured, less 1 mg/kg, during the leaching test of ashes vitrified with glass cullet and feldspathic inert. Our work suggests that TiO2 nanoparticles added in paints may undergo to physicochemical transformation during the incineration, and that Ti found in ashes may be strongly immobilized in glass matrix. Since this conclusion is based on lab-scale experiment, further research is required to identify which nanoparticles will be emitted to the environment from a real-word-incineration system of household hazardous waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Ibrahem, Ahmed M.; El-Amin, Mohamed F.; Sun, Shuyu

    In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM) enthalpy-based is employed. The collision model of lattice Bhatnagar-Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0-2%) added to water-base fluid and Rayleigh numbers of 103-105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied.

  14. Gold-nanoparticle-based theranostic agents for radiotherapy of malignant solid tumors

    NASA Astrophysics Data System (ADS)

    Moeendarbari, Sina

    Radiation therapy is one of the three major methods of cancer treatment. The fundamental goal of radiotherapy is to deliver high radiation doses to targets while simultaneously minimizing doses to critical structures and healthy normal tissues. The aim of this study is to develop a general, practical, and facile method to prepare nanoscale theranostic agents for more efficacious radiation therapy with less adverse side effects. First, a novel type of gold nanoparticle, hollow Au nanoparticles (HAuNPs) which was synthesized using the unique bubble template synthesis method developed in our lab, are studied in vitro and in vivo to investigate their effect as radiosensitizing agents to enhance the radiation dose during external radiotherapy. The results showed the promising potential of using HAuNPs as radiosensitization agents for efficacious treatment of breast cancer. Second, a novel radiolabeling method is developed to incorporate medical radioisotopes to gold nanoparticles. We incorporate palladium-103 (103Pd), a radioisotope currently in clinical brachytherapy, into a hollow gold nanoparticle. The resulting 103Pd Au nanoparticles in the form of a colloidal suspension can be administered by direct injection into tumors, serving as internal radiation sources (nanoseeds) for radiation therapy. The size of the nanoseed, 150nm in diameter, is large enough to prevent nanoseeds from diffusing into other areas while still small enough to allow them to homogeneously distribute inside the tumor. The therapeutic efficacy of 103Pd Au nanoseeds have been tested when intratumorally injected into a prostate cancer xenograft model. The findings showed that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors. Finally, to make real clinical application more plausible, multi-functional magnetic nanoseeds nanoparticles for imaging-guided radiotherapy are synthesized and characterized.

  15. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  16. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  17. Dispersive admicelle solid-phase extraction based on sodium dodecyl sulfate coated Fe3 O4 nanoparticles for the selective adsorption of three alkaloids in Gegen-Qinlian oral liquid before high-performance liquid chromatography.

    PubMed

    Shi, Zhihong; Xu, Dan; Zhao, Xuan; Li, Xinghong; Shen, Huimin; Yang, Bing; Zhang, Hongyi

    2017-12-01

    A novel dispersive admicelle solid-phase extraction method based on sodium dodecyl sulfate-coated Fe 3 O 4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen-Qinlian oral liquid before high-performance liquid chromatography. Fe 3 O 4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe 3 O 4 nanoparticles was coated with sodium dodecyl sulfate to form a nano-sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte-adsorbed nanoparticles from the sample solution was performed by using Nd-Fe-B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe 3 O 4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9-120.3%, relative standard deviations for intra- and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen-Qinlian oral liquids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2017-12-01

    The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs). RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10-50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations. All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution. RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution

  19. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.

    PubMed

    Chernyshova, I V; Hochella, M F; Madden, A S

    2007-04-14

    Using Fourier Transform InfraRed (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), and Transmission Electron Microscopy (TEM), we characterize the structure and/or morphology of hematite (alpha-Fe(2)O(3)) particles with sizes of 7, 18, 39 and 120 nm. It is found that these nanoparticles possess maghemite (gamma-Fe(2)O(3))-like defects in the near surface regions, to which a vibrational mode at 690 cm(-1), active both in FTIR and Raman spectra, is assigned. The fraction of the maghemite-like defects and the net lattice disorder are inversely related to the particle size. However, the effect is opposite for nanoparticles grown by sintering of smaller hematite precursors under conditions when the formation of a uniform hematite-like structure throughout the aggregate is restricted by kinetic issues. This means that not only particle size but also the growth kinetics determines the structure of the nanoparticles. The observed structural changes are interpreted as size-induced alpha-Fe(2)O(3)<-->gamma-Fe(2)O(3) phase transitions. We develop a general model that considers spinel defects and absorbed/adsorbed species (in our case, hydroxyls) as dominant controls on structural changes with particle size in hematite nanoparticles, including solid-state phase transitions. These changes are represented by trajectories in a phase diagram built in three phase coordinates-concentrations of spinel defects, absorbed impurities, and adsorbed species. The critical size for the onset of the alpha-->gamma phase transition depends on the particle environment, and for the dry particles used in this study is about 40 nm. The model supports the existence of intermediate phases (protohematite and hydrohematite) during dehydration of goethite. We also demonstrate that the hematite structure is significantly less defective when the nanoparticles are immersed in water or KBr matrix, which is explained by the effects of the electrochemical double layer and increased rigidity of

  20. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    NASA Astrophysics Data System (ADS)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  1. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles.

    PubMed

    de Julián Fernández, C; Mattei, G; Paz, E; Novak, R L; Cavigli, L; Bogani, L; Palomares, F J; Mazzoldi, P; Caneschi, A

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO(2) matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  2. Preparation and characterization of citral-loaded solid lipid nanoparticles.

    PubMed

    Tian, Huaixiang; Lu, Zhuoyan; Li, Danfeng; Hu, Jing

    2018-05-15

    Citral-loaded solid lipid nanoparticles (citral-SLNs) were prepared via a high-pressure homogenization method, using glyceryl monostearate (GMS) as the solid lipid and a mixture of Tween 80 (T-80) and Span 80 (S-80) at a weight ratio of 1:1 as the surfactant. The microstructure and properties of the citral-SLNs were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). The chemical stability of citral in the citral-SLNs was analyzed by solid-phase microextraction gas chromatography (SPME-GC). The GC results showed that 67.0% of the citral remained in the citral-SLN suspensions after 12 days, while only 8.22% remained in the control. Therefore, the encapsulation of citral in the solid lipid can enhance its stability in acidic surroundings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography.

    PubMed

    Wei, Z; Sandron, S; Townsend, A T; Nesterenko, P N; Paull, B

    2015-04-01

    Cobalt magnetic nanoparticles surface functionalised with iminodiacetic acid were evaluated as a nano-particulate solid phase extraction absorbent for copper ions (Cu(2+)) from environmental water samples. Using an external magnetic field, the collector nanoparticles could be separated from the aqueous phase, and adsorbed ions simply decomplexed using dilute HNO3. Effects of pH, buffer concentration, sample and sorbent volume, extraction equilibrium time, and interfering ion concentration on extraction efficiency were investigated. Optimal conditions were then applied to the extraction of Cu(2+) ions from natural water samples, prior to their quantitation using high-performance chelation ion chromatography. The limits of detection (LOD) of the combined extraction and chromatographic method were ~0.1 ng ml(-1), based upon a 100-fold preconcentration factor (chromatographic performance; LOD=9.2 ng ml(-1) Cu(2+)), analytical linear range from 20 to 5000 ng mL(-1), and relative standard deviations=4.9% (c=1000 ng ml(-1), n=7). Accuracy and precision of the combined approach was verified using a certified reference standard estuarine water sample (SLEW-2) and comparison of sample determinations with sector field inductively coupled plasma mass spectrometry. Recoveries from the addition of Cu(2+) to impacted estuarine and rain water samples were 103.5% and 108.5%, respectively. Coastal seawater samples, both with and without prior UV irradiation and dissolved organic matter removal were also investigated using the new methodology. The effect of DOM concentration on copper availability was demonstrated. Copyright © 2015. Published by Elsevier B.V.

  4. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    PubMed

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T

    2001-12-01

    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  5. Dispersive solid-phase extraction based on oleic acid-coated magnetic nanoparticles followed by gas chromatography-mass spectrometry for UV-filter determination in water samples.

    PubMed

    Román, Iván P; Chisvert, Alberto; Canals, Antonio

    2011-05-06

    A sensitive analytical method to concentrate and determine extensively used UV filters in cosmetic products at (ultra)trace levels in water samples is presented. The method is based on a sample treatment using dispersive solid-phase extraction (dSPE) with laboratory-made chemisorbed oleic acid-coated cobalt ferrite (CoFe(2)O(4)@oleic acid) magnetic nanoparticles (MNPs) as optimized sorbent for the target analytes. The variables involved in dSPE were studied and optimized in terms of sensitivity, and the optimum conditions were: mass of sorbent, 100mg; donor phase volume, 75 mL; pH, 3; and sodium chloride concentration, 30% (w/v). After dSPE, the MNPs were eluted twice with 1.5 mL of hexane, and then the eluates were evaporated to dryness and reconstituted with 50 μL of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) for the injection into the gas chromatography-mass spectrometry (GC-MS). Under the optimized experimental conditions the method provided good levels of repeatability with relative standard deviations below 16% (n=5, at 100 ng L(-1) level). Limit of detection values ranged between 0.2 and 6.0 ng L(-1), due to the high enrichment factors achieved (i.e., 453-748). Finally, the proposed method was applied to the analysis of water samples of different origin (tap, river and sea). Recovery values showed that the matrices under consideration do not significantly affect the extraction process. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil.

    PubMed

    Padois, Karine; Cantiéni, Céline; Bertholle, Valérie; Bardel, Claire; Pirot, Fabrice; Falson, Françoise

    2011-09-15

    Solid lipid nanoparticles have been reported as possible carrier for skin drug delivery. Solid lipid nanoparticles are produced from biocompatible and biodegradable lipids. Solid lipid nanoparticles made of semi-synthetic triglycerides stabilized with a mixture of polysorbate and sorbitan oleate were loaded with 5% of minoxidil. The prepared systems were characterized for particle size, pH and drug content. Ex vivo skin penetration studies were performed using Franz-type glass diffusion cells and pig ear skin. Ex vivo skin corrosion studies were realized with a method derived from the Corrositex(®) test. Solid lipid nanoparticles suspensions were compared to commercial solutions in terms of skin penetration and skin corrosion. Solid lipid nanoparticles suspensions have been shown as efficient as commercial solutions for skin penetration; and were non-corrosive while commercial solutions presented a corrosive potential. Solid lipid nanoparticles suspensions would constitute a promising formulation for hair loss treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    PubMed

    Ansari, Seraj A; Mohapatra, Prasanta K

    2017-05-26

    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].

    PubMed

    Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping

    2013-09-01

    To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.

  9. Dendronization-induced phase-transfer, stabilization and self-assembly of large colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Malassis, Ludivine; Jishkariani, Davit; Murray, Christopher B.; Donnio, Bertrand

    2016-07-01

    The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates.The phase-transfer of CTAB-coated aqueous, spherical gold nanoparticles, with metallic core diameters ranging from ca. 27 to 54 nm, into organic solvents by exchanging the primitive polar bilayer with lipophilic, disulfide dendritic ligands is reported. The presence of such a thick nonpolar organic shell around these large nanoparticles enhances their stabilization against aggregation, in addition to enabling their transfer into a variety of solvents such as chloroform, toluene or tetrahydrofuran. Upon the slow evaporation of a chloroform suspension deposited on a solid support, the dendronized hybrids were found to self-assemble into ring structures of various diameters. Moreover, their self-assembly at the liquid-air interface affords the formation of fairly long-range ordered monolayers, over large areas, that can then be entirely transferred onto solid substrates. Electronic supplementary information (ESI) available: TEM microscope images. See DOI: 10.1039/c6nr03404g

  10. Effect of particle size on phase transition among metastable alumina nanoparticles: A view from high resolution 2D solid-state 27Al NMR study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, S.

    2012-12-01

    The detailed knowledge of atomic structures of diverse metastable/stable polymorphs in alumina nanoparticles is essential to understand their macroscopic properties. Alumina undergoes successive phase transitions from metastable γ-, δ-, and θ-alumina to stable α-alumina depending on types of precursors, annealing duration, and temperature. As large surface area of nanoparticles plays an important role in controlling their phase transitions, it is also necessary to explore the effect of particle size on nature of phase transition. Solid-state ^{27}Al NMR allows us to determine the atomic structure of Al sites in diverse amorphous/disordered silicates including alumina. However, generally, the crystallographically distinct Al sites among alumina polymorphs were not fully resolved in ^{27}Al magic angle spinning (MAS) NMR spectrum without performing a simulation of overlapped peaks for Al sites of metastable alumina in the spectra. Unfortunately, the simulation of 27Al MAS NMR spectra for alumina nanoparticles cannot be achieved well due to unconfirmed NMR parameters for Al sites of γ- and δ-alumina. The recent progress in triple-quantum (3Q) MAS can provide the much higher resolution for crystallographically distinct Al sites in amorphous alumina (Lee et al., 2009, Phys. Rev. Lett., 103, 095501; Lee et al., 2010, J. Phys. Chem. C, 114, 13890-13894) and aluminosilicate glasses (Lee, 2011, Proc. Natl. Acad. Sci., 108, 6847-6852) as well as crystalline layer silicates (Lee and Weiss, 2008, Am. Mineral. 93, 1066-1071). In this study, we report the ^{27}Al 2D 3QMAS and 1D MAS NMR spectra for alumina nanoparticles with varying particle size (e.g., 15, 19, and 27 nm) and temperature with an aim to explore the atomic structure of alumina polymorphs and nature of their phase transition sequence. The ^{27}Al 2D 3QMAS spectra show the resolved crystallographically distinct ^{[6]}Al and ^{[4]}Al sites in (γ, δ)-, θ-, and α-alumina in nanoparticles consisting of random

  11. New anatase-type Til-2xNbxAlxO2 solid solution nanoparticles: direct formation, phase stability, and photocatalytic performance.

    PubMed

    Hirano, Masanori; Ito, Takaharu

    2006-12-01

    New anatase-type titania solid solutions co-doped with niobium and aluminum (Til-2xNbxAIlxO2 (X = 0 -0.20)) were synthesized as nanoparticles from precursor solutions of TiOSO4, NbCl5, and Al(NO3)3 under mild hydrothermal conditions at 180 degrees C for 5 h using the hydrolysis of urea. The lattice parameters a0 and c0 of anatase slightly and gradually increased, when the content of niobium and aluminum increased from X = 0 to 0.20. The crystallite size of anatase increased from 12 to 28 nm with increasing the value of X from 0 to 0.20. Their photocatalytic activity and adsorptivity were evaluated separately by the measurement of the concentration of methylene blue (MB) remained in the solution in the dark or under UV-light irradiation. The adsorptivity of TiO2 was improved by the formation of anatase-type Til-2xNbxAlxO2 solid solutions. The photocatalytic activity of anatase-type Til-2xNbxAlxO2 solid solutions was superior to that of commercially available anatase-type pure TiO2 (ST-01) and anatase-type pure TiO2 hydrothermally prepared. The new anatase phase of Til-2xNbxAlxO2 (X = 0-0.20) solid solutions existed stably up to 850 0C during heat treatment in air. In comparison with hydrothermal pure TiO2, the starting temperature of anatase-to-rutile phase transformation was delayed by the formation of Ti1-2xNbxAlxO, (X = 0-0.20) solid solutions, although its completing temperature was accelerated.

  12. Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manafi, Mohammad Hanif; Allahyari, Mehdi; Pourghazi, Kamyar; Amoli-Diva, Mitra; Taherimaslak, Zohreh

    2015-07-01

    The extraction and preconcentration of total aflatoxins (including aflatoxin B1, B2, G1, and G2) using magnetic nanoparticles based solid phase extraction (MSPE) followed by surfactant-enhanced spectrofluorimetric detection was proposed. Ethylene glycol bis-mercaptoacetate modified silica coated Fe3O4 nanoparticles as an efficient antibody-free adsorbent was successfully applied to extract aflatoxins from wheat samples. High surface area and strong magnetization properties of magnetic nanoparticles were utilized to achieve high enrichment factor (97), and satisfactory recoveries (92-105%) using only 100 mg of the adsorbent. Furthermore, the fast separation time (less than 10 min) avoids many time-consuming cartridge loading or column-passing procedures accompany with the conventional SPE. In determination step, signal enhancement was performed by formation of Triton X-100 micelles around the analytes in 15% (v/v) acetonitrile-water which dramatically increase the sensitivity of the method. Main factors affecting the extraction efficiency and signal enhancement of the analytes including pH of sample solution, desorption conditions, extraction time, sample volume, adsorbent amount, surfactant concentration and volume and time of micelle formation were evaluated and optimized. Under the optimum conditions, wide linear range of 0.1-50 ng mL-1 with low detection limit of 0.03 ng mL-1 were obtained. The developed method was successfully applied to the extraction and preconcentration of aflatoxins in three commercially available wheat samples and the results were compared with the official AOAC method.

  13. Effect of surfactant on temperature stability of solid lipid nanoparticles studied by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sacheen; Kaur, Jaspreet

    2013-06-01

    Solid lipid nanoparticles are new paradigm of drug delivery system of water insoluble active pharmaceutical ingredient. Paliperidone, an antipsychotic used in treatment of schizophrenia is a water insoluble molecule with low bioavailability was studied. Macrogol glyceride surfactant, bile salt based surfactant and sodium dodecyl sulphate were used to stabilize the solid lipid as dispersed nanoparticles form by adsorbing on the surface of the nanoparticles. Anionic surfactants bile salt and sodium dodecyl sulphate were found to stabilize forming a monomolecular layer of surfactants on the surface of nanoparticles; whereas macrogol glyceride based surfactant have intrusion in the matrix of lipid nanoparticles. So intrusion of macrogol glyceride in matrix was observed by studying the change in size of nanoparticles with respect to temperature with the help of dynamic light scattering. In case of macrogol glyceride size decrease start form 50°C, for bile salt and sodium dodecyl sulphate size deacrease start at 60°C. So that structural disturbance of nanoparticles by the macrogol glyceride on the surface was found maximum as compared to anionic surfactant.

  14. l-Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A.

    PubMed

    Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang

    2018-02-01

    A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nanoparticle-blood interactions: the implications on solid tumour targeting.

    PubMed

    Lazarovits, James; Chen, Yih Yang; Sykes, Edward A; Chan, Warren C W

    2015-02-18

    Nanoparticles are suitable platforms for cancer targeting and diagnostic applications. Typically, less than 10% of all systemically administered nanoparticles accumulate in the tumour. Here we explore the interactions of blood components with nanoparticles and describe how these interactions influence solid tumour targeting. In the blood, serum proteins adsorb onto nanoparticles to form a protein corona in a manner dependent on nanoparticle physicochemical properties. These serum proteins can block nanoparticle tumour targeting ligands from binding to tumour cell receptors. Additionally, serum proteins can also encourage nanoparticle uptake by macrophages, which decreases nanoparticle availability in the blood and limits tumour accumulation. The formation of this protein corona will also increase the nanoparticle hydrodynamic size or induce aggregation, which makes nanoparticles too large to enter into the tumour through pores of the leaky vessels, and prevents their deep penetration into tumours for cell targeting. Recent studies have focused on developing new chemical strategies to reduce or eliminate serum protein adsorption, and rescue the targeting potential of nanoparticles to tumour cells. An in-depth and complete understanding of nanoparticle-blood interactions is key to designing nanoparticles with optimal physicochemical properties with high tumour accumulation. The purpose of this review article is to describe how the protein corona alters the targeting of nanoparticles to solid tumours and explains current solutions to solve this problem.

  16. Nano-particle modified stationary phases for high-performance liquid chromatography.

    PubMed

    Nesterenko, Ekaterina P; Nesterenko, Pavel N; Connolly, Damian; He, Xiaoyun; Floris, Patrick; Duffy, Emer; Paull, Brett

    2013-08-07

    This review covers the latest developments and applications of nano-materials in stationary phase development for various modes of high-performance liquid chromatography. Specific attention is placed upon the development of new composite phases, including the synthetic and immobilisation strategies used, to produce either encapsulated nano-particles, or surface attached nano-particles, layers, coatings and other structures. The resultant chromatographic applications, where applicable, are discussed with comment upon enhanced selectivity and/or efficiency of the nano-particle modified phases, where such effects have been identified. In the main this review covers developments over the past five years and is structured according to the nature of the nano-particles themselves, including carbonaceous, metallic, inorganic, and organopolymer based materials.

  17. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    PubMed

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO 2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO 2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg -1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min -1 kg -1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO 2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl - ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO 2 and Ag nanoparticles at concentrations of 100 mg kg -1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  18. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    PubMed

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  19. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    PubMed Central

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  20. Microwave-assisted solid-phase synthesis of highly fluorescent carbon nanoparticles and its application in intracellular pH sensing.

    PubMed

    Yang, Shenghong; Chen, Xiao; Liu, Shuqin; Wang, Fuxin; Ouyang, Gangfeng

    2018-08-15

    Fluorescent carbon nanoparticles (FCNPs) have been deeply researched and widely applied in recent years due to their good optics performance, chemical stability and biocompatibility. Herein, a green and rapid microwave-assisted solid-phase synthesis (solvent-free) approach was proposed for the fabrication of highly FCNPs in a very short period of time, 4 min. The as-prepared FCNPs can emit a blue emission with quantum yield of up to 63.2% in water solution and show yellow fluorescence in the solid state. The FCNPs also exhibit special solvent effect that the fluorescence emission can be adjusted by controlling the solvent ratio of ethanol and water. Most importantly, the FCNPs possess a narrow-range pH response. The probe responds linearly and rapidly to minor pH fluctuations within the range of 3.47-5.10 and the correlation coefficient is above 0.99. The proposed FCNPs also exhibit high photostability and reusability. As expected, the cell imaging and intracellular pH monitoring was achieved successfully in living SMMC 7721 hepatoma cells by this probe. The FCNPs is promising as a convenient and general fluorescent pH sensor for bioimaging applications. Copyright © 2018. Published by Elsevier B.V.

  1. Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion.

    PubMed

    Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi

    2015-06-16

    Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a

  2. Controlled functionalization of nanoparticles & practical applications

    NASA Astrophysics Data System (ADS)

    Rashwan, Khaled

    With the increasing use of nanoparticles in both science and industry, their chemical modification became a significant part of nanotechnology. Unfortunately, most commonly used procedures provide just randomly functionalized materials. The long-term objective of our work is site- and stoichiometrically-controlled functionalization of nanoparticles with the utilization of solid supports and other nanostructures. On the examples of silica nanoparticles and titanium dioxide nanorods, we have obtained results on the solid-phase chemistry, method development, and modeling, which advanced us toward this goal. At the same time, we explored several applications of nanoparticles that will benefit from the controlled functionalization: imaging of titanium-dioxide-based photocatalysts, bioimaging by fluorescent nanoparticles, drug delivery, assembling of bone implants, and dental compositions. Titanium dioxide-based catalysts are known for their catalytic activity and their application in solar energy utilization such as photosplitting of water. Functionalization of titanium dioxide is essential for enhancing bone-titanium dioxide nanotube adhesion, and, therefore, for its application as an interface between titanium implants and bones. Controlled functionalization of nanoparticles should enhance sensitivity and selectivity of nanoassemblies for imaging and drug delivery applications. Along those lines, we studied the relationship between morphology and surface chemistry of nanoparticles, and their affinity to organic molecules (salicylic and caffeic acid) using Langmuir adsorption isotherms, and toward material surfaces using SEM- and TEM-imaging. We focused on commercial samples of titanium dioxide, titanium dioxide nanorods with and without oleic acid ligands, and differently functionalized silica nanoparticles. My work included synthesis, functionalization, and characterization of several types of nanoparticles, exploring their application in imaging, dentistry, and bone

  3. Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2017-05-01

    We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.

  4. Antimicrobial activity of spherical silver nanoparticles: evidence for induction of a prolonged bacterial lag phase

    USDA-ARS?s Scientific Manuscript database

    Background: Recently, there has been a great deal of interest surrounding the discovery that Ag[0] nanoparticles (Np) are more effective antimicrobial agents in terms of the minimum effective concentration than their Ag[+] counterparts. Methods: Both solid and liquid phase experiments were perform...

  5. Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array.

    PubMed

    Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng

    2018-03-27

    Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.

  6. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.

    PubMed

    Gong, Xiuqing; Wu, Jinbo; Huang, Xianxiang; Wen, Weijia; Sheng, Ping

    2008-04-23

    We show that the chemical structures of silicone oils can have an important role in the giant electrorheological (GER) effect. The interaction between silicone oils and solid nanoparticles is found to significantly influence the ER effect. By increasing the kinematic viscosity of silicone oils, which is a function of siloxane chain length, sol-like, gel-like and clay-like appearances of the constituted ER fluids were observed. Different functional-group-terminated silicone oils were also employed as the dispersing media. Significant differences of yield stress were found. We systematically study the effect of siloxane chain lengths on the permeability of oils traveling through the porous spaces between the particles (using the Washburn method), oils adsorbed on the particles' surface (using FT-IR spectra), as well as their particle size distribution (using dynamic light scattering). Our results indicate the hydrogen bonds are instrumental in linking the silicone oil to GER solid particles, and long chain lengths can enhance the agglomeration of the GER nanoparticles to form large clusters. An optimal oil structure, with hydroxyl-terminated silicone oil and a suitable viscosity, was chosen which can create the highest yield stress of ∼300 kPa under a 5 kV mm(-1) DC electric field.

  7. Photothermal nanoparticles as molecular specificity agents in interferometric phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.

    2017-02-01

    I review our latest advances in wide-field interferometric imaging of biological cells with molecular specificity, obtained by time-modulated photothermal excitation of gold nanoparticles. Heat emitted from the nanoparticles affects the measured phase signal via both the nanoparticle surrounding refractive-index and thickness changes. These nanoparticles can be bio-functionalized to bind certain biological cell components; thus, they can be used for biomedical imaging with molecular specificity, as new nanoscopy labels, and for photothermal therapy. Predicting the ideal nanoparticle parameters requires a model that computes the thermal and phase distributions around the particle, enabling more efficient phase imaging of plasmonic nanoparticles, and sparing trial and error experiments of using unsuitable nanoparticles. We thus developed a new model for predicting phase signatures from photothermal nanoparticles with arbitrary parameters. We also present a dual-modality technique based on wide-field photothermal interferometric phase imaging and simultaneous ablation to selectively deplete specific cell populations labelled by plasmonic nanoparticles. We experimentally demonstrated our ability to detect and specifically ablate in vitro cancer cells over-expressing epidermal growth factor receptors (EGFRs), labelled with plasmonic nanoparticles, in the presence of either EGFR under-expressing cancer cells or white blood cells. This demonstration established an initial model for depletion of circulating tumour cells in blood. The proposed system is able to image in wide field the label-free quantitative phase profile together with the photothermal phase profile of the sample, and provides the ability of both detection and ablation of chosen cells after their selective imaging.

  8. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage

    PubMed Central

    2013-01-01

    In this study, different nanofluids with phase change behavior were developed by mixing a molten salt base fluid (selected as phase change material) with nanoparticles using the direct-synthesis method. The thermal properties of the nanofluids obtained were investigated. These nanofluids can be used in concentrating solar plants with a reduction of storage material if an improvement in the specific heat is achieved. The base salt mixture was a NaNO3-KNO3 (60:40 ratio) binary salt. The nanoparticles used were silica (SiO2), alumina (Al2O3), titania (TiO2), and a mix of silica-alumina (SiO2-Al2O3). Three weight fractions were evaluated: 0.5, 1.0, and 1.5 wt.%. Each nanofluid was prepared in water solution, sonicated, and evaporated. Measurements on thermophysical properties were performed by differential scanning calorimetry analysis and the dispersion of the nanoparticles was analyzed by scanning electron microscopy (SEM). The results obtained show that the addition of 1.0 wt.% of nanoparticles to the base salt increases the specific heat of 15% to 57% in the solid phase and of 1% to 22% in the liquid phase. In particular, this research shows that the addition of silica-alumina nanoparticles has a significant potential for enhancing the thermal storage characteristics of the NaNO3-KNO3 binary salt. These results deviated from the predictions of the theoretical model used. SEM suggests a greater interaction between these nanoparticles and the salt. PMID:24168168

  9. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure.

    PubMed

    Yuan, Longyan; Lu, Xi-Hong; Xiao, Xu; Zhai, Teng; Dai, Junjie; Zhang, Fengchao; Hu, Bin; Wang, Xue; Gong, Li; Chen, Jian; Hu, Chenguo; Tong, Yexiang; Zhou, Jun; Wang, Zhong Lin

    2012-01-24

    A highly flexible solid-state supercapacitor was fabricated through a simple flame synthesis method and electrochemical deposition process based on a carbon nanoparticles/MnO(2) nanorods hybrid structure using polyvinyl alcohol/H(3)PO(4) electrolyte. Carbon fabric is used as a current collector and electrode (mechanical support), leading to a simplified, highly flexible, and lightweight architecture. The device exhibited good electrochemical performance with an energy density of 4.8 Wh/kg at a power density of 14 kW/kg, and a demonstration of a practical device is also presented, highlighting the path for its enormous potential in energy management. © 2011 American Chemical Society

  10. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.

    PubMed

    Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei

    2017-09-28

    Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiN x solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.

  11. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    PubMed Central

    González-Fuenzalida, R. A.; Moliner-Martínez, Y.; Prima-Garcia, Helena; Ribera, Antonio; Campins-Falcó, P.; Zaragozá, Ramon J.

    2014-01-01

    The use of magnetic nanomaterials for analytical applications has increased in the recent years. In particular, magnetic nanomaterials have shown great potential as adsorbent phase in several extraction procedures due to the significant advantages over the conventional methods. In the present work, the influence of magnetic forces over the extraction efficiency of triazines using superparamagnetic silica nanoparticles (NPs) in magnetic in tube solid phase microextraction (Magnetic-IT-SPME) coupled to CapLC has been evaluated. Atrazine, terbutylazine and simazine has been selected as target analytes. The superparamagnetic silica nanomaterial (SiO2-Fe3O4) deposited onto the surface of a capillary column gave rise to a magnetic extraction phase for IT-SPME that provided a enhancemment of the extraction efficiency for triazines. This improvement is based on two phenomena, the superparamegnetic behavior of Fe3O4 NPs and the diamagnetic repulsions that take place in a microfluidic device such a capillary column. A systematic study of analytes adsorption and desorption was conducted as function of the magnetic field and the relationship with triazines magnetic susceptibility. The positive influence of magnetism on the extraction procedure was demonstrated. The analytical characteristics of the optimized procedure were established and the method was applied to the determination of the target analytes in water samples with satisfactory results. When coupling Magnetic-IT-SPME with CapLC, improved adsorption efficiencies (60%–63%) were achieved compared with conventional adsorption materials (0.8%–3%). PMID:28344221

  12. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics.

    PubMed

    Kumar, Venishetty Vinay; Chandrasekar, Durairaj; Ramakrishna, Sistla; Kishan, Veerabrahma; Rao, Yamsani Madhusudan; Diwan, Prakash Vamanrao

    2007-04-20

    Nitrendipine is an antihypertensive drug with poor oral bioavailability ranging from 10 to 20% due to the first pass metabolism. For improving the oral bioavailability of nitrendipine, nitrendipine loaded solid lipid nanoparticles have been developed using triglyceride (tripalmitin), monoglyceride (glyceryl monostearate) and wax (cetyl palmitate). Poloxamer 188 was used as surfactant. Hot homogenization of melted lipids and aqueous phase followed by ultrasonication at temperature above the melting point of lipid was used to prepare SLN dispersions. SLN were characterized for particle size, zeta potential, entrapment efficiency and crystallinity of lipid and drug. In vitro release studies were performed in phosphate buffer of pH 6.8 using Franz diffusion cell. Pharmacokinetics of nitrendipine loaded solid lipid nanoparticles after intraduodenal administration to conscious male Wistar rats was studied. Bioavailability of nitrendipine was increased three- to four-fold after intraduodenal administration compared to that of nitrendipine suspension. The obtained results are indicative of solid lipid nanoparticles as carriers for improving the bioavailability of lipophilic drugs such as nitrendipine by minimizing first pass metabolism.

  13. Solid-Phase Nucleic Acid Sequence-Based Amplification and Length-Scale Effects during RNA Amplification.

    PubMed

    Ma, Youlong; Teng, Feiyue; Libera, Matthew

    2018-06-05

    Solid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency. SP-NASBA involves two enzymes, avian myeloblastosis virus reverse transcriptase (AMV-RT) and RNase H, to convert tethered forward and reverse primers into tethered double-stranded DNA (ds-DNA) bridges from which RNA - amplicons can be generated by a third enzyme, T7 RNA polymerase. We create microgels on silicon surfaces using electron-beam patterning of thin-film blends of hydroxyl-terminated and biotin-terminated poly(ethylene glycol) (PEG-OH, PEG-B). The tethering density is linearly related to the PEG-B concentration, and biotinylated primers and molecular beacon detection probes are tethered to streptavidin-activated microgels. While SP-NASBA is very efficient at low tethering densities, the efficiency decreases dramatically with increasing tethering density due to three effects: (a) a reduced hybridization efficiency of tethered molecular beacon detection probes; (b) a decrease in T7 RNA polymerase efficiency; (c) inhibition of T7 RNA polymerase activity by AMV-RT.

  14. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    PubMed

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results.

  15. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  16. Magnetic solid-phase extraction and determination of puerarin in rat plasma using C(18)-functionalized magnetic silica nanoparticles by high performance liquid chromatography.

    PubMed

    Wang, Qi; Huang, Lijie; Yu, Panfeng; Wang, Jianchang; Shen, Shun

    2013-01-01

    In the paper, we presented a magnetic solid-phase extraction (MSPE) method based on C(18)-functionalized magnetic silica nanoparticles for the analysis of puerarin in rat plasma. The approach involves two steps including synthesis of magnetic solid-phase sorbents and bioanalysis. The synthesized magnetic silica microspheres modified with chloro(dimethyl)octylsilane (namely Fe(3)O(4)@SiO(2)-C(18)) can provide an efficient way for the extraction of puerarin through C(18) hydrophobic interaction. The puerarin could be easily enriched using milligram-level Fe(3)O(4)@SiO(2)-C(18) sorbents with vibration for 10min. By means of a magnet, puerarin adsorbed with Fe(3)O(4)@SiO(2)-C(18) sorbents was easily isolated from the matrix, and desorbed with CAN. No carryover was observed, and the sorbents could be recycled in our study. The method recoveries were obtained from 85.2% to 92.3%. Limits of quantification and limits of detection of 0.1μgmL(-1) and 0.05μgmL(-1), respectively were achieved. The precision was from 8.1 to 13.7% for intra-day measurement, and from 9.4 to 15.2% for inter-day variation. The accuracy ranged from 94.7 to 106.3% for intra-day measurement, and from 93.3 to 107.8% for inter-day measurement. The MSPE method was applied for analysis of puerarin in rat plasma samples. The results indicated that it was convenient and efficient for the determination of puerarin in biosamples. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase.

    PubMed

    Liu, Feng-Jie; Liu, Chuan-Ting; Li, Wei; Tang, An-Na

    2015-01-01

    In this work, a new method for the determination of food colorants in beverage samples is developed, using diamino moiety functionalized silica nanoparticles (dASNPs) as both adsorbents in dispersive solid-phase microextraction (dSPME) and pseudostationary phases (PSPs) in capillary electrophoresis (CE) separation. dASNPs were firstly used as adsorbents for the preconcentration of four colorants by the dSPME process. After that, colorants were efficiently separated by CE using 30 mM phosphate buffer (pH 6.0) containing 2 mM β-CD and 0.9 mg/mL dASNPs as additives. All factors influencing dSPME and CE separations were optimized in detail. The investigated analytes showed good linearities with correlation coefficients (R(2)) higher than 0.9932. The limits of detection for the four food colorants were between 0.030 and 0.36 mg/L, which are lower than those reported previously. The established method was also used to analyze four colorants in beverage samples with recoveries ranging from 82.7% to 114.6%. To the best of our knowledge, this is the first time to use NPs both as extractants in dSPME and pseudostationary phases in CE for the analytical purpose. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates

    ERIC Educational Resources Information Center

    Kirin, Srecko I.; Noor, Fozia; Metzler-Nolte, Nils; Mier, Walter

    2007-01-01

    A simple and relatively inexpensive procedure for preparing a biologically active peptide using solid phase peptide synthesis (SPPS) is described. Fourth-year undergraduate students have gained firsthand experience from the solid-phase synthesis techniques and they have become familiar with modern analytical techniques based on the particular…

  19. Enthalpy-based multiple-relaxation-time lattice Boltzmann method for solid-liquid phase-change heat transfer in metal foams.

    PubMed

    Liu, Qing; He, Ya-Ling; Li, Qing

    2017-08-01

    In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.

  20. Enthalpy-based multiple-relaxation-time lattice Boltzmann method for solid-liquid phase-change heat transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling; Li, Qing

    2017-08-01

    In this paper, an enthalpy-based multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed for solid-liquid phase-change heat transfer in metal foams under the local thermal nonequilibrium (LTNE) condition. The enthalpy-based MRT-LB method consists of three different MRT-LB models: one for flow field based on the generalized non-Darcy model, and the other two for phase-change material (PCM) and metal-foam temperature fields described by the LTNE model. The moving solid-liquid phase interface is implicitly tracked through the liquid fraction, which is simultaneously obtained when the energy equations of PCM and metal foam are solved. The present method has several distinctive features. First, as compared with previous studies, the present method avoids the iteration procedure; thus it retains the inherent merits of the standard LB method and is superior to the iteration method in terms of accuracy and computational efficiency. Second, a volumetric LB scheme instead of the bounce-back scheme is employed to realize the no-slip velocity condition in the interface and solid phase regions, which is consistent with the actual situation. Last but not least, the MRT collision model is employed, and with additional degrees of freedom, it has the ability to reduce the numerical diffusion across the phase interface induced by solid-liquid phase change. Numerical tests demonstrate that the present method can serve as an accurate and efficient numerical tool for studying metal-foam enhanced solid-liquid phase-change heat transfer in latent heat storage. Finally, comparisons and discussions are made to offer useful information for practical applications of the present method.

  1. Production of solid lipid nanoparticles (SLN): scaling up feasibilities.

    PubMed

    Dingler, A; Gohla, S

    2002-01-01

    Solid lipid nanoparticles (SLN/Lipopearls) are widely discussed as a new colloidal drug carrier system. In contrast to polymeric systems, such as Polylactic copolyol microcapsules, these systems show with a good biocompatibility, if applied parenterally. The solid lipid matrices can be comprised of fats or waxes, and allow protection of incorporated active ingredients against chemical and physical degradation. The SLN can either be produced by 'hot homogenization' of melted lipids at elevated temperatures or by a 'cold homogenization' process. This paper deals with production technologies for SLN formulations, based on non-ethoxylated fat components for topical application and high pressure homogenization. Based on the chosen fat components, a novel and easy manufacturing and scaling-up method was developed to maintain chemical and physical integrity of the encapsulated active ingredients in the carrier.

  2. Numerical simulation of polishing U-tube based on solid-liquid two-phase

    NASA Astrophysics Data System (ADS)

    Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo

    2018-03-01

    As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.

  3. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation

    PubMed Central

    Yang, Kwan Yeol; Hwang, Du Hyeong; Yousaf, Abid Mehmood; Kim, Dong Wuk; Shin, Young-Jun; Bae, Ok-Nam; Kim, Yong-II; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2013-01-01

    Background The purpose of this study was to develop a novel silymarin-loaded solid nanoparticle system with enhanced oral bioavailability and an ability to provide excellent hepatic protection for poorly water-soluble drugs using Shirasu porous glass (SPG) membrane emulsification and a spray-drying technique. Methods A silymarin-loaded liquid nanoemulsion was formulated by applying the SPG membrane emulsification technique. This was further converted into solid state nanosized particles by the spray-drying technique. The physicochemical characteristics of these nanoparticles were determined by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. Their dissolution, bioavailability, and hepatoprotective activity in rats were assessed by comparison with a commercially available silymarin-loaded product. Results Formulation of a silymarin-loaded nanoemulsion, comprising silymarin, castor oil, polyvinylpyrrolidone, Transcutol HP, Tween 80, and water at a weight ratio of 5/3/3/1.25/1.25/100 was accomplished using an SPG membrane emulsification technique at an agitator speed of 700 rpm, a feed pressure of 15 kPa, and a continuous phase temperature of 25°C. This resulted in generation of comparatively uniform emulsion globules with a narrow size distribution. Moreover, the silymarin-loaded solid nanoparticles, containing silymarin/castor oil/polyvinylpyrrolidone/Transcutol HP/Tween 80 at a weight ratio of 5/3/3/1.25/1.25, improved about 1,300-fold drug solubility and retained a mean size of about 210 nm. Silymarin was located in unaltered crystalline form in the nanoparticles. The drug dissolved rapidly from the nanoparticles, reaching nearly 80% within 15 minutes, indicating three-fold better dissolution than that of the commercial product. Further, the nanoparticles showed a considerably shorter time to peak concentration, a greater area under the concentration-time curve, and a higher maximum concentration of silymarin compared

  4. Development of megestrol acetate solid dispersion nanoparticles for enhanced oral delivery by using a supercritical antisolvent process.

    PubMed

    Ha, Eun-Sol; Kim, Jeong-Soo; Baek, In-Hwan; Yoo, Jin-Wook; Jung, Yunjin; Moon, Hyung Ryong; Kim, Min-Soo

    2015-01-01

    In the present study, solid dispersion nanoparticles with a hydrophilic polymer and surfactant were developed using the supercritical antisolvent (SAS) process to improve the dissolution and oral absorption of megestrol acetate. The physicochemical properties of the megestrol acetate solid dispersion nanoparticles were characterized using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and a particle-size analyzer. The dissolution and oral bioavailability of the nanoparticles were also evaluated in rats. The mean particle size of all solid dispersion nanoparticles that were prepared was <500 nm. Powder X-ray diffraction and differential scanning calorimetry measurements showed that megestrol acetate was present in an amorphous or molecular dispersion state within the solid dispersion nanoparticles. Hydroxypropylmethyl cellulose (HPMC) solid dispersion nanoparticles significantly increased the maximum dissolution when compared with polyvinylpyrrolidone K30 solid dispersion nanoparticles. The extent and rate of dissolution of megestrol acetate increased after the addition of a surfactant into the HPMC solid dispersion nanoparticles. The most effective surfactant was Ryoto sugar ester L1695, followed by D-α-tocopheryl polyethylene glycol 1000 succinate. In this study, the solid dispersion nanoparticles with a drug:HPMC:Ryoto sugar ester L1695 ratio of 1:2:1 showed >95% rapid dissolution within 30 minutes, in addition to good oral bioavailability, with approximately 4.0- and 5.5-fold higher area under the curve (0-24 hours) and maximum concentration, respectively, than raw megestrol acetate powder. These results suggest that the preparation of megestrol acetate solid dispersion nanoparticles using the supercritical antisolvent process is a promising approach to improve the dissolution and absorption properties of megestrol acetate.

  5. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    NASA Astrophysics Data System (ADS)

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.

    2017-05-01

    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  6. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification.

    PubMed

    Akhoond Zardini, Ali; Mohebbi, Mohebbat; Farhoosh, Reza; Bolurian, Shadi

    2018-01-01

    In this study, lycopene, was loaded on nanostructured lipid carrier and solid lipid nanoparticles using combination of high shear homogenization and ultrasonication method. Effect of applied lipids types, nanocarrier's type and lycopene loading on physicochemical properties of developed nanocarriers were studied. Particle sizes of developed nanocarriers were between 74.93 and 183.40 nm. Encapsulation efficiency of nanostructured lipid carrier was significantly higher than solid lipid nanoparticles. Morphological study of developed nanocarriers using scanning electron microscopy showed spherical nanoparticles with smooth surface. Lycopene was entrapped in nanocarriers without any chemical interaction with coating material according to Fourier transform infrared spectroscopy spectrum and differential scanning calorimetry thermogram. Glycerol monostearate containing nanoparticles showed phase separation after 30 days in 6 and 25 °C, whereas this event was not observed in nanosuspensions that produced by glycerol distearate. Lycopene release in gastrointestinal condition was studied by the dialysis bag method. To evaluate nanocarrier's potential for food fortification, developed lycopene-loaded nanocarriers were added to orange drink. Results of sensory analysis indicated that nanoencapsulation could obviate the poor solubility and tomato after taste of lycopene. Fortified sample with lycopene nanocarriers didn't show significant difference with blank orange drink sample except in orange odor.

  7. Magnetic solid phase extraction with CoFe2O4/oleic acid nanoparticles coupled to gas chromatography-mass spectrometry for the determination of alkylphenols in baby foods.

    PubMed

    Pastor-Belda, Marta; Viñas, Pilar; Campillo, Natalia; Hernández-Córdoba, Manuel

    2017-04-15

    Magnetic solid phase extraction (MSPE) with cobalt ferrite nanoparticles coated with oleic acid is described for the determination of alkylphenols (APs), 4-tert-butylphenol (TBP), 4-pentylphenol (PP), 4-hexylphenol (HP), 4-tert-octylphenol (TOP), 4-n-octylphenol (OP) and 4-nonylphenol (NP) in baby foods using gas chromatography with mass spectrometry (GC-MS). Prior to MSPE, the sample was treated with trichloroacetic acid, and the APs derivatized with acetic anhydride. Parameters affecting the extraction efficiency: amount of magnetic nanoparticles, extraction time and desorption conditions, were optimized. The enriched phase obtained was evaporated to dryness and the residue reconstituted in 50μL of methanol, 1μL of which was injected into the GC-MS. Samples were quantified applying matrix-matched calibration and using 2-chloro-5-bromoanisole as surrogate standard. The analysis of 0.5g of sample provided detection limits in the 0.4-1.7ngg -1 range. Some samples contained APs at levels of between 3ngg -1 for HP and 122ngg -1 for TOP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan

    2014-12-01

    Carbon doped Fe3O4 nanoparticles (Fe3O4/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe3O4/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe3O4/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0-110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe3O4/C sorbent were further elucidated. It is found that the adsorption process of Fe3O4/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole-dipole attraction between Fe3O4/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe3O4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe3O4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe3O4/C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for BFRs and PCP has been investigated. It is confirmed that the existence of organic carbon containing functional groups over Fe3O4/C sorbent is responsible for the MSPE extraction.

  9. Approaches for enantioselective resolution of pharmaceuticals by miniaturised separation techniques with new chiral phases based on nanoparticles and monolithis.

    PubMed

    Sierra, Isabel; Marina, Maria Luisa; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Silva, Mariana

    2016-10-01

    This article discusses new developments in the preparation of nanoparticles and monoliths with emphasis upon their application as the stationary and pseudo-stationary phases for miniaturised liquid phase separation techniques, which have occurred in the last 10 years (from 2006 to the actuality). References included in this review represent current trends and state of the art in the application of these materials to the analysis, by EKC, CEC and miniaturised chromatography, of chiral compounds with environmental interest such as pharmaceuticals. Due to their extraordinary properties, columns prepared with these new chiral stationary or pseudo-stationary phases, based on materials such as gold nanoparticles, metal-organic frameworks, ordered mesoporous silicas, carbonaceous materials, polymeric-based and silica-based monoliths or molecularly imprinted materials, can usually show some improvements in the separation selectivity, column efficiency and chemical stability in comparison with conventional chiral columns available commercially. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phase progression of γ-Al2O3 nanoparticles synthesized in a solvent-deficient environment.

    PubMed

    Smith, Stacey J; Amin, Samrat; Woodfield, Brian F; Boerio-Goates, Juliana; Campbell, Branton J

    2013-04-15

    Our simple and uniquely cost-effective solvent-deficient synthetic method produces 3-5 nm Al2O3 nanoparticles which show promise as improved industrial catalyst-supports. While catalytic applications are sensitive to the details of the atomic structure, a diffraction analysis of alumina nanoparticles is challenging because of extreme size/microstrain-related peak broadening and the similarity of the diffraction patterns of various transitional Al2O3 phases. Here, we employ a combination of X-ray pair-distribution function (PDF) and Rietveld methods, together with solid-state NMR and thermogravimetry/differential thermal analysis-mass spectrometry (TG/DTA-MS), to characterize the alumina phase-progression in our nanoparticles as a function of calcination temperature between 300 and 1200 °C. In the solvent-deficient synthetic environment, a boehmite precursor phase forms which transitions to γ-Al2O3 at an extraordinarily low temperature (below 300 °C), but this γ-Al2O3 is initially riddled with boehmite-like stacking-fault defects that steadily disappear during calcination in the range from 300 to 950 °C. The healing of these defects accounts for many of the most interesting and widely reported properties of the γ-phase.

  11. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    PubMed

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-03

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  12. Solid phase pegylation of hemoglobin.

    PubMed

    Suo, Xiaoyan; Zheng, Chunyang; Yu, Pengzhan; Lu, Xiuling; Ma, Guanghui; Su, Zhiguo

    2009-01-01

    A solid phase conjugation process was developed for attachment of polyethylene glycol to hemoglobin molecule. Bovine hemoglobin was loaded onto an ion exchange chromatography column and adsorbed by the solid medium. Succinimidyl carbonate mPEG was introduced in the mobile phase after the adsorption. Pegylation took place between the hemoglobin on the solid phase, and the pegylation reagent in the liquid phase. A further elution was carried out to separate the pegylated and the unpegylated protein. Analysis by HPSEC, SDS-PAGE, and MALLS demonstrated that the fractions eluted from the solid phase contained well-defined components. Pegylated hemoglobin with one PEG chain was obtained with the yield of 75%, in comparison to the yield of 30% in the liquid phase pegylation. The P(50) values of the mono-pegylated hemoglobin, prepared with SC-mPEG 5 kDa, 10 kDa and 20 kDa, were 19.97, 20.23 and 20.54 mmHg, which were much closer to the value of red blood cells than that of pegylated hemoglobin prepared with the conventional method.

  13. Solid-phase reductive amination for glycomic analysis.

    PubMed

    Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George

    2017-04-15

    Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.

  14. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    PubMed

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Trace analysis of nitrite ions in environmental samples by using in-situ synthesized Zein biopolymeric nanoparticles as the novel green solid phase extractor.

    PubMed

    Hatamie, Amir; Nassiri, Mahmoud; Alivand, Meghdad Doust; Bhatnagar, Amit

    2018-01-01

    For the first time, a novel green method using Zein biopolymeric nanoparticles as a green dispersive solid-phase extractor is reported for the separation and preconcentration of trace amount of nitrite (NO 2 - ) ions in ppb levels. The Zein protein is a biodegradable hydrophobic plant protein that is obtained from corn and is composed of a number of hydrophobic amino acids. Zein bionanoparticles were synthesized in an anti-solvent process and used as a new biosorbent in the extraction technique. In the proposed technique, by using a standard method at first, a mixture of 1-naphthylamine and sulphanilic acid as selective regents was added to the samples, and in the presence of the nitrite ion, a red azo product was formed. After that, the ethanolic Zein solution (equal to 15mg) was injected rapidly into the sample, based on the anti-solvent process. Zein bionanoparticles (BNPs) were produced, the adsorbed colour product was separated by centrifugation, and finally samples were analysed with the spectrophotometric method. The influence of different variables such as pH, buffer and amount of buffer, amount of adsorbent and effect of time on extraction were investigated and Zein BNPs were characterized by TEM, SEM, and FT-IR techniques. The main advantages of Zein as a new solid-phase extractor are that this biopolymer is non-toxic, stable, widely available, biodegradable, very hydrophobic, and can be fabricated easily. Under optimal experimental conditions, the linear correlation coefficient (r 2 ) was found to be 0.9972 at the concentration range of 5.0-1000ngmL -1 . The limit of detection was 2.3ngmL -1 (0.05μM). This method was applied successfully for the analysis of sea and river waters as well as industrial wastewater samples. Finally, this method follows the US EPA (US Environmental Protection Agency) and WHO (World Health Organization) international standards for nitrite analysis. In addition, it has several advantages to warrant its applicability in the near

  16. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Kim, Jeong-Soo; Park, Hee Jun; Cho, Won Kyung; Cha, Kwang-Ho; Hwang, Sung-Joo

    2011-01-01

    Background The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS) process. Methods First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP) K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS), tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats. Results X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively. Conclusion The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus. PMID:22162657

  17. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Wang, Yanyan; Zhang, Yafei

    2016-11-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) have received increasing attention. It's a great challenge to fabricate high-performance flexible solid-state supercapacitors with high areal and volumetric energy storage capability, superior electron and ion conductivity, robust mechanical flexibility, as well as long term stability. Herein, we report a facile method to fabricate flexible ASSSCs based on densely-packed reduced graphene oxide (rGO)/polypyrrole nanoparticle (PPy NP) hybrid papers with a sandwich framework, which consists of well-separated and continuously-aligned rGO sheets. The incorporation of PPy NPs not only provides pseudocapacitance but also facilitates the infiltration of gel electrolyte. The assembled ASSSCs possess maximum areal and volumetric specific capacitances of 477 mF/cm2 and 94.9 F/cm3 at 0.5 mA/cm2. They also exhibit little capacitance deviation under different bending states, excellent cycling stability, small leakage current and low self-discharge characteristics. Additionally, the maximum areal and volumetric energy densities of 132.5 μWh/cm2 and 26.4 mWh/cm3 are achieved, which indicate that this hybrid paper is a promising candidate for high-performance flexible energy storage devices.

  18. Gas-Phase Synthesis of Gold- and Silica-Coated Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boies, Adam Meyer

    2011-12-01

    Composite nanoparticles consisting of separate core-shell materials are of interest for a variety of biomedical and industrial applications. By combining different materials at the nanoscale, particles can exhibit enhanced or multi-functional behavior such as plasmon resonance combined with superparamagnetism. Gas-phase nanoparticle synthesis processes are promising because they can continuously produce particles with high mass-yield rates. In this dissertation, new methods are investigated for producing gas-phase coatings of nanoparticles in an "assembly-line" fashion. Separate processes are developed to create coatings from silica and gold that can be used with a variety of core-particle chemistries. A photoinduced chemical vapor deposition (photo-CVD) method is used to produce silica coatings from tetraethyl orthosilicate (TEOS) on the surface of nanoparticles (diameter ˜5--70 nm). Tandem differential mobility analysis (TDMA) of the process demonstrates that particle coatings can be produced with controllable thicknesses (˜1--10 nm) by varying system parameters such as precursor flow rate. Electron microscopy and infrared spectroscopy confirm that the photo-CVD films uniformly coat the particles and that the coatings are silica. In order to describe the coating process a chemical mechanism is proposed that includes gas-phase, surface and photochemical reactions. A chemical kinetics model of the mechanism indicates that photo-CVD coating proceeds primarily through the photodecomposition of TEOS which removes ethyl groups, thus creating activated TEOS species. The activated TEOS then adsorbs onto the surface of the particle where a series of subsequent reactions remove the remaining ethyl groups to produce a silica film with an open site for further attachment. The model results show good agreement with the experimentally measured coating trends, where increased TEOS flow increases coating thickness and increased nitrogen flow decreases coating thickness. Gold

  19. Preparation and characterization of solid lipid nanoparticles-a review.

    PubMed

    Parhi, Rabinarayan; Suresh, Padilama

    2012-03-01

    In the present scenario, most of the developed and new discovered drugs are posing real challenge to the formulation scientists due to their poor aqueous solubility which in turn is responsible for poor bioavailability. One of the approach to overcome above problem is the packaging of the drug in to particulate carrier system. Among various carriers, lipid emerged as very attractive candidate because of its unique property of enhancing the bioavailability of poorly water soluble drugs. Solid lipid, one of the physical forms of lipid, is used to formulate nanoparticles, popularly known as Solid lipid nanoparticles (SLNs), as an alternative carrier system to emulsions, liposomes and polymeric micro- and nano-particles. SLNs combine advantages of the traditional systems but avoid some of their major disadvantages. This paper reviews numerous production techniques for SLNs along with their advantages and disadvantages. Special attention is paid to the characterization of the SLNs by using various analytical tools. It also emphasizes on physical state of lipid (supercooled melts, different lipid modifications).

  20. Mixed micelle cloud point-magnetic dispersive μ-solid phase extraction of doxazosin and alfuzosin

    NASA Astrophysics Data System (ADS)

    Gao, Nannan; Wu, Hao; Chang, Yafen; Guo, Xiaozhen; Zhang, Lizhen; Du, Liming; Fu, Yunlong

    2015-01-01

    Mixed micelle cloud point extraction (MM-CPE) combined with magnetic dispersive μ-solid phase extraction (MD-μ-SPE) has been developed as a new approach for the extraction of doxazosin (DOX) and alfuzosin (ALF) prior to fluorescence analysis. The mixed micelle anionic surfactant sodium dodecyl sulfate and non-ionic polyoxyethylene(7.5)nonylphenylether was used as the extraction solvent in MM-CPE, and diatomite bonding Fe3O4 magnetic nanoparticles were used as the adsorbent in MD-μ-SPE. The method was based on MM-CPE of DOX and ALF in the surfactant-rich phase. Magnetic materials were used to retrieve the surfactant-rich phase, which easily separated from the aqueous phase under magnetic field. At optimum conditions, a linear relationship between DOX and ALF was obtained in the range of 5-300 ng mL-1, and the limits of detection were 0.21 and 0.16 ng mL-1, respectively. The proposed method was successfully applied for the determination of the drugs in pharmaceutical preparations, urine samples, and plasma samples.

  1. Core-shell Fe3O4 polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples.

    PubMed

    Yavuz, Emre; Tokalıoğlu, Şerife; Patat, Şaban

    2018-10-15

    In the present study, core-shell Fe 3 O 4 polydopamine nanoparticles were synthesized and used for the first time as an adsorbent for the vortex assisted magnetic dispersive solid phase extraction of copper from food samples. After elution, copper in the solutions was determined by FAAS. The adsorbent was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, and zeta potential measurements. Various parameters affecting the magnetic dispersive solid-phase extraction were evaluated. The optimum pH and magnetic adsorbent amount were found to be 5 and 40 mg, respectively. Elution was made by 3 mL of 2 mol L -1 HNO 3 .The major advantage of the method is the fast equilibration during adsorption without the need for vortexing or shaking. The preconcentration factor and detection limit of the method were found to be 150 and 0.22 mg L -1 , respectively. The precision (as RSD%) and adsorption capacity of the method were 3.7% and 28 mg g -1 , respectively. The method was successfully verified by analyzing four certified reference materials (SPS-WW1 Batch 114 Wastewater, TMDA-53.3 Lake water, BCR-482 Lichen and 1573a Tomato Leaves) and by addition/recovery tests of copper standard solution in organic baby food, muesli, macaroni, honey, and milk samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. New Dioxaborolane Chemistry Enables [(18)F]-Positron-Emitting, Fluorescent [(18)F]-Multimodality Biomolecule Generation from the Solid Phase.

    PubMed

    Rodriguez, Erik A; Wang, Ye; Crisp, Jessica L; Vera, David R; Tsien, Roger Y; Ting, Richard

    2016-05-18

    New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [(18)F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [(18)F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases.

  3. Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes.

    PubMed

    Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi

    2017-07-01

    In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.

  4. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

    PubMed

    Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S

    2017-10-15

    Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Synthesis of sub-10 nm solid lipid nanoparticles for topical and biomarker detection applications

    NASA Astrophysics Data System (ADS)

    Calderón-Colón, Xiomara; Patchan, Marcia W.; Theodore, Mellisa L.; Le, Huong T.; Sample, Jennifer L.; Benkoski, Jason J.; Patrone, Julia B.

    2014-02-01

    Solid lipid nanoparticles (SLNs) are a promising platform for sensing in vivo biomarkers due to their biocompatibility, stability, and their ability to carry a wide range of active ingredients. The skin is a prominent target organ for numerous inflammatory and stress-related biomarkers, making it an excellent site for early detection of physiological imbalance and application of sensory nanoparticles. Though smaller particle size has generally been correlated with increased penetration of skin models, there has been little attention paid to the significance of other nanoparticle synthesis parameters with respect to their physical properties. In this study, we demonstrate the synthesis of sub-10 nm SLNs by the phase inversion temperature (PIT) method. These particles were specifically designed for topical delivery of hydrogen peroxide-detecting chemiluminescent dyes. A systematic design of experiments approach was used to investigate the role of the processing variables on SLN form and properties. The processing variables were correlated with the SLN properties (e.g., dye solubility, phase inversion temperature, particle size, polydispersity, melting point, and latent heat of melting). Statistical analysis revealed that the PIT method, while allowing total control over the thermal properties, resulted in well-controlled synthesis of ultra-small particles, while allowing great flexibility in the processing conditions and incorporated compounds.

  6. Nanoparticle layer deposition for highly controlled multilayer formation based on high- coverage monolayers of nanoparticles

    PubMed Central

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.

    2015-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers – nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular – layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. PMID:26726273

  7. Quantitative Characterization of Magnetic Mobility of Nanoparticle in Solution-Based Condition.

    PubMed

    Rodoplu, Didem; Boyaci, Ismail H; Bozkurt, Akif G; Eksi, Haslet; Zengin, Adem; Tamer, Ugur; Aydogan, Nihal; Ozcan, Sadan; Tugcu-Demiröz, Fatmanur

    2015-01-01

    Magnetic nanoparticles are considered as the ideal substrate to selectively isolate target molecules or organisms from sample solutions in a wide variety of applications including bioassays, bioimaging and environmental chemistry. The broad array of these applications in fields requires the accurate magnetic characterization of nanoparticles for a variety of solution based-conditions. Because the freshly synthesized magnetic nanoparticles demonstrated a perfect magnetization value in solid form, they exhibited a different magnetic behavior in solution. Here, we present simple quantitative method for the measurement of magnetic mobility of nanoparticles in solution-based condition. Magnetic mobility of the nanoparticles was quantified with initial mobility of the particles using UV-vis absorbance spectroscopy in water, ethanol and MES buffer. We demonstrated the efficacy of this method through a systematic characterization of four different core-shell structures magnetic nanoparticles over three different surface modifications. The solid nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and saturation magnetization (Ms). The surfaces of the nanoparticles were functionalized with 11-mercaptoundecanoic acid and bovine serum albumin BSA was selected as biomaterial. The effect of the surface modification and solution media on the stability of the nanoparticles was monitored by zeta potentials and hydrodynamic diameters of the nanoparticles. Results obtained from the mobility experiments indicate that the initial mobility was altered with solution media, surface functionalization, size and shape of the magnetic nanoparticle. The proposed method easily determines the interactions between the magnetic nanoparticles and their surrounding biological media, the magnetophoretic responsiveness of nanoparticles and the initial mobilities of the nanoparticles.

  8. Characterization of ergocalciferol loaded solid lipid nanoparticles.

    PubMed

    Patel, Mandar R; San Martin-Gonzalez, M Fernanda

    2012-01-01

    The use of solid lipid nanoparticles (SLNs) is a technique that has been widely used in the pharmaceutical industry for the last 2 decades and has become of increasing interest to food scientists due to its potential for encapsulation and controlled release. Ergocalciferol (vitamin D₂) is a bioactive compound whose deficiency may lead to rickets in children and osteomalacia in adults. In this study, ergocalciferol was encapsulated in tripalmitin SLNs stabilized by polysorbate 20 (Tween 20). SLN dispersions (5% w/w) were prepared by hot homogenization technique using a nozzle-type high-pressure homogenizer. Ergocalciferol at 0%, 5%, 10%, 15%, and 20% (w/w of lipid) was dissolved in the molten lipid at 80 °C, mixed with a 5% (w/w) aqueous solution of polysorbate 20 and homogenized at 138 MPa at 80 °C. Particle size, thermal properties, and microstructure were evaluated by dynamic light scattering (DLS), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM) respectively. As the proportion of ergocalciferol in the SLN increased from 0% to 20%, the Z-average values of the particles gradually decreased (P≤ 0.05) from approximately 120 nm to approximately 65 nm. DSC analysis of freeze dried SLN samples showed gradual decrease in enthalpies of fusion and crystallization for stable β-subcell whereas for SLN dispersions, the enthalpy of fusion of unstable α-subcell crystal increased with increased ergocalciferol loading. The TEM images of the ergocalciferol loaded SLN samples showed the presence of spherical as well as rod-shaped nanoparticles. It was also observed that the turbidity of the SLN dispersions reduced noticeably with increased ergocalciferol loading. This finding could be useful in terms of fortification of clear juices with ergocalciferol. Solid lipid nanoparticles (SLNs) were used in this study to encapsulate vitamin D₂, a vitamin important for bone health. It was found that as the concentration of vitamin D₂ increased

  9. Selective determination of caffeine in foods with 3D-graphene based ultrasound-assisted magnetic solid phase extraction.

    PubMed

    Rahimi, Afshin; Zanjanchi, Mohammad Ali; Bakhtiari, Sadjad; Dehsaraei, Mohammad

    2018-10-01

    An efficient method was applied for extraction of caffeine in food samples. Three-dimensional graphene-Fe 3 O 4 (3D-G-Fe 3 O 4 ) nanoparticles was successfully synthesized and used as adsorbent in magnetic solid phase extraction (MSPE) step. The properties of synthesized adsorbent were characterized by fourier-transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. The influence of main parameters of extraction procedure such as ultrasound parameter, amount of nanoparticles, pH, salt concentration and desorption condition were investigated and optimized. Under the optimized experimental conditions, the figure of merit results showed excellent linear dynamic range (LDR) of 0.5-500 µg mL -1 , with determination coefficient (R 2 ) higher than 0.996 and limit of detection (LOD) of 0.1 µg mL -1 . Intra- and inter-day relative standard deviations (RSDs) were less than 5.9 and 7.1%, respectively. The method was successfully applied for determination of caffeine in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observedmore » phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.« less

  11. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  12. Evaluation of percutaneous absorption of the repellent diethyltoluamide and the sunscreen ethylhexyl p-methoxycinnamate-loaded solid lipid nanoparticles: an in-vitro study.

    PubMed

    Puglia, Carmelo; Bonina, Francesco; Castelli, Francesco; Micieli, Dorotea; Sarpietro, Maria Grazia

    2009-08-01

    Diethyltoluamide and ethylhexyl p-methoxycinnamate (OMC) are two active ingredients in insect repellent and sunscreen products, respectively. The concurrent application of these two substances often increases their systemic absorption, compromising the safety and efficiency of the cosmetic product. In this study, diethyltoluamide and OMC were incorporated into solid lipid nanoparticles, a colloidal drug delivery system, to reduce percutaneous absorption and avoid toxic effects and also maintain the efficacy of the two active compounds on the skin surface for a long duration. Solid lipid nanoparticles were prepared based on an ultrasonication technique and characterized by differential scanning calorimetry (DSC) analyses. In-vitro studies determined the percutaneous absorption of diethyltoluamide and OMC. DSC data carried out on unloaded and diethyltoluamide- and/or OMC-loaded solid lipid nanoparticles highlighted that diethyltoluamide and OMC modified the temperature and the enthalpy change associated to the calorimetric peak of solid lipid nanoparticles. The concurrent presence of the two compounds in the solid lipid nanoparticles caused a synergic effect, indicating that the lipid matrix of nanoparticles guaranteed a high encapsulation of both diethyltoluamide and OMC. Results from the in-vitro study demonstrated that the particles were able to reduce the skin permeation of the two cosmetic ingredients in comparison with an oil-in-water emulsion. This study has provided supplementary evidence as to the potential of lipid nanoparticles as carriers for topical administration of cosmetic active compounds.

  13. Formulation and evaluation of metoclopramide solid lipid nanoparticles for rectal suppository.

    PubMed

    Mohamed, Radwa A; Abass, Haidy A; Attia, Mohamed A; Heikal, Ola A

    2013-11-01

    The purpose of this study was to formulate and characterize metoclopramide solid lipid nanoparticles (MCP-SLNs) and incorporating it into suppository bases for treatment of nausea and vomiting, produced with chemotherapeutic agents, using one dose per day. MCP-SLNs was prepared using high shear homogenization (hot homogenization) technique using different surfactants (tween 80, poloxamer 407, poloxamer 188 and cremophore) in two different concentrations (2.5% and 5%) then solid lipid nanoparticle (SLN), whose release percentage above 50%, was incorporated into suppository for treatment of nausea and vomiting. The prepared SLN and suppositories were then evaluated and characterized. Formulation of poloxamer 407 with compritol and drug (F9) produced highest in-vitro % release (80%). Transmission electron microscopy showed that SLN had round and spherical shape in form of solid dispersion or drug-enriched core. Particle size analysis of SLN showed a size range of 24.99-396.8 nm. Negative zeta potential proves complete drug entrapment. In-vivo study of MCP-SLN suppositories produced the same %GE as the market metoclopramide (MCP) suppository (Primperan) with sustained release effect. MCP-SLN suppositories (formula F) can reverse decrease in %GE because of emesis with sustained release effect. So it succeeded to be an alternative to MCP suppositories with no multiple dosing. © 2013 Royal Pharmaceutical Society.

  14. Dodecylbenzene sulfonate-coated magnetite nanoparticles as a new adsorbent for solid phase extraction-spectrophotometric determination of ultra trace amounts of ammonium in water samples.

    PubMed

    Eskandari, Habibollah; Shariati, Mohammad Reza

    2011-10-17

    A new method was proposed for the determination of ammonium based on the preconcentration with dodecylbenzene sulfonate modified magnetite nanoparticles. Ammonium was oxidized to nitrite by hypobromite and then the nitrite produced was determined spectrophotometrically, using sulfabenzamide and N-(1-naphthyl) ethylenediamine after solid phase extraction. The azo dye produced was desorbed by an appropriate small volume of sodium hydroxide prior to the absorbance measurement. The linear calibration graphs were obtained in the concentration range of 0.03-6.00 ng mL(-1) ammonium. The relative standard deviation and recovery percents were 1.0 and 99.0, respectively, for 1.0 ng mL(-1) ammonium, and the limit of detection was 3.2 ng L(-1) ammonium. The interfering effects of a large number of diverse ions on the determination of ammonium were studied. The method was applied to the determination of ammonium in various types of water resources. The results revealed a high efficiency for the recommended ammonium determination method. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. A high performance quasi-solid-state supercapacitor based on CuMnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Arif, Muhammad; Duan, Guorong; Chen, Shenming; Liu, Xiaoheng

    2017-07-01

    Mixed metal or transition metal oxides hold an unveiled potential as one of the most promising energy storage material because of their excellent stability, reliable conductivity, and convenient use. In this work, CuMnO2 nanoparticles are successfully prepared by a facile hydrothermal process with the help of dispersing agent cetyltrimethylammonium bromide (CTAB). CuMnO2 nanoparticles possess a uniform quadrilateral shape, small size (approximately 25 × 25 nm-35 × 35 nm), excellent dispersity, and large specific surface specific (56.9 m2 g-1) with an interparticle mesoporous structure. All these characteristics can bring benefit for their application in supercapacitor. A quasi-solid-state symmetric supercapacitor device is assembled by using CuMnO2 nanoparticles as both positive electrode and negative electrode. The device exhibits good supercapacitive performance with a high specific capacitance (272 F g-1), a maximum power density of 7.56 kW kg-1 and a superior cycling stability of 18,000 continuous cycles, indicating an excellent potential to be used in energy storage device.

  16. Efficient neutron generation from solid-nanoparticle explosions driven by DPSSL-pumped high-repetition rate femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.

    2016-03-01

    We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.

  17. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension.

    PubMed

    Pandya, Nilima T; Jani, Parva; Vanza, Jigar; Tandel, Hemal

    2018-05-01

    The aim of the current investigation was to develop solid lipid nanoparticles of olmesartan medoxomil using hot homogenization method to improve its oral bioavailability. Central composite design was applied to optimize the formulation variables; lipid X1 (Glyceryl monostearate) and surfactant X2 (Poloxamer: Tween 80). The particle sizes were in the nanometer range and spherical shaped for all prepared solid lipid nanoparticles formulations and the zeta potential absolute values were high, predicting good long-term stability. In vitro study of olmesartan loaded solid lipid nanoparticle exhibited controlled release profile for at least 24 h. The rate and extent of drug diffusion was studied using dialysis sac, rat's stomach and intestine tissues; study demonstrated that drug release from the solid lipid nanoparticles was significantly higher than drug suspension. In vivo pharmacokinetic study of olmesartan loaded solid lipid nanoparticles revealed higher Cmax of 1610 ng/mL, higher AUC of 15492.50 ng/mL and increased relative bioavailability by almost 2.3 folds compared to marketed formulation. These results clearly indicate that olmesartan loaded solid lipid nanoparticles are shown to have enhanced bioavailability and effective therapeutic result and thus would be an excellent way to treat hypertension. Hence, these solid lipid nanoparticles could represent as a great potential for a possible alternative to conventional oral formulation in the treatment of hypertension. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Formulation and Evaluation of Solid Lipid Nanoparticles of Ramipril

    PubMed Central

    Ekambaram, P; Abdul, Hasan Sathali A

    2011-01-01

    Solid lipid nanoparticles are typically spherical with an average diameter between 1 and 1000 nm. It is an alternative carrier system to tradition colloidal carriers, such as, emulsions, liposomes, and polymeric micro and nanoparticles. Ramipril is an antihypertensive agent used in the treatment of hypertension. Its oral bioavailability is 28% and it is rapidly excreted through the renal route. This drug has many side effects such as, postural hypotension, hyperkalemia, and angioedema, when given as an immediate dosage form. To overcome the side effects and to increase the bioavailability of ramipril, solid lipid nanoparticles of ramipril are prepared by using lipids (glyceryl monostearate and glyceryl monooleate) with stabilizers (tween 80, poloxamer 188, and span 20). The prepared formulations have been evaluated for entrapment efficiency, drug content, in-vitro drug release, particle size analysis, scanning electron spectroscopy, Fourier transform-infrared studies, and stability. A formulation containing glyceryl monooleate, stabilized with span 20 as surfactant showed prolonged drug release, smaller particle size, and narrow particle size distribution, as compared to other formulations with different surfactants and lipids. PMID:21897661

  19. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin.

    PubMed

    Netto MPharm, Gladyston; Jose, Jobin

    2017-12-10

    Most of the sunscreen formulations mainly contain chemicals or synthetic molecules. Nowadays, researchers are mainly focussing on herbal formulations due to toxicity of the synthetic molecules. Silymarin is a natural flavonoids having excellent antioxidant properties. Solid lipid nanoparticles are novel drug carriers which improve the drug stability and tolerance effect and also enhance the permeation effect. This study aimed at the preparation of solid lipid nanoparticles containing silymarin that will be incorporated into a sunscreen cream and determine its sun protection factor. The solid lipid nanoparticles were prepared by micro-emulsion method; here, the glyceryl monostearate was used as lipid, and Tween 80 was used as an emulsifier. The solid lipid nanoparticles were evaluated for drug entrapment, particle size and morphology, zeta potential, and polydispersity index. The dispersion was formulated into sunscreen cream and evaluated for various parameters, such as extrudability, viscosity, spreadability, drug content, in vitro drug release, ex vivo permeation of drug, in vitro and in vivo sun protection factor determination, in vivo skin irritation test, and accelerated stability studies. The results suggested that as the concentration of emulsifier increased, the entrapment efficiency of silymarin increased. In vitro and in vivo sun protection factor determination showed that SPF of 13.80 and 14.1, respectively. Stability studies were performed under accelerated conditions, and it did not show any appreciable change in parameters. These results indicated that the sunscreen containing silymarin solid lipid nanoparticles exhibited better photoprotective action. © 2017 Wiley Periodicals, Inc.

  20. Application of Solid-State NMR Relaxometry for Characterization and Formulation Optimization of Grinding-Induced Drug Nanoparticle.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2016-03-07

    The formation mechanism of drug nanoparticles was investigated using solid-state nuclear magnetic resonance (NMR) techniques for the efficient discovery of an optimized nanoparticle formulation. The cogrinding of nifedipine (NIF) with polymers, including hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP), and sodium dodecyl sulfate (SDS) was performed to prepare the NIF nanoparticle formulations. Then, solid-state NMR relaxometry was used for the nanometer-order characterization of NIF in the polymer matrix. Solid-state NMR measurements revealed that the crystal size of NIF was reduced to several tens of nanometers with amorphization of NIF by cogrinding with HPMC and SDS for 100 min. Similarly, the size of the NIF crystal was reduced to less than 90 nm in the 40 min ground mixture of NIF/PVP/SDS. Furthermore, 100 min grinding of NIF/PVP/SDS induced amorphization of almost all the NIF crystals followed by nanosizing. The hydrogen bond between NIF and PVP led to the efficient amorphization of NIF in the NIF/PVP/SDS system compared with NIF/HPMC/SDS system. The efficient nanosizing of the NIF crystal in the solid state, revealed by the solid-state NMR relaxation time measurements, enabled the formation of large amounts of NIF nanoparticles in water followed by the polymer dissolution. In contrast, excess amorphization of the NIF crystals failed to efficiently prepare the NIF nanoparticles. The solid-state characterization of the crystalline NIF revealed good correlation with the NIF nanoparticles formation during aqueous dispersion. Furthermore, the solid-state NMR measurements including relaxometry successfully elucidated the nanometer-order dispersion state of NIF in polymer matrix, leading to the discovery of optimized conditions for the preparation of suitable drug nanoparticles.

  1. Scaling up feasibility of the production of solid lipid nanoparticles (SLN).

    PubMed

    Gohla, S H; Dingler, A

    2001-01-01

    Solid lipid nanoparticles (SLN/Lipopearls) are widely discussed as colloidal drug carrier system. In contrast to polymeric systems, such as polylactic copolyol capsules, these systems show up with a good biocompatibility, if applied parenterally. The solid lipid matrices can be comprised of fats or waxes and allow protection of incorporated active ingredients against chemical and physical degradation. The SLN can either be produced by "hot homogenisation" of melted lipids at elevated temperatures or a "cold homogenization" process. This paper deals with production technologies for SLN formulations, based on non-ethoxylated fat components for topical application and high pressure homogenization (APV Deutschland GmbH, D-Lübeck). Based on the chosen fat components, a novel and easy manufacturing and scaling up method was developed to maintain chemical and physical integrity of encapsulated active and carrier.

  2. Growth and analysis of gallium arsenide-gallium antimonide single and two-phase nanoparticles

    NASA Astrophysics Data System (ADS)

    Schamp, Crispin T.

    When evaluating the path of phase transformations in systems with nanoscopic dimensions one often relies on bulk phase diagrams for guidance because of the lack of phase diagrams that show the effect of particle size. The GaAs-GaSb pseudo-binary alloy is chosen for study to gain insight into the size dependence of solid-solubility in a two-phase system. To this end, a study is performed using independent laser ablation of high purity targets of GaAs and GaSb. The resultant samples are analyzed by transmission electron microscopy. Experimental results indicate that GaAs-GaSb nanoparticles have been formed with compositions that lie within the miscibility gap of bulk GaAs-GaSb. An unusual nanoparticle morpohology resembling the appearance of ice cream cones has been observed in single component experiments. These particles are composed of a spherical cap of Ga in contact with a crystalline cone of either GaAs or GaSb. The cones take the projected 2-D shape of a triangle or a faceted gem. The liquid Ga is found to consistently be of spherical shape and wets to the widest corners of the cone, suggesting an energy minimum exists at that wetting condition. To explore this observation a liquid sphere is modeled as being penetrated by a solid gem. The surface energies of the solid and liquid, and interfacial energy are summed as a function of penetration depth, with the sum showing a cusped minimum at the penetration depth corresponding to the waist of the gem. The angle of contact of the liquid wetting the cone is also calculated, and Young's contact angle is found to occur when the derivative of the total energy with respect to penetration depth is zero, which can be a maximum or a minimum depending on the geometrical details. The spill-over of the meniscus across the gem corners is found to be energetically favorable when the contact angle achieves the value of the equilibrium angle; otherwise the meniscus is pinned at the corners.

  3. Carbon coated magnetic nanoparticles as a novel magnetic solid phase extraction adsorbent for simultaneous extraction of methamphetamine and ephedrine from urine samples.

    PubMed

    Taghvimi, Arezou; Hamishehkar, Hamed

    2017-01-15

    This paper develops a highly selective, specific and efficient method for simultaneous determination of ephedrine and methamphetamine by a new carbon coated magnetic nanoparticles (C/MNPs) as a magnetic solid phase extraction (MSPE) adsorbent in biological urine medium. The characterization of synthesized magnetic nano adsorbent was completely carried out by various characterization techniques like Fourier transform infrared (FT-IR) spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Nine important parameters influencing extraction efficiency including amount of adsorbent, amounts of sample volume, pH, type and amount of extraction organic solvent, time of extraction and desorption, agitation rate and ionic strength of extraction medium, were studied and optimized. Under optimized extraction conditions, a good linearity was observed in the concentration range of 100-2000ng/mL for ephedrine and 100-2500ng/mL for methamphetamine. Analysis of positive urine samples was carried out by proposed method with the recovery of 98.71 and 97.87% for ephedrine and methamphetamine, respectively. The results indicated that carbon coated magnetic nanoparticles could be applied in clinical and forensic laboratories for simultaneous determination of abused drugs in urine media. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Organic Phase Change Nanoparticles for in-Product Labeling of Agrochemicals.

    PubMed

    Wang, Miao; Duong, Binh; Su, Ming

    2015-10-28

    There is an urgent need to develop in-product covert barcodes for anti-counterfeiting of agrochemicals. This paper reports a new organic nanoparticle-based in-product barcode system, in which a panel of organic phase change nanoparticles is added as a barcode into in a variety of chemicals (herein agrochemicals). The barcode is readout by detecting melting peaks of organic nanoparticles using differential scanning calorimetry. This method has high labeling capacity due to small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The in-product barcode can be effectively used to protect agrochemical products from being counterfeited due to its large coding capacity, technical readiness, covertness, and robustness.

  5. Structure and properties of solid polymer electrolyte based on chitosan and ZrO{sub 2} nanoparticle for lithium ion battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudaryanto,, E-mail: dryanto@batan.go.id; Yulianti, Evi, E-mail: yulianti@batan.go.id; Patimatuzzohrah, E-mail: pzohrah@yahoo.com

    In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO{sub 2}) nanoparticle and LiClO{sub 4} as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO{sub 2} and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ionmore » transference number measurement. XRD profiles show that the addition of ZrO{sub 2} and LiClO{sub 4} disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10{sup −4} S cm{sup −1}) was obtained when 4 wt% of ZrO{sub 2} nanoparticle and 40 wt% of LiClO{sub 4} salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.« less

  6. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    PubMed Central

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-01-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique. PMID:28266566

  7. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-03-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  8. Chitosan-Coated Cinnamon/Oregano-Loaded Solid Lipid Nanoparticles to Augment 5-Fluorouracil Cytotoxicity for Colorectal Cancer: Extract Standardization, Nanoparticle Optimization, and Cytotoxicity Evaluation.

    PubMed

    Kamel, Kamel M; Khalil, Islam A; Rateb, Mostafa E; Elgendy, Hosieny; Elhawary, Seham

    2017-09-13

    This study aimed to coat lipid-based nanocarriers with chitosan to encapsulate nutraceuticals, minimize opsonization, and facilitate passive-targeting. Phase one was concerned with standardization according to the World Health Organization. Qualitative analysis using liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS) investigated the active constituents, especially reported cytotoxic agents. Cinnamaldehyde and rosmarinic acid were selected to be quantified using high-performance liquid chromatography. Phase two was aimed to encapsulate both extracts in solid lipid nanoparticles (core) and chitosan (shell) to gain the advantages of both materials properties. The developed experimental model suggested an optimum formulation with 2% lipid, 2.3% surfactant, and 0.4% chitosan to achieve a particle size of 254.77 nm, polydispersity index of 0.28, zeta potential of +15.26, and entrapment efficiency percentage of 77.3% and 69.1% for cinnamon and oregano, respectively. Phase three was focused on the evaluation of cytotoxic activity unencapsulated/encapsulated cinnamon and oregano extracts with/without 5-fluorouracil on HCT-116 cells. This study confirmed the success of the suggested combination with 5-fluorouracil for treating human colon carcinoma with a low dose leading to decreasing side effects and allowing uninterrupted therapy.

  9. Oral insulin delivery by means of solid lipid nanoparticles

    PubMed Central

    Sarmento, Bruno; Martins, Susana; Ferreira, Domingos; Souto, Eliana B

    2007-01-01

    The aim of this work was to produce and characterize cetyl palmitate-based solid lipid nanoparticles (SLN) containing insulin, and to evaluate the potential of these colloidal carriers for oral administration. SLN were prepared by a modified solvent emulsification-evaporation method based on a w/o/w double emulsion. The particle size, zeta potential and association efficiency of unloaded and insulin-loaded SLN were determined and were found to be around 350 nm, negatively charged and the insulin association efficiency was over 43%. After oral administration of insulin-loaded SLN to diabetic rats, a considerable hypoglycemic effect was observed during 24 hours. These results demonstrated that SLN promote the oral absorption of insulin. PMID:18203440

  10. Pressure induced solid-solid reconstructive phase transition in LiGa O2 dominated by elastic strain

    NASA Astrophysics Data System (ADS)

    Hu, Qiwei; Yan, Xiaozhi; Lei, Li; Wang, Qiming; Feng, Leihao; Qi, Lei; Zhang, Leilei; Peng, Fang; Ohfuji, Hiroaki; He, Duanwei

    2018-01-01

    Pressure induced solid-solid reconstructive phase transitions for graphite-diamond, and wurtzite-rocksalt in GaN and AlN occur at significantly higher pressure than expected from equilibrium coexistence and their transition paths are always inconsistent with each other. These indicate that the underlying nucleation and growth mechanism in the solid-solid reconstructive phase transitions are poorly understood. Here, we propose an elastic-strain dominated mechanism in a reconstructive phase transition, β -LiGa O2 to γ -LiGa O2 , based on in situ high-pressure angle dispersive x-ray diffraction and single-crystal Raman scattering. This mechanism suggests that the pressure induced solid-solid reconstructive phase transition is neither purely diffusionless nor purely diffusive, as conventionally assumed, but a combination. The large elastic strains are accumulated, with the coherent nucleation, in the early stage of the transition. The elastic strains along the 〈100 〉 and 〈001 〉 directions are too large to be relaxed by the shear stress, so an intermediate structure emerges reducing the elastic strains and making the transition energetically favorable. At higher pressures, when the elastic strains become small enough to be relaxed, the phase transition to γ -LiGa O2 begins and the coherent nucleation is substituted with a semicoherent one with Li and Ga atoms disordered.

  11. New Dioxaborolane Chemistry Enables [18F]-Positron-Emitting, Fluorescent [18F]-Multimodality Biomolecule Generation from the Solid Phase

    PubMed Central

    Crisp, Jessica L.; Vera, David R.; Tsien, Roger Y.; Ting, Richard

    2016-01-01

    New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [18F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [18F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases. PMID:27064381

  12. Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids

    NASA Astrophysics Data System (ADS)

    Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk

    2018-03-01

    The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.

  13. Dynamics of solid nanoparticles near a liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Daher, Ali; Ammar, Amine; Hijazi, Abbas

    2018-05-01

    The liquid - liquid interface can be used as a suitable medium for generating some nanostructured films of metals, or inorganic materials such as semi conducting metals. This process can be controlled well if we study the dynamics of nanoparticles (NPs) at the liquid-liquid interface which is a new field of study, and is not understood well yet. The dynamics of NPs at liquid-liquid interfaces is investigated by solving the fluid-particle and particle-particle interactions. Our work is based on the Molecular Dynamics (MD) simulation in addition to Phase Field (PF) method. We modeled the liquid-liquid interface using the diffuse interface model, where the interface is considered to have a characteristic thickness. We have shown that the concentration gradient of one fluid in the other gives rise to a hydrodynamic force that drives the NPs to agglomerate at the interface. These obtained results may introduce new applications where certain interfaces can be considered to be suitable mediums for the synthesis of nanostructured materials. In addition, some liquid interfaces can play the role of effective filters for different species of biological NPs and solid state waste NPs, which will be very important in many industrial and biomedical domains.

  14. Rheological and morphological characterizations on physical stability of gamma-oryzanol-loaded solid lipid nanoparticles (SLNs).

    PubMed

    Seetapan, Nispa; Bejrapha, Piyawan; Srinuanchai, Wanwisa; Ruktanonchai, Uracha Rungsardthong

    2010-01-01

    In the present study, gamma-oryzanol was incorporated into glycerol behenate (Compritol 888 ATO) nanoparticles (SLNs) at 5 and 10% (w/w) of lipid phase. Increasing lipid phase concentration resulted in increased consistency and particle diameter of SLNs. Upon storage over 60 days at 4, 25 and 40 degrees C, the instability was observed by rheological analysis for all samples due to the formation of gelation. Rheological measurement revealed the increase in storage modulus and critical stress during storage at all temperatures. However, at 40 degrees C, the pronounced instability was observed from the highest increase in storage modulus and a formation of rod-like network structure from scanning electron micrographs. An increase in crystallinity, determined by differential scanning calorimetry, was also found during storage at all temperatures, confirming the instability of SLNs. Particle diameters and zeta potentials of both concentrations at all storage conditions failed to explain the observed instability. These investigations may help to develop formulations of solid lipid nanoparticles, which are optimized with respect to the desired rheological properties.

  15. Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.

    PubMed

    Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua

    2015-03-28

    Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.

  16. Bio-dispersive liquid liquid microextraction based on nano rhaminolipid aggregates combined with magnetic solid phase extraction using Fe3O4@PPy magnetic nanoparticles for the determination of methamphetamine in human urine.

    PubMed

    Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami

    2017-09-15

    In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ionic-liquid-based dispersive liquid-liquid microextraction combined with magnetic solid-phase extraction for the determination of aflatoxins B1 , B2 , G1 , and G2 in animal feeds by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling

    2016-10-01

    A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Palladium and platinum based solid and hollow nanoparticles: An ab-initio study of structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Yildizhan, Gulsum; Caliskan, Serkan; Ozturk, Ramazan

    2018-04-01

    Nanoparticles composed of palladium and platinum are particularly interesting for catalytic purposes, for instance, selective hydrogenation and alcohol oxidation. The reactivity and selectivity of nanostructures are mostly based on the size and shape of the nanocrystals in catalytic reactions. In this work, we studied the structural stabilities of Pd and Pt based nanocubes and nanocages and adsorption strength of chemisorbed species on these nanostructures to investigate their structure dependent catalytic activities. Solid cubic and hollow cage like nanostructures of different sizes were designed with Pd and Pt atoms. The volume of the crystal cavity in nanocage structures was tuned by removing of atoms from solid cubic structure. The effect of size and shape on the formation energies and HOMO-LUMO energy gap of nanostructures were elucidated and correlated to structural stabilities, hardness-softness, electronegativity and electrophilicity index. The relationship between size and chemical reactivity clearly showed that increasing the number of atoms participating in a catalyst enhances the activity. For further understanding of the catalytic activity we employed 4-nitro thiophenol, as an S-donor representative molecule, to evaluate the adsorption characteristics of the nanostructures.

  19. Multiplexed Colorimetric Solid-Phase Extraction

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  20. Spectral evolution of distributed feedback laser of gold nanoparticles doped solid-state dye laser medium

    NASA Astrophysics Data System (ADS)

    An, N. T. M.; Lien, N. T. H.; Hoang, N. D.; Nghia, N. T.; Hoa, D. Q.

    2017-10-01

    Characteristics of suppressed relaxation oscillation of a distributed feedback dye laser (DFDL) based on the energy transfer process in a mixture of spherical gold nanoparticles-doped solid-state polymethylmetacrylate dissolved 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye was theoretically and experimentally studied. Single pulse generation regime of the DFDL can be obtained with a suitable gold nanoparticle concentration and ratio of pump power over lasing threshold. Numerical analysis and experimental approach showed that in this regime, the first-pulse laser pulsewidth is rather unchanged while varying the gold nanoparticles concentration in the range of 2.0 × 109-2.0 × 1010 par cm-3. The enhancement of first pulse and the suppression of the secondary pulses by bi-direction energy transfer of spherical gold nanoparticles were experimentally observed.

  1. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea.

    PubMed

    Attama, A A; Reichl, S; Müller-Goymann, C C

    2009-08-01

    The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.

  2. Dewetting-mediated pattern formation in nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Stannard, Andrew

    2011-03-01

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  3. Dewetting-mediated pattern formation in nanoparticle assemblies.

    PubMed

    Stannard, Andrew

    2011-03-02

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  4. Magnetic nanoparticles-nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples.

    PubMed

    Reyes-Gallardo, Emilia M; Lucena, R; Cárdenas, S; Valcárcel, M

    2014-06-06

    In this article, the easy synthesis of magnetic nanoparticles-nylon 6 composite is presented, characterized and applied in the microextraction field. The one-step synthesis of the composite is performed by a solvent changeover playing with the different solubility of the polymeric network in formic acid and water. The new material has been characterized by different techniques including infrared spectroscopy, transmission and scanning microscopy. The extraction performance of the composite under a dispersive micro solid phase extraction format has been evaluated by determining four polycyclic aromatic hydrocarbons (benzo[b]fluoranthene, fluoranthene, indeno[1,2,3-cd]pyrene and phenanthrene) in water using ultra performance liquid chromatography (UPLC) combined with photo diode array detection. The developed methodology allows the determination of the analytes with limits of detection in the range from 0.05 μg/L (benzo[b]fluoranthene) to 0.58 μg/L (phenanthrene). The repeatability of the method was better than 6.9% at the limit of quantification level. The relative recoveries varied in the interval 80-111%. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles

    PubMed Central

    Zhang, Hong; Zhang, Fu-Ming; Yan, Shi-Jun

    2012-01-01

    Sorafenib solid lipid nanoparticles (S-SLN) were prepared by emulsion evaporation–solidification at low temperature. Morphology was examined by transmission electron microscope. Particle size and zeta potential were determined by laser granularity equipment. Encapsulation efficiency (EE) was detected by Sephadex gel chromatography and high-performance liquid chromatography (HPLC). The in vitro release profile of S-SLN was studied with dialysis technology. The lyophilized injection of S-SLN was prepared by freeze drying and analyzed by differential scanning calorimetry. The plasma concentration of sorafenib in blood was determined by HPLC. The solid lipid nanoparticles assumed a spherical shape with an even distribution of diameter and particle size 108.23 ± 7.01 nm (n = 3). The polydispersity index, zeta potential, and EE were determined to be 0.25 ± 0.02, −16.37 ± 0.65 mV, and 93.49% ± 1.87%, respectively (n = 3). The in vitro release accorded with the Weibull distribution model. An equal volume of 15% (w/v) mannitol performed better as the protective agent for a lyophilized injection of S-SLN with a new material phase formation. The pharmacokinetic processes of sorafenib solution and lyophilized injection of S-SLN in vivo were in accordance with the two-compartment and one-compartment models, respectively. S-SLN nanoparticles are thus considered a promising drug-delivery system. PMID:22787390

  6. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid

    NASA Astrophysics Data System (ADS)

    Akbari, Omid Ali; Toghraie, Davood; Karimipour, Arash; Marzban, Ali; Ahmadi, Gholam Reza

    2017-02-01

    In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.

  7. Composite proton exchange membrane based on sulfonated organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pitia, Emmanuel Sokiri

    exchange was characterized with solid state 13C NMR spectroscopy, FTIR spectroscopy, TGA, elemental analysis, and titration. The results indicate the extent of ion exchange was ~ 70-80%. Due to the mass of QAA, the remaining QAA reduced the IEC of the nanoparticles to < 2.2 meq/g. In fabricating the composite membranes, the nanoparticles and polystyrene were solution cast in a continuous process with and without electric field. The electric field had no effect on the water uptake. Based on the morphology and the proton conductivity, it appears orientation of the nanoparticles did not occur. We hypothesize the lack of orientation was caused by swelling of the particles with the solvent. The solvent inside the particle minimized polarizability, and thus prevented orientation. The composite membranes were limited to low proton conductivity of ~ 10-5 S/cm due to low IEC of the nanoparticles, but good dispersion of the nanoparticles was achieved. Future work should look into eliminating the QAA during synthesis and developing a rigid core for the nanoparticles.

  8. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format

    NASA Astrophysics Data System (ADS)

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey

    2016-11-01

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

  9. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format.

    PubMed

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J; Piletsky, Sergey

    2016-11-24

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays.

  10. A comparison of the performance of molecularly imprinted polymer nanoparticles for small molecule targets and antibodies in the ELISA format

    PubMed Central

    Smolinska-Kempisty, Katarzyna; Guerreiro, Antonio; Canfarotta, Francesco; Cáceres, César; Whitcombe, Michael J.; Piletsky, Sergey

    2016-01-01

    Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition. The ease of preparation, high affinity of solid-phase synthesised imprinted nanoparticles and the lack of requirement for cold chain logistics make them an attractive alternative to traditional antibodies for use in immunoassays. PMID:27883023

  11. Solid-solid phase change thermal storage application to space-suit battery pack

    NASA Astrophysics Data System (ADS)

    Son, Chang H.; Morehouse, Jeffrey H.

    1989-01-01

    High cell temperatures are seen as the primary safety problem in the Li-BCX space battery. The exothermic heat from the chemical reactions could raise the temperature of the lithium electrode above the melting temperature. Also, high temperature causes the cell efficiency to decrease. Solid-solid phase-change materials were used as a thermal storage medium to lower this battery cell temperature by utilizing their phase-change (latent heat storage) characteristics. Solid-solid phase-change materials focused on in this study are neopentyl glycol and pentaglycerine. Because of their favorable phase-change characteristics, these materials appear appropriate for space-suit battery pack use. The results of testing various materials are reported as thermophysical property values, and the space-suit battery operating temperature is discussed in terms of these property results.

  12. Density-functional theory for fluid-solid and solid-solid phase transitions.

    PubMed

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  13. Alpha-lipoic acid-stearylamine conjugate-based solid lipid nanoparticles for tamoxifen delivery: formulation, optimization, in-vivo pharmacokinetic and hepatotoxicity study.

    PubMed

    Dhaundiyal, Ankit; Jena, Sunil K; Samal, Sanjaya K; Sonvane, Bhavin; Chand, Mahesh; Sangamwar, Abhay T

    2016-12-01

    This study was designed to demonstrate the potential of novel α-lipoic acid-stearylamine (ALA-SA) conjugate-based solid lipid nanoparticles in modulating the pharmacokinetics and hepatotoxicity of tamoxifen (TMX). α-lipoic acid-stearylamine bioconjugate was synthesized via carbodiimide chemistry and used as a lipid moiety for the generation of TMX-loaded solid lipid nanoparticles (TMX-SLNs). TMX-SLNs were prepared by solvent emulsification-diffusion method and optimized for maximum drug loading using rotatable central composite design. The optimized TMX-SLNs were stabilized using 10% w/w trehalose as cryoprotectant. In addition, pharmacokinetics and hepatotoxicity of freeze-dried TMX-SLNs were also evaluated in Sprague Dawley rats. Initial characterization with transmission electron microscopy revealed spherical morphology with smooth surface having an average particle size of 261.08 ± 2.13 nm. The observed entrapment efficiency was 40.73 ± 2.83%. In-vitro release study showed TMX release was slow and pH dependent. Pharmacokinetic study revealed a 1.59-fold increase in relative bioavailability as compared to TMX suspension. A decrease in hepatotoxicity of TMX is evidenced by the histopathological evaluation of liver tissues. α-lipoic acid-stearylamine conjugate-based SLNs have a great potential in enhancing the oral bioavailability of poorly soluble drugs like TMX. Moreover, this ALA-SA nanoparticulate system could be of significant value in long-term anticancer therapy with least side effects. © 2016 Royal Pharmaceutical Society.

  14. Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Mehan, S.; Aswal, V. K.

    2016-05-23

    Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters.more » DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.« less

  15. Two phase microstructure for Ag-Ni nanowires

    NASA Astrophysics Data System (ADS)

    Srivastava, Chandan; Rai, Rajesh Kumar

    2013-03-01

    In the present study, electrodeposition technique was used to produce Ag-Ni nanowires. Ag-Ni system shows extremely high bulk immiscibility. Nanowire morphology was achieved by employing an anodic alumina membrane having pores of ˜200 nm diameter. Microstructure of as-deposited wire was composed of nano-sized solid solution structured Ag-Ni nanoparticles embedded in a matrix of pure Ag phase. It is proposed that the two phase microstructure resulted from an initial formation of solid solution structured nanoparticles in the alumina template pore followed by nucleation of pure Ag phase over the particles which eventually grew to form the matrix phase.

  16. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran

    Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

  17. Phase behavior and orientational ordering in block copolymers doped with anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Osipov, M. A.; Gorkunov, M. V.; Berezkin, A. V.; Kudryavtsev, Y. V.

    2018-04-01

    A molecular field theory and coarse-grained computer simulations with dissipative particle dynamics have been used to study the spontaneous orientational ordering of anisotropic nanoparticles in the lamellar and hexagonal phases of diblock copolymers and the effect of nanoparticles on the phase behavior of these systems. Both the molecular theory and computer simulations indicate that strongly anisotropic nanoparticles are ordered orientationally mainly in the boundary region between the domains and the nematic order parameter possesses opposite signs in adjacent domains. The orientational order is induced by the boundary and by the interaction between nanoparticles and the monomer units in different domains. In simulations, sufficiently long and strongly selective nanoparticles are ordered also inside the domains. The nematic order parameter and local concentration profiles of nanoparticles have been calculated numerically using the model of a nanoparticle with two interaction centers and also determined using the results of computer simulations. A number of phase diagrams have been obtained which illustrate the effect of nanoparticle selectivity and molar fraction of the stability ranges of various phases. Different morphologies have been identified by analyzing the static structure factor and a phase diagram has been constructed in coordinates' nanoparticle concentration-copolymer composition. Orientational ordering of even a small fraction of nanoparticles may result in a significant increase of the dielectric anisotropy of a polymer nanocomposite, which is important for various applications.

  18. Irreversible phase transitions due to laser-based T-jump heating of precursor Eu:ZrO{sub 2}/Tb:Y{sub 2}O{sub 3} core/shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunawidjaja, Ray; Diez-y-Riega, Helena; Eilers, Hergen, E-mail: eilers@wsu.edu

    2015-09-15

    Amorphous precursors of Eu-doped-ZrO{sub 2}/Tb-doped-Y{sub 2}O{sub 3} (p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3}) core/shell nanoparticles are rapidly heated to temperatures between 200 °C and 950 °C for periods between 2 s and 60 s using a CO{sub 2} laser. During this heating process the nanoparticles undergo irreversible phase changes. The fluorescence spectra due to Eu{sup 3+} dopants in the core and Tb{sup 3+} dopants in the shell are used to identify distinct phases within the material and to generate time/temperature phase diagrams. Such phase diagrams can potentially help to determine unknown time/temperature histories in thermosensor applications. - Graphical abstract: A CO{sub 2}more » laser is used for rapid heating of p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3} core/shell nanoparticles. Optical spectra are used to identify distinct phases and to determine its thermal history. - Highlights: • Synthesized oxide precursors of lanthanide doped core/shell nanoparticles. • Heated core/shell nanoparticles via laser-based T-jump technique. • Observed time- and temperature-dependent irreversible phase transition.« less

  19. Nanoparticle detection using dual-phase interferometry

    PubMed Central

    Deutsch, Bradley; Beams, Ryan; Novotny, Lukas

    2013-01-01

    Detection and identification of nanoparticles is of growing interest in atmospheric monitoring, medicine and semiconductor manufacturing. While elastic light scattering with interferometric detection provides good sensitivity to single particles, active optical components prevent scalability realistic sizes for deployment in the field or clinic. Here we report on a simple phase-sensitive nanoparticle detection scheme with no active optical elements. Two measurements are taken simultaneously, allowing amplitude and phase to be decoupled. We demonstrate detection of 25 nm Au particles in liquid in Δt ~ 1 ms with a signal-to-noise ratio of 37. Such performance makes it possible to detect nanoscale contaminants or larger proteins in real time without the need of artificial labeling. PMID:20830181

  20. Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide.

    PubMed

    Yang, Junsi; Ciftci, Ozan Nazim

    2016-09-01

    The main objective of this study was to overcome the issues related to the volatility and strong smell that limit the efficient utilization of essential oils as "natural" antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were successfully formed using a novel "green" method based on atomization of CO 2 -expanded lipid mixture. The highest essential oil loading efficiency (47.5%) was achieved at 50% initial essential oil concentration at 200bar expansion pressure and 50μm nozzle diameter, whereas there was no significant difference between the loading efficiencies (35%-39%) at 5%, 7%, 10%, and 20% initial essential oil concentrations (p>0.05). Particles generated at all initial essential oil concentrations were spherical but increasing the initial essential oil concentration to 20% and 50% generated a less smooth particle surface. After 4weeks of storage, 61.2%, 42.5%, 0.2%, and 2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, and 50% initial essential oil concentrations, respectively. This innovative simple and clean process is able to form spherical hollow micro- and nanoparticles loaded with essential oil that can be used as food grade antimicrobials. These novel hollow solid lipid micro- and nanoparticles are alternatives to the solid lipid nanoparticles, and overcome the issues associated with the solid lipid nanoparticles. The dry free-flowing products make the handling and storage more convenient, and the simple and clean process makes the scaling up more feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology.

    PubMed

    Liu, Dongfei; Chen, Li; Jiang, Sunmin; Zhu, Shuning; Qian, Yong; Wang, Fengzhen; Li, Rui; Xu, Qunwei

    2014-03-01

    To successfully prepare the diclofenac sodium (DS)-loaded solid lipid nanoparticles (SLNs), phospholipid complexes (PCs) technology was applied here to improve the liposolubility of DS. Solid lipid nanoparticles (SLNs) loaded with phospholipid complexes (PCs) were prepared by the modified emulsion/solvent evaporation method. DS could be solubilized effectively in the organic solvents with the existence of phospholipid and apparent partition coefficient of DS in PCs increased significantly. X-ray diffraction analysis suggested that DS in PCs was either molecularly dispersed or in an amorphous form. However, no significant difference was observed between the Fourier transform infrared spectroscopy (FT-IR) spectra of physical mixture and that of PCs. Particles with small sizes, narrow polydispersity indexes and high entrapment efficiencies could be obtained with the addition of PCs. Furthermore, according to the transmission electron microscopy, a core-shell structure was likely to be formed. The presence of PCs caused the change of zeta potential and retarded the drug release of SLNs, which indicated that phospholipid formed multilayers around the solid lipid core of SLNs. Both FT-IR and differential scanning calorimetry analysis also illustrated that some weak interactions between DS and lipid materials might take place during the preparation of SLNs. In conclusion, the model hydrophilic drug-DS can be formulated into the SLNs with the help of PCs.

  2. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics

    PubMed Central

    Fatouh, Ahmed M; Elshafeey, Ahmed H; Abdelbary, Ahmed

    2017-01-01

    Purpose Agomelatine is a novel antidepressant drug suffering from an extensive first-pass metabolism leading to a diminished absolute bioavailability. The aim of the study is: first to enhance its absolute bioavailability, and second to increase its brain delivery. Methods To achieve these aims, the nasal route was adopted to exploit first its avoidance of the hepatic first-pass metabolism to increase the absolute bioavailability, and second the direct nose-to-brain pathway to enhance the brain drug delivery. Solid lipid nanoparticles were selected as a drug delivery system to enhance agomelatine permeability across the blood–brain barrier and therefore its brain delivery. Results The optimum solid lipid nanoparticles have a particle size of 167.70 nm ±0.42, zeta potential of −17.90 mV ±2.70, polydispersity index of 0.12±0.10, entrapment efficiency % of 91.25%±1.70%, the percentage released after 1 h of 35.40%±1.13% and the percentage released after 8 h of 80.87%±5.16%. The pharmacokinetic study of the optimized solid lipid nanoparticles revealed a significant increase in each of the plasma peak concentration, the AUC(0–360 min) and the absolute bioavailability compared to that of the oral suspension of Valdoxan® with the values of 759.00 ng/mL, 7,805.69 ng⋅min/mL and 44.44%, respectively. The optimized solid lipid nanoparticles gave a drug-targeting efficiency of 190.02, which revealed more successful brain targeting by the intranasal route compared with the intravenous route. The optimized solid lipid nanoparticles had a direct transport percentage of 47.37, which indicates a significant contribution of the direct nose-to-brain pathway in the brain drug delivery. Conclusion The intranasal administration of agomelatine solid lipid nanoparticles has effectively enhanced both the absolute bioavailability and the brain delivery of agomelatine. PMID:28684900

  3. A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.

    2016-07-12

    Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less

  4. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  5. Combinatorial Solid-Phase Synthesis of Aromatic Oligoamides: A Research-Based Laboratory Module for Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Fuller, Amelia A.

    2016-01-01

    A five-week, research-based experiment suitable for second-semester introductory organic laboratory students is described. Each student designs, prepares, and analyzes a combinatorial array of six aromatic oligoamides. Molecules are prepared on solid phase via a six-step synthetic sequence, and purities and identities are determined by analysis of…

  6. Development of terbinafine solid lipid nanoparticles as a topical delivery system

    PubMed Central

    Chen, Ying-Chen; Liu, Der-Zen; Liu, Jun-Jen; Chang, Tsung-Wei; Ho, Hsiu-O; Sheu, Ming-Thau

    2012-01-01

    To resolve problems of long treatment durations and frequent administration of the antifungal agent terbinafine (TB), solid lipid nanoparticles (SLNs) with the ability to load lipophilic drugs and nanosize were developed. The SLNs were manufactured by a microemulsion technique in which glyceryl monostearate (GMS), glyceryl behenate (Compritol® 888; Gattefossé), and glyceryl palmitostearate (Precirol® ATO 5; Gattefossé) were used as the solid lipid phases, Tween® and Cremophor® series as the surfactants, and propylene glycol as the cosurfactant to construct ternary phase diagrams. The skin of nude mice was used as a barrier membrane, and penetration levels of TB of the designed formulations and a commercial product, Lamisil® Once™ (Novartis Pharmaceuticals), in the stratum corneum (SC), viable epidermis, and dermis were measured; particle sizes were determined as an indicator of stability. The optimal SLN system contained a <5% lipid phase and >50% water phase. The addition of ethanol or etchants had no significant effect on enhancing the amount of TB that penetrated the skin layers, but it was enhanced by increasing the percentage of the lipid phase. Furthermore, the combination of GMS and Compritol® 888 was able to increase the stable amount of TB that penetrated all skin layers. For the ACP1-GM1 (4% lipid phase; Compritol® 888: GMS of 1:1) formulation, the amount of TB that penetrated the SC was similar to that of Lamisil® Once™, whereas the amount of TB of the dermis was higher than that of Lamisil® Once™ at 12 hours, and it was almost the same as that of Lamisil® Once™ at 24 hours. It was concluded that the application of ACP1-GM1 for 12 hours might have an efficacy comparable to that of Lamisil® Once™ for 24 hours, which would resolve the practical problem of the longer administration period that is necessary for Lamisil® Once™. PMID:22923986

  7. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition.

    PubMed

    Nasseri, Mahboobeh; Golmohammadzadeh, Shiva; Arouiee, Hossein; Jaafari, Mahmoud Reza; Neamati, Hossein

    2016-11-01

    The aim of the present study was to prepare, characterize, and evaluate solid lipid nanoparticles (SLNs) containing Zataria multiflora essential oil (ZEO). In this study, Z. multiflora essential oil-loaded solid lipid nanoparticles (ZE-SLNs) were prepared to improve its efficiency in controlling some fungal pathogens. SLNs containing Z. multiflora essential oil were prepared by high shear homogenization and ultra sound technique. ZEO-SLNs contained 0.03% ZEO in 5% of lipid phase (Glyceryl monostearate-GMS and Precirol® ATO 5). Tween 80 and Poloxamer 188 (2.5% w/v) were used as surfactant in the aqueous phase. The antifungal efficacy of ZE-SLNs and ZEO was compared under in vitro conditions. The particle size of ZE-SLNs was around 255.5±3 nm with PDI of 0.369±0.05 and zeta potential was about -37.8±0.8 mV. Encapsulation efficacy of ZE-SLNs in crystalline form was 84±0.92%. The results showed that the ZEO and ZE-SLNs had 54 and 79% inhibition on the growth of fungal pathogens, respectively. The minimum inhibitory concentration (MIC) under in vitro conditions for the ZEO on the fungal pathogens of Aspergillus ochraceus, Aspergillus niger, Aspergillus flavus, Alternaria solani, Rhizoctonia solani, and Rhizopus stolonifer was 300, 200, 300, 200, 200 and 200 ppm, respectively, for ZE-SLNs, it was 200, 200, 200, 100, 50 and 50 ppm. The antifungal efficacy of ZE-SLNs was significantly more than ZEO. Our results showed that the SLNs were suitable carriers for Z. multiflora essential oil in controlling the fungal pathogens and merits further investigation.

  8. Solid-Solid Phase Transition Kinetics of FOX-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A K; Weese, R K; Wang, R

    Since it was developed in the late 1990s, 1,1-diamino-2,2-dinitroethene (FOX-7), with lower sensitivity and comparable performance to RDX, has received increasing interest. This paper will present our results for the phase changes of FOX-7 using DSC and HFC (Heat Flow Calorimetry). DSC thermal curves recorded at linear heating rates of 0.10, 0.35 and 1.0 C min{sup -1} show two endothermic peaks and two exothermic peaks. The two endothermic peaks represent solid-solid phase transitions, which have been observed in the literature at 114 C ({beta}-{gamma}) and 159 C ({gamma}-{delta}) by both DSC and XPD (X-ray powder diffraction) measurements. The first transitionmore » shifts from 114.5 to 115.8 C as the heating rate increases from 0.10 to 1.0 C min{sup -1}, while the second transition shifts from 158.5 to 160.4 C. Cyclical heating experiments show the endotherms and exotherms for a first heating through the {gamma} phase to the {delta} phase, a cooling and reversion to the {alpha} or {beta} phase, and a second heating to the {gamma} and {delta} phases. The data are interpreted using kinetic models with thermodynamic constraints.« less

  9. Immobilization of recombinant vault nanoparticles on solid substrates.

    PubMed

    Xia, Yun; Ramgopal, Yamini; Li, Hai; Shang, Lei; Srinivas, Parisa; Kickhoefer, Valerie A; Rome, Leonard H; Preiser, Peter R; Boey, Freddy; Zhang, Hua; Venkatraman, Subbu S

    2010-03-23

    Native vaults are nanoscale particles found abundantly in the cytoplasm of most eukaryotic cells. They have a capsule-like structure with a thin shell surrounding a "hollow" interior compartment. Recombinant vault particles were found to self-assemble following expression of the major vault protein (MVP) in a baculovirus expression system, and these particles are virtually identical to native vaults. Such particles have been recently studied as potential delivery vehicles. In this study, we focus on immobilization of vault particles on a solid substrate, such as glass, as a first step to study their interactions with cells. To this end, we first engineered the recombinant vaults by fusing two different tags to the C-terminus of MVP, a 3 amino acid RGD peptide and a 12 amino acid RGD-strep-tag peptide. We have demonstrated two strategies for immobilizing vaults on solid substrates. The barrel-and-cap structure of vault particles was observed for the first time, by atomic force microscopy (AFM), in a dry condition. This work proved the feasibility of immobilizing vault nanoparticles on a material surface, and the possibility of using vault nanoparticles as localized and sustainable drug carriers as well as a biocompatible surface moiety.

  10. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water.

    PubMed

    Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey

    We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, "ready for use" MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours.

  11. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    NASA Astrophysics Data System (ADS)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  12. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination.

    PubMed

    Mogolodi Dimpe, K; Mpupa, Anele; Nomngongo, Philiswa N

    2018-01-05

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5μgL -1 and 1.7μgL -1 , respectively, and intraday and interday precision expressed in terms of relative standard deviation were >6%.The maximum adsorption capacity was 138mgg -1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability

    PubMed Central

    Neves, Ana Rute; Lúcio, Marlene; Martins, Susana; Lima, José Luís Costa; Reis, Salette

    2013-01-01

    Introduction Resveratrol is a polyphenol found in grapes and red wines. Interest in this polyphenol has increased due to its pharmacological cardio- and neuroprotective, chemopreventive, and antiaging effects, among others. Nevertheless, its pharmacokinetic properties are less favorable, since the compound has poor bioavailability, low water solubility, and is chemically unstable. To overcome these problems, we developed two novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance resveratrol’s oral bioavailability for further use in medicines, supplements, and nutraceuticals. Methods and materials Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) loaded with resveratrol were successfully produced by a modified hot homogenization technique. These were completely characterized to evaluate the quality of the developed resveratrol-loaded nanoparticles. Results Cryo-scanning electron microscopy morphology studies showed spherical and uniform nanoparticles with a smooth surface. An average resveratrol entrapment efficiency of ~70% was obtained for both SLNs and NLCs. Dynamic light scattering measurements gave a Z-average of 150–250 nm, polydispersity index of ~0.2, and a highly negative zeta potential of around −30 mV with no statistically significant differences in the presence of resveratrol. These characteristics remained unchanged for at least 2 months, suggesting good stability. Differential scanning calorimetry studies confirmed the solid state of the SLNs and NLCs at both room and body temperatures. The NLCs had a less ordered crystalline structure conferred by the inclusion of the liquid lipid, since they had lower values for phase transition temperature, melting enthalpy, and the recrystallization index. The presence of resveratrol induced a disorder in the crystal structure of the nanoparticles, suggesting a favoring of its entrapment. The in vitro release studies on conditions of storage showed a negligible

  14. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization.

    PubMed

    Liu, Jie; Gong, Tao; Wang, Changguang; Zhong, Zhirong; Zhang, Zhirong

    2007-08-01

    Solid lipid nanoparticles (SLNs) loaded with insulin-mixed micelles (Ins-MMs) were prepared by a novel reverse micelle-double emulsion method, in which sodium cholate (SC) and soybean phosphatidylcholine (SPC) were employed to improve the liposolubility of insulin, and the mixture of stearic acid and palmitic acid were employed to prepare insulin loaded solid lipid nanoparticles (Ins-MM-SLNs). Some of the formulation parameters were optimized to obtain high quality nanoparticles. The particle size and zeta potential measured by photon correlation spectroscopy (PCS) were 114.7+/-4.68 nm and -51.36+/-2.04 mV, respectively. Nanospheres observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed extremely spherical shape. The entrapment efficiency (EE%) and drug loading capacity (DL%) determined with high performance liquid chromatogram (HPLC) by modified ultracentrifuge method were 97.78+/-0.37% and 18.92+/-0.07%, respectively. Differential scanning calorimetry (DSC) of Ins-MM-SLNs indicated no tendency of recrystallisation. The core-shell drug loading pattern of the SLNs was confirmed by fluorescence spectra and polyacrylamide gel electrophoresis (PAGE) which also proved the integrity of insulin after being incorporated into lipid carrier. The drug release behavior was studied by in situ and externally sink method and the release pattern of drug was found to follow Weibull and Higuchi equations. Results of stability evaluation showed a relatively long-term stability after storage at 4 degrees C for 6 months. In conclusion, SLNs with small particle size, excellent physical stability, high entrapment efficiency, good loading capacity for protein drug can be produced by this novel reverse micelle-double emulsion method in present study.

  15. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Bo; Campbell, Robert B., E-mail: robert.campbell@mcphs.edu

    2014-04-04

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carriermore » systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest

  16. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  17. On-line packed magnetic in-tube solid phase microextraction of acidic drugs such as naproxen and indomethacin by using Fe3O4@SiO2@layered double hydroxide nanoparticles with high anion exchange capacity.

    PubMed

    Shamsayei, Maryam; Yamini, Yadollah; Asiabi, Hamid; Safari, Meysam

    2018-02-22

    The authors describe a 3-component nanoparticle system composed of a silica-coated magnetite (Fe 3 O 4 ) core and a layered double (Cu-Cr) hydroxide nanoplatelet shell. The sorbent has a high anion exchange capacity for extraction anionic species. A simple online system, referred to as "on-line packed magnetic-in-tube solid phase microextraction" was designed. The nanoparticles were placed in a stainless steel cartridge via dry packing. The cartridge was then applied to the preconcentration acidic drugs including naproxen and indomethacin from urine and plasma. Extraction and desorption times, pH values of the sample solution and flow rates of sample solution and eluent were optimized. Analytes were then quantified by HPLC with UV detection. Under optimal conditions, the limits of detection range from 70 to 800 ng L -1 , with linear responses from 0.1-500 μg L -1 (water samples), 0.6-500 μg L -1 (spiked urine), and 0.9-500 μg L -1 (spiked plasma). The inter- and intra-assay precisions (RSDs, for n = 5) are in the range of 2.2-5.4%, 2.8-4.9%, and 2.0-5.2% at concentration levels of 5, 25 and 50 μg L -1 , respectively. The method was applied to the analysis of the drugs in spiked human urine and plasma, and good results were achieved. Graphical abstract Fe 3 O 4 @SiO 2 @CuCr-LDH magnetic nanoparticles were synthesized and packed in to a stainless steel column. The column was applied to solid phase microextraction of acidic drugs from biological samples.

  18. Surface plasmon resonances in liquid metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.

    2017-06-01

    We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition "solid-liquid" in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.

  19. Mycoestrogen determination in cow milk: Magnetic solid-phase extraction followed by liquid chromatography and tandem mass spectrometry analysis.

    PubMed

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo

    2016-12-01

    Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe 3 O 4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Binary Solid-Liquid Phase Equilibria

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    1978-01-01

    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  1. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    NASA Astrophysics Data System (ADS)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  2. Formation and Stability of Pb-Sn Embedded Multiphase Alloy Nanoparticles via Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-08-01

    The present paper describes the preparation, characterization, and stability of Pb-Sn multiphase alloy nanoparticles embedded in Al matrix via mechanical alloying (MA). MA is a solid-state processing route, which can produce nanocrystalline phases by severely deforming the materials at high strain rate. Therefore, in order to understand the effect of the increasing interface as well as defects on the phase transformation behavior of Pb-Sn nanoparticles, Pb-Sn multiphase nanoparticles have been embedded in Al by MA. The nanoparticles have extensively been characterized using X-ray diffraction and transmission electron microscope. The characterization reveals the formation of biphasic as well as single-phase solid solution nanoparticles embedded in the matrix. The detailed microstructural and differential scanning calorimetry studies indicate that the formation of biphasic nanoparticles is due to size effect, mechanical attrition, and ballistic diffusion of Pb and Sn nanoparticles embedded in Al grains. Thermal characterization data reveal that the heating event consists of the melting peaks due to the multiphase nanoparticles and the peak positions shift to lower temperature with the increase in milling time. The role of interface structure is believed to play a prominent role in determining the phase stability of the nanoparticle. The results are discussed in the light of the existing literature.

  3. Automatic reactor for solid-phase synthesis of molecularly imprinted polymeric nanoparticles (MIP NPs) in water

    PubMed Central

    Poma, Alessandro; Guerreiro, Antonio; Caygill, Sarah; Moczko, Ewa; Piletsky, Sergey

    2015-01-01

    We report the development of an automated chemical reactor for solid-phase synthesis of MIP NPs in water. Operational parameters are under computer control, requiring minimal operator intervention. In this study, “ready for use” MIP NPs with sub-nanomolar affinity are prepared against pepsin A, trypsin and α-amylase in only 4 hours. PMID:26722622

  4. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    PubMed

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  5. Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles

    PubMed Central

    Mukundan, Vineetha; Yin, Jun; Joseph, Pharrah; Luo, Jin; Shan, Shiyao; Zakharov, Dmitri N; Zhong, Chuan-Jian; Malis, Oana

    2014-01-01

    Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal–support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering. PMID:27877663

  6. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  7. Vanadium Dioxide Nanoparticle-based Thermochromic Smart Coating: High Luminous Transmittance, Excellent Solar Regulation Efficiency, and Near Room Temperature Phase Transition.

    PubMed

    Zhu, Jingting; Zhou, Yijie; Wang, Bingbing; Zheng, Jianyun; Ji, Shidong; Yao, Heliang; Luo, Hongjie; Jin, Ping

    2015-12-23

    An annealing-assisted preparation method of well-crystallized VxW1-xO2(M)@SiO2 core-shell nanoparticles for VO2-based thermochromic smart coatings (VTSC) is presented. The additional annealing process reduces the defect density of the initial hydrothermally prepared VxW1-xO2(M) nanoparticles and enhances their crystallinity so that the thermochromic film based on VxW1-xO2(M)@SiO2 nanoparticles can exhibit outstanding thermochromic performance with balanced solar regulation efficiency (ΔTsol) of 17.3%, luminous transmittance (Tlum) up to 52.2%, and critical phase transition temperature (Tc) around 40.4 °C, which is very promising for practical application. Furthermore, it makes great progress in reducing Tc of VTSC to near room temperature (25.2 °C) and simutaneously maintaining excellent optical properties (ΔTsol = 14.7% and Tlum = 50.6%). Such thermochromic performance is good enough to make VTSC applicable to practical architecture.

  8. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  9. Nanolubricant: magnetic nanoparticle based

    NASA Astrophysics Data System (ADS)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  10. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    PubMed

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lipidomic fingerprint of almonds (Prunus dulcis L. cv Nonpareil) using TiO₂ nanoparticle based matrix solid-phase dispersion and MALDI-TOF/MS and its potential in geographical origin verification.

    PubMed

    Shen, Qing; Dong, Wei; Yang, Mei; Li, Linqiu; Cheung, Hon-Yeung; Zhang, Zhifeng

    2013-08-14

    A matrix solid-phase dispersion (MSPD) procedure with titanium dioxide (TiO2) nanoparticles (NP) as sorbent was developed for the selective extraction of phospholipids from almond samples, and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) was employed for analysis. A remarkable increase in the signals of phospholipid accompanied by a decrease in those of triacylglycerols and diacylglycerols was observed in the relevant mass spectra. The proposed method was applied to five batches of almonds originating from four geographical areas, whereas principal component analysis (PCA) was utilized to normalize the relative amounts of the identified phospholipid species. The results indicated that the lipidomic fingerprint of almonds was successfully established by the negative ion mode spectrum, and the ratio of m/z 833.6 to 835.6 as well as m/z 821.6 could be introduced as potential markers for the differentiation of the tested almonds with different geographical origins. The whole method is of great promise for selective separation of phospholipids from nonphospholipids, especially the glycerides, and superior in fast screening and characterization of phospholipids in almond samples.

  12. Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li

    2014-12-01

    In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.

  13. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes.

    PubMed

    Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei

    2012-12-01

    We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.

  14. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine.

    PubMed

    Nair, Rahul; Kumar, Ashok C K; Priya, Vishnu K; Yadav, Chakrapani M; Raju, Prasanna Y

    2012-06-13

    The present work aims at preparing aqueous suspension of Solid lipid Nanoparticles containing Chitosan (CT) which is a biopolymer that exhibits a number of interesting properties which include controlled drug delivery. Carbamezapine (CBZ) is a lipophilic drug which shows it antiepileptic activity by inactivating sodium channels. The solid lipid Nanoparticles (SLN) of Chitosan-CBZ were prepared by using solvent injection method using ethanol as organic solvent. The prepared SLN formulations exhibited high encapsulation efficiency, high physical stability. The drug incorporated SLNs have demonstrated that the controlled release patterns of the drug for prolonged period. The prepared SLNs were characterized for surface morphology by SEM analysis, entrapment efficiency, zeta potential, FTIR, DSC and In-vitro diffusion studies. The hydrodynamic mean diameter and zeta potential were 168.7 ± 1.8 nm and -28.9 ± 2.0 mV for SLN-chitosan-CBZ respectively. Therefore chitosan-SLN can be good candidates to encapsulate CBZ and to increase its therapeutic efficacy in the treatment of Epilepsy.

  15. Local Cloudiness Development Forecast Based on Simulation of Solid Phase Formation Processes in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Kliutko, Yauhenia; Krasouski, Alexander; Papko, Iryna; Svetashev, Alexander; Turishev, Leonid

    2013-04-01

    Nowadays numerical simulation of thundercloud formation processes is of great interest as an actual problem from the practical point of view. Thunderclouds significantly affect airplane flights, and mesoscale weather forecast has much to contribute to facilitate the aviation forecast procedures. An accurate forecast can certainly help to avoid aviation accidents due to weather conditions. The present study focuses on modelling of the convective clouds development and thunder clouds detection on the basis of mesoscale atmospheric processes simulation, aiming at significantly improving the aeronautical forecast. In the analysis, the primary weather radar information has been used to be further adapted for mesoscale forecast systems. Two types of domains have been selected for modelling: an internal one (with radius of 8 km), and an external one (with radius of 300 km). The internal domain has been directly applied to study the local clouds development, and the external domain data has been treated as initial and final conditions for cloud cover formation. The domain height has been chosen according to the civil aviation forecast data (i.e. not exceeding 14 km). Simulations of weather conditions and local clouds development have been made within selected domains with the WRF modelling system. In several cases, thunderclouds are detected within the convective clouds. To specify the given category of clouds, we employ a simulation technique of solid phase formation processes in the atmosphere. Based on modelling results, we construct vertical profiles indicating the amount of solid phase in the atmosphere. Furthermore, we obtain profiles demonstrating the amount of ice particles and large particles (hailstones). While simulating the processes of solid phase formation, we investigate vertical and horizontal air flows. Consequently, we attempt to separate the total amount of solid phase into categories of small ice particles, large ice particles and hailstones. Also, we

  16. Thermally induced phase transformation in multi-phase iron oxide nanoparticles on vacuum annealing

    NASA Astrophysics Data System (ADS)

    Anupama, A. V.; Keune, W.; Sahoo, B.

    2017-10-01

    The evolution of magnetic phases in multi-phase iron oxide nanoparticles, synthesized via the transferred arc plasma induced gas phase condensation method, was investigated by X-ray diffraction, vibrating sample magnetometry and 57Fe Mössbauer spectroscopy. The particles are proposed to be consisting of three different iron oxide phases: α-Fe2O3, γ-Fe2O3 and Fe3O4. These nanoparticles were exposed to high temperature (∼935 K) under vacuum (10-3 mbar He pressure), and the thermally induced phase transformations were investigated. The Rietveld refinement of the X-ray diffraction data corroborates the least-squares fitting of the transmission Mössbauer spectra in confirming the presence of Fe3O4, γ-Fe2O3 and α-Fe2O3 phases before the thermal treatment, while only Fe3O4 and α-Fe2O3 phases exist after thermal treatment. On thermal annealing in vacuum, conversion from γ-Fe2O3 to Fe3O4 and α-Fe2O3 was observed. Interestingly, we have observed a phase transformation occurring in the temperature range ∼498 K-538 K, which is strikingly lower than the phase transformation temperature of γ-Fe2O3 to α-Fe2O3 (573-623 K) in air. Combining the results of Rietveld refinement of X-ray diffraction patterns and Mössbauer spectroscopy, we have attributed this phase transformation to the phase conversion of a metastable "defected and strained" d-Fe3O4 phase, present in the as-prepared sample, to the α-Fe2O3 phase. Stabilization of the phases by controlling the phase transformations during the use of different iron-oxide nanoparticles is the key factor to select them for a particular application. Our investigation provides insight into the effect of temperature and chemical nature of the environment, which are the primary factors governing the phase stability, suitability and longevity of the iron oxide nanomaterials prepared by the gas-phase condensation method for various applications.

  17. Comparison of the solid-phase fragment condensation and phase-change approaches in the synthesis of salmon I calcitonin.

    PubMed

    Gatos, D; Tzavara, C

    2001-02-01

    Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.

  18. A bioinspired polydopamine approach toward the preparation of gold-modified magnetic nanoparticles for the magnetic solid-phase extraction of steroids in multiple samples.

    PubMed

    An, Xuehan; Chai, Weibo; Deng, Xiaojuan; Chen, Hui; Ding, Guosheng

    2018-05-02

    In this work, a simple, facile, and sensitive magnetic solid-phase extraction method was developed for the extraction and enrichment of three representative steroid hormones before high-performance liquid chromatography analysis. Gold-modified Fe 3 O 4 nanoparticles, as novel magnetic adsorbents, were prepared by a rapid and environmentally friendly procedure in which polydopamine served as the reductant as well as the stabilizer for the gold nanoparticles, thus successfully avoiding the use of some toxic reagents. To obtain maximum extraction efficiency, several significant factors affecting the preconcentration steps, including the amount of adsorbent, extraction time, pH of the sample solution, and the desorption conditions, were optimized, and the enrichment factors for three steroids were all higher than 90. The validity of the established method was evaluated and good analytical characteristics were obtained. A wide linearity range (0.8-500 μg/L for all the analytes) was attained with good correlation (R 2  ≥ 0.991). The low limits of detection were 0.20-0.25 μg/L, and the relative standard deviations ranged from 0.83 to 4.63%, demonstrating a good precision. The proposed method was also successfully applied to the extraction and analysis of steroids in urine, milk, and water samples with satisfactory results, which showed its reliability and feasibility in real sample analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  20. Hydrogen storage and phase transformations in Mg-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Rude, L. H.; Nielsen, T. K.; Jensen, T. R.; Bonetti, E.

    2010-10-01

    Microstructure refinement and synergic coupling among different phases are currently explored strategies to improve the hydrogen storage properties of traditional materials. In this work, we apply a combination of these methods and synthesize Mg-Pd composite nanoparticles by inert gas condensation of Mg vapors followed by vacuum evaporation of Pd clusters. Irreversible formation of the Mg6Pd intermetallic phase takes place upon vacuum annealing, resulting in Mg/Mg6Pd composite nanoparticles. Their hydrogen storage properties are investigated and connected to the undergoing phase transformations by gas-volumetric techniques and in situ synchrotron radiation powder x-ray diffraction. Mg6Pd transforms reversibly into different Mg-Pd intermetallic compounds upon hydrogen absorption, depending on temperature and pressure. In particular, at 573 K and 1 MPa hydrogen pressure, the metal-hydride transition leads to the formation of Mg3Pd and Mg5Pd2 phases. By increasing the pressure to 5 MPa, the Pd-richer MgPd intermetallic is obtained. Upon hydrogen desorption, the Mg6Pd phase is reversibly recovered. These phase transformations result in a specific hydrogen storage capacity associated with Mg-Pd intermetallics, which attain the maximum value of 3.96 wt % for MgPd and influence both the thermodynamics and kinetics of hydrogen sorption in the composite nanoparticles.

  1. A sol-gel based solid phase microextraction fiber for the analysis of aliphatic alcohols in apple juices.

    PubMed

    Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh

    2010-01-01

    A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.

  2. Thermodynamically equilibrium roton states of nanoparticles in molten and vapour phases

    NASA Astrophysics Data System (ADS)

    Karasevskii, A. I.

    2015-05-01

    We show a possibility for a thermodynamically equilibrium nanocrystalline structure consisting of nanosized solid inclusions to appear in a melt just beyond the melting curve. Thermodynamic stability of the nanocrystalline structure in the melt results from the free energy lowering due to rotational motion of nanoparticles. The main contribution to the reduction of the free energy of the system is due to an increase in the rotational entropy and change in formation energy of nanocrystals, i.e. the nanocrystalline structure in the melt, like vacancies in a crystal, is an equilibrium defect structure of the melt. It is demonstrated that similar nanocrystalline structures can also appear in the vapour phase in the form of liquid nanodrops and in liquid solutions, e.g. in He II.

  3. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  4. Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode

    NASA Astrophysics Data System (ADS)

    Stupca, Matthew; Nayfeh, Osama M.; Hoang, Tuan; Nayfeh, Munir H.; Alhreish, Bahjat; Boparai, Jack; AlDwayyan, Abdullah; AlSalhi, Mohamad

    2012-10-01

    Present red phosphor converters provide spectra dominated by sharp lines and suffer from availability and stability issues which are not ideal for color mixing in display or solid state lighting applications. We examine the use of mono dispersed 3 nm silicon nanoparticles, with inhomogeneously broadened red luminescence as an effective substitute for red phosphors. We tested a 3-phase hybrid nanophosphor consisting of ZnS:Ag, ZnS:Cu,Au,Al, and nanoparticles. Correlated color temperature is examined under UV and LED pumping in the range 254, 365-400 nm. The temperature is found reasonably flat for the longer wavelengths and drops for the shorter wavelengths while the color rendering index increases. The photo stability of the phosphors relative to the silicon nanoparticles is recorded. The variation in the temperature is analyzed in terms of the strength of inter-band-gap transition and continuum band to band transitions.

  5. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-01-01

    In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.

  6. Solid lipid nanoparticles bearing oxybenzone: in-vitro and in-vivo evaluation.

    PubMed

    Gulbake, Arvind; Jain, Aviral; Khare, Piush; Jain, Sanjay K

    2010-05-01

    In the present project, Solid Lipid Nanoparticles (SLNs) bearing oxybenzone were prepared by ethanol injection method to improve its effectiveness as sunscreen. SLNs were characterized for particle size,polydispersity index, zeta potential and surface morphology. The optimized SLNs bearing oxybenzone were incorporated into water-removable cream base and compared with SLNs unloaded water-removable cream base for in vitro and in vivo parameters. Cream base formulation containing SLNs (Csd) with 5% oxybenzone showed slow drug release and better sun protecting factor (more than 25) compared to cream base containing 5% oxybenzone. Confocal Laser Scanning Microscopy was used to visualize the distribution of developed formulations in skin. CLSM indicated prolonged retention of SLNs in the stratum corneum as compared to plain cream base. These studies revealed that the cream base bearing SLNs exhibited good skin retention as well as enhanced sun protection effect compared to cream base.

  7. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic

    PubMed Central

    Puri, Anu; Loomis, Kristin; Smith, Brandon; Lee, Jae-Ho; Yavlovich, Amichai; Heldman, Eli; Blumenthal, Robert

    2010-01-01

    In recent years, various nanotechnology platforms in the area of medical biology, including both diagnostics and therapy, have gained remarkable attention. Moreover, research and development of engineered multifunctional nanoparticles as pharmaceutical drug carriers have spurred exponential growth in applications to medicine in the last decade. Design principles of these nanoparticles, including nano-emulsions, dendrimers, nano-gold, liposomes, drug-carrier conjugates, antibody-drug complexes, and magnetic nanoparticles, are primarily based on unique assemblies of synthetic, natural, or biological components, including but not limited to synthetic polymers, metal ions, oils, and lipids as their building blocks. However, the potential success of these particles in the clinic relies on consideration of important parameters such as nanoparticle fabrication strategies, their physical properties, drug loading efficiencies, drug release potential, and, most importantly, minimum toxicity of the carrier itself. Among these, lipid-based nanoparticles bear the advantage of being the least toxic for in vivo applications, and significant progress has been made in the area of DNA/RNA and drug delivery using lipid-based nanoassemblies. In this review, we will primarily focus on the recent advances and updates on lipid-based nanoparticles for their projected applications in drug delivery. We begin with a review of current activities in the field of liposomes (the so-called honorary nanoparticles), and challenging issues of targeting and triggering will be discussed in detail. We will further describe nanoparticles derived from a novel class of amphipathic lipids called bolaamphiphiles with unique lipid assembly features that have been recently examined as drug/DNA delivery vehicles. Finally, an overview of an emerging novel class of particles (based on lipid components other than phospholipids), solid lipid nanoparticles and nanostructured lipid carriers will be presented. We

  8. Combined synthesis and in situ coating of nanoparticles in the gas phase

    NASA Astrophysics Data System (ADS)

    Lähde, Anna; Raula, Janne; Kauppinen, Esko I.

    2008-12-01

    Combined gas phase synthesis and coating of sodium chloride (NaCl) and lactose nanoparticles has been developed using an aerosol flow reactor. Nano-sized core particles were produced by the droplet-to-particle method and coated in situ by the physical vapour deposition of L-leucine vapour. The saturation of L-leucine in the reactor determined the resulting particle size and size distribution. In general, particle size increased with the addition of L-leucine and notable narrowing of the core particle size distribution was observed. In addition, homogeneous nucleation of the vapour, i.e. formation of pure L-leucine particles, was observed depending on the saturation conditions of L-leucine as well as the core particle characteristics. The effects of core particle properties, i.e. size and solid-state characteristics, on the coating process were studied by comparing the results for coated NaCl and lactose particles. During deposition, L-leucine formed a uniform coating on the surface of the core particles. The coating stabilised the nanoparticles and prevented the sintering of particles during storage.

  9. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    PubMed

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences

    PubMed Central

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L.

    2017-01-01

    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5′-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5′-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. PMID:28628204

  11. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    PubMed

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Superparamagnetic Fe3 O4 @SiO2 core-shell composite nanoparticles for the mixed hemimicelle solid-phase extraction of benzodiazepines from hair and wastewater samples before high-performance liquid chromatography analysis.

    PubMed

    Esmaeili-Shahri, Effat; Es'haghi, Zarrin

    2015-12-01

    Magnetic Fe3 O4 /SiO2 composite core-shell nanoparticles were synthesized, characterized, and applied for the surfactant-assisted solid-phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high-performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3 O4 nanoparticles were prepared by the chemical co-precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3 /H2 O as precipitant. Second, the surface of Fe3 O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3 O4 /SiO2 composite were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3 O4 /SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10-15 μgmL(-1) . The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine

    PubMed Central

    2012-01-01

    The present work aims at preparing aqueous suspension of Solid lipid Nanoparticles containing Chitosan (CT) which is a biopolymer that exhibits a number of interesting properties which include controlled drug delivery. Carbamezapine (CBZ) is a lipophilic drug which shows it antiepileptic activity by inactivating sodium channels. The solid lipid Nanoparticles (SLN) of Chitosan-CBZ were prepared by using solvent injection method using ethanol as organic solvent. The prepared SLN formulations exhibited high encapsulation efficiency, high physical stability. The drug incorporated SLNs have demonstrated that the controlled release patterns of the drug for prolonged period. The prepared SLNs were characterized for surface morphology by SEM analysis, entrapment efficiency, zeta potential, FTIR, DSC and In-vitro diffusion studies. The hydrodynamic mean diameter and zeta potential were 168.7 ±1.8 nm and −28.9 ±2.0 mV for SLN-chitosan-CBZ respectively. Therefore chitosan-SLN can be good candidates to encapsulate CBZ and to increase its therapeutic efficacy in the treatment of Epilepsy. PMID:22695222

  14. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    NASA Astrophysics Data System (ADS)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  15. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    PubMed

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.

    PubMed

    Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie

    2015-03-11

    Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.

  17. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less

  18. Using the Binary Phase-Field Crystal Model to Describe Non-Classical Nucleation Pathways in Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Provatas, Nikolas

    Recent experimental work has shown that gold nanoparticles can precipitate from an aqueous solution through a non-classical, multi-step nucleation process. This multi-step process begins with spinodal decomposition into solute-rich and solute-poor liquid domains followed by nucleation from within the solute-rich domains. We present a binary phase-field crystal theory that shows the same phenomology and examine various cross-over regimes in the growth and coarsening of liquid and solid domains. We'd like to the thank Canada Research Chairs (CRC) program for funding this work.

  19. Preparation of amino acid-based polymer functionalized magnetic nanoparticles as adsorbents for analysis of plant growth regulators in bean sprouts.

    PubMed

    Ji, Shilei; Qi, Li; Li, Nan; Wang, Minglin

    2016-09-01

    A novel magnetic solid phase extraction (MSPE) adsorbent has been developed for enriching two plant growth regulators, including 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chlorophenoxyacetic acid (4-CPA), in bean sprouts. For preparing the MSPE adsorbent, poly(N-methacryloyl-L-phenylalanine methyl ester (P(MA-L-Phe-OMe)), amino acid-based polymer, was modified onto the magnetic nanoparticles via "grafting to" method by free radical polymerization. The resultant P(MA-L-Phe-OMe)-functionalized magnetic nanoparticles (Fe3O4@P(MA-L-Phe-OMe)) were characterized by Fourier transform infrared (FT-IR) spectroscopy and elemental analysis. The adsorption amount of Fe3O4@P(MA-L-Phe-OMe) nanoparticles to 2,4-D and 4-CPA were 39.82mgg(-1) and 29.02mgg(-1), respectively. Moreover, the prepared MSPE adsorbents showed good selectivity towards 2,4-D and 4-CPA due to the hydrophobic interactions and electrostatic forces between the target analytes and Fe3O4@P(MA-L-Phe-OMe). The results demonstrated that the proposed MSPE adsorbents have high affinity to the targets 2,4-D and 4-CPA. Under the optimized conditions, the proposed materials were successfully applied to enrich 2,4-D and 4-CPA in bean sprouts samples. The recovery values of the bean sprouts solution spiked the targets were from 90.9% to 96.4% with the relative standard deviations of 2.3-3.9%. Our work proved that the novel Fe3O4@P(MA-L-Phe-OMe) nanoparticles were the good adsorbents of magnetic solid phase extraction (MSPE) and have good potential for the analysis of trace compound in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Coercivity and Exchange Bias Study of Polycrystalline Hollow Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bah, Mohamed Alpha

    Magnetic nanoparticles (NPs) have the potential to be useful in a variety of applications such as biomedical instruments, catalysis, sensing, recording information, etc. These nanoparticles exhibit remarkably different properties compared to their bulk counter parts. Synthesis of magnetic NPs with the right morphology, phase, size and surface functionality, as well as their usage for specific applications are challenging in terms of efficiency and safety. Morphology wise, there have been numerous reports on magnetic nanoparticles where morphologies such as core/shell, hollow, solid, etc., have been explored. It has been shown that morphology affects the magnetic response. Achieving the right crystal structure with required morphology and the magnetic behavior of the nanoparticle phases determines the magnetic response of the structure. For example, in the case of core/shell NPs various ferromagnetic (FM), ferrimagnetic (FiM), and antiferromagnetic (AFM) core and shell combinations have been reported. In these cases, interesting and strikingly different features, such as unusually high spin glass transition temperature, large exchange bias, finite size effects, magnetic proximity effects, unusual trend of blocking temperature as function of average crystal size, etc., have been reported. More specifically, the morphology of core/shell nanoparticles provides added degrees of freedom compared to conventional solid magnetic nanoparticles, including variations in the size, phase and material of the core and shell of the particle, etc. which helps enhance their magnetic properties. Similar to traditional core/shell nanoparticles, inverted core/shell having a FiM or FM order above the Curie temperature (TC) of the shell has been reported where the Neel temperature (TN) is comparable with the bulk value and there is nonmonotonic dependence of the coercive field (HC) and exchange bias (HEB) on the core diameter. In addition to the core/shell morphology, nanoparticles with

  1. Phase retrieval and 3D imaging in gold nanoparticles based fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev

    2017-02-01

    Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.

  2. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    PubMed

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  3. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    NASA Astrophysics Data System (ADS)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire

    2017-09-01

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH3OH), binary (H2O:CH3OH, CH3OH:NH3), and ternary ice analogs (H2O:CH3OH:NH3) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  4. Surface-modified multifunctional MIP nanoparticles

    NASA Astrophysics Data System (ADS)

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2013-04-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity

  5. Using reweighting and free energy surface interpolation to predict solid-solid phase diagrams

    NASA Astrophysics Data System (ADS)

    Schieber, Natalie P.; Dybeck, Eric C.; Shirts, Michael R.

    2018-04-01

    Many physical properties of small organic molecules are dependent on the current crystal packing, or polymorph, of the material, including bioavailability of pharmaceuticals, optical properties of dyes, and charge transport properties of semiconductors. Predicting the most stable crystalline form at a given temperature and pressure requires determining the crystalline form with the lowest relative Gibbs free energy. Effective computational prediction of the most stable polymorph could save significant time and effort in the design of novel molecular crystalline solids or predict their behavior under new conditions. In this study, we introduce a new approach using multistate reweighting to address the problem of determining solid-solid phase diagrams and apply this approach to the phase diagram of solid benzene. For this approach, we perform sampling at a selection of temperature and pressure states in the region of interest. We use multistate reweighting methods to determine the reduced free energy differences between T and P states within a given polymorph and validate this phase diagram using several measures. The relative stability of the polymorphs at the sampled states can be successively interpolated from these points to create the phase diagram by combining these reduced free energy differences with a reference Gibbs free energy difference between polymorphs. The method also allows for straightforward estimation of uncertainties in the phase boundary. We also find that when properly implemented, multistate reweighting for phase diagram determination scales better with the size of the system than previously estimated.

  6. Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples.

    PubMed

    Qi, Xue; Gao, Shuang; Ding, Guosheng; Tang, An-Na

    2017-01-01

    A facile, rapid and selective magnetic dispersed solid-phase extraction (dSPE) method for the extraction and enrichment of Cr (VI) prior to flame atomic absorption spectrometry (AAS) was introduced. For highly selective and efficient extraction, magnetic Cr (VI)-imprinted nanoparticles (Fe 3 O 4 @ Cr (VI) IIPs) were prepared by hyphenating surface ion-imprinted with sol-gel techniques. In the preparation process, chromate (Cr(VI)) was used as the template ion; vinylimidazole and 3-aminopropyltriethoxysilane were selected as organic functional monomer and co-monomer respectively. Another reagent, methacryloxypropyltrimethoxysilane was adopted as coupling agent to form the stable covalent bonding between organic and inorganic phases. The effects of various parameters on the extraction efficiency, such as pH of sample solution, the amount of adsorbent, extraction time, the type and concentration of eluent were systematically investigated. Furthermore, the thermodynamic and kinetic properties of the adsorption process were studied to explore the internal adsorption mechanism. Under optimized conditions, the preconcentration factor, limit of detection and linear range of the established dSPE-AAS method for Cr (VI) were found to be 98, 0.29μgL -1 and 4-140μgL -1 , respectively. The developed method was also successfully applied to the analysis of Cr (VI) in different water samples with satisfactory results, proving its reliability and feasibility in real sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Collantes, Juan-Mari; Garcia, Jose Angel; Plazaola, Fernando; Sandre, Olivier

    2015-09-01

    Magnetic fluid hyperthermia is a promising cancer therapy in which magnetic nanoparticles act as heat sources activated by an external AC magnetic field. The nanoparticles, located near or inside the tumor, absorb energy from the magnetic field and then heat up the cancerous tissues. During the hyperthermia treatment, it is crucial to control the temperature of different tissues: too high temperature can cause undesired damage in healthy tissues through an uncontrolled necrosis. However, the current thermometry in magnetic hyperthermia presents some important technical problems. The widely used optical fiber thermometers only provide the temperature in a discrete set of spatial points. Moreover, surgery is required to locate these probes in the correct place. In this scope, we propose here a method to measure the temperature of a magnetic sample. The approach relies on the intrinsic properties of the magnetic nanoparticles because it is based on monitoring the thermal dependence of the high order harmonic phases of the nanoparticle dynamic magnetization. The method is non-invasive and it does not need any additional probe or sensor attached to the magnetic nanoparticles. Moreover, this method has the potential to be used together with the magnetic particle imaging technique to map the spatial distribution of the temperature.

  8. Modified sedimentation-dispersion model for solids in a three-phase slurry column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.N.; Ruether, J.A.; Shah, Y.T.

    1986-03-01

    Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less

  9. M4Ag44(p-MBA)30 Molecular Nanoparticles

    NASA Astrophysics Data System (ADS)

    Conn, Brian E.

    -mechanical simulations based on the atomically-precise X-ray measured structure. Calculations show that cohesion is derived from hydrogen bonds between bundled p-MBA ligands and that the superlattice's mechanical response to hydrostatic compression is characterized by a molecular-solid-like bulk modulus B0 = 16.7 GPa, exhibiting anomalous pressure softening and a compression-induced transition to a soft-solid phase. Such a transition involves ligand flexure, which causes gear-like correlated chiral rotation of the nanoparticles.

  10. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    PubMed

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Role of Co3O4 Nanoparticles in Dielectric Properties of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ Superconducting Phase

    NASA Astrophysics Data System (ADS)

    Imran, M.; Mumtaz, M.; Naveed, M.; Khan, M. Nasir

    2018-04-01

    Cobalt oxide (Co3O4) nanoparticles and Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase were prepared by sol-gel and solid-state reaction methods, respectively. Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223, x = 0-2.0 wt.%, nanoparticles-superconductor composites. The unchanged crystal structure of the host CuTl-1223 superconducting phase (i.e. tetragonal) revealed that Co3O4 nanoparticles were settled at the grain boundaries. Superconducting properties of the CuTl-1223 phase were overall suppressed due to hole-charge carriers interaction at the grain boundaries. The dielectric properties of (Co3O4)x/CuTl-1223 composites were investigated by varying the test frequencies from 40 Hz to 100 MHz and operating temperatures from 77 to 298 K. The values of dielectric properties were found maximal at lower frequencies and started to decrease at higher frequencies. So, the dielectric properties of the CuTl-1223 superconducting phase can be tuned by varying the contents of (Co3O4) nanoparticles, test frequencies as well as operating temperatures.

  12. Influence of surface-imprinted nanoparticles on trypsin activity.

    PubMed

    Guerreiro, António; Poma, Alessandro; Karim, Kal; Moczko, Ewa; Takarada, Jessica; de Vargas-Sansalvador, Isabel Perez; Turner, Nicholas; Piletska, Elena; de Magalhães, Cristiana Schmidt; Glazova, Natalia; Serkova, Anastasia; Omelianova, Aleksandra; Piletsky, Sergey

    2014-09-01

    Here, the modulation of enzyme activity is presented by protein-imprinted nanoparticles produced using a solid-phase approach. Using trypsin as target, binding of the nanoparticles to the enzyme results in its inhibition or in stabilization, depending on the orientation of the immobilized enzyme used during imprinting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    PubMed

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  14. Multiplexed highly sensitive detections of cancer biomarkers in thermal space using encapsulated phase change nanoparticles

    NASA Astrophysics Data System (ADS)

    Ma, Liyuan; Hong, Yan; Ma, Zeyu; Kaittanis, Charalambos; Perez, J. Manuel; Su, Ming

    2009-07-01

    We describe a multiplexed highly sensitive method to detect cancer biomarkers using silica encapsulated phase change nanoparticles as thermal barcodes. During phase changes, nanoparticles absorb heat energy without much temperature rise and show sharp melting peaks (0.6 °C). A series of phase change nanoparticles of metals or alloys can be synthesized in such a way that they melt between 100 and 700 °C, thus the multiplicity could reach 1000. The method has high sensitivity (8 nM) that can be enhanced using materials with large latent heat, nanoparticles with large diameter, or reducing the grafting density of biomolecules on nanoparticles.

  15. Adsorption of the Three-phase Emulsion on Various Solid Surfaces.

    PubMed

    Enomoto, Yasutaka; Imai, Yoko; Tajima, Kazuo

    2017-07-01

    The present study investigates the adsorption of the three-phase emulsion on various solid/water interfaces. Vesicles can be used as emulsifiers in the three-phase emulsions and act as an independent phase unlike the surfactant used in conventional emulsions; therefore, it is expected that the three-phase emulsion formed by the adhesion of vesicles to the oil/water interface will adsorb on various solid/water interfaces. The cationic three-phase emulsion was prepared to encourage emulsion adsorption on negatively charged solid substrates in water. The emulsifier polyoxyethylene-(10) hydrogenated castor oil was rendered cationic by mixing with the surfactant cetyltrimethylammonium bromide and then used to prepare the cationic three-phase emulsion of hexadecane-in-water. Three solid substrates (silicon, glass, and copper) were dipped in the cationic emulsion and the emulsion was found to adsorb on the solid substrates while maintaining its structure. The amount of hexadecane adsorbed on the various surfaces was investigated by gas chromatography and found to increase with increasing hexadecane concentration in the emulsion and eventually plateaued just like molecular adsorption. The maximum surface coverage of the emulsion on the substrates was approximately 80%. However, even the equivalent nonionic three-phase emulsion was found to adsorb on the three solid surfaces. This was attributed to a novel mechanism of irreversible adhesion via the van der Waals attractive force.

  16. Structural-Phase States of Fe-Cu and Fe-Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  17. Structural-Phase States of Fe–Cu and Fe–Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  18. New Approach for Gas Phase Synthesis and Growth Mechanism of MoS2 Fullerene-like Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zak, Alla; Feldman, Yishay; Alperovich, Vladimir; Rosentsveig, Rita; Tenne, Reshef

    2002-10-01

    Inorganic fullerene-like (hollow onion-like) nanoparticles (IF) and nanotubes are of significant interest over the past few years due to their unusual crystallographic morphology and their interesting physical properties. The synthesis of inorganic fullerene-like spherical MoS2 nanoparticles (IF-MoS2) of 5-300nm in diameter was studied in the present work. This process is based on the previous formation of suboxide (MoO3-x) 5-300nm nanoparticles and their subsequent sulfidization. During the sulfidization process the overall geometrical parameters of the suboxide nanoparticles are preserved. The oxide nanoparticles were obtained in-situ by the condensation of the evaporated MoO3 powder precursor. The condensation was provoked not by cooling (conventional method for nano-size particle formation), but by a chemical reaction (partial reduction of the MoO3 vapor by hydrogen). In this case the vapor pressure of the product (MoO2) was much lower than that of the precursor (MoO3). Based on the comprehensive understanding of the IF-MoS2 growth mechanism from MoO3 powder, a gas phase reactor, which allowed reproducible preparation of a pure IF-MoS2 phase (up to 100mg/batch) with controllable sizes, is demonstrated. Further scale-up of this production is underway.

  19. Kinetic analyses and performance of a colloidal magnetic nanoparticle based immunoassay dedicated to allergy diagnosis.

    PubMed

    Teste, Bruno; Kanoufi, Frédéric; Descroix, Stéphanie; Poncet, Pascal; Georgelin, Thomas; Siaugue, Jean-Michel; Petr, Jan; Varenne, Anne; Hennion, Marie-Claire

    2011-07-01

    In this paper, we demonstrate the possibility to use magnetic nanoparticles as immunosupports for allergy diagnosis. Most immunoassays used for immunosupports and clinical diagnosis are based on a heterogeneous solid-phase system and suffer from mass-transfer limitation. The nanoparticles' colloidal behavior and magnetic properties bring the advantages of homogeneous immunoassay, i.e., species diffusion, and of heterogeneous immunoassay, i.e., easy separation of the immunocomplex and free forms, as well as analyte preconcentration. We thus developed a colloidal, non-competitive, indirect immunoassay using magnetic core-shell nanoparticles (MCSNP) as immunosupports. The feasibility of such an immunoassay was first demonstrated with a model antibody and described by comparing the immunocapture kinetics using macro (standard microtiter plate), micro (microparticles) and nanosupports (MCSNP). The influence of the nanosupport properties (surface chemistry, antigen density) and of the medium (ionic strength, counter ion nature) on the immunocapture efficiency and specificity was then investigated. The performances of this original MCSNP-based immunoassay were compared with a gold standard enzyme-linked immunosorbent assay (ELISA) using a microtiter plate. The capture rate of target IgG was accelerated 200-fold and a tenfold lower limit of detection was achieved. Finally, the MCSNP-based immunoassay was successfully applied to the detection of specific IgE from milk-allergic patient's sera with a lower LOD and a good agreement (CV < 6%) with the microtiter plate, confirming the great potential of this analytical platform in the field of immunodiagnosis.

  20. Pyrrole-Imidazole Polyamides: Manual Solid-Phase Synthesis.

    PubMed

    Pauff, Steven M; Fallows, Andrew J; Mackay, Simon P; Su, Wu; Cullis, Paul M; Burley, Glenn A

    2015-12-01

    Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days. Copyright © 2015 John Wiley & Sons, Inc.

  1. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    PubMed

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  2. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  3. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compoundsmore » in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.« less

  4. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE PAGES

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; ...

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm -2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  5. Solid phase extraction of trace amounts of cadmium(II) ions in water and food samples using iron magnetite nanoparticles modified by sodium dodecyl sulfate and 2-mercaptobenzothiazole.

    PubMed

    Abbasi, Shahriar; ShanbehDehbalai, Mehdi; Khani, Hossein

    2017-03-01

    A new, simple and rapid method for solid phase extraction and preconcentration of trace amounts of cadmium ions using 2-mercaptobenzothiazole/sodium dodecyl sulfate immobilized on magnetite nanoparticles (MBT-SDS-MNPs) was proposed. The method is based on the extraction of cadmium ions via complexation with MBT immobilized on SDS-coated MNPs and their determination by flame atomic absorption spectrometry. The effects of different parameters - pH; eluent type, concentration and volume; amounts of salt and adsorbent; contact time and interfering ions - on the adsorption of cadmium ions were studied. Under optimized conditions, the calibration curve was linear in the range of 10-5,000 μg L -1 . Detection limit and relative standard deviation of the proposed method were 0.009 μg L -1 and 2.2%, respectively. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 24.80 mg g -1 , a Langmuir adsorption equilibrium constant (b) of 4.62 and Freundlich constants K f and n of 6.075 mg 1-1/n L 1/n g -1 and 2.391, respectively, were obtained. Finally, this adsorbent was successfully used for extraction of cadmium from water and food samples.

  6. Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: an in vitro investigation on human breast cancer and leukemia cell lines.

    PubMed

    Foglietta, Federica; Serpe, Loredana; Canaparo, Roberto; Vivenza, Nicoletta; Riccio, Giovanna; Imbalzano, Erica; Gasco, Paolo; Zara, Gian Paolo

    2014-01-01

    Histone modification has emerged as a promising approach to cancer therapy. The short-chain fatty acid, butyric acid, a histone deacetylase (HD) inhibitor, has shown anticancer activity. Butyrate transcriptional activation is indeed able to withdraw cancer cells from the cell cycle, leading to programmed cell death. Since butyrate's clinical use is hampered by unfavorable pharmacokinetic and pharmacodynamic properties, delivery systems, such as solid lipid nanoparticles (SLN), have been developed to overcome these constraints. In order to outline the influence of butyrate delivery on its anticancer activity, the effects of butyrate as a free (sodium butyrate, NB) or nanoparticle (cholesteryl butyrate solid lipid nanoparticles, CBSLN) formulation on the growth of different human cancer cell lines, such as the promyelocytic leukemia, HL-60, and the breast cancer, MCF-7 was investigated. A detailed investigation into the mechanism of the induced cytotoxicity was also carried out, with a special focus on the modulation of HD and cyclin-dependent kinase (CDK) mRNA gene expression by real time PCR analysis. In HL-60 cells, CBSLN induced a higher and prolonged expression level of the butyrate target genes at lower concentrations than NB. This led to a significant decrease in cell proliferation, along with considerable apoptosis, cell cycle block in the G0/G1 phase, significant inhibition of total HD activity and overexpression of the p21 protein. Conversely, in MCF-7 cells, CBSLN did not enhance the level of expression of the butyrate target genes, leading to the same anticancer activity as that of NB. Solid lipid nanoparticles were able to improve butyrate anticancer activity in HL-60, but not in MCF-7 cells. This is consistent with difference in properties of the cells under study, such as expression of the TP53 tumor suppressor, or the transporter for short-chain fatty acids, SLC5A8.

  7. Beyond the Compositional Threshold of Nanoparticle-Based Materials.

    PubMed

    Portehault, David; Delacroix, Simon; Gouget, Guillaume; Grosjean, Rémi; Chan-Chang, Tsou-Hsi-Camille

    2018-04-17

    The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion

  8. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  9. Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-μ-dispersive solid-phase extraction of antiepileptic drugs in biological matrices.

    PubMed

    Zhang, Ruiqi; Wang, Siming; Yang, Ye; Deng, Yulan; Li, Di; Su, Ping; Yang, Yi

    2018-06-01

    In this study, multi-walled carbon nanotubes were coated on the surface of magnetic nanoparticles modified by polydopamine. The synthesized composite was characterized and applied to magnetic-μ-dispersive solid-phase extraction of oxcarbazepine (OXC), phenytoin (PHT), and carbamazepine (CBZ) from human plasma, urine, and cerebrospinal fluid samples prior to analysis by a high-performance liquid chromatography-photodiode array detector. The extraction parameters were investigated and the optimum condition was obtained when the variables were set to the following: sorbent type, Fe 3 O 4 @polyDA-MWCNTs (length < 2 μm); sample pH, 6; amount of sorbent, 15 mg; sorption time, 1.5 min at room temperature; type and volume of the eluent, 2.5 mL methanol; and salt content, none added. Under the optimized conditions, the calibration curves are linear in the concentration range 2-2000 ng/mL, the limits of detection are in the range 0.4-3.1 ng/mL, and the relative standard deviations and relative recoveries of plasma (spiked at 200 ng/mL) and CSF (spiked at 50 ng/mL) are in the ranges 1.4-8.2% and 92.8-96.5%, respectively. The applicability of the method was successfully confirmed by extraction and determination of OXC, PHT, and CBZ in biological matrices. Graphical abstract Magnetic multi-walled carbon nanotube core-shell composites were applied as magnetic-μ-dispersive solid-phase extraction adsorbents for determination of antiepileptic drugs in biological matrices.

  10. Materials research for passive solar systems: Solid-state phase-change materials

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  11. THE DISTRIBUTION AND SOLID-PHASE SPECIATION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These r...

  12. Magneto-transport properties of Co3O4 nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting phase

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.

    2018-05-01

    Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc =

  13. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    PubMed

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  14. The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulvestad, A.; Yau, A.

    Nanosizing can dramatically alter material properties by enhancing surface thermodynamic contributions, shortening diffusion lengths, and increasing the number of catalytically active sites per unit volume. These mechanisms have been used to explain the improved properties of catalysts, battery materials, plasmonic materials, etc. Here we show that Pd nanoparticles also have the ability to self-heal defects in their crystal structures. Using Bragg coherent diffractive imaging, we image dislocations nucleated deep in a Pd nanoparticle during the forward hydriding phase transformation that heal during the reverse transformation, despite the region surrounding the dislocations remaining in the hydrogen-poor phase. We show that defectivemore » Pd nanoparticles exhibit sloped isotherms, indicating that defects act as additional barriers to the phase transformation. Our results resolve the formation and healing of structural defects during phase transformations at the single nanoparticle level and offer an additional perspective as to how and why nanoparticles differ from their bulk counterparts.« less

  15. Surface-modified multifunctional MIP nanoparticles

    PubMed Central

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; de Vargas Sansalvador, Isabel Perez; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2015-01-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly-sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinyl ferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors. PMID:23503559

  16. Surface-modified multifunctional MIP nanoparticles.

    PubMed

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey

    2013-05-07

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.

  17. Optimization of ultrasound-assisted dispersive solid-phase microextraction based on nanoparticles followed by spectrophotometry for the simultaneous determination of dyes using experimental design.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Goudarzi, Alireza

    2016-09-01

    A simple, low cost and ultrasensitive method for the simultaneous preconcentration and determination of trace amount of auramine-O and malachite green in aqueous media following accumulation on novel and lower toxicity nanomaterials by ultrasound-assisted dispersive solid phase micro-extraction (UA-DSPME) procedure combined with spectrophotometric has been described. The Mn doped ZnS nanoparticles loaded on activated carbon were characterized by Field emission scanning electron microscopy (FE-SEM), particle size distribution, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) analyses and subsequently were used as green and efficient material for dyes accumulation. Contribution of experimental variables such as ultrasonic time, ultrasonic temperature, adsorbent mass, vortex time, ionic strength, pH and elution volume were optimized through experimental design, and while the preconcentrated analytes were efficiently eluted by acetone. Preliminary Plackett-Burman design was applied for selection of most significant factors and giving useful information about their main and interaction part of significant variables like ultrasonic time, adsorbent mass, elution volume and pH were obtained by central composite design combined with response surface analysis and optimum experimental conditions was set at pH of 8.0, 1.2mg of adsorbent, 150μL eluent and 3.7min sonication. Under optimized conditions, the average recoveries (five replicates) for two dyes (spiked at 500.0ngmL(-1)) changes in the range of 92.80-97.70% with acceptable RSD% less than 4.0% over a linear range of 3.0-5000.0ngmL(-1) for the AO and MG in water samples with regression coefficients (R(2)) of 0.9975 and 0.9977, respectively. Acceptable limits of detection of 0.91 and 0.61ngmL(-1) for AO and MG, respectively and high accuracy and repeatability are unique advantages of present method to improve the figures of merit for their accurate determination at trace level in complicated

  18. Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres.

    PubMed

    Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Zhang, Peng; Cao, Tieping; Liu, Yichun

    2011-07-01

    The hierarchical tetranitro copper phthalocyanine (TNCuPc) hollow spheres were fabricated by a simple solvothermal method. The formation mechanism was proposed based on the evolution of morphology as a function of solvothermal time, which involved the initial formation of nanoparticles followed by their self-aggregation to microspheres and transformation into hierarchical hollow spheres by Ostwald ripening. Furthermore, the hierarchical TNCuPc hollow spheres exhibited high adsorption capacity and excellent simultaneously visible-light-driven photocatalytic performance for Rhodamine B (RB) under visible light. A possible mechanism for the "aqueous-solid phase transfer and in situ photocatalysis" was suggested. Repetitive tests showed that the hierarchical TNCuPc hollow spheres maintained high catalytic activity over several cycles, and it had a better regeneration capability under mild conditions.

  19. Size Matters: Developing Design Rules to Engineer Nanoparticles for Solid Tumour Targeting

    NASA Astrophysics Data System (ADS)

    Sykes, Edward Alexander

    Nanotechnology enables the design of highly customizable platforms for producing minimally invasive and programmable strategies for cancer diagnosis and treatment. Advances in this field have demonstrated that nanoparticles can enhance specificity of anti-cancer agents, respond to tumour-specific cues, and direct the visualization of biological targets in vivo. . Nanoparticles can be synthesized within the 1 to 100 nm range to achieve different electromagnetic properties and specifically interact with biological tissues by tuning their size, shape, and surface chemistry. However, it remains unclear which physicochemical parameters are critical for delivering nanomaterials to the tumour site. With less than 5% of administered nanoparticles reaching the tumour, engineering of nanoparticles for effective delivery to solid tumours remains a critical challenge to cancer nanomedicine. A more comprehensive understanding of the interplay between the nanomaterial physicochemical properties and biological systems is necessary to enhance the efficacy of nanoparticle tumour targeting. This thesis explores how nanoparticle size and functionalization with cancer cell specific agents impact nanoparticle delivery to tumours. Furthermore, this doctoral work (i) discusses how tumour structure evolves with growth, (ii) elucidates how such changes modulate nanoparticle accumulation, and (iii) identifies how the skin serves as a significant off-target site for nanoparticle uptake. This thesis also demonstrates the utility of empirically-derived parametric models, Monte Carlo simulations, and decision matrices for mechanistically understanding and predicting the impact of nanomaterial features and tumour biology on nanoparticle fate in vivo. These topics establish key design considerations to tailor nanoparticles for enhanced tumour targeting. Collectively, the concepts presented herein form a fundamental framework for the development of personalized nanomedicine and nano

  20. Magnetic solid-phase extraction based on carbon nanotubes for the determination of polyether antibiotic and s-triazine drug residues in animal food with LC-MS/MS.

    PubMed

    Liu, Xiaoxing; Xie, Shuyu; Ni, Tengteng; Chen, Dongmei; Wang, Xu; Pan, Yuanhu; Wang, Yulian; Huang, Lingli; Cheng, Guyue; Qu, Wei; Liu, Zhenli; Tao, Yanfei; Yuan, Zonghui

    2017-06-01

    Carbon nanotubes-magnetic nanoparticles, comprising ferroferric oxide nanoparticles and carbon nanotubes, were prepared through a simple one-step synthesis method and subsequently applied to magnetic solid-phase extraction for the determination of polyether antibiotic and s-triazine drug residues in animal food coupled with liquid chromatography with tandem mass spectrometry. The nanocomposites were characterized by transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The components within the nanocomposites endowed the material with high extraction performance and manipulative convenience. Compared with carbon nanotubes, the as-prepared carbon nanotubes-magnetic nanoparticles showed better extraction and separation efficiencies for polyether antibiotics and s-triazine drugs thanks to the contribution of the iron-containing magnetic nanoparticles. Various experimental parameters affecting the extraction efficiency had been investigated in detail. Under the optimal conditions, the good linearity ranging from 1 to 200 μg/kg for diclazuril, toltrazuril, toltrazuril sulfone, lasalocid, monensin, salinomycin, narasin, nanchangmycin, and maduramicin, low limits of detection ranging from 1 to 5 μg/kg, and satisfactory spiked recoveries (77.1-91.2%, with the inter relative standard deviation values from 4.0 to 12.2%) were shown. It was confirmed that this novel method was an efficient pretreatment and enrichment procedure and could be successfully applied for extraction and determination of polyether and s-triazine drug residues in complex matrices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin

    2014-02-01

    A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.

  2. Allantoin as a solid phase adsorbent for removing endotoxins.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Gagnon, Pete

    2013-10-04

    In this study we present a simple and robust method for removing endotoxins from protein solutions by using crystals of the small-molecule compound 2,5-dioxo-4-imidazolidinyl urea (allantoin) as a solid phase adsorbent. Allantoin crystalline powder is added to a protein solution at supersaturated concentrations, endotoxins bind and undissolved allantoin crystals with bound endotoxins are removed by filtration or centrifugation. This method removes an average of 99.98% endotoxin for 20 test proteins. The average protein recovery is ∼80%. Endotoxin binding is largely independent of pH, conductivity, reducing agent and various organic solvents. This is consistent with a hydrogen-bond based binding mechanism. Allantoin does not affect protein activity and stability, and the use of allantoin as a solid phase adsorbent provides better endotoxin removal than anion exchange, polymixin affinity and biological affinity methods for endotoxin clearance. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. An innovative method for analysis of Pb (II) in rice, milk and water samples based on TiO2 reinforced caprylic acid hollow fiber solid/liquid phase microextraction.

    PubMed

    Bahar, Shahriyar; Es'haghi, Zarrin; Nezhadali, Azizollah; Banaei, Alireza; Bohlooli, Shahab

    2017-04-15

    In the present study, nano-sized titanium oxides were applied for preconcentration and determination of Pb(II) in aqueous samples using hollow fiber based solid-liquid phase microextraction (HF-SLPME) combined with flame atomic absorption spectrometry (FAAS). In this work, the nanoparticles dispersed in caprylic acid as an extraction solvent was placed into a polypropylene porous hollow fiber segment supported by capillary forces and sonification. This membrane was in direct contact with solutions containing Pb (II). The effect of experimental conditions on the extraction, such as pH, stirring rate, sample volume, and extraction time were optimized. Under the optimal conditions, the performance of the proposed method was investigated for the determination of Pb (II) in food and water samples. The method was linear in the range of 0.6-3000μgmL -1 . The relative standard deviations and relative recovery of Pb (II) was 4.9% and 99.3%, respectively (n=5). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles.

    PubMed

    Noriega-Peláez, Eddy Kei; Mendoza-Muñoz, Néstor; Ganem-Quintanar, Adriana; Quintanar-Guerrero, David

    2011-02-01

    The essential aim of this article is to prepare solid lipid nanoparticles (SLNs) by emulsification and solvent displacement method and to determine the best process conditions to obtain submicron particles. The emulsification and solvent displacement method is a modification of the well-known emulsification-diffusion method, but without dilution of the system. The extraction of the partially water-miscible solvent from the emulsion globules is carried out under reduced pressure, which causes the diffusion of the solvent toward the external phase, with subsequent lipid aggregation in particles whose size will depend on the process conditions. The critical variables affecting the process, such as stirring rate, the proportion of phases in the emulsion, and the amount of stabilizer and lipid, were evaluated and optimized. By this method, it was possible to obtain a high yield of solids in the dispersion for the lipids evaluated (Compritol(®) ATO 888, Geleol(®), Gelucire(®) 44/14, and stearic acid). SLNs of up to ∼20 mg/mL were obtained for all lipids evaluated. A marked reduction in size, between 500 and 2500 rpm, was seen, and a transition from micro- to nanometric size was observed. The smaller particle sizes obtained were 113 nm for Compritol(®) ATO 888, 70 nm for Gelucire(®) 44/14, 210 nm for Geleol(®), and 527 nm for stearic acid, using a rotor-stator homogenizer (Ultra-Turrax(®)) at 16,000 rpm. The best phase ratio (organic/aqueous) was 1 : 2. The process proposed in this study is a new alternative to prepare SLNs with technological potential.

  5. Solid-phase assays for small molecule screening using sol-gel entrapped proteins.

    PubMed

    Lebert, Julie M; Forsberg, Erica M; Brennan, John D

    2008-04-01

    With compound libraries exceeding one million compounds, the ability to quickly and effectively screen these compounds against relevant pharmaceutical targets has become crucial. Solid-phase assays present several advantages over solution-based methods. For example, a higher degree of miniaturization can be achieved, functional- and affinity-based studies are possible, and a variety of detection methods can be used. Unfortunately, most protein immobilization methods are either too harsh or require recombinant proteins and thus are not amenable to delicate proteins such as kinases and membrane-bound receptors. Sol-gel encapsulation of proteins in an inorganic silica matrix has emerged as a novel solid-phase assay platform. In this minireview, we discuss the development of sol-gel derived protein microarrays and sol-gel based monolithic bioaffinity columns for the high-throughput screening of small molecule libraries and mixtures.

  6. Diazepam-loaded solid lipid nanoparticles: design and characterization.

    PubMed

    Abdelbary, Ghada; Fahmy, Rania H

    2009-01-01

    The aim of the present study was to investigate the feasibility of the inclusion of a water-insoluble drug (diazepam, DZ) into solid lipid nanoparticles (SLNs), which offer combined advantages of rapid onset and prolonged release of the drug. This work also describes a new approach to prepare suppositories containing DZ-loaded SLN dispersions, as potential drug carrier for the rectal route. Modified high-shear homogenization and ultrasound techniques were employed to prepare SLNs. The effect of incorporation of different concentrations of Compritol ATO 888 or Imwitor 900K and Poloxamer 188 or Tween 80 was investigated. Results showed that varying the type or concentration of lipid matrix or surfactant had a noticeable influence on the entrapment efficiencies, particle size, and release profiles of prepared SLNs. Differential scanning calorimetry and X-ray diffraction measurements showed that the majority of SLNs possessed less ordered arrangements of crystals than the corresponding bulk lipids, which was favorable for increasing the drug loading capacity. Transmission electron microscopy and laser diffractometry studies revealed that the prepared nanoparticles were round and homogeneous and 60% of the formulations were less than 500 nm. Additionally, SLN formulations showed significant (P < 0.05) prolonged release than DZ solution. The subsequent step encompassed the preparation and evaluation of SLN-based suppositories utilizing SLN formulations that illustrated optimal release profiles. The in vitro release of DZ from the suppositories prepared using DZ-loaded SLN dispersions (equivalent to 2 mg DZ) was significantly (P < 0.05) extended compared to suppositories containing 2 mg DZ free drug.

  7. Application of dispersive liquid-liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry.

    PubMed

    Amoli-Diva, Mitra; Taherimaslak, Zohreh; Allahyari, Mehdi; Pourghazi, Kamyar; Manafi, Mohammad Hanif

    2015-03-01

    An efficient, simple and fast low-density solvent based dispersive liquid-liquid microextraction (LDS-DLLME) followed by vortex-assisted dispersive solid phase extraction (VA-D-SPE) has been developed as a new approach for extraction and preconcentration of aflatoxin M1 in milk samples prior to its micelle enhanced spectrofluorimetic determination. In this LDS-DLLME coupled VA-D-SPE method, milk samples were first treated with methanol/water (80:20, v/v) after removing the fat layer. This solvent was directly used as the dispersing solvent in DLLME along with using 1-heptanol (as a low-density solvent with respect to water) as the extracting solvent. In VA-D-SPE approach, hydrophobic oleic acid modified Fe3O4 nanoparticles were used to retrieve the analyte from the DLLME step. It is considerably that the target of VA-D-SPE was 1-heptanol rather than the aflatoxin M1 directly. The main parameters affecting the efficiency of LDS-DLLME and VA-D-SPE procedures and signal enhancement of aflatoxin M1 were investigated and optimized. Under the optimum conditions, the method was linear in the range from 0.02 to 200 µg L(-1) with the correlation coefficient (R(2)) of 0.9989 and detection limit of 13 ng L(-1). The intra-day precision was 2.9 and 4.3% and the inter-day precision was 2.1 and 3.3% for concentration of 2 and 50 µg L(-1) respectively. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells.

    PubMed

    Yang, Guangming; Zhou, Wei; Liu, Meilin; Shao, Zongping

    2016-12-28

    The successful development of low-cost, durable electrocatalysts for oxygen reduction reaction (ORR) at intermediate temperatures is critical for broad commercialization of solid oxide fuel cells. Here, we report our findings in design, fabrication, and characterization of a cobalt-free SrFe 0.85 Ti 0.1 Ni 0.05 O 3-δ cathode decorated with NiO nanoparticles. Exsolved from and well bonded to the parent electrode under well-controlled conditions, the NiO nanoparticles uniformly distributed on the surface of the parent electrode greatly enhance cathode performance, demonstrating ORR activity better than that of the benchmark cobalt-based Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ . Further, a process for regeneration of the NiO nanoparticles was also developed to mitigate potential performance degradation due to coarsening of NiO particles under practical operating conditions. As a general approach, this exsolution-dissolution of electrocatalytically active nanoparticles on an electrode surface may be applicable to the development of other high-performance cobalt-free cathodes for fuel cells and other electrochemical systems.

  9. Preparation of PbS Nanoparticles by Phase-Transfer Method and Application to Pb2+-Selective Electrode Based on PVC Membrane

    PubMed Central

    Song, Weihong; Wu, Chunhui; Yin, Hongzong; Liu, Xiaoyan; Sa, Panpan; Hu, Jinyang

    2008-01-01

    A novel approach to prepare homogeneous PbS nanoparticles by phase-transfer method was developed. The preparatory conditions were studied in detail, and the nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. Then a novel lead ion-selective electrode of polyvinyl chloride (PVC) membrane based on these lead sulfide nanoparticles was prepared, and the optimum ratio of components in the membrane was determined. The results indicated that the sensor exhibited a wide concentration range of 1.0×10−5 to 1.0×10−2 mol.L−1. The response time of the electrode was about 10 s, and the optimal pH in which the electrode could be used was from 3.0 to 7.0. Selectivity coefficients indicated that the electrode was selective to the primary ion over the interfering ion. The electrode can be used for at least 3 months without any divergence in potential. It was successfully applied to directly determine lead ions in solution and used as an indicator electrode in potentiometric titration of lead ions with EDTA. PMID:19112518

  10. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    NASA Astrophysics Data System (ADS)

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  11. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    PubMed

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modifying Si-based consolidants through the addition of colloidal nano-particles

    NASA Astrophysics Data System (ADS)

    Ksinopoulou, E.; Bakolas, A.; Moropoulou, A.

    2016-04-01

    The modification of silicon-based stone consolidants has been the subject of many scientific studies aiming to overcome the commonly reported drawbacks of these materials, such as the tendency to shrink and crack during drying. The addition of nano-particle dispersions into silica matrix has been found to enhance their effectiveness in several ways. Objective of the current research was to study the preparation of particle-modified consolidants (PMC), consisting of an ethyl silicate matrix (TEOS) loaded with colloidal silica (SiO2) nano-particles and oxide titania (TiO2) particles. The effect of the polyacrylic acid on the dispersion stability was also investigated, by varying its concentration into PMC samples. The prepared materials were allowed to dry in two different relative humidity environments and then evaluated based on their stability in the sol phase, the aggregation sizes, determined through dynamic light scattering, the % solids content and their morphological characteristics, observed via scanning electron microscopy (SEM-EDAX). Mercury intrusion porosimetry was also applied to investigate the microstructural characteristics and differences between the prepared consolidants. Significant role in the final form of the material is played by both the initial molar ratios in the mixtures, as well as the conditions where the drying and aging takes place. Based on the results, the three-component PMCs appear to be promising in stone consolidation, as they show a reduction in cracking and shrinkage during drying and a more porous network, compared with the siliceous material, or the two-component TEOS-SiO2 formulation.

  13. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures.

    PubMed

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-13

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.

  14. Prediction of binary nanoparticle superlattices from soft potentials

    NASA Astrophysics Data System (ADS)

    Horst, Nathan; Travesset, Alex

    2016-01-01

    Driven by the hypothesis that a sufficiently continuous short-ranged potential is able to account for shell flexibility and phonon modes and therefore provides a more realistic description of nanoparticle interactions than a hard sphere model, we compute the solid phase diagram of particles of different radii interacting with an inverse power law potential. From a pool of 24 candidate lattices, the free energy is optimized with respect to additional internal parameters and the p-exponent, determining the short-range properties of the potential, is varied between p = 12 and p = 6. The phase diagrams contain the phases found in ongoing self-assembly experiments, including DNA programmable self-assembly and nanoparticles with capping ligands assembled by evaporation from an organic solvent. The resulting phase diagrams can be mapped quantitatively to existing experiments as a function of only two parameters: Nanoparticle radius ratio (γ) and softness asymmetry.

  15. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  16. A surface phase transition of supported gold nanoparticles.

    PubMed

    Plech, Anton; Cerna, Roland; Kotaidis, Vassilios; Hudert, Florian; Bartels, Albrecht; Dekorsy, Thomas

    2007-04-01

    A thermal phase transition has been resolved in gold nanoparticles supported on a surface. By use of asynchronous optical sampling with coupled femtosecond oscillators, the Lamb vibrational modes could be resolved as a function of annealing temperature. At a temperature of 104 degrees C the damping rate and phase changes abruptly, indicating a structural transition in the particle, which is explained as the onset of surface melting.

  17. Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor

    NASA Astrophysics Data System (ADS)

    Arif, Mohd.; Sanger, Amit; Singh, Arun

    2018-03-01

    We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2-200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ˜ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (˜ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.

  18. Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification

    NASA Astrophysics Data System (ADS)

    Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong

    2014-12-01

    The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification

  19. Repaglinide-loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles.

    PubMed

    Ebrahimi, Hossein Ali; Javadzadeh, Yousef; Hamidi, Mehrdad; Jalali, Mohammad Barzegar

    2015-09-21

    Repaglinide is an efficient anti-diabetic drug which is prescribed widely as multi-dosage oral daily regimens. Due to the low compliance inherent to each multi-dosage regimen, development of prolonged-release formulations could enhance the overall drug efficacy in patient populations. Repaglinide-loaded solid lipid nanoparticles (SLNs) were developed and characterized in vitro. Various surfactants were used in this study during the nanocarrier preparation procedure and their corresponding effects on some physicochemical properties of SLNs such as size, zeta potential; drug loading parameters and drug release profiles was investigated. Stearic acid and glyceryl mono stearate (GMS) were used as lipid phase and phosphatidylcholin, Tween80, Pluronic F127, poly vinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were used as surfactant/stabilizer. The results showed some variations between formulations; where the Tween80-based SLNs showed smallest size, the phosphatidylcholin-based SLNs indicated most prolonged drug release time and the highest loading capacity. SEM images of these formulations showed morphological variations and also confirmed the nanoscale size of these particles. The FTIR and DSC results demonstrated no interaction between drug and excipients. The invitro release profiles of different formulations were studied and observed slow release of drug from all formulations. However significant differences were found among them in terms of their initial burst release as well as the whole drug release profile. From fitting these data to various statistical models, the Peppas model was proposed as the best model to describe the statistical indices and, therefore, mechanism of drug release. The results of this study confirmed the effect of surfactant type on SLNs physicochemical properties such as morphological features, loading parameters, particle sizes and drug release kinetic. With respect to the outcome data, the mixture of phosphatidylcholin/Pluronic F127

  20. Solid phase extraction membrane

    DOEpatents

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  1. Enhancement of in-vitro drug dissolution of ketoconazole for its optimal in-vivo absorption using Nanoparticles and Solid Dispersion forms of the drug

    NASA Astrophysics Data System (ADS)

    Syed, Mohammed Irfan

    Ketoconazole is one of the most widely prescribed oral antifungal drugs for the systemic treatment of various fungal infections. However, due its hydrophobic nature and poor solubility profiles in the gastro-intestinal fluids, variations in its bioavailability have been documented. Therefore, to enhance its dissolution in the biological fluids, this study was initiated to develop and evaluate Nanoparticles and Solid Dispersion forms of the drug. Nanoparticles of ketoconazole were developed by Wet Bead Milling technique using PVP-10k as the stabilizing material at a weight ratio of (2:1). Solid dispersion powder was prepared by Hot Melt method using PEG-8000 at a weight ratio of (1:2). A commercial product containing 200mg of ketoconazole tablet and pure drug powder were used as the control for comparison purposes. The dissolution studies were carried out in SGF, SIF, USP; and SIF with 0.2% sodium lauryl sulfate using the USP-II method for a 2 hours period. Physical characterizations were carried out using SEM, DSC, XRD and FTIR studies. Wet Bead Milling method yielded nanoparticles in the particles size range of (100-300nm.). First all samples were evaluated for their in-vitro dissolution in SGF at pH=1.2. After 15 minutes, the amounts of drug dissolved were observed to be 27% from both the pure powder and commercial tablet (control), 29% from solid dispersion and 100% from the Nanoparticles dosage form. This supports the fact that Nanoparticles had a strong influence on the dissolution rate of the drug and exhibited much faster dissolution of ketoconazole. When the same formulations were studied in the SIF, USP medium, the control formulation gave 3%, solid dispersion 8% and Nanoparticles 8% drug dissolution after 2 hours period. This could be because the weakly basic ketoconazole drug remained un-dissociated in the alkaline medium. Since this medium was unable to clearly distinguish the dissolution profiles from different formulation of the drug, the SIF solution

  2. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    NASA Astrophysics Data System (ADS)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  3. PEGylation of magnetic multi-walled carbon nanotubes for enhanced selectivity of dispersive solid phase extraction.

    PubMed

    Zeng, Qiong; Liu, Yi-Ming; Jia, Yan-Wei; Wan, Li-Hong; Liao, Xun

    2017-02-01

    Carbon nanotubes (CNTs) possess large potential as extraction absorbents in solid phase extraction. They have been widely applied in biomedicine research, while very rare application in natural product chemistry has been reported. In this work, methoxypolyethylene glycol amine (mPEG-NH 2 ) is covalently coupled to CNTs-magnetic nanoparticles (CNTs-MNP) to prepare a novel magnetic nanocomposite (PEG-CNTs-MNP) for use as dispersive solid-phase extraction (DSPE) absorbent. The average particle size was 86nm, and the saturation magnetization was 52.30emu/g. This nanocomposite exhibits excellent dispersibility in aqueous systems, high selectivity and fast binding kinetics when used for extraction of Z-ligustilide, the characteristic bioactive compound from two popular Asian herbal plants, R. chuanxiong and R. ligusticum. HPLC quantification of Z-ligustilide extracted from the standard sample solution showed a high recovery of 98.9%, and the extraction rate from the extracts of the above two herbs are both around 70.0%. To our knowledge, this is the first report on using PEG-CNTs-MNP as DSPE nanosorbents for selective extraction of natural products. This nano-material has promising application in isolation and enrichment of targeted components from complex matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mixed hemimicelles solid-phase extraction based on ionic liquid-coated Fe3O4/SiO2 nanoparticles for the determination of flavonoids in bio-matrix samples coupled with high performance liquid chromatography.

    PubMed

    He, Huan; Yuan, Danhua; Gao, Zhanqi; Xiao, Deli; He, Hua; Dai, Hao; Peng, Jun; Li, Nan

    2014-01-10

    A novel magnetic solid-phase extraction (MSPE) method based on mixed hemimicelles of room temperature ionic liquids (RTILs) coated Fe3O4/SiO2 nanoparticles (NPs) was developed for simultaneous extraction of trace amounts of flavonoids in bio-matrix samples. A comparative study on the use of RTILs (C16mimBr) and CTAB-coated Fe3O4/SiO2 NPs as sorbents was presented. Owing to bigger adsorption amounts for analytes, RTILs-coated Fe3O4/SiO2 NPs was selected as MSPE materials and three analytes luteolin, quercetin and kaempferol can be quantitatively extracted and simultaneously determined coupled with high performance liquid chromatography (HPLC) in urine samples. No interferences were caused by proteins or endogenous compounds. Good linearity (R(2)>0.9993) for all calibration curves was obtained, and the limits of detection (LOD) for luteolin, quercetin and kaempferol were 0.10 ng/mL, 0.50 ng/mL and 0.20 ng/mL in urine samples, respectively. Satisfactory recoveries (93.5-97.6%, 90.1-95.4% and 93.3-96.6% for luteolin, quercetin and kaempferol) in biological matrices were achieved. It was notable that while using a small amount of Fe3O4/SiO2 NPs (4.0 mg) and C16mimBr (1.0 mg), satisfactory preconcentration factors and extraction recoveries for the three flavonoids were obtained. To the best of our knowledge, this is the first time a mixed hemimicelles MSPE method based on RTILs and Fe3O4/SiO2 NPs magnetic separation has ever been used for pretreatment of complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish.

    PubMed

    Jia, Yun; Yu, Huimin; Wu, Li; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2015-06-16

    An environmentally friendly and fast sample treatment approach that integrates accelerated microwave digestion (MWD), solid phase extraction, and magnetic separation into a single step was developed for the determination of arsenic and antimony in fish samples by using Fe3O4 magnetic nanoparticles (MNPs). Compared to conventional microwave digestion, the consumption of HNO3 was reduced significantly to 12.5%, and the digestion time and temperature were substantially decreased to 6 min and 80 °C, respectively. This is largely attributed to Fe3O4 magnetic nanoparticles being a highly effective catalyst for rapid generation of oxidative radicals from H2O2, as well as an excellent absorber of microwave irradiation. Moreover, potential interferences from sample matrices were eliminated because the As and Sb species adsorbed on the nanoparticles were efficiently separated from the digests with a hand-held magnet prior to analysis. Limits of detection for arsenic and antimony were in the range of 0.01-0.06 μg g(-1) and 0.03-0.08 μg g(-1) by using hydride generation atomic fluorescence spectrometry, respectively, and further improved to 0.002-0.005 μg g(-1) and 0.005-0.01 μg g(-1) when inductively coupled plasma mass spectrometry was used as a detector. The precision of replicate measurements (n = 9) was better than 6% by analyzing 0.1 g test sample spiked with 1 μg g(-1) arsenic and antimony. The proposed method was validated by analysis of two certified reference materials (DORM-3 and DORM-4) with good recoveries (90%-106%).

  6. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, Clifford B.; Hackel, Lloyd A.

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  7. All solid-state SBS phase conjugate mirror

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  8. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E

    NASA Astrophysics Data System (ADS)

    Rute Neves, Ana; Fontes Queiroz, Joana; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Reis, Salette

    2015-12-01

    Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml-1 over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.

  9. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    PubMed

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  10. Kinetics of microbial reduction of Solid phase U(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming; Dohnalkova, Alice; Fredrickson, James K

    2006-10-15

    Sodium boltwoodite (NaUO2SiO3OH x 1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid-phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes.

  11. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures

    PubMed Central

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-01

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883

  12. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  13. The use of solid lipid nanoparticles to target a lipophilic molecule to the liver after intravenous administration to mice.

    PubMed

    Lu, Wen; He, Lang Chong; Wang, Chang He; Li, Yan Hua; Zhang, San Qi

    2008-10-01

    Taspine solid lipid nanoparticles (Ta-SLN) and taspine solid lipid nanoparticles modified by galactoside (Ta-G2SLN) were prepared by the film evaporation-extrusion method. The nanoparticles were spherical or near-spherical particles with smooth surface, small size and high encapsulation efficiency. Ta-G2SLN and Ta-SLN showed significant inhibition on 7721 cell growth. Intravenous injection of either Ta-SLN or Ta-G2SLN resulted in a higher plasma and liver concentration and a longer retention time in mice compared with the administration of Ta. These results suggested that SLN tended to be preferentially delivered to the liver and Ta-G2SLN may further enhance liver targeting.

  14. Astronomical observations of solid phase carbon

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1990-01-01

    In the outer envelopes of red giants, when the gas cools sufficiently, molecules and solids form. Thermodynamically, the most stable molecule is CO, and it is usually assumed that all the available carbon and oxygen are consumed in the formation of this molecule (Salpeter 1977). If the carbon abundance is greater than the oxygen abundance, then the carbon left over after the formation of CO is available for solid grains. Because carbon is by far the most abundant species available for making solids in these environments, researchers anticipate that the grains are composed of nearly pure carbon in some form. The observations which can be used to infer the nature of this solid phase carbon are discussed. The observations of the dust around carbon-rich red giants are discussed. These results are then placed into their broader astrophysical context.

  15. Prediction of binary nanoparticle superlattices from soft potentials

    DOE PAGES

    Horst, Nathan; Travesset, Alex

    2016-01-07

    Driven by the hypothesis that a sufficiently continuous short-ranged potential is able to account for shell flexibility and phonon modes and therefore provides a more realistic description of nanoparticle interactions than a hard sphere model, we compute the solid phase diagram of particles of different radii interacting with an inverse power law potential. From a pool of 24 candidate lattices, the free energy is optimized with respect to additional internal parameters and the p-exponent, determining the short-range properties of the potential, is varied between p = 12 and p = 6. The phase diagrams contain the phases found in ongoingmore » self-assembly experiments, including DNA programmable self-assembly and nanoparticles with capping ligands assembled by evaporation from an organic solvent. Thus, the resulting phase diagrams can be mapped quantitatively to existing experiments as a function of only two parameters: Nanoparticle radius ratio (γ) and softness asymmetry.« less

  16. Prediction of Binary Nanoparticle Superlattices from Soft Potentials

    NASA Astrophysics Data System (ADS)

    Horst, Nathan; Travesset, Alex

    Driven by the hypothesis that a sufficiently continuous short-ranged potential is able to account for shell flexibility and phonon modes and therefore provides a more realistic description of nanoparticle interactions than a hard sphere model, we compute the solid phase diagram of particles of different radii interacting with an inverse power law potential. We explore 24 candidate lattices where the p-exponent, determining the short-range properties of the potential, is varied between p=12 and p=6, and optimize the free energy with respect to additional internal parameters. The phase diagrams contain the phases found in ongoing self-assembly experiments, including DNA programmable self-assembly and nanoparticles with capping ligands assembled by evaporation from an organic solvent. The resulting phase diagrams can be mapped quantitatively to existing experiments as a function of only two parameters: nanoparticle radius ratio (γ) and softness asymmetry (SA). Supported by DOE under Contract Number DE-AC02-07CH11358.

  17. Spectral Properties of Gas-phase Condensed Fullerene-like Carbon Nanoparticles from Far-ultraviolet to Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Jäger, C.; Mutschke, H.; Henning, Th.; Huisken, F.

    2008-12-01

    Carbon solids are ubiquitous material in interstellar space. However, the formation pathway of carbonaceous matter in astrophysical environments, as well as in terrestrial gas-phase condensation reactions, is not yet understood. Laser ablation of graphite in different quenching gas atmospheres, such as pure He, He/H2, and He/H2O at varying pressures, is used to synthesize very small, fullerene-like carbon nanoparticles. The particles are characterized by very small diameters between 1 and 4 nm and a disturbed onion-like structure. The soot particles extracted from the condensation zone obviously represent a very early stage of particle condensation. The spectral properties have been measured from the far-ultraviolet (FUV; λ = 120 nm) to the mid-infrared (MIR; λ = 15 μm). The seedlike soot particles show strong absorption bands in the 3.4 μm range. The profile and the intensity pattern of the 3.4 μm band of the diffuse interstellar medium can be well reproduced by the measured 3.4 μm profile of the condensed particles; however, all the carbon which is left to form solids is needed to fit the intensity of the interstellar bands. In contrast to the assumption that onion-like soot particles could be the carriers of the interstellar ultraviolet (UV) bump, our very small onion-like carbon nanoparticles do not show distinct UV bands due to (π-π*) transitions.

  18. Phase-field model of vapor-liquid-solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  19. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.

    PubMed

    Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P

    2007-08-01

    Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.

  20. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    PubMed

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  1. Magnetic nanoparticles solid phase extraction for determination of ochratoxin A in cereals using high-performance liquid chromatography with fluorescence detection.

    PubMed

    Mashhadizadeh, Mohammad Hossein; Amoli-Diva, Mitra; Pourghazi, Kamyar

    2013-12-13

    A new, simple, fast, and environmental friendly sample preconcentration technique based on the modified Fe3O4 nanoparticles has been developed for extraction, and determination of ochratoxin A (OTA). Magnetic nanoparticles were coated with 3-(trimethoxysilyl)-1-propanethiol and modified by ethylene glycol bis-mercaptoacetate. Transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry were used to characterize the adsorbents and the main parameters affecting the extraction and desorption efficiencies, such as pH of sample solution, sample volume, desorption conditions, extraction and desorption times, salt addition, and co-existing interferences have been investigated and established. Under optimal conditions, OTA was extracted and analyzed using high performance liquid chromatography with fluorescence detection. The mobile phase consists of acetonitrile:water:acetic acid (99:99:2, v/v/v) and fluorescence detection was performed with excitation and emission wavelengths at 333 and 477nm, respectively. An enrichment factor of 24 was achieved for OTA with relative standard deviation of <7%. The proposed method was applied to twenty samples of cereals (rice, wheat, and corn). The limits of detection of 0.06, 0.03, and 0.05ngmL(-1) and limits of quantitation of 0.19, 0.11, and 0.15ngmL(-1), were found for rice, wheat, and corn samples, respectively. The recoveries of OTA for spiked samples were ranged from 87 to 93%. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide

    NASA Astrophysics Data System (ADS)

    Ning, Y.; Fielding, L. A.; Andrews, T. S.; Growney, D. J.; Armes, S. P.

    2015-04-01

    Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel

  3. Accelerated exploration of multi-principal element alloys with solid solution phases

    PubMed Central

    Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C.

    2015-01-01

    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction. PMID:25739749

  4. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.

    PubMed

    Thakur, Ranjit; Gupta, Ram B

    2006-02-03

    Nanoparticles are of significant importance in drug delivery. Rapid expansion of supercritical solution (RESS) process can produce pure and high-quality drug particles. However, due to extremely low solubility of polar drugs in supercritical CO(2) (sc CO(2)), RESS has limited commercial applicability. To overcome this major limitation, a modified process rapid expansion of supercritical solution with solid cosolvent (RESS-SC) is proposed which uses a solid cosolvent. Here, the new process is tested for phenytoin drug using menthol solid cosolvent. Phenytoin solubility in pure sc CO(2) is only 3 micromol/mol but when menthol solid cosolvent is used the solubility is enhanced to 1,302 micromol/mol, at 196 bar and 45 degrees C. This 400-fold increase in the solubility can be attributed to the interaction between phenytoin and menthol. Particle agglomeration in expansion zone is another major issue with conventional RESS process. In proposed RESS-SC process solid cosolvent hinders the particle growth resulting in the formation of small nanoparticles. For example, the average particle size of phenytoin in conventional RESS process is 200 nm whereas, with RESS-SC process, the average particle size is 120 nm, at 96 bar and 45 degrees C. Similarly at 196 bar and 45 degrees C, 105 nm average particles were obtained by RESS and 75 nm average particles were obtained in RESS-SC process. The particles obtained were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and differential scanning calorimetery (DSC) analyses. Phenytoin nanoparticle production rate in RESS-SC is about 400-fold more in comparison to that in RESS process.

  5. Morphology and phase control of iron oxide polymorph nanoparticles

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao; Wang, Li; Shi, Min; Li, Yanhong

    2017-04-01

    In this work, lepidocrocite (γ-FeOOH) nanobundles were prepared by a facile NH4F assisted epoxide precipitation route. The reactions between epoxide and [Fe(H2O)6]2+ promoted the hydrolysis and condensation of [Fe(H2O)6]2+, resulting in the formation of iron oxyhydroxide. After calcination of γ-FeOOH nanobundles at 400 °C, the produced α-Fe2O3 still kept the bundle morphology. Due to the unique chemistry of epoxide, the morphology and phase of iron oxide polymorph nanoparticles (goethite, akaganeite, lepidocrocite, magnetite) were well-controlled through controlling reaction conditions such as Fe2+ concentration, NH4F additive and reaction temperature. It is particularly interesting that NH4F working as phase controlling agent is able to control the phase development of iron oxyhydroxides. This phase control effect of NH4F is attributed to the promoted reaction rate of epoxide originating from the higher electronegativity of fluoride ions than chloride ions. Based on the results in this work and our other preliminary works, it is considered that this route can be used as a general strategy for controlling the morphology and phase of transition element compounds.

  6. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...

  7. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... obtained above prior to centrifugation and filtration. The solid phase includes all material settling to...

  8. Phase Behavior of Binary Mixture of Heptaethylene Glycol Decyl Ether and Water: Formation of Phase Compound in Solid Phase

    PubMed

    Nibu; Suemori; Inoue

    1997-07-01

    Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.

  9. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  10. Phase-field based Multiscale Modeling of Heterogeneous Solid Electrolytes: Applications to Nanoporous Li 3 PS 4

    DOE PAGES

    Hu, Jia-Mian; Wang, Bo; Ji, Yanzhou; ...

    2017-09-07

    Modeling the effective ion conductivities of heterogeneous solid electrolytes typically involves the use of a computer-generated microstructure consisting of randomly or uniformly oriented fillers in a matrix. But, the structural features of the filler/matrix interface, which critically determine the interface ion conductivity and the microstructure morphology, have not been considered during the microstructure generation. In using nanoporous β-Li 3PS 4 electrolyte as an example, we develop a phase-field model that enables generating nanoporous microstructures of different porosities and connectivity patterns based on the depth and the energy of the surface (pore/electrolyte interface), both of which are predicted through density functionalmore » theory (DFT) calculations. Room-temperature effective ion conductivities of the generated microstructures are then calculated numerically, using DFT-estimated surface Li-ion conductivity (3.14×10 -3 S/cm) and experimentally measured bulk Li-ion conductivity (8.93×10 -7 S/cm) of β-Li 3PS 4 as the inputs. We also use the generated microstructures to inform effective medium theories to rapidly predict the effective ion conductivity via analytical calculations. Furthemore, when porosity approaches the percolation threshold, both the numerical and analytical methods predict a significantly enhanced Li-ion conductivity (1.74×10 -4 S/cm) that is in good agreement with experimental data (1.64×10 -4 S/cm). The present phase-field based multiscale model is generally applicable to predict both the microstructure patterns and the effective properties of heterogeneous solid electrolytes.« less

  11. Long-chain ionic liquid based mixed hemimicelles and magnetic dispersed solid-phase extraction for the extraction of fluorescent whitening agents in paper materials.

    PubMed

    Wang, Qing; Qiu, Bin; Chen, Xianbo; Wang, Bin; Zhang, Hui; Zhang, Xiaoyuan

    2017-06-01

    A novel mixed hemimicelles and magnetic dispersive solid-phase extraction method based on long-chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe 3 O 4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent, and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02-10 ng/mL) and good linearity were attained (0.9997-0.9999). The intraday and interday RSDs were 2.1-8.3%. Limits of detection were 0.004-0.01 ng/mL, which were decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigation of phase diagrams and physical stability of drug-polymer solid dispersions.

    PubMed

    Lu, Jiannan; Shah, Sejal; Jo, Seongbong; Majumdar, Soumyajit; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Repka, Michael A

    2015-01-01

    Solid dispersion technology has been widely explored to improve the solubility and bioavailability of poorly water-soluble compounds. One of the critical drawbacks associated with this technology is the lack of physical stability, i.e. the solid dispersion would undergo recrystallization or phase separation thus limiting a product's shelf life. In the current study, the melting point depression method was utilized to construct a complete phase diagram for felodipine (FEL)-Soluplus® (SOL) and ketoconazole (KTZ)-Soluplus® (SOL) binary systems, respectively, based on the Flory-Huggins theory. The miscibility or solubility of the two compounds in SOL was also determined. The Flory-Huggins interaction parameter χ values of both systems were calculated as positive at room temperature (25 °C), indicating either compound was miscible with SOL. In addition, the glass transition temperatures of both solid dispersion systems were theoretically predicted using three empirical equations and compared with the practical values. Furthermore, the FEL-SOL solid dispersions were subjected to accelerated stability studies for up to 3 months.

  13. Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating Li XFePO 4 electrode particles

    DOE PAGES

    Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.

    2015-04-08

    In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less

  14. Magnetic solid lipid nanoparticles in hyperthermia against colon cancer.

    PubMed

    Muñoz de Escalona, María; Sáez-Fernández, Eva; Prados, José C; Melguizo, Consolación; Arias, José L

    2016-05-17

    A reproducible double emulsion/solvent evaporation procedure is developed to formulate magnetic solid lipid nanoparticles (average size≈180 nm) made of iron oxide cores embedded within a glyceryl trimyristate solid matrix. The physicochemical characterization of the nanocomposites ascertained the efficacy of the preparation conditions in their production, i.e. surface properties (electrokinetic and thermodynamic data) were almost indistinguishable from those of the solid lipid nanomatrix, while electron microscopy characterizations and X-ray diffraction patterns confirmed the satisfactory coverage of the magnetite nuclei. Hemocompatibility of the particles was established in vitro. Hysteresis cycle determinations defined the appropriate magnetic responsiveness of the nanocomposites, and their heating characteristics were investigated in a high frequency alternating gradient of magnetic field: a constant maximum temperature of 46 °C was obtained within 40 min. Finally, in vitro tests performed on human HT29 colon adenocarcinoma cells demonstrated a promising decrease in cell viability after treatment with the nanocomposites and exposure to that alternating electromagnetic field. To the best of our knowledge, this is the first time that such type of nanoformulation with very promising hyperthermia characteristics has been developed for therapeutic aims. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    NASA Astrophysics Data System (ADS)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  16. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    NASA Astrophysics Data System (ADS)

    Singh, Manish Kumar; Manda, Premkumar; Singh, A. K.; Mandal, R. K.

    2015-10-01

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ˜9 atom per cent; 8 atom per cent and Ag ˜ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  17. Chip-based magnetic solid phase microextraction coupled with ICP-MS for the determination of Cd and Se in HepG2 cells incubated with CdSe quantum dots.

    PubMed

    Yu, Xiaoxiao; Chen, Beibei; He, Man; Wang, Han; Hu, Bin

    2018-03-01

    The quantification of trace Cd and Se in cells incubated with CdSe quantum dots (QDs) is critical to investigate the cytotoxicity of CdSe QDs. In this work, a miniaturized platform, namely chip-based magnetic solid phase microextraction (MSPME) packing with sulfhydryl group functionalized magnetic nanoparticles, was fabricated and combined with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace Cd and Se in cells. Under the optimized conditions, the limits of detection (LOD) of the developed chip-based MSPME-ICP-MS system are 2.2 and 21ngL -1 for Cd and Se, respectively. The proposed method is applied successfully to the analysis of total and released small molecular fraction of Cd and Se in Human hepatocellular carcinoma cells (HepG2 cells) incubated with CdSe QDs, and the recoveries for the spiked samples are in the range of 86.0-109%. This method shows great promise to analyze cell samples and the obtained results are instructive to explore the cytotoxicity mechanism of CdSe QDs in cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.

    2018-06-01

    Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.

  19. Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam.

    PubMed

    Khalil, Rawia M; Abd-Elbary, A; Kassem, Mahfoz A; Ghorab, Mamdouh M; Basha, Mona

    2014-05-01

    The aim of this study was to develop nanostructured lipid carriers (NLCs) as well as solid lipid nanoparticles (SLNs) and evaluate their potential in the topical delivery of meloxicam (MLX). The effect of various compositional variations on their physicochemical properties was investigated. Furthermore, MLX-loaded lipid nanoparticles-based hydrogels were formulated and the gels were evaluated as vehicles for topical application. The results showed that NLC and SLN dispersions had spherical shapes with an average size between 215 and 430 nm. High entrapment efficiency was obtained ranging from 61.94 to 90.38% with negatively charged zeta potential in the range of -19.1 to -25.7 mV. The release profiles of all formulations exhibited sustained release characteristics over 48 h and the release rates increased as the amount of liquid lipid in lipid core increased. Finally, Precirol NLC with 50% Miglyol® 812 and its corresponding SLN were incorporated in hydrogels. The gels showed adequate pH, non-Newtonian flow with shear-thinning behavior and controlled release profiles. The biological evaluation revealed that MLX-loaded NLC gel showed more pronounced effect compared to MLX-loaded SLN gel. It can be concluded that lipid nanoparticles represent promising particulate carriers for topical application.

  20. Synthesis and characterization of arsenic-doped cysteine-capped thoria-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Pereira, F. J.; Díez, M. T.; Aller, A. J.

    2013-09-01

    Thoria materials have been largely used in the nuclear industry. Nonetheless, fluorescent thoria-based nanoparticles provide additional properties to be applied in other fields. Thoria-based nanoparticles, with and without arsenic and cysteine, were prepared in 1,2-ethanediol aqueous solutions by a simple precipitation procedure. The synthesized thoria-based nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (ED-XRS), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and fluorescence microscopy. The presence of arsenic and cysteine, as well as the use of a thermal treatment facilitated fluorescence emission of the thoria-based nanoparticles. Arsenic-doped and cysteine-capped thoria-based nanoparticles prepared in 2.5 M 1,2-ethanediol solutions and treated at 348 K showed small crystallite sizes and strong fluorescence. However, thoria nanoparticles subjected to a thermal treatment at 873 K also produced strong fluorescence with a very narrow size distribution and much smaller crystallite sizes, 5 nm being the average size as shown by XRD and TEM. The XRD data indicated that, even after doping of arsenic in the crystal lattice of ThO2, the samples treated at 873 K were phase pure with the fluorite cubic structure. The Raman and FT-IR spectra shown the most characteristics vibrational peaks of cysteine together with other peaks related to the bonds of this molecule to thoria and arsenic when present.

  1. Identification of unwanted photoproducts of cosmetic preservatives in personal care products under ultraviolet-light using solid-phase microextraction and micro-matrix solid-phase dispersion.

    PubMed

    Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta

    2015-04-17

    The photochemical transformation of widely used cosmetic preservatives including benzoates, parabens, BHA, BHT and triclosan has been investigated in this work applying an innovative double-approach strategy: identification of transformation products in aqueous photodegradation experiments (UV-light, 254nm), followed by targeted screening analysis of such photoproducts in UV-irradiated cosmetic samples. Solid-phase microextraction (SPME) was applied, using different fiber coatings, in order to widen the range of detectable photoproducts in water, whereas UV-irradiated personal care products (PCPs) containing the target preservatives were extracted by micro-matrix solid-phase dispersion (micro-MSPD). Both SPME and micro-MSPD-based methodologies were successfully optimized and validated. Degradation kinetics of parent species, and photoformation of their transformation by-products were monitored by gas chromatography coupled to mass spectrometry (GC-MS). Thirty nine photoproducts were detected in aqueous photodegradation experiments, being tentatively identified based on their mass spectra. Transformation pathways between structurally related by-products, consistent with their kinetic behavior were postulated. The photoformation of unexpected photoproducts such as 2- and 4-hydroxybenzophenones, and 2,8-dichlorodibenzo-p-dioxin in PCPs are reported in this work for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles

    PubMed Central

    Jiang, Shan; Zhu, Rongrong; He, Xiaolie; Wang, Jiao; Wang, Mei; Qian, Yechang; Wang, Shilong

    2017-01-01

    Curcumin (Cur) is a promising photosensitizer that could be used in photodynamic therapy. However, its poor solubility and hydrolytic instability limit its clinical use. The aim of the present study was to encapsulate Cur into solid lipid nanoparticles (SLNs) in order to improve its therapeutic activity. The Cur-loaded SLNs (Cur-SLNs) were prepared using an emulsification and low-temperature solidification method. The functions of Cur and Cur-SLNs were studied on the non-small cell lung cancer A549 cells for photodynamic therapy. The results revealed that Cur-SLNs induced ~2.27-fold toxicity higher than free Cur at a low concentration of 15 μM under light excitation, stocking more cell cycle at G2/M phase. Cur-SLNs could act as an efficient drug delivery system to increase the intracellular concentration of Cur and its accumulation in mitochondria; meanwhile, the hydrolytic stability of free Cur could be improved. Furthermore, Cur-SLNs exposed to 430 nm light could produce more reactive oxygen species to induce the disruption of mitochondrial membrane potential. Western blot analysis revealed that Cur-SLNs increased the expression of caspase-3, caspase-9 proteins and promoted the ratio of Bax/Bcl-2. Overall, the results from these studies demonstrated that the SLNs could enhance the phototoxic effects of Cur. PMID:28053531

  3. Determination of total antioxidant capacity of humic acids using CUPRAC, Folin-Ciocalteu, noble metal nanoparticle- and solid-liquid extraction-based methods.

    PubMed

    Karadirek, Şeyda; Kanmaz, Nergis; Balta, Zeynep; Demirçivi, Pelin; Üzer, Ayşem; Hızal, Jülide; Apak, Reşat

    2016-06-01

    Total antioxidant capacity (TAC) of humic acid (HA) samples was determined using CUPRAC (CUPric Reducing Antioxidant Capacity), FC (Folin-Ciocalteu), QUENCHER-CUPRAC, QUENCHER-FC, Ag-NP (Silver nanoparticle)‒ and Au-NP (Gold nanoparticle)‒based methods. Conventional FC and modified FC (MFC) methods were applied to solid samples. Because of decreased solubility of Folin-Ciocalteu's phenol reagent in organic solvents, solvent effect on TAC measurement was investigated using QUENCHER-CUPRAC assay by using ethanol:distilled water and dimethyl sulfoxide:distilled water with varying ratios. To see the combined effect of solubilization (leaching) and TAC measurement of humic acids simultaneously, QUENCHER experiments were performed at 25°C and 50°C; QUENCHER-CUPRAC and QUENCHER-FC methods agreed well and had similar precision in F-statistics. Although the Gibbs free energy change (ΔG°) of the oxidation of HA dihydroxy phenols with the test reagents were negative, the ΔG° was positive only for the reaction of CUPRAC reagent with isolated monohydric phenols, showing CUPRAC selectivity toward polyphenolic antioxidants. This is the first work on the antioxidant capacity measurement of HA having a sparingly soluble matrix where enhanced solubilization of bound phenolics is achieved with coupled oxidation by TAC reagents. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Solid-Phase Radioimmunoassay of Total and Influenza-Specific Immunoglobulin G

    PubMed Central

    Daugharty, Harry; Warfield, Donna T.; Davis, Marianne L.

    1972-01-01

    An antigen-antibody system of polystyrene tubes coated with immunoglobulin antibody was used for quantitating immunoglobulins. A similar radioimmunoassay method was adapted for a viral antigen-antibody system. The viral system can be used for quantitating viruses and for measuring virus-specific antibodies by reacting with 125iodine-labeled anti-immunoglobulin G (IgG). Optimal conditions for coating the solid phase, specificity of the immune reaction, and other kinetics and sensitivities of the assay method were investigated. Comparison of direct and indirect methods of assaying for immunoglobulins or viral antibody indicates that the indirect method is more sensitive and can quantitate a minimum of 0.037 μg of IgG per ml. Results of solid-phase radioimmunoassay for influenza antibody correlate well with hemagglutinin antibody titers but not with complement-fixing antibody titers. Radioimmunoassay results for influenza antibody by solid phase are likewise in agreement with results by the carrier precipitate radioimmunoassay method. The simplicity, reproducibility, and versatility of the solid-phase procedure make it diagnostically useful. PMID:5062884

  5. Bis(trifluoromethylsulfonyl)imide-based frozen ionic liquid for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites.

    PubMed

    Pang, Long; Yang, Peijie; Pang, Rong; Li, Shunyi

    2017-08-01

    1-Hexadecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is a solid-phase ionic organic material under ambient temperature and is considered as a kind of "frozen" ionic liquid. Because of their solid-state and ultra-hydrophobicity, "frozen" ionic liquids are able to be confined in the pores of hollow fiber, based on which a simple method was developed for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Under optimized conditions, the proposed method results in good linearity (R 2 > 0.9965) over the range of 0.5-50 μg/L, with low limits of detection and quantification in the range of 0.33-0.38 and 1.00-1.25 μg/L, respectively. Intra- and interday precisions evaluated by relative standard deviation were 3-6 and 1-6%, respectively. The spiked recoveries of dichlorodiphenyltrichloroethane and its main metabolites from real water samples were in the range of 64-113 and 79-112%, respectively, at two different concentration levels. The results suggest that "frozen" ionic liquids are promising for use as a class of novel sorbents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Automated solid-phase extraction hyphenated to voltammetry for the determination of quercetin using magnetic nanoparticles and sequential injection lab-on-valve approach.

    PubMed

    Wang, Yang; Wang, Lu; Tian, Tian; Hu, Xiaoya; Yang, Chun; Xu, Qin

    2012-05-21

    In this study, an automated sequential injection lab-on-valve (SI-LOV) system was designed for the on-line matrix removal and preconcentration of quercetin. Octadecyl functionalized magnetic silica nanoparticles were prepared and packed into the microcolumn of the LOV as adsorbents. After being adsorbed through hydrophobic interaction, the analyte was eluted and subsequently introduced into the electrochemical flow cell by voltammetric quantification. The main parameters affecting the performance of solid-phase extraction, such as sample pH and flow rate, eluent solution and volume, accumulation potential and accumulation time were investigated in detail. Under the optimum experimental conditions, a linear calibration curve was obtained in the range of 1.0 × 10(-8) to 1 × 10(-5) mol L(-1) with R(2) = 0.9979. The limit of detection (LOD) and limit of quantitation (LOQ) were 1.3 × 10(-9) and 4.3 × 10(-9) mol L(-1), respectively. The relative standard deviation (RSD) for the determination of 1.0 × 10(-6) mol L(-1) quercetin was found to be 2.9% (n = 11) along with a sampling frequency of 40 h(-1). The applicability and reliability of the automated method described here had been applied to the determination of quercetin in human urine and red wine samples through recovery experiments, and the obtained results were in good agreement with those obtained by the HPLC method.

  7. Does size matter? Study of performance of pseudo-ELISAs based on molecularly imprinted polymer nanoparticles prepared for analytes of different sizes.

    PubMed

    Cáceres, C; Canfarotta, F; Chianella, I; Pereira, E; Moczko, E; Esen, C; Guerreiro, A; Piletska, E; Whitcombe, M J; Piletsky, S A

    2016-02-21

    The aim of this work is to evaluate whether the size of the analyte used as template for the synthesis of molecularly imprinted polymer nanoparticles (nanoMIPs) can affect their performance in pseudo-enzyme linked immunosorbent assays (pseudo-ELISAs). Successful demonstration of a nanoMIPs-based pseudo-ELISA for vancomycin (1449.3 g mol(-1)) was demonstrated earlier. In the present investigation, the following analytes were selected: horseradish peroxidase (HRP, 44 kDa), cytochrome C (Cyt C, 12 kDa) biotin (244.31 g mol(-1)) and melamine (126.12 g mol(-1)). NanoMIPs with a similar composition for all analytes were synthesised by persulfate-initiated polymerisation in water. In addition, core-shell nanoMIPs coated with polyethylene glycol (PEG) and imprinted for melamine were produced in organics and tested. The polymerisation of the nanoparticles was done using a solid-phase approach with the correspondent template immobilised on glass beads. The performance of the nanoMIPs used as replacement for antibodies in direct pseudo-ELISA (for the enzymes) and competitive pseudo-ELISA for the smaller analytes was investigated. For the competitive mode we rely on competition for the binding to the nanoparticles between free analyte and corresponding analyte-HRP conjugate. The results revealed that the best performances were obtained for nanoMIPs synthesised in aqueous media for the larger analytes. In addition, this approach was successful for biotin but completely failed for the smallest template melamine. This problem was solved using nanoMIP prepared by UV polymerisation in an organic media with a PEG shell. This study demonstrates that the preparation of nanoMIP by solid-phase approach can produce material with high affinity and potential to replace antibodies in ELISA tests for both large and small analytes. This makes this technology versatile and applicable to practically any target analyte and diagnostic field.

  8. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    PubMed

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

  9. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.

    PubMed

    Patil, Hemlata; Kulkarni, Vijay; Majumdar, Soumyajit; Repka, Michael A

    2014-08-25

    Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. This work aimed at developing continuous and scalable processes for SLN by mixing a lipid and aqueous phase containing an emulsifier in the extruder barrel at temperatures above the melting point of the lipid and further reducing the particle size of emulsion by HPH linked to HME in a sequence. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm (for 60 mg/ml lipid solution at a flow rate of 100ml/min). Among the several process parameters investigated, the lipid concentration, residence time and screw design played major roles in influencing the size of the SLN. This new process demonstrates the potential use of hot melt extrusion technology for continuous and large-scale production of SLN. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Bulk and Thin film Properties of Nanoparticle-based Ionic Materials

    NASA Astrophysics Data System (ADS)

    Fang, Jason

    2008-03-01

    Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.

  11. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  12. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells

    NASA Astrophysics Data System (ADS)

    Hatke, A. T.; Liu, Yang; Magill, B. A.; Moon, B. H.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2014-06-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  13. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    PubMed Central

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M.

    2015-01-01

    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability. PMID:25660096

  14. Preparation and characterization of magnetic Wells-Dawson heteropoly acid nanoparticles for magnetic solid-phase extraction of aromatic amines in water samples.

    PubMed

    Amiri, Amirhassan; Saadati-Moshtaghin, Hamid Reza; Zonoz, Farokhzad Mohammadi; Targhoo, Azadeh

    2017-02-03

    In this work, aminopropyl modified silica-coated magnetite nanoparticles with Wells-Dawson heteropoly acid (P 2 W 17 Fe@APSCMNPs) was first synthesized and underwent highly efficient magnetic solid-phase extraction (MSPE) of aromatic amines from aqueous samples. The resulted nanomaterials were characterized with different physicochemical techniques such as Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). Aniline, N,N-dimethylaniline, o-toluidine and 3-chloroaniline were selected as target compounds. The sample quantification was carried out using gas chromatography-flame ionization detector (GC-FID). Under optimal working conditions, the developed method showed good linearity (R>0.9912) in the range of 0.01-100ngmL -1 . The method displays detection limits (at an S/N ration of 3) in the range from 0.003 to 0.01ngmL -1 , and the limits of quantification (at an S/N ratio of 10) are between 0.01 and 0.04ngmL -1 . The enrichment factors (EFs) were in the range of 75-113. Relative standard deviations (RSDs) are 4.8-8.3%. The applicability of the developed method was examined by analyzing different water samples (river water, tap water, well water and wastewater) and the relative recovery values for the spiked water samples were found to be in the range of 90.7-99.8%. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  16. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal.

    PubMed

    Lavrič, Marta; Cordoyiannis, George; Kralj, Samo; Tzitzios, Vassilios; Nounesis, George; Kutnjak, Zdravko

    2013-08-01

    Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.

  18. Optical and structural properties of Bi-based nanoparticles prepared via pulsed Nd:YAG laser ablation in organic liquids

    NASA Astrophysics Data System (ADS)

    Dadashi, S.; Poursalehi, R.; Delavari, H.

    2018-06-01

    Colloidal Bi/Bi2O3 and single phase Bi nanoparticles were synthesized by pulsed Nd:YAG laser ablation of metallic bismuth target in different organic liquids. In this research, the structural characteristic, optical properties, and colloidal stability of Bi and Bi/Bi2O3 nanoparticles have been studied. Furthermore, the mechanism of nanoparticles formation in liquid media by laser ablation of Bi-based nanoparticles was proposed in different liquid environments based on their chemical nature. X-ray diffraction, scanning electron microscopy and optical extinction spectroscopy indicate the formation of pure Bi and Bi/Bi2O3 nanoparticles with mean size of 32, 43 and 54 nm in methanol, ethanol, and EMK, respectively, which indicate a mixture of different phases including rhombohedra crystal structure of Bi, monoclinic α-Bi2O3, and tetragonal β-Bi2O3. Finally, this research demonstrates the effect of the surrounding environment on characteristic properties of nanoparticles and clarifies the size, structural characteristics, and optical properties of the synthesized nanoparticles.

  19. Solid lipid nanoparticles for the delivery of 1,3,5-triaza-7-phosphaadamantane (PTA) platinum (II) carboxylates.

    PubMed

    Sguizzato, Maddalena; Cortesi, Rita; Gallerani, Eleonora; Drechsler, Markus; Marvelli, Lorenza; Mariani, Paolo; Carducci, Federica; Gavioli, Riccardo; Esposito, Elisabetta; Bergamini, Paola

    2017-05-01

    The use of solid lipid nanoparticles (SLN) is a promising route for the delivery of platinum complexes aimed to anticancer activity. This paper describes the production and characterization of SLN suitable for the loading of Pt complexes containing the biocompatible phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) as neutral ligand. After a screening of several lipidic phases, stearic acid-based SLN were identified as the most appropriate for the purpose. They were produced by emulsion-dilution method and then characterized in terms of dimension, polydispersity, time stability, pH balance and morphological aspect. Stearic acid SLN are designed as a system able to coordinate to platinum, acting as anionic carboxylic ligands, replacing the base carbonate of the Pt synthon [PtCO 3 (DMSO) 2 ], where also DMSO can subsequently be substituted by phosphinic ligands, namely PTA. SLN functionalised with Pt-PTA were produced and characterized by this synthetic route. The toxicity of plain SLN and the antiproliferative effect of SLN functionalised with Pt-PTA were evaluated on two human cancer cell lines K562 and A2780. The results indicate that SLN can be exploited as a delivery system for Pt complexes with potential anticancer activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation.

    PubMed

    Schuffenhauer, Christoph; Parkinson, Bruce A; Jin-Phillipp, Neng Yun; Joly-Pottuz, Lucile; Martin, Jean-Michel; Popovitz-Biro, Ronit; Tenne, Reshef

    2005-11-01

    Motivated by the discovery of the C(60) molecule (buckminsterfullerene), the search for inorganic counterparts of this closed-cage nanostructure started in 1992 with the discovery of nested fullerene-like nanoparticles of WS(2). Inorganic fullerene-like (IF) materials have since been found in numerous two-dimensional compounds and are available in a variety of shapes that offer major applications such as in lubricants and nanocomposites. Various synthetic methodologies have been employed to achieve the right conditions for the constricted or templated growth needed for the occurrence of this new phase. In this study, IF-TaS(2) is produced from a volatile chloride precursor in the gas phase and in small yield by room temperature laser ablation both in argon and in liquid CS(2). For the gas-phase reaction, a high yield of IF nanoparticles was obtained between 400 and 600 degrees C with a low concentration of the precursor gas. The average size and the yield of the IF-TaS(2) nanoparticles decrease with temperature. Above 600 degrees C, IF nanoparticles were found in low yields and at sizes below 20 nm. The stability of the IF nanoparticles produced by the gas-phase reaction is discussed in the light of two existing theoretical models. Laser ablation in argon leads to IF nanoparticles filled with clusters of TaS(2). Agglomeration of the nanoparticles can be avoided by laser ablation in liquid CS(2).

  1. Selective solid-phase extraction using a molecularly imprinted polymer for the analysis of patulin in apple-based foods.

    PubMed

    Lucci, Paolo; Moret, Sabrina; Bettin, Sara; Conte, Lanfranco

    2017-01-01

    The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid-phase extraction sorbent for the clean-up and pre-concentration of patulin from apple-based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2-100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid-phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple-based foods such as juice, puree and jam samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  3. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  4. Phase Behavior of Complex Superprotonic Solid Acids

    NASA Astrophysics Data System (ADS)

    Panithipongwut, Chatr

    Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4) 2-RbHSO4 system, Rb3H(SeO4)2-Cs 3H(SeO4)2 solid solution system, and Cs6 (H2SO4)3(H1.5PO4) 4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems. Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO 4 and the previously unknown compound Rb5H3(SO 4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3m of Cs5H 3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity. The compounds Rb3H(SeO4)2 and Cs 3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member. The compound Cs6(H2

  5. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    PubMed

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Antimicrobial activity of spherical silver nanoparticles prepared using a biocompatible macromolecular capping agent: evidence for induction of a greatly prolonged bacterial lag phase

    USDA-ARS?s Scientific Manuscript database

    We have evaluated the antimicrobial properties of Ag-based nanoparticles (Np) using two solid platform-based bioassays and found that 10-20 uL of 0.3-3 uM keratin-based Nps (depending on the starting bacteria concentration = CI) completely inhibited the growth of an equivalent volume of ca. 1,000 to...

  7. Silicon carbide nanomaterial as a coating for solid-phase microextraction.

    PubMed

    Tian, Yu; Feng, Juanjuan; Wang, Xiuqin; Sun, Min; Luo, Chuannan

    2018-01-26

    Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless-steel wire and used as a solid-phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1-30, 0.03-30, and 0.01-30 μg/L) with satisfactory correlation coefficients (0.9922-0.9966) and low detection limits (0.003-0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid-phase microextraction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Solid-phase microextraction/gas chromatography-mass spectrometry method optimization for characterization of surface adsorption forces of nanoparticles.

    PubMed

    Omanovic-Miklicanin, Enisa; Valzacchi, Sandro; Simoneau, Catherine; Gilliland, Douglas; Rossi, Francois

    2014-10-01

    A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671-675, 2010; Xia et al. ACS Nano 5(11):9074-9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic--and by extension biological--entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further

  9. Novel and versatile solid-state chemiluminescence sensor based on TiO2-Ru(bpy)32+ nanoparticles for pharmaceutical drugs detection

    NASA Astrophysics Data System (ADS)

    Al-Hetlani, Entesar; Amin, Mohamed O.; Madkour, Metwally

    2018-02-01

    This work describes a novel and versatile solid-state chemiluminescence sensor for analyte detection using TiO2-Ru(bpy)32+-Ce(IV). Herein, we report the synthesis, characterization, optimization and application of a new type of hybrid nanoparticles (NPs). Mesoporous TiO2-Ru(bpy)32+ NPs were prepared using a modified sol-gel method by incorporating Ru(bpy)32+ into the initial reaction mixture at various concentrations. The resultant bright orange precipitate was characterized via transmission electron microscopy, N2 sorpometry, inductively coupled plasma-optical emission spectrometer (ICP-OES), Raman and UV-Vis spectroscopy techniques. The concentration of Ru(bpy)32+ complex in the NPs was quantified using ICP-OES, and its chemiluminescence (CL) response was measured and compared with the same concentration in the liquid phase using oxalate as model analyte. The results showed that this type of hybrid material exhibited a higher CL signal compared with the liquid phase due to the enlarged surface area of the hybrid NPs ( 149.6 m2/g). The amount of TiO2-Ru(bpy)32+ NPs and the effect of the analyte flow rate were also investigated to optimize the CL signal. The optimized system was further used to detect oxalate and two pharmaceutical drugs, namely, imipramine and promazine. The linear range for both drugs was 1-100 pm with limits of detection (LOD) of 0.1 and 0.5 pm, respectively. This approach is considered to be simple, low cost and facile and can be applied to a wide range of analytes.

  10. Biomimetic Solid Lipid Nanoparticles of Sophorolipids Designed for Antileprosy Drugs.

    PubMed

    Kanwar, Rohini; Gradzielski, Michael; Mehta, S K

    2018-06-22

    The objective of the present work was to develop solid lipid nanoparticles (SLNs) as drug-encapsulating structures by the solvent injection method. In this report, for the first time the inherent potential of lactonic sophorolipid (glycolipid) was exploited to formulate SLNs. A range of different Pluronic copolymers were screened by dynamic and static light scattering with the aim of obtaining most stable SLNs. To comprehend the structure of the SLNs, techniques such as transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction were employed. A clear correlation between the type of Pluronic and size and stability of the SLNs could be drawn. The vector properties of the formed SLNs were assessed for both the encapsulated hydrophobic drugs-rifampicin and dapsone. To elucidate the transport mechanism of drug release, kinetic modeling was carried out on the drug release profiles. The promising results of sophorolipid-based SLNs have actually established a new arena beneath the significantly developed field of SLNs.

  11. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples.

    PubMed

    Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C

    2001-12-14

    A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.

  12. Nanoparticles based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Sharma, Navneet K.

    2018-05-01

    Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.

  13. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.

    PubMed

    Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan

    2017-01-18

    Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.

  14. A microstructure-based model for shape distortion during liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Anish

    Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under

  15. Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Monahan, Bradley Michael

    Semiconductor nanoparticles have been an important area of research in many different disciplines. A substantial amount of this work has been put toward advancing the field of photovoltaics. However, current p-type photovoltaic materials can not sustain the large scale production needed for future energy demands due to their low elemental abundance. Therefore, Earth abundant semiconductor materials have become of great interest to the photovoltaic community especially, the material copper zinc tin sulfide (CZTS), also known by its mineral name kesterite. CZTS exhibits desirable properties for photovoltaics, such as elemental abundance, high absorption coefficient (~104 cm-1 ), high carrier concentration, and optimum direct band gap (1.5 eV). To date, solution based approaches for making CZTS have yielded the most promising conversion efficiencies in solar cells. To that end, the motivation of nanoparticle based inks that can be used in high throughput production are an attractive route for large scale deployment. This has driven the need to make high quality CZTS nanoparticles that possess the properties of the pure kesterite phase with high monodispersity that can be deposited into dense thin films. The inherent challenge of making a quaternary compound of a single phase has made this a difficult task; however, some of those fundamental problems are addressed in this thesis. This had resulted in the synthesis of phase-pure k-CZTS confirmed by powder X-ray diffraction, Raman spectroscopy, UV-visible absorption spectroscopy and energy dispersive x-ray spectroscopy. Furthermore, ultra-fast laser spectroscopy was done on CZTS thin films made from phase-pure kesterite nanoparticles synthesized in this work. This thesis provides new data that directly probes the lifetime of photogenerated free carriers in kesterite CZTS (k-CZTS) thin films.

  16. The role of solid-solid phase transitions in mantle convection

    NASA Astrophysics Data System (ADS)

    Faccenda, Manuele; Dal Zilio, Luca

    2017-01-01

    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  17. Curvature induced phase stability of an intensely heated liquid

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Liang, Zhi; Cahill, David G.; Keblinski, Pawel

    2014-06-01

    We use non-equilibrium molecular dynamics simulations to study the heat transfer around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. We focus our studies on the role of the nanoparticle curvature on the liquid phase stability under steady-state heating. For small nanoparticles we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, for particles with radius smaller than a critical radius of 2 nm we do not observe formation of vapor even above the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain the stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy.

  18. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    NASA Astrophysics Data System (ADS)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase

  19. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  20. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    PubMed

    Tóth, Blanka; Horvai, George

    2012-01-01

    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  1. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    NASA Astrophysics Data System (ADS)

    Hufschmid, Ryan; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical applications requiring precise control over their physical and magnetic properties, which are dependent on their size and crystallographic phase. Here we present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting magnetic properties. We investigate critical parameters for synthesis of monodisperse SPIONs by organic thermal decomposition. Three different, commonly used, iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) are evaluated under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution, phase, and magnetic properties. In particular, large quantities of excess surfactant (up to 25 : 1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase, in addition to nanoparticle size and shape, is critical for establishing magnetic properties such as differential susceptibility (dm/dH) and anisotropy. As an example, we show the importance of obtaining the required size and iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled. These results provide much of the information necessary to determine which iron oxide synthesis protocol is best suited to a particular

  2. Polymer-functionalized nanoparticles for improving oil displacement

    NASA Astrophysics Data System (ADS)

    Fossati, Ana B.; Martins Alho, Miriam; Jacobo, Silvia E.

    2018-03-01

    This work focuses on the synthesis, functionalization, and characterization of magnetic nanoparticles to be used for improving the oil recovery in the oil exploitation industry. In this manuscript we explore three different types of hydrophobic/hydrophilic functionalization through a silanized particle: with styrene, with acrylic acid and with a copolymer of styrene and maleic acid. Further application of such nanoparticles dispersions (nanofluid) are discussed as the wetting and spreading behaviour of liquids on the solid surfaces change if the wettability of solid surface is altered. In order to investigate the influence of wettability alternation on enhancing oil recovery after nanofluid treatment, flushing oil experiment and contact angle measurement were conducted in our laboratory. The results indicated that nanofluid can produce a better flushing efficiency compared with brine solution, and the contact angles of oil phase increased from 13° to 37° after nanofluid treatment (0.005% w/w). We focus on the synthesis of magnetic iron oxide nanoparticles considering recovering possibility.

  3. Nanoparticle-based biologic mimetics

    PubMed Central

    Cliffel, David E.; Turner, Brian N.; Huffman, Brian J.

    2009-01-01

    Centered on solid chemistry foundations, biology and materials science have reached a crossroad where bottom-up designs of new biologically important nanomaterials are a reality. The topics discussed here present the interdisciplinary field of creating biological mimics. Specifically, this discussion focuses on mimics that are developed using various types of metal nanoparticles (particularly gold) through facile synthetic methods. These methods conjugate biologically relevant molecules, e.g., small molecules, peptides, proteins, and carbohydrates, in conformationally favorable orientations on the particle surface. These new products provide stable, safe, and effective substitutes for working with potentially hazardous biologicals for applications such as drug targeting, immunological studies, biosensor development, and biocatalysis. Many standard bioanalytical techniques can be used to characterize and validate the efficacy of these new materials, including quartz crystal microbalance (QCM), surface plasmon resonance (SPR), and enzyme-linked immunosorbent assay (ELISA). Metal nanoparticle–based biomimetics continue to be developed as potential replacements for the native biomolecule in applications of immunoassays and catalysis. PMID:20049778

  4. A statistical approach to the brittle fracture of a multi-phase solid

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lua, Y. I.; Belytschko, T.

    1991-01-01

    A stochastic damage model is proposed to quantify the inherent statistical distribution of the fracture toughness of a brittle, multi-phase solid. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. Due to the high concentration of microcracks near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated first for an arbitrary array of cracks. The effects of uncertainties in locations and orientations of microcracks at a macro-tip are analyzed quantitatively by using the boundary integral equations method in conjunction with the computer simulation of the random microcrack array. The short range interactions resulting from surrounding microcracks closet to the main crack tip are investigated. The effects of microcrack density parameter are also explored in the present study. The validity of the present model is demonstrated by comparing its statistical output with the Neville distribution function, which gives correct fits to sets of experimental data from multi-phase solids.

  5. THE DISTRIBUTION, SOLID-PHASE SPECIATION, AND DESORPTION/DISSOLUTION OF AS IN IRON-BASED TREATMENT MEDIA

    EPA Science Inventory

    Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These re...

  6. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  7. Transport characteristics and colossal dielectric response of cadmium sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq; Rafiq, M. A.; Hasan, M. M.

    2013-10-01

    We report here the synthesis of ˜20 nm sized cadmium sulfide (CdS) nanoparticles via conventional solid state reaction at low temperature ˜200 °C and ambient pressure. X-ray diffraction and high resolution transmission electron microscopy analysis confirmed the synthesis of hexagonal phased nanoparticles. Impedance and electrical modulus investigations were carried out in the frequency range 20 Hz to 2 MHz and at temperature from 300 K to 400 K, which show the presence of bulk, grain boundary, and sub-grain boundary phases in CdS nanoparticles. Overlapped large polaron tunneling was the observed mechanism of charge carriers in used temperature range. The presence of colossal dielectric constant in the system is attributed to the Maxwell-Wagner type polarization. High and temperature dependent dielectric constants make the CdS nanoparticles efficient material to be used in capacitive energy storage devices.

  8. Employment of cationic solid-lipid nanoparticles as RNA carriers.

    PubMed

    Montana, Giovanna; Bondì, Maria L; Carrotta, Rita; Picone, Pasquale; Craparo, Emanuela F; San Biagio, Pier L; Giammona, Gaetano; Di Carlo, Marta

    2007-01-01

    Gene transfer represents an important advance in the treatment of both genetic and acquired diseases. In this article, the suitability of cationically modified solid-lipid nanoparticles (SLN) as a nonviral vector for gene delivery was investigated, in order to obtain stable materials able to condense RNA. Cationic SLN were produced by microemulsion using Compritol ATO 888 as matrix lipid, Pluronic F68 as tenside, and dimethyldioctadecylammonium bromide (DDAB) as cationic lipid. The resulting particles were approximately 100 nm in size and showed a highly positive surface charge (+41 mV) in water. Size and shape were further characterized by scanning electron microscopy (SEM) measurements. Moreover, we utilized the sea urchin as a model system to test their applicability on a living organism. To evaluate cationic SLN ability to complex the in vitro transcribed Paracentrotus lividus bep3 RNA, we utilized both light scattering and gel mobility experiments, and protection by nuclease degradation was also investigated. By microinjection experiment, we demonstrated that the nanoparticles do not inference with the viability of the P. lividus embryo and the complex nanoparticles-bep3 permits movement of the RNA during its localization in the egg, suggesting that it could be a suitable system for gene delivery. Taken together, all these results indicate that the cationic SNL are a good RNA carrier for gene transfer system and the sea urchin a simple and versatile candidate to test biological properties of nanotechnology devices.

  9. Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals.

    PubMed

    Yabu, Shuhei; Tanaka, Yuma; Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Kikuchi, Hirotsugu; Ozaki, Masanori

    2011-09-15

    Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.

  10. Templated assembly of Co-Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films.

    PubMed

    Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A

    2013-01-07

    Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.

  11. Ultrasonic assisted dispersive solid-phase microextraction of Eriochrome Cyanine R from water sample on ultrasonically synthesized lead (II) dioxide nanoparticles loaded on activated carbon: Experimental design methodology.

    PubMed

    Bahrani, Sonia; Ghaedi, Mehrorang; Mansoorkhani, Mohammad Javad Khoshnood; Asfaram, Arash; Bazrafshan, Ali Akbar; Purkait, Mihir Kumar

    2017-01-01

    The present research focus on designing an appropriate dispersive solid-phase microextraction (UA-DSPME) for preconcentration and determination of Eriochrome Cyanine R (ECR) in aqueous solutions with aid of sonication using lead (II) dioxide nanoparticles loaded on activated carbon (PbO-NPs-AC). This material was fully identified with XRD and SEM. Influence of pH, amounts of sorbent, type and volume of eluent, and sonication time on response properties were investigated and optimized by central composite design (CCD) combined with surface response methodology using STATISTICA. Among different solvents, dimethyl sulfoxide (DMSO) was selected as an efficient eluent, which its combination by present nanoparticles and application of ultrasound waves led to enhancement in mass transfer. The predicted maximum extraction (100%) under the optimum conditions of the process variables viz. pH 4.5, eluent 200μL, adsorbent dosage 2.5mg and 5min sonication was close to the experimental value (99.50%). at optimum conditions some experimental features like wide 5-2000ngmL -1 ECR, low detection limit (0.43ngmL -1 , S/N=3:1) and good repeatability and reproducibility (relative standard deviation, <5.5%, n=12) indicate versatility in successful applicability of present method for real sample analysis. Investigation of accuracy by spiking known concentration of ECR over 200-600ngmL -1 gave mean recoveries from 94.850% to 101.42% under optimal conditions. The procedure was also applied for the pre-concentration and subsequent determination of ECR in tap and waste waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Solid lipid nanoparticles for pulmonary delivery of insulin.

    PubMed

    Liu, Jie; Gong, Tao; Fu, Hualin; Wang, Changguang; Wang, Xiuli; Chen, Qian; Zhang, Qin; He, Qin; Zhang, Zhirong

    2008-05-22

    Growing attention has been given to the potential of pulmonary route as an alternative for non-invasive systemic delivery of therapeutic agents. In this study, novel nebulizer-compatible solid lipid nanoparticles (SLNs) for pulmonary drug delivery of insulin were developed by reverse micelle-double emulsion method. The influences of the amount of sodium cholate (SC) and soybean phosphatidylcholine (SPC) on the deposition properties of the nanoparticles were investigated. Under optimal conditions, the entrapment delivery (ED), respirable fraction (RF) and nebulization efficiency (NE) of SLNs could reach 96.53, 82.11 and 63.28%, respectively, and Ins-SLNs remained stable during nebulization. Fasting plasma glucose level was reduced to 39.41% and insulin level was increased to approximately 170 microIU/ml 4h after pulmonary administration of 20 IU/kg Ins-SLNs. A pharmacological bioavailability of 24.33% and a relative bioavailability of 22.33% were obtained using subcutaneous injection as a reference. Incorporating fluorescent-labelled insulin into SLNs, we found that the SLNs were effectively and homogeneously distributed in the lung alveoli. These findings suggested that SLNs could be used as a potential carrier for pulmonary delivery of insulin by improving both in vitro and in vivo stability as well as prolonging hypoglycemic effect, which inevitably resulted in enhanced bioavailability.

  13. Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid phase extraction trace amount of celecoxib from human plasma samples using design expert (DXB) software.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas; Tashkhourian, Javad; Asadallahzadeh, Hamideh

    2016-11-01

    In this work molecular imprinted nanoparticles (MINPs) was synthesized and applied for ultrasonic assisted solid phase extraction of celecoxib (CEL) from human plasma sample following its combination by HPLC-UV. The MINPs were prepared in a non-covalent approach using methacrylic acid as monomer, CEL as template, ethylene glycol dimethacrylate as cross-linker, and 2,2-azobisisobutyronitrile (AIBN) as the initiator of polymerization. pH, volume of rinsing and eluent solvent and amount of sorbent influence on response were investigated using factorial experimental design, while optimum point was achieved and set as 250mg sorbent, pH 7.0, 1.5mL washing solvent and 2mL eluent by analysis of results according to design expert (DX) software. At above specified conditions, CEL in human plasma with complicated matrices with acceptable high recoveries (96%) and RSD% lower than 10% was quantified and estimated. The proposed MISPE-HPLC-UV method has linear responses among peak area and concentrations of CEL in the range of 0.2-2000μgL(-1), with regression coefficient of 0.98. The limit of detection (LOD) and quantification (LOQ) based on three and ten times of the noise of HPLC peaks correspond to blank solution were 0.08 and 0.18μgL(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Photothermal quantitative phase imaging of living cells with nanoparticles utilizing a cost-efficient setup

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Isbach, Michael; Ketelhut, Steffi; Greve, Burkhard; Schnekenburger, Jürgen; Shaked, Natan T.; Kemper, Björn

    2017-02-01

    We explored photothermal quantitative phase imaging (PTQPI) of living cells with functionalized nanoparticles (NPs) utilizing a cost-efficient setup based on a cell culture microscope. The excitation light was modulated by a mechanical chopper wheel with low frequencies. Quantitative phase imaging (QPI) was performed with Michelson interferometer-based off-axis digital holographic microscopy and a standard industrial camera. We present results from PTQPI observations on breast cancer cells that were incubated with functionalized gold NPs binding to the epidermal growth factor receptor. Moreover, QPI was used to quantify the impact of the NPs and the low frequency light excitation on cell morphology and viability.

  15. Confined Pattern-Directed Assembly of Polymer-Grafted Nanoparticles in a Phase Separating Blend with a Homopolymer Matrix.

    PubMed

    Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir

    The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.

  16. Binary nanoparticle superlattices of soft-particle systems

    DOE PAGES

    Travesset, Alex

    2015-08-04

    The solid-phase diagram of binary systems consisting of particles of diameter σ A=σ and σ B=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversitymore » observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.« less

  17. Solid Phase Micro Extraction (SPME)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Internation Flavors and Fragrances Inc. proprietary research technology, Solid Phase Micro Extraction (SPME) utilizes a special fiber needle placed directly next to the bloom of the living flower to collect the fragrance molecules. SPME was used in the Space Flower experiment aboard STS-95 space shuttle mission, after which Dr. Braja Mookherjee (left) and Subha Patel of IFF will analyze the effects of gravity on the Overnight Scentsation rose plant.

  18. Automated solid-phase subcloning based on beads brought into proximity by magnetic force.

    PubMed

    Hudson, Elton P; Nikoshkov, Andrej; Uhlen, Mathias; Rockberg, Johan

    2012-01-01

    In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications.

  19. Automated Solid-Phase Subcloning Based on Beads Brought into Proximity by Magnetic Force

    PubMed Central

    Hudson, Elton P.; Nikoshkov, Andrej; Uhlen, Mathias; Rockberg, Johan

    2012-01-01

    In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications. PMID:22624028

  20. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.

    2015-12-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  1. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    PubMed

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  2. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

    PubMed Central

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries. PMID:26634644

  3. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers.

    PubMed

    Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei

    2013-11-07

    Flexible all-solid-state supercapacitors based on graphene fibers are demonstrated in this study. Surface-deposited oxide nanoparticles are used as pseudo-capacitor electrodes to achieve high capacitance. This supercapacitor electrode has an areal capacitance of 42 mF cm(-2), which is comparable to the capacitance for fiber-based supercapacitors reported to date. During the bending and cycling of the fiber-based supercapacitor, the stability could be maintained without sacrificing the electrochemical performance, which provides a novel and simple way to develop flexible, lightweight and efficient graphene-based devices.

  4. Solid-phase equilibria on Pluto's surface

    NASA Astrophysics Data System (ADS)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  5. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability

    PubMed Central

    Hosny, Khaled Mohamed

    2016-01-01

    Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability. PMID:27148747

  6. Alendronate Sodium as Enteric Coated Solid Lipid Nanoparticles; Preparation, Optimization, and In Vivo Evaluation to Enhance Its Oral Bioavailability.

    PubMed

    Hosny, Khaled Mohamed

    2016-01-01

    Treatment of osteoporosis with alendronate sodium has several challenges. The first challenge is the low bioavailability. The second main challenge is side effects, which include oesophageal ulceration. The aim of this research was to reformulate alendronate sodium as enteric coated solid lipid nanoparticles in order to enhance its bioavailability, and preventing the free alendronate sodium from coming into direct contact with the gastrointestinal mucosa, and thereby reducing the possibility of side effects. Enteric coated solid lipid nanoparticles were prepared according to the Box-Behnken design employing Design expert® software, and characterized for size, morphology, and entrapment efficiency. The optimized formula was coated with an Eudragit S100 and evaluated for drug release in acidic and basic media, stability studies and pharmacokinetic evaluations on rabbits. The results indicated that, using Derringer's desirability functional tool for optimization, the highest entrapment efficiency value of 74.3% and the smallest size value of 98 nm were predicted under optimum conditions with a desirability value of 0.917. The optimized nanoparticles released alendronate sodium only at an alkaline pH. The pharmacokinetic evaluation revealed that alendronate sodium bioavailability was enhanced by more than 7.4-fold in rabbits. In conclusion, enteric coated solid lipid nanoparticles is a promising formula for the delivery of alendronate sodium, eliminating its oesophageal side effects and enhancing its bioavailability.

  7. Arsenic Mobilization Through Microbial Bioreduction of Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tadanier, C. J.; Roller, J.; Schreiber, M. E.

    2004-12-01

    Under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)oxides with the oxidation of organic carbon. Nutrients and trace metals, such as arsenic, associated with Fe(III) hydroxides may be mobilized through microbially-mediated surface reduction. Although arsenic mobilization has been attributed to mineral surface reduction in a variety of pristine and contaminated environments, minimal information exists on the mechanisms causing this arsenic mobilization. Understanding of the fundamental biochemical and physicochemical processes involved in these mobilization mechanisms is still limited, and has been complicated by the often contradictory and interchangeable terminology used in the literature to describe them. We studied arsenic mobilization mechanisms using a series of controlled microcosm experiments containing aggregated arsenic-bearing ferrihydrite nanoparticles and an Fe(III)-reducing microorganism, Geobacter metallireducens. The phase distribution of iron and arsenic was determined through filtration and ultracentrifugation techniques. Experimental results showed that in the biotic trials, approximately 10 percent of the Fe(III) was reduced to Fe(II) by microbial activity, which remained associated with ferrihydrite surfaces. Biotic activity resulted in changes in nanoparticle surface potential and caused deflocculation of nanoparticle aggregates. Deflocculated nanoparticles were able to pass through a 0.2 micron filter and could only be removed from solution by ultracentrifugation. Arsenic mobilized over time in the biotic trials was found to be exclusively associated with the nanoparticles; 98 percent of arsenic that passed through a 0.2 micron filter was removed from solution by ultracentrifugation. None of these changes were observed in abiotic controls. Because arsenic contamination of natural waters due to mobilization from mineral surfaces is a significant route of human arsenic exposure

  8. Determination of triazine herbicides in seaweeds: development of a sample preparation method based on Matrix Solid Phase Dispersion and Solid Phase Extraction Clean-up.

    PubMed

    Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2014-04-01

    A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    PubMed

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  10. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles

    PubMed Central

    Elnaggar, Yosra SR; El-Massik, Magda A; Abdallah, Ossama Y

    2011-01-01

    Although sildenafil citrate (SC) is used extensively for erectile dysfunction, oral delivery of SC encounters many obstacles. Furthermore, the physicochemical characteristics of this amphoteric drug are challenging for delivery system formulation and transdermal permeation. This article concerns the assessment of the potential of nanomedicine for improving SC delivery and transdermal permeation. SC-loaded nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) were fabricated using a modified high-shear homogenization technique. Nanoparticle optimization steps included particle size analysis, entrapment efficiency (EE) determination, freeze-drying and reconstitution, differential scanning calorimetry, in vitro release, stability study and high-performance liquid chromatography analysis. Transdermal permeation of the nanocarriers compared with SC suspension across human skin was assessed using a modified Franz diffusion cell assembly. Results revealed that SLNs and NLCs could be optimized in the nanometric range (180 and 100 nm, respectively) with excellent EE (96.7% and 97.5%, respectively). Nanoparticles have significantly enhanced in vitro release and transdermal permeation of SC compared with its suspensions. Furthermore, transdermal permeation of SC exhibited higher initial release from both SLN and NLC formulations followed by controlled release, with promising implications for faster onset and longer drug duration. Nanomedicines prepared exhibited excellent physical stability for the study period. Solid nanoparticles optimized in this study successfully improved SC characteristics, paving the way for an efficient topical Viagra® product. PMID:22238508

  11. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles

    PubMed Central

    2013-01-01

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed. PMID:24004518

  12. Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles.

    PubMed

    Labunov, Vladimir; Prudnikava, Alena; Bushuk, Serguei; Filatov, Serguei; Shulitski, Boris; Tay, Beng Kang; Shaman, Yury; Basaev, Alexander

    2013-09-03

    Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed.

  13. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the

  14. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    PubMed

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S

    2017-06-01

    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH 4 kgVS fed -1 for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation.

    PubMed

    Montenegro, Lucia; Sinico, Chiara; Castangia, Ines; Carbone, Claudia; Puglisi, Giovanni

    2012-09-15

    Idebenone (IDE), a synthetic derivative of ubiquinone, shows a potent antioxidant activity that could be beneficial in the treatment of skin oxidative damages. In this work, the feasibility of targeting IDE into the upper layers of the skin by topical application of IDE-loaded solid lipid nanoparticles (SLN) was evaluated. SLN loading different amounts of IDE were prepared by the phase inversion temperature method using cetyl palmitate as solid lipid and three different non-ionic surfactants: ceteth-20, isoceteth-20 and oleth-20. All IDE loaded SLN showed a mean particle size in the range of 30-49 nm and a single peak in size distribution. In vitro permeation/penetration experiments were performed on pig skin using Franz-type diffusion cells. IDE penetration into the different skin layers depended on the type of SLN used while no IDE permeation occurred from all the SLN under investigation. The highest IDE content was found in the epidermis when SLN contained ceteth-20 or isoceteth-20 as surfactant while IDE distribution into the upper skin layers depended on the amount of IDE loaded when oleth-20 was used as surfactant. These results suggest that the SLN tested could be an interesting carrier for IDE targeting to the upper skin layers. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A variational approach to multi-phase motion of gas, liquid and solid based on the level set method

    NASA Astrophysics Data System (ADS)

    Yokoi, Kensuke

    2009-07-01

    We propose a simple and robust numerical algorithm to deal with multi-phase motion of gas, liquid and solid based on the level set method [S. Osher, J.A. Sethian, Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988) 12; M. Sussman, P. Smereka, S. Osher, A level set approach for capturing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146; J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999; S. Osher, R. Fedkiw, Level Set Methods and Dynamics Implicit Surface, Applied Mathematical Sciences, vol. 153, Springer, 2003]. In Eulerian framework, to simulate interaction between a moving solid object and an interfacial flow, we need to define at least two functions (level set functions) to distinguish three materials. In such simulations, in general two functions overlap and/or disagree due to numerical errors such as numerical diffusion. In this paper, we resolved the problem using the idea of the active contour model [M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321; V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, International Journal of Computer Vision 22 (1997) 61; G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001; R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications, Springer-Verlag, 2003] introduced in the field of image processing.

  17. [Characteristics of electroosmotic flow in open-tubular capillary electrochromatography with magnetic nanoparticle coating as mixed-mode stationary phase].

    PubMed

    Qin, Sasa; Zhou, Chaoran; Zhu, Yaxian; Ren, Zhiyu; Zhang, Lingyi; Fu, Honggang; Zhang, Weibing

    2011-09-01

    A novel open-tubular capillary electrochromatography (OT-CEC) column with magnetic nanoparticle coating as mixed-mode stationary phase was prepared. The mixed-mode stationary phases were obtained by mixing C18 and amino modified magnetic nanoparticles with different ratios. The mixed modified magnetic nanoparticles as stationary phase were introduced into the capillary by using external magnetic force. The magnetic nanoparticle coating can be easily regenerated by removing the external magnetic field, and applied to other separation modes. The characteristics of electroosmotic flow (EOF) were theoretically investigated through the effect of physicochemical properties of different stationary phases on EOF. The experiment was conducted under different ratios of mixed-mode stationary phases and coating lengths, and it was verified that the theoretical conclusions accorded with the experimental results. It was shown that the EOF can be easily adjusted by changing the ratio of stationary phases or the number of permanent magnets.

  18. Solid-Phase Biological Assays for Drug Discovery

    NASA Astrophysics Data System (ADS)

    Forsberg, Erica M.; Sicard, Clémence; Brennan, John D.

    2014-06-01

    In the past 30 years, there has been a significant growth in the use of solid-phase assays in the area of drug discovery, with a range of new assays being used for both soluble and membrane-bound targets. In this review, we provide some basic background to typical drug targets and immobilization protocols used in solid-phase biological assays (SPBAs) for drug discovery, with emphasis on particularly labile biomolecular targets such as kinases and membrane-bound receptors, and highlight some of the more recent approaches for producing protein microarrays, bioaffinity columns, and other devices that are central to small molecule screening by SPBA. We then discuss key applications of such assays to identify drug leads, with an emphasis on the screening of mixtures. We conclude by highlighting specific advantages and potential disadvantages of SPBAs, particularly as they relate to particular assay formats.

  19. Novel Palm Fatty Acid Functionalized Magnetite Nanoparticles for Magnetic Solid-Phase Extraction of Trace Polycyclic Aromatic Hydrocarbons from Environmental Samples.

    PubMed

    Rozi, Siti Khalijah Mahmad; Nodeh, Hamid Rashidi; Kamboh, Muhammad Afzal; Manan, Ninie Suhana Abdul; Mohamad, Sharifah

    2017-07-01

    A novel adsorbent, palm fatty acid coated magnetic Fe 3 O 4 nanoparticles (MNP-FA) was successfully synthesized with immobilization of the palm fatty acid onto the surface of MNPs. The successful synthesis of MNP-FA was further confirmed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray spectroscopy (EDX) analyses and water contact angle (WCA) measurement. This newly synthesized MNP-FA was applied as magnetic solid phase extraction (MSPE) adsorbent for the enrichment of polycyclic aromatic hydrocarbons (PAHs), namely fluoranthene (FLT), pyrene (Pyr), chrysene (Cry) and benzo(a)pyrene (BaP) from environmental samples prior to High Performance Liquid Chromatography- Diode Array Detector (HPLC-DAD) analysis. The MSPE method was optimized by several parameters such as amount of sorbent, desorption solvent, volume of desorption solvent, extraction time, desorption time, pH and sample volume. Under the optimized conditions, MSPE method provided a low detection limit (LOD) for FLT, Pyr, Cry and BaP in the range of 0.01-0.05 ng mL -1 . The PAHs recoveries of the spiked leachate samples ranged from 98.5% to 113.8% with the RSDs (n = 5) ranging from 3.5% to 12.2%, while for the spiked sludge samples, the recoveries ranged from 81.1% to 119.3% with the RSDs (n = 5) ranging from 3.1% to 13.6%. The recyclability study revealed that MNP-FA has excellent reusability up to five times. Chromatrographic analysis demonstrated the suitability of MNP-FA as MSPE adsorbent for the efficient extraction of PAHs from environmental samples.

  20. Solid Lipid Nanoparticle-Based Calix[n]arenes and Calix-Resorcinarenes as Building Blocks: Synthesis, Formulation and Characterization

    PubMed Central

    Montasser, Imed; Shahgaldian, Patrick; Perret, Florent; Coleman, Anthony W.

    2013-01-01

    Solid lipid nanoparticles (SLNs) have attracted increasing attention during recent years. This paper presents an overview about the use of calix[n]arenes and calix-resorcinarenes in the formulation of SLNs. Because of their specific inclusion capability both in the intraparticle spaces and in the host cavities as well as their capacity for functionalization, these colloidal nanostructures represent excellent tools for the encapsulation of different active pharmaceutical ingredients (APIs) in the area of drug targeting, cosmetic additives, contrast agents, etc. Various synthetic routes to the supramolecular structures will be given. These various routes lead to the formulation of the corresponding SLNs. Characterization, properties, toxicological considerations as well as numerous corresponding experimental studies and analytical methods will be also exposed and discussed. PMID:24196356

  1. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers.

    PubMed

    El-Salamouni, Noha S; Farid, Ragwa M; El-Kamel, Amal H; El-Gamal, Safaa S

    2015-12-30

    Nanoparticulate delivery systems have recently been under consideration for topical ophthalmic drug delivery. Brimonidine base-loaded solid lipid nanoparticles and nanostructured lipid carrier formulations were prepared using glyceryl monostearate as solid lipid and were evaluated for their physical stability following sterilization by autoclaving at 121°C for 15min. The objective of this work was to evaluate the effect of autoclaving on the physical appearance, particle size, polydispersity index, zeta potential, entrapment efficiency and particle morphology of the prepared formulations, compared to non-autoclaved ones. Results showed that, autoclaving at 121°C for 15min allowed the production of physically stable formulations in nanometric range, below 500nm suitable for ophthalmic application. Moreover, the autoclaved samples appeared to be superior to non-autoclaved ones, due to their increased zeta potential values, indicating a better physical stability. As well as, increased amount of brimonidine base entrapped in the tested formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Equations of state for the fully flexible WCA chains in the fluid and solid phases based on Wertheims-TPT2

    NASA Astrophysics Data System (ADS)

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2018-03-01

    Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.

  3. Equations of state for the fully flexible WCA chains in the fluid and solid phases based on Wertheims-TPT2.

    PubMed

    Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid

    2018-03-14

    Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.

  4. Combination of magnetic dispersive micro solid-phase extraction and supramolecular solvent-based microextraction followed by high-performance liquid chromatography for determination of trace amounts of cholesterol-lowering drugs in complicated matrices.

    PubMed

    Arghavani-Beydokhti, Somayeh; Rajabi, Maryam; Asghari, Alireza

    2017-07-01

    A novel, efficient, rapid, simple, sensitive, selective, and environmentally friendly method termed magnetic dispersive micro solid-phase extraction combined with supramolecular solvent-based microextraction (Mdμ-SPE-SSME) followed by high-performance liquid chromatography (HPLC) with UV detection is introduced for the simultaneous microextraction of cholesterol-lowering drugs in complicated matrices. In the first microextraction procedure, using layered double hydroxide (LDH)-coated Fe 3 O 4 magnetic nanoparticles, an efficient sample cleanup is simply and rapidly provided without the need for time-consuming centrifugation and elution steps. In the first step, desorption of the target analytes is easily performed through dissolution of the LDH-coated magnetic nanoparticles containing the target analytes in an acidic solution. In the next step, an emulsification microextraction method based on a supramolecular solvent is used for excellent preconcentration, ultimately resulting in an appropriate determination of the target analytes in real samples. Under the optimal experimental conditions, the Mdμ-SPE-SSME-HPLC-UV detection procedure provides good linearity in the ranges of 1.0-1500 ng mL -1 , 1.5-2000 ng mL -1 , and 2.0-2000 ng mL -1 with coefficients of determination of 0.995 or less, low limits of detection (0.3, 0.5, and 0.5 ng mL -1 ), and good extraction repeatabilities (relative standard deviations below 7.8%, n = 5) in deionized water for rosuvastatin, atorvastatin, and gemfibrozil, respectively. Finally, the proposed method is successfully applied for the determination of the target analytes in complicated matrices. Graphical Abstract Mdμ-SPE-SSME procedure.

  5. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    PubMed

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A comparative ecotoxicity analysis of α- and γ-phase aluminium oxide nanoparticles towards a freshwater bacterial isolate Bacillus licheniformis.

    PubMed

    Pakrashi, Sunandan; Kumar, Deepak; Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2014-12-01

    Crystalline structure of nanoparticles may influence their physicochemical behaviour as well as their toxicological impact on biota. The differences in orientation of the atoms result in the variations in chemical stability. Thus, toxicological impacts of different crystalline phases of aluminium oxide nanoparticles are expected to vary. The present study brings out a comparative toxicity analysis of γ-phase and α-phase aluminium oxide nanoparticles of comparable hydrodynamic size range towards a freshwater bacterial isolate Bacillus licheniformis at low exposure concentrations (5, 1, 0.5 and 0.05 µg/mL). Upon 2-h exposure, the α-aluminium oxide particles showed lower toxicity than the γ-phase aluminium oxide. The lower level of oxidative stress generation and cell membrane damage in case of the α-phase aluminium oxide nanoparticles substantiated the toxicity results. The involvement of protein, lipopolysaccharides in nanoparticle-cell surface interaction, was noted in both the cases. To conclude, the crystallinity of aluminium oxide nanoparticles played an important role in the interaction and the toxicity response.

  7. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.

    PubMed

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2017-02-07

    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of

  8. Solid-State NMR Investigation of Drug-Excipient Interactions and Phase Behavior in Indomethacin-Eudragit E Amorphous Solid Dispersions.

    PubMed

    Lubach, Joseph W; Hau, Jonathan

    2018-02-20

    To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.

  9. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    PubMed

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Deformability of adsorbents during adsorption and principles of the thermodynamics of solid-phase systems

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2017-09-01

    A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.

  11. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    NASA Astrophysics Data System (ADS)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  12. Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids

    NASA Astrophysics Data System (ADS)

    Rocha-Mendoza, Israel; Camacho-López, Santiago; Luna-Palacios, Yryx Y.; Esqueda-Barrón, Yasmín; Camacho-López, Miguel A.; Camacho-López, Marco; Aguilar, Guillermo

    2018-02-01

    We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5-8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state.

  13. Enhanced permeability of blood-brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle.

    PubMed

    Song, Hui; Wei, Man; Zhang, Nan; Li, He; Tan, Xiaochuan; Zhang, Yujia; Zheng, Wensheng

    2018-01-01

    The incidence of central nervous system disease has increased in recent years. However, the transportation of drug is restricted by the blood-brain barrier, contributing to the poor therapeutic effect in the brain. Therefore, the development of a new brain-targeting drug delivery system has become the hotspot of pharmacy. Borneol, a simple bicyclic monoterpene extracted from Dryobalanops aromatica , can direct drugs to the upper body parts according to the theory of traditional Chinese medicine. Dioleoyl phosphoethanolamine (DOPE) was chemically modified by borneol as one of the lipid materials of solid lipid nanoparticle (SLN) in the present study. The borneol-modified chemically solid lipid nanoparticle (BO-SLN/CM), borneol-modified physically solid lipid nanoparticle (BO-SLN/PM), and SLN have similar diameter (of about 87 nm) and morphological characteristics. However, BO-SLN/CM has a lower cytotoxicity, higher cell uptake, and better blood-brain barrier permeability compared with BO-SLN/PM and SLN. BO-SLN/CM has a remarkable targeting function to the brain, while BO-SLN/ PM and SLNs are concentrated at the lung. The present study provides an excellent drug delivery carrier, BO-SLN/CM, having the application potential of targeting to the brain and permeating to the blood-brain barrier.

  14. Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: A quality-by-design approach.

    PubMed

    Rose, Fabrice; Wern, Jeanette Erbo; Ingvarsson, Pall Thor; van de Weert, Marco; Andersen, Peter; Follmann, Frank; Foged, Camilla

    2015-07-28

    The purpose of this study was to design a novel and versatile adjuvant intended for mucosal vaccination based on biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with the cationic surfactant dimethyldioctadecylammonium (DDA) bromide and the immunopotentiator trehalose-6,6'-dibehenate (TDB) (CAF01) to tailor humoral and cellular immunity characterized by antibodies and Th1/Th17 responses. Such responses are important for the protection against diseases caused by intracellular bacteria such as Chlamydia trachomatis and Mycobacterium tuberculosis. The hybrid NPs were engineered using an oil-in-water single emulsion method and a quality-by-design approach was adopted to define the optimal operating space (OOS). Four critical process parameters (CPPs) were identified, including the acetone concentration in the water phase, the stabilizer [polyvinylalcohol (PVA)] concentration, the lipid-to-total solid ratio, and the total concentration. The CPPs were linked to critical quality attributes consisting of the particle size, polydispersity index (PDI), zeta-potential, thermotropic phase behavior, yield and stability. A central composite face-centered design was performed followed by multiple linear regression analysis. The size, PDI, enthalpy of the phase transition and yield were successfully modeled, whereas the models for the zeta-potential and the stability were poor. Cryo-transmission electron microscopy revealed that the main structural effect on the nanoparticle architecture is caused by the use of PVA, and two different morphologies were identified: i) A PLGA core coated with one or several concentric lipid bilayers, and ii) a PLGA nanoshell encapsulating lipid membrane structures. The optimal formulation, identified from the OOS, was evaluated in vivo. The hybrid NPs induced antibody and Th1/Th17 immune responses that were similar in quality and magnitude to the response induced by DDA/TDB liposomes, showing that the adjuvant

  15. Development and validation of a magnetic solid-phase extraction with high-performance liquid chromatography method for the simultaneous determination of amphetamine and methadone in urine.

    PubMed

    Taghvimi, Arezou; Hamishehkar, Hamed; Ebrahimi, Mahmoud

    2016-06-01

    The simultaneous determination of amphetamine and methadone was carried out by magnetic graphene oxide nanoparticles, a magnetic solid-phase extraction adsorbent, as a new sample treatment technique. The main factors (the amounts of sample volume, amount of adsorbent, type and amount of extraction organic solvent, time of extraction and desorption, pH, the ionic strength of extraction medium, and agitation rate) influencing the extraction efficiency were investigated and optimized. Under the optimized conditions, good linearity was observed in the range of 100-1500 ng/mL for amphetamine and 100-1000 ng/mL for methadone. The method was evaluated for determination of AM and methadone in positive urine samples, satisfactory results were obtained, therefore magnetic solid-phase extraction can be applied as a novel method for the determination of drugs of abuse in forensic laboratories. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    PubMed

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis of Sulfotyrosine-Containing Peptides by Incorporating Fluorosulfated Tyrosine Using an Fmoc-Based Solid-Phase Strategy.

    PubMed

    Chen, Wentao; Dong, Jiajia; Li, Suhua; Liu, Yu; Wang, Yujia; Yoon, Leonard; Wu, Peng; Sharpless, K Barry; Kelly, Jeffery W

    2016-01-26

    Tyrosine O-sulfation is a common protein post-translational modification that regulates many biological processes, including leukocyte adhesion and chemotaxis. Many peptides with therapeutic potential contain one or more sulfotyrosine residues. We report a one-step synthesis for Fmoc-fluorosulfated tyrosine. An efficient Fmoc-based solid-phase peptide synthetic strategy is then introduced for incorporating the fluorosulfated tyrosine residue into peptides of interest. Standard simultaneous peptide-resin cleavage and removal of the acid-labile side-chain protecting groups affords the crude peptides containing fluorosulfated tyrosine. Basic ethylene glycol, serving both as solvent and reactant, transforms the fluorosulfated tyrosine peptides into sulfotyrosine peptides in high yield. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles.

    PubMed

    Hadi, Alireza; Zahirifar, Jafar; Karimi-Sabet, Javad; Dastbaz, Abolfazl

    2018-06-01

    This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe 3 O 4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe 3 O 4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe 3 O 4 particle separation from graphene solution which arises from the magnetic nature of Fe 3 O 4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe 3 O 4 nanoparticles concentration, sonication time, and sonication power were investigated. Results revealed that graphene preparation yield and the number of layers could be manipulated by the presence of magnetic nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Kinetics of Microbial Reduction of Solid Phase U(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.

    2006-10-01

    Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solidmore » phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).« less

  20. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-07

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.

  1. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation

    NASA Astrophysics Data System (ADS)

    Geohegan, David B.; Puretzky, Alex A.; Duscher, Gerd; Pennycook, Stephen J.

    1998-06-01

    The dynamics of nanoparticle formation, transport, and deposition by pulsed laser ablation of c-Si into 1-10 Torr He and Ar gases are revealed by imaging laser-induced photoluminescence and Rayleigh-scattered light from gas-suspended 1-10 nm SiOx particles. Two sets of dynamic phenomena are presented for times up to 15 s after KrF-laser ablation. Ablation of Si into heavier Ar results in a uniform, stationary plume of nanoparticles, while Si ablation into lighter He results in a turbulent ring of particles which propagates forward at 10 m/s. Nanoparticles unambiguously formed in the gas phase were collected on transmission electron microscope grids for Z-contrast imaging and electron energy loss spectroscopy analysis. The effects of gas flow on nanoparticle formation, photoluminescence, and collection are described.

  2. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin.

    PubMed

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2015-10-27

    To benefit from the optimized dissolution properties of active pharmaceutical ingredients in their amorphous forms, co-amorphisation as a viable tool to stabilize these amorphous phases is of both academic and industrial interest. Reports dealing with the physical stability and recrystallization behavior of co-amorphous systems are however limited to qualitative evaluations based on the corresponding X-ray powder diffractograms. Therefore, the objective of the study was to develop a quantification model based on X-ray powder diffractometry (XRPD), followed by a multivariate partial least squares regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four components was prepared and analyzed by XRPD. In order to test the model performances, leave-one-out cross validation was performed and revealed root mean square errors of validation between 3.11% and 3.45% for the crystalline molar fractions and 5.57% for the co-amorphous molar fraction. In summary, even four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach.

  3. Phase III gross solids removal devices pilot study, 2002-2005.

    DOT National Transportation Integrated Search

    2005-12-01

    The objective of the Phase III Gross Solids Removal Devices (GSRDs) Pilot study was to : evaluate the performance of non-proprietary devices that can capture gross solids and that can be : incorporated into existing highway drainage systems or implem...

  4. Solvothermal synthesis, characterization and optical properties of ZnO, ZnO-MgO and ZnO-NiO, mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil

    2011-03-01

    ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.

  5. Light-induced pH change and its application to solid phase extraction of trace heavy metals by high-magnetization Fe3O4@SiO2@TiO2 nanoparticles followed by inductively coupled plasma mass spectrometry detection.

    PubMed

    Zhang, Nan; Peng, Hanyong; Hu, Bin

    2012-05-30

    We report here the preparation of high-magnetization Fe(3)O(4)@SiO(2)@TiO(2) nanoparticles for solid phase extraction of trace amounts of Cd(II), Cr(III), Mn(II) and Cu(II) from environmental waters. The prepared nanoparticles were characterized by scanning electron micrograph (SEM) and transmission electron microscopy (TEM). The high-magnetization nanoparticles carrying the target metals could be easily and fast separated from the aqueous solution simply by applying an external magnetic field while no filtration or centrifugation was necessary. A light-induced hydroxide ion emitter, molecular malachite green carbinol base (MGCB) was applied to adjust pH value of solution for quantitative adsorption instead of the conventional used buffer. In the presence of UV light, MGCB gives out OH(-) ions, and this leads to an increase in the pH value without the aid of buffer solution. Using high-magnetization Fe(3)O(4)@SiO(2)@TiO(2) nanoparticles as the extraction material and the light-induced MGCB for pH adjustment, we developed an efficient and convenient two-step method for separation/preconcentration trace amounts of Cd(II), Cr(III), Mn(II) and Cu(II) in environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The parameters affecting the extraction such as MGCB concentration, exposal time, sample volume, eluent condition, and interfering ions have been investigated in detail. Under the optimized conditions, the limits of detection for Cd(II), Cr(III), Mn(II) and Cu(II) were 4.0, 2.6, 1.6 and 2.3 ng L(-1), respectively, and the relative standard deviations (RSDs, c=1 μg L(-1), n=7) were 3.6%, 4.5%, 4.0 and 4.1%, respectively. The proposed method has been validated using certified reference materials, and it has been successfully applied in the determination of trace Cd(II), Cr(III), Mn(II) and Cu(II) in environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The use of graphene-based magnetic nanoparticles as adsorbent for the extraction of triazole fungicides from environmental water.

    PubMed

    Wang, Weina; Ma, Xiaoxing; Wu, Qiuhua; Wang, Chun; Zang, Xiaohuan; Wang, Zhi

    2012-09-01

    A graphene-based magnetic nanocomposite (graphene-ferriferrous oxide; G-Fe(3)O(4)) was synthesized and used as an effective adsorbent for the preconcentration of some triazole fungicides (myclobutanil, tebuconazole, and hexaconazole) in environmental water samples prior to high-performance liquid chromatography-ultraviolet detection. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid the time-consuming experimental procedures commonly involved in the traditional solid phase extraction such as centrifugation and filtrations. Various experimental parameters affecting the extraction efficiencies such as the amount of the magnetic nanocomposite, extraction time, the pH values of the sample solution, salt concentration, and desorption conditions were investigated. Under the optimum conditions, the enrichment factors of the method for the three analytes were 5824, 3600, and 4761, respectively. A good linearity was observed in the range of 0.1-50 ng/mL for tebuconazole and 0.05-50 ng/mL for myclobutanil and hexaconazole, respectively, with the correlation coefficients ranging from 0.9992 to 0.9996. The limits of detection (S/N = 3) of the method were between 0.005 and 0.01 ng/mL. The results indicated that as a magnetic solid-phase extraction adsorbent, the graphene-ferriferrous oxide (G-Fe(3)O(4)) has a great potential for the preconcentration of some compounds from liquid samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phase IV gross solids removal devices pilot study, 2004-2005.

    DOT National Transportation Integrated Search

    2005-12-01

    The objective of the Phase IV Gross Solids Removal Device (GSRD) Pilot study was to evaluate : the performance of one non-proprietary device that can capture gross solids and that can be : incorporated into existing highway drainage systems or implem...

  8. Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Zhang, Liling; Hu, Nantao; Yang, Zhi; Wei, Hao; Xu, Zhichuan J.; Wang, Yanyan; Zhang, Yafei

    2016-08-01

    Graphene-based all-solid-state supercapacitors (ASSSCs) are one of the most ideal candidates for high-performance flexible power sources. The achievement of high volumetric energy density is highly desired for practical application of this type of ASSSCs. Here, we present a facile method to boost volumetric performances of graphene-based flexible ASSSCs through incorporation of ultrafine polyaniline-poly(4-styrenesulfonate) (PANI-PSS) nanoparticles in reduced graphene oxide (rGO) papers. A compact structure is obtained via intimate contact and π-π interaction between PANI-PSS nanoparticles and rGO sheets. The hybrid paper electrode with the film thickness of 13.5 μm, shows an extremely high volumetric specific capacitance of 272 F/cm3 (0.37 A/cm3 in a three-electrode cell). The assembled ASSSCs show a large volumetric specific capacitance of 217 F/cm3 (0.37 A/cm3 in a two-electrode cell), high volumetric energy and power density, excellent capacitance stability, small leakage current as well as low self-discharge characteristics, revealing the usefulness of this robust hybrid paper for high-performance flexible energy storage devices.

  9. Solid-phase diffusion mechanism for GaAs nanowire growth.

    PubMed

    Persson, Ann I; Larsson, Magnus W; Stenström, Stig; Ohlsson, B Jonas; Samuelson, Lars; Wallenberg, L Reine

    2004-10-01

    Controllable production of nanometre-sized structures is an important field of research, and synthesis of one-dimensional objects, such as nanowires, is a rapidly expanding area with numerous applications, for example, in electronics, photonics, biology and medicine. Nanoscale electronic devices created inside nanowires, such as p-n junctions, were reported ten years ago. More recently, hetero-structure devices with clear quantum-mechanical behaviour have been reported, for example the double-barrier resonant tunnelling diode and the single-electron transistor. The generally accepted theory of semiconductor nanowire growth is the vapour-liquid-solid (VLS) growth mechanism, based on growth from a liquid metal seed particle. In this letter we suggest the existence of a growth regime quite different from VLS. We show that this new growth regime is based on a solid-phase diffusion mechanism of a single component through a gold seed particle, as shown by in situ heating experiments of GaAs nanowires in a transmission electron microscope, and supported by highly resolved chemical analysis and finite element calculations of the mass transport and composition profiles.

  10. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharti, Amardeep, E-mail: abharti@pu.ac.in; Goyal, Navdeep; Singh, Suman

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  11. Stirring-controlled solidified floating solid-liquid drop microextraction as a new solid phase-enhanced liquid-phase microextraction method by exploiting magnetic carbon nanotube-nickel hybrid.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Alimorad

    2017-01-25

    A specific technique is introduced to overcome limitations of classical solidification of floating organic drop microextraction, such as tedious and time-consuming centrifuge step and using disperser solvent, by facile and efficient participation of solid and liquid phases. In this proposed method of stirring-controlled solidified floating solid-liquid drop microextraction (SC-SF-SLDME), magnetic carbon nanotube-nickel hybrid (MNi-CNT) as a solid part of the extractors are dispersed ultrasonically in sample solution, and the procedure followed by dispersion of liquid phase (1-undecanol) through high-rate stirring and easily recollection of MNi-CNT in organic solvent droplets through hydrophobic force. With the reduction in speed of stirring, one solid-liquid drop is formed on top of the solution. MNi-CNT acts as both extractor and the coalescence helper between organic droplets for a facile recollection. MNi-CNT was prepared by spray pyrolysis of nickel oleate/toluene mixture at 1000 °C. Four tyrosine kinase inhibitors were selected as model analytes and the effecting parameters were investigated. The results confirmed that magnetic nanoadsorbent has an important role in the procedure and complete collection of dispersed solvent is not achieved in the absence of the solid phase. Also, short extraction time exhibited success of the proposed method and effect of dispersed solid/liquid phases. The limits of quantification (LOQs) for imatinib, sunitinib, erlotinib, and nilotinib were determined to be as low as 0.7, 1.7, 0.6, and 1.0 μg L -1 , respectively. The intra-day precisions (RSDs) were lower than 4.5%. Method performance was investigated by determination of mentioned tyrosine kinase inhibitors (TKIs) in human serum and cerebrospinal fluid samples with good recoveries in the range of 93-98%. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  13. A multiphase equation of state of three solid phases, liquid, and gas for titanium

    NASA Astrophysics Data System (ADS)

    Pecker, S.; Eliezer, S.; Fisher, D.; Henis, Z.; Zinamon, Z.

    2005-08-01

    A multiple-phase equation of state of the α phase, β phase, ω phase, liquid, and gas for titanium is presented. This equation of state is thermodynamically consistent, based on a three-term semiempirical model for the Helmholtz free energy. The parameters of the free energy are first evaluated from the experimental data and solid-state theoretical calculations. Then, the values of the parameters are adjusted using a numerical minimization scheme based on the simplex algorithm, to values that best reproduce measured phase diagrams and other experimental data. The predicted phase diagram shows a compression-induced β-ω transition, up to a β-ω-liquid triple point at ˜45GPa and ˜2200K. For pressures above this triple point, the melting occurs from the ω phase. Moreover, no β-ω transition is predicted along the Hugoniot curve starting at STP conditions.

  14. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides.

    PubMed

    Graf, Anja; Ablinger, Elisabeth; Peters, Silvia; Zimmer, Andreas; Hook, Sarah; Rades, Thomas

    2008-02-28

    Two pseudo-ternary systems comprising isopropyl myristate, soybean lecithin, water, ethanol and either decyl glucoside (DG) or capryl-caprylyl glucoside (CCG) as surfactant were investigated for their potential to form microemulsion templates to produce nanoparticles as drug delivery vehicles for proteins and peptides. All microemulsion and nanoparticle compounds used were pharmaceutically acceptable and biocompatible. Phase diagrams were established and characterized using polarizing light microscopy, viscosity, conductivity, electron microscopy, differential scanning calorimetry and self-diffusion NMR. An area in the phase diagrams containing optically isotropic, monophasic systems was designated as the microemulsion region and systems therein identified as solution-type microemulsions. Poly(alkylcyanoacrylate) nanoparticles prepared by interfacial polymerisation from selected microemulsions ranged from 145 to 660nm in size with a unimodal size distribution depending on the type of monomer (ethyl (2) or butyl (2) cyanoacrylate) and microemulsion template. Generally larger nanoparticles were formed by butyl (2) cyanoacrylate. Insulin was added as a model protein and did not alter the physicochemical behaviour of the microemulsions or the morphology of the nanoparticles. However, insulin-loaded nanoparticles in the CCG containing system decreased in size when using butyl (2) cyanoacrylate. This study shows that microemulsions containing sugar-based surfactants are suitable formulation templates for the formation of nanoparticles to deliver peptides.

  15. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    NASA Astrophysics Data System (ADS)

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob

    2016-04-01

    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  16. Towards Optimal Design of Cancer Nanomedicines: Multi-stage Nanoparticles for the Treatment of Solid Tumors.

    PubMed

    Stylianopoulos, Triantafyllos; Economides, Eva-Athena; Baish, James W; Fukumura, Dai; Jain, Rakesh K

    2015-09-01

    Conventional drug delivery systems for solid tumors are composed of a nano-carrier that releases its therapeutic load. These two-stage nanoparticles utilize the enhanced permeability and retention (EPR) effect to enable preferential delivery to tumor tissue. However, the size-dependency of the EPR, the limited penetration of nanoparticles into the tumor as well as the rapid binding of the particles or the released cytotoxic agents to cancer cells and stromal components inhibit the uniform distribution of the drug and the efficacy of the treatment. Here, we employ mathematical modeling to study the effect of particle size, drug release rate and binding affinity on the distribution and efficacy of nanoparticles to derive optimal design rules. Furthermore, we introduce a new multi-stage delivery system. The system consists of a 20-nm primary nanoparticle, which releases 5-nm secondary particles, which in turn release the chemotherapeutic drug. We found that tuning the drug release kinetics and binding affinities leads to improved delivery of the drug. Our results also indicate that multi-stage nanoparticles are superior over two-stage nano-carriers provided they have a faster drug release rate and for high binding affinity drugs. Furthermore, our results suggest that smaller nanoparticles achieve better treatment outcome.

  17. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  18. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    PubMed

    Momeni, Kasra; Levitas, Valery I

    2016-04-28

    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  19. Security authentication using phase-encoded nanoparticle structures and polarized light.

    PubMed

    Carnicer, Artur; Hassanfiroozi, Amir; Latorre-Carmona, Pedro; Huang, Yi-Pai; Javidi, Bahram

    2015-01-15

    Phase-encoded nanostructures such as quick response (QR) codes made of metallic nanoparticles are suggested to be used in security and authentication applications. We present a polarimetric optical method able to authenticate random phase-encoded QR codes. The system is illuminated using polarized light, and the QR code is encoded using a phase-only random mask. Using classification algorithms, it is possible to validate the QR code from the examination of the polarimetric signature of the speckle pattern. We used Kolmogorov-Smirnov statistical test and Support Vector Machine algorithms to authenticate the phase-encoded QR codes using polarimetric signatures.

  20. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in; Manda, Premkumar

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phasesmore » arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.« less

  1. Magnetic solid-phase extraction of non-steroidal anti-inflammatory drugs from environmental water samples using polyamidoamine dendrimer functionalized with magnetite nanoparticles as a sorbent.

    PubMed

    Alinezhad, Heshmatollah; Amiri, Amirhassan; Tarahomi, Mehrasa; Maleki, Behrooz

    2018-06-01

    A novel polyamidoamine dendrimer functionalized with Fe 3 O 4 nanoparticles (Fe 3 O 4 @PAMAM) had been fabricated and used as magnetic solid-phase extraction (MSPE) adsorbent. The Fe 3 O 4 @PAMAM nanocomposites were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron spectroscopy, elemental analytical, and thermal gravimetric analysis. The MSPE method coupled with high-performance liquid chromatography with an ultraviolet detection system was applied for the separation/analysis of non-steroidal anti-inflammatory drugs (NSAIDs). Major parameters affecting the extraction efficiency of the selected drugs were optimized. Under optimal conditions, the enrichment factors for the proposed method were 701835. The linear range, limit of detection, correlation coefficient (r), and relative standard deviation (RSD) were found to be 0.15-500 ng mL -1 , 0.050.08 ng mL -1 , 0.99320.9967, and 4.5-7.0% (n = 5, 0.2, 10 and 300 ng mL -1 ), respectively. The method was successfully applied to the determination of NSAIDs in the real water samples. The recoveries of spiked water samples were in the range of 93.6-98.9% with RSDs varying from 6.1% to 9.0%, showing the good accuracy of the method. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    PubMed

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. Copyright © 2016

  3. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability.

  4. On the formation of molecules and solid-state compounds from the AGB to the PN phases

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Manchado, A.

    2016-07-01

    During the asymptoyic giant branch (AGB) phase, different elements are dredge- up to the stellar surface depending on progenitor mass and metallicity. When the mass loss increases at the end of the AGB, a circumstellar dust shell is formed, where different (C-rich or O-rich) molecules and solid-state compounds are formed. These are further processed in the transition phase between AGB stars and planetary nebulae (PNe) to create more complex organic molecules and inorganic solid-state compounds (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors in C-rich environments and oxides and crystalline silicates in O-rich ones). We present an observational review of the different molecules and solid-state materials that are formed from the AGB to the PN phases. We focus on the formation routes of complex fullerene (and fullerene-based) molecules as well as on the level of dust processing depending on metallicity.

  5. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    NASA Astrophysics Data System (ADS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank

    2016-12-01

    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  6. Thermodynamic phase behavior of API/polymer solid dispersions.

    PubMed

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  7. Ultrasound-assisted magnetic solid-phase extraction based ionic liquid-coated Fe3O4@graphene for the determination of nitrobenzene compounds in environmental water samples.

    PubMed

    Cao, Xiaoji; Shen, Lingxiao; Ye, Xuemin; Zhang, Feifei; Chen, Jiaoyu; Mo, Weimin

    2014-04-21

    An ultrasound-assisted magnetic solid-phase extraction procedure with the [C7MIM][PF6] ionic liquid-coated Fe3O4-grafted graphene nanocomposite as the magnetic adsorbent has been developed for the determination of five nitrobenzene compounds (NBs) in environmental water samples, in combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA). Several significant factors that affect the extraction efficiency, such as the types of magnetic nanoparticle and ionic liquid, the volume of ionic liquid and the amount of magnetic nanoparticles, extraction time, ionic strength, and solution pH, were investigated. With the assistance of ultrasound, adsorbing nitrobenzene compounds by ionic liquid and self-aggregating ionic liquid onto the surface of the Fe3O4-grafted graphene proceeded synchronously, which made the extraction achieved the maximum within 20 min using only 144 μL [C7MIM][PF6] and 3 mg Fe3O4-grafted graphene. Under the optimized conditions, satisfactory linearities were obtained for all NBs with correlation coefficients larger than 0.9990. The mean recoveries at two spiked levels ranged from 80.35 to 102.77%. Attributed to the convenient magnetic separation, the Fe3O4-grafted graphene could be recycled many times. The proposed method was demonstrated to be feasible, simple, solvent-saving and easy to operate for the trace analysis of NBs in environmental water samples.

  8. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Rostami, Elham

    2014-03-01

    In this study, poly ethylene glycol 100 stearate (PEG 100-S) was used to prepare coated solid lipid nanoparticles with loading levothyroxine sodium (levo-loaded PEG 100-S-coated SLNs) by microemulsification technique. Evaluation of the release kinetic of prepared colloidal carriers was conducted. The particle size and zeta potential of levo-loaded PEG 100-S-coated SLNs have been measured to be 187.5 nm and -23.0 mV, respectively, using photon correlation spectroscopy (PCS). Drug entrapment efficiency (EE) was calculated to be 99 %. Differential scanning calorimetry indicated that the majority of drug loaded in PEG 100-S-coated SLNs were in amorphous state which could be considered desirable for drug delivery. The purpose of this study was to develop a new nanoparticle system, consisting lipid nanoparticles coated with PEG 100-S. The modification procedure led to a reduction in the zeta potential values, varying from -40.0 to -23.0 mV for the uncoated and PEG-coated SLNs, respectively. Stability results of the nanoparticles in gastric and intestinal media show that the low pH of the gastric medium is responsible for the critical aggregation and degradation of the uncoated lipid nanoparticles. PEG 100-S-coated SLNs were more stable due to their polymer coating layer which prevented aggregation of SLNs. Consequently, it is possible that the PEG surrounds the particles reducing the attachment of enzymes and further degradation of the triglyceride cores. Shape and surface morphology of particles were determined by transition electron microscopy and scanning electron microscopy that revealed spherical shape of nanoparticles. In vitro drug release of PEG 100-S-coated SLNs was characterized using diffusion cell which showed a controlled release for drug.

  9. Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys

    DOE PAGES

    Zhang, Fuxiang; Zhao, Shijun; Jin, Ke; ...

    2017-01-04

    In this research, pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure wasfound in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~ 40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fccmore » and the hcp phases for the three alloys are very small, but they are sensitive to temperature. Finally, the critical transition pressure in NiCoCrFe varies from 1 GPa at room temperature to 6 GPa at 500 K.« less

  10. Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, F. X.; Zhao, Shijun; Jin, Ke

    2017-01-04

    A pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure was found in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fcc and themore » hcp phases for the three alloys are very small, but they are sensitive to temperature. The critical transition pressure in NiCoCrFe varies from ~1 GPa at room temperature to ~6 GPa at 500 K.« less

  11. Solid phase microextraction for active or passive sampling of methyl bromide during fumigations

    USDA-ARS?s Scientific Manuscript database

    The high diffusivity and volatility of methyl bromide make it an ideal compound for Solid Phase Micro Extraction (SPME)-based sampling of air prior to gas-chromatographic quantifications. SPME fibers can be used as active methyl bromide samplers, with high capacities and an equilibrium time of 1-2 m...

  12. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.

    PubMed

    Warzoha, Ronald J; Fleischer, Amy S

    2014-08-13

    Solid-liquid phase change materials (PCMs) are attractive candidates for thermal energy storage and electronics cooling applications but have limited applicability in state-of-the-art technologies due to their low intrinsic thermal conductivities. Recent efforts to incorporate graphene and multilayer graphene into PCMs have led to the development of thermal energy storage materials with remarkable values of bulk thermal conductivity. However, the full potential of graphene as a filler material for the thermal enhancement of PCMs remains unrealized, largely due to an incomplete understanding of the physical mechanisms that govern thermal transport within graphene-based nanocomposites. In this work, we show that the number of graphene layers (n) within an individual graphene nanoparticle has a significant effect on the bulk thermal conductivity of an organic PCM. Results indicate that the bulk thermal conductivity of PCMs can be tuned by over an order of magnitude simply by adjusting the number of graphene layers (n) from n = 3 to 44. Using scanning electron microscopy in tandem with nanoscale analytical techniques, the physical mechanisms that govern heat flow within a graphene nanocomposite PCM are found to be nearly independent of the intrinsic thermal conductivity of the graphene nanoparticle itself and are instead found to be dependent on the mechanical compliance of the graphene nanoparticles. These findings are critical for the design and development of PCMs that are capable of cooling next-generation electronics and storing heat effectively in medium-to-large-scale energy systems, including solar-thermal power plants and building heating and cooling systems.

  13. A Critical Review of Lipid-based Nanoparticles for Taxane Delivery

    PubMed Central

    Feng, Lan; Mumper, Russell J.

    2012-01-01

    Nano-based delivery systems have attracted a great deal of attention in the past two decades as a strategy to overcome the low therapeutic index of conventional anticancer drugs and delivery barriers in solid tumors. Myriads of preclinical studies have been focused on developing nano-based formulations to effectively deliver taxanes, one of the most important and most prescribed anticancer drug types in the clinic. Given the hydrophobic property of taxanes, lipid-based NPs, serve as a viable alternative delivery system. This critical review will provide an overview and perspective of the advancement of lipid-based nanoparticles for taxane delivery. Currently available formulations of taxanes and their drawbacks as well as criteria for idea taxane delivery system will be discussed. PMID:22796606

  14. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    PubMed

    Majhi, Bijoy Kumar; Jash, Tushar

    2016-12-01

    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m 3 kg -1 VS, at OLR of 1.11-1.585kgm -3 d -1 , were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Campos, Estefânia Vangelie Ramos; Oliveira, Jhones Luiz De; da Silva, Camila Morais Gonçalves; Pascoli, Mônica; Pasquoto, Tatiane; Lima, Renata; Abhilash, P. C.; Fernandes Fraceto, Leonardo

    2015-09-01

    Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.

  16. Silk Fibroin-Based Nanoparticles for Drug Delivery

    PubMed Central

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromolecule with excellent biocompatibility, biodegradability and low immunogenicity. The development of SF-based nanoparticles for drug delivery have received considerable attention due to high binding capacity for various drugs, controlled drug release properties and mild preparation conditions. By adjusting the particle size, the chemical structure and properties, the modified or recombinant SF-based nanoparticles can be designed to improve the therapeutic efficiency of drugs encapsulated into these nanoparticles. Therefore, they can be used to deliver small molecule drugs (e.g., anti-cancer drugs), protein and growth factor drugs, gene drugs, etc. This paper reviews recent progress on SF-based nanoparticles, including chemical structure, properties, and preparation methods. In addition, the applications of SF-based nanoparticles as carriers for therapeutic drugs are also reviewed. PMID:25749470

  17. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-02

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.

  18. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim

    2007-07-01

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  19. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chuan, Junlan; Li, Yanzhen; Yang, Likai; Sun, Xun; Zhang, Qiang; Gong, Tao; Zhang, Zhirong

    2013-05-01

    The present study aimed at developing a drug delivery system targeting the densest site of tuberculosis infection, the alveolar macrophages (AMs). Rifampicin (RFP)-loaded solid lipid nanoparticles (RFP-SLNs) with an average size of 829.6 ± 16.1 nm were prepared by a modified lipid film hydration method. The cytotoxicity of RFP-SLNs to AMs and alveolar epithelial type II cells (AECs) was examined using MTT assays. The viability of AMs and AECs was above 80 % after treatment with RFP-SLNs, which showed low toxicity to both AMs and AECs. Confocal Laser Scanning Microscopy was employed to observe the interaction between RFP-SLNs and both AMs and AECs. After incubating the cells with RFP-SLNs for 2 h, the fluorescent intensity in AMs was more and remained longer (from 0.5 to 12 h) when compared with that in AECs (from 0.5 to 8 h). In vitro uptake characteristics of RFP-SLNs in AMs and AECs were also investigated by detection of intracellular RFP by High performance liquid chromatography. Results showed that RFP-SLNs delivered markedly higher RFP into AMs (691.7 ng/mg in cultured AMs, 662.6 ng/mg in primary AMs) than that into AECs (319.2 ng/mg in cultured AECs, 287.2 ng/mg in primary AECs). Subsequently, in vivo delivery efficiency and the selectivity of RFP-SLNs were further verified in Sprague-Dawley rats. Under pulmonary administration of RFP-SLNs, the amount of RFP in AMs was significantly higher than that in AECs at each time point. Our results demonstrated that solid lipid nanoparticles are a promising strategy for the delivery of rifampicin to alveolar macrophages selectively.

  20. Fabrication and evaluation of magnetic phosphodiesterase-5 linked nanoparticles as adsorbent for magnetic dispersive solid-phase extraction of inhibitors from Chinese herbal medicine prior to ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis.

    PubMed

    Tao, Yi; Gu, Xianghui; Li, Weidong; Cai, Baochang

    2018-01-12

    In the present study, the preparation of the magnetic phosphodiesterase-5 linked Fe 3 O 4 @ SiO 2 nanoparticles was successfully achieved by amide reaction and the magnetic phosphodiesterase-5 linked Fe 3 O 4 @SiO 2 nanoparticles were evaluated as a new adsorbent for magnetic dispersive solid-phase extraction of ligands from medicinal plant samples before the analysis by UHPLC-Q-TOF/MS. The prepared phosphodiesterase-5 linked Fe 3 O 4 @SiO 2 nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, vibration sample magnetometer and potential laser particle size analyzer. The effects of EDC concentration, incubation time and bead-protein ratio on the amount of immobilized protein were studied. The main experimental parameters affect extraction efficiency of ligands, such as wash times, wash solvents, incubation pH, ion strength and incubation temperature, were investigated and optimized by using echinacoside as a model compound. The absolute recovery of echinacoside was ranged from 98.36%-102.16% in Cistanche tubulosa sample under the optimal extraction conditions. Good linearity was observed in the investigated concentration range of 0.006 mgmL -1 -0.97 mgmL -1 (R 2  = 0.9999). The limit of detection was 0.002 mgmL -1 . The RSDs of within-day and between-day precision were less than 2.3%. Due to the excellent magnetic behavior of Fe 3 O 4 @SiO 2 nanoparticles, the proposed method was shown to be simple and rapid. Remarkably, the magnetic phosphodiesterase-5 linked Fe 3 O 4 @SiO 2 nanoparticles could be recycled for ten times with loss of 10% activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Designed synthesis and stacking architecture of solid and mesoporous TiO(2) nanoparticles for enhancing the light-harvesting efficiency of dye-sensitized solar cells.

    PubMed

    Ahn, Ji Young; Moon, Kook Joo; Kim, Ji Hoon; Lee, Sang Hyun; Kang, Jae Wook; Lee, Hyung Woo; Kim, Soo Hyung

    2014-01-22

    We fabricated solid and mesoporous TiO2 nanoparticles (NPs) with relatively large primary sizes of approximately 200 nm via inorganic templates for aero-sol-gel and subsequent aqueous-washing processes. The amount of dye molecules adsorbed by the internal pores in the mesoporous TiO2 NPs was increased by creating the nanopores within the solid TiO2 NPs. Simultaneously, the light-scattering effect of the mesoporous TiO2 NPs fabricated by this approach was secured by maintaining their spherical shape and relatively large average size. By precisely accumulating the fabricated solid or mesoporous 200 nm diameter TiO2 NPs on top of a conventional 25 nm diameter TiO2 NP-based underlayer, we could systematically examine the effect of the solid and mesoporous TiO2 NPs on the photovoltaic performance of dye-sensitized solar cells (DSSCs). Consequently, the stacking architecture of the mesoporous TiO2 NP-based overlayer, which functioned as both a light-scattering and dye-supporting medium, on top of a conventional solid TiO2 NP-based underlayer in a DSSC photoelectrode (i.e., double-layer structures) was found to be very promising for significantly improving the photovoltaic properties of conventional solid TiO2 NP single-layer-based DSSCs.

  2. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-12-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  3. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  4. Improved Poly (D,L-lactide) nanoparticles-based formulation for hair follicle targeting.

    PubMed

    Fernandes, B; Silva, R; Ribeiro, A; Matamá, T; Gomes, A C; Cavaco-Paulo, A M

    2015-06-01

    Hair follicles are widely recognized as the preferential target and site of accumulation for nanoparticles after topical application. This feature is of particular importance for hair cosmetics, having the potential to refine the treatment of several hair follicle-related disorders. The aim of this work was to improve the preparation of Poly (D,L-lactide) (PLA) nanoparticles for in vivo follicular target and drug delivery. Envisaging a future industrial scale-up of the process, nanoprecipitation method was used to prepare PLA nanoparticles: the effect of several processing parameters on their properties was examined and the yield of nanoparticles formation determined. Encapsulation efficiencies and in vitro release profiles of lipophilic and hydrophilic model compounds were also assessed. In vitro cytotoxicity and ex vivo penetration studies were performed on a reference skin cell line (NCTC2455, human skin keratinocytes) and porcine skin, respectively. Using acetone : ethanol (50 : 50, v/v) as the solvent phase, 0.6% (w/w) of Pluronic(®) F68 as a surfactant agent and agitation to mix the solvent and non-solvent phases, a monodispersed population of non-cytotoxic spherical nanoparticles of approximately 150 nm was obtained. The yield of nanoparticles for this formulation was roughly 90%. After encapsulation of model compounds, no significant changes were found in the properties of particles and the entrapment efficiencies were above 80%. The release kinetics of dyes from PLA nanoparticles indicate an anomalous transport mechanism (diffusion and polymer degradation) for Nile Red (lipophilic) and a Fickian diffusion of first order for fluorescein 5(6)-isothiocyanate (hydrophilic). Ex vivo skin penetration studies confirmed the presence of nanoparticles along the entire follicular ducts. The optimized method allows the preparation of ideal PLA nanoparticles-based formulations for hair follicle targeting. PLA nanoparticles can effectively transport and release

  5. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue.

    PubMed

    Ensafi, Ali A; Ghaderi, Ali R

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  6. Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect

    NASA Astrophysics Data System (ADS)

    Niculae, G.; Lacatusu, I.; Badea, N.; Meghea, A.

    2012-08-01

    The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions.

  7. Edge states and topological phase transitions in chains of dielectric nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, Sergey; Slobozhanyuk, Alexey; Denkova, Denitza

    Recently introduced field of topological photonics aims to explore the concepts of topological insulators for novel phenomena in optics. Here polymeric chains of subwavelength silicon nanodisks are studied and it is demonstrated that these chains can support two types of topological edge modes based on magnetic and electric Mie resonances, and their topological properties are fully dictated by the spatial arrangement of the nanoparticles in the chain. Here, it is observed experimentally and described how theoretically topological phase transitions at the nanoscale define a change from trivial to nontrivial topological states when the edge mode is excited.

  8. Edge states and topological phase transitions in chains of dielectric nanoparticles

    DOE PAGES

    Kruk, Sergey; Slobozhanyuk, Alexey; Denkova, Denitza; ...

    2017-01-12

    Recently introduced field of topological photonics aims to explore the concepts of topological insulators for novel phenomena in optics. Here polymeric chains of subwavelength silicon nanodisks are studied and it is demonstrated that these chains can support two types of topological edge modes based on magnetic and electric Mie resonances, and their topological properties are fully dictated by the spatial arrangement of the nanoparticles in the chain. Here, it is observed experimentally and described how theoretically topological phase transitions at the nanoscale define a change from trivial to nontrivial topological states when the edge mode is excited.

  9. Extraction of acetanilides in rice using ionic liquid-based matrix solid phase dispersion-solvent flotation.

    PubMed

    Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie

    2018-04-15

    Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    NASA Astrophysics Data System (ADS)

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.

    2010-12-01

    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement

  11. Evaluation of the effects of polymeric chitosan/tripolyphosphate and solid lipid nanoparticles on germination of Zea mays, Brassica rapa and Pisum sativum.

    PubMed

    Nakasato, Daniele Y; Pereira, Anderson E S; Oliveira, Jhones L; Oliveira, Halley C; Fraceto, Leonardo F

    2017-08-01

    Although the potential toxicity of many metallic and carbon nanoparticles to plants has been reported, few studies have evaluated the phytotoxic effects of polymeric and solid lipid nanoparticles. The present work described the preparation and characterization of chitosan/tripolyphosphate (CS/TPP) nanoparticles and solid lipid nanoparticles (SLN) and evaluated the effects of different concentrations of these nanoparticles on germination of Zea mays, Brassica rapa, and Pisum sativum. CS/TPP nanoparticles presented an average size of 233.6±12.1nm, polydispersity index (PDI) of 0.30±0.02, and zeta potential of +21.4±1.7mV. SLN showed an average size of 323.25±41.4nm, PDI of 0.23±0.103, and zeta potential of -13.25±3.2mV. Nanotracking analysis enabled determination of concentrations of 1.33×10 10 (CS/TPP) and 3.64×10 12 (SLN) nanoparticles per mL. At high concentrations, CS/TPP nanoparticles caused complete inhibition of germination, and thus negatively affected the initial growth of all tested species. Differently, SLN presented no phytotoxic effects. The different size and composition and the opposite charges of SLN and CS/TPP nanoparticles could be associated with the differential phytotoxicity of these nanomaterials. The present study reports the phytotoxic potential of polymeric CS/TPP nanoparticles towards plants, indicating that further investigation is needed on the effects of such formulations intended for future use in agricultural systems, in order to avoid damage to the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples.

    PubMed

    Chen, Jieping; Zhu, Xiashi

    2016-06-01

    Three hydrophobic ionic liquids (ILs) (1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluoro-phosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluorophosphate ([OMIM]PF6)) were used to coat Fe3O4@SiO2 nanoparticles (NPs) with core-shell structures to prepare magnetic solid phase extraction (MSPE) agents (Fe3O4@SiO2@IL). A novel method of MSPE coupled with high-performance liquid chromatography for the separation/analysis of Rhodamine B was then established. The results showed that Rhodamine B was adsorbed rapidly on Fe3O4@SiO2@[OMIM]PF6 and was released using ethanol. Under optimal conditions, the pre-concentration factor for the proposed method was 25. The linear range, limit of detection (LOD), correlation coefficient (R), and relative standard deviation (RSD) were found to be 0.50-150.00 μgL(-1), 0.08 μgL(-1), 0.9999, and 0.51% (n=3, c=10.00 μgL(-1)), respectively. The Fe3O4@SiO2 NPs could be re-used up to 10 times. The method was successfully applied to the determination of Rhodamine B in food samples. Copyright © 2016. Published by Elsevier Ltd.

  13. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    DOEpatents

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  14. Localized, plasmon-mediated heating from embedded nanoparticles in nanocomposites

    NASA Astrophysics Data System (ADS)

    Maity, Somsubhra; Downen, Lori; Bochinski, Jason; Clarke, Laura

    2010-03-01

    Metallic nanoparticles exhibit a surface plasmon resonance which, when excited with visible light, results in a dramatic increase in the nanoparticle temperature. Previously such localized heating has been primarily employed in biomedical research and other experiments involving aqueous environments. In this work, we investigated use of the nanoparticles in solid phase to re-shape, bond, melt, and otherwise process nanofibrous mats of ˜200 nm diameter nanofibers doped with ˜80 nm spherical gold nanoparticles. Under low light intensities (100 mW/cm^2 @ 532 nm) and dilute nanoparticle loading (˜0.15% volume fraction), irradiation of a few minutes melted nanofibrous mats of poly (ethylene oxide) (Tm = 65 degree C). Control samples without gold nanoparticles displayed no melting. Because the heat is generated from within the material and only at the nanoparticle locations, this technique enables true nanoprocessing -- the non-contact, controlled application of heat at specific nano-sized locations within a material to effect desired local changes. Funded by CMMI-0829379.

  15. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    NASA Astrophysics Data System (ADS)

    Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2013-05-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still

  16. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Use of itaconic acid-based polymers for solid-phase extraction of deoxynivalenol and application to pasta analysis.

    PubMed

    Pascale, Michelangelo; De Girolamo, Annalisa; Visconti, Angelo; Magan, Naresh; Chianella, Iva; Piletska, Elena V; Piletsky, Sergey A

    2008-02-25

    Molecular modelling and computational design were used to identify itaconic acid (IA) as a functional monomer with high affinity towards deoxynivalenol (DON), a Fusarium-toxin frequently occurring in cereals. IA-based polymers were photochemically synthesised in dimethyl formamide (porogen) using ethylenglycol dimethacrylate as cross-linker and 1,1'-azo-bis(cyclohexane carbonitrile) as initiator, and the relevant binding interactions with DON in solvents with different polarity were investigated. The performances of the non-imprinted IA-based polymer (blank polymer, BP) and the corresponding molecularly imprinted polymer (MIP) were compared using DON as a template. Both BP and MIP were able to bind about 90% DON either in toluene, water or water containing 5% polyethylene glycol. Non-imprinted polymers with different molar ratios of IA to cross-linker were evaluated as adsorbents for solid-phase extraction (SPE) clean-up and pre-concentration of DON from wheat and pasta samples prior to HPLC analysis. Samples were extracted with PBS/0.1M EDTA solution and cleaned up through a cartridge containing blank IA-based polymer. The column was washed with PBS (pH 9.2) and the toxin was eluted with methanol and quantified by reversed-phase HPLC with UV detector (lambda=220nm), using methanol:water:acetic acid (15:85:0.1, v/v/v) as the mobile phase. Effective removal of matrix interferences was observed only for pasta with DON recoveries higher than 70% (RSD<7%, n=3) at levels close to or higher than EU regulatory limit.

  18. The augmented anticancer potential of AP9-cd loaded solid lipid nanoparticles in human leukemia Molt-4 cells and experimental tumor.

    PubMed

    Bhushan, Shashi; Kakkar, Vandita; Pal, Harish Chandra; Mondhe, D M; Kaur, Indu Pal

    2016-01-25

    AP9-cd, a novel lignan composition from Cedrus deodara has significant anticancer potential, and to further enhance its activity, it was lucratively encumbered into solid lipid nanoparticles (SLNs). These nanoparticles were formulated by micro-emulsion technique with 70% drug trap competence. AP9-cd-SLNs were regular, solid, globular particles in the range of 100-200 nm, which were confirmed by electron microscopic studies. Moreover, AP9-cd-SLNs were found to be stable for up to six months in terms of color, particle size, zeta potential, drug content and entrapment. AP9-cd-SLNs have 30-50% higher cytotoxic and apoptotic potential than the AP9-cd alone. The augmented anticancer potential of AP9-cd-SLNs was observed in cytotoxic IC50 value, apoptosis signaling cascade and in Ehrlich ascites tumor (EAT) model. AP9-cd-SLNs induce apoptosis in Molt-4 cells via both intrinsic and extrinsic pathway. Moreover, the dummy nanoparticles (SLNs without AP9-cd) did not have any cytotoxic effect in cancer as well as in normal cells. Consequently, SLNs of AP9-cd significantly augment the apoptotic and antitumor potential of AP9-cd. The present study provides a podium for ornamental the remedial latent via novel delivery systems like solid lipid nanoparticles. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples.

    PubMed

    Rao, Wei; Cai, Rong; Yin, Yuli; Long, Fang; Zhang, Zhaohui

    2014-10-01

    In this paper, a highly selective sample clean-up procedure combining magnetic dummy molecular imprinting with solid-phase extraction was developed for rapid separation and determination of 4-nonylphenol (NP) in the environmental water samples. The magnetic dummy molecularly imprinted polymers (mag-DMIPs) based on multi-walled carbon nanotubes were successfully synthesized with a surface molecular imprinting technique using 4-tert-octylphenol as the dummy template and tetraethylorthosilicate as the cross-linker. The maximum adsorption capacity of the mag-DMIPs for NP was 52.4 mg g(-1) and it took about 20 min to achieve the adsorption equilibrium. The mag-DMIPs exhibited the specific selective adsorption toward NP. Coupled with high performance liquid chromatography analysis, the mag-DMIPs were used to extract solid-phase and detect NP in real water samples successfully with the recoveries of 88.6-98.1%. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Molecular dynamics study of the growth of a metal nanoparticle array by solid dewetting

    NASA Astrophysics Data System (ADS)

    Luan, Yanhua; Li, Yanru; Nie, Tiaoping; Yu, Jun; Meng, Lijun

    2018-03-01

    We investigated the effect of the substrate and the ambient temperature on the growth of a metal nanoparticle array (nanoarray) on a solid-patterned substrate by dewetting a Au liquid film using an atomic simulation technique. The patterned substrate was constructed by introducing different interaction potentials for two atom groups ( C 1 and C 2) in the graphene-like substrate. The C 1 group had a stronger interaction between the Au film and the substrate and was composed of regularly distributed circular disks with radius R and distance D between the centers of neighboring disks. Our simulation results demonstrate that R and D have a strikingly different influence on the growth of the nanoparticle arrays. The degree of order of the nanoarray increases first before it reaches a peak and then decreases for increasing R at fixed D. However, the degree of order increases monotonously when D is increased and reaches a saturated value beyond a critical value of D for a fixed R. Interestingly, a labyrinth-like structure appeared during the dewetting process of the metal film. The simulation results also indicated that the temperature was an important factor in controlling the properties of the nanoarray. An appropriate temperature leads to an optimized nanoarray with a uniform grain size and well-ordered particle distribution. These results are important for understanding the dewetting behaviors of metal films on solid substrates and understanding the growth of highly ordered metal nanoarrays using a solid-patterned substrate method.

  1. Systematic investigation of the SERS efficiency and SERS hotspots in gas-phase deposited Ag nanoparticle assemblies.

    PubMed

    He, L B; Wang, Y L; Xie, X; Han, M; Song, F Q; Wang, B J; Cheng, W L; Xu, H X; Sun, L T

    2017-02-15

    Gas-phase deposited Ag nanoparticle assemblies are one of the most commonly used plasmonic substrates benefiting from their remarkable advantages such as clean particle surface, tunable particle density, available inter-particle gaps, low-cost and scalable fabrication, and excellent industry compatibility. However, their performance efficiencies are difficult to optimize due to the lack of knowledge of the hotspots inside their structures. We here report a design of delicate rainbow-like Ag nanoparticle assemblies, based on which the hotspots can be revealed through a combinatorial approach. The findings show that the hotspots in gas-phase deposited Ag nanoparticle assemblies are uniquely entangled by the excitation energy and specific inter-particle gaps, differing from the matching conditions in periodic arrays. For Ag nanoparticle assemblies deposited on Formvar-filmed substrates, the mean particle size is maintained around 10 nm, while the particle density can be widely tuned. The one possessing the highest SERS efficiency (under 473 nm excitation) have a particle number density of around 7100 μm -2 . Gaps with an inter-particle spacing of around 3 nm are found to serve as SERS hotspots, and these hotspots contribute to 68% of the overall SERS intensity. For Ag nanoparticle assemblies fabricated on carbon-filmed substrates, the mean particle size can be feasibly tuned. The one possessing the highest SERS efficiency under 473 nm excitation has a particle number density of around 460 μm -2 and a mean particle size of around 42.1 nm. The construction of Ag-analyte-Ag sandwich-like nanoparticle assemblies by a two-step-deposition method slightly improves the SERS efficiency when the particle number density is low, but suppresses the SERS efficiency when the particle number density is high.

  2. Determination of type A trichothecenes in coix seed by magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes coupled with ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Maofeng; Si, Wenshuai; Wang, Weimin; Bai, Bing; Nie, Dongxia; Song, Weiguo; Zhao, Zhihui; Guo, Yirong; Han, Zheng

    2016-09-01

    Magnetic solid-phase extraction (m-SPE) is a promising sample preparation approach due to its convenience, speed, and simplicity. For the first time, a rapid and reliable m-SPE approach using magnetic multi-walled carbon nanotubes (m-MWCNTs) as the adsorbent was proposed for purification of type A trichothecenes including T-2 toxins (T2), HT-2 toxins (HT-2), diacetoxyscirpenol (DAS), and neosolaniol (NEO) in coix seed. The m-MWCNTs were synthesized by assembling the magnetic nanoparticles (Fe3O4) with MWCNTs by sonication through an aggregation wrap mechanism, and characterized by transmission electron microscope. Several key parameters affecting the performance of the procedure were extensively investigated including extraction solutions, desorption solvents, and m-MWCNT amounts. Under the optimal sample preparation conditions followed by analysis with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), high sensitivity (limit of quantification in the range of 0.3-1.5 μg kg(-1)), good linearity (R (2) > 0.99), satisfactory recovery (73.6-90.6 %), and acceptable precision (≤2.5 %) were obtained. The analytical performance of the developed method has also been successfully evaluated in real coix seed samples. Graphical Abstract Flow chart of determination of type A trichothecenes in coix seed by magnetic solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry.

  3. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruu Siah, Wai; Lintang, Hendrik O.; Shamsuddin, Mustaffa; Yuliati, Leny

    2016-02-01

    Titanium dioxide (TiO2) is well-known as an active photocatalyst for degradation of various organic pollutants. Over the years, a wide range of TiO2 nanoparticles with different phase compositions, crystallinities, and surface areas have been developed. Due to the different methods and conditions used to synthesize these commercial TiO2 nanoparticles, the properties and photocatalytic performance would also be different from each other. In this study, the photocatalytic removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5- trichlorophenoxyacetic acid (2,4,5-T) was investigated on commercial Evonik P25, Evonik P90, Hombikat UV100 and Hombikat N100 TiO2 nanoparticles. Upon photocatalytic tests, it was found that overall, the photocatalytic activities of the P25 and the P90 were higher than the N100 and the UV100 for the removal of both 2,4-D and 2,4,5-T. The high activities of the P25 and the P90 could be attributed to their phase compositions, which are made up of a mixture of anatase and rutile phases of TiO2. Whereas, the UV100 and the N100 are made up of 100% anatase phase of TiO2. The synergistic effect of the anatase/rutile mixture was reported to slow down the recombination rate of photogenerated electron-hole pairs. Consequently, the photocatalytic activity was increased on these TiO2 nanoparticles.

  4. Rafts, Nanoparticles and Neural Disease

    PubMed Central

    Gulati, Vishal; Wallace, Ron

    2012-01-01

    This review examines the role of membrane rafts in neural disease as a rationale for drug targeting utilizing lipid-based nanoparticles. The article begins with an overview of methodological issues involving the existence, sizes, and lifetimes of rafts, and then examines raft function in the etiologies of three major neural diseases—epilepsy, Parkinson’s disease, and Alzheimer’s disease—selected as promising candidates for raft-based therapeutics. Raft-targeting drug delivery systems involving liposomes and solid lipid nanoparticles are then examined in detail. PMID:28348305

  5. Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip.

    PubMed

    Wang, Tanyu; Zhang, Mohan; Dreher, Dakota D; Zeng, Yong

    2013-11-07

    Quantitative detection of low abundance proteins is of significant interest for biological and clinical applications. Here we report an integrated microfluidic solid-phase ELISA platform for rapid and ultrasensitive detection of proteins with a wide dynamic range. Compared to the existing microfluidic devices that perform affinity capture and enzyme-based optical detection in a constant channel volume, the key novelty of our design is two-fold. First, our system integrates a microwell-patterned assay chamber that can be pneumatically actuated to significantly reduce the volume of chemifluorescent reaction, markedly improving the sensitivity and speed of ELISA. Second, monolithic integration of on-chip pumps and the actuatable assay chamber allow programmable fluid delivery and effective mixing for rapid and sensitive immunoassays. Ultrasensitive microfluidic ELISA was demonstrated for insulin-like growth factor 1 receptor (IGF-1R) across at least five orders of magnitude with an extremely low detection limit of 21.8 aM. The microwell-based solid-phase ELISA strategy provides an expandable platform for developing the next-generation microfluidic immunoassay systems that integrate and automate digital and analog measurements to further improve the sensitivity, dynamic ranges, and reproducibility of proteomic analysis.

  6. Effects of aluminum and iron nanoparticle additives on composite AP/HTPB solid propellant regression rate

    NASA Astrophysics Data System (ADS)

    Styborski, Jeremy A.

    This project was started in the interest of supplementing existing data on additives to composite solid propellants. The study on the addition of iron and aluminum nanoparticles to composite AP/HTPB propellants was conducted at the Combustion and Energy Systems Laboratory at RPI in the new strand-burner experiment setup. For this study, a large literature review was conducted on history of solid propellant combustion modeling and the empirical results of tests on binders, plasticizers, AP particle size, and additives. The study focused on the addition of nano-scale aluminum and iron in small concentrations to AP/HTPB solid propellants with an average AP particle size of 200 microns. Replacing 1% of the propellant's AP with 40-60 nm aluminum particles produced no change in combustive behavior. The addition of 1% 60-80 nm iron particles produced a significant increase in burn rate, although the increase was lesser at higher pressures. These results are summarized in Table 2. The increase in the burn rate at all pressures due to the addition of iron nanoparticles warranted further study on the effect of concentration of iron. Tests conducted at 10 atm showed that the mean regression rate varied with iron concentration, peaking at 1% and 3%. Regardless of the iron concentration, the regression rate was higher than the baseline AP/HTPB propellants. These results are summarized in Table 3.

  7. Evaluation of antitumor activity and development of solid lipid nanoparticles of metronidazole analogue.

    PubMed

    Lages, Eduardo Burgarelli; de Freitas, Maria Betânia; Gonçalves, Isadora Marques Brum; Alves, Ricardo José; Vianna-Soares, Cristina Duarte; Ferreira, Lucas Antônio Miranda; de Oliveira, Mônica Cristina; de Oliveira, Renata Barbosa

    2013-11-01

    Nitroheterocyclic compounds have received considerable interest as hypoxia-selective cytotoxins (HSC) for cancer treatment. In the present study, we investigated antitumor activity of an iodide analogue of metronidazole, 1-(2-iodoethyl)-2-methyl-5-nitroimidazole (MTZ-I), using Swiss mice bearing solid Ehrlich tumor. MTZ-I showed potent anti-cancer activity at a dose of 40 mg/kg. MTZ-I loaded solid lipid nanoparticles (SLN) were developed as an alternative colloidal carrier system to enhance tumor drug uptake. SLN were characterized for particle size, polydispersity index, zeta potential and entrapment efficiency. In addition, the influence of presence of the cationic lipid stearylamine (STE) on stability of formulation was assessed. The results of DSC study showed that MTZ-I exhibited interaction with STE.

  8. [Determination of lead in edible salt with solid-phase extraction and GFAAS].

    PubMed

    Zhao, Xin; Zhou, Shuang; Ma, Lan; Yang, Dajin

    2013-01-01

    Establishing a method for determination of lead in salt with solid-phase extraction and GFAAS. Salt sample was diluted to a certain volume directly with ammonium acetate, then the sample solution was filtered through the solid phase extraction column which has been pre-activated. Lead ions were retained, and the sodium chloride matrix was removed. After elution, the collected lead ions was determined by graphite furnace atomic absorption spectrometry in 257.4 nm. This method can be used effectively to wipe off the sodium chloride in matrix. The limit of detection was 0.7 microg/kg and the limit of quantification was 2 microg/kg. Solid phase extraction technique can be used effectively to reduce the interference in matrix and improves the accuracy and reproducibility of detection.

  9. Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe.

    PubMed

    Ali, Haydar; Bhunia, Susanta Kumar; Dalal, Chumki; Jana, Nikhil R

    2016-04-13

    Fluorescent carbon nanoparticle-based probes with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. However, synthesis of red fluorescent carbon nanoparticles and their transformation into functional nanoparticles are very challenging. Here we report red fluorescent carbon nanoparticle-based nanobioconjugates of <25 nm hydrodynamic size and their application as fluorescent cell labels. Hydrophobic carbon nanoparticles are synthesized via high temperature colloid-chemical approach and transformed into water-soluble functional nanoparticles via coating with amphiphilic polymer followed by covalent linking with desired biomolecules. Following this approach, carbon nanoparticles are functionalized with polyethylene glycol, primary amine, glucose, arginine, histidine, biotin and folic acid. These functional nanoparticles can be excited with blue/green light (i.e., 400-550 nm) to capture their emission spanning from 550 to 750 nm. Arginine and folic acid functionalized nanoparticles have been demonstrated as fluorescent cell labels where blue and green excitation has been used for imaging of labeled cells. The presented method can be extended for the development of carbon nanoparticle-based other bioimaging probes.

  10. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    PubMed Central

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-01-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples. PMID:27924944

  11. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-12-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.

  12. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    PubMed

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  13. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles

    PubMed Central

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284

  14. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    NASA Astrophysics Data System (ADS)

    Phatak, C.; Petford-Long, A. K.; Beleggia, M.; De Graef, M.

    2014-06-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift computation for a uniformly polarized prolate ellipsoid with varying aspect ratio in the absence of screening charges.

  15. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    NASA Astrophysics Data System (ADS)

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  16. Chemoelectronic circuits based on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  17. Chemoelectronic circuits based on metal nanoparticles.

    PubMed

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  18. Liquid-solid phase transition of hydrogen and deuterium in silica aerogel

    NASA Astrophysics Data System (ADS)

    Van Cleve, E.; Worsley, M. A.; Kucheyev, S. O.

    2014-10-01

    Behavior of hydrogen isotopes confined in disordered low-density nanoporous solids remains essentially unknown. Here, we use relaxation calorimetry to study freezing and melting of H2 and D2 in an ˜85%-porous base-catalyzed silica aerogel. We find that liquid-solid transition temperatures of both isotopes inside the aerogel are depressed. The phase transition takes place over a wide temperature range of ˜4 K and non-trivially depends on the liquid filling fraction, reflecting the broad pore size distribution in the aerogel. Undercooling is observed for both H2 and D2 confined inside the aerogel monolith. Results for H2 and D2 are extrapolated to tritium-containing hydrogens with the quantum law of corresponding states.

  19. Solid Lipid Nanoparticles of Guggul Lipid as Drug Carrier for Transdermal Drug Delivery

    PubMed Central

    Gaur, Praveen Kumar; Mishra, Shikha; Purohit, Suresh

    2013-01-01

    Diclofenac sodium loaded solid lipid nanoparticles (SLNs) were formulated using guggul lipid as major lipid component and analyzed for physical parameters, permeation profile, and anti-inflammatory activity. The SLNs were prepared using melt-emulsion sonication/low temperature-solidification method and characterized for physical parameters, in vitro drug release, and accelerated stability studies, and formulated into gel. Respective gels were compared with a commercial emulgel (CEG) and plain carbopol gel containing drug (CG) for ex vivo and in vivo drug permeation and anti-inflammatory activity. The SLNs were stable with optimum physical parameters. GMS nanoparticle 1 (GMN-1) and stearic acid nanoparticle 1 (SAN-1) gave the highest in vitro drug release. Guggul lipid nanoparticle gel 3 (GLNG-3) showed 104.68 times higher drug content than CEG in receptor fluid. The enhancement ratio of GLNG-3 was 39.43 with respect to CG. GLNG-3 showed almost 8.12 times higher C max than CEG at 4 hours. The AUC value of GLNG-3 was 15.28 times higher than the AUC of CEG. GLNG-3 showed edema inhibition up to 69.47% in the first hour. Physicochemical properties of major lipid component govern the properties of SLN. SLN made up of guggul lipid showed good physical properties with acceptable stability. Furthermore, it showed a controlled drug release profile along with a promising permeation profile. PMID:24058913

  20. Preparation and Evaluation of Montelukast Sodium Loaded Solid Lipid Nanoparticles

    PubMed Central

    Priyanka, K; Sathali, A Abdul Hasan

    2012-01-01

    Solid lipid nanoparticles (SLNs) are an alternative carrier system used to load the drug for targeting, to improve the bioavailability by increasing its solubility, and protecting the drug from presystemic metabolism. The avoidance of presystemic metabolism is due to the nano-metric size range, so that the liver cannot uptake the drug from the delivery system and is not metabolized by the liver. Montelukast sodium is an anti-asthmatic drug, because of its poor oral bioavailability, presystemic metabolism, and decreased half-life; it was chosen to formulate as the solid lipid nanoparticle (SLN) system by hot homogenization followed by an ultrasonication method, to overcome the above. Compritol ATO 888, stearic acid, and glyceryl monostearate were used as a lipid matrix and polyvinyl alcohol as a surfactant. The prepared formulations have been evaluated for entrapment efficiency, drug content, in vitro drug release, particle size analysis, scanning electron microscopy, Fourier transform-infrared studies (FT-IR), differential scanning calorimetry (DSC), and stability. Particle size analysis revealed that the SLN prepared from the higher melting point lipid showed a larger particle size and with increased carbon chain length of the fatty acids. Entrapment efficiency (EE) was ranging from 42% to 92%. In vitro release studies showed maximum cumulative drug release was obtained for F 1 (59.1%) containing stearic acid, and the lowest was observed for F 18 (28.1%) containing compritol ATO 888 after 12 h and all the formulations followed first-order release kinetics. FT-IR and DSC studies revealed no interaction between drug and lipids. Studies showed that increase in lipid concentration, increased particle size, EE, and maintained the sustained release of drug. Among all, compritol ATO 888 was chosen as the best lipid for formulating SLN because it had high EE and sustained the drug release. PMID:23112531