Sample records for nanoparticle-enhanced raman spectroscopy

  1. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  2. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    PubMed

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Shell-isolated nanoparticle-enhanced Raman spectroscopy: principle and applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Li, Jian-Feng; Tian, Zhong-Qun

    2015-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that yields fingerprint vibrational information with ultra-high sensitivity. However, only roughened Ag, Au and Cu surfaces can generate strong SERS effect. The lack of materials and morphology generality has severely limited the breadth of SERS practical applications on surface science, electrochemistry and catalysis. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was therefore invented to break the long-standing limitation of SERS. In SHINERS, Au@SiO2 core-shell nanoparticles were rationally designed. The gold core acts as plasmonic antenna and encapsulated by an ultra-thin, uniform and pinhole-free silica shell, can provide high electromagnetic field to enhance the Raman signals of probed molecules. The inert silica shell acts as tunneling barrier prevents the core from interacting with the environment. SHINERS has already been applied to a number of challenging systems, such as hydrogen and CO on Pt(hkl) and Rh(hkl), which can't be realized by traditional SERS. Combining with electrochemical methods, we has investigated the adsorption processes of pyridine at the Au(hkl) single crystal/solution interface, and in-situ monitored the surface electro-oxidation at Au(hkl) electrodes. These pioneering studies demonstrate convincingly the ability of SHINERS in exploring correlations between structure and reactivity as well as in monitoring intermediates at the interfaces. SHINERS was also explored from semiconductor surface for industry, to living bacteria for life science, and to pesticide residue detection for food safety. The concept of shell-isolated nanoparticle-enhancement is being applied to other spectroscopies such as infrared absorption, sum frequency generation and fluorescence. Jian-Feng Li et al., Nature, 2010, 464, 392-395.

  4. Correlation of surface enhanced Raman spectroscopy and nanoparticle aggregation with rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Hoff, Christopher A.

    Surface enhanced Raman spectroscopy (SERS) has fascinated the analytical chemistry field for decades. The SERS phenomenon has progressively leveraged the inherently insensitive Raman phenomenon from a novelty vibrational spectroscopy method into one capable of single molecule detection, with attendant molecular level selectivity and information. Yet, even after 40 years since its discovery, the core mechanism behind this phenomenon is still debated. This thesis presents results from a series of photometric titrations wherein solutions of 30 nm Au@Ag nanoparticles (NPs) were titrated with rhodamine 6G (R6G), spanning five orders of magnitude in R6G concentration, and which elucidate the conditions required for the onset of SERS by R6G in this system. The experiments illustrated the correlation between the Raman response and the plasmonic (via UV-Vis spectroscopy) properties of the nanoparticle solutions. It was found that the onset of R6G SERS was related much more closely to the aggregation of the nanoparticles in solution than to their R6G adsorbed surface coverage. However, triggering aggregation with sodium chloride appeared to enhance SERS by an independent mechanism, which is operative only at low, i.e., [NaCl] > 100 mM concentration.

  5. Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.

    2007-02-01

    Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.

  6. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  7. Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.

    2015-05-01

    Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly

  8. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  9. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy.

    PubMed

    Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T

    2017-04-19

    Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode-electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm. The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. The EFs for the best performing Au NP monolayer are between 10 6 and 10 8 and give quantitative signal response when analyte concentration is changed.

  10. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang

    2016-05-01

    The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.

  11. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy.

    PubMed

    Uzayisenga, Viviane; Lin, Xiao-Dong; Li, Li-Mei; Anema, Jason R; Yang, Zhi-Lin; Huang, Yi-Fan; Lin, Hai-Xin; Li, Song-Bo; Li, Jian-Feng; Tian, Zhong-Qun

    2012-06-19

    Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

  12. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Nanda, Jagjit; Wang, Boya

    Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode–electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm.more » The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. Lastly, the EFs for the best performing Au NP monolayer are between 10 6 and 10 8 and give quantitative signal response when analyte concentration is changed.« less

  13. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Yang, Guang; Nanda, Jagjit; Wang, Boya; ...

    2017-04-04

    Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode–electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm.more » The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. Lastly, the EFs for the best performing Au NP monolayer are between 10 6 and 10 8 and give quantitative signal response when analyte concentration is changed.« less

  14. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.

    PubMed

    Mahmoud, Mahmoud A

    2013-05-28

    Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.

  15. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

    NASA Astrophysics Data System (ADS)

    Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2016-06-01

    Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.

  16. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles

    PubMed Central

    Wu, Pae C; Khoury, Christopher G.; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V.; Vo-Dinh, Tuan; Brown, April S.; Everitt, Henry O.

    2009-01-01

    Size-controlled gallium nanoparticles deposited on sapphire are explored as alternative substrates to enhance Raman spectral signatures. Gallium’s resilience following oxidation is inherently advantageous compared to silver for practical ex vacuo, non-solution applications. Ga nanoparticles are grown using a simple, molecular beam epitaxy-based fabrication protocol, and by monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry, the nanoparticles are easily controlled for size. Raman spectroscopy performed on cresyl fast violet (CFV) deposited on substrates of differing mean nanoparticle size represents the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Non-optimized aggregate enhancement factors of ~80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm. PMID:19655747

  17. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis

    PubMed Central

    2016-01-01

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quantities at hot spots where electromagnetic fields are the strongest, providing ample opportunities to elucidate reaction mechanisms. Moreover, under ideal measurement conditions, it can even be used to trigger chemical reactions. However, factors such as substrate instability and insufficient signal enhancement still limit the applicability of SERS and TERS in the field of catalysis. By the use of sophisticated colloidal synthesis methods and advanced techniques, such as shell-isolated nanoparticle-enhanced Raman spectroscopy, these challenges could be overcome. PMID:27075515

  18. Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy.

    PubMed

    Liu, Fanxin; Cao, Zhishen; Tang, Chaojun; Chen, Ling; Wang, Zhenlin

    2010-05-25

    We have demonstrated that by coating with a thin dielectric layer of tetrahedral amorphous carbon (ta-C), a biocompatible and optical transparent material in the visible range, the Ag nanoparticle-based substrate becomes extremely suitable for surface-enhanced Raman spectroscopy (SERS). Our measurements show that a 10 A or thicker ta-C layer becomes efficient to protect the oxygen-free Ag in air and prevent Ag ionizing in aqueous solutions. Furthermore, the Ag nanoparticles substrate coated with a 10 A ta-C film shows a higher enhancement of Raman signals than the uncoated substrate. These observations are further supported by our numerical simulations. We suggest that biomolecule detections in analytic assays could be easily realized using ta-C-coated Ag-based substrate for SERS especially in the visible range. The coated substrate also has higher mechanical stability, chemical inertness, and technological compliance, and may be useful, for example, to enhance TiO(2) photocatalysis and solar-cell efficiency by the surface plasmons.

  19. Surface enhanced Raman spectroscopy based nanoparticle assays for rapid, point-of-care diagnostics

    NASA Astrophysics Data System (ADS)

    Driscoll, Ashley J.

    Nucleotide and immunoassays are important tools for disease diagnostics. Many of the current laboratory-based analytical diagnostic techniques require multiple assay steps and long incubation times before results are acquired. In the development of bioassays designed for detecting the emergence and spread of diseases in point-of-care (POC) and remote settings, more rapid and portable analytical methods are necessary. Nanoparticles provide simple and reproducible synthetic methods for the preparation of substrates that can be applied in colloidal assays, providing gains in kinetics due to miniaturization and plasmonic substrates for surface enhanced spectroscopies. Specifically, surface enhanced Raman spectroscopy (SERS) is finding broad application as a signal transduction method in immunological and nucleotide assays due to the production of narrow spectral peaks from the scattering molecules and the potential for simultaneous multiple analyte detection. The application of SERS to a no-wash, magnetic capture assay for the detection of West Nile Virus Envelope and Rift Valley Fever Virus N antigens is described. The platform utilizes colloid based capture of the target antigen in solution, magnetic collection of the immunocomplexes and acquisition of SERS spectra by a handheld Raman spectrometer. The reagents for a core-shell nanoparticle, SERS based assay designed for the capture of target microRNA implicated in acute myocardial infarction are also characterized. Several new, small molecule Raman scatterers are introduced and used to analyze the enhancing properties of the synthesized gold coated-magnetic nanoparticles. Nucleotide and immunoassay platforms have shown improvements in speed and analyte capture through the miniaturization of the capture surface and particle-based capture systems can provide a route to further surface miniaturization. A reaction-diffusion model of the colloidal assay platform is presented to understand the interplay of system

  20. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy

    PubMed Central

    Zhang, Hua; Wang, Chen; Sun, Han-Lei; Fu, Gang; Chen, Shu; Zhang, Yue-Jiao; Chen, Bing-Hui; Anema, Jason R.; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2017-01-01

    Surface molecular information acquired in situ from a catalytic process can greatly promote the rational design of highly efficient catalysts by revealing structure-activity relationships and reaction mechanisms. Raman spectroscopy can provide this rich structural information, but normal Raman is not sensitive enough to detect trace active species adsorbed on the surface of catalysts. Here we develop a general method for in situ monitoring of heterogeneous catalytic processes through shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) satellite nanocomposites (Au-core silica-shell nanocatalyst-satellite structures), which are stable and have extremely high surface Raman sensitivity. By combining operando SHINERS with density functional theory calculations, we identify the working mechanisms for CO oxidation over PtFe and Pd nanocatalysts, which are typical low- and high-temperature catalysts, respectively. Active species, such as surface oxides, superoxide/peroxide species and Pd–C/Pt–C bonds are directly observed during the reactions. We demonstrate that in situ SHINERS can provide a deep understanding of the fundamental concepts of catalysis. PMID:28537269

  1. Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy.

    PubMed

    Chen, Shu; Zhang, Yuejiao; Shih, Tien-Mo; Yang, Weimin; Hu, Shu; Hu, Xiaoyan; Li, Jianfeng; Ren, Bin; Mao, Bingwei; Yang, Zhilin; Tian, Zhongqun

    2018-04-11

    Plasmon-induced magnetic resonance has shown great potentials in optical metamaterials, chemical (bio)-sensing, and surface-enhanced spectroscopies. Here, we have theoretically and experimentally revealed (1) a correspondence of the strongest near-field response to the far-field scattering valley and (2) a significant improvement in Raman signals of probing molecules by the plasmon-induced magnetic resonance. These revelations are accomplished by designing a simple and practical metallic nanoparticle-film plasmonic system that generates magnetic resonances at visible-near-infrared frequencies. Our work may provide new insights for understanding the enhancement mechanism of various plasmon-enhanced spectroscopies and also helps further explore light-matter interactions at the nanoscale.

  2. Towards field malaria diagnosis using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-04-01

    We report three strategies of surface enhanced Raman spectroscopy (SERS) for β-hematin and hemozoin detection in malaria infected human blood, which can be potentially developed for field malaria diagnosis. In the first strategy, we used silver coated magnetic nanoparticles (Fe3O4@Ag) in combination with an external magnetic field to enhance the Raman signal of β-hematin. Then we developed two SERS methods without the requirement of magnetic field for malaria infection diagnosis. In Method 1, silver nanoparticles were synthesized separately and then mixed with lysed blood just like in traditional SERS measurements; while in Method 2, we developed an ultrasensitive SERS method by synthesizing silver nanoparticles directly inside the parasites of Plasmodium falciparum. Method 2 can be also used to detect single parasites in the ring stage.

  3. Bifunctional nanoparticles for surface-enhanced Raman spectroscopy-based leukemia biomarker detection

    NASA Astrophysics Data System (ADS)

    Mehn, Dora; Morasso, Carlo; Vanna, Renzo; Schiumarini, Domitilla; Bedoni, Marzia; Ciceri, Fabio; Gramatica, Furio

    2014-03-01

    The Wilms tumor gene (WT1) is a biomarker overexpressed in more than 90% of acute myeloid leukemia patients. Fast and sensitive detection of the WT1 in blood samples would allow monitoring of the minimal residual disease during clinical remission and would permit early detection of a potential relapse in acute myeloid leukemia. In this work, Surface Enhanced Raman Spectroscopy (SERS) based detection of the WT1 sequence using bifunctional, magnetic core - gold shell nanoparticles is presented. The classical co-precipitation method was applied to generate magnetic nanoparticles which were coated with a gold shell after modification with aminopropyltriethoxy silane and subsequent deposition of gold nanoparticle seeds. Simple hydroquinone based reduction procedure was applied for the shell growing in water based reaction mixture at room temperature. Thiolated ssDNA probes of the WT1 sequence were immobilized as capture oligonucleotides on the gold surface. Malachite green was applied both for testing the amplification performance of the core-shell colloidal SERS substrate and also as label dye of the target DNA sequence. The SERS enhancer efficacy of the core-shell nanomaterial was compared with the efficacy of classical spherical gold particles produced using the conventional citrate reduction method. The core-shell particles were found not only to provide an opportunity for facile separation in a heterogeneous reaction system but also to be superior regarding robustness as SERS enhancers.

  4. Characterization method for relative Raman enhancement for surface-enhanced Raman spectroscopy using gold nanoparticle dimer array

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Ikegami, Kohei; Isono, Yoshitada

    2017-06-01

    In this paper, a characterization method for Raman enhancement for highly sensitive and quantitative surface-enhanced Raman spectroscopy (SERS) is reported. A particle dimer shows a marked electromagnetic enhancement when the particle connection direction is matched to the polarization direction of incident light. In this study, dimers were arrayed by nanotrench-guided self-assembly for a marked total Raman enhancement. By measuring acetonedicarboxylic acid, the fabricated structures were characterized for SERS depending on the polarization angle against the particle connection direction. This indicates that the fabricated structures cause an effective SERS enhancement, which is dominated by the electromagnetic enhancement. Then, we measured 4,4‧-bipyridine, which is a pesticide material, for quantitative analysis. In advance, we evaluated the enhancement of the particle structure by the Raman measurement of acetonedicarboxylic acid. Finally, we compared the Raman intensities of acetonedicarboxylic acid and 4,4‧-bipyridine. Their intensities showed good correlation. The advantage of this method for previously evaluating the enhancement of the substrate was demonstrated. This developed SERS characterization method is expected to be applied to various quantitative trace analyses of molecules with high sensitivity.

  5. Zirconium(IV) oxide: New coating material for nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Abdulrahman, Heman Burhanalden; Kołątaj, Karol; Kudelski, Andrzej

    2018-03-01

    One tool that can be used for determining the structure and composition of surfaces of various materials (even in in situ conditions) is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In SHINERS measurements, the surface under investigation is covered with a layer of surface-protected plasmonic nanoparticles, and then the Raman spectrum of the surface analysed is recorded. The plasmonic cores of the used core-shell structures act as electromagnetic nanoresonators, significantly locally enhancing the intensity of the electric field of the incident radiation, leading to a large increase in the efficiency of the generation of the Raman signal from molecules in the close proximity to the deposited SHINERS nanoresonators. A protective layer (from transparent dielectrics such as SiO2, Al2O3 or TiO2) prevents direct interaction between the plasmonic metal and the analysed surface (such interactions may lead to changes in the structure of the surface) and, in the case of plasmonic cores other than gold cores, the dielectric layer increases the chemical stability of the metal core. In this contribution, we show for the first time that core-shell nanoparticles having a silver core (both a solid and hollow one) and a shell of zirconium(IV) oxide are very efficient SHINERS nanoresonators that are significantly more stable in acidic and alkaline media than the silver-silica core-shell structures typically used for SHINERS experiments.

  6. Competition Between Extinction and Enhancement in Surface Enhanced Raman Spectroscopy.

    PubMed

    van Dijk, Thomas; Sivapalan, Sean T; Devetter, Brent M; Yang, Timothy K; Schulmerich, Matthew V; Murphy, Catherine J; Bhargava, Rohit; Carney, P Scott

    2013-04-04

    Conjugated metallic nanoparticles are a promising means to achieve ultrasensitive and multiplexed sensing in intact three-dimensional samples, especially for biological applications, via surface enhanced Raman scattering (SERS). We show that enhancement and extinction are linked and compete in a collection of metallic nanoparticles. Counterintuitively, the Raman signal vanishes when nanoparticles are excited at their plasmon resonance, while increasing nanoparticle concentrations at off-resonance excitation sometimes leads to decreased signal. We develop an effective medium theory that explains both phenomena. Optimal choices of excitation wavelength, individual particle enhancement factor and concentrations are indicated. The same processes which give rise to enhancement also lead to increased extinction of both the illumination and the Raman scattered light. Nanoparticles attenuate the incident field (blue) and at the same time provide local enhancement for SERS. Likewise the radiation of the Raman-scattered field (green) is enhanced by the near-by sphere but extinguished by the rest of the spheres in the suspension on propagation.

  7. Correction: Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.

    PubMed

    Wen, Bao-Ying; Jin, Xi; Li, Yue; Wang, Ya-Hao; Li, Chao-Yu; Liang, Miao-Miao; Panneerselvam, Rajapandiyan; Xu, Qing-Chi; Wu, De-Yin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-06-21

    Correction for 'Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces' by Bao-Ying Wen et al., Analyst, 2016, DOI: 10.1039/c6an00180g.

  8. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-05-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this

  9. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering.

    PubMed

    Johnston, Jencilin; Taylor, Erik N; Gilbert, Richard J; Webster, Thomas J

    2016-01-01

    Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl)-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792) and carbocyanine (DTTC [3,3'-diethylthiatricarbocyanine iodide] and DTDC [3,3'-diethylthiadicarbocyanine iodide]), were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist.

  10. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering

    PubMed Central

    Johnston, Jencilin; Taylor, Erik N; Gilbert, Richard J; Webster, Thomas J

    2016-01-01

    Vibrational spectroscopy is a powerful analytical tool that assesses molecular properties based on spectroscopic signatures. In this study, the effect of gold nanoparticle morphology (spherical vs multi-branched) was assessed for the characterization of a Raman signal (ie, molecular fingerprint) that may be helpful for numerous medical applications. Multi-branched gold nanoparticles (MBAuNPs) were fabricated using a green chemistry method which employed the reduction of gold ion solute by 2-[4-(2-hydroxyethyl)-1-piperazyl] ethane sulfonic acid. Two types of reporter dyes, indocyanine (IR820 and IR792) and carbocyanine (DTTC [3,3′-diethylthiatricarbocyanine iodide] and DTDC [3,3′-diethylthiadicarbocyanine iodide]), were functionalized to the surface of the MBAuNPs and stabilized with denatured bovine serum albumin, thus forming the surface-enhanced Raman spectroscopy tag. Fluorescein isothiocyanate-conjugated anti-epidermal growth factor receptor to the surface-enhanced Raman spectroscopy tags and the properties of the resulting conjugates were assessed through determination of the Raman signal. Using the MBAuNP Raman probes synthesized in this manner, we demonstrated that MBAuNP provided significantly more surface-enhanced Raman scattering signal when compared with the associated spherical gold nanoparticle of similar size and concentration. MBAuNP enhancements were retained in the surface-enhanced Raman spectroscopy tags complexed to anti-epidermal growth factor receptor, providing evidence that this could be a useful biological probe for enhanced Raman molecular fingerprinting. Furthermore, while utilizing IR820 as a novel reporter dye linked with MBAuNP, superior Raman signal fingerprint results were obtained. Such results provide significant promise for the use of MBAuNP in the detection of numerous diseases for which biologically specific surface markers exist. PMID:26730189

  11. Investigation of surface enhanced Raman spectroscopy for hemozoin detection in malaria diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Xiong, Aoli; Yuen, Clement; Preiser, Peter; Liu, Quan

    2016-03-01

    We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum.

  12. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy.

    PubMed

    McMahon, Jeffrey M; Henry, Anne-Isabelle; Wustholz, Kristin L; Natan, Michael J; Freeman, R Griffith; Van Duyne, Richard P; Schatz, George C

    2009-08-01

    Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 10(10) or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.

  13. Multifunctional Surface-Enhanced Raman Spectroscopy-Detectable Silver Nanoparticles Combined Photodynamic Therapy and pH-Triggered Chemotherapy.

    PubMed

    Srinivasan, Supriya; Bhardwaj, Vinay; Nagasetti, Abhignyan; Fernandez-Fernandez, Alicia; McGoron, Anthony J

    2016-12-01

    This research paper reports the development of a multifunctional anti-cancer prodrug system based on silver nanoparticles. This prodrug system is composed of 70-nm sized nanoparticles and features photodynamic therapeutic properties and active, pH-triggered drug release. The silver nanoparticles are decorated with a folic acid (FA) targeting ligand via an amide bond, and also conjugated to the chemotherapeutic drug doxorubicin (DOX) via an acid-cleavable hydrazone bond. Both FA and DOX are attached to the silver nanoparticles through a polyethylene glycol (PEG) spacer. This prodrug system can preferentially enter cells that over-express folic acid receptors, with subsequent intracellular drug release triggered by reduced intracellular pH. Moreover, the silver nanoparticle carrier system exhibits photodynamic therapeutic (PDT) activity, so that the cell viability of cancer cells that overexpress folate receptors can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of this system. The multifunctional nanoparticles can be probed intracellularly through Surface-Enhanced Raman Spectroscopy (SERS) and fluorescence spectroscopy. The current report explores the applicability of this multifunctional silver nanoparticle-based system for cancer theranostics.

  14. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.

    2016-12-01

    Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  15. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse.

    PubMed

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-18

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10 -9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  16. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    NASA Astrophysics Data System (ADS)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  17. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy.

    PubMed

    DeVetter, Brent M; Mukherjee, Prabuddha; Murphy, Catherine J; Bhargava, Rohit

    2015-05-21

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min(-1). This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.

  18. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    PubMed Central

    DeVetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-01-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min 1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. PMID:25905515

  19. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include themore » inherently weak Raman cross section and susceptibility to fluorescence interference.« less

  20. Ferric plasmonic nanoparticles, aptamers, and magnetofluidic chips: toward the development of diagnostic surface-enhanced Raman spectroscopy assays

    NASA Astrophysics Data System (ADS)

    Marks, Haley; Huang, Po-Jung; Mabbott, Samuel; Graham, Duncan; Kameoka, Jun; Coté, Gerard

    2016-12-01

    Conjugation of aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound nanoclusters that cause a measurable change in the colloid's optical properties. The optimization of a surface-enhanced Raman spectroscopy (SERS) competitive binding assay utilizing plasmonic "target" and magnetic "probe" nanoparticles for the detection of the toxin bisphenol-A (BPA) is presented. These assay nanoclusters were housed inside three types of optofluidic chips patterned with magnetically activated nickel pads, in either a straight or array pattern. Both Fe2O3 and Fe2CoO4 were compared as potential magnetic cores for the silver-coated probe nanoparticles. We found that the Ag@Fe2O3 particles were, on average, more uniform in size and more stable than Ag@Fe2CoO4, whereas the addition of cobalt significantly improved the collection time of particles. Using Raman mapping of the assay housed within the magnetofluidic chips, it was determined that a 1×5 array of 50 μm square nickel pads provided the most uniform SERS enhancement of the assay (coefficient of variation ˜25%) within the magnetofluidic chip. Additionally, the packaged assay demonstrated the desired response to BPA, verifying the technology's potential to translate magnetic nanoparticle assays into a user-free optical analysis platform.

  1. Ferric plasmonic nanoparticles, aptamers, and magnetofluidic chips: toward the development of diagnostic surface-enhanced Raman spectroscopy assays

    PubMed Central

    Marks, Haley; Huang, Po-Jung; Mabbott, Samuel; Graham, Duncan; Kameoka, Jun; Coté, Gerard

    2016-01-01

    Abstract. Conjugation of aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound nanoclusters that cause a measurable change in the colloid’s optical properties. The optimization of a surface-enhanced Raman spectroscopy (SERS) competitive binding assay utilizing plasmonic “target” and magnetic “probe” nanoparticles for the detection of the toxin bisphenol-A (BPA) is presented. These assay nanoclusters were housed inside three types of optofluidic chips patterned with magnetically activated nickel pads, in either a straight or array pattern. Both Fe2O3 and Fe2CoO4 were compared as potential magnetic cores for the silver-coated probe nanoparticles. We found that the Ag@Fe2O3 particles were, on average, more uniform in size and more stable than Ag@Fe2CoO4, whereas the addition of cobalt significantly improved the collection time of particles. Using Raman mapping of the assay housed within the magnetofluidic chips, it was determined that a 1×5 array of 50  μm square nickel pads provided the most uniform SERS enhancement of the assay (coefficient of variation ∼25%) within the magnetofluidic chip. Additionally, the packaged assay demonstrated the desired response to BPA, verifying the technology’s potential to translate magnetic nanoparticle assays into a user-free optical analysis platform. PMID:27997017

  2. Use of Surface-Enhanced Raman Spectroscopy in Inorganic Syntheses for an Upper-Level Exploratory Lab

    ERIC Educational Resources Information Center

    Seney, Caryn S.; Yelverton, Joshua C.; Eanes, Sharon; Patel, Vikas; Riggs, Julia; Wright, Sarah; Bright, Robin M.

    2007-01-01

    An experiment is designed where students will be using both gold and silver nanoparticles to study the enhancement factors of organic molecules adsorbed to the surface of the nanoparticles during or after synthesis by using surface-enhanced Raman spectroscopy (SERS). The experiment has helped students learn about the theory and experimental…

  3. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.

    PubMed

    Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P

    2016-04-21

    Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.

  4. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    PubMed

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  5. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    DOEpatents

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  6. Shell-isolated nanoparticle-enhanced Raman spectroscopy study of the adsorption behaviour of DNA bases on Au(111) electrode surfaces.

    PubMed

    Wen, Bao-Ying; Jin, Xi; Li, Yue; Wang, Ya-Hao; Li, Chao-Yu; Liang, Miao-Miao; Panneerselvam, Rajapandiyan; Xu, Qing-Chi; Wu, De-Yin; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-06-21

    For the first time, we used the electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) technique to in situ characterize the adsorption behaviour of four DNA bases (adenine, guanine, thymine, and cytosine) on atomically flat Au(111) electrode surfaces. The spectroscopic results of the various molecules reveal similar features, such as the adsorption-induced reconstruction of the Au(111) surface and the drastic Raman intensity reduction of the ring breathing modes after the lifting reconstruction. As a preliminary study of the photo-induced charge transfer (PICT) mechanism, the in situ spectroscopic results obtained on single crystal surfaces are excellently illustrated with electrochemical data.

  7. Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection

    NASA Astrophysics Data System (ADS)

    Vendamani, V. S.; Nageswara Rao, S. V. S.; Venugopal Rao, S.; Kanjilal, D.; Pathak, A. P.

    2018-01-01

    Three-dimensional silver nanoparticles decorated vertically aligned Si nanowires (Si NWs) are effective surface-enhanced Raman spectroscopy (SERS) substrates for molecular detection at low concentration levels. The length of Si NWs prepared by silver assisted electroless etching is increased with an increase in etching time, which resulted in the reduced optical reflection in the visible region. These substrates were tested and optimized by measuring the Raman spectrum of standard dye Rhodamine 6G (R6G) of 10 nM concentration. Further, effective SERS enhancements of ˜105 and ˜104 were observed for the cytosine protein (concentration of 50 μM) and ammonium perchlorate (oxidizer used in explosives composition with a concentration of 10 μM), respectively. It is established that these three-dimensional SERS substrates yielded considerably higher enhancement factors for the detection of R6G when compared to previous reports. The sensitivity can further be increased and optimized since the Raman enhancement was found to increase with an increase in the density of silver nanoparticles decorated on the walls of Si NWs.

  8. Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells

    PubMed Central

    Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak

    2012-01-01

    We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708

  9. Surface-enhanced Raman scattering (SERS) imaging of alkyne-tagged small molecule drug in live cells with endocytosed gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ando, Jun; Sekiya, Takumasa; Ka, Den; Yamakoshi, Hiroyuki; Dodo, Kosuke; Sodeoka, Mikiko; Kawata, Satoshi; Fujita, Katsumasa

    2017-02-01

    We propose the combination of alkyne-tag and surface-enhanced Raman scattering (SERS) spectroscopy to perform highly-sensitive and selective drug imaging in live cells. Gold nanoparticles are introduced in lysosomes through endocytosis as SERS agents, and the alkyne-tagged drugs are subsequently administered in cells. Raman microscopic observation reveals the arrival of drug in lysosome through enhanced Raman signal of alkyne. Since the peak of alkyne appears in Raman-silent region of biomolecules, selective detection of drugs is possible without background signal of endogenous molecules. From endocytosed gold nanoparticles in living HeLa cells, we observed distinct Raman signal from alkyne-tagged inhibitor of lysosomal enzyme.

  10. Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Keren; Yuen, Clement; Aniweh, Yaw; Preiser, Peter; Liu, Quan

    2016-02-01

    We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive.

  11. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  12. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response.

    PubMed

    Dmitriev, Pavel A; Baranov, Denis G; Milichko, Valentin A; Makarov, Sergey V; Mukhin, Ivan S; Samusev, Anton K; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2016-05-05

    Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance. Our results confirm the importance of the optically-induced magnetic response of subwavelength dielectric nanoparticles for enhancing light-matter interactions.

  13. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes.

    PubMed

    Vitol, Elina A; Orynbayeva, Zulfiya; Bouchard, Michael J; Azizkhan-Clifford, Jane; Friedman, Gary; Gogotsi, Yury

    2009-11-24

    We report on a new analytical approach to intracellular chemical sensing that utilizes a surface-enhanced Raman spectroscopy (SERS)-enabled nanopipette. The probe is comprised of a glass capillary with a 100-500 nm tip coated with gold nanoparticles. The fixed geometry of the gold nanoparticles allows us to overcome the limitations of the traditional approach for intracellular SERS using metal colloids. We demonstrate that the SERS-enabled nanopipettes can be used for in situ analysis of living cell function in real time. In addition, SERS functionality of these probes allows tracking of their localization in a cell. The developed probes can also be applied for highly sensitive chemical analysis of nanoliter volumes of chemicals in a variety of environmental and analytical applications.

  14. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.

    PubMed

    Zhao, Xiangwei; Xue, Jiangyang; Mu, Zhongde; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-10-15

    Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysis in a flow-through fashion. The capillary tube integrates the SERS sensor and the nanofluidic structure to synergistically offer sample delivery and analysis functions. Inside the capillary tube, inverse opal photonic crystal (IO PhC) was fabricated using the co-assembly approach to form nanoscale liquid pathways. In the nano-voids of the IO PhC, gold nanoparticles were in situ synthesized and functioned as the SERS hotspots. The advantages of the flow-through SERS sensor are multifold. The capillary effect facilities the sample delivery process, the nanofluidic channels boosts the interaction of analyte and gold nanoparticles, and the PhC structure strengthens the optical field near the SERS hotspots and results in enhanced SERS signals from analytes. As an exemplary demonstration, the sensor was used to measure creatinein spiked in artificial urine samples with detection limit of 0.9 mg/dL. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles.

    PubMed

    Wu, Pae C; Khoury, Christopher G; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V; Vo-Dinh, Tuan; Brown, April S; Everitt, Henry O

    2009-09-02

    Size-controlled gallium nanoparticles deposited on sapphire were explored as alternative substrates to enhance Raman spectral signatures. Gallium's resilience following oxidation is inherently advantageous in comparison with silver for practical ex vacuo nonsolution applications. Ga nanoparticles were grown using a simple molecular beam epitaxy-based fabrication protocol, and monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry allowed the nanoparticles to be easily controlled for size. The Raman spectra obtained from cresyl fast violet (CFV) deposited on substrates with differing mean nanoparticle sizes represent the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Nonoptimized aggregate enhancement factors of approximately 80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm.

  16. Shell-Isolated Tip-Enhanced Raman and Fluorescence Spectroscopy.

    PubMed

    Huang, Ya-Ping; Huang, Sheng-Chao; Wang, Xiang-Jie; Bodappa, Nataraju; Li, Chao-Yu; Yin, Hao; Su, Hai-Sheng; Meng, Meng; Zhang, Hua; Ren, Bin; Yang, Zhi-Lin; Zenobi, Renato; Tian, Zhong-Qun; Li, Jian-Feng

    2018-06-18

    Tip-enhanced Raman spectroscopy can provide molecular fingerprint information with ultrahigh spatial resolution, but the tip will be easily contaminated, thus leading to artifacts. It also remains a great challenge to establish tip-enhanced fluorescence because of the quenching resulting from the proximity of the metal tip. Herein, we report shell-isolated tip-enhanced Raman and fluorescence spectroscopies by employing ultrathin shell-isolated tips fabricated by atomic layer deposition. Such shell-isolated tips not only show outstanding electromagnetic field enhancement in TERS but also exclude interference by contaminants, thus greatly promoting applications in solution. Tip-enhanced fluorescence has also been achieved using these shell-isolated tips, with enhancement factors of up to 1.7×10 3 , consistent with theoretical simulations. Furthermore, tip-enhanced Raman and fluorescence signals are acquired simultaneously, and their relative intensities can be manipulated by changing the shell thickness. This work opens a new avenue for ultrahigh resolution surface analysis using plasmon-enhanced spectroscopies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimizing laser crater enhanced Raman spectroscopy.

    PubMed

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  18. Tip-enhanced Raman spectroscopy and near-field polarization

    NASA Astrophysics Data System (ADS)

    Saito, Yuika; Mino, Toshihiro; Verma, Prabhat

    2015-12-01

    Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for High-resolution Raman spectroscopy. In this method, a metal coated nano-tip acts as a plasmonic antenna to enhance the originally weak Raman scattering from a nanometric volume of a sample. The technique enables to detect Raman scattering light from nano-scale area and also enhance the light intensity with combination of near-filed light and localized surface plasmon generated at a metallized tip apex. Nowadays TERS is used to investigate various nano-scale samples, for examples, carbon nanotubes, graphenes DNA and biomaterials. As the TERS developed, there is high demand to investigate the properties of near-field light e.g. polarization properties. We have analyzed the polarization properties of near-field light in TERS and successfully realized the quantitative nano-imaging by visible light.

  19. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  20. Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan

    2013-01-01

    The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.

  1. Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, N. R.; Neri, F.; Trusso, S.; Lucotti, A.; Ossi, P. M.

    2012-09-01

    Using UV pulses from KrF excimer laser, Au targets were ablated in varying pressures of argon to deposit Au nanoparticle (NP) arrays. The morphology of these films from island structures to isolated NPs, observed by SEM and TEM, depends on the gas pressure (10-100 Pa) and pulse number keeping other deposition parameters constant. By fast imaging of the plasma with an iCCD camera at different time delays with respect to the arrival of the laser pulse, we study the plasma propagation regime and we measured its initial velocity. These data and the measured average ablated mass per pulse were introduced to the mixed propagation model to calculate the average asymptotic size of clusters grown in the plume which were compared with NP sizes from TEM measurements. UV-visible Spectroscopy revealed changes of surface plasmon resonance with respect to NP size and spatial density and distribution on the surface. Suitable wavelength to excite the localized surface plasmon was chosen to detect ultra-low concentrations of Rhodamine and Apomorphine as an application to biomedical sensors, using Surface Enhanced Raman Spectroscopy (SERS). A comparison of SERS spectra taken under identical conditions from commercial substrates and from PLD substrates show that the latter have superior performances.

  2. Cancer imaging using Surface-Enhanced Resonance Raman Scattering (SERRS) nanoparticles

    PubMed Central

    Harmsen, Stefan; Wall, Matthew A.; Huang, Ruimin

    2017-01-01

    The unique spectral signatures and biologically inert compositions of surface-enhanced (resonance) Raman scattering (SE(R)RS) nanoparticles make them promising contrast agents for in vivo cancer imaging. Subtle aspects of their preparation can shift their limit of detection by orders of magnitude. In this protocol, we present the optimized, step-by-step procedure for generating reproducible SERRS nanoparticles with femtomolar (10−15 M) limits of detection. We introduce several applications of these nanoprobes for biomedical research, with a focus on intraoperative cancer imaging via Raman imaging. A detailed account is provided for successful intravenous administration of SERRS nanoparticles such that delineation of cancerous lesions may be achieved without the need for specific biomarker targeting. The time estimate for this straightforward, yet comprehensive protocol from initial de novo gold nanoparticle synthesis to SE(R)RS nanoparticle contrast-enhanced preclinical Raman imaging in animal models is ~96 h. PMID:28686581

  3. Operando plasmon-enhanced Raman spectroscopy in silicon anodes for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Miroshnikov, Yana; Zitoun, David

    2017-11-01

    Silicon, an attractive candidate for high-energy lithium-ion batteries (LIBs), displays an alloying mechanism with lithium and presents several unique characteristics which make it an interesting scientific topic and also a technological challenge. In situ local probe measurements have been recently developed to understand the lithiation process and propose an effective remedy to the failure mechanisms. One of the most specific techniques, which is able to follow the phase changes in poorly crystallized electrode materials, makes use of Raman spectroscopy within the battery, i.e., in operando mode. Such an approach has been successful but is still limited by the rather signal-to-noise ratio of the spectroscopy. Herein, the operando Raman signal from the silicon anodes is enhanced by plasmonic nanoparticles following the known surface-enhanced Raman spectroscopy (SERS). Coinage metals (Ag and Au) display a surface plasmon resonance in the visible and allow the SERS effect to take place. We have found that the as-prepared materials reach high specific capacities over 1000 mAh/g with stability over more than 1000 cycles at 1C rate and can be suitable to perform as anodes in LIB. Moreover, the incorporation of coinage metals enables SERS to take place specifically on the surface of silicon. Consequently, by using a specially designed Raman cell, it is possible to follow the processes in a silicon-coinage metal-based battery trough operando SERS measurements.

  4. Surface-enhanced Raman spectroscopy of urine by an ingenious near-infrared Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Chen, Weiwei; Li, Yongzeng; Chen, Guannan; Huang, Zufang; Liao, Xiaohua; Xie, Zhiming; Chen, Rong

    2007-11-01

    This paper demonstrates the potential of an elaborately devised near-infrared Raman system in analysis of urine. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. We have reported the surface-enhanced Raman (SERS) spectra of urine, and studied the silver solution enhanced effects on the urine Raman scattering. The Raman bands of human's urine was assigned to certain molecule vibrations. We have found that different donators have dissimilar SERS of urine in different physiological condition. Comparatively few studies have explored the ability of Raman spectroscopy for the analysis of urine acid. In the present report, we investigated the ability of surface enhanced Raman spectroscopy to measure uric acid in the human urine. The results suggested that the present Raman system holds considerable promise for practical use. Practical applications such as the quantitative medical examination of urine metabolites may also be feasible in the near future.

  5. Probing the Sulfur-Modified Capping Layer of Gold Nanoparticles Using Surface Enhanced Raman Spectroscopy (SERS) Effects.

    PubMed

    Prado, Adilson R; Souza, Danilo Oliveira de; Oliveira, Jairo P; Pereira, Rayssa H A; Guimarães, Marco C C; Nogueira, Breno V; Dixini, Pedro V; Ribeiro, Moisés R N; Pontes, Maria J

    2017-12-01

    Gold nanoparticles (AuNP) exhibit particular plasmonic properties when stimulated by visible light, which makes them a promising tool to many applications in sensor technology and biomedical applications, especially when associated to sulfur-based compounds. Sulfur species form a great variety of self-assembled structures that cap AuNP and this interaction rules the optical and plasmonic properties of the system. Here, we report the behavior of citrate-stabilized gold nanospheres in two distinct sulfur colloidal solutions, namely, thiocyanate and sulfide ionic solutions. Citrate-capped gold nanospheres were characterized using ultraviolet-visible (UV-Vis) absorption, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). In the presence of sulfur species, we have observed the formation of NP clusters and chain-like structures, giving rise to surface-enhanced effects. Surface-enhanced Raman spectroscopy (SERS) pointed to a modification in citrate vibrational modes, which suggests substitution of citrate by either thiocyanate or sulfide ions with distinct dynamics, as showed by in situ fluorescence. Moreover, we report the emergence of surface-enhanced infrared absorption (SEIRA) effect, which corroborates SERS conclusions. Further, SEIRA shows a great potential as a tool for specification of sulfur compounds in colloidal solutions, which is particularly useful when dealing with sensor technology.

  6. Horizontal silicon nanowires for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gebavi, Hrvoje; Ristić, Davor; Baran, Nikola; Mikac, Lara; Mohaček-Grošev, Vlasta; Gotić, Marijan; Šikić, Mile; Ivanda, Mile

    2018-01-01

    The main purpose of this paper is to focus on details of the fabrication process of horizontally and vertically oriented silicon nanowires (SiNWs) substrates for the application of surface-enhanced Raman spectroscopy (SERS). The fabrication process is based on the vapor-liquid-solid method and electroless-assisted chemical etching, which, as the major benefit, resulting in the development of economical, easy-to-prepare SERS substrates. Furthermore, we examined the fabrication of Au coated Ag nanoparticles (NPs) on the SiNWs substrates in such a way as to diminish the influence of silver NPs corrosion, which, in turn, enhanced the SERS time stability, thus allowing for wider commercial applications. The substances on which high SERS sensitivity was proved are rhodamine (R6G) and 4-mercaptobenzoic acid (MBA), with the detection limits of 10-8 M and 10-6 M, respectively.

  7. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  8. Fructose and Pectin Detection in Fruit-Based Food Products by Surface-Enhanced Raman Spectroscopy

    PubMed Central

    Camerlingo, Carlo; Portaccio, Marianna; Tatè, Rosarita; Lepore, Maria; Delfino, Ines

    2017-01-01

    Surface-Enhanced Raman Spectroscopy (SERS) enables the investigation of samples with weak specific Raman signals, such as opaque samples, including fruit juices and pulp. In this paper, biological apple juices and apple/pear pulp have been studied in order to evidence the presence of fructose and pectin, which are components of great relevance for quality assessment of these kinds of products. In order to perform SERS measurements a low-cost home-made substrate consisting of a glass slide decorated with 30-nm-sized gold nanoparticles has been designed and used. By employing a conventional micro-Raman spectroscopy set-up and a suitable data treatment based on “wavelet” denoising algorithms and background subtraction, spectra of pectin and fructose with clear Raman features have been obtained. The results have confirmed the potential of SERS in the food industry for product characterization, also considering the low-cost and the relative ease of the fabrication process of the employed SERS substrate. PMID:28398254

  9. Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS).

    PubMed

    Nicolson, Fay; Jamieson, Lauren E; Mabbott, Samuel; Plakas, Konstantinos; Shand, Neil C; Detty, Michael R; Graham, Duncan; Faulds, Karen

    2018-04-21

    In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.

  10. Surface-enhanced Raman spectroscopy detection of polybrominated diphenylethers using a portable Raman spectrometer.

    PubMed

    Jiang, Xiaohong; Lai, Yongchao; Wang, Wei; Jiang, Wei; Zhan, Jinhua

    2013-11-15

    Polybrominated diphenylethers (PBDEs), one of the most common brominated flame retardants, are toxic and persistent, generally detected by the chromatographic method. In this work, qualitative and quantitative detection of PBDEs were explored based on surface-enhanced Raman spectroscopy (SERS) technique using a portable Raman spectrometer. Alkanethiol modified silver nanoparticle aggregates were used as the substrate and PBDEs could be pre-concentrated close to the substrate surface through their hydrophobic interactions with alkanethiol. The effect of alkanethiols with different chain length on the SERS detection of PBDEs was evaluated. It was shown that 1-hexanethiol (HT) modified substrate has higher sensitivity, good stability and reusability. Qualitative and quantitative SERS detection of PBDEs in real sea water was accomplished, with the measured detection limits at 1.2×10(2) μg L(-1). These results illustrate SERS could be used as an effective method for the detection of PBDEs. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Formation of silver nanoparticle at phospholipid template using Langmuir-Blodgett technique and its Surface-enhanced Raman Spectroscopy application

    NASA Astrophysics Data System (ADS)

    Mahato, M.; Sarkar, R.; Pal, P.; Talapatra, G. B.

    2015-10-01

    The biosynthesis of metal nanoparticle and their suitable assembly has recently gained tremendous interest for its application in biomedical arena such as substrates for surface-enhanced Raman scattering and others. In this article, an easy, low-cost, fast, bio-friendly and toxic-reducing agent free protocol has been described for the preparation of silver nanoparticle film using biocompatible 1,2-dipalmitoyl-sn-glycero-3-phosphocholine phospholipid Langmuir monolayer template. Interactions, docking and attachment of silver ions to the above-mentioned phospholipid monolayer have been studied by surface pressure-area isotherm and compressibility analysis at the air-water interface. We have deposited the Langmuir-Blodgett monolayer/multilayer containing silver nanoparticle onto glass/SiO2/quartz substrates. The formation of phospholipid-silver nanoparticle complex in Langmuir-Blodgett film has been characterized by field emission-scanning electron microscopy and high-resolution tunneling electron microscopy images. We have applied this deposited film as a substrate for surface-enhanced Raman scattering application using rhodamine 123 to understand the existence of the surface plasmon activity of silver nanoparticle.

  12. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    NASA Astrophysics Data System (ADS)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  13. Label-free Raman spectroscopy for accessing intracellular anticancer drug release on gold nanoparticles.

    PubMed

    Ock, Kwang-Su; Ganbold, Erdene Ochir; Park, Jin; Cho, Keunchang; Joo, Sang-Woo; Lee, So Yeong

    2012-06-21

    We investigated glutathione (GSH)-induced purine or pyrimidine anticancer drug release on gold nanoparticle (AuNP) surfaces by means of label-free Raman spectroscopy. GSH-triggered releases of 6-thioguanine (6TG), gemcitabine (GEM), acycloguanosine (ACY), and fadrozole (FAD) were examined in a comparative way by means of surface-enhanced Raman scattering (SERS). The GSH-induced dissociation constant of GEM (or ACY/FAD) from AuNPs was estimated to be larger by more than 38 times than that of 6TG from the kinetic relationship. Tripeptide control experiments were presented to check the turn-off Raman signalling mechanism. Dark-field microscopy (DFM) and transmission electron microscopy (TEM) indicated the intracellular AuNP loads. After their cellular uptake, GEM, ACY, and FAD would not show SERS intensities as strong as 6TG. This may be due to easier release of GEM, ACY, and FAD than 6TG by intracellular reducing species including GSH. We observed fairly strong SERS signals of GEM and 6TG in cell culture media solution. Our CCK-8 cytotoxicity assay data support that 6TG-AuNPs did not exhibit a substantial decrease in cell viability presumably due to strong binding. Label-free confocal Raman spectroscopy can be utilized as an effective tool to access intracellular anticancer drug release.

  14. Flexible Microsphere-Embedded Film for Microsphere-Enhanced Raman Spectroscopy.

    PubMed

    Xing, Cheng; Yan, Yinzhou; Feng, Chao; Xu, Jiayu; Dong, Peng; Guan, Wei; Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2017-09-27

    Dielectric microspheres with extraordinary microscale optical properties, such as photonic nanojets, optical whispering-gallery modes (WGMs), and directional antennas, have drawn interest in many research fields. Microsphere-enhanced Raman spectroscopy (MERS) is an alternative approach for enhanced Raman detection by dielectric microstructures. Unfortunately, fabrication of microsphere monolayer arrays is the major challenge of MERS for practical applications on various specimen surfaces. Here we report a microsphere-embedded film (MF) by immersing a highly refractive microsphere monolayer array in the poly(dimethylsiloxane) (PDMS) film as a flexible MERS sensing platform for one- to three-dimensional (1D to 3D) specimen surfaces. The directional antennas and wave-guided whispering-gallery modes (WG-WGMs) contribute to the majority of Raman enhancement by the MFs. Moreover, the MF can be coupled with surface-enhanced Raman spectroscopy (SERS) to provide an extra >10-fold enhancement. The limit of detection is therefore improved for sensing of crystal violet (CV) and Sudan I molecules in aqueous solutions at concentrations down to 10 -7 M. A hybrid dual-layer microsphere enhancer, constructed by depositing a MF onto a microsphere monolayer array, is also demonstrated, wherein the WG-WGMs become dominant and boost the enhancement ratio >50-fold. The present work opens up new opportunities for design of cost-effective and flexible MERS sensing platforms as individual or associated techniques toward practical applications in ultrasensitive Raman detection.

  15. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates

    PubMed Central

    Jackson, J. B.; Halas, N. J.

    2004-01-01

    Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the surface of smooth and roughened nanoshells reveal that surface roughness contributes only slightly to the total enhancement. SERS enhancements as large as 2.5 × 1010 on Ag nanoshell films for the nonresonant molecule p-mercaptoaniline are measured. PMID:15608058

  16. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment

    NASA Astrophysics Data System (ADS)

    Saleh, Tawfik A.; Al-Shalalfeh, Mutasem M.; Al-Saadi, Abdulaziz A.

    2016-08-01

    Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm-1 were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10-12 M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands.

  17. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment

    PubMed Central

    Saleh, Tawfik A.; Al-Shalalfeh, Mutasem M.; Al-Saadi, Abdulaziz A.

    2016-01-01

    Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm−1 were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10−12 M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands. PMID:27572919

  18. Optimizing laser crater enhanced Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  19. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    DOEpatents

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  20. Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy.

    PubMed

    Hu, Juan; Zheng, Peng-Cheng; Jiang, Jian-Hui; Shen, Guo-Li; Yu, Ru-Qin; Liu, Guo-Kun

    2009-01-01

    We have developed an electrostatic interaction based biosensor for thrombin detection using surface-enhanced Raman spectroscopy (SERS). This method utilized the electrostatic interaction between capture (thrombin aptamer) and probe (crystal violet, CV) molecules. The specific interaction between thrombin and aptamer could weaken the electrostatic barrier effect from the negative charged aptamer SAMs to the diffusion process of the positively charged CV from the bulk solution to the Au nanoparticle surface. Therefore, the more the bound thrombin, the more the CV molecules near the Au nanoparticle surface and the stronger the observed Raman signal of CV, provided the Raman detections were set at the same time point for each case. This procedure presented a highly specific selectivity and a linear detection of thrombin in the range from 0.1 nM to 10 nM with a detection limit of about 20 pM and realized the thrombin detection in human blood serum solution directly. The electrostatic interaction based technique provides an easy and fast-responding optical platform for a "signal-on" detection of proteins, which might be applicable for the real time assay of proteins.

  1. Polymer-coated surface enhanced Raman scattering (SERS) gold nanoparticles for multiplexed labeling of chronic lymphocytic leukemia cells

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Parker, Edward P. K.; Walker, Gilbert C.; Wang, Chen

    2012-01-01

    The ease and flexibility of functionalization and inherent light scattering properties of plasmonic nanoparticles make them suitable contrast agents for measurement of cell surface markers. Immunophenotyping of lymphoproliferative disorders is traditionally undertaken using fluorescence detection methods which have a number of limitations. Herein, surface-enhanced Raman scattering (SERS) gold nanoparticles conjugated to monoclonal antibodies are used for the selective targeting of CD molecules on the surface of chronic lymphocytic leukemia (CLL) cells. Raman-active reporters were physisorbed on to the surface of 60 nm spherical Au nanoparticles, the particles were coated with 5kDa polyethylene glycol (PEG) including functionalities for conjugation to monoclonal IgG1 antibodies. A novel method for quantifying the number of antibodies bound to SERS probes on an individual basis as opposed to obtaining averages from solution was demonstrated using metal dots in transmission electron microscopy (TEM). The specificity of the interaction between SERS probes and surface CD molecules of CLL cells was assessed using Raman spectroscopy and dark field microscopy. An in-depth study of SERS probe targeting to B lymphocyte marker CD20 was undertaken, and proof-of-concept targeting using different SERS nanoparticle dyes specific for cell surface CD19, CD45 and CD5 demonstrated using SERS spectroscopy.

  2. Enhanced Raman scattering of graphene by silver nanoparticles with different densities and locations

    NASA Astrophysics Data System (ADS)

    Sun, Hai-Bin; Fu, Can; Xia, Yan-Jie; Zhang, Chong-Wu; Du, Jiang-Hui; Yang, Wen-Chao; Guo, Peng-Fei; Xu, Jun-Qi; Wang, Chun-Lei; Jia, Yong-Lei; Liu, Jiang-Feng

    2017-02-01

    Graphene-metal nanoparticle heterojunctions greatly improve the surface-enhanced Raman scattering (SERS) by strong light-graphene interactions. In this work, to enhance the Raman scattering, Ag nanoparticles (NPs) underneath and on top of the graphene were used. Then, Raman scattering of graphene is significantly enhanced approximately 67-fold, and the enhancement factor of the graphene G peak increases with the Ag NP density at the same location. In addition, an obvious red-shift and broadening of the resonance peak of Ag NPs is presented, which may be correlated to the strength of Raman enhancement, the coupling of the deposited Ag NPs and the graphene. Further, graphene-Ag NP heterojunctions can be used as SERS substrates to obtain the strongest Raman signals of the rhodamine (R6G) molecules and the weakest photoluminescence (PL) background from the Ag NPs. Based on the tunable Raman enhancement, graphene-Ag NPs offer a promising platform for engineering SERS substrates to obtain highly sensitive detection of trace levels of analyte molecules.

  3. Modulated Raman Spectroscopy for Enhanced Cancer Diagnosis at the Cellular Level

    PubMed Central

    De Luca, Anna Chiara; Dholakia, Kishan; Mazilu, Michael

    2015-01-01

    Raman spectroscopy is emerging as a promising and novel biophotonics tool for non-invasive, real-time diagnosis of tissue and cell abnormalities. However, the presence of a strong fluorescence background is a key issue that can detract from the use of Raman spectroscopy in routine clinical care. The review summarizes the state-of-the-art methods to remove the fluorescence background and explores recent achievements to address this issue obtained with modulated Raman spectroscopy. This innovative approach can be used to extract the Raman spectral component from the fluorescence background and improve the quality of the Raman signal. We describe the potential of modulated Raman spectroscopy as a rapid, inexpensive and accurate clinical tool to detect the presence of bladder cancer cells. Finally, in a broader context, we show how this approach can greatly enhance the sensitivity of integrated Raman spectroscopy and microfluidic systems, opening new prospects for portable higher throughput Raman cell sorting. PMID:26110401

  4. Diagnostic potential for gold nanoparticle-based surface-enhanced Raman spectroscopy to provide colorectal cancer screening using blood serum sample

    NASA Astrophysics Data System (ADS)

    Lin, Duo; Feng, Shangyuan; Pan, Jianji; Chen, Yanping; Lin, Juqiang; Sun, Liqing; Chen, Rong

    2011-11-01

    Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique that is capable of probing the biomolecular changes associated with diseased transformation. The objective of our study was to explore gold nanoparticle based SERS to obtain blood serum biochemical information for non-invasive colorectal cancer detection. SERS measurements were performed on two groups of blood serum samples: one group from patients (n = 38) with pathologically confirmed colorectal cancer and the other group from healthy volunteers (control subjects, n = 45). Tentative assignments of the Raman bands in the measured SERS spectra suggested interesting cancer specific biomolecular changes, including an increase in the relative amounts of nucleic acid, a decrease in the percentage of saccharide and proteins contents in the blood serum of colorectal cancer patients as compared to that of healthy subjects. Principal component analysis (PCA) of the measured SERS spectra separated the spectral features of the two groups into two distinct clusters with little overlaps. Linear discriminate analysis (LDA) based on the PCA generated features differentiated the nasopharyngeal cancer SERS spectra from normal SERS spectra with high sensitivity (97.4%) and specificity (100%). The results from this exploratory study demonstrated that gold nanoparticle based SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of colorectal cancers.

  5. Diagnostic potential for gold nanoparticle-based surface-enhanced Raman spectroscopy to provide colorectal cancer screening using blood serum sample

    NASA Astrophysics Data System (ADS)

    Lin, Duo; Feng, Shangyuan; Pan, Jianji; Chen, Yanping; Lin, Juqiang; Sun, Liqing; Chen, Rong

    2012-03-01

    Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique that is capable of probing the biomolecular changes associated with diseased transformation. The objective of our study was to explore gold nanoparticle based SERS to obtain blood serum biochemical information for non-invasive colorectal cancer detection. SERS measurements were performed on two groups of blood serum samples: one group from patients (n = 38) with pathologically confirmed colorectal cancer and the other group from healthy volunteers (control subjects, n = 45). Tentative assignments of the Raman bands in the measured SERS spectra suggested interesting cancer specific biomolecular changes, including an increase in the relative amounts of nucleic acid, a decrease in the percentage of saccharide and proteins contents in the blood serum of colorectal cancer patients as compared to that of healthy subjects. Principal component analysis (PCA) of the measured SERS spectra separated the spectral features of the two groups into two distinct clusters with little overlaps. Linear discriminate analysis (LDA) based on the PCA generated features differentiated the nasopharyngeal cancer SERS spectra from normal SERS spectra with high sensitivity (97.4%) and specificity (100%). The results from this exploratory study demonstrated that gold nanoparticle based SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of colorectal cancers.

  6. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].

    PubMed

    Wu, Xiao-Bin; Wang, Jia; Wang, Rui; Xu, Ji-Ying; Tian, Qian; Yu, Jian-Yuan

    2009-10-01

    Raman spectroscopy is a powerful technique in the characterization of carbon nanotubes (CNTs). However, this spectral method is subject to two obstacles. One is spatial resolution, namely the diffraction limits of light, and the other is its inherent small Raman cross section and weak signal. To resolve these problems, a new approach has been developed, denoted tip-enhanced Raman spectroscopy (TERS). TERS has been demonstrated to be a powerful spectroscopic and microscopic technique to characterize nanomaterial or nanostructures. Excited by a focused laser beam, an enhanced electric field is generated in the vicinity of a metallic tip because of the surface plasmon polariton (SPP) and lightening rod effect. Consequently, Raman signal from the sample area illuminated by the enhanced field nearby the tip is enhanced. At the same time, the topography is obtained in the nanometer scale. The exact corresponding relationship between the localized Raman and the topography makes the Raman identification at the nanometer scale to be feasible. In the present paper, based on an inverted microscope and a metallic AFM tip, a tip-enhanced Raman system was set up. The radius of the Au-coated metallic tip is about 30 nm. The 532 nm laser passes through a high numerical objective (NA0.95) from the bottom to illuminate the tip to excite the enhanced electric field. Corresponding with the AFM image, the tip-enhanced near-field Raman of a 100 nm diameter single-walled carbon nanotube (SWNT) bundles was obtained. The SWNTs were prepared by arc method. Furthermore, the near-field Raman of about 3 SWNTs of the bundles was received with the spatial resolution beyond the diffraction limit. Compared with the far-field Raman, the enhancement factor of the tip-enhanced Raman is more than 230. With the super-diffraction spatial resolution and the tip-enhanced Raman ability, tip-enhanced Raman spectroscopy will play an important role in the nano-material and nano-structure characterization.

  7. Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates.

    PubMed

    Mosier-Boss, P A; Lieberman, S H

    2003-09-01

    The use of normal Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) of cationic-coated silver and gold substrates to detect polyatomic anions in aqueous environments is examined. For normal Raman spectroscopy, using near-infrared excitation, linear concentration responses were observed. Detection limits varied from 84 ppm for perchlorate to 2600 ppm for phosphate. In general, detection limits in the ppb to ppm concentration range for the polyatomic anions were achieved using cationic-coated SERS substrates. Adsorption of the polyatomic anions on the cationic-coated SERS substrates was described by a Frumkin isotherm. The SERS technique could not be used to detect dichromate, as this anion reacted with the coatings to form thiol esters. A competitive complexation method was used to evaluate the interaction of chloride ion with the cationic coatings. Hydrogen bonding and pi-pi interactions play significant roles in the selectivity of the cationic coatings.

  8. [Three-dimensional vertically aligned CNTs coated by Ag nanoparticles for surface-enhanced Raman scattering].

    PubMed

    Zhang, Xiao-Lei; Zhang, Jie; Fan, Tuo; Ren, Wen-Jie; Lai, Chun-Hong

    2014-09-01

    In order to make surface-enhanced Raman scattering (SERS) substrates contained more "hot spots" in a three-dimensional (3D) focal volume, and can be adsorbed more probe molecules and metal nanoparticles, to obtain stronger Raman spectral signal, a new structure based on vertically aligned carbon nanotubes (CNTs) coated by Ag nanoparticles for surface Raman enhancement is presented. The vertically aligned CNTs are synthesized by chemical vapor deposition (CVD). A silver film is first deposited on the vertically aligned CNTs by magnetron sputtering. The samples are then annealed at different temperature to cause the different size silver nanoparticles to coat on the surface and sidewalls of vertically aligned CNTs. The result of scanning electron microscopy(SEM) shows that Ag nanoparticles are attached onto the sidewalls and tips of the vertically aligned CNTs, as the annealing temperature is different , pitch size, morphology and space between the silver nanoparticles is vary. Rhodamine 6G is served as the probe analyte. Raman spectrum measurement indicates that: the higher the concentration of R6G, the stronger the Raman intensity, but R6G concentration increase with the enhanced Raman intensity varies nonlinearly; when annealing temperature is 450 °C, the average size of silver nanoparticles is about 100 to 120 nm, while annealing temperature is 400 °C, the average size is about 70 nm, and the Raman intensity of 450 °C is superior to the annealing temperature that of 400 °C and 350 °C.

  9. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating.more » The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.« less

  10. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    NASA Astrophysics Data System (ADS)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  11. Spectroscopic characterization of biological agents using FTIR, normal Raman and surface-enhanced Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Luna-Pineda, Tatiana; Soto-Feliciano, Kristina; De La Cruz-Montoya, Edwin; Pacheco Londoño, Leonardo C.; Ríos-Velázquez, Carlos; Hernández-Rivera, Samuel P.

    2007-04-01

    FTIR, Raman spectroscopy and Surface Enhanced Raman Scattering (SERS) requires a minimum of sample allows fast identification of microorganisms. The use of this technique for characterizing the spectroscopic signatures of these agents and their stimulants has recently gained considerable attention due to the fact that these techniques can be easily adapted for standoff detection from considerable distances. The techniques also show high sensitivity and selectivity and offer near real time detection duty cycles. This research focuses in laying the grounds for the spectroscopic differentiation of Staphylococcus spp., Pseudomonas spp., Bacillus spp., Salmonella spp., Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, and E. coli, together with identification of their subspecies. In order to achieve the proponed objective, protocols to handle, cultivate and analyze the strains have been developed. Spectroscopic similarities and marked differences have been found for Spontaneous or Normal Raman spectra and for SERS using silver nanoparticles have been found. The use of principal component analysis (PCA), discriminate factor analysis (DFA) and a cluster analysis were used to evaluate the efficacy of identifying potential threat bacterial from their spectra collected on single bacteria. The DFA from the bacteria Raman spectra show a little discrimination between the diverse bacterial species however the results obtained from the SERS demonstrate to be high discrimination technique. The spectroscopic study will be extended to examine the spores produced by selected strains since these are more prone to be used as Biological Warfare Agents due to their increased mobility and possibility of airborne transport. Micro infrared spectroscopy as well as fiber coupled FTIR will also be used as possible sensors of target compounds.

  12. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    PubMed Central

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D.; Camden, Jon P.; Crozier, Kenneth B.

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures (“metasurfaces”) can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent. PMID:24091825

  13. SERS Detection of Biomolecules by Highly Sensitive and Reproducible Raman-Enhancing Nanoparticle Array

    NASA Astrophysics Data System (ADS)

    Chan, Tzu-Yi; Liu, Ting-Yu; Wang, Kuan-Syun; Tsai, Kun-Tong; Chen, Zhi-Xin; Chang, Yu-Chi; Tseng, Yi-Qun; Wang, Chih-Hao; Wang, Juen-Kai; Wang, Yuh-Lin

    2017-05-01

    This paper describes the preparation of nanoarrays composed of silver nanoparticles (AgNPs: 20-50 nm) for use as surface-enhanced Raman scattering (SERS) substrates. The AgNPs were grown on porous anodic aluminum oxide (AAO) templates by electrochemical plating, and the inter-channel gap of AAO channels is between 10 and 20 nm. The size and interparticle gap of silver particles were adjusted in order to achieve optimal SERS signals and characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. The fluctuation of SERS intensity is about 10-20% when measuring adenine solutions, showing a great reproducible SERS sensing. The nanoparticle arrays offer a large potential for practical applications as shown by the SERS-based quantitative detection and differentiation of adenine (A), thymine (T), cytosine (C), guanine (G), β-carotene, and malachite green. The respective detection limits are <1 ppb for adenine and <0.63 ppm for β-carotene and malachite green, respectively.

  14. [Current views on surface enhanced Raman spectroscopy in microbiology].

    PubMed

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  15. Blood test using surface-enhanced Raman spectroscopy with colloidal silver nanoparticle substrate to detect polyps and colorectal cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Feng, Shangyuan; Tai, Isabella T.; Chen, Guannan; Chen, Rong; Zeng, Haishan

    2016-03-01

    Colorectal cancer (CRC) is the third most common type of cancer and forth leading cause of cancer-related death. Early diagnosis is the key to long-term patient survival. Programmatic screening for the general population has shown to be cost-effective in reducing the incidence and mortality from CRC. Current CRC screening strategy relies on a broad range of test techniques such as fecal based tests and endoscopic exams. Occult blood tests like fecal immunochemical test is a cost effective way to detect CRC but have limited diagnostic values in detecting adenomatous polyp, the most treatable precursor to CRC. In the present work, we proposed the use of surface enhanced Raman spectroscopy (SERS) with silver nanoparticles as substrate to analyze blood plasma for detecting both CRC and adenomatous polyps. Blood plasma samples collected from healthy subjects and patients diagnosed with adenomas and CRC were prepared with nanoparticles and measured using a real-time fiber optic probe based Raman system. The collected SERS spectra are analyzed with partial least squares-discriminant analysis. Classification of normal versus CRC plus adenomatous polyps achieved diagnostic sensitivity of 86.4% and specificity of 80%. This exploratory study suggests that blood plasma SERS analysis has potential to become a screening test for detecting both CRC and adenomas.

  16. Surface enhanced Raman spectroscopy analysis of HeLa cells using a multilayer substrate

    NASA Astrophysics Data System (ADS)

    Aguilar-Hernández, I. A.; Pichardo-Molina, J. L.; Lopez-Luke, T.; Ornelas-Soto, N.

    2017-08-01

    Single cell analysis can provide important information regarding cell composition, and can be used for biomedical applications. In this work, a SERS active substrate formed by 3 layers of gold nanospheres and a final layer of gold nanocubes was used for the label-free SERS analysis of HeLa cells. Nanocubes were selected due to the high electromagnetic enhancement expected in nanoparticles with sharp corners. Significant improvement in the reproducibility and quality of SERS spectra was found when compared to the spectra obtained using a nanosphere-only substrate and normal Raman spectroscopy.

  17. Raman Spectrograph for Ocean Worlds: Integrating Cavity Enhanced Spectroscopy

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Moore, Thomas Z.; Davis, Michael W.; Howett, Carly; Soto, Alejandro; Raut, Ujjwal; Molyneux, Philippa M.; Nowicki, Keith; Mandt, Kathleen; E Schmidt, Britney; Mason, John; Yakovlev, Vladislav V.; Fry, Edward S.; RSO Team

    2017-10-01

    We present a new concept for a Raman spectrograph instrument designed to conduct high sensitivity measurements of biomarkers within Ocean Worlds environments. Our Raman Spectrograph for Ocean worlds (RSO) instrument is a UV+IR multi-laser enhanced Raman system capable of detecting complex, biologically-relevant molecular species mixed within icy surfaces in the outer Solar System. Incorporating two or more lasers with different excitation-emission pathways is crucial for thorough and definitive interpretation of the spectral fingerprints that identify unknown constituents within a sample. Our approach strives to remove fluorescence-driven ambiguities from degenerate, non-unique signatures expected for the most interesting trace constituents, i.e., those best revealed by UV excitation. Our design for deep-UV measurements is based on a novel high-reflectivity integrating cavity invented at Texas A&M University and further developed at SwRI. We report nanomole-range sensitivities of several complex organic molecules measured with our laboratory prototype cavities. Weak optical signals from Raman or fluorescence based instruments require sensitive low-noise detectors and long integration times, which by comparison are undesirable for the high radiation environment and limited battery power conditions anticipated for the Europa Lander mission. The two-to-five orders of magnitude enhanced sensitivity over standard Raman spectroscopy enabled by the integrating cavity enhanced spectroscopy technique makes it well suited for the Europa Lander payload and other future Ocean Worlds missions.

  18. Surface-enhanced Raman spectroscopy applied to food safety.

    PubMed

    Craig, Ana Paula; Franca, Adriana S; Irudayaraj, Joseph

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is an advanced Raman technique that enhances the vibrational spectrum of molecules adsorbed on or in the vicinity of metal particles and/or surfaces. Because of its readiness, sensitivity, and minimum sample preparation requirements, SERS is being considered as a powerful technique for food inspection. Key aspects of food-safety assurance, spectroscopy methods, and SERS are briefly discussed in an extended introduction of this review. The recent and potential advances in SERS are highlighted in sections that deal with the (a) detection of food-borne pathogenic microorganisms and (b) the detection of food contaminants and adulteration, concentrated specifically on antibiotics, drugs, hormones, melamine, and pesticides. This review provides an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for food-safety assessment.

  19. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  20. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure.

    PubMed

    Warrier, Anita R; Gandhimathi, R

    2018-04-27

    In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm -1 , 1078.17 cm -1 , 1255.60 cm -1 , 1466.91 cm -1 . The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼10 4 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.

  1. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure

    NASA Astrophysics Data System (ADS)

    Warrier, Anita R.; Gandhimathi, R.

    2018-07-01

    In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm‑1, 1078.17 cm‑1, 1255.60 cm‑1, 1466.91 cm‑1. The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼104 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.

  2. Nanoparticle-nanoparticle vs. nanoparticle-substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimers.

    PubMed

    Sergiienko, Sergii; Moor, Kamila; Gudun, Kristina; Yelemessova, Zarina; Bukasov, Rostislav

    2017-02-08

    We used a combination of Raman microscopy, AFM and TEM to quantify the influence of dimerization on the surface enhanced Raman spectroscopy (SERS) signal for gold and silver nanoparticles (NPs) modified with Raman reporters and situated on gold, silver, and aluminum films and a silicon wafer. The overall increases in the mean SERS enhancement factor (EF) upon dimerization (up by 43% on average) and trimerisation (up by 96% on average) of AuNPs and AgNPs on the studied metal films are within a factor of two, which is moderate when compared to most theoretical models. However, the maximum ratio of EFs for some dimers to the mean EF of monomers can be as high as 5.5 for AgNPs on a gold substrate. In contrast, for dimerization and trimerization of gold and silver NPs on silicon, the mean EF increases by 1-2 orders of magnitude relative to the mean EF of single NPs. Therefore, hot spots in the interparticle gap between gold nanoparticles rather than hot spots between Au nanoparticles and the substrate dominate SERS enhancement for dimers and trimers on a silicon substrate. However, Raman labeled noble metal nanoparticles on plasmonic metal films generate on average SERS enhancement of the same order of magnitude for both types of hot spot zones (e.g. NP/NP and NP/metal film).

  3. Thermally Stable TiO2 - and SiO2 -Shell-Isolated Au Nanoparticles for In Situ Plasmon-Enhanced Raman Spectroscopy of Hydrogenation Catalysts.

    PubMed

    Hartman, Thomas; Weckhuysen, Bert M

    2018-03-12

    Raman spectroscopy is known as a powerful technique for solid catalyst characterization as it provides vibrational fingerprints of (metal) oxides, reactants, and products. It can even become a strong surface-sensitive technique by implementing shell-isolated surface-enhanced Raman spectroscopy (SHINERS). Au@TiO 2 and Au@SiO 2 shell-isolated nanoparticles (SHINs) of various sizes were therefore prepared for the purpose of studying heterogeneous catalysis and the effect of metal oxide coating. Both SiO 2 - and TiO 2 -SHINs are effective SHINERS substrates and thermally stable up to 400 °C. Nano-sized Ru and Rh hydrogenation catalysts were assembled over the SHINs by wet impregnation of aqueous RuCl 3 and RhCl 3 . The substrates were implemented to study CO adsorption and hydrogenation under in situ conditions at various temperatures to illustrate the differences between catalysts and shell materials with SHINERS. This work demonstrates the potential of SHINS for in situ characterization studies in a wide range of catalytic reactions. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.

    2014-01-01

    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.

  5. Three-dimensional nanoporous MoS2 framework decorated with Au nanoparticles for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Sheng, Yingqiang; Jiang, Shouzhen; Yang, Cheng; Liu, Mei; Liu, Aihua; Zhang, Chao; Li, Zhen; Huo, Yanyan; Wang, Minghong; Man, Baoyuan

    2017-08-01

    The three-dimensional (3D) MoS2 decorated with Au nanoparticles (Au NPs) hybrids (3D MoS2-Au NPs) for surface-enhanced Raman scattering (SERS) sensing was demonstrated in this paper. SEM, Raman spectroscopy, TEM, SAED, EDX and XRD were performed to characterize 3D MoS2-Au NPs hybrids. Rhodamine 6G (R6G), fluorescein and gallic acid molecules were used as the probe for the SERS detection of the 3D MoS2-Au NPs hybrids. In addition, we modeled the enhancement of the electric field of MoS2-Au NPs hybrids using Finite-difference time-domain (FDTD) analysis, which can further give assistance to the mechanism understanding of the SERS activity.

  6. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    PubMed

    Zrimsek, Alyssa B; Chiang, Naihao; Mattei, Michael; Zaleski, Stephanie; McAnally, Michael O; Chapman, Craig T; Henry, Anne-Isabelle; Schatz, George C; Van Duyne, Richard P

    2017-06-14

    Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.

  7. Enhanced Raman scattering of single nanoparticles in a high-Q whispering-gallery microresonator

    NASA Astrophysics Data System (ADS)

    Liu, Rui-Shan; Jin, Wei-Liang; Yu, Xiao-Chong; Liu, Yong-Chun; Xiao, Yun-Feng

    2015-04-01

    We study Raman scattering of single nanoparticles coupled to a high-Q whispering-gallery microresonator. It is found that cavity resonances greatly enhance the Raman signal, and the enhancement factor is as high as 108. Unlike the noncavity case, the signal power exhibits a nonmonotonic dependence on particle size, and it reaches the maximum when the Rayleigh scattering loss and the cavity intrinsic loss are comparable. We further analyze how the Raman signal intensity is influenced by different parameters including cavity quality factors and taper-cavity coupling strength. The detection limit of observing single-nanoparticle Raman signal is discussed finally. As a potential application, this mechanism may provide an alternative way to detect specific biological targets without the need of precovered biorecognitions.

  8. Principle, system, and applications of tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, MingQian; Wang, Rui; Wu, XiaoBin; Wang, Jia

    2012-08-01

    Raman spectroscopy is a powerful technique in chemical information characterization. However, this spectral method is subject to two obstacles in nano-material detection. One is diffraction limited spatial resolution, and the other is its inherent small Raman cross section and weak signaling. To resolve these problems, a new approach has been developed, denoted as tip-enhanced Raman spectroscopy (TERS). TERS is capable of high-resolution and high-sensitivity detection and demonstrated to be a promising spectroscopic and micro-topographic method to characterize nano-materials and nanostructures. In this paper, the principle and experimental system of TERS are discussed. The latest application of TERS in molecule detection, biological specimen identification, nanao-material characterization, and semi-conductor material determination with some specific experimental examples are presented.

  9. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  10. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    PubMed

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  11. Surface-enhanced Raman scattering spectroscopy characterization and identification of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Chen, Yud-Ren; Nou, Xiangwu; Chao, Kaunglin

    2007-09-01

    Rapid and routine identification of foodborne bacteria are considerably important, because of bio- / agro- terrorism threats, public health concerns, and economic loss. Conventional, PCR, and immunoassay methods for the detection of bacteria are generally time-consuming, chemical reagent necessary and multi-step procedures. Fast microbial detection requires minimal sample preparation, permits the routine analysis of large numbers of samples with negligible reagent costs, and is easy to operate. Therefore, we have developed silver colloidal nanoparticle based surface-enhanced Raman scattering (SERS) spectroscopy as a potential tool for the rapid and routine detection of E. coli and L. monocytogenes. This study presents the further results of our examination on S. typhimonium, one of the most commonly outbreak bacteria, for the characteristic bands and subsequent identification.

  12. The effect of substrate on electric field enhancement of Tip-enhanced Raman spectroscopy (TERS)

    NASA Astrophysics Data System (ADS)

    Bahreini, Maryam

    2018-01-01

    The characterization of materials down to a few-molecule level is a key challenge in nanotechnology. Raman spectroscopy is a powerful method that provides chemical information via nondestructive vibrational fingerprinting. Unfortunately, this method suffers from signal weakness which prevents the study of small quantities. Tip-enhanced Raman spectroscopy (TERS) which combines the chemical sensitivity of Raman spectroscopy (RS) with high spatial resolution of scanning probe microscopy (SPM), provides chemical images of surfaces at the nanometer scale. In this method, irradiation of an SPM tip by a focused laser beam results in enhancement of local electric field via two reasons of localized surface plasmon resonance and lightning rod effect. This enhancement leads to the enhancement in Raman intensity from the sample surface in the vicinity of tip. In all TERS measurements, samples should be located on a substrate. In this paper, the dependence of the electric field enhancement to the substrate has been investigated. In simulations, three-dimensional finite-difference time-domain (3D-FDTD) method is used for numerical solution of Maxwell's equations. Our results show that the electric field enhancement is weak for the tip alone case. Introducing a substrate provides further electric field enhancement via near field electromagnetic dipole-dipole coupling between the tip and substrate. Since the side-illumination geometry is used for laser irradiation, the vertical component of the incident field plays a dominant role in the electric field enhancement. Therefore, the coupling effect between the tip and the substrate is the key contribution to the enhancement. For the case of silicon tip and the gold substrate, the electric field enhancement is improved considerably. There is an optimal tip size for TERS because of the competing effects of the radiation damping and the surface scattering of the tip. The results show the substrate as an effective tool for the

  13. Electrospray surface-enhanced Raman spectroscopy (ES-SERS) for probing surface chemical compositions of atmospherically relevant particles

    NASA Astrophysics Data System (ADS)

    Gen, Masao; Chan, Chak K.

    2017-11-01

    We present electrospray surface-enhanced Raman spectroscopy (ES-SERS) as a new approach to measuring the surface chemical compositions of atmospherically relevant particles. The surface-sensitive SERS is realized by electrospraying Ag nanoparticle aerosols over analyte particles. Spectral features at v(SO42-), v(C-H) and v(O-H) modes were observed from the normal Raman and SERS measurements of laboratory-generated supermicron particles of ammonium sulfate (AS), AS mixed with succinic acid (AS / SA) and AS mixed with sucrose (AS / sucrose). SERS measurements showed strong interaction (or chemisorption) between Ag nanoparticles and surface aqueous sulfate [SO42-] with [SO42-]AS / sucrose > [SO42-]AS / SA > [SO42-]AS. Enhanced spectra of the solid AS and AS / SA particles revealed the formation of surface-adsorbed water on their surfaces at 60 % relative humidity. These observations of surface aqueous sulfate and adsorbed water demonstrate a possible role of surface-adsorbed water in facilitating the dissolution of sulfate from the bulk phase into its water layer(s). Submicron ambient aerosol particles collected in Hong Kong exhibited non-enhanced features of black carbon and enhanced features of sulfate and organic matter (carbonyl group), indicating an enrichment of sulfate and organic matter on the particle surface.

  14. Raman scattering of Cisplatin near silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  15. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    PubMed

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  16. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules

    PubMed Central

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin

    2017-01-01

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-Mx (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-Mx complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS. PMID:28767053

  17. Residual pesticide detection on food with particle-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Ranjan, Bikas; Huang, LiChuan; Masui, Kyoko; Saito, Yuika; Verma, Prabhat

    2014-08-01

    Modern farming relies highly on pesticides to protect agricultural food items from insects for high yield and better quality. Increasing use of pesticide has raised concern about its harmful effects on human health and hence it has become very important to detect even small amount of pesticide residues. Raman spectroscopy is a suitable nondestructive method for pesticide detection, however, it is not very effective for low concentration of pesticide molecules. Here, we report an approach based on plasmonic enhancement, namely, particle enhanced Raman spectroscopy (PERS), which is rapid, nondestructive and sensitive. In this technique, Raman signals are enhanced via the resonance excitation of localized plasmons in metallic nanoparticles. Gold nanostructures are promising materials that have ability to tune surface plasmon resonance frequency in visible to near-IR, which depends on shape and size of nanostructures. We synthesized gold nanorods (GNRs) with desired shape and size by seed mediated growth method, and successfully detected very tiny amount of pesticide present on food items. We also conformed that the detection of pesticide was not possible by usual Raman spectroscopy.

  18. Surface-enhanced Raman scattering of the adsorption of pesticide endosulfan on gold nanoparticles.

    PubMed

    Hernández-Castillo, M I; Zaca-Morán, O; Zaca-Morán, P; Orduña-Diaz, A; Delgado-Macuil, R; Rojas-López, M

    2015-01-01

    The absorption of pesticide endosulfan on the surface of gold nanoparticles results from the formation of micrometric structures (1-10 μm) with irregular shape because of the aggregation of individual particles. Such aggregation of gold nanoparticles after absorption of pesticide shows a surface-enhanced Raman scattering (SERS) spectrum, whose intensity depends on the concentration of endosulfan. In addition, the discoloration of the colloidal solution and a diminishing of the intensity of the surface plasmon resonance absorption from individual particles were observed by UV-visible spectroscopy. At the same time, a second band between 638 and 700 nm confirms the formation of aggregates of gold nanoparticles as the concentration of endosulfan increases. Finally, we used the SERS intensity of the S-O stretching vibration at 1239 cm(-1) from the SO3 group as a measure of concentration of pesticide endosulfan. This method could be used to estimate the level of pollution in water by endosulfan in a simple and practical form.

  19. Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples.

    PubMed

    Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter

    2018-06-08

    The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  20. Development of a drug assay using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Angel, S. M.; Roe, Jeffrey N.; Andresen, Brian D.; Myrick, Michael L.; Milanovich, Fred P.

    1990-07-01

    Surface-enhanced Raman spectroscopy has been used to detect low levels of several chemical compounds, including the drugs of abuse -cocaine hydrochloride and methamphetamme hydrochloride. Raman spectra of these substances have also been taken over optical fibers using red-wavelength excitation. These measurements demonstrate the feasibility of the remote determination of various target chemicals using diode laser excitation and diode array detection.

  1. Magnetic separation of heavy metal ions and evaluation based on surface-enhanced Raman spectroscopy: copper(II) ions as a case study.

    PubMed

    Yan, Xue; Zhang, Xue-Jiao; Yuan, Ya-Xian; Han, San-Yang; Xu, Min-Min; Gu, Ren'ao; Yao, Jian-Lin

    2013-11-01

    A new approach was developed for the magnetic separation of copper(II) ions with easy operation and high efficiency. p-Mercaptobenzoic acid served as the modified tag of Fe2O3@Au nanoparticles both for the chelation ligand and Raman reporter. Through the chelation between the copper(II) ions and carboxyl groups on the gold shell, the Fe2O3@Au nanoparticles aggregated to form networks that were enriched and separated from the solution by a magnet. A significant decrease in the concentration of copper(II) ions in the supernatant solution was observed. An extremely sensitive method based on surface-enhanced Raman spectroscopy was employed to detect free copper(II) ions that remained after the magnetic separation, and thus to evaluate the separation efficiency. The results indicated the intensities of the surface-enhanced Raman spectroscopy bands from p-mercaptobenzoic acid were dependent on the concentration of copper(II) ions, and the concentration was decreased by several orders of magnitude after the magnetic separation. The present protocol effectively decreased the total amount of heavy metal ions in the solution. This approach opens a potential application in the magnetic separation and highly sensitive detection of heavy metal ions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    NASA Astrophysics Data System (ADS)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  3. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers.

    PubMed

    Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua

    2018-01-01

    Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals' emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington's diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 10 7 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 pM to 300 nM for quantitative DA detection. The

  4. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers

    PubMed Central

    Yu, Xiantong; He, XiaoXiao; Yang, Taiqun; Zhao, Litao; Chen, Qichen; Zhang, Sanjun; Chen, Jinquan; Xu, Jianhua

    2018-01-01

    Background Dopamine (DA) is an important neurotransmitter in the hypothalamus and pituitary gland, which can produce a direct influence on mammals’ emotions in midbrain. Additionally, the level of DA is highly related with some important neurologic diseases such as schizophrenia, Parkinson, and Huntington’s diseases, etc. In light of the important roles that DA plays in the disease modulation, it is of considerable significance to develop a sensitive and reproducible approach for monitoring DA. Purpose The objective of this study was to develop an efficient approach to quantitatively monitor the level of DA using Ag nanoparticle (NP) dimers and enhanced Raman spectroscopy. Methods Ag NP dimers were synthesized for the sensitive detection of DA via surface-enhanced Raman scattering (SERS). Citrate was used as both the capping agent of NPs and sensing agent to DA, which is self-assembled on the surface of Ag NP dimers by reacting with the surface carboxyl group to form a stable amide bond. To improve accuracy and precision, the multiplicative effects model for surface-enhanced Raman spectroscopy was utilized to analyze the SERS assays. Results A low limits of detection (LOD) of 20 pM and a wide linear response range from 30 pM to 300 nM were obtained for DA quantitative detection. The SERS enhancement factor was theoretically valued at approximately 107 by discrete dipole approximation. DA was self-assembled on the citrate capped surface of Ag NPs dimers through the amide bond. The adsorption energy was estimated to be 256 KJ/mol using the Langmuir isotherm model. The density functional theory was used to simulate the spectral characteristics of SERS during the adsorption of DA on the surface of the Ag dimers. Furthermore, to improve the accuracy and precision of quantitative analysis of SERS assays with a multiplicative effects model for surface-enhanced Raman spectroscopy. Conclusion A LOD of 20 pM DA-level was obtained, and the linear response ranged from 30 p

  5. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    NASA Astrophysics Data System (ADS)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  6. The characterization of photographic materials as substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaughan, J.; Hortin, N.; Christie, S.; Kvasnik, F.; Scully, P. J.

    2005-06-01

    In this study, five types of photographic materials were obtained from commercial sources and characterized for use as substrates for surface enhanced Raman spectroscopy. The substrates are photographic emulsions coated on glass or paper support. The emulsions were developed to maximize the amount of metallic silver aggregated into clusters. The test analyte, Cresyl Violet, was deposited directly onto the substrate surface. The permeable nature of the supporting gelatin matrix enables the interaction between the target analyte and the solid silver clusters. The surface enhanced Raman spectra of a 2.75 × 10-7 M concentration of Cresyl Violet in ethanol were obtained using these photographic substrates. The Raman and resonant Raman enhancement of Cresyl Violet varies from substrate to substrate, as does the ratio of Raman to resonant Raman peak heights.

  7. Stand-off detection of vapor phase explosives by resonance enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ehlerding, Anneli; Johansson, Ida; Wallin, Sara; Östmark, Henric

    2010-10-01

    Stand-off measurements on nitromethane (NM), 2,4-DNT and 2,4,6-TNT in vapor phase using resonance Raman spectroscopy have been performed. The Raman cross sections for NM, DNT and TNT in vapor phase have been measured in the wavelength range 210-300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The measurements show that the signal is greatly enhanced, up to 250.000 times for 2,4-DNT and 60.000 times for 2,4,6-TNT compared to the non-resonant signal at 532 nm. For NM the resonance enhancement enabled realistic outdoor measurements in vapor phase at 13 m distance. This all indicate a potential for resonance Raman spectroscopy as a stand-off technique for detection of vapor phase explosives.

  8. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores.

    PubMed

    Cecchini, Michael P; Wiener, Aeneas; Turek, Vladimir A; Chon, Hyangh; Lee, Sangyeop; Ivanov, Aleksandar P; McComb, David W; Choo, Jaebum; Albrecht, Tim; Maier, Stefan A; Edel, Joshua B

    2013-10-09

    Nanopore sensors embedded within thin dielectric membranes have been gaining significant interest due to their single molecule sensitivity and compatibility of detecting a large range of analytes, from DNA and proteins, to small molecules and particles. Building on this concept we utilize a metallic Au solid-state membrane to translocate and rapidly detect single Au nanoparticles (NPs) functionalized with 589 dye molecules using surface-enhanced resonance Raman spectroscopy (SERRS). We show that, due to the plasmonic coupling between the Au metallic nanopore surface and the NP, signal intensities are enhanced when probing analyte molecules bound to the NP surface. Although not single molecule, this nanopore sensing scheme benefits from the ability of SERRS to provide rich vibrational information on the analyte, improving on current nanopore-based electrical and optical detection techniques. We show that the full vibrational spectrum of the analyte can be detected with ultrahigh spectral sensitivity and a rapid temporal resolution of 880 μs.

  9. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    PubMed Central

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-01-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation. PMID:26687436

  10. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  11. PCR-free Quantification of Multiple Splice Variants in Cancer Gene by Surface Enhanced Raman Spectroscopy

    PubMed Central

    Sun, Lan; Irudayaraj, Joseph

    2009-01-01

    We demonstrate a surface enhanced Raman spectroscopy (SERS) based array platform to monitor gene expression in cancer cells in a multiplex and quantitative format without amplification steps. A strategy comprising of DNA/RNA hybridization, S1 nuclease digestion, and alkaline hydrolysis was adopted to obtain DNA targets specific to two splice junction variants Δ(9, 10) and Δ(5) of the breast cancer susceptibility gene 1 (BRCA1) from MCF-7 and MDA-MB-231 breast cancer cell lines. These two targets were identified simultaneously and their absolute quantities were estimated by a SERS strategy utilizing the inherent plasmon-phonon Raman mode of gold nanoparticle probes as a self-referencing standard to correct for variability in surface enhancement. Results were then validated by reverse transcription PCR (RT-PCR). Our proposed methodology could be expanded to a higher level of multiplexing for quantitative gene expression analysis of any gene without any amplification steps. PMID:19780515

  12. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    NASA Astrophysics Data System (ADS)

    Huang, H.; Shi, H.; Feng, S.; Lin, J.; Chen, W.; Huang, Z.; Li, Y.; Yu, Y.; Lin, D.; Xu, Q.; Chen, R.

    2013-04-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites.

  13. Surface-enhanced Raman spectroscopy of half-mustard agent.

    PubMed

    Stuart, Douglas A; Biggs, Kevin B; Van Duyne, Richard P

    2006-04-01

    The detection and identification of chemical warfare agents is an important analytical goal. Herein, it is demonstrated that 2-chloroethyl ethyl sulfide (half-mustard, CEES) can be successfully analysed using surface-enhanced Raman spectroscopy (SERS). A critical component in this detection system is the fabrication of a robust, yet highly enhancing, sensor surface. Recent advances in substrate fabrication and in the fundamental understanding of the SERS phenomenon enable the development of improved substrates for practical SERS applications.

  14. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.

    PubMed

    Kühler, Paul; Weber, Max; Lohmüller, Theobald

    2014-06-25

    We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.

  15. Characterisation of signal enhancements achieved when utilizing a photon diode in deep Raman spectroscopy of tissue

    PubMed Central

    Vardaki, Martha Z.; Matousek, Pavel; Stone, Nicholas

    2016-01-01

    We characterise the performance of a beam enhancing element (‘photon diode’) for use in deep Raman spectroscopy (DRS) of biological tissues. The optical component enhances the number of laser photons coupled into a tissue sample by returning escaping photons back into it at the illumination zone. The method is compatible with transmission Raman spectroscopy, a deep Raman spectroscopy concept, and its implementation leads to considerable enhancement of detected Raman photon rates. In the past, the enhancement concept was demonstrated with a variety of samples (pharmaceutical tablets, tissue, etc) but it was not systematically characterized with biological tissues. In this study, we investigate the enhancing properties of the photon diode in the transmission Raman geometry as a function of: a) the depth and b) the optical properties of tissue samples. Liquid tissue phantoms were employed to facilitate systematic variation of optical properties. These were chosen to mimic optical properties of human tissues, including breast and prostate. The obtained results evidence that a photon diode can enhance Raman signals of tissues by a maximum of × 2.4, although it can also decrease the signals created towards the back of samples that exhibit high scattering or absorption properties. PMID:27375932

  16. Bare and protected sputtered-noble-metal films for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Talaga, David; Bonhommeau, Sébastien

    2014-11-01

    Sputtered silver and gold films with different surface morphologies have been prepared and coated with a benzenethiol self-assembled monolayer. Rough noble metal films showed strong Raman features assigned to adsorbed benzenethiol molecules upon irradiation over a wide energy range in the visible spectrum, which disclosed the occurrence of a significant surface-enhanced Raman scattering with maximal enhancement factors as high as 6 × 106. In addition, the adsorption of ethanethiol onto silver surfaces hinders their corrosion over days while preserving mostly intact enhancement properties of naked silver. This study may be applied to develop stable and efficient metalized probes for tip-enhanced Raman spectroscopy.

  17. Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy

    PubMed Central

    Zhang, Jing; Li, Jinxing; Tang, Shiwei; Fang, Yangfu; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Zheng, Lirong; Cui, Xugao; Mei, Yongfeng

    2015-01-01

    The synergy effect in nature could enable fantastic improvement of functional properties and associated effects. The detection performance of surface-enhanced Raman scattering (SERS) can be highly strengthened under the cooperation with other factors. Here, greatly-enhanced SERS detection is realized based on rolled-up tubular nano-resonators decorated with silver nanoparticles. The synergy effect between whispering-gallery-mode (WGM) and surface plasmon leads to an extra enhancement at the order of 105 compared to non-resonant flat SERS substrates, which can be well tuned by altering the diameter of micron- and nanotubes and the excitation laser wavelengths. Such synchronous and coherent coupling between plasmonics and photonics could lead to new principle and design for various sub-wavelength optical devices, e.g. plasmonic waveguides and hyperbolic metamaterials. PMID:26443526

  18. Cavity-Enhanced Raman Spectroscopy for Food Chain Management

    PubMed Central

    Sandfort, Vincenz; Goldschmidt, Jens; Wöllenstein, Jürgen

    2018-01-01

    Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene. PMID:29495501

  19. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science.

    PubMed

    Fikiet, Marisia A; Khandasammy, Shelby R; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K

    2018-05-15

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Characterization of chemical warfare G-agent hydrolysis products by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank E.; Gift, Alan D.; Maksymiuk, Paul; Farquharson, Stuart

    2004-12-01

    The United States and its allies have been increasingly challenged by terrorism, and since the September 11, 2001 attacks and the war in Afghanistan and Iraq, homeland security has become a national priority. The simplicity in manufacturing chemical warfare agents, the relatively low cost, and previous deployment raises public concern that they may also be used by terrorists or rogue nations. We have been investigating the ability of surface-enhanced Raman spectroscopy (SERS) to detect extremely low concentrations (e.g. part-per-billion) of chemical agents, as might be found in poisoned water. Since trace quantities of nerve agents can be hydrolyzed in the presence of water, we have expanded our studies to include such degradation products. Our SERS-active medium consists of silver or gold nanoparticles incorporated into a sol-gel matrix, which is immobilized in a glass capillary. The choice of sol-gel precursor allows controlling hydrophobicity, while the porous silica network offers a unique environment for stabilizing the SERS-active metals. Here we present the use of these metal-doped sol-gels to selectively enhance the Raman signal of the hydrolyzed products of the G-series nerve agents.

  1. Surface-enhanced Raman scattering spectroscopy of explosive 2,4-dinitroanisole using modified silver nanoparticles.

    PubMed

    Xu, Zhonghou; Hao, Jumin; Braida, Washington; Strickland, David; Li, Fasheng; Meng, Xiaoguang

    2011-11-15

    2,4-Dinitroanisole (DNAN) is being used as a replacement for 2,4,6-trinitrotoluene (TNT) as a less-sensitive melt-cast medium explosive than TNT. In this paper, we studied the surface-enhanced Raman spectroscopy (SERS) analysis of DNAN using Ag nanoparticles (AgNPs) modified by L-cysteine methyl ester hydrochloride. Due to the formation of a Meisenheimer complex between DNAN and the modifier, the modified AgNPs can detect 20 μg/L (0.2 ng) and 0.1 mg/L (1 ng) DNAN in deionized water and aged tap water, respectively. Three other chemicals (L-cysteine, N-acetyl-L-cysteine, and L-cysteine ethyl ester hydrochloride) were used as AgNPs modifiers to study the mechanism of the SERS of DNAN. It was confirmed that the amino group of L-cysteine methyl ester hydrochloride was the active group and that the methyl ester group significantly contributed to the high SERS sensitivity of DNAN. In order to further test the mechanism of Meisenheimer complex formation, the effect of anions and cations present in natural water on the SERS of DNAN was studied. It was found that CO(3)(2-), Cl(-), and K(+) at 100 mg/L did not negatively affect the SERS of 10 mg/L DNAN, while SO(4)(2-), Na(+), Mg(2+), and Ca(2+) at 100 mg/L significantly quenched the SERS of 10 mg/L DNAN. The negative effect of the bivalent cations could be offset by SO(4)(2-).

  2. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post

  3. Raman properties of gold nanoparticle-decorated individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Assmus, Tilman; Balasubramanian, Kannan; Burghard, Marko; Kern, Klaus; Scolari, Matteo; Fu, Nan; Myalitsin, Anton; Mews, Alf

    2007-04-01

    Single-wall carbon nanotubes decorated by gold nanoparticles with sizes of a few tens of nanometers were investigated by confocal Raman microscopy. It was found that individual nanoparticles impart a sizable Raman enhancement exceeding one order of magnitude, without appreciably interfering with polarization dependent Raman measurements. By contrast, cavity effects within small nanoparticle agglomerates resulted in a 20-fold stronger enhancement and significant distortions of the polarization characteristic.

  4. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.

    PubMed

    Yan, Xiunan; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Xiaoyun; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2017-05-02

    Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.

  5. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite.

    PubMed

    Miljanić, Snezana; Frkanec, Leo; Biljan, Tomislav; Meić, Zlatko; Zinić, Mladen

    2006-10-24

    Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.

  6. Energetic stabilities of thiolated pyrimidines on gold nanoparticles investigated by Raman spectroscopy and density functional theory calculations.

    PubMed

    Ganbold, Erdene-Ochir; Yoon, Jinha; Cho, Kwang-Hwi; Joo, Sang-Woo

    2015-01-01

    The adsorption structures of 2-thiocytosine (2TC) on gold surfaces were examined by means of vibrational Raman spectroscopy and quantum mechanical density functional theory calculations. The 1H-thione-amino form was calculated to be most stable among the six examined tautomers. The three plausible binding geometries of sulfur, pyrimidine nitrogen, and amino group binding modes were calculated to estimate the binding energies of the 1H-thione-amino form with six gold cluster atoms. Thiouracils including 2-thiouracil (2TU), 4-thiouracil (4TU), and 6-methyl-2-thiouracil (6M2TU) were also studied to compare their relative binding energies on gold atoms. The intracellular localization of a DNA base analog of 2TC on gold nanoparticles (AuNPs) in HeLa cells was identified by means of surface-enhanced Raman scattering. AuNPs were modified with 2TC by self-assembly. Our dark-field microscopy and z-depth-dependent confocal Raman spectroscopy indicated that 2TC-assembled AuNPs could be found inside cancer cells. On the other hand, we did not observe noticeably strong Raman peaks in the cases of thiouracils including 2TU, 4TU, and 6M2TU. This may be due to the additional amino group of 2TC, which can lead to a stronger binding of adsorbates on AuNPs. Copyright © 2015. Published by Elsevier B.V.

  7. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    PubMed

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an

  8. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  9. Characterization of the Interactions between Titanium Dioxide Nanoparticles and Polymethoxyflavones Using Surface-Enhanced Raman Spectroscopy.

    PubMed

    Cao, Xiaoqiong; Ma, Changchu; Gao, Zili; Zheng, Jinkai; He, Lili; McClements, David Julian; Xiao, Hang

    2016-12-14

    Nanosized titanium dioxide (TiO 2 ) particles are commonly present in TiO 2 food additives (E171) and have been associated with potential adverse effects on health. However, little knowledge is available regarding the interactions between TiO 2 nanoparticles (NPs) and other food components, such as flavonoids. In this study, we aim to study the molecular interactions between TiO 2 anatase NPs and three structurally closely related polymethoxyflavones (PMFs, flavonoids found in citrus fruits), namely, 3',4'-didemethylnobiletin (DDN), 5-demethylnobiletin (5DN), and 5,3',4'-tridemethylnobiletin (TDN), using ultraviolet-visible (UV-vis) spectrometry and surface-enhanced Raman spectroscopy (SERS). In the UV-vis absorption spectra, bathochromic effects were observed after DDN and TDN conjugated with TiO 2 NPs. The results from SERS analysis clearly demonstrated that DDN and TDN could bind TiO 2 NPs with the functional groups 3'-OH and 4'-OH on ring B and formed charge-transfer complexes. However, 5DN with functional groups C═O on ring C and 5-OH on ring A could not bind TiO 2 NPs. Knowledge on the molecular interactions between TiO 2 NPs and food components, such as flavonoids, will facilitate the understanding of the fate of TiO 2 NPs during food processing and in the gastrointestinal tract after oral consumption.

  10. Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and γ-Fe₂O₃@Au nanoparticles.

    PubMed

    Lin, Yan; Xu, Guanhong; Wei, Fangdi; Zhang, Aixia; Yang, Jing; Hu, Qin

    2016-03-20

    In this present work, a rapid and simple method to detect carcinoembryonic antigen (CEA) was developed by using surface-enhanced Raman spectroscopy (SERS) coupled with antibody-modified Au and γ-Fe2O3@Au nanoparticles. First, Au@Raman reporter and γ-Fe2O3@Au were prepared, and then modified with CEA antibody. When CEA was present, the immuno-Au@Raman reporter and immuno-γ-Fe2O3@Au formed a complex through antibody-antigen-antibody interaction. The selective and sensitive detection of CEA could be achieved by SERS after magnetic separation. Under the optimal conditions, a linear relationship was observed between the Raman peak intensity and the concentration of CEA in the range of 1-50 ng mL(-1) with an excellent correlation coefficient of 0.9942. The limit of detection based on two times ratio of signal to noise was 0.1 ng/mL. The recoveries of CEA standard solution spiked with human serum samples were in the range of 88.5-105.9% with the relative standard deviations less than 17.4%. The method built was applied to the detection of CEA in human serum, and the relative deviations of the analysis results between the present method and electrochemiluminescence immunoassay were all less than 16.6%. The proposed method is practical and has a potential for clinic test of CEA. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Development of a drug assay using surface-enhanced Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, S.M.; Roe, J.N.; Andresen, B.D.

    1990-05-01

    Surface-enhanced Raman spectroscopy has been used to detect low levels of several chemical compounds, including the drugs of abuse -- cocaine hydrochloride and methamphetamine hydrochloride. Raman spectra of these substances have also been taken over optical fibers using red-wavelength excitation. These measurements demonstrate the feasibility of the remote red-wavelength excitation. These measurements demonstrate the feasibility of the remote determination of various target chemicals using diode excitation and diode array detection. 5 refs., 5 figs.

  12. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    NASA Astrophysics Data System (ADS)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  13. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement.

    PubMed

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 10(5) for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm(-1) of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.

  14. Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach.

    PubMed

    Pustovit, Vitaliy N; Shahbazyan, Tigran V

    2006-06-01

    We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.

  15. Rich variety of substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van; Nhung Tran, Hong

    2016-09-01

    The efficiency of the application of surface enhanced Raman spectroscopy (SERS) technique to each specified purpose significantly depends on the choice of the SERS substrate with an appropriate structure as well as on its performance. Until the present time a rich variety of SERS substrates was fabricated. They can be classified according to their structures. The present work is a review of main types of SERS substrates for using in the trace analysis application. They can be classified into 4 groups: (1) Substrates using gold nanoparticles (AuNPs) with spherical shape such as colloidal AuNPs, AuNPs fabricated by pulsed laser deposition, by sputtering or by capillary force assembly (CFA), substrates fabricated by electrospinning technique, substrates using metallic nanoparticle arrays fabricated by electron beam lithography combined with CFA method, substrates using silver nanoparticle (AgNP) arrays grain by chemical seeded method, substrates with tunable surface plasmon resonance, substrates based on precies subnanometer plasmonic junctions within AuNP assemblies, substrates fabricated by simultaneously immobilizing both AuNPs and AgNPs on the same glass sides etc. (2) Substrates using nanostructures with non-spherical shapes such as gold nanowire (NW), or highly anisotropic nickel NW together with large area, free-standing carpets, substrates with obviously angular, quasi-vertically aligned cuboid-shaped TiO2 NW arrays decorated with AgNPs, substrates using gold nanoprism monolayer films, substrates using silver nanocube dimmers or monodisperse close-packed gold nanotriangle monolayers. (3) Substrates using multiparticle complex nanostructure such as nanoparticle cluster arrays, gold nanoflowers and nanodendrites. (4) Flexible substrate such as paper-based swab with gold nanorods, adhesive polymer tapes fabricated by inkjet printing method and flexible and adhesive SERS tapes fabricated by decorating AuNPs via the conventional drop-dry method.

  16. Nanostar probes for tip-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Woong; Kim, Nara; Park, Joon Won; Kim, Zee Hwan

    2015-12-01

    To overcome the current limit of tip-enhanced spectroscopy that is based on metallic nano-probes, we developed a new scanning probe with a metallic nanostar, a nanoparticle with sharp spikes. A Au nanoparticle of 5 nm was first attached to the end of a tip through DNA-DNA hybridization and mechanical pick-up. The nanoparticle was converted to a nanostar with a core diameter of ~70 nm and spike lengths between 50 nm and 80 nm through the reduction of Au3+ with ascorbic acid in the presence of Ag+. Fabrication yields of such tips exceeded 60%, and more than 80% of such tips showed a mechanical durability sufficient for use in scanning microscopy. Effectiveness of the new probes for tip-enhanced Raman scattering (TERS) and tip-enhanced fluorescence (TEF) was confirmed. The probes exhibited the necessary enhancement for TEF, and the tip-on and tip-off ratios varied between 5 and 100. This large tip-to-tip variability may arise from the uncontrolled orientation of the apexes of the spike with respect to the sample surface, which calls for further fabrication improvement. The result overall supports a new fabrication approach for the probe that is effective for tip-enhanced spectroscopy.To overcome the current limit of tip-enhanced spectroscopy that is based on metallic nano-probes, we developed a new scanning probe with a metallic nanostar, a nanoparticle with sharp spikes. A Au nanoparticle of 5 nm was first attached to the end of a tip through DNA-DNA hybridization and mechanical pick-up. The nanoparticle was converted to a nanostar with a core diameter of ~70 nm and spike lengths between 50 nm and 80 nm through the reduction of Au3+ with ascorbic acid in the presence of Ag+. Fabrication yields of such tips exceeded 60%, and more than 80% of such tips showed a mechanical durability sufficient for use in scanning microscopy. Effectiveness of the new probes for tip-enhanced Raman scattering (TERS) and tip-enhanced fluorescence (TEF) was confirmed. The probes exhibited

  17. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy.

    PubMed

    Wu, Yiping; Yu, Wenfang; Yang, Benhong; Li, Pan

    2018-05-15

    The use of different food additives and their active metabolites has been found to cause serious problems to human health. Thus, considering the potential effects on human health, developing a sensitive and credible analytical method for different foods is important. Herein, the application of solvent-driven self-assembled Au nanoparticles (Au NPs) for the rapid and sensitive detection of food additives in different commercial products is reported. The assembled substrates are highly sensitive and exhibit excellent uniformity and reproducibility because of uniformly distributed and high-density hot spots. The sensitive analyses of ciprofloxacin (CF), diethylhexyl phthalate (DEHP), tartrazine and azodicarbonamide at the 0.1 ppm level using this surface-enhanced Raman spectroscopy (SERS) substrate are given, and the results show that Au NP arrays can serve as efficient SERS substrates for the detection of food additives. More importantly, SERS spectra of several commercial liquors and sweet drinks are obtained to evaluate the addition of illegal additives. This SERS active platform can be used as an effective strategy in the detection of prohibited additives in food.

  18. Surface-enhanced Raman spectroscopy for differentiation between benign and malignant thyroid tissues

    NASA Astrophysics Data System (ADS)

    Li, Zuanfang; Li, Chao; Lin, Duo; Huang, Zufang; Pan, Jianji; Chen, Guannan; Lin, Juqiang; Liu, Nenrong; Yu, Yun; Feng, Shangyuan; Chen, Rong

    2014-04-01

    The aim of this study was to evaluate the potential of applying silver nano-particle based surface-enhanced Raman scattering (SERS) to discriminate different types of human thyroid tissues. SERS measurements were performed on three groups of tissue samples including thyroid cancers (n = 32), nodular goiters (n = 20) and normal thyroid tissues (n = 25). Tentative assignments of the measured tissue SERS spectra suggest interesting cancer specific biomolecular differences. The principal component analysis (PCA) and linear discriminate analysis (LDA) together with the leave-one-out, cross-validated technique yielded diagnostic sensitivities of 92%, 75% and 87.5%; and specificities of 82.6%, 89.4% and 84.4%, respectively, for differentiation among normal, nodular and malignant thyroid tissue samples. This work demonstrates that tissue SERS spectroscopy associated with multivariate analysis diagnostic algorithms has great potential for detection of thyroid cancer at the molecular level.

  19. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-01

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl4- and Ag+ ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate).

  20. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis.

    PubMed

    Dumont, Elodie; De Bleye, Charlotte; Sacré, Pierre-Yves; Netchacovitch, Lauranne; Hubert, Philippe; Ziemons, Eric

    2016-05-01

    Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.

  1. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems.

    PubMed

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. A Colloidal Route to Detection of Organic Molecules Based on Surface-Enhanced Raman Spectroscopy Using Nanostructured Substrate Derived from Aerosols

    NASA Astrophysics Data System (ADS)

    Gen, Masao; Kakuta, Hideo; Kamimoto, Yoshihito; Wuled Lenggoro, I.

    2011-06-01

    A detection method based on the surface-enhanced Raman spectroscopy (SERS)-active substrate derived from aerosol nanoparticles and a colloidal suspension for detecting organic molecules of a model analyte (a pesticide) is proposed. This approach can detect the molecules of the derived from its solution with the concentration levels of ppb. For substrate fabrication, a gas-phase method is used to directly deposit Ag nanoparticles on to a silicon substrate having pyramidal structures. By mixing the target analyte with a suspension of Ag colloids purchased in advance, clotianidin analyte on Ag colloid can exist in junctions of co-aggregated Ag colloids. Using (i) a nanostructured substrate made from aerosol nanoparticles and (ii) colloidal suspension can increase the number of activity spots.

  3. Design and Preparation of Nanoparticle Dimers for SERS Detection

    DTIC Science & Technology

    2012-09-10

    sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were synthesized that incorporate SERS reporters...and antigens, based on the remarkable sensitivity afforded by surface enhanced Raman spectroscopy (SERS). Metal nanoparticles dimers were...Potma, V. A._Apkarian. High Sensitivity Surface-Enhanced Raman Scattering in Solution Using Engineered Silver Nanosphere Dimers, The Journal of

  4. Surface enhanced Raman scattering spectroscopic waveguide

    DOEpatents

    Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H

    2015-04-14

    A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.

  5. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    NASA Astrophysics Data System (ADS)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  6. Surface-enhanced Raman spectroscopy on coupled two-layer nanorings

    NASA Astrophysics Data System (ADS)

    Hou, Yumin; Xu, Jun; Wang, Pengwei; Yu, Dapeng

    2010-05-01

    A reproducible quasi-three-dimensional structure, composed of top and bottom concentric nanorings with same periodicity but different widths and no overlapping at the perpendicular direction, is built up by a separation-layer method, which results in huge enhancement of surface-enhanced Raman spectroscopy (SERS) due to the coupling of plasmons. Simulations show plasmonic focusing with "hot arcs" of electromagnetic enhancement meeting the need of quantitative SERS with extremely high sensitivities. In addition, the separation-layer method opens a simple and effective way to adjust the coupling of plasmons among nanostructures which is essential for the fabrication of SERS-based sensors.

  7. Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy

    PubMed Central

    Du, Juan; Harra, Juha; Virkki, Matti; Mäkelä, Jyrki M.; Leng, Yuxin; Kauranen, Martti; Kobayashi, Takayoshi

    2016-01-01

    Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in “real time”. Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)−1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states. PMID:27812020

  8. Hollow Core Bragg Waveguide Design and Fabrication for Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramanan, Janahan

    Raman spectroscopy is a widely used technique to unambiguously ascertain the chemical composition of a sample. The caveat with this technique is its extremely weak optical cross-section, making it difficult to measure Raman signal with standard optical setups. In this thesis, a novel hollow core Bragg Reflection Waveguide was designed to simultaneously increase the generation and collection of Raman scattered photons. A robust fabrication process of this waveguide was developed employing flip-chip bonding methods to securely seal the hollow core channel. The waveguide air-core propagation loss was experimentally measured to be 0.17 dB/cm, and the Raman sensitivity limit was measured to be 3 mmol/L for glycerol solution. The waveguide was also shown to enhance Raman modes of standard household aerosols that could not be seen with other devices.

  9. High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device.

    PubMed

    Garai, Ellis; Sensarn, Steven; Zavaleta, Cristina L; Van de Sompel, Dominique; Loewke, Nathan O; Mandella, Michael J; Gambhir, Sanjiv S; Contag, Christopher H

    2013-09-01

    Topical application and quantification of targeted, surface-enhanced Raman scattering (SERS) nanoparticles offer a new technique that has the potential for early detection of epithelial cancers of hollow organs. Although less toxic than intravenous delivery, the additional washing required to remove unbound nanoparticles cannot necessarily eliminate nonspecific pooling. Therefore, we developed a real-time, ratiometric imaging technique to determine the relative concentrations of at least two spectrally unique nanoparticle types, where one serves as a nontargeted control. This approach improves the specific detection of bound, targeted nanoparticles by adjusting for working distance and for any nonspecific accumulation following washing. We engineered hardware and software to acquire SERS signals and ratios in real time and display them via a graphical user interface. We report quantitative, ratiometric imaging with nanoparticles at pM and sub-pM concentrations and at varying working distances, up to 50 mm. Additionally, we discuss optimization of a Raman endoscope by evaluating the effects of lens material and fiber coating on background noise, and theoretically modeling and simulating collection efficiency at various working distances. This work will enable the development of a clinically translatable, noncontact Raman endoscope capable of rapidly scanning large, topographically complex tissue surfaces for small and otherwise hard to detect lesions.

  10. The development of "fab-chips" as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications.

    PubMed

    Robinson, Ashley M; Zhao, Lili; Shah Alam, Marwa Y; Bhandari, Paridhi; Harroun, Scott G; Dendukuri, Dhananjaya; Blackburn, Jonathan; Brosseau, Christa L

    2015-02-07

    The demand for methods and technologies capable of rapid, inexpensive and continuous monitoring of health status or exposure to environmental pollutants persists. In this work, the development of novel surface-enhanced Raman spectroscopy (SERS) substrates from metal-coated silk fabric, known as zari, presents the potential for SERS substrates to be incorporated into clothing and other textiles for the routine monitoring of important analytes, such as disease biomarkers or environmental pollutants. Characterization of the zari fabric was completed using scanning electron microscopy, energy dispersive X-ray analysis and Raman spectroscopy. Silver nanoparticles (AgNPs) were prepared, characterized by transmission electron microscopy and UV-vis spectroscopy, and used to treat fabric samples by incubation, drop-coating and in situ synthesis. The quality of the treated fabric was evaluated by collecting the SERS signal of 4,4'-bipyridine on these substrates. When AgNPs were drop-coated on the fabric, sensitive and reproducible substrates were obtained. Adenine was selected as a second probe molecule, because it dominates the SERS signal of DNA, which is an important class of disease biomarker, particularly for pathogens such as Plasmodium spp. and Mycobacterium tuberculosis. Excellent signal enhancement could be achieved on these affordable substrates, suggesting that the developed fabric chips have the potential for expanding the use of SERS as a diagnostic and environmental monitoring tool for application in wearable sensor technologies.

  11. Optimization of surface enhanced Raman scattering (SERS) assay for the transition from benchtop to handheld Raman systems

    NASA Astrophysics Data System (ADS)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Coté, Gerard

    2017-02-01

    Human biomarkers are indicative of the body's relative state prior to the onset of disease, and sometimes before symptoms present. While blood biomarker detection has achieved considerable success in laboratory settings, its clinical application is lagging and commercial point-of-care devices are rare. A physician's ability to detect biomarkers such as microRNA-17, a potential epigenetic indicator of preeclampsia in pregnant woman, could enable early diagnosis and preventive intervention as early as the 1st trimester. One detection approach employing DNA-functionalized nanoparticles to detect microRNA-17, in conjunction with surface-enhanced Raman spectroscopy (SERS), has shown promise but is hindered, in part, by the use of large and expensive benchtop Raman microscopes. However, recent strides have been made in developing portable Raman systems for field applications. Characteristics of the SERS assay responsible for strengthening the assay's plasmonic response were explored, whilst comparing the results from both benchtop and portable Raman systems. The Raman spectra and intensity of three different types of photoactive molecules were compared as potential Raman reporter molecules: chromophores, fluorophores, and highly polarizable small molecules. Furthermore, the plasmonic characteristics governing the formation of SERS colloidal nanoparticle assemblies in response to DNA/miRNA hybridization were investigated. There were significant variations in the SERS enhancement in response to microRNA-17 using our assay depending on the excitation lasers at wavelengths of 532 nm and 785 nm, depending on which of the three different Raman systems were used (benchtop, portable, and handheld), and depending on which of the three different Raman reporters (chromophore, fluorophore, or Raman active molecule) were used. Analysis of data obtained did indicate that signal enhancement was better for the chromophore (MGITC) and Raman active molecule (DTNB) than it was for the

  12. Surface enhanced Raman spectroscopy (SERS) from a molecule adsorbed on a nanoscale silver particle cluster in a holographic plate

    NASA Astrophysics Data System (ADS)

    Jusinski, Leonard E.; Bahuguna, Ramen; Das, Amrita; Arya, Karamjeet

    2006-02-01

    Surface enhanced Raman spectroscopy has become a viable technique for the detection of single molecules. This highly sensitive technique is due to the very large (up to 14 orders in magnitude) enhancement in the Raman cross section when the molecule is adsorbed on a metal nanoparticle cluster. We report here SERS (Surface Enhanced Raman Spectroscopy) experiments performed by adsorbing analyte molecules on nanoscale silver particle clusters within the gelatin layer of commercially available holographic plates which have been developed and fixed. The Ag particles range in size between 5 - 30 nanometers (nm). Sample preparation was performed by immersing the prepared holographic plate in an analyte solution for a few minutes. We report here the production of SERS signals from Rhodamine 6G (R6G) molecules of nanomolar concentration. These measurements demonstrate a fast, low cost, reproducible technique of producing SERS substrates in a matter of minutes compared to the conventional procedure of preparing Ag clusters from colloidal solutions. SERS active colloidal solutions require up to a full day to prepare. In addition, the preparations of colloidal aggregates are not consistent in shape, contain additional interfering chemicals, and do not generate consistent SERS enhancement. Colloidal solutions require the addition of KCl or NaCl to increase the ionic strength to allow aggregation and cluster formation. We find no need to add KCl or NaCl to create SERS active clusters in the holographic gelatin matrix. These holographic plates, prepared using simple, conventional procedures, can be stored in an inert environment and preserve SERS activity after several weeks subsequent to preparation.

  13. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces.

    PubMed

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-15

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl 4 - and Ag + ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Stability optimization of microbial surface-enhanced Raman spectroscopy detection with immunomagnetic separation beads

    NASA Astrophysics Data System (ADS)

    Uusitalo, Sanna; Kögler, Martin; Välimaa, Anna-Liisa; Petäjä, Jarno; Kontturi, Ville; Siitonen, Samuli; Laitinen, Riitta; Kinnunen, Matti; Viitala, Tapani; Hiltunen, Jussi

    2017-03-01

    Immunomagnetic separation (IMS) beads with antibody coating are an interesting option for biosensing applications for the identification of biomolecules and biological cells, such as bacteria. The paramagnetic properties of the beads can be utilized with optical sensing by migrating and accumulating the beads and the bound analytes toward the focus depth of the detection system by an external magnetic field. The stability of microbial detection with IMS beads was studied by combining a flexible, inexpensive, and mass producible surface-enhanced Raman spectroscopy (SERS) platform with gold nanoparticle detection and antibody recognition by the IMS beads. Listeria innocua ATCC 33090 was used as a model sample and the effect of the IMS beads on the detected Raman signal was studied. The IMS beads were deposited into a hydrophobic sample well and accumulated toward the detection plane by a neodymium magnet. For the first time, it was shown that the spatial stability of the detection could be improved up to 35% by using IMS bead capture and sample well placing. The effect of a neodymium magnet under the SERS chip improved the temporal detection and significantly reduced the necessary time for sample stabilization for advanced laboratory testing.

  15. Principal component analysis of bacteria using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Christesen, Steven D.

    2006-05-01

    Surface-enhanced Raman scattering (SERS) provides rapid fingerprinting of biomaterial in a non-destructive manner. The problem of tissue fluorescence, which can overwhelm a normal Raman signal from biological samples, is largely overcome by treatment of biomaterials with colloidal silver. This work presents a study into the applicability of qualitative SER spectroscopy with principal component analysis (PCA) for the discrimination of four biological threat simulants; Bacillus globigii, Pantoea agglomerans, Brucella noetomae, and Yersinia rohdei. We also demonstrate differentiation of gram-negative and gram-positive species and as well as spores and vegetative cells of Bacillus globigii.

  16. Application of silver nanoparticles in the detection of SYBR Green I by surface enhanced Raman and surface-enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Wu, Jian; Wang, Chunyan; Zhang, Tian; Chen, Tao

    2018-05-01

    Silver nanomaterials have remarkable application in biomedical detection due to their unique surface plasmon resonance (SPR) characteristics. It can be used for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Current research elaborates a technique for improvement of SYBR Green I detection obtained from surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) by silver nanoparticles with the average size about 70 nm. Primarily, SYBR Green I is an important fluorescent dye used in polymerase chain reaction (PCR). It is found that both Raman and fluorescence can be used for detection of this dye. Furthermore, the enhanced efficiency of the Raman and fluorescence by SERS and SEF is observed in this study, the enhancement factor for Raman signals is 3.2 × 103, and the fluorescence intensity bincreased two times by SEF. The quantitative detection of SYBR Green I by SERS and SEF can be achieved. The present work can be used to improve the detection of SYBR Green I by SERS and SEF. It would also be employed for high-sensitive detection of other materials in the future.

  17. Detection of Bacillus spores within 15 minutes by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shende, Chetan; Inscore, Frank; Huang, Hermes; Farquharson, Stuart; Sengupta, Atanu

    2012-06-01

    Since the distribution of Bacillus anthracis causing spores through the US Postal System, there has been a persistent fear that biological warfare agents (BWAs) will be used by terrorists against our military abroad and our civilians at home. Despite the substantial effort to develop BWA analyzers, they remain either too slow, produce high falsealarm rates, lack sensitivity, or cannot be fielded. Consequently there remains a need for a portable analyzer that can overcome these limitations as expressed at the 2011 Biological Weapons Convention. To meet this need we have been developing a sample system that selectively binds BWAs and produce surface-enhanced Raman (SER) spectra using portable Raman spectrometers. Here we describe the use of a short peptide ligand functionalized on silver nanoparticles to selectively capture Bacillus cereus spores (a surrogate of B. anthracis) and their subsequent detection by SER spectroscopy. This technique was used to specifically detect B. cereus spores over closely related species like B. subtilis belonging to the same genus within 15 minutes. Sensitivity of the method was demonstrated by detecting 104 B. cereus spores/mL of water. The technology, once developed should prove invaluable for rapid monitoring of BWAs, which will immensely help first responders and emergency personnel in implementing appropriate counter measures.

  18. Rapid Detection of Tetrodotoxin Using Surface-Enhanced Raman Spectroscopy and Fe3O4/SiO2/Au Gold/Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Neng, Jing; Wang, Xujun; Jia, Kan; Sun, Peilong

    2018-03-01

    Fe3O4 nanoparticles were first modified with tetraethoxylsilane to form Fe3O4/SiO2 nanoparticles, followed by the addition of 3-aminopropyltriethoxysilane and 3-thiolpropyltriethoxysilane to introduce -NH2 and -SH groups to the surface of Fe3O4/SiO2 nanoparticles. Gold nanoparticles were further assembled on the surface of Fe3O4/SiO2 via the electrostatic adsorption of -NH2 and the Au-S bond to produce stable core-shell Fe3O4/SiO2/Au gold/magnetic nanoparticles. These Fe3O4/SiO2/Au gold/magnetic nanoparticles were characterized by a variety of techniques such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), and afterwards conjugated with tetrodotoxin antibodies (Ab) and used as a Raman active substrate (Fe3O4/SiO2/Au-Ab) with Rhodamine B (RhB)-labeled tetrodotoxin antibody as a Raman reporter (Ab-RhB). Upon mixing these reagents with tetrodotoxin (TTX), a sandwich complex [Fe3O4/SiO2/Au-Ab···TTX···Ab-RhB] was generated due to the specific antibody-antigen interactions. The immunocomplex was subsequently separated by an externally applied magnetic source and concentrated into a pellet point, where the laser interrogation of the pellet produced a strong signal characteristic of RhB. The logarithmic intensity of the signal was found to be proportional to the concentration of TTX with a limit of detection of 0.01 μg/mL and a detection linearity range of 0.01-0.5 μg/mL. The established method eliminates the complicated procedures of traditional centrifuging, column separation, and incubation and achieves a rapid detection of tetrodotoxin with improved detection sensitivity.

  19. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles.

    PubMed

    El-Zahry, Marwa R; Refaat, Ibrahim H; Mohamed, Horria A; Rosenberg, Erwin; Lendl, Bernhard

    2015-11-01

    Elucidation and quantitative determination of some of commonly used penicillins (ampicillin, penicillin G and carbenicillin) in the presence of their main degradation product (penicilloic acid) were developed. Forced acidic and basic degradation processes were applied at different time intervals. The formed degradation products were elucidated and quantified using surface enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by reduction of silver nitrate using hydroxylamine-HCl in alkaline medium were used as SERS substrate. The results obtained in SERS were confirmed by the application of LC/MS method. The concentration range was 100-600 ng/ml in case of the studied penicillins and 100-700 ng/ml in case of penicilloic acid. An excellent correlation coefficient was found in case of ampicillin (r=0.9993) and in the case of penicilloic acid (r=0.9997). Validation procedures were carried out including precision, robustness and accuracy by comparing F- and t-values of both the proposed and reported methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode.

    PubMed

    Smith, Scott R; Seenath, Ryan; Kulak, Monika R; Lipkowski, Jacek

    2015-09-15

    Preparation of a nanoparticle modified gold substrate designed for characterization of hydrophilic self-assembled monolayers (SAMs) of 1-thio-β-D-glucose (TG) with electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is presented. Citrate stabilized gold nanoparticles were deposited on a polycrystalline gold electrode and subjected to an electrochemical desorption procedure to completely remove all traces of adsorbed citrate. Complete desorption of citrate was confirmed by recording cyclic voltammetry curves and SERS spectra. The citrate-free nanoparticle modified gold electrode was then incubated in a 1 mg mL(-1) aqueous solution of TG for 16 h prior to being characterized by EC-SERS. The SERS spectra confirmed that at potentials more negative than -0.10 V vs SCE thioglucose forms a monolayer in which the majority of the molecules preserve their lactol ring structure and only a small fraction of molecules appear to be oxidized. At potentials more positive than -0.10 V, the oxidation of TG molecules becomes prominent, and at potentials more positive than 0.20 V vs SCE, the monolayer of TG consists chiefly of oxidized product. The SERS spectra collected in the double layer region suggest the SAM of TG is well hydrated and hence can be used for hydrophilic modifications of a gold surface.

  1. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    PubMed

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  2. Toward surface-enhanced Raman imaging of latent fingerprints.

    PubMed

    Connatser, R Maggie; Prokes, Sharka M; Glembocki, Orest J; Schuler, Rebecca L; Gardner, Charles W; Lewis, Samuel A; Lewis, Linda A

    2010-11-01

    Exposure to light or heat, or simply a dearth of fingerprint material, renders some latent fingerprints undetectable using conventional methods. We begin to address such elusive fingerprints using detection targeting photo- and thermally stable fingerprint constituents: surface-enhanced Raman spectroscopy (SERS). SERS can give descriptive vibrational spectra of amino acids, among other robust fingerprint constituents, and good sensitivity can be attained by improving metal-dielectric nanoparticle substrates. With SERS chemical imaging, vibrational bands' intensities recreate a visual of fingerprint topography. The impact of nanoparticle synthesis route, dispersal methodology-deposition solvent, and laser wavelength are discussed, as are data from enhanced vibrational spectra of fingerprint components. SERS and Raman chemical images of fingerprints and realistic contaminants are shown. To our knowledge, this represents the first SERS imaging of fingerprints. In conclusion, this work progresses toward the ultimate goal of vibrationally detecting latent prints that would otherwise remain undetected using traditional development methods. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  3. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  4. Inkjet Printed Surface Enhanced Raman Spectroscopy Array on Cellulose Paper

    PubMed Central

    Yu, Wei W.; White, Ian M.

    2011-01-01

    A novel, ultra low-cost surface enhanced Raman spectroscopy (SERS) substrate has been developed by modifying the surface chemistry of cellulose paper and patterning nanoparticle arrays, all with a consumer inkjet printer. Micro/nanofabrication of SERS substrates for on-chip chemical and biomolecular analysis has been under intense investigation. However, the high cost of producing these substrates and the limited shelf life severely limit their use, especially for routine laboratory analysis and for point-of-sample analysis in the field. Paper-based microfluidic biosensing systems have shown great potential as low-cost disposable analysis tools. In this work, this concept is extended to SERS-based detection. Using an inexpensive consumer inkjet printer, cellulose paper substrates are modified to be hydrophobic in the sensing regions. Synthesized silver nanoparticles are printed onto this hydrophobic paper substrate with microscale precision to form sensing arrays. The hydrophobic surface prevents the aqueous sample from spreading throughout the paper and thus concentrates the analyte within the sensing region. A SERS fingerprint signal for Rhodamine 6G dye was observed for samples with as low as 10 femtomoles of analyte in a total sample volume of 1 μL. This extraordinarily simple technique can be used to construct SERS microarrays immediately before sample analysis, enabling ultra low-cost chemical and biomolecular detection in the lab as well as in the field at the point of sample collection. PMID:21058689

  5. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  6. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    PubMed

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  7. Detection of Scopolamine Hydrobromide via Surface-enhanced Raman Spectroscopy.

    PubMed

    Bao, Lin; Sha, Xuan-Yu; Zhao, Hang; Han, Si-Qin-Gao-Wa; Hasi, Wu-Li-Ji

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) was used to measure scopolamine hydrobromide. First, the Raman characteristic peaks of scopolamine hydrobromide were assigned, and the characteristic peaks were determined. The optimal aggregation agent was potassium iodide based on a comparative experimental study. Finally, the SERS spectrum of scopolamine hydrobromide was detected in aqueous solution, and the semi-quantitative analysis and the recovery rate were determined via a linear fitting. The detection limit of scopolamine hydrobromide in aqueous solution was 0.5 μg/mL. From 0 - 10 μg/mL, the curve of the intensity of the Raman characteristic peak of scopolamine hydrobromide at 1002 cm -1 is y = 4017.76 + 642.47x. The correlation coefficient was R 2 = 0.983, the recovery was 98.5 - 109.7%, and the relative standard deviation (RSD) was about 5.5%. This method is fast, accurate, non-destructive and simple for the detection of scopolamine hydrobromide.

  8. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao

    2015-05-01

    This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.

  9. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    NASA Astrophysics Data System (ADS)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  10. Enhancing Raman signals through electromagnetic hot zones induced by magnetic dipole resonance of metal-free nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Yi-Chuan; Lee, Yang-Chun; Chang, Sih-Wei; Lin, Tzu-Yao; Ma, Dai-Liang; Lin, Bo-Cheng; Chen, Hsuen-Li

    2017-11-01

    In this study, we found that the large area of electromagnetic field hot zone induced through magnetic dipole resonance of metal-free structures can greatly enhance Raman scattering signals. The magnetic resonant nanocavities, based on high-refractive-index silicon nanoparticles (SiNPs), were designed to resonate at the wavelength of the excitation laser of the Raman system. The well-dispersed SiNPs that were not closely packed displayed significant magnetic dipole resonance and gave a Raman enhancement per unit volume of 59 347. The hot zones of intense electric field were generated not only within the nonmetallic NPs but also around them, even within the underlying substrate. We observed experimentally that gallium nitride (GaN) and silicon carbide (SiC) surfaces presenting very few SiNPs (coverage: <0.3%) could display significantly enhanced (>50%) Raman signals. In contrast, the Raman signals of the underlying substrates were not enhanced by gold nanoparticles (AuNPs), even though these NPs displayed a localized surface plasmon resonance (LSPR) phenomenon. A comparison of the areas of the electric field hot zones (E 2 > 10) generated by SiNPs undergoing magnetic dipole resonance with the electric field hot spots (E 2 > 10) generated by AuNPs undergoing LSPR revealed that the former was approximately 70 times that of the latter. More noteworthily, the electromagnetic field hot zone generated from the SiNP is able to extend into the surrounding and underlying media. Relative to metallic NPs undergoing LSPR, these nonmetallic NPs displaying magnetic dipole resonance were more effective at enhancing the Raman scattering signals from analytes that were underlying, or even far away from, them. This application of magnetic dipole resonance in metal-free structures appears to have great potential for use in developing next-generation techniques for Raman enhancement.

  11. Development of Raman Spectroscopy as a Clinical Diagnostic Tool

    NASA Astrophysics Data System (ADS)

    Borel, Santa

    Raman spectroscopy is the collection of inelastically scattered light in which the spectra contain biochemical information of the probed cells or tissue. This work presents both targeted and untargeted ways that the technique can be exploited in biological samples. First, surface enhanced Raman scattering (SERS) gold nanoparticles conjugated to targeting antibodies were shown to be successful for multiplexed detection of overexpressed surface antigens in lung cancer cell lines. Further work will need to optimize the conjugation technique to preserve the strong binding affinity of the antibodies. Second, untargeted Raman microspectroscopy combined with multivariate statistical analysis was able to successfully differentiate mouse ovarian surface epithelial (MOSE) cells and spontaneously transformed ovarian surface epithelial (STOSE) cells with high accuracy. The differences between the two groups were associated with increased nucleic acid content in the STOSE cells. This shows potential for single cell detection of ovarian cancer.

  12. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    NASA Astrophysics Data System (ADS)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  13. Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene

    PubMed Central

    2016-01-01

    A thiol-modified carotene, 7′-apo-7′-(4-mercaptomethylphenyl)-β-carotene, was used to obtain nonresonant surface-enhanced Raman scattering (SERS) spectra of carotene at an excitation wavelength of 1064 nm, which were compared with resonant SERS spectra at an excitation wavelength of 532 nm. These spectra and surface-enhanced hyper-Raman scattering (SEHRS) spectra of the functionalized carotene were compared with the spectra of nonmodified β-carotene. Using SERS, normal Raman, and SEHRS spectra, all obtained for the resonant case, the interaction of the carotene molecules with silver nanoparticles, as well as the influence of the resonance enhancement and the SERS enhancement on the spectra, were investigated. The interaction with the silver surface occurs for both functionalized and nonfunctionalized β-carotene, but only the stronger functionalization-induced interaction enables the acquisition of nonresonant SERS spectra of β-carotene at low concentrations. The resonant SEHRS and SERS spectra are very similar. Nevertheless, the SEHRS spectra contain additional bands of infrared-active modes of carotene. Increased contributions from bands that experience low resonance enhancement point to a strong interaction between silver nanoparticles and electronic levels of the molecules, thereby giving rise to a decrease in the resonance enhancement in SERS and SEHRS. PMID:28077983

  14. Stimulated Raman Spectroscopy with Entangled Light: Enhanced Resolution and Pathway Selection

    PubMed Central

    2015-01-01

    We propose a novel femtosecond stimulated Raman spectroscopy (FSRS) technique that combines entangled photons with interference detection to select matter pathways and enhance the resolution. Following photoexcitation by an actinic pump, the measurement uses a pair of broad-band entangled photons; one (signal) interacts with the molecule and together with a third narrow-band pulse induces the Raman process. The other (idler) photon provides a reference for the coincidence measurement. This interferometric photon coincidence counting detection allows one to separately measure the Raman gain and loss signals, which is not possible with conventional probe transmission detection. Entangled photons further provide a unique temporal and spectral detection window that can better resolve fast excited-state dynamics compared to classical and correlated disentangled states of light. PMID:25177427

  15. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition.

    PubMed

    Wang, Junfeng; Wu, Xuezhong; Wang, Chongwen; Shao, Ningsheng; Dong, Peitao; Xiao, Rui; Wang, Shengqi

    2015-09-23

    A magnetically assisted surface-enhanced Raman scattering (SERS) biosensor for single-cell detection of S. aureus on the basis of aptamer recognition is reported for the first time. The biosensor consists of two basic elements including a SERS substrate (Ag-coated magnetic nanoparticles, AgMNPs) and a novel SERS tag (AuNR-DTNB@Ag-DTNB core-shell plasmonic NPs or DTNB-labeled inside-and-outside plasmonic NPs, DioPNPs). Uniform, monodisperse, and superparamagnetic AgMNPs with favorable SERS activity and magnetic responsiveness are synthesized by using polymer polyethylenimine. AgMNPs use magnetic enrichment instead of repeated centrifugation to prevent sample sedimentation. DioPNPs are designed and synthesized as a novel SERS tag. The Raman signal of DioPNPs is 10 times stronger than that of the commonly used SERS tag AuNR-DTNB because of the double-layer DTNB and the LSPR position adjustment to match the given laser excitation wavelength. Consequently, a strong SERS enhancement is achieved. Under the optimized aptamer density and linker length, capture by aptamer-modified AgMNPs can achieve favorable bacteria arrest (up to 75%). With the conventional Raman spectroscopy, the limit of detection (LOD) is 10 cells/mL for S. aureus detection, and a good linear relationship is also observed between the SERS intensity at Raman peak 1331 cm(-1) and the logarithm of bacteria concentrations ranging from 10(1) to 10(5) cells/mL. With the help of the newly developed SERS mapping technique, single-cell detection of S. aureus is easily achieved.

  16. Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism

    NASA Astrophysics Data System (ADS)

    Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.

    2010-08-01

    Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.

  17. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    PubMed

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  18. Metal-dielectric-CNT nanowires for surface-enhanced Raman spectroscopy

    DOEpatents

    Bond, Tiziana C.; Altun, Ali; Park, Hyung Gyu

    2017-10-03

    A sensor with a substrate includes nanowires extending vertically from the substrate, a hafnia coating on the nanowires that provides hafnia coated nanowires, and a noble metal coating on the hafnia coated nanowires. The top of the hafnia and noble metal coated nanowires bent onto one another to create a canopy forest structure. There are numerous randomly arranged holes that let through scattered light. The many points of contact, hot spots, amplify signals. The methods include the steps of providing a Raman spectroscopy substrate, introducing nano crystals to the Raman spectroscopy substrate, growing a forest of nanowires from the nano crystals on the Raman spectroscopy substrate, coating the nanowires with hafnia providing hafnia coated nanowires, and coating the hafnia coated nanowires with a noble metal or other metal.

  19. Size-dependent surface-enhanced Raman scattering of sodium benzoate on Silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Badr, Y.; Mahmoud, M. A.

    2005-07-01

    The absorption spectrum of silver nanoparticles (Ag NPs) with different size and the transmission electron microscopy (TEM) was recorded. Surface-enhanced Raman scattering (SERS) spectra of Sodium Benzoate (SB) adsorbed on Ag NPs with different particle size were studied. The carboxylic group bands were enhanced as the particle size decreases due to the chemisorption of SB on the Ag NPs through it in which the carboxyl group was perpendicular to the surface and the benzene ring parallel to the surface; the SB bands were enhanced as the coverage density of Ag NPs increased.

  20. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection.

    PubMed

    Kong, Kenny; Kendall, Catherine; Stone, Nicholas; Notingher, Ioan

    2015-07-15

    Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    PubMed

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  2. A simple way to synthesize large-scale Cu2O/Ag nanoflowers for ultrasensitive surface-enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Zou, Junyan; Song, Weijia; Xie, Weiguang; Huang, Bo; Yang, Huidong; Luo, Zhi

    2018-03-01

    Here, we report a simple strategy to prepare highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates based on Ag decorated Cu2O nanoparticles by combining two common techniques, viz, thermal oxidation growth of Cu2O nanoparticles and magnetron sputtering fabrication of a Ag nanoparticle film. Methylene blue is used as the Raman analyte for the SERS study, and the substrates fabricated under optimized conditions have very good sensitivity (analytical enhancement factor ˜108), stability, and reproducibility. A linear dependence of the SERS intensities with the concentration was obtained with an R 2 value >0.9. These excellent properties indicate that the substrate has great potential in the detection of biological and chemical substances.

  3. Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering

    PubMed Central

    2012-01-01

    Large-area mildly reduced graphene oxide (MR-GO) monolayer films were self-assembled on SiO2/Si surfaces via an amidation reaction strategy. With the MR-GO as templates, MR-GO-Ag nanoparticle (MR-GO-Ag NP) hybrid films were synthesized by immersing the MR-GO monolayer into a silver salt solution with sodium citrate as a reducing agent under UV illumination. SEM image indicated that Ag NPs with small interparticle gap are uniformly distributed on the MR-GO monolayer. Raman spectra demonstrated that the MR-GO monolayer beneath the Ag NPs can effectively quench the fluorescence signal emitted from the Ag films and dye molecules under laser excitation, resulting in a chemical enhancement (CM). The Ag NPs with narrow gap provided numerous hot spots, which are closely related with electromagnetic mechanism (EM), and were believed to remarkably enhance the Raman signal of the molecules. Due to the co-contribution of the CM and EM effects as well as the coordination mechanism between the MR-GO and Ag NPs, the MR-GO-Ag NP hybrid films showed more excellent Raman signal enhancement performance than that of either Ag films or MR-GO monolayer alone. This will further enrich the application of surface-enhanced Raman scattering in molecule detection. PMID:22471923

  4. Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection.

    PubMed

    Kline, Neal D; Tripathi, Ashish; Mirsafavi, Rustin; Pardoe, Ian; Moskovits, Martin; Meinhart, Carl; Guicheteau, Jason A; Christesen, Steven D; Fountain, Augustus W

    2016-11-01

    A microfluidic device is being developed by University of California-Santa Barbara as part of a joint effort with the United States Army to develop a portable, rapid drug detection device. Surface-enhanced Raman spectroscopy (SERS) is used to provide a sensitive, selective detection technique within the microfluidic platform employing metallic nanoparticles as the SERS medium. Using several illicit drugs as analytes, the work presented here describes the efforts of the Edgewood Chemical Biological Center to optimize the microfluidic platform by investigating the role of nanoparticle material, nanoparticle size, excitation wavelength, and capping agents on the performance, and drug concentration detection limits achievable with Ag and Au nanoparticles that will ultimately be incorporated into the final design. This study is particularly important as it lays out a systematic comparison of limits of detection and potential interferences from working with several nanoparticle capping agents-such as tannate, citrate, and borate-which does not seem to have been done previously as the majority of studies only concentrate on citrate as the capping agent. Morphine, cocaine, and methamphetamine were chosen as test analytes for this study and were observed to have limits of detection (LOD) in the range of (1.5-4.7) × 10 -8 M (4.5-13 ng/mL), with the borate capping agent having the best performance.

  5. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  6. Enhanced Raman scattering in porous silicon grating.

    PubMed

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  7. Ambiance-dependent agglomeration and surface-enhanced Raman spectroscopy response of self-assembled silver nanoparticles for plasmonic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Gwamuri, Jephias; Venkatesan, Ragavendran; Sadatgol, Mehdi; Mayandi, Jeyanthinath; Guney, Durdu O.; Pearce, Joshua M.

    2017-07-01

    The agglomeration/dewetting process of thin silver films provides a scalable method of obtaining self-assembled nanoparticles (SANPs) for plasmonics-based thin-film solar photovoltaic (PV) devices. We show the effect of annealing ambiance on silver SANP average size, particle/cluster finite shape, substrate area coverage/particle distribution, and how these physical parameters influence optical properties and surface-enhanced Raman scattering (SERS) responses of SANPs. Statistical analysis performed indicates that generally Ag SANPs processed in the presence of a gas (argon and nitrogen) ambiance tend to have smaller average size particles compared to those processed under vacuum. Optical properties are observed to be highly dependent on particle size, separation distance, and finite shape. The greatest SERS enhancement was observed for the argon-processed samples. There is a correlation between simulation and experimental data that indicate argon-processed AgNPs have a great potential to enhance light coupling when integrated to thin-film PV.

  8. Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy.

    PubMed

    Salter, Robert; Chu, Johnny; Hippler, Michael

    2012-10-21

    A variant of cavity-enhanced Raman spectroscopy (CERS) is introduced, in which diode laser radiation at 635 nm is coupled into an external linear optical cavity composed of two highly reflective mirrors. Using optical feedback stabilisation, build-up of circulating laser power by 3 orders of magnitude occurs. Strong Raman signals are collected in forward scattering geometry. Gas phase CERS spectra of H(2), air, CH(4) and benzene are recorded to demonstrate the potential for analytical applications and fundamental molecular studies. Noise equivalent limits of detection in the ppm by volume range (1 bar sample) can be achieved with excellent linearity with a 10 mW excitation laser, with sensitivity increasing with laser power and integration time. The apparatus can be operated with battery powered components and can thus be very compact and portable. Possible applications include safety monitoring of hydrogen gas levels, isotope tracer studies (e.g., (14)N/(15)N ratios), observing isotopomers of hydrogen (e.g., radioactive tritium), and simultaneous multi-component gas analysis. CERS has the potential to become a standard method for sensitive gas phase Raman spectroscopy.

  9. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish.

    PubMed

    Xie, Zhengjun; Wang, Yang; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Ding, Yunlian; Yang, Na; Wu, Fengfeng

    2017-09-01

    Reliable screening of histamine in fish was of urgent importance for food safety. This work presented a highly selective surface enhanced Raman spectroscopy (SERS) method mediated by thin-layer chromatography (TLC), which was tailored for identification and quantitation of histamine. Following separation and derivatization with fluram, plates were assayed with SERS, jointly using silver nanoparticle and NaCl. The latter dramatically suppressed the masking effect caused by excessive fluram throughout the plate, thus offering clear baseline and intensive Raman fingerprints specific to the analyte. Under optimized conditions, the usability of this method was validated by identifying the structural fingerprints of both targeted and unknown compounds in fish samples. Meanwhile, the quantitative results of this method agreed with those by an HPLC method officially suggested by EU for histamine determination. Showing remarkable cost-efficiency and user-friendliness, this facile TLC-SERS method was indeed screening-oriented and may be more attractive to controlling laboratories of limited resource. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.

    PubMed

    Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao

    2015-01-14

    Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.

  11. Geometry of GLP on silver surface by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bao, PeiDi; Bao, Lang; Huang, TianQuan; Liu, XinMing; Wu, GuoFeng

    2000-05-01

    Leptospirosis is one of the most harmful zoonosis, it is a serious public health issue in some area of Sichuan province. Surface-Enhance Raman Scattering (SERS) Spectroscopy is an effective approach for the study of biomolecular adsorption on metal surface and provides information about the adsorbed species. Two samples of Leptospiral Glycolipoprotein (GLP-1) and GLP-2 which have different toxic effects have been obtained and investigated.

  12. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas.

    PubMed

    Simoncelli, Sabrina; Roller, Eva-Maria; Urban, Patrick; Schreiber, Robert; Turberfield, Andrew J; Liedl, Tim; Lohmüller, Theobald

    2016-11-22

    DNA origami is a powerful approach for assembling plasmonic nanoparticle dimers and Raman dyes with high yields and excellent positioning control. Here we show how optothermal-induced shrinking of a DNA origami template can be employed to control the gap sizes between two 40 nm gold nanoparticles in a range from 1 to 2 nm. The high field confinement achieved with this optothermal approach was demonstrated by detection of surface-enhanced Raman spectroscopy (SERS) signals from single molecules that are precisely placed within the DNA origami template that spans the nanoparticle gap. By comparing the SERS intensity with respect to the field enhancement in the plasmonic hot-spot region, we found good agreement between measurement and theory. Our straightforward approach for the fabrication of addressable plasmonic nanosensors by DNA origami demonstrates a path toward future sensing applications with single-molecule resolution.

  13. Sol-gel chemical sensors for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Farquharson, Stuart; Kwon, Hueong-Chan; Shahriari, Mahmoud R.; Rainey, Petrie M.

    1999-02-01

    Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection. Unfortunately, the inability of SERS to perform quantitative chemical analysis has slowed its general use in laboratories. This is largely due to the difficulty of manufacturing either active surfaces that yield reproducible enhancements, or surfaces that are capable of reversible chemical adsorption, or both. In an effort to meet this need, we have developed metal-doped sol-gels that provide surface-enhancement of Raman scattering. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increases the interaction between the analyte and metal particles. This eliminates the need to concentrate the analyte on the surface by evaporating the solvent. The sol-gel is easily coated on a variety of surfaces, such as fiber optics, glass slides, or glass tubing, and can be designed into sample flow systems. Here we present the development of both gold- and silver-doped sol-gels, which have been used to coat the inside walls of glass sample vials for SERS applications. The performance of the metal-doped sol-gels was evaluated using p-aminobenzoic acid, to establish enhancement factors, detection limits, dynamic response range, reversibility, reproducibility, and suitability to commercial spectrometers. Measurements of trace chemicals, such as adenine and cocaine, are also presented.

  14. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarycheva, Asia; Makaryan, Taron; Maleski, Kathleen

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti 3C 2T x, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factorsmore » reaching ~10 6. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.« less

  15. Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Zong, Cheng; Shen, He; Cao, Yuhua; Ren, Bin; Zhang, Zhijun

    2013-10-01

    We have developed a graphene oxide (GO)-based nanoplatform simultaneously loaded with a chemical drug and Ag nanoparticles (NPs), and employed it to study the drug release from GO in living cells by surface-enhanced Raman spectroscopy (SERS). In our strategy, doxorubicin (DOX), a typical model anticancer drug, was loaded onto chemically prepared GO by means of π-π stacking, while the Ag NPs were covalently modified onto GO. After incubation of the DOX- and Ag NPs-loaded GO with Ca Ski cells for several hours, DOX will detach from the GO in an acidic environment due to the pH-dependent π-π interaction between DOX and GO. Real-time measurement of SERS signals of DOX using the GO loaded with Ag NPs as a SERS-active substrate allows us to monitor the process of the drug release inside the living cell. The SERS results reveal that DOX is initially released from the GO surface inside the lysosomes, then escapes into the cytoplasm, and finally enters the nucleus, while GO, the nanocarrier, remains within the cytoplasm, without entering the nucleus.We have developed a graphene oxide (GO)-based nanoplatform simultaneously loaded with a chemical drug and Ag nanoparticles (NPs), and employed it to study the drug release from GO in living cells by surface-enhanced Raman spectroscopy (SERS). In our strategy, doxorubicin (DOX), a typical model anticancer drug, was loaded onto chemically prepared GO by means of π-π stacking, while the Ag NPs were covalently modified onto GO. After incubation of the DOX- and Ag NPs-loaded GO with Ca Ski cells for several hours, DOX will detach from the GO in an acidic environment due to the pH-dependent π-π interaction between DOX and GO. Real-time measurement of SERS signals of DOX using the GO loaded with Ag NPs as a SERS-active substrate allows us to monitor the process of the drug release inside the living cell. The SERS results reveal that DOX is initially released from the GO surface inside the lysosomes, then escapes into the

  16. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    NASA Astrophysics Data System (ADS)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  17. Dielectrophoresis-Assisted Raman Spectroscopy of Intravesicular Analytes on Metallic Pyramids.

    PubMed

    Barik, Avijit; Cherukulappurath, Sudhir; Wittenberg, Nathan J; Johnson, Timothy W; Oh, Sang-Hyun

    2016-02-02

    Chemical analysis of membrane-bound containers such as secretory vesicles, organelles, and exosomes can provide insights into subcellular biology. These containers are loaded with a range of important biomolecules, which further underscores the need for sensitive and selective analysis methods. Here we present a metallic pyramid array for intravesicular analysis by combining site-selective dielectrophoresis (DEP) and Raman spectroscopy. Sharp pyramidal tips act as a gradient force generator to trap nanoparticles or vesicles from the solution, and the tips are illuminated by a monochromatic light source for concurrent spectroscopic detection of trapped analytes. The parameters suitable for DEP trapping were optimized by fluorescence microscopy, and the Raman spectroscopy setup was characterized by a nanoparticle based model system. Finally, vesicles loaded with 4-mercaptopyridine were concentrated at the tips and their Raman spectra were detected in real time. These pyramidal tips can perform large-area array-based trapping and spectroscopic analysis, opening up possibilities to detect molecules inside cells or cell-derived vesicles.

  18. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings

    NASA Astrophysics Data System (ADS)

    García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro

    2016-12-01

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  19. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings

    PubMed Central

    2016-01-01

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799434

  20. Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering.

    PubMed

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Kayani, Aminuddin A; Mitchell, Arnan; Daima, Hemant; Bansal, Vipul; Kalantar-zadeh, Kourosh

    2012-05-01

    We demonstrate an active microfluidic platform that integrates dielectrophoresis for the control of silver nanoparticles spacing, as they flow in a liquid channel. By careful control of the nanoparticles spacing, we can effectively increase the surface-enhanced Raman scattering (SERS) signal intensity based on augmenting the number of SERS-active hot-spots, while avoiding irreversible aggregation of the particles. The system is benchmarked using dipicolinate (2,6-pyridinedicarboxylic acid) (DPA), which is a biomarker of Bacillus anthracis. The validity of the results is discussed using several complementing characterization scenarios.

  1. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.

    2018-05-01

    The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.

  2. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    PubMed

    Zaleski, Stephanie; Wilson, Andrew J; Mattei, Michael; Chen, Xu; Goubert, Guillaume; Cardinal, M Fernanda; Willets, Katherine A; Van Duyne, Richard P

    2016-09-20

    The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical

  3. Nanoshell-Enhanced Raman Spectroscopy on a Microplate for Staphylococcal Enterotoxin B Sensing.

    PubMed

    Wang, Wenbin; Wang, Weiwei; Liu, Liqiang; Xu, Liguang; Kuang, Hua; Zhu, Jianping; Xu, Chuanlai

    2016-06-22

    A sensitive surface-enhanced Raman scattering (SERS) immunosensor based on the Au nanoparticle (Au NP) shell structure was developed to detect staphylococcal enterotoxin B (SEB) on a microplate. Au NPs modified with 4-nitrothiophenol (4-NTP) and coated with Ag shell of controlled thickness at 6.6 nm exhibited excellent SERS intensity and were used as signal reporters in the detection of SEB. The engaged 4-NTP allowed the significant electromagnetic enhancement between Au NPs and the Ag shell and prevented the dissociation of the Raman reporter. More importantly, 4-NTP-differentiated SERS signals between the sample and microplate. The SERS-based immunosensor had a limit of detection of 1.3 pg/mL SEB. Analysis of SEB-spiked milk samples revealed that the developed method had high accuracy. Therefore, the SERS-encoded Au@Ag core-shell structure-based immunosensor is promising for the detection of biotoxins, pathogens, and environmental pollutants.

  4. Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies

    NASA Astrophysics Data System (ADS)

    Philip, Anish; Ankudze, Bright; Pakkanen, Tuula T.

    2018-06-01

    Large-sized gold nanoparticles (AuNPs) were synthesized with a new polyethylenimine - assisted seed - mediated method for surface-enhanced Raman scattering (SERS) studies. The size and polydispersity of gold nanoparticles are controlled in the growth step with the amounts of polyethylenimine (PEI) and seeds. Influence of three silicon oxide supports having different surface morphologies, namely halloysite (Hal) nanotubes, glass plates and inverse opal films of SiO2, on the performance of gold nanoparticles in Raman scattering of a 4-aminothiophenol (4-ATP) analyte was investigated. Electrostatic interaction between positively charged polyethylenimine-capped AuNPs and negatively charged surfaces of silicon oxide supports was utilized in fabrication of the SERS substrates using deposition and infiltration methods. The Au-photonic crystal of the three SERS substrate groups is the most active one as it showed the highest analytical enhancement factor (AEF) and the lowest detection limit of 1x10-8 M for 4-ATP. Coupling of the optical properties of photonic crystals with the plasmonic properties of AuNPs provided Au-photonic crystals with the high SERS activity. The AuNPs clusters formed both in the photonic crystal and on the glass plate are capable of forming more hot spots as compared to sparsely distributed AuNPs on Hal nanotubes and thereby increasing the SERS enhancement.

  5. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  6. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  7. Ultrasensitive detection of phenolic antioxidants by surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ornelas-Soto, N.; Aguilar-Hernández, I. A.; Afseth, N.; López-Luke, T.; Contreras-Torres, F. F.; Wold, J. P.

    2017-08-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a powerful surface-sensitive technique to study the vibrational properties of analytes at very low concentrations. In this study, ferulic acid, p-coumaric acid, caffeic acid and sinapic acid were analyzed by SERS using Ag colloids. Analytes were detected up to 2.5x10-9M. For caffeic acid and coumaric acid, this detection limit has been reached for the first time, as well as the SERS analysis of sinapic acid using silver colloids.

  8. Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Bandarenka, Hanna V.; Girel, Kseniya V.; Bondarenko, Vitaly P.; Khodasevich, Inna A.; Panarin, Andrei Yu.; Terekhov, Sergei N.

    2016-05-01

    Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10-11 M.

  9. Raman spectroscopy - in situ characterization of growth and surface processes

    NASA Astrophysics Data System (ADS)

    Perkins, James Robert

    The goal of this thesis is to expand on the usefulness of Raman spectroscopy as an in situ probe to aid in the growth and implementation of electronic, optical, and biodetection materials. We accomplish this goal by developing two diverse optical characterization projects. In the first project, an autoclave similar to those used in solvothermal growth which has been outfitted with an optical window is used to collect vibrational spectra of solvents and mineralizers commonly used in the ammonothermal growth of gallium nitride. Secondly, novel silver nanowires created by ferroelectric lithography are evaluated by surface enhanced micro-Raman spectroscopy for use as surface enhanced substrates for low detection limit or single molecule bio-detectors. Raman spectroscopy is already a widely accepted method to characterize and identify a wide variety of materials. Vibrational spectra can yield much information on the presence of chemical species as well as information regarding the phase and interactive properties. Because Raman spectroscopy is a generally non-intrusive technique it is ideal for analysis of hazardous or far-from-ambient liquids, gases, or solids. This technique is used in situ to characterize crystal growth and surface enhanced photochemistry. The phenomenon of Surface Enhanced Raman Spectroscopy (SERS) has been observed in many systems but some fundamental understanding is still lacking and the technique has been slow to transition from the laboratory to the industry. Aggregated colloids and lithographically created islands have shown the best success as reproducible substrates for SERS detection. These techniques, however, lack control over shape, size, and position of the metal nanoparticles which leave them reliant on hotspots. Because of the potential for control of the position of aggregates, ferroelectric lithographically created silver nanowires are evaluated as a potential SERS substrate using pyridine, benzoic acid, and Rhodamine 6g. Surface

  10. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    PubMed

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  11. Growth graphene on silver-copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiumei; Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Gao, Shoubao; Liu, Hanping; Qiu, Hengwei; Li, Zhen; Liu, Huilan; Li, Zhenhua; Li, Hongsheng

    2015-10-01

    We present a graphene/silver-copper nanoparticle hybrid system (G/SCNPs) to be used as a high-performance surface-enhanced Raman scattering (SERS) substrate. The silver-copper nanoparticles wrapped by a monolayer graphene layer are directly synthesized on SiO2/Si substrate by chemical vapor deposition in a mixture of methane and hydrogen. The G/SCNPs shows excellent SERS enhancement activity and high reproducibility. The minimum detected concentration of R6G is as low as 10-10 M and the calibration curve shows a good linear response from 10-6 to 10-10 M. The date fluctuations from 20 positions of one SERS substrate are less than 8% and from 20 different substrates are less than 10%. The high reproducibility of the enhanced Raman signals could be due to the presence of an ultrathin graphene layer and uniform morphology of silver-copper nanoparticles. The use of G/SCNPs for detection of nucleosides extracted from human urine demonstrates great potential for the practical applications on a variety of detection in medicine and biotechnology field.

  12. Surface-enhanced Raman scattering detection of DNA derived from the West Nile virus genome using magnetic capture of Raman-active gold nanoparticles

    USDA-ARS?s Scientific Manuscript database

    A model paramagnetic nanoparticle (MNP) assay is demonstrated for surface-enhanced Raman scattering (SERS) detection of DNA oligonucleotides derived from the West Nile virus (WNV) genome. Detection is based on the capture of WNV target sequences by hybridization with complementary oligonucleotide pr...

  13. Development of nanoparticle applications in cell imaging, bioassay and reactive oxygen species detection based on surface-enhanced raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Yiming

    Surface-enhanced Raman scattering (SERS) has been developed over forty years with a wide variety of applications. Signals enhanced from single molecule absorbed on the surface of metallic nanoparticles can be up to 14-order-of-magnitude. This is due to the resonance between the optical field and surface plasmon of the metal substrate. Nanoshells have been chosen as substrates since they do not need to pre-aggregate due to their tunable optical property. We developed Raman imaging system by incorporating functionalized nanoshells, cells and SERS. Nanoshells have been coated with different self-assembled monolayers containing poly(ethylene glycol) (PEG) molecules. Probes have been designed by coating nanoshells with Raman active PEG molecules and delivered into macrophage cells. The imaging technique requires less preparation and provides the information of nanoshells in semi-quantitative way in vitro. We developed half-sandwich bioassay by detecting low volume of antigens on nitrocellulose membrane, detected by SERS. Antibodies were grafted to the surface of nanoshells and were conjugated to the antigens on the nitrocellulose membrane for detection. Raman active PEGs were conjugated onto the metal substrate for recognition and quantification. The benefits of this assay are that it is faster, easier to execute and requires less volume of antigen to conjugate onto the substrate. We also developed reactive oxygen species (ROS) sensors by incubating PEGs and either 4-nitrobenzenethiol (4-NBT) or 4-mercaptophenol (4-MP) on the surface of nanoshells. By analyzing the changes of SERS spectrum, the production of hydroxyl radicals produced in the Fenton reaction can be tracked in low concentrations. The sensors were designed to track ROS production within cells when they are under oxidative stress. The methods developed in this thesis are versatile, and can be broadly applied to the study of different subtracts, such as gold colloid.

  14. Near-field Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ayars, Eric James

    2000-10-01

    The purpose of this research is to investigate differences observed between Raman spectra when seen through a Near-field Scanning Optical Microscope (NSOM) and spectra of the same materials in conventional Raman or micro-Raman configurations. One source of differences in the observed spectra is a strong z polarized component in the near-field radiation; observations of the magnitude of this effect are compared with theoretical predictions for the field intensity near an NSOM tip. Large electric field gradients near the sharp NSOM probe may be another source of differences. This Gradient-Field Raman (GFR) effect was observed, and there is good evidence that it plays a significant role in Surface-Enhanced Raman Spectroscopy (SERS). The NSOM data seen, however, are not sufficient to prove conclusively that the spectral variations seen are due to the field gradients.

  15. Combined surface-enhanced Raman spectroscopy biotags and microfluidic platform for quantitative ratiometric discrimination between noncancerous and cancerous cells in flow

    NASA Astrophysics Data System (ADS)

    Pallaoro, Alessia; Hoonejani, Mehran R.; Braun, Gary B.; Meinhart, Carl; Moskovits, Martin

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) biotags (SBTs) that carry peptides as cell recognition moieties were made from polymer-encapsulated silver nanoparticle dimers, infused with unique Raman reporter molecules. We previously demonstrated their potential use for identification of malignant cells, a central goal in cancer research, through a multiplexed, ratiometric method that can confidently distinguish between cancerous and noncancerous epithelial prostate cells in vitro based on receptor overexpression. Progress has been made toward the application of this quantitative methodology for the identification of cancer cells in a microfluidic flow-focusing device. Beads are used as cell mimics to evaluate the devices. Cells (and beads) are simultaneously incubated with two sets of SBTs while in suspension, then injected into the device for laser interrogation under flow. Each cell event is characterized by a composite Raman spectrum, deconvoluted into its single components to ultimately determine their relative contribution. We have found that using SBTs ratiometrically can provide cell identification in flow, insensitive to normal causes of uncertainty in optical measurements such as variations in focal plane, cell concentration, autofluorescence, and turbidity.

  16. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).

    PubMed

    Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P

    2009-01-01

    Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  17. Accuracy Enhancement of Raman Spectroscopy Using Complementary Laser-Induced Breakdown Spectroscopy (LIBS) with Geologically Mixed Samples.

    PubMed

    Choi, Soojin; Kim, Dongyoung; Yang, Junho; Yoh, Jack J

    2017-04-01

    Quantitative Raman analysis was carried out with geologically mixed samples that have various matrices. In order to compensate the matrix effect in Raman shift, laser-induced breakdown spectroscopy (LIBS) analysis was performed. Raman spectroscopy revealed the geological materials contained in the mixed samples. However, the analysis of a mixture containing different matrices was inaccurate due to the weak signal of the Raman shift, interference, and the strong matrix effect. On the other hand, the LIBS quantitative analysis of atomic carbon and calcium in mixed samples showed high accuracy. In the case of the calcite and gypsum mixture, the coefficient of determination of atomic carbon using LIBS was 0.99, while the signal using Raman was less than 0.9. Therefore, the geological composition of the mixed samples is first obtained using Raman and the LIBS-based quantitative analysis is then applied to the Raman outcome in order to construct highly accurate univariate calibration curves. The study also focuses on a method to overcome matrix effects through the two complementary spectroscopic techniques of Raman spectroscopy and LIBS.

  18. Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis

    PubMed Central

    Wang, Feng; Cao, Shiyu; Yan, Ruxia; Wang, Zewei; Wang, Dan; Yang, Haifeng

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique. PMID:29160798

  19. Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  20. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Lixin; Wang Haibo; Wang Jian

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at amore » power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the {approx}1593 cm{sup -1} band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.« less

  1. Study on nasopharyngeal cancer tissue using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ge, Xiaosong; Lin, Xueliang; Xu, Zhihong; Wei, Guoqiang; Huang, Wei; Lin, Duo

    2016-10-01

    Surface-enhanced Raman spectroscopy (SERS) can provide detailed molecular structure and composition information, and has demonstrated great potential in biomedical filed. This spectroscopy technology has become one of the most important optical techniques in the early diagnosis of cancer. Nasopharyngeal cancer (NPC) is a malignant neoplasm arising in the nasopharyngeal epithelial lining, which has relatively high incidence and death rate in Southeast Asia and southern China. This paper reviews the current progress of SERS in the field of cancer diagnostics, including gastric cancer, colorectal cancer, cervical cancer and nasopharyngeal cancer. In addition to above researches, we recently develop a novel NPC detection method based on tissue section using SERS, and obtain primary results. The proposed method has promising potential for the detection of nasopharyngeal carcinoma.

  2. Surface-sensitive Raman spectroscopy of collagen I fibrils.

    PubMed

    Gullekson, Corinne; Lucas, Leanne; Hewitt, Kevin; Kreplak, Laurent

    2011-04-06

    Collagen fibrils are the main constituent of the extracellular matrix surrounding eukaryotic cells. Although the assembly and structure of collagen fibrils is well characterized, very little appears to be known about one of the key determinants of their biological function-namely, the physico-chemical properties of their surface. One way to obtain surface-sensitive structural and chemical data is to take advantage of the near-field nature of surface- and tip-enhanced Raman spectroscopy. Using Ag and Au nanoparticles bound to Collagen type-I fibrils, as well as tips coated with a thin layer of Ag, we obtained Raman spectra characteristic to the first layer of collagen molecules at the surface of the fibrils. The most frequent Raman peaks were attributed to aromatic residues such as phenylalanine and tyrosine. In several instances, we also observed Amide I bands with a full width at half-maximum of 10-30 cm(-1). The assignment of these Amide I band positions suggests the presence of 3(10)-helices as well as α- and β-sheets at the fibril's surface. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Surface enhanced raman spectroscopy technique in rapid detection of live and dead salmonella cells

    USDA-ARS?s Scientific Manuscript database

    Many research proved that Surface Enhanced Raman Spectroscopy (SERS) can detect pathogens rapidly and accurately. In this study, a silver metal substrate was used for the selected common food pathogen Salmonella typhimurium bacteria. Nano silver rods were deposited on a thin titanium coating over t...

  4. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-07

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles.

  5. Raman spectroscopy: Watching a molecule breathe

    NASA Astrophysics Data System (ADS)

    Piatkowski, Lukasz; Hugall, James T.; van Hulst, Niek F.

    2014-08-01

    Marrying the single-molecule detection ability of surface-enhanced Raman scattering with the extreme time resolution of ultrafast coherent spectroscopy enables the vibrations of a single molecule to be observed.

  6. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    NASA Astrophysics Data System (ADS)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  7. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy.

    PubMed

    Cui, Li; Chen, Pengyu; Chen, Shaode; Yuan, Zhihua; Yu, Changping; Ren, Bin; Zhang, Kaisong

    2013-06-04

    Silver nanoparticles (Ag NPs) are extensively used as an antibacterial additive in commercial products and their release has caused environmental risk. However, conventional methods for the toxicity detection of Ag NPs are very time consuming and the mechanisms of action are not clear. We developed a new, in situ, rapid, and sensitive fingerprinting approach, using surface-enhanced Raman spectroscopy (SERS), to study the antibacterial activity and mechanism of Ag NPs of 80 and 18 nm (Ag80 and Ag18, respectively), by using the strong electromagnetic enhancement generated by Ag NPs. Sensitive spectra changes representing various biomolecules in bacteria were observed with increasing concentrations of Ag NPs. They not only allowed SERS to monitor the antibacterial activity of Ag NPs of different sizes in different water media but also to study the antibacterial mechanism at the molecular level. Ag18 were found to be more toxic than Ag80 in water, but their toxicity declined to a similar level in the PBS medium. The antibacterial mechanism was proposed on the basis of a careful identification of the chemical origins by comparing the SERS spectra with model compounds. The dramatic change in protein, hypoxanthine, adenosine, and guanosine bands suggested that Ag NPs have a significant impact on the protein and metabolic processes of purine. Finally, by adding nontoxic and SERS active Au NPs, SERS was successfully utilized to study the action mode of the NPs unable to produce an observable SERS signal. This work opens a window for the future extensive SERS studies of the antibacterial mechanism of a great variety of non-SERS-active NPs.

  8. Surface enhanced Raman spectroscopy of fullerene C60 drop-deposited on the silvered porous silicon

    NASA Astrophysics Data System (ADS)

    Khinevich, N.; Girel, K.; Bandarenka, H.; Salo, V.; Mosunov, A.

    2017-11-01

    Surface enhanced Raman spectroscopy (SERS) of fullerene C60 drop-deposited from the 1.4·10-4 M aqueous solutions on the silvered porous silicon (Ag/PS) is reported for the first time. The used concentration is found to be not detected by the ordinary Raman spectroscopy. It is shown that SERS-spectrum of the fullerene deposited from the air-aged solution are characterized by less intensity than that of the fullerene solution kept out of the air. This indicates degradation of the fullerene solution due to oxidation. The results are prospective for the fast qualitative and quantitative analysis of the fullerene-based materials.

  9. The substrate matters in the Raman spectroscopy analysis of cells

    PubMed Central

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R.T.

    2015-01-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research. PMID:26310910

  10. The substrate matters in the Raman spectroscopy analysis of cells

    NASA Astrophysics Data System (ADS)

    Mikoliunaite, Lina; Rodriguez, Raul D.; Sheremet, Evgeniya; Kolchuzhin, Vladimir; Mehner, Jan; Ramanavicius, Arunas; Zahn, Dietrich R. T.

    2015-08-01

    Raman spectroscopy is a powerful analytical method that allows deposited and/or immobilized cells to be evaluated without complex sample preparation or labeling. However, a main limitation of Raman spectroscopy in cell analysis is the extremely weak Raman intensity that results in low signal to noise ratios. Therefore, it is important to seize any opportunity that increases the intensity of the Raman signal and to understand whether and how the signal enhancement changes with respect to the substrate used. Our experimental results show clear differences in the spectroscopic response from cells on different surfaces. This result is partly due to the difference in spatial distribution of electric field at the substrate/cell interface as shown by numerical simulations. We found that the substrate also changes the spatial location of maximum field enhancement around the cells. Moreover, beyond conventional flat surfaces, we introduce an efficient nanostructured silver substrate that largely enhances the Raman signal intensity from a single yeast cell. This work contributes to the field of vibrational spectroscopy analysis by providing a fresh look at the significance of the substrate for Raman investigations in cell research.

  11. Practical substrate and apparatus for static and continuous monitoring by surface-enhanced raman spectroscopy

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A substrate for use in surface-enhanced Raman spectroscopy (SERS) is disclosed, comprising a support, preferably flexible, coated with roughness-imparting microbodies and a metallized overcoating. Also disclosed is apparatus for using the aforesaid substrate in continuous and static SERS trace analyses, especially of organic compounds.

  12. In Vivo and Ex Vivo Transcutaneous Glucose Detection Using Surface-Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Ke

    Diabetes mellitus is widely acknowledged as a large and growing health concern. The lack of practical methods for continuously monitoring glucose levels causes significant difficulties in successful diabetes management. Extensive validation work has been carried out using surface-enhanced Raman spectroscopy (SERS) for in vivo glucose sensing. This dissertation details progress made towards a Raman-based glucose sensor for in vivo, transcutaneous glucose detection. The first presented study combines spatially offset Raman spectroscopy (SORS) with SERS (SESORS) to explore the possibility of in vivo, transcutaneous glucose sensing. A SERS-based glucose sensor was implanted subcutaneously in Sprague-Dawley rats. SERS spectra were acquired transcutaneously and analyzed using partial least-squares (PLS). Highly accurate and consistent results were obtained, especially in the hypoglycemic range. Additionally, the sensor demonstrated functionality at least17 days after implantation. A subsequent study further extends the application of SESORS to the possibility of in vivo detection of glucose in brain through skull. Specifically, SERS nanoantennas were buried in an ovine tissue behind a bone with 8 mm thickness and detected by using SESORS. In addition, quantitative detection through bones by using SESORS was also demonstrated. A device that could measure glucose continuously as well as noninvasively would be of great use to patients with diabetes. The inherent limitation of the SESORS approach may prevent this technique from becoming a noninvasive method. Therefore, the prospect of using normal Raman spectroscopy for glucose detection was re-examined. Quantitative detection of glucose and lactate in the clinically relevant range was demonstrated by using normal Raman spectroscopy with low power and short acquisition time. Finally, a nonlinear calibration method called least-squares support vector machine regression (LS-SVR) was investigated for analyzing spectroscopic

  13. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy.

    PubMed

    Sandfort, Vincenz; Trabold, Barbara M; Abdolvand, Amir; Bolwien, Carsten; Russell, Philip St. J; Wöllenstein, Jürgen; Palzer, Stefan

    2017-11-24

    The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF), namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm -1 , which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures.

  14. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.

    PubMed

    Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong

    2016-08-02

    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.

  15. Adsorption and sub-nanomolar sensing of thioflavin T on colloidal gold nanoparticles, silver nanoparticles and silver-coated films studied using surface-enhanced Raman scattering.

    PubMed

    Maiti, Nandita; Chadha, Ridhima; Das, Abhishek; Kapoor, Sudhir

    2015-01-01

    Raman and surface-enhanced Raman scattering (SERS) studies of thioflavin T (ThT) in solid, solution, gold nanoparticles (GNPs), silver nanoparticles (SNPs) and silver-coated films (SCFs) were investigated. Concentration-dependent SERS spectrum of ThT in GNPs and SNPs indicated the existence of two possible structures, one with the torsional angle (φ) between benzothiazole and dimethylaminobenzene rings being 37° and the other with φ=90°. The SERS spectrum of ThT in SCFs were similar to the Raman spectrum of solid and solution that suggests φ=37°. In this paper, the high sensitivity of the SERS technique was employed for sub-nanomolar (picomolar) sensing of ThT. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering

    PubMed Central

    Ren, Suxia; Dong, Lili; Zhang, Xiuqiang; Lei, Tingzhou; Ehrenhauser, Franz; Song, Kunlin; Li, Meichun; Sun, Xiuxuan; Wu, Qinglin

    2017-01-01

    Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS) were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN), silver nanoparticles (AgNPs), silicon nanoparticles (SiNPs), and cellulose nanocrystals (CNCs). Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface. Hydrofluoric (HF) acid treatment of the PAN/CNC/Ag composite nanofibers (defined as p-PAN/CNC/Ag) led to rougher fiber surfaces with certain pores and increased mean fiber diameters. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results confirmed the existence of AgNPs that were formed during heat and HF acid treatment processes. In addition, thermal stability of the electrospun nanofibers increased due to the incorporation of CNCs and AgNPs. The p-PAN/CNC/Ag nanofibers were used as a SERS substrate to detect p-aminothiophenol (p-ATP) probe molecule. The results show that this substrate exhibited high sensitivity for the p-ATP probe detection. PMID:28772428

  17. Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate

    NASA Astrophysics Data System (ADS)

    Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang

    2017-03-01

    Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.

  18. Quick detection of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Shi, Hong; Feng, Shangyuan; Lin, Juqiang; Chen, Weiwei; Yu, Yun; Lin, Duo; Xu, Qian; Chen, Rong

    2013-01-01

    A surface-enhanced Raman spectroscopy (SERS) method was developed for the analysis of traditional Chinese medicine ‘Atractylodis Macrocephalae Rhizoma’ pieces (AMRP) for the first time with the aim to develop a quick method for traditional Chinese medicine detection. Both Raman spectra and SERS spectra were obtained from AMRP, and tentative assignments of the Raman bands in the measured spectra suggested that only a few weak Raman peaks could be observed in the regular Raman spectra, while primary Raman peaks at around 536, 555, 619, 648, 691, 733, 790, 958, 1004, 1031, 1112, 1244, 1324, 1395, 1469, 1574 and 1632 cm-1 could be observed in the SERS spectra, with the strongest signals at 619, 733, 958, 1324, 1395 and 1469 cm-1. This was due to a strong interaction between the silver colloids and the AMRP, which led to an extraordinary enhancement in the intensity of the Raman scattering in AMRP. This exploratory study suggests the SERS technique has great potential for providing a novel non-destructive method for effectively and accurately detecting traditional Chinese medicine without complicated separation and extraction.

  19. Nanofabrication of densely packed metal-polymer arrays for surface-enhanced Raman spectrometry.

    PubMed

    De Jesús, M A; Giesfeldt, K S; Oran, J M; Abu-Hatab, N A; Lavrik, N V; Sepaniak, M J

    2005-12-01

    A key element to improve the analytical capabilities of surface-enhanced Raman spectroscopy (SERS) resides in the performance characteristics of the SERS-active substrate. Variables such as shape, size, and homogeneous distribution of the metal nanoparticles throughout the substrate surface are important in the design of more analytically sensitive and reliable substrates. Electron-beam lithography (EBL) has emerged as a powerful tool for the systematic fabrication of substrates with periodic nanoscale features. EBL also allows the rational design of nanoscale features that are optimized to the frequency of the Raman laser source. In this work, the efficiency of EBL fabricated substrates are studied by measuring the relative SERS signals of Rhodamine 6G and 1,10-phenanthro-line adsorbed on a series of cubic, elliptical, and hexagonal nanopatterned pillars of ma-N 2403 directly coated by physical vapor deposition with 25 nm films of Ag or Au. The raw analyte SERS signals, and signals normalized to metal nanoparticle surface area or numbers of loci, are used to study the effects of nanoparticle morphology on the performance of a rapidly created, diverse collection of substrates. For the excitation wavelength used, the nanoparticle size, geometry, and orientation of the particle primary axis relative to the excitation polarization vector, and particularly the density of nanoparticles, are shown to strongly influence substrate performance. A correlation between the inverse of the magnitude of the laser backscatter passed by the spectrometer and SERS activities of the various substrate patterns is also noted and provides a simple means to evaluate possible efficient coupling of the excitation radiation to localized surface plasmons for Raman enhancement.

  20. Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions.

    PubMed

    Primera-Pedrozo, Oliva M; Rodríguez, Gabriela Del Mar; Castellanos, Jorge; Felix-Rivera, Hilsamar; Resto, Oscar; Hernández-Rivera, Samuel P

    2012-02-15

    This work focused on establishing the parameters for enhancing the Raman signals of DNA and RNA constituents: nitrogenous bases, nucleosides and nucleotides, using metallic nanoparticles as surface enhanced Raman scattering substrates. Silver nanospheres were synthesized using sodium borohydride as a reducing agent and sodium citrate as a capping agent. The prepared nanoparticles had a surface plasmon band at ∼384nm and an average size of 12±3nm. The nanoparticles' surface charge was manipulated by changing the pH of the Ag colloidal suspensions in the range of 1-13. Low concentrations as 0.7μM were detected under the experimental conditions. The optimum pH values were: 7 for adenine, 9 for AMP, 5 for adenosine, 7 for dAMP and 11 for deoxyadenosine. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy

    PubMed Central

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2 nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5 nm and 10 nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level. PMID:26780882

  2. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.

    PubMed

    Esmonde-White, Karen A; Cuellar, Maryann; Uerpmann, Carsten; Lenain, Bruno; Lewis, Ian R

    2017-01-01

    Adoption of Quality by Design (QbD) principles, regulatory support of QbD, process analytical technology (PAT), and continuous manufacturing are major factors effecting new approaches to pharmaceutical manufacturing and bioprocessing. In this review, we highlight new technology developments, data analysis models, and applications of Raman spectroscopy, which have expanded the scope of Raman spectroscopy as a process analytical technology. Emerging technologies such as transmission and enhanced reflection Raman, and new approaches to using available technologies, expand the scope of Raman spectroscopy in pharmaceutical manufacturing, and now Raman spectroscopy is successfully integrated into real-time release testing, continuous manufacturing, and statistical process control. Since the last major review of Raman as a pharmaceutical PAT in 2010, many new Raman applications in bioprocessing have emerged. Exciting reports of in situ Raman spectroscopy in bioprocesses complement a growing scientific field of biological and biomedical Raman spectroscopy. Raman spectroscopy has made a positive impact as a process analytical and control tool for pharmaceutical manufacturing and bioprocessing, with demonstrated scientific and financial benefits throughout a product's lifecycle.

  3. A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory and Experiment

    DTIC Science & Technology

    2013-01-01

    Mater. Chem. C 2013, 1, 426−431. (20) Pazos -Perez, N.; Ni, W. H.; Schweikart, A .; Alvarez-Puebla, R. A .; Fery, A .; Liz-Marzan, L. M. Highly Uniform... A Look at the Origin and Magnitude of the Chemical Contribution to the Enhancement Mechanism of Surface-Enhanced Raman Spectroscopy (SERS): Theory...Evanston, Illinois 60208-3113, United States *S Supporting Information ABSTRACT: Normal and surface-enhanced Raman spectra for a set of substituted

  4. Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy

    PubMed Central

    Sandfort, Vincenz; Trabold, Barbara M.; Abdolvand, Amir; Bolwien, Carsten; Russell, Philip St. J.; Wöllenstein, Jürgen

    2017-01-01

    The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF), namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index. In contrast to bandgap PCF, kagomé-PCF allows for reliable detection of Raman-scattered photons even below 1200 cm−1, which in turn enables fast and comprehensive assessment of the natural gas quality of arbitrary mixtures. PMID:29186768

  5. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO2 nanoparticles and surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Chao; Xu, Min-Min; Fang, Cong-Wei; Jin, Qi; Yuan, Ya-Xian; Yao, Jian-Lin

    2017-03-01

    Traditional "sandwich" structure immunoassay is mainly based on the self-assembly of "antibody on solid substrate-antigen-antibody with nanotags" architectures, and the sensitivity of this strategy is critically depended on the surface enhanced Raman scattering (SERS) activities and stability of nanotags. Therefore, the rational design and fabrication on the SERS nanotags attracts the common interests to the bio-related detecting and imaging. Herein, silica encapsulated Au with mercaptobenzoic acid (MBA) core-shell nanoparticles (Au-MBA@SiO2) are fabricated instead of the traditional naked Au or Ag nanoparticles for the SERS-based immunoassay on human and mouse IgG antigens. The MBA molecules facilitate the formation of continuous pinhole-free silica shell and are also used as SERS labels. The silica shell is employed to protect MBA labels and to isolate Au core from the ambient solution for blocking the aggregation. This shell also played the similar role to BSA in inhibiting the nonspecific bindings, which allowed the procedures for constructing "sandwich" structures to be simplified. All of these merits of the Au-MBA@SiO2 brought the high performance in the related immunoassay. Benefiting from the introduction of silica shell to encapsulate MBA labels, the detection sensitivity was improved by about 1- 2 orders of magnitude by comparing with the traditional approach based on naked Au-MBA nanoparticles. This kind of label-embedded core-shell nanoparticles could be developed as the versatile nanotags for the bioanalysis and bioimaging.

  6. [Research Progress of Raman Spectroscopy on Dyestuff Identification of Ancient Relics and Artifacts].

    PubMed

    He, Qiu-ju; Wang, Li-qin

    2016-02-01

    As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time, the source of dyeing material, dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However, because of the low contents, complex compositions and easily degraded of dyestuff, it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum, Raman spectroscopy owns unique superiorities in dyestuff identification. Thus, the principle, characteristic, limitation, progress and development direction of micro-Raman spectroscopy (MRS/µ-Raman), near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia, curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base, then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS, the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology, which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.

  7. Enhanced Raman spectroscopy of 2,4,6-TNT in anatase and rutile titania nanocrystals

    NASA Astrophysics Data System (ADS)

    De La Cruz-Montoya, Edwin; Jeréz, Jaqueline I.; Balaguera-Gelves, Marcia; Luna-Pineda, Tatiana; Castro, Miguel E.; Hernández-Rivera, Samuel P.

    2006-05-01

    The majority of explosives found in antipersonnel and antitank landmines contain 2,4,6-trinitrotoluene (TNT). Chemical sensing of landmines and Improvised Explosive Devices (IED) requires detecting the chemical signatures of the explosive components in these devices. Nanotechnology is ideally suited to needs in microsensors development by providing new materials and methods that can be employed for trace explosive detection. This work is focused on modification of nano-scaled colloids of titanium dioxide (Titania: anatase, rutile and brookite) and thin layer of the oxides as substrates for use in Enhanced Raman Scattering (ERS) spectroscopy. Ultrafine particles have been generated by hydrothermally treating the sol-gel derived hydrous oxides. ERS spectra of nanocrystalline anatase Titania samples prepared with different average sizes: 38 nm (without acid), 24 nm (without acid) and 7 nm (with HCl). Bulk phase (commercial) and KBr were also used to prepare mixtures with TNT to look for Enhanced Raman Effect of the nitroaromatic explosive on the test surfaces. The studies clearly indicated that the anatase crystal size affects the enhancement of the TNT Raman signal. This enhancement was highest for the samples with Titania average crystal size of 7 nm.

  8. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  9. Raman correlation spectroscopy: A feasibility study of a new optical correlation technique and development of multi-component nanoparticles using the reprecipitation method

    NASA Astrophysics Data System (ADS)

    Nishida, Maki

    The feasibility of Raman correlation spectroscopy (RCS) is investigated as a new temporal optical fluctuation spectroscopy in this dissertation. RCS analyzes the correlations of the intensity fluctuations of Raman scattering from particles in a suspension that undergo Brownian motion. Because each Raman emission line arises from a specific molecular bond, the RCS method could yield diffusion behavior of specific chemical species within a dispersion. Due to the nature of Raman scattering as a coherent process, RCS could provide similar information as acquired in dynamic light scattering (DLS) and be practical for various applications that requires the chemical specificity in dynamical information. The theoretical development is discussed, and four experimental implementations of this technique are explained. The autocorrelation of the intensity fluctuations from a beta-carotene solution is obtained using the some configurations; however, the difficulty in precise alignment and weak nature of Raman scattering prevented the achievement of high sensitivity and resolution. Possible fluctuations of the phase of Raman scattering could also be affecting the results. A possible explanation of the observed autocorrelation in terms of number fluctuations of particles is also examined to test the feasibility of RCS as a new optical characterization method. In order to investigate the complex systems for which RCS would be useful, strategies for the creation of a multicomponent nanoparticle system are also explored. Using regular solution theory along with the concept of Hansen solubility parameters, an analytical model is developed to predict whether two or more components will form single nanoparticles, and what effect various processing conditions would have. The reprecipitation method was used to demonstrate the formation of the multi-component system of the charge transfer complex perylene:TCNQ (tetracyanoquinodimethane) and the active pharmaceutical ingredient cocrystal

  10. Plasmon-enhanced Raman detection of body-fluid components

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Banchelli, Martina; De Angelis, Marella; D'Andrea, Cristiano; Pini, Roberto

    2018-02-01

    Plasmon-enhanced spectroscopies such as surface-enhanced Raman spectroscopy (SERS) concern the detection of enhanced optical responses of molecules in close proximity to plasmonic structures, which results in a strong increase in sensitivity. Recent advancements in nanofabrication methods have paved the way for a controlled design of tailor-made nanostructures with fine-tuning of their optical and surface properties. Among these, silver nanocubes (AgNCs) represent a convenient choice in SERS owing to intense electromagnetic fields localized at their extremities, which are further intensified in the gap regions between closely spaced nanoparticles. The integration of AgNCs assemblies within an optofluidic platform may confer potential for superior optical investigation due to a molecular enrichment on the plasmonic structures to collect an enhanced photonic response. We developed a novel sensing platform based on an optofluidic system involving assembled silver nanocubes of 50 nm in size for ultrasensitive SERS detection of biomolecules in wet conditions. The proposed system offers the perspective of advanced biochemical and biological characterizations of molecules as well as of effective detection of body fluid components and other molecules of biomedical interest in their own environment.

  11. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy).

    PubMed

    Hudson, Stephen D; Chumanov, George

    2009-06-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique for analyzing biological samples as it can rapidly and nondestructively provide chemical and, in some cases, structural information about molecules in aqueous environments. In the Raman scattering process, both visible and near-infrared (NIR) wavelengths of light can be used to induce polarization of Raman-active molecules, leading to inelastic light scattering that yields specific molecular vibrational information. The development of surface enhancement has enabled Raman scattering to be an effective tool for qualitative as well as quantitative measurements with high sensitivity and specificity. Recent advances have led to many novel applications of SERS for biological analyses, resulting in new insights for biochemistry and molecular biology, the detection of biological warfare agents, and medical diagnostics for cancer, diabetes, and other diseases. This trend article highlights many of these recent investigations and provides a brief outlook in order to assess possible future directions of SERS as a bioanalytical tool.

  12. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  13. Visible wavelength surface-enhanced Raman spectroscopy from In-InP nanopillars for biomolecule detection

    NASA Astrophysics Data System (ADS)

    Murdoch, B. J.; Portoles, J. F.; Tardio, S.; Barlow, A. J.; Fletcher, I. W.; Cumpson, P. J.

    2016-12-01

    Visible wavelength surface-enhanced Raman spectroscopy (SERS) has been observed from bovine serum albumin (BSA) using In-InP nanopillars synthesised by Ar gas cluster ion beam sputtering of InP wafers. InP provides a high local refractive index for plasmonic In structures, which increases the wavelength of the In surface plasmon resonance. The Raman scattering signal was determined to be up to 285 times higher for BSA deposited onto In-InP nanopillars when compared with Si wafer substrates. These substrates demonstrate the label-free detection of biomolecules by visible wavelength SERS, without the use of noble metal particles.

  14. A Novel Method for Detection of Phosphorylation in Single Cells by Surface Enhanced Raman Scattering (SERS) using Composite Organic-Inorganic Nanoparticles (COINs)

    PubMed Central

    Shachaf, Catherine M.; Elchuri, Sailaja V.; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N.; Mitchell, Dennis J.; Zhang, Jingwu; Swartz, Kenneth B.; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P.

    2009-01-01

    Background Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. Methodology/Principal Findings To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using “Composite Organic-Inorganic Nanoparticles” (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Conclusions/Significance Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells. PMID:19367337

  15. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device.

    PubMed

    Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng

    2017-06-01

    Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    PubMed

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  17. Bare laser-synthesized Au-based nanoparticles as nondisturbing surface-enhanced Raman scattering probes for bacteria identification.

    PubMed

    Kögler, Martin; Ryabchikov, Yury V; Uusitalo, Sanna; Popov, Alexey; Popov, Anton; Tselikov, Gleb; Välimaa, Anna-Liisa; Al-Kattan, Ahmed; Hiltunen, Jussi; Laitinen, Riitta; Neubauer, Peter; Meglinski, Igor; Kabashin, Andrei V

    2018-02-01

    The ability of noble metal-based nanoparticles (NPs) (Au, Ag) to drastically enhance Raman scattering from molecules placed near metal surface, termed as surface-enhanced Raman scattering (SERS), is widely used for identification of trace amounts of biological materials in biomedical, food safety and security applications. However, conventional NPs synthesized by colloidal chemistry are typically contaminated by nonbiocompatible by-products (surfactants, anions), which can have negative impacts on many live objects under examination (cells, bacteria) and thus decrease the precision of bioidentification. In this article, we explore novel ultrapure laser-synthesized Au-based nanomaterials, including Au NPs and AuSi hybrid nanostructures, as mobile SERS probes in tasks of bacteria detection. We show that these Au-based nanomaterials can efficiently enhance Raman signals from model R6G molecules, while the enhancement factor depends on the content of Au in NP composition. Profiting from the observed enhancement and purity of laser-synthesized nanomaterials, we demonstrate successful identification of 2 types of bacteria (Listeria innocua and Escherichia coli). The obtained results promise less disturbing studies of biological systems based on good biocompatibility of contamination-free laser-synthesized nanomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Forensic and homeland security applications of modern portable Raman spectroscopy.

    PubMed

    Izake, Emad L

    2010-10-10

    Modern detection and identification of chemical and biological hazards within the forensic and homeland security contexts may well require conducting the analysis in field while adapting a non-contact approach to the hazard. Technological achievements on both surface and resonance enhancement Raman scattering re-developed Raman spectroscopy to become the most adaptable spectroscopy technique for stand-off and non-contact analysis of hazards. On the other hand, spatially offset Raman spectroscopy proved to be very valuable for non-invasive chemical analysis of hazards concealed within non-transparent containers and packaging. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Green preparation of gold nanoparticles with Tremella fuciformis for surface enhanced Raman scattering sensing

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Liu, Jun; Fan, Linpeng; Li, Daili; Chen, Xinzhu; Zhou, Ji; Li, Jingliang

    2018-01-01

    A simple in-situ synthesis method was developed to fabricate complex of Tremella fuciformis (TF) and gold nanoparticles (Au NPs). TF, one of the most popular fungi in the cuisine and medicine, acted as a biomass reducing agent and scaffold in the preparation of Au NPs. The intensities of the localized surface plasmon resonance (LSPR) of the complex of TF and Au NPs (Au@TFs) increased as the complex shrunk due to drying. The textures of TF prevent the aggregation of Au NPs during the drying process. The TFs show strong adsorption capacity for cationic dyes. It is suggested that the adsorption of the dyes onto TFs are achieved through electrostatic interactions between the TF and the dyes. Kinetics studies indicated that adsorption process could be well described by a pseudo-second-order model. Furthermore, the as-prepared Au@TFs were used as surface enhanced Raman scattering (SERS) substrates for analyzing trace dye molecules. The shrinkage of the TFs caused by drying concentrated dyes on their fruiting bodies, which led to the enhancement of Raman signals of dyes. The Au NPs on TF further enhanced the Raman signals. In-situ synthesis of Au NPs on TF may promote the applications of fungus materials in optical sensing of targets.

  20. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.

    PubMed

    Geiman, Irina; Leona, Marco; Lombardi, John R

    2009-07-01

    The applicability of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to the analysis of synthetic dyes commonly found in ballpoint inks was investigated in a comparative study. Spectra of 10 dyes were obtained using a dispersive system (633 nm, 785 nm lasers) and a Fourier transform system (1064 nm laser) under different analytical conditions (e.g., powdered pigments, solutions, thin layer chromatography [TLC] spots). While high fluorescence background and poor spectral quality often characterized the normal Raman spectra of the dyes studied, SERS was found to be generally helpful. Additionally, dye standards and a single ballpoint ink were developed on a TLC plate following a typical ink analysis procedure. SERS spectra were successfully collected directly from the TLC plate, thus demonstrating a possible forensic application for the technique.

  1. Density functional theoretical modeling, electrostatic surface potential and surface enhanced Raman spectroscopic studies on biosynthesized silver nanoparticles: observation of 400 PM sensitivity to explosives.

    PubMed

    Sil, Sanchita; Chaturvedi, Deepika; Krishnappa, Keerthi B; Kumar, Srividya; Asthana, S N; Umapathy, Siva

    2014-04-24

    Interaction of adsorbate on charged surfaces, orientation of the analyte on the surface, and surface enhancement aspects have been studied. These aspects have been explored in details to explain the surface-enhanced Raman spectroscopic (SERS) spectra of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW or CL-20), a well-known explosive, and 2,4,6-trinitrotoluene (TNT) using one-pot synthesis of silver nanoparticles via biosynthetic route using natural precursor extracts of clove and pepper. The biosynthesized silver nanoparticles (bio Ag Nps) have been characterized using UV-vis spectroscopy, scanning electron microscopy and atomic force microscopy. SERS studies conducted using bio Ag Nps on different water insoluble analytes, such as CL-20 and TNT, lead to SERS signals at concentration levels of 400 pM. The experimental findings have been corroborated with density functional computational results, electrostatic surface potential calculations, Fukui functions and ζ potential measurements.

  2. Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic Mie resonances

    NASA Astrophysics Data System (ADS)

    Frizyuk, Kristina; Hasan, Mehedi; Krasnok, Alex; Alú, Andrea; Petrov, Mihail

    2018-02-01

    Resonantly enhanced Raman scattering in dielectric nanostructures has been recently proven to be an efficient tool for nanothermometry and for the experimental determination of their mode composition. In this paper we develop a rigorous analytical theory based on the Green's function approach to calculate the Raman emission from crystalline high-index dielectric nanoparticles. As an example, we consider silicon nanoparticles which have a strong Raman response due to active optical phonon modes. We relate enhancement of Raman signal emission to the Purcell effect due to the excitation of Mie modes inside the nanoparticles. We also employ our numerical approach to calculate inelastic Raman emission in more sophisticated geometries, which do not allow a straightforward analytical form of the Green's function. The Raman response from a silicon nanodisk has been analyzed with the proposed method, and the contribution of various Mie modes has been revealed.

  3. Determination of B-complex vitamins in pharmaceutical formulations by surface-enhanced Raman spectroscopy.

    PubMed

    Junior, Benedito Roberto Alvarenga; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Durango, Luis Guillermo Cuadrado; Forim, Moacir Rossi; Carneiro, Renato Lajarim

    2018-01-05

    The aim of this work was to quantify B-complex vitamins in pharmaceutical samples by surface enhanced Raman spectroscopy technique using gold colloid substrate. Synthesis of gold nanoparticles was performed according to an adapted Turkevich method. Initial essays were able to suggest the orientation of molecules on gold nanoparticles surface. Central Composite design was performed to obtain the highest SERS signal for nicotinamide and riboflavin. The evaluated parameters in the experimental design were volume of AuNPs, concentration of vitamins and sodium chloride concentration. The best condition for nicotinamide was NaCl 2.3×10 -3 molL -1 and 700μL of AuNPs colloid and this same condition showed to be adequate to quantify thiamine. The experimental design for riboflavin shows the best condition at NaCl 1.15×10 -2 molL -1 and 2.8mL of AuNPs colloid. It was possible to quantify thiamine and nicotinamide in presence of others vitamins and excipients in two solid multivitamin formulations using the standard addition procedure. The standard addition curve presented a R 2 higher than 0.96 for both nicotinamide and thiamine, at orders of magnitude 10 -7 and 10 -8 molL -1 , respectively. The nicotinamide content in a cosmetic gel sample was also quantified by direct analysis presenting R 2 0.98. The t-student test presented no significant difference regarding HPLC method. Despite the experimental design performed for riboflavin, it was not possible its quantification in the commercial samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Determination of B-complex vitamins in pharmaceutical formulations by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Junior, Benedito Roberto Alvarenga; Soares, Frederico Luis Felipe; Ardila, Jorge Armando; Durango, Luis Guillermo Cuadrado; Forim, Moacir Rossi; Carneiro, Renato Lajarim

    2018-01-01

    The aim of this work was to quantify B-complex vitamins in pharmaceutical samples by surface enhanced Raman spectroscopy technique using gold colloid substrate. Synthesis of gold nanoparticles was performed according to an adapted Turkevich method. Initial essays were able to suggest the orientation of molecules on gold nanoparticles surface. Central Composite design was performed to obtain the highest SERS signal for nicotinamide and riboflavin. The evaluated parameters in the experimental design were volume of AuNPs, concentration of vitamins and sodium chloride concentration. The best condition for nicotinamide was NaCl 2.3 × 10- 3 mol L- 1 and 700 μL of AuNPs colloid and this same condition showed to be adequate to quantify thiamine. The experimental design for riboflavin shows the best condition at NaCl 1.15 × 10- 2 mol L- 1 and 2.8 mL of AuNPs colloid. It was possible to quantify thiamine and nicotinamide in presence of others vitamins and excipients in two solid multivitamin formulations using the standard addition procedure. The standard addition curve presented a R2 higher than 0.96 for both nicotinamide and thiamine, at orders of magnitude 10- 7 and 10- 8 mol L- 1, respectively. The nicotinamide content in a cosmetic gel sample was also quantified by direct analysis presenting R2 0.98. The t-student test presented no significant difference regarding HPLC method. Despite the experimental design performed for riboflavin, it was not possible its quantification in the commercial samples.

  5. Nanoparticle-Functionalized Porous Polymer Monolith Detection Elements for Surface-Enhanced Raman Scattering

    PubMed Central

    Liu, Jikun; White, Ian; DeVoe, Don L.

    2011-01-01

    The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G (R6G) is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cyctochrome c. The SERS-active monoliths can be readily integrated into miniaturized micro-total-analysis systems for on-line and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications. PMID:21322579

  6. Gold sputtered Blu-Ray disks as novel and cost effective sensors for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nieuwoudt, Michél. K.; Martin, Jacob W.; Oosterbeek, Reece N.; Novikova, Nina I.; Wang, Xindi; Malmström, Jenny; Williams, David E.; Simpson, M. C.

    2015-03-01

    Surface Enhanced Raman spectroscopy (SERS) offers sensitive and non-invasive detection of a variety of compounds as well as unparalleled information for establishing the molecular identity of both inorganic and organic compounds, not only in biological fluids but in all other aqueous and non-aqueous media. The localized hotspots produced through SERS at the solution/nanostructure interface of clustered gold or silver nano-particles enables detection levels of parts per trillion. Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures which provide reproducible quantitative analysis, historically a weakness of the SERS technique. In this paper we describe the novel use of gold sputtered Blu-Ray surfaces as SERS substrates. Blu-Ray disks provide ideal surfaces of SERS substrates with their repeatable and regular nano-gratings. We show that the unique surface features and composition of the recording surface enables the formation of gold nano-islands with nanogaps, simply through gold sputtering, and relate this to a 600 fold signal increase of the melamine Raman signal in aqueous solutions and detection to 68 ppb. Melamine is a triazine compound and appears not only as environmental contaminant in environmental groundwater but also as an adulterant in foods due to its high nitrogen content. We have shown significant SERS signal enhancements for spectra of melamine using gold-sputtered Blu-Ray disk surfaces, with reproducibility of 12%. Blu-Ray disks have a unique combination of design, surface features and composition of the recording surface which makes them ideal for preparation of SERS substrates by gold sputter-coating.

  7. Development of a surface-enhanced Raman technique for biomarker studies on Mars.

    PubMed

    Dunn, Darrell S; Sridhar, Narasi; Miller, Michael A; Price, Kendra T; Pabalan, Roberto; Abrajano, Teofilo A

    2007-01-01

    Raman spectroscopy has been identified as a potentially useful tool to collect evidence of past or present life on extraterrestrial bodies. However, it is limited by its inherently low signal strength. In this investigation, laboratory tests were conducted using surface-enhanced Raman spectroscopy (SERS) in an "inverted" mode to detect the presence of organic compounds that may be similar to possible biomarkers present on Mars. SERS was used to overcome the inherently low signal intensity of Raman spectroscopy and was an effective method for detecting small concentrations of organic compounds on a number of surfaces. For small organic molecules, dissolution of the molecule to be analyzed in a suitable solvent and depositing it on a prepared SERS substrate for analysis is possible. However, for larger molecules, an "inverted" SERS (iSERS) technique was shown to be effective. In iSERS, nanoparticles of silver or gold were deposited on the mineral substrate/organic compound to be analyzed. Benzotriazole, benzoic acid, and phthalic acid were used as test organic analogs and the iSERS technique was able to detect femtomole levels of the analytes. The interference from various mineral substrates was also examined. Different methods of depositing silver particles were evaluated, including ion beam-assisted vapor deposition and deposition from aqueous colloidal suspensions.

  8. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-01

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection.Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on

  9. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Wu, Yiren; Su, Dong; Qin, Dong

    2017-02-22

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  10. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yiren; Su, Dong; Qin, Dong

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  11. Urinary tract infection (UTI) multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS)

    NASA Astrophysics Data System (ADS)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-02-01

    Antibiotic resistance is a major health care problem mostly caused by the inappropriate use of antibiotics. At the root of the problem lies the current method for determination of bacterial susceptibility to antibiotics which requires overnight cultures. Physicians suspecting an infection usually prescribe an antibiotic without waiting for the results. This practice aggravates the problem of bacterial resistance. In this work, a rapid method of diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Even though the concentration of bacteria was low (2x105 cfu/ml), species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. With the enhancement provided by SERS, the technique can be applied directly to urine or blood samples, bypassing the need for overnight cultures. This technology can lead to the development of rapid methods of diagnosis and antibiogram for a variety of bacterial infections.

  12. Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy

    DOE PAGES

    Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...

    2015-12-17

    We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less

  13. Note: A novel technique for analysis of aqueous solutions by laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusak, D. A.; Bell, Z. T.; Anthony, T. P.

    2015-11-15

    Surface-enhanced Raman spectroscopy (SERS) substrates typically consist of gold or silver nanoparticles deposited on a non-conductive substrate. In Raman spectroscopy, the nanoparticles produce an enhancement of the electromagnetic field which, in turn, leads to greater electronic excitation of molecules in the local environment. Here, we show that these same surfaces can be used to enhance the signal-to-noise ratio obtained in laser-induced breakdown spectroscopy of aqueous solutions. In this case, the SERS substrates not only lower breakdown thresholds and lead to more efficient plasma initiation but also provide an appropriately wettable surface for the deposition of the liquid. We refer tomore » this technique as surface-enhanced laser-induced breakdown spectroscopy.« less

  14. Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers.

    PubMed

    Hippler, Michael

    2015-08-04

    We report on improvements made on our previously introduced technique of cavity-enhanced Raman spectroscopy (CERS) with optical feedback cw-diode lasers in the gas phase, including a new mode-matching procedure which keeps the laser in resonance with the optical cavity without inducing long-term frequency shifts of the laser, and using a new CCD camera with improved noise performance. With 10 mW of 636.2 nm diode laser excitation and 30 s integration time, cavity enhancement achieves noise-equivalent detection limits below 1 mbar at 1 bar total pressure, depending on Raman cross sections. Detection limits can be easily improved using higher power diodes. We further demonstrate a relevant analytical application of CERS, the multicomponent analysis of natural gas samples. Several spectroscopic features have been identified and characterized. CERS with low power diode lasers is suitable for online monitoring of natural gas mixtures with sensitivity and spectroscopic selectivity, including monitoring H2, H2S, N2, CO2, and alkanes.

  15. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    PubMed

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  16. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.

    PubMed

    Saha, Arindam; Jana, Nikhil R

    2015-01-14

    Although microfluidic approach is widely used in various point of care diagnostics, its implementation in surface enhanced Raman spectroscopy (SERS)-based detection is challenging. This is because SERS signal depends on plasmonic nanoparticle aggregation induced generation of stable electromagnetic hot spots and in currently available microfluidic platform this condition is difficult to adapt. Here we show that SERS can be adapted using simple paper based microfluidic system where both the plasmonic nanomaterials and analyte are used in mobile phase. This approach allows analyte induced controlled particle aggregation and electromagnetic hot spot generation inside the microfluidic channel with the resultant SERS signal, which is highly reproducible and sensitive. This approach has been used for reproducible detection of protein in the pico to femtomolar concentration. Presented approach is simple, rapid, and cost-effective, and requires low sample volume. Method can be extended for SERS-based detection of other biomolecules.

  17. New Applications of Portable Raman Spectroscopy in Agri-Bio-Photonics

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri; Scully, Rob; Sanders, Virgil

    2014-03-01

    Modern optical techniques based on Raman spectroscopy are being used to monitor and analyze the health of cattle, crops and their natural environment. These optical tools are now available to perform fast, noninvasive analysis of live animals and plants in situ. We will report new applications of a portable handheld Raman spectroscopy to identification and taxonomy of plants. In addition, detection of organic food residues will be demonstrated. Advantages and limitations of current portable instruments will be discussed with suggestions for improved performance by applying enhanced Raman spectroscopic schemes.

  18. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.

    PubMed

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Tae Han; Kim, Hyung-Mo; Lee, Sang Hun; Lee, Yoon-Sik; Jeong, Dae Hong; Jun, Bong-Hyun

    2017-06-23

    In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 10 10 . The detection limit of liposome was calculated to be 1.3 × 10 -17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.

  19. Raman scattering in HfxZr1-xO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Robinson, Richard D.; Tang, Jing; Steigerwald, Michael L.; Brus, Louis E.; Herman, Irving P.

    2005-03-01

    Raman spectroscopy demonstrates that ˜5nm dimension HfxZr1-xO2 nanocrystals prepared by a nonhydrolytic sol-gel synthesis method are solid solutions of hafnia and zirconia, with no discernable segregation within the individual nanoparticles. Zirconia-rich particles are tetragonal and ensembles of hafnia-rich particles show mixed tetragonal/monoclinic phases. Sintering at 1200 °C produces larger particles (20-30 nm) that are monoclinic. A simple lattice dynamics model with composition-averaged cation mass and scaled force constants is used to understand how the Raman mode frequencies vary with composition in the tetragonal HfxZr1-xO2 nanoparticles. Background luminescence from these particles is minimized after oxygen treatment, suggesting possible oxygen defects in the as-prepared particles. Raman scattering is also used to estimate composition and the relative fractions of tetragonal and monoclinic phases. In some regimes there are mixed phases, and Raman analysis suggests that in these regimes the tetragonal phase particles are relatively rich in zirconium and the monoclinic phase particles are relatively rich in hafnium.

  20. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    PubMed

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  1. Cavity-enhanced Raman microscopy of individual carbon nanotubes

    PubMed Central

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David

    2016-01-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165

  2. Surface-enhanced Raman spectroscopy for the detection of pathogenic DNA and protein in foods

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mustafa H.; Atkinson, Brad; Good, Theresa; Cote, Gerard L.

    2003-07-01

    Traditional Raman spectroscopy while extremely sensitive to structure and conformation, is an ineffective tool for the detection of bioanalytes at the sub milimolar level. Surface Enhanced Raman Spectroscopy (SERS) is a technique developed more recently that has been used with applaudable success to enhance the Raman cross-section of a molecule by factors of 106 to 1014. This technique can be exploited in a nanoscale biosensor for the detection of pathogenic proteins and DNA in foods by using a biorecognition molecule to bring a target analyte in close proximity to the mental surface. This is expected to produce a SERS signal of the target analyte, thus making it possible to easily discriminate between the target analyte and possible confounders. In order for the sensor to be effective, the Raman spectra of the target analyte would have to be distinct from that of the biorecognition molecule, as both would be in close proximity to the metal surface and thus be subjected to the SERS effect. In our preliminary studies we have successfully used citrate reduced silver colloidal particles to obtain unique SERS spectra of α-helical and β-sheet bovine serum albumin (BSA) that served as models of an α helical antiobiody (biorecognition element) and a β-sheet target protein (pathogenic prion). In addition, the unique SERS spectra of double stranded and single stranded DNA were also obtained where the single stranded DNA served as the model for the biorecognition element and the double stranded DNA served as themodel for the DNA probe/target hybrid. This provides a confirmation of the feasibility of the method which opens opportunities for potentially wide spread applications in the detection of food pathogens, biowarefare agents, andother bio-analytes.

  3. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

    PubMed

    Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub

    2016-01-13

    Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.

  4. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer

    NASA Astrophysics Data System (ADS)

    Walton, Brian M.; Jackson, George W.; Deutz, Nicolaas; Cote, Gerard

    2017-07-01

    A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids.

  5. Sensitive detection of point mutation using exponential strand displacement amplification-based surface enhanced Raman spectroscopy.

    PubMed

    Huang, Si-Qiang; Hu, Juan; Zhu, Guichi; Zhang, Chun-Yang

    2015-03-15

    Accurate identification of point mutation is particularly imperative in the field of biomedical research and clinical diagnosis. Here, we develop a sensitive and specific method for point mutation assay using exponential strand displacement amplification (SDA)-based surface enhanced Raman spectroscopy (SERS). In this method, a discriminating probe and a hairpin probe are designed to specifically recognize the sequence of human K-ras gene. In the presence of K-ras mutant target (C→T), the 3'-terminal of discriminating probe and the 5'-terminal of hairpin probe can be ligated to form a SDA template. Subsequently, the 3'-terminal of hairpin probe can function as a primer to initiate the SDA reaction, producing a large amount of triggers. The resultant triggers can further hybridize with the discriminating probes to initiate new rounds of SDA reaction, leading to an exponential amplification reaction. With the addition of capture probe-modified gold nanoparticles (AuNPs) and the Rox-labeled reporter probes, the amplified triggers can be assembled on the surface of AuNPs through the formation of sandwich hybrids of capture probe-trigger-reporter probe, generating a strong Raman signal. While in the presence of K-ras wild-type target (C), neither ligation nor SDA reaction can be initiated and no Raman signal is observed. The proposed method exhibits high sensitivity with a detection limit of 1.4pM and can accurately discriminate as low as 1% variant frequency from the mixture of mutant target and wild-type target. Importantly, this method can be further applied to analyze the mutant target in the spiked HEK293T cell lysate, holding great potential for genetic analysis and disease prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy.

    PubMed

    Chen, Jiwei; Jiang, Jianhui; Gao, Xing; Liu, Guokun; Shen, Guoli; Yu, Ruqin

    2008-01-01

    The present study reports the proof of principle of a reagentless aptameric sensor based on surface-enhanced Raman scattering (SERS) spectroscopy with "signal-on" architecture using a model target of cocaine. This new aptameric sensor is based on the conformational change of the surface-tethered aptamer on a binding target that draws a certain Raman reporter in close proximity to the SERS substrate, thereby increasing the Raman scattering signal due to the local enhancement effect of SERS. To improve the response performance, the sensor is fabricated from a cocaine-templated mixed self-assembly of a 3'-terminal tetramethylrhodamine (TMR)-labeled DNA aptamer on a silver colloid film by means of an alkanethiol moiety at the 5' end. This immobilization strategy optimizes the orientation of the aptamer on the surface and facilitates the folding on the binding target. Under optimized assay conditions, one can determine cocaine at a concentration of 1 muM, which compares favorably with analogous aptameric sensors based on electrochemical and fluorescence techniques. The sensor can be readily regenerated by being washed with a buffer. These results suggest that the SERS-based transducer might create a new dimension for future development of aptameric sensors for sensitive determination in biochemical and biomedical studies.

  7. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules.

    PubMed

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-26

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans -1,2-bis(4-pyridyl)ethylene (BPE).

  8. Effect of particle size and laser power on the Raman spectra of CuAlO2 delafossite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yassin, O. A.; Alamri, S. N.; Joraid, A. A.

    2013-06-01

    A transparent conductive oxide CuAlO2 delafossite is studied using x-ray powder diffraction (XRD) and micro-Raman spectroscopy measurements as a function of the particle size and laser power from 2 to 20 mW. The XRD results indicate that the lattice parameters and the cell volume expand as the particle size reduces. Large red shifts (˜60 cm-1) and line broadening (˜50 cm-1) are observed as the particle size becomes of the order of 13 nm. These huge values can only be justified if collective effects on the Raman spectra created by the lattice expansion, confinement of phonons and enhanced phonon-phonon interactions are included in the interpretations of the Raman spectra of the CuAlO2 nanoparticles.

  9. Low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy combined with molecular beam epitaxy for in situ two-dimensional materials' studies

    NASA Astrophysics Data System (ADS)

    Sheng, Shaoxiang; Li, Wenbin; Gou, Jian; Cheng, Peng; Chen, Lan; Wu, Kehui

    2018-05-01

    Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.

  10. Study of support vector machine and serum surface-enhanced Raman spectroscopy for noninvasive esophageal cancer detection

    NASA Astrophysics Data System (ADS)

    Li, Shao-Xin; Zeng, Qiu-Yao; Li, Lin-Fang; Zhang, Yan-Jiao; Wan, Ming-Ming; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Liu, Song-Hao

    2013-02-01

    The ability of combining serum surface-enhanced Raman spectroscopy (SERS) with support vector machine (SVM) for improving classification esophageal cancer patients from normal volunteers is investigated. Two groups of serum SERS spectra based on silver nanoparticles (AgNPs) are obtained: one group from patients with pathologically confirmed esophageal cancer (n=30) and the other group from healthy volunteers (n=31). Principal components analysis (PCA), conventional SVM (C-SVM) and conventional SVM combination with PCA (PCA-SVM) methods are implemented to classify the same spectral dataset. Results show that a diagnostic accuracy of 77.0% is acquired for PCA technique, while diagnostic accuracies of 83.6% and 85.2% are obtained for C-SVM and PCA-SVM methods based on radial basis functions (RBF) models. The results prove that RBF SVM models are superior to PCA algorithm in classification serum SERS spectra. The study demonstrates that serum SERS in combination with SVM technique has great potential to provide an effective and accurate diagnostic schema for noninvasive detection of esophageal cancer.

  11. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  12. Enhancement factor statistics of surface enhanced Raman scattering in multiscale heterostructures of nanoparticles.

    PubMed

    Zito, Gianluigi; Rusciano, Giulia; Sasso, Antonio

    2016-08-07

    Suitable metal nanostructures may induce surface-enhanced Raman scattering (SERS) enhancement factors (EFs) large-enough to reach single-molecule sensitivity. However, the gap hot-spot EF probability density function (PDF) has the character of a long-tail distribution, which dramatically mines the reproducibility of SERS experiments. Herein, we carry out electrodynamic calculations based on a 3D finite element method of two plasmonic nanostructures, combined with Monte Carlo simulations of the EF statistics under different external conditions. We compare the PDF produced by a homodimer of nanoparticles with that provided by a self-similar trimer. We show that the PDF is sensitive to the spatial distribution of near-field enhancement specifically supported by the nanostructure geometry. Breaking the symmetry of the plasmonic system is responsible for inducing particular modulations of the PDF tail resembling a multiple Poisson distribution. We also study the influence that molecular diffusion towards the hottest hot-spot, or selective hot-spot targeting, might have on the EF PDF. Our results quantitatively assess the possibility of designing the response of a SERS substrate so as to contain the intrinsic EF PDF variance and significantly improving, in principle, the reproducibility of SERS experiments.

  13. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap

    NASA Astrophysics Data System (ADS)

    Lim, Dong-Kwon; Jeon, Ki-Seok; Hwang, Jae-Ho; Kim, Hyoki; Kwon, Sunghoon; Suh, Yung Doug; Nam, Jwa-Min

    2011-07-01

    An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (~1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R2 > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 108, which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 108 and 5.0 × 109.

  14. THE FATE AND TOXICITY OF RAMAN ACTIVE SILICA-GOLD NANOPARTICLES IN MICE

    PubMed Central

    THAKOR, AVNESH S; LUONG, RICHARD; PAULMURUGAN, RAMASAMY; LIN, FRANK I; KEMPEN, PAUL; ZAVALETA, CRISTINA; CHU, PAULINE; MASSOUD, TARIK F; SINCLAIR, ROBERT; GAMBHIR, SANJIV S

    2013-01-01

    Raman spectroscopy is an optical imaging modality which analyses the Raman effect in which energy is exchanged between light and matter. Although Raman spectroscopy has been widely used for chemical and molecular analysis, its use in clinical applications has been hindered by the inherently weak nature of the Raman effect. Raman-silica-gold-nanoparticles (R-Si-Au-NPs) overcome this limitation by producing high Raman signals via Surface Enhanced Raman Scattering. Targeted polyethylene glycol (PEG)-ylated R-Si-Au-NPs (e.g. PEG-R-Si-Au-NPs labeled with an affibody which binds specifically to the epidermal growth factor receptor) are currently being designed to detect colorectal cancer after administration into the bowel lumen. With this approach, PEG-R-Si-Au-NPs are not expected to enter the systemic circulation and would be removed from the body via defecation. We examined the acute toxicity and biodistribution of core PEG-R-Si-Au-NPs after different routes of administration in mice. After intravenous administration, PEG-R-Si-Au-NPs were removed from the circulation by marcophages in the liver and spleen (i.e. the reticuloendothelial system). At 24 hours, PEG-R-Si-Au-NPs elicited a mild inflammatory response and an increase in oxidative stress in the liver, which subsided by 2 weeks. No evidence of significant toxicity was observed by measuring clinical, histological, biochemical or cardiovascular parameters for 2 weeks. Notably, after administration per rectum, we observed no significant bowel or systemic toxicity and no PEG-R-Si-Au-NPs were detected systemically. Although additional studies are required to investigate the long-term effects of PEG-R-Si-Au-NPs, these initial results support the idea that they can be safely used in living subjects, especially when administered rectally. PMID:21508310

  15. Effectiveness of surface enhanced Raman spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Endo, T.; Imai, H.; Kido, M.; Jeong, H.; Ohno, Y.

    2016-03-01

    We have developed the point-of-care therapeutic drug monitoring kit based on Raman Spectroscopy of tear fluid. In this study, we were examined a soft substrate for an optimal lattice based on nanoimprint lithography using cyclo-olefin polymer to improve the sensitivity for measuring drug concentration in tear fluid. This is photonics crystal which is one of the nano-photonics based device was fabricated. Target is Sodium Phenobarbital which is an anticonvulsant agent. We show the effectiveness of Surface Enhanced Raman Spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring.

  16. Exploiting LBL-assembled Au nanoparticles to enhance Raman signals for point-of-care testing of osteoporosis with excreta sample

    NASA Astrophysics Data System (ADS)

    Sun, Jian F.; Liu, Xuan; Guo, Zhi R.; Dong, Jian; Huang, Yawen; Zhang, Jie; Jin, Hui; Gu, Ning

    2017-02-01

    Due to the intrinsic lack of specific biomarkers, there is an increasing demand for degenerative diseases to develop a testing method independent upon the targeting biomolecules. In this paper, we proposed a novel idea for this issue which was to analyze the characteristic information of metabolites with Raman spectrum. First, we achieved the fabrication of stable, uniform and reproducible substrate to enhance the Raman signals, which is crucial to the following analysis of information. This idea was confirmed with the osteoporosis-modeled mice. Furthermore, the testing results with clinical samples also preliminarily exhibited the feasibility of this strategy. The substrate to enhance Raman signal was fabricated by the layer-by-layer assembly of Au nanoparticles. The osteoporosis modeling was made by bilateral ovariectomy. Ten female mice were randomly divided into two groups. The urine and dejecta samples of mice were collected every week. Clinic urine samples were collected from patients with osteoporosis while the controlled samples were from the young students in our university. The LBL-assembled substrate of Au nanoparticles was uniform, stable and reproducible to significantly enhance the Raman signals from tiny amount of samples. With a simple data processing technique, the Raman signal-based method can effectively reflect the development of osteoporosis by comparison with micro-CT characterization. Moreover, the Raman signal from samples of clinic patients also showed the obvious difference with that of the control. Raman spectrum may be a good tool to convey the pathological information of metabolites in molecular level. Our results manifested that the information-based testing is possibly feasible and promising. Our strategy utilizes the characteristic information rather than the biological recognition to test the diseases which are difficult to find specific biomarkers. This will be greatly beneficial to the prevention and diagnosis of degenerative

  17. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.

    PubMed

    Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J

    2016-07-01

    Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Perspective: Two-dimensional resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  19. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, Tuan

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  20. Facile synthesis of ferromagnetic Ni doped CeO2 nanoparticles with enhanced anticancer activity

    NASA Astrophysics Data System (ADS)

    Abbas, Fazal; Jan, Tariq; Iqbal, Javed; Ahmad, Ishaq; Naqvi, M. Sajjad H.; Malik, Maaza

    2015-12-01

    NixCe1-xO2 (where x = 0, 0.01, 0.03, 0.05 and 0.07) nanoparticles were synthesized by soft chemical method and were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, UV-vis absorption spectroscopy and vibrating sample magnetometer (VSM). XRD and Raman results indicated the formation of single phase cubic fluorite structure for the synthesized nanoparticles. Ni dopant induced excessive structural changes such as decrease in crystallite size as well as lattice constants and enhancement in oxygen vacancies in CeO2 crystal structure. These structural variations significantly influenced the optical and magnetic properties of CeO2 nanoparticles. The synthesized NixCe1-xO2 nanoparticles exhibited room temperature ferromagnetic behavior. Ni doping induced effects on the cytotoxicity of CeO2 nanoparticles were examined against HEK-293 healthy cell line and SH-SY5Y neuroblastoma cancer cell line. The prepared NixCe1-xO2 nanoparticles demonstrated differential cytotoxicity. Furthermore, anticancer activity of CeO2 nanoparticles observed to be significantly enhanced with Ni doping which was found to be strongly correlated with the level of reactive oxygen species (ROS) production. The prepared ferromagnetic NixCe1-xO2 nanoparticles with differential cytotoxic nature may be potential for future targeted cancer therapy.

  1. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles

    USDA-ARS?s Scientific Manuscript database

    A highly sensitive immunoassay based on surface-enhanced Raman scattering (SERS) spectroscopy has been developed for multiplex detection of surface envelope and capsid antigens of the viral zoonotic pathogens West Nile virus (WNV) and Rift Valley fever virus (RVFV). Detection was mediated by antibo...

  2. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  3. Raman spectroscopy of shocked gypsum from a meteorite impact crater

    NASA Astrophysics Data System (ADS)

    Brolly, Connor; Parnell, John; Bowden, Stephen

    2017-07-01

    Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.

  4. Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    PubMed Central

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161

  5. Aggregated silver nanoparticles based surface-enhanced Raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules.

    PubMed

    Liang, Jiajie; Liu, Hongwu; Huang, Caihong; Yao, Cuize; Fu, Qiangqiang; Li, Xiuqing; Cao, Donglin; Luo, Zhi; Tang, Yong

    2015-06-02

    Lowering the detection limit is critical to the design of bioassays required for medical diagnostics, environmental monitoring, and food safety regulations. The current sensitivity of standard color-based analyte detection limits the further use of enzyme-linked immunosorbent assays (ELISAs) in research and clinical diagnoses. Here, we demonstrate a novel method that uses the Raman signal as the signal-generating system of an ELISA and combines surface-enhanced Raman scattering (SERS) with silver nanoparticles aggregation for ultrasensitive analyte detection. The enzyme label of the ELISA controls the dissolution of Raman reporter-labeled silver nanoparticles through hydrogen peroxide and generates a strong Raman signal when the analyte is present. Using this assay, prostate-specific antigen (PSA) and the adrenal stimulant ractopamine (Rac) were detected in whole serum and urine at the ultralow concentrations of 10(-9) and 10(-6) ng/mL, respectively. The methodology proposed here could potentially be applied to other molecules detection as well as PSA and Rac.

  6. Cytochrome c at charged interfaces studied by resonance Raman and surface-enhanced resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Peter

    1991-05-01

    The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.

  7. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana; Murthy, P. Sriyutha; Dhara, S.; Venugopalan, V. P.; Das, A.; Tyagi, A. K.

    2013-08-01

    Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga3+ (ionic radius 0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe2+ (ionic radius 0.077 nm), which is essential for energy metabolism.

  8. Chemical agent detection by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.; Morrisey, Kevin; Christesen, Steven D.

    2004-03-01

    In the past decade, the Unites States and its allies have been challenged by a different kind of warfare, exemplified by the terrorist attacks of September 11, 2001. Although suicide bombings are the most often used form of terror, military personnel must consider a wide range of attack scenarios. Among these is the intentional poisoning of water supplies to obstruct military operations in Afghanistan and Iraq. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of several chemical agents measured in a generic tap water. Repeat measurements were performed to establish statistical error associated with SERS obtained using the sol-gel coated vials.

  9. Surface-enhanced Raman spectroscopy on litographically constructed microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhelyaskov, V.R.; Milne, E.T.; Weldon, M.K.

    1995-12-31

    A novel silicon substrate microelectrode array has been demonstrated to function as a surface-enhanced Raman Spectroscopy (SERS) microelectrode. SERS from adenosine and pyridine down to 10 mM concentration on silver coated iridium and gold microelectrode arrays have been observed with excitation at 532 nm and 633 nm correspondingly. Ag/AgCl reference electrode and platinum or integrated on the microelectrode iridium counter electrodes were used. Owing to the small area of the activated sites on the microelectrode (10 mm x 15 mm) the SERS signal exhibited a strong laser power dependence. The optimal laser power on the activated site was shown tomore » be in the order of x 100 mW. Good quality SERS spectra were recorded with exposure times of 10s and less. The small size of the electrodes makes them promising for studies in confined spaces. This includes potential applications as capillary electrophoreses detectors and probes of chemistry of biological organisms. A work on detection of lipids adhered to self-organized monolayers (SAM)s of alkanethiols on the activated microelectrodes is in progress.« less

  10. Surface-enhanced Raman spectroscopy and homeland security: a perfect match?

    PubMed

    Golightly, Rebecca S; Doering, William E; Natan, Michael J

    2009-10-27

    This Nano Focus article reviews recent developments in surface-enhanced Raman spectroscopy (SERS) and its application to homeland security. It is based on invited talks given at the "Nanorods and Microparticles for Homeland Security" symposium, which was organized by one of the authors and presented at the 238th ACS National Meeting and Exhibition in Washington, DC. The three-day symposium included approximately 25 experts from academia, industry, and national laboratories and included both SERS and non-SERS approaches to detection of chemical and biological substances relevant to homeland security, as well as fundamental advances. Here, we focus on SERS and how it is uniquely positioned to have an impact in a field whose importance is increasing rapidly. We describe some technical challenges that remain and offer a glimpse of what form solutions might take.

  11. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy

    PubMed Central

    Barhoumi, Aoune; Halas, Naomi J.

    2013-01-01

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics. PMID:24427449

  12. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    PubMed

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  13. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules

    PubMed Central

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-01

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans-1,2-bis(4-pyridyl)ethylene (BPE). PMID:28134754

  14. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOEpatents

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  15. Distinction of gastric cancer tissue based on surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Zhou, Hanjing; Gong, Longjing; Liu, Shu; Zhou, Zhenghua; Mao, Weizheng; Zheng, Rong-er

    2012-12-01

    Gastric cancer is one of the most common malignant tumors with high recurrence rate and mortality rate in China. This study aimed to evaluate the diagnostic capability of Surface-enhanced Raman spectroscopy (SERS) based on gold colloids for distinguishing gastric tissues. Gold colloids were directly mixed with the supernatant of homogenized tissues to heighten the Raman signal of various biomolecule. A total of 56 samples were collected from normal (30) and cancer (26). Raman spectra were obtained with a 785nm excitation in the range of 600-1800 cm-1. Significant spectral differences in SERS mainly belong to nucleic acid, proteins and lipids, particularly in the range of 653, 726, 828, 963, 1004, 1032, 1088, 1130, 1243, 1369, 1474, 1596, 1723 cm-1. PCA-LDA algorithms with leave-one-patient-out cross validation yielded diagnostic sensitivities of 90% (27/30), specificities of 88.5% (23/26), and accuracy of 89.3% (50/56), for classification of normal and cancer tissues. The receiver operating characteristic (ROC) surface is 0.917, illustrating the diagnostic utility of SERS together with PCA-LDA to identify gastric cancer from normal tissue. This work demonstrated the SERS techniques can be useful for gastric cancer detection, and it is also a potential technique for accurately identifying cancerous tumor, which is of considerable clinical importance to real-time diagnosis.

  16. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.

    PubMed

    Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun

    2015-06-04

    Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.

  17. Research on identification and determination of mixed pesticides in apples using surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhai, Chen; Li, Yongyu; Peng, Yankun; Xu, Tianfeng; Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei

    2015-05-01

    Residual pesticides in fruits and vegetables have become one of the major food safety concerns around the world. At present, routine analytical methods used for the determination of pesticide residue on the surface of fruits and vegetables are destructive, complex, time-consuming, high cost and not environmentally friendly. In this study, a novel Surface Enhanced Raman Spectroscopy (SERS) method with silver colloid was developed for fast and sensitive nondestructive detection of residual pesticides in fruits and vegetables by using a self-developed Raman system. SERS technology is a combination of Raman spectroscopy and nanotechnology. SERS can greatly enhance the Raman signal intensity, achieve single-molecule detection, and has a simple sample pre-treatment characteristic of high sensitivity and no damage; in recent years it has begun to be used in food safety testing research. In this study a rapid and sensitive method was developed to identify and analyze mixed pesticides of chlorpyrifos, deltamethrin and acetamiprid in apple samples by SERS. Silver colloid was used for SERS measurement by hydroxylamine hydrochloride reduced. The advantages of this method are seen in its fast preparation at room temperature, good reproducibility and immediate applicability. Raman spectrum is highly interfered by noise signals and fluorescence background, which make it too complex to get good result. In this study the noise signals and fluorescence background were removed by Savitzky-Golay filter and min-max signal adaptive zooming method. Under optimal conditions, pesticide residues in apple samples can be detected by SERS at 0.005 μg/cm2 and 0.002 μg/cm2 for individual acetamiprid and thiram, respectively. When mixing the two pesticides at low concentrations, their characteristic peaks can still be identified from the SERS spectrum of the mixture. Based on the synthesized material and its application in SERS operation, the method represents an ultrasensitive SERS performance

  18. Applications of Raman spectroscopy in life science

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  19. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    ERIC Educational Resources Information Center

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  20. Functionalized gold nanostars for label-free detection of PKA phosphorylation using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Shuai; Kah, James C. Y.

    2017-04-01

    Protein phosphorylation controls fundamental biological processes. Dysregulation of protein kinase is associated with a series of human diseases including cancer. Protein kinase A (PKA) activity has been reported to serve as a potential prognostic marker for cancer. To this end, we developed a non-radioactive, rapid, cheap and robust scheme based on surface-enhanced Raman spectroscopy (SERS) for label-free detection of PKA phosphorylation using gold nanostars (AuNS) functionalized with BSA-kemptide. While bovine serum albumin (BSA) proteins stabilized the AuNS, kemptide, which is a high affinity substrate peptide specific for PKA, were phosphorylated in vitro to generate Raman signals that were identified by performing principal component analysis (PCA) on the acquired SERS spectra.

  1. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    PubMed

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  2. Low-temperature Raman spectroscopy of copper and silver nanoparticles ion-synthesized in a silica glass and subjected to laser annealing

    NASA Astrophysics Data System (ADS)

    Kurbatova, N. V.; Galyautdinov, M. F.; Shtyrkov, E. I.; Nuzhdin, V. I.; Stepanov, A. L.

    2010-06-01

    The modification of the shape of ion-synthesized silver and copper nanoparticles in a silica glass during laser annealing has been studied for the first time by Raman spectroscopy at a temperature of 77 K. The laser annealing has been carried out for a wavelength of 694 nm at the edge of the plasmon absorption spectrum of nanoparticles. A comparison of the experimental spectra and the calculated modes of in-phase bending vibrations of the “harmonica” type in nanostrings of the corresponding metals has demonstrated their good agreement. The effects observed have been discussed from the standpoint of the size quantization of vibrations in metal nanowires. This methodical approach has made it possible to estimate the sizes of the Ag and Cu nanoparticles under the assumption that they have an elongated form; in this case, their average lengths are equal to 2.5 and 1.4 nm, respectively.

  3. Contribution of Raman and Surface Enhanced Raman Spectroscopy (SERS) to the analysis of vehicle headlights: Dye(s) characterization.

    PubMed

    Muehlethaler, Cyril; Cheng, Yin Pak; Islam, Syed K; Lombardi, John R

    2018-06-01

    Although ubiquitous on accident scenes, the polymers from headlight optics are often neglected in hit-and-run cases, and their evidential value restrained to direct comparison once a corresponding vehicle is found. Multilayered automotive paint fragments are preferred for their access to corresponding databases (PDQ, EUCAP) to infer models and brands of cars. The potential of polymers headlights for providing forensic intelligence has never been exploited, principally due to the lack of diversity, of appropriate databases, and of case examples. The motives are very simple however. Headlight polymers suffer from a lack of differentiation, and about 90% of them are composed of polymethylmethacrylate (PMMA). The discriminating powers using techniques in sequence typically range from 30 to 60%. In this paper, we take advantage of the extreme sensitivity of Surface Enhanced Raman Spectroscopy (SERS) to analyze the dye composition of the polymer headlights. The measurements by standard Raman spectroscopy at 488, 633, and 785nm permits us to identify the polymer type with relative ease. 51 out of 53 samples are composed of PMMA, the two remaining being either Polycarbonate or Polybutylene terephthalate. Additionally, using SERS with silver colloids at 488 and 633nm, provides enhanced spectra of the dyes used in the composition with an extreme sensitivity and specificity. With SERS we are able to differentiate the majority of the headlights with a remarkable 90-100% discriminating power. Solvent Orange 60, Solvent Red 52 and Solvent Red 111 were successfully identified as dyes used in the manufacture of the headlights. These results demonstrate that a combined Raman-SERS approach has the potential to replace an otherwise lengthy sequence of many different analytical techniques. With one single instrument, we offer the possibility to combine an analysis of the polymer type, and of the dye components with high discriminating capabilities. These results open up new

  4. Pterin detection using surface-enhanced Raman spectroscopy incorporating a straightforward silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, Ciarán A.; Mehigan, Sam; Rakovich, Yury P.; Bell, Steven E. J.; McCabe, Eithne M.

    2011-07-01

    Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution.

  5. Optical properties of nucleobase thin films as studied by attenuated total reflection and surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, MinSuk; Ham, Won Kyu; Kim, Wonyoung; Hwangbo, Chang Kwon; Choi, Eun Ha; Lee, Geon Joon

    2018-04-01

    Optical properties of nucleobase thin films were studied by attenuated total reflection (ATR) and surface-enhanced Raman spectroscopy (SERS). Adenine and guanine films were deposited on fused silica and silver at room temperature by thermal evaporation, and the normal dispersion of refractive indices of transparent adenine and guanine films in the visible and near-infrared regions were analyzed. The measured ATR spectra of adenine (guanine) films and numerical simulations by optical transfer matrix formalism demonstrate that the shift of surface plasmon resonance (SPR) wavelength is approximately linearly proportional to the adenine (guanine) film thickness, indicating that SPR can be used for quantitative measurements of biomaterials. The Raman spectra indicated that the adenine (guanine) films can be deposited by thermal evaporation. The adenine (guanine) films on silver exhibited Raman intensity enhancement as compared to those on glass, which was attributed to the SPR effect of silver platform and might play a role as a hot plate for SERS detection of biomaterials.

  6. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    PubMed

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  7. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy

    PubMed Central

    Das, Nandan K.; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya

    2017-01-01

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field. PMID:28686212

  8. Study and application of new Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Qiushi; Zhang, Xiaohua

    2016-03-01

    Spatially Offset Raman Spectroscopy (SORS) is a new type of Raman Spectroscopy technology, which can detect the medium concealed in the opaque or sub-transparent material fast and nondestructively. The article summarized Spatially Offset Raman Spectroscopy`s international and domestic study and application progress on contraband detecting, medical science (bone ingredient, cancer diagnose etc.), agricultural products, historical relic identification etc. and stated the technology would become an effective measurement which had wide application prospect.

  9. Surface-enhanced Raman spectroscopy of hexabenzobenzene, C24H12, an analogue of a graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Owens, Frank J.

    2018-05-01

    While large scale fabrication of graphene nanoribbons remains a challenge, there exist materials which can be fabricated in quantities such as hexabenzobenzene,HBZB, (C24H12) and which have a two-dimensional (2D) carbon structure similar to graphene nanostructures. Using a 632 nm laser, no Raman spectra could be obtained from the solid material because of a strong luminescence produced by the laser. However, surface-enhanced Raman spectroscopy enabled the measurement of some of the Raman active modes. The G and D modes, which are characteristic fingerprints of a 2D graphene structure, were observed at 1331 and 1600 cm-1, respectively. Density functional theory at the B3LYP/6-31G* level was used to calculate the minimum energy structure and the Raman active vibrational frequencies of HBZB. The calculated minimum energy structure was 2D having D6h symmetry in agreement with the experimental structure in the liquid phase. The calculated frequencies were in good agreement with the measured values.

  10. Raman and surface enhanced Raman spectroscopy of amino acids and peptide

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojuan; Gu, Huaimin; Wu, Jiwei; Kang, Jian; Dong, Xiao

    2009-08-01

    Surface enhanced Raman scattering (SERS) is potentially tool in the characterization of biomolecules such as amino acids, complicated peptides and proteins, and even tissues or living cells. Amino acids and short peptides contain different functional groups. Therefore, they are suitable for the investigations of the competitive-interactions of these functional groups with colloidal silver surfaces. In this paper, Normal Raman and SERS of amino acids Leucine and Isoleucine and short peptide Leu-Leu were measured on the silver colloidal substrate. Raman shifts that stem from different vibrational mode in the molecular inner structure, and the variations of SERS of the samples were analyzed in this study. The results show that different connection of one methyl to the main chains of the isomer amino acids resulted in different vibration modes in the Normal Raman spectra of Leucine and Isoleucine. In the SERS spectra of the isomer amino acids, all frequency shifts are expressed more differently than those in Normal Raman spectra of solid state. Orientation of this isomer amino acids, as well as specific-competitive interactions of their functional groups with the colloidal silver surface, were speculated by detailed spectral analysis of the obtained SERS spectra. In addition, the dipeptide Leu-Leu, as the corresponding homodipeptide of Leucine, was also measured adsorbed on the colloidal silver surface. The SERS spectrum of Leu-Leu is different from its corresponding amino acid Leucine but both of them are adsorbed on the silver surface through the carboxylate moiety.

  11. Raman scattering excitation spectroscopy of monolayer WS2.

    PubMed

    Molas, Maciej R; Nogajewski, Karol; Potemski, Marek; Babiński, Adam

    2017-07-11

    Resonant Raman scattering is investigated in monolayer WS 2 at low temperature with the aid of an unconventional technique, i.e., Raman scattering excitation (RSE) spectroscopy. The RSE spectrum is made up by sweeping the excitation energy, when the detection energy is fixed in resonance with excitonic transitions related to either neutral or charged excitons. We demonstrate that the shape of the RSE spectrum strongly depends on the selected detection energy. The resonance of outgoing light with the neutral exciton leads to an extremely rich RSE spectrum, which displays several Raman scattering features not reported so far, while no clear effect on the associated background photoluminescence is observed. Instead, when the outgoing photons resonate with the negatively charged exciton, a strong enhancement of the related emission occurs. Presented results show that the RSE spectroscopy can be a useful technique to study electron-phonon interactions in thin layers of transition metal dichalcogenides.

  12. Preparation of surface enhanced Raman substrate and its characterization

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  13. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    NASA Astrophysics Data System (ADS)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  14. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  15. Optical phonon modes of III-V nanoparticles and indium phosphide/II-VI core-shell nanoparticles: A Raman and infrared study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia Speranta

    The prospects for realizing efficient nanoparticle light emitters in the visible/near IR for communications and bio-medical applications have benefited from progress in chemical fabrication of nanoparticles. III-V semiconductor nanopaticles such as GaP and InP are promising materials for the development of "blue" and "green" emitters, respectively, due to their large effective bandgaps. Enhanced emission efficiency has been achieved for core-shell nanoparticles, since inorganic shell materials increase electronic tunability and may decrease surface defects that often occur for nanoparticles capped with organic molecules. Also, the emission wavelength of InP nanoparticle cores can be tuned from green to red by changing the shell material in InP/II-VI core-shell nanoparticles. Investigations of phonon modes in nanocrystals are of both fundamental and applied interest. In the former case the optical phonon modes, such as surface/interface modes, are dependent on the nanoparticle dimensions, and also can provide information about dynamical properties of the nanoparticles and test the validity of various theoretical approaches. In the latter case the vibronic properties of nanoparticle emitters are controlled by confined phonons and modifications of the electron-phonon interaction by the confinement. Thus, the objective of the present thesis is the detailed study of the phonon modes of III-V nanoparticles (GaP and InP) and InP/II-VI core-shell nanoparticles by IR absorption and Raman scattering spectroscopies, and an elucidation of their complex vibrational properties. With the exception of three samples (two GaP and one InP), all samples were synthesized by a novel colloidal chemistry method, which does not requires added surfactant, but rather treatment of the corresponding precursors in octadecene noncoordinative solvent. Sample quality was characterized by ED, TEM and X-ray diffraction. Based on a comparison with a dielectric continuum model, the observed features

  16. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    PubMed

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of <10%, while the peak at 1573 cm(-1) has a RSD of >or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  17. Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tite, T.; Donnet, C.; Loir, A.-S.

    We have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated.

  18. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectramore » collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.« less

  19. FT-Raman Spectroscopy: A Catalyst for the Raman Explosion?

    ERIC Educational Resources Information Center

    Chase, Bruce

    2007-01-01

    The limitations of Fourier transform (FT) Raman spectroscopy, which is used to detect and analyze the scattered radiation, are discussed. FT-Raman has served to revitalize a field that was lagging and the presence of Raman instrumentation as a routine analytical tool is established for the foreseeable future.

  20. Highly sensitive determination of iron (III) ion based on phenanthroline probe: Surface-enhanced Raman spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Ma, Ning; Park, Yeonju; Jin, Sila; Hwang, Hoon; Jiang, Dayu; Jung, Young Mee

    2018-05-01

    In this paper, we introduced Raman spectroscopy techniques that were based on the traditional Fe3 + determination method with phenanthroline as a probe. Interestingly, surface-enhanced Raman spectroscopy (SERS)-based approach exhibited excellent sensitivities to phenanthroline. Different detection mechanisms were observed for the RR and SERS techniques, in which the RR intensity increased with increasing Fe3 + concentration due to the observation of the RR effect of the phenanthroline-Fe2 + complex, whereas the SERS intensity increased with decreasing Fe3 + concentration due to the observation of the SERS effect of the uncomplexed phenanthroline. More importantly, the determination sensitivity was substantially improved in the presence of a SERS-active substrate, giving a detection limit as low as 0.001 μg/mL, which is 20 times lower than the limit of the UV-vis and RR methods. Furthermore, the proposed SERS method was free from other ions interference and can be used quality and sensitivity for the determination of the city tap water.

  1. Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates.

    PubMed

    Peters, Robert F; Gutierrez-Rivera, Luis; Dew, Steven K; Stepanova, Maria

    2015-03-20

    Fabrication and characterization of conjugate nano-biological systems interfacing metallic nanostructures on solid supports with immobilized biomolecules is reported. The entire sequence of relevant experimental steps is described, involving the fabrication of nanostructured substrates using electron beam lithography, immobilization of biomolecules on the substrates, and their characterization utilizing surface-enhanced Raman spectroscopy (SERS). Three different designs of nano-biological systems are employed, including protein A, glucose binding protein, and a dopamine binding DNA aptamer. In the latter two cases, the binding of respective ligands, D-glucose and dopamine, is also included. The three kinds of biomolecules are immobilized on nanostructured substrates by different methods, and the results of SERS imaging are reported. The capabilities of SERS to detect vibrational modes from surface-immobilized proteins, as well as to capture the protein-ligand and aptamer-ligand binding are demonstrated. The results also illustrate the influence of the surface nanostructure geometry, biomolecules immobilization strategy, Raman activity of the molecules and presence or absence of the ligand binding on the SERS spectra acquired.

  2. Surface enhanced Raman spectroscopy as a point-of-care diagnostic for infection in wound effluent

    NASA Astrophysics Data System (ADS)

    Ghebremedhin, Meron; Yesupriya, Shubha; Crane, Nicole J.

    2016-03-01

    In military medicine, one of the challenges in dealing with large combat-related injuries is the prevalence of bacterial infection, including multidrug resistant organisms. This can prolong the wound healing process and lead to wound dehiscence. Current methods of identifying bacterial infection rely on culturing microbes from patient material and performing biochemical tests, which together can take 2-3 days to complete. Surface Enhanced Raman Spectroscopy (SERS) is a powerful vibrational spectroscopy technique that allows for highly sensitive structural detection of analytes adsorbed onto specially prepared metal surfaces. In the past, we have been able to discriminate between bacterial isolates grown on solid culture media using standard Raman spectroscopic methods. Here, SERS is utilized to assess the presence of bacteria in wound effluent samples taken directly from patients. To our knowledge, this is the first attempt for the application of SERS directly to wound effluent. The utilization of SERS as a point-of-care diagnostic tool would enable physicians to determine course of treatment and drug administration in a matter of hours.

  3. DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection.

    PubMed

    Qi, Lin; Xiao, Mingshu; Wang, Xiwei; Wang, Cheng; Wang, Lihua; Song, Shiping; Qu, Xiangmeng; Li, Li; Shi, Jiye; Pei, Hao

    2017-09-19

    The development of highly sensitive and selective methods for the detection of microRNA (miRNA) has attracted tremendous attention because of its importance in fundamental biological studies and diagnostic applications. In this work, we develop DNA-encoded Raman-active anisotropic nanoparticles modified origami paper analytical devices (oPADs) for rapid, highly sensitive, and specific miRNA detection. The Raman-active anisotropic nanoparticles were prepared using 10-mer oligo-A, -T, -C, and -G to mediate the growth of Ag cubic seeds into Ag nanoparticles (AgNPs) with different morphologies. The resulting AgNPs were further encoded with DNA probes to serve as effective surface-enhanced Raman scattering (SERS) probes. The analytical device was then fabricated on a single piece of SERS probes loaded paper-based substrate and assembled based on the principles of origami. The addition of the target analyte amplifies the Raman signals on DNA-encoded AgNPs through a target-dependent, sequence specific DNA hybridization assembly. This simple and low-cost analytical device is generic and applicable to a variety of miRNAs, allowing detection sensitivity down to 1 pM and assay time within 15 min, and therefore holds promising applications in point-of-care diagnostics.

  4. Development of a Loop Mediated Isothermal Amplification (LAMP) - Surface Enhanced Raman spectroscopy (SERS) Assay for the Detection of Salmonella Enterica Serotype Enteritidis.

    PubMed

    Draz, Mohamed Shehata; Lu, Xiaonan

    2016-01-01

    As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants.

  5. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.

    PubMed

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2012-07-17

    Raman spectroscopy is a vibrational spectroscopic technique capable of nondestructively probing endogenous biomolecules and their changes associated with dysplastic transformation in the tissue. The main objectives of this study are (i) to develop a simultaneous fingerprint (FP) and high-wavenumber (HW) confocal Raman spectroscopy and (ii) to investigate its diagnostic utility for improving in vivo diagnosis of cervical precancer (dysplasia). We have successfully developed an integrated FP/HW confocal Raman diagnostic system with a ball-lens Raman probe for simultaneous acquistion of FP/HW Raman signals of the cervix in vivo within 1 s. A total of 476 in vivo FP/HW Raman spectra (356 normal and 120 precancer) are acquired from 44 patients at clinical colposcopy. The distinctive Raman spectral differences between normal and dysplastic cervical tissue are observed at ~854, 937, 1001, 1095, 1253, 1313, 1445, 1654, 2946, and 3400 cm(-1) mainly related to proteins, lipids, glycogen, nucleic acids and water content in tissue. Multivariate diagnostic algorithms developed based on partial least-squares-discriminant analysis (PLS-DA) together with the leave-one-patient-out, cross-validation yield the diagnostic sensitivities of 84.2%, 76.7%, and 85.0%, respectively; specificities of 78.9%, 73.3%, and 81.7%, respectively; and overall diagnostic accuracies of 80.3%, 74.2%, and 82.6%, respectively, using FP, HW, and integrated FP/HW Raman spectroscopic techniques for in vivo diagnosis of cervical precancer. Receiver operating characteristic (ROC) analysis further confirms the best performance of the integrated FP/HW confocal Raman technique, compared to FP or HW Raman spectroscopy alone. This work demonstrates, for the first time, that the simultaneous FP/HW confocal Raman spectroscopy has the potential to be a clinically powerful tool for improving early diagnosis and detection of cervical precancer in vivo during clinical colposcopic examination.

  6. Strong surface enhanced Raman scattering from gold nanoarrays obtained by direct laser writing

    NASA Astrophysics Data System (ADS)

    Ivanov, V. G.; Todorov, N. D.; Petrov, L. S.; Ritacco, T.; Giocondo, M.; Vlakhov, E. S.

    2016-10-01

    We report for surface enhanced Raman scattering (SERS) from arrays of gold nanoparticles produced by 2-photons photo-reduction of the metallic precursor (HAuCl4) hosted in a Poly-Vinyl Alcohol (PVA) matrix, on glass substrates. Samples with the same pattern but featuring different nanoparticles size and density were obtained by varying the writing laser power and scanning speed. The Raman spectra were recorded from samples immersed in a solution of rhodamine-6G (R6G), as well as, after exposure of the samples in xylene. SERS enhancement factors of up to ∼104 were obtained for both analytes. The measurements show that the SERS enhancement is maximized on golden strips produced at higher writing laser power and lower scanning speed, where closer nanoparticles packing is obtained..

  7. Enhanced Plasmon Coupling in Crossed Dielectric/metal Nanowire Composite Geometries and Applications to Surface-enhanced Raman Spectroscopy

    DTIC Science & Technology

    2007-02-01

    January 2007; published online 27 February 2007" Surface-enhanced Raman spectroscopy !SERS" was performed on Ga2O3 /Ag and ZnO/Ag nanowires, which were... Ga2O3 nanowires was performed by the vapor-liquid-solid !VLS" growth mechanism,12,13 using Si!100" and Si!111" substrates14 and a 20 nm Au film. Ga...nm line of an Ar ion laser was used as the excitation source. The VLS growth resulted in Ga2O3 wires with a large number of crossings, as shown in Fig

  8. Synthesis of silver-platinum nanoferns substrates used in surface-enhanced Raman spectroscopy sensors to detect creatinine

    NASA Astrophysics Data System (ADS)

    Adliha Abdullah, Nur; Abu Bakar, Norhayati; Shapter, Joseph G.; Mat Salleh, Muhamad; Umar, Akrajas Ali

    2017-06-01

    Creatinine is one of the most commonly used bio markers of renal function. This paper reports a study on detection of creatinine using silver-platinum (AgPt) nanoferns substrates to fabricate a surface-enhanced Raman spectroscopy (SERS) sensor. The AgPt nanoferns were synthesized by liquid phase deposition (LPD) where the morphology structures and thickness of the AgPt nanoferns were controlled by varying the concentration of formic acid which was acting as the reducing agent. We have obtained four different nanoferns structures and thicknesses. This study showed that the AgPt nanoferns structure synthesized with 40 mM formic acid give the highest Raman peak intensity for a 0.05 M creatinine sample.

  9. Morphology modification of gold nanoparticles from nanoshell to C-shape: Improved surface enhanced Raman scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Ting-Yang; Zhu, Jian; Li, Jian-Jun

    Morphology modification of nanostructures is of great interest, because it can be used to fabricate nanostructures which are hard to be done using other methods. Different from traditional lithographic technique which is slow and expensive, morphology modification is easy, cheap, and reproducible. In this paper, modification of the optical and morphological properties of a hollow gold nanoshell (HGNS) is achieved by using H{sub 2}O{sub 2} as an oxidizer. The reshaping of these nanostructures has been demonstrated as a consequence of an oxidation process in which HGNSs are dissolved by H{sub 2}O{sub 2} under the acidic conditions provided by HCl. Wemore » investigate the oxidation process by a transmission electron microscope and propose a reshaping model involving four different shapes (HGNS, HGNS with hole, gold nanoring, and C-shaped gold nanoparticle) which are corresponding to the oxidation products of HGNSs at different pH values. Besides, the surface enhanced Raman scattering (SERS) activity of each oxidation product has been evaluated by using rhodamine 6G as the Raman active probe. It has been observed that the C-shaped gold nanoparticles which are corresponding to the oxidation products at the minimum pH value have the highest SERS activity and this result can also be interpreted by discrete-dipole approximation simulations. We demonstrate that the morphology modification of HGNSs becomes possible in a controlled manner using wet chemistry and can be used in preparation of gold nanoparticles such as HGNS with hole, gold nanoring, and C-shaped gold nanoparticle with large SERS activity. These nanostructures must have potential use in many plasmonic areas, including sensing, catalysis, and biomedicine.« less

  10. Self-assembled nanoparticle aggregates: Organizing disorder for high performance surface-enhanced spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasolato, C.; Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, Rome; Domenici, F., E-mail: fabiodomenici@gmail.com

    2015-06-23

    The coherent oscillations of the surface electron gas, known as surface plasmons, in metal nanostructures can give rise to the localization of intense electromagnetic fields at the metal-dielectric interface. These strong fields are exploited in surface enhanced spectroscopies, such as Surface Enhanced Raman Scattering (SERS), for the detection and characterization of molecules at very low concentration. Still, the implementation of SERS-based biosensors requires a high level of reproducibility, combined with cheap and simple fabrication methods. For this purpose, SERS substrates based on self-assembled aggregates of commercial metallic nanoparticles (Nps) can meet all the above requests. Following this line, we reportmore » on a combined micro-Raman and Atomic Force Microscopy (AFM) analysis of the SERS efficiency of micrometric silver Np aggregates (enhancement factors up to 10{sup 9}) obtained by self-assembly. Despite the intrinsic disordered nature of these Np clusters, we were able to sort out some general rules relating the specific aggregate morphology to its plasmonic response. We found strong evidences of cooperative effects among the NPs within the cluster and namely a clear dependence of the SERS-efficiency on both the cluster area (basically linear) and the number of stacked NPs layers. A cooperative action among the superimposed layers has been proved also by electromagnetic simulations performed on simplified nanostructures consisting of stacking planes of ordered Nps. Being clear the potentialities of these disordered self-assembled clusters, in terms of both easy fabrication and signal enhancement, we developed a specific nanofabrication protocol, based on electron beam lithography and molecular functionalization, that allowed for a fine control of the Np assemblies into designed shapes fixing their area and height. In particular, we fabricated 2D ordered arrays of disordered clusters choosing gold Nps owing to their high stability. AFM

  11. Surface enhanced Raman spectral studies of 2-bromo-1,4-naphthoquinone.

    PubMed

    Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O

    2015-03-05

    Silver nanoparticles have been synthesized by a simple and inexpensive solution combustion method with urea as fuel. The structural and morphology of the silver nanoparticles were investigated through X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion Spectra (EDS) techniques. Structural and morphological results confirmed the nanocrystalline nature of the silver nanoparticles. Density Functional Theory (DFT) calculations were also performed to study the ground and excited state behavior of 2-bromo-1,4-naphthoquinone (2-BrNQ) and 2-BrNQ on silver nanoparticles. Surface-Enhanced Raman Scattering (SERS) spectra of 2-BrNQ adsorbed on silver nanoparticles were investigated. The CO, CH in-plane bending and CBr stretching modes were enhanced in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the 2-BrNQ adsorbed 'stand-on' orientation on the silver surface. Density Functional Theory (DFT) calculations are also performed to study the vibrational features of 2-BrNQ molecule and 2-BrNQ molecule on silver surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Raman enhancement by graphene-Ga2O3 2D bilayer film

    PubMed Central

    2014-01-01

    2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications. PMID:24472433

  13. Raman enhancement by graphene-Ga2O3 2D bilayer film.

    PubMed

    Zhu, Yun; Yu, Qing-Kai; Ding, Gu-Qiao; Xu, Xu-Guang; Wu, Tian-Ru; Gong, Qian; Yuan, Ning-Yi; Ding, Jian-Ning; Wang, Shu-Min; Xie, Xiao-Ming; Jiang, Mian-Heng

    2014-01-28

    2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications.

  14. Analysis of 2-ethylhexyl-p-methoxycinnamate in sunscreen products by HPLC and Raman spectroscopy.

    PubMed

    Cheng, J; Li, Y S; L Roberts, R; Walker, G

    1997-10-01

    The analyses of 2-ethylhexyl-p-methoxycinnamate (EHMC) using HPLC and Raman spectroscopy have been undertaken and compared. EHMC, which is one of the most widely used sunscreen agents in suncare products in the US, exhibits a strong Raman signal. This signal clearly appears in both ethanol solutions of EHMC as well as in commercial sunscreen lotions containing this sun screen agent. A method for the direct detection and analysis of EHMC has been developed using Raman spectroscopy. This was accomplished by correlating the Raman intensities with the HPLC assays for a series of prototype suncare formulations. Based upon this information, it would be possible to employ Raman spectroscopy as an in-process control method in the commercial production of suncare products containing EHMC. The possibility of applying surface-enhanced Raman scattering for trace analysis was discussed.

  15. Tip-Enhanced Raman Imaging and Nano Spectroscopy of Etched Silicon Nanowires

    PubMed Central

    Kazemi-Zanjani, Nastaran; Kergrene, Erwan; Liu, Lijia; Sham, Tsun-Kong; Lagugné-Labarthet, François

    2013-01-01

    Tip-enhanced Raman spectroscopy (TERS) is used to investigate the influence of strains in isolated and overlapping silicon nanowires prepared by chemical etching of a (100) silicon wafer. An atomic force microscopy tip made of nanocrystalline diamond coated with a thin layer of silver is used in conjunction with an excitation wavelength of 532 nm in order to probe the first order optical phonon mode of the [100] silicon nanowires. The frequency shift and the broadening of the silicon first order phonon are analyzed and compared to the topographical measurements for distinct configuration of nanowires that are disposed in straight, bent or overlapping configuration over a microscope coverslip. The TERS spatial resolution is close to the topography provided by the nanocrystalline diamond tip and subtle spectral changes are observed for different nanowire configurations. PMID:24072021

  16. Sensing based on surface-enhanced Raman scattering using self-forming ZnO nanoarrays coated with gold as substrates

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Adam, Pierre-Michel; Rogers, David J.; Sandana, Vinod E.; Bove, Philippe; Teherani, Ferechteh H.

    2018-03-01

    Surface-Enhanced Raman spectroscopy (SERS) is a widely used technique adopted in both academia and industry for the detection of trace quantities of Raman active molecules. This is usually accomplished by functionalizing distributions of plasmonic metal nanoparticles with the analyte molecules. Recently metal-coated nanostructures have been investigated as alternatives to dispersions of metal nanoparticles in order to avoid clustering and homogeneity/reproducibility issues. In this paper, several samples of Au-coated ZnO nanoarrays are adopted as SERS substrates in order to investigate the molecular sensing capacity for methylene blue (MB) molecules. Self-forming ZnO nanoarrays were grown on both c-sapphire and silicon substrates by pulsed laser deposition. The nanoarrays were then coated with 30 nm of gold using thermal evaporation and the SERS signals of MB functionalized samples were obtained with a Raman microspectrometer. The ratio of SERS intensity to that of an MB functionalized glass substrate (ISERS/IRaman) was calculated based on the averaged SERS signals. A relatively good within-wafer homogeneity of the enhancement effect was found with ISERS/IRaman values as high as 64.2 for Au-coated nano ZnO grown on silicon substrates. The experimental results show that the Au-coated ZnO nanoarrays can be excellent SERS substrates for molecular/chemical analyte sensing.

  17. Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2017-07-01

    Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.

  18. Blood analysis by Raman spectroscopy.

    PubMed

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  19. The hallmarks of breast cancer by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  20. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing

    PubMed Central

    Bodelón, Gustavo; Montes-García, Verónica; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel

    2018-01-01

    Bacterial quorum sensing systems regulate the production of an ample variety of bioactive extracellular compounds that are involved in interspecies microbial interactions and in the interplay between the microbes and their hosts. The development of new approaches for enabling chemical detection of such cellular activities is important in order to gain new insight into their function and biological significance. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy has emerged as an ultrasensitive analytical tool employing rationally designed plasmonic nanostructured substrates. This review highlights recent advances of SERS spectroscopy for label-free detection and imaging of quorum sensing-regulated processes in the human opportunistic pathogen Pseudomonas aeruginosa. We also briefly describe the challenges and limitations of the technique and conclude with a summary of future prospects for the field. PMID:29868499

  1. Stand-off detection of explosives vapors by resonance-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Johansson, Ida; Ceco, Ema; Ehlerding, Anneli; Östmark, Henric

    2013-06-01

    This paper describes a system for stand-off vapor detection based on Resonant Raman spectroscopy, RRS. The system is a step towards a RRS LIDAR (Light Detection And Ranging) system, capable of detecting vapors from explosives and explosives precursors at long distances. The current system was used to detect the vapor of nitromethane and mononitrotoluene outdoors in the open air, at a stand-off distance of 11-13 meters. Also, the signal dependence upon irradiation wavelength and sample concentration was studied in controlled laboratory conditions. A tunable Optical Parametric Oscillator pumped by an Nd:YAG laser, with a pulse length of 6 ns, was operated in the UV range of interest, 210-400 nm, illuminating the sample vapor. The backscattered Raman signal was collected by a telescope and a roundto- slit optical fiber was used to transmit collected light to the spectrometer with minimum losses. A gated intensified charge-coupled device (ICCD) registered the spectra. The nitromethane cross section was resonance enhanced more than a factor 30 700, when measured at 220 nm, compared to the 532 nm value. The results show that a decrease in concentration can have a positive effect on the sensitivity of the system, due to a decrease in absorption and selfabsorption in the sample.

  2. Abnormal cubic-tetragonal phase transition of barium strontium titanate nanoparticles studied by in situ Raman spectroscopy and transmission electron microscopy heating experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yin; Chen, Chen; Gao, Ran

    2015-11-02

    Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transitionmore » from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.« less

  3. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-01

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen

  4. Ag nanoparticles agargel nanocomposites for SERS detection of cultural heritage interest pigments

    NASA Astrophysics Data System (ADS)

    Amato, F.; Micciche', C.; Cannas, M.; Gelardi, F. M.; Pignataro, B.; Li Vigni, M.; Agnello, S.

    2018-02-01

    Agarose gel (agargel) composites with commercial and laboratory made silver nanoparticles were prepared by a wet solution method at room temperature. The gel composites were used for pigment extraction and detection by Raman spectroscopy. Red (alizarin) and violet (crystal violet) pigments deposited on paper were extracted by the composites and were investigated by micro-Raman spectroscopy. Evaluation was carried out of the surface-enhanced Raman spectroscopy (SERS) effect induced by the silver nanoparticles embedded in the gel. A kinetic approach as a function of time was used to determine the efficiency of pigments extraction by composites deposition. A non-invasive extraction process of few minutes is demonstrated. This process induces active SERS for both used pigments. The reported results show the full exploitability of agargel silver nanoparticle composites for the extraction of pigments from paper based artworks.

  5. Application of silver films with different roughness parameter for septic human serum albumin detection by Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zyubin, A. Y.; Konstantinova, E. I.; Matveeva, K. I.; Slezhkin, V. A.; Samusev, I. G.; Demin, M. V.; Bryukhanov, V. V.

    2018-01-01

    In this paper, the rough silver films parameters investigation, used as media for surface enhancement Raman spectroscopy for health and septic human serum albumin (HSA) study results have been presented. The detection of small concentrations of HSA isolated from blood serum and it main vibrational groups identification has been done.

  6. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy

    PubMed Central

    Lin, Lei; Nie, Pengcheng; Qu, Fangfang; Chu, Bingquan; Xiao, Shupei

    2018-01-01

    Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS) was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm−1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best (Rp2 = 0.94, RMSEP = 3.17 mg/L) after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm−1 was the highest (R2 = 0.91). Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products. PMID:29617288

  7. Rapid Determination of Thiabendazole Pesticides in Rape by Surface Enhanced Raman Spectroscopy.

    PubMed

    Lin, Lei; Dong, Tao; Nie, Pengcheng; Qu, Fangfang; He, Yong; Chu, Bingquan; Xiao, Shupei

    2018-04-04

    Thiabendazole is widely used in sclerotium blight, downy mildew and black rot prevention and treatment in rape. Accurate monitoring of thiabendazole pesticides in plants will prevent potential adverse effects to the Environment and human health. Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive fingerprint with the advantages of simple operation, convenient portability and high detection efficiency. In this paper, a rapid determination method of thiabendazole pesticides in rape was conducted combining SERS with chemometric methods. The original SERS were pretreated and the partial least squares (PLS) was applied to establish the prediction model between SERS and thiabendazole pesticides in rape. As a result, the SERS enhancing effect based on silver Nano-substrate was better than that of gold Nano-substrate, where the detection limit of thiabendazole pesticides in rape could reach 0.1 mg/L. Moreover, 782, 1007 and 1576 cm −1 could be determined as thiabendazole pesticides Raman characteristic peaks in rape. The prediction effect of thiabendazole pesticides in rape was the best ( R p 2 = 0.94, RMSEP = 3.17 mg/L) after the original spectra preprocessed with 1st-Derivative, and the linear relevance between thiabendazole pesticides concentration and Raman peak intensity at 782 cm −1 was the highest ( R² = 0.91). Furthermore, five rape samples with unknown thiabendazole pesticides concentration were used to verify the accuracy and reliability of this method. It was showed that prediction relative standard deviation was 0.70–9.85%, recovery rate was 94.71–118.92% and t value was −1.489. In conclusion, the thiabendazole pesticides in rape could be rapidly and accurately detected by SERS, which was beneficial to provide a rapid, accurate and reliable scheme for the detection of pesticides residues in agriculture products.

  8. Rapid Identification of Legionella Pathogenicity by Surface-Enhanced Raman Spectroscopy.

    PubMed

    Li, Jing; Qin, Tian; Jia, Xiao Xiao; Deng, Ai Hua; Zhang, Xu; Fan, Wen Hui; Huo, Shuai Dong; Wen, Ting Yi; Liu, Wen Jun

    2015-06-01

    To establish Surface-enhanced Raman Spectroscopy (SERS) can be used as a rapid and reliable method to distinguish virulent strain and mild strain of L. pneumophila. Mortality data were collected from company departments through administrative documents, death certificates, etc. Trend analyses of cancer mortality were performed on the basis of 925 cancer deaths between 2001 and 2010. Our results indicated that the peaks of high virulence strains reached ⋝4000. This criterion was verified by subsequent cell experiments. In addition, we also conducted SERS rapid identification on the virulence of several collected clinical strains and obtained accurate results. The present study indicates that the established SERS protocol can be used as a rapid and reliable method to distinguish virulent and mildly virulent strains of L. pneumophila, which can be further used in clinical samples. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  9. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Chen, Gang; Feng, Shangyuan; Pan, Jianji; Zheng, Xiongwei; Su, Ying; Chen, Yan; Huang, Zufang; Lin, Xiaoqian; Lan, Fenghua; Chen, Rong; Zeng, Haishan

    2012-06-01

    Studies with circulating ribonucleic acid (RNA) not only provide new targets for cancer detection, but also open up the possibility of noninvasive gene expression profiling for cancer. In this paper, we developed a surface-enhanced Raman scattering (SERS), platform for detection and differentiation of serum RNAs of colorectal cancer. A novel three-dimensional (3-D), Ag nanofilm formed by dry MgSO4 aggregated silver nanoparticles, Ag NP, as the SERS-active substrate was presented to effectively enhance the RNA Raman signals. SERS measurements were performed on two groups of serum RNA samples. One group from patients, n=55 with pathologically diagnosed colorectal cancer and the other group from healthy controls, n=45. Tentative assignments of the Raman bands in the normalized SERS spectra demonstrated that there are differential expressions of cancer-related RNAs between the two groups. Linear discriminate analysis, based on principal component analysis, generated features can differentiate the colorectal cancer SERS spectra from normal SERS spectra with sensitivity of 89.1 percent and specificity of 95.6 percent. This exploratory study demonstrated great potential for developing serum RNA SERS analysis into a useful clinical tool for label-free, noninvasive screening and detection of colorectal cancers.

  10. Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Zhang, Chang Xing; Deng, Li; Zhang, Guo Xin; Xu, Hai Jun; Sun, Xiao Ming

    2014-06-01

    A green, low-cost and highly efficient surface-enhanced Raman scattering (SERS) substrate was achieved by a chemical deposition of silver nanoparticles on a cicada wing, which has the large-scale nanosized protrusions on its surface. Employing the already-formed Ag/cicada wing as substrate for SERS detection, the detection limit for rhodamine 6G could reach 10-7M, the Raman enhancement factor of the substrate was as large as 106 and the relative standard deviation remains lower than 7%. The three-dimensional finite-difference time-domain simulation results showed that two types of inter-Ag-nanoparticle nanogaps in the formed geometry created a huge number of SERS "hot spots" where the electromagnetic field is substantially amplified and contributes to the higher SERS sensitivity. Meanwhile, the water contact angle of the SERS substrate is roughly 150°, which indicates the super-hydrophobic surface of the substrate. This feature may be conducive to the gathering of target molecules during the SERS detection, which in turn further improves the detection limit of target molecules. In order to improve the application of the substrate, thiram was used as the probe molecule, and the detection limit also reached 10-7 M. Meanwhile, the calibration of the Raman peak intensities of Rhodamine 6G and thiram allowed their quantitative detection. Therefore, the green and low-cost SERS substrates could be used for fast and quantitative detection of trace organic molecules. Our findings may contribute to the development of the green and low-cost SERS substrates and will allow the fast and quantitative detection of trace organic molecules.

  11. Raman spectroscopy in astrobiology.

    PubMed

    Jorge Villar, Susana E; Edwards, Howell G M

    2006-01-01

    Raman spectroscopy is proposed as a valuable analytical technique for planetary exploration because it is sensitive to organic and inorganic compounds and able to unambiguously identify key spectral markers in a mixture of biological and geological components; furthermore, sample manipulation is not required and any size of sample can be studied without chemical or mechanical pretreatment. NASA and ESA are considering the adoption of miniaturised Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for extinct or extant life signals. In this paper we review the advantages and limitations of Raman spectroscopy for the analysis of complex specimens with relevance to the detection of bio- and geomarkers in extremophilic organisms which are considered to be terrestrial analogues of possible extraterrestial life that could have developed on planetary surfaces.

  12. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    NASA Astrophysics Data System (ADS)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in

  13. Study on surface-enhanced Raman scattering efficiency of Ag core-Au shell bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Gu, Huaimin; Kang, Jian; Yuan, Xiaojuan

    2009-08-01

    In this article, the relationship between the states of Ag core-Au shell (core-shell) nanoparticles (NP) and the intensity of Raman scattering of analytes dissolved in the water and adsorbed on the NP was studied. The core-shell NP were synthesised by coating Au layers over Ag seeds by the method of "seed-growth". To highlight the advantage of the core-shell NP, Ag colloid and Au colloid were chosen for contrasting. The analyte that were chosen for this testing were methylene blue (MB) for the reason that MB has very strong signal in surface-enhanced Raman scattering (SERS). The SERS activity of optimalizing states of Ag and Au colloids were compared with that of core-shell NP when MB was used as analyte. In this study, sodium chloride, sodium sulfate and sodium nitrate were used as aggregating agents for Ag, Au colloids and core-shell NP, because anions have a strong influence on the SERS efficiency and the stability of colloids. The results indicate that core-shell NP can obviously enhance the SERS of MB. The aim of this study is to prove that compared with the metal colloid, the core-shell NP is a high efficiency SERS active substrate.

  14. Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy.

    PubMed

    Hua, Marti Z; Feng, Shaolong; Wang, Shuo; Lu, Xiaonan

    2018-08-30

    We report the development of a molecularly imprinted polymers-surface-enhanced Raman spectroscopy (MIPs-SERS) method for rapid detection and quantification of a herbicide residue 2,4-dichlorophenoxyacetic acid (2,4-D) in milk. MIPs were synthesized via bulk polymerization and utilized as solid phase extraction sorbent to selectively extract and enrich 2,4-D from milk. Silver nanoparticles were synthesized to facilitate the collection of SERS spectra of the extracts. Based on the characteristic band intensity of 2,4-D (391 cm -1 ), the limit of detection was 0.006 ppm and the limit of quantification was 0.008 ppm. A simple logarithmic working range (0.01-1 ppm) was established, satisfying the sensitivity requirement referring to the maximum residue level of 2,4-D in milk in both Europe and North America. The overall test of 2,4-D for each milk sample required only 20 min including sample preparation. This MIPs-SERS method has potential for practical applications in detecting 2,4-D in agri-foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Raman imaging of lipid bilayer membrane by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Mori, Motoaki; Abe, Shunsuke; Kondo, Takahiro; Saito, Yuika

    2018-04-01

    We investigated two-dimensional lipid bilayers by spectroscopic imaging with surface enhanced Raman spectroscopy (SERS). A DSPC lipid bilayer incubated on a glass substrate was coated with a thin layer of silver. Due to the strong electromagnetic enhancement of the silver film and the affinity to lipid molecules, the Raman spectrum of a single bilayer was obtained in a 1 s exposure time with 0.1 mW of incident laser power. In the C-H vibrational region of the spectra, which is sensitive to bilayer configurations, a randomly stacked area was dominated by the CH3 asymmetric-stretch mode, whereas flat areas including double bilayers showed typical SERS spectra. The spectral features of the randomly stacked area are explained by the existence of many free lipid molecules, which is supported by DFT calculations of paired DSPC molecules. Our method can be applied to reveal the local crystallinity of single lipid bilayers, which is difficult to assess by conventional Raman imaging.

  16. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles.

    PubMed

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-14

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10 -12  M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  17. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-01

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  18. A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles

    PubMed Central

    Garai, Ellis; Loewke, Nathan O.; Rogalla, Stephan; Mandella, Michael J.; Felt, Stephen A.; Friedland, Shai; Liu, Jonathan T. C.; Gambhir, Sanjiv S.; Contag, Christopher H.

    2015-01-01

    The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy. PMID:25923788

  19. Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy.

    PubMed

    Tabatabaei, Mohammadali; Wallace, Gregory Q; Caetano, Fabiana A; Gillies, Elizabeth R; Ferguson, Stephen S G; Lagugné-Labarthet, François

    2016-01-01

    The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (C 4 F 8 ) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.

  20. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.

    PubMed

    Zhang, Kun; Ji, Ji; Li, Yixin; Liu, Baohong

    2014-07-01

    Surface-enhanced Raman scattering (SERS) has proven to be promising for the detection of trace analytes; however, the precise nanofabrication of a specific and sensitive plasmonic SERS-active substrate is still a major challenge that limits the scope of its applications. In this work, gold nanoparticles are self-assembled into densely packed two-dimensional arrays at a liquid/liquid interface between dimethyl carbonate and water in the absence of template controller molecules. Both the simulation and experiment results show that the particles within these film-like arrays exhibit strong electromagnetic coupling and enable large amplification of Raman signals. In order to realize the level of sensing specificity, the surface chemistry of gold nanoparticles (Au NPs) is rationally tailored by incorporating an appropriate chemical moiety that specifically captures molecules of interest. The ease of fabrication and good uniformity make this platform ideal for in situ SERS sensing of trace targets in complex samples.

  1. Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Alajlan, Abdulrahman M.; Voronine, Dmitri V.; Sinyukov, Alexander M.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.

    2016-09-01

    Surface enhancement of molecular spectroscopic signals has been widely used for sensing and nanoscale imaging. Because of the weak electromagnetic enhancement of Raman signals on semiconductors, it is motivating but challenging to study the electromagnetic effect separately from the chemical effects. We report tip-enhanced Raman scattering measurements on Au and bulk MoS2 substrates using a metallic tip functionalized with copper phthalocyanine molecules and demonstrate similar gap-mode enhancement on both substrates. We compare the experimental results with theoretical calculations to confirm the gap-mode enhancement on MoS2 using a well-established electrostatic model. The functionalized tip approach allows for suppressing the background and is ideal for separating electromagnetic and chemical enhancement mechanisms on various substrates. Our results may find a wide range of applications in MoS2-based devices, sensors, and metal-free nanoscale bio-imaging.

  2. Raman spectroscopy of oral bacteria

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Zhu, Qingyuan; Quivey, Robert G.

    2003-10-01

    Raman spectroscopy has been employed to measure the varying concentrations of two oral bacteria in simple mixtures. Evaporated droplets of centrifuged mixtures of Streptococcus sanguis and Streptococcus mutans were analyzed via Raman microspectroscopy. The concentration of s. sanguis was determined based upon the measured Raman spectrum, using partial least squares cross-validation, with an r2 value of 0.98.

  3. Micro-mirror arrays for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, W. M.

    2015-03-01

    In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of

  4. Trace drug analysis by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Lee, Vincent Y.

    2000-12-01

    Drug overdose involves more than 10 percent of emergency room (ER) cases, and a method to rapidly identify and quantify the abused drug is critical to the ability of the ER physician to administer the appropriate care. To this end, we have been developing a surface-enhanced Raman (SER) active material capable of detecting target drugs at physiological concentrations in urine. The SER-active material consists of a metal-doped sol-gel that provides not only a million fold increase in sensitivity but also reproducible measurements. The porous silica network offers a unique environment for stabilizing SER active metal particles and the high surface area increase the interaction between the analyte and metal particles. The sol-gel has been coated on the inside walls of glass samples vials, such that urine specimens may simply be introduced for analysis. Here we present the surface-enhanced Raman spectra of a series of barbiturates, actual urine specimens, and a drug 'spiked' urine specimen. The utility of pH adjustment to suppress dominant biochemicals associated with urine is also presented.

  5. New explanation of Raman peak redshift in nanoparticles

    NASA Astrophysics Data System (ADS)

    Meilakhs, A. P.; Koniakhin, S. V.

    2017-10-01

    In this letter, we propose a new model that explains the Raman peak downshift observed in nanoparticles with respect to bulk materials. The proposed model takes into account discreteness of the vibrational spectra of nanoparticles. For crystals with a cubic lattice (Diamond, Silicon, Germanium) we give a relation between the displacement of Raman peak position and the size of nanoparticles. The proposed model does not include any uncertain parameters, unlike the conventionally used phonon confinement model (PCM), and can be employed for unambiguous nanoparticles size estimation.

  6. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    NASA Astrophysics Data System (ADS)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  7. Direct measurement of beta-agonists in swine hair extract in multiplexed mode by surface-enhanced Raman spectroscopy and microfluidic paper.

    PubMed

    Dou, Bin; Luo, Yong; Chen, Xu; Shi, Bo; Du, Yuguang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2015-02-01

    Bare gold nanoparticles selectively enhance the Raman signal of beta-agnonists in swine hair extract at 780 nm, which enables analysis of beta-agonists in swine hair extract without chemical labeling, purification, or separation. The analysis is multiplexable and the LOD of beta-agonists is around ng/mL in the assistance of microfluidic paper. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modulated Raman spectroscopy for enhanced identification of bladder tumor cells in urine samples.

    PubMed

    Canetta, Elisabetta; Mazilu, Michael; De Luca, Anna Chiara; Carruthers, Antonia E; Dholakia, Kishan; Neilson, Sam; Sargeant, Harry; Briscoe, Tina; Herrington, C Simon; Riches, Andrew C

    2011-03-01

    Standard Raman spectroscopy (SRS) is a noninvasive technique that is used in the biomedical field to discriminate between normal and cancer cells. However, the presence of a strong fluorescence background detracts from the use of SRS in real-time clinical applications. Recently, we have reported a novel modulated Raman spectroscopy (MRS) technique to extract the Raman spectra from the background. In this paper, we present the first application of MRS to the identification of human urothelial cells (SV-HUC-1) and bladder cancer cells (MGH) in urine samples. These results are compared to those obtained by SRS. Classification using the principal component analysis clearly shows that MRS allows discrimination between Raman spectra of SV-HUC-1 and MGH cells with high sensitivity (98%) and specificity (95%). MRS is also used to distinguish between SV-HUC-1 and MGH cells after exposure to urine for up to 6 h. We observe a marked change in the MRS of SV-HUC-1 and MGH cells with time in urine, indicating that the conditions of sample collection will be important for the application of this methodology to clinical urine samples.

  9. Structure-selective hot-spot Raman enhancement for direct identification and detection of trace penicilloic acid allergen in penicillin.

    PubMed

    Zhang, Liying; Jin, Yang; Mao, Hui; Zheng, Lei; Zhao, Jiawei; Peng, Yan; Du, Shuhu; Zhang, Zhongping

    2014-08-15

    Trace penicilloic acid allergen frequently leads to various fatal immune responses to many patients, but it is still a challenge to directly discriminate and detect its residue in penicillin by a chemosensing way. Here, we report that silver-coated gold nanoparticles (Au@Ag NPs) exhibit a structure-selective hot-spot Raman enhancement capability for direct identification and detection of trace penicilloic acid in penicillin. It has been demonstrated that penicilloic acid can very easily link Au@Ag NPs together by its two carboxyl groups, locating itself spontaneously at the interparticle of Au@Ag NPs to form strong Raman hot-spot. At the critical concentration inducing the nanoparticle aggregation, Raman-enhanced effect of penicilloic acid is ~60,000 folds higher than that of penicillin. In particular, the selective Raman enhancement to the two carboxyl groups makes the peak of carboxyl group at C6 of penicilloic acid appear as a new Raman signal due to the opening of β-lactam ring of penicillin. The surface-enhanced Raman scattering (SERS) nanoparticle sensor reaches a sensitive limit lower than the prescribed 1.0‰ penicilloic acid residue in penicillin. The novel strategy to examine allergen is more rapid, convenient and inexpensive than the conventional separation-based assay methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells.

    PubMed

    Li, Shengliang; Chen, Tao; Wang, Yunxia; Liu, Libing; Lv, Fengting; Li, Zhiliang; Huang, Yanyi; Schanze, Kirk S; Wang, Shu

    2017-10-16

    Development of Raman-active materials with enhanced and distinctive Raman vibrations in the Raman-silent region (1800-2800 cm -1 ) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water-soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne-state-dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman-silent region compared to alkyne-containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π-conjugated structure. PPE-based conjugated polymer nanoparticles (CPNs) were also prepared as Raman-responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Layer-by-layer polyelectrolyte coating for surface-enhanced Raman scattering on gold nanostars inside hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Burmistrova, Natalia A.; Bondarenko, Sergei D.; Bratashov, Daniil N.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Khlebtsov, Boris N.; Skibina, Julia S.; Goryacheva, Irina Y.

    2018-04-01

    Photonic crystal fibers with hollow core (HC PCFs) are a specific class of optical fibers characterized by microstructure with periodic holes oriented along fiber. The combination of HC PCF with Raman spectroscopy for biosensors creation is attractive in the terms of the low sample volume, the possibility to increase the integration time without sample degradation and maintaining constant focus during experiments. Here we propose layer-by-layer polyelectrolyte coating of HC PCF inner surface in order to obtain charge-selective absorption of analyte, stabilization of Surface-Enhanced Raman scattering (SERS)-active gold nanoparticles. Distance between SERS hotspots and glass reduces nonlinear signals from glass, and increases signal-to-noise ratio of SERS spectra.

  12. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  13. New Material for Surface-Enhanced Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farquharson, Stuart; Nelson, Chad; Lee, Yuan

    2004-01-01

    A chemical method of synthesis and application of coating materials that are especially suitable for surface-enhanced Raman spectroscopy (SERS) has been developed. The purpose of this development is to facilitate the utilization of the inherently high sensitivity of SERS to detect chemicals of interest (analytes) in trace amounts, without need for lengthy sample preparation. Up to now, the use of SERS has not become routine because the methods available have not been able to reproduce sampling conditions and provide quantitative measurements. In contrast, the coating materials of the present method enable analysis with minimum preparation of samples, and SERS measurements made using these materials are reproducible and reversible. Moreover, unlike in methods investigated in prior efforts to implement SERS, sampling is not restricted to such specific environments as electrolytes or specific solvents. The coating materials of this method are porous glasses, formed in sol-gel processes, that contain small particles of gold or silver metal. Materials of this type can be applied to the sample-contact surfaces of a variety of sampling and sensing devices, including glass slides, glass vials, fiber-optic probes, and glass tubes. Glass vials with their insides coated according to this method are particularly convenient for SERS to detect trace chemicals in solutions: One simply puts a sample solution containing the analyte(s) into a vial, then puts the vial into a Raman spectrometer for analysis. The chemical ingredients and the physical conditions of the sol-gel process have been selected so that the porous glass formed incorporates particles of the desired metal with size(s) to match the wavelength(s) of the SERS excitation laser in order to optimize the generation of surface plasmons. The ingredients and processing conditions have further been chosen to tailor the porosity and polarity of the glass to optimize the sample flow and the interaction between the analyte

  14. Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs.

    PubMed

    Li, Dan; Zhu, Qingxia; Lv, Diya; Zheng, Binxing; Liu, Yanhua; Chai, Yifeng; Lu, Feng

    2015-08-01

    By using a silver nanoparticle wiper as a surface-enhanced Raman scattering substrate, a highly sensitive, convenient, and rapid platform for detecting dye adulteration of medicinal herbs was obtained. Commercially available filter paper was functionalized with silver nanoparticles to transform it into the flexible wiper. This device was found to collect dye molecules with unprecedented ease. Experiments were performed to optimize various factors such as the type of wiper used, the wetting reagent, and the wetting/wiping mode and time. Excellent wiper performance was observed in the detection of the simulated adulteration of samples with dyes at various concentrations. The limits of detection for nine dyes, including 10(-6) g/mL for malachite green, 10(-7) g/mL for Rhodamine 6G, and 5 × 10(-8) g/mL for methylene blue, were discerned. The results of this investigation show that this proposed method is potentially highly advantageous for field-based applications. Graphical Abstract Schematic diagram illustrating the fabrication of the paper-based SERS substrate, sample collection process on a herb and SERS examination with the portable Raman spectrometer.

  15. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  16. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamma, Venkata Ananth; Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol andmore » l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.« less

  17. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering.

    PubMed

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian

    2015-10-28

    In this study, we demonstrated nitrogen-doped graphene network supported few-layered graphene shell encapsulated Cu nanoparticles (NPs) (Cu@G-NGNs) as a sensing platform, which were constructed by a simple and scalable in situ chemical vapor deposition (CVD) technique with the assistance of a self-assembled three-dimensional (3D) NaCl template. Compared with pure Cu NPs and graphene decorated Cu NPs, the graphene shells can strengthen the plasmonic coupling between graphene and Cu, thereby contributing to an obvious improvement in the local electromagnetic field that was validated by finite element numerical simulations, while the 3D nitrogen-doped graphene walls with a large surface area facilitated molecule adsorption and the doped nitrogen atoms embedded in the graphene lattice can reduce the surface energy of the system. With these merits, a good surface enhanced Raman spectroscopy (SERS) activity of the 3D Cu@G-NGN painting film on glass was demonstrated using rhodamine 6G and crystal violet as model analytes, exhibiting a satisfactory sensitivity, reproducibility and stability. As far as we know, this is the first report on the in situ synthesis of nitrogen-doped graphene/copper nanocomposites and this facile and low-cost Cu-based strategy tends to be a good supplement to Ag and Au based substrates for SERS applications.

  18. Surface-enhanced Raman spectroscopy study on the structure changes of 4-Mercaptophenylboronic Acid under different pH conditions

    NASA Astrophysics Data System (ADS)

    Su, Hongyang; Wang, Yue; Yu, Zhi; Liu, Yawen; Zhang, Xiaolei; Wang, Xiaolei; Sui, Huimin; Sun, Chengbin; Zhao, Bing

    2017-10-01

    4-Mercaptophenylboronic Acid (4-MPBA) plays pivotal role in various fields. The orientation and existing form of the 4-MPBA strongly depend on the pH value of the media. The general aim of this work is to obtain information about the structure changes of 4-MPBA absorbed on Ag nanoparticles in different pH environment. Surface-enhanced Raman spectroscopy (SERS) technique is a simple and rapid method to study adsorption phenomena at molecule level. The investigation is done by means of SERS. In order to interpret the experimental information, a series of SERS spectra is carried out. The relative intensities of the totally symmetric (a1 mode) and non-totally symmetric (b2 mode) bands in the SERS spectra of 4-MPBA change depend on the environmental pH values, which is a manifestation of charge transfer (CT) processes. The degree of charge transfer increases with the pH value of the media changing from acidity to alkalinity. The structure changes of MPBA had been carried out in different pH environment. We envision that this approach will be of great significance in related fields of 4-MPBA-involved detection.

  19. Vibrational fingerprinting of bacterial pathogens by surface enhanced Raman scattering (SERS)

    NASA Astrophysics Data System (ADS)

    Premasiri, W. Ranjith; Moir, D. T.; Ziegler, Lawrence D.

    2005-05-01

    The surface enhanced Raman scattering (SERS) spectra of vegetative whole-cell bacteria were obtained using in-situ grown gold nanoparticle cluster-covered silicon dioxide substrates excited at 785 nm. SERS spectra of Gram-negative bacteria; E. coli and S. typhimurium, and Gram-positive bacteria; B. subtilis, B. cereus, B. thuringeinsis and B. anthracis Sterne, have been observed. Raman enhancement factors of ~104-105 per cell are found for both Gram positive and Gram negative bacteria on this novel SERS substrate. The bacterial SERS spectra are species specific and exhibit greater species differentiation and reduced spectral congestion than their corresponding non-SERS (bulk) Raman spectra. Fluorescence observed in the 785 nm excited bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. The surface enhancement effect allows the observation of Raman spectra at the single cell level excited by low incident laser powers (< 3 mW) and short data acquisition times (~20 sec.). Comparison with previous SERS studies suggests that these SERS vibrational signatures are sensitively dependent on the specific morphology and nature of the SERS active substrate. Exposure to biological environments, such as human blood serum, has an observable effect on the bacterial SERS spectra. However, reproducible, species specific SERS vibrational fingerprints are still obtained. The potential of SERS for detection and identification of bacteria with species specificity on these gold nanoparticle coated substrates is demonstrated by these results.

  20. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    PubMed

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  1. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  2. In vitro biomechanical properties, fluorescence imaging, surface-enhanced Raman spectroscopy, and photothermal therapy evaluation of luminescent functionalized CaMoO4:Eu@Au hybrid nanorods on human lung adenocarcinoma epithelial cells

    PubMed Central

    Li, Qifei; Parchur, Abdul K.; Zhou, Anhong

    2016-01-01

    Abstract Highly dispersible Eu3+-doped CaMoO4@Au-nanorod hybrid nanoparticles (HNPs) exhibit optical properties, such as plasmon resonances in the near-infrared region at 790 nm and luminescence at 615 nm, offering multimodal capabilities: fluorescence imaging, surface-enhanced Raman spectroscopy (SERS) detection and photothermal therapy (PTT). HNPs were conjugated with a Raman reporter (4-mercaptobenzoic acid), showing a desired SERS signal (enhancement factor 5.0 × 105). The HNPs have a heat conversion efficiency of 25.6%, and a hyperthermia temperature of 42°C could be achieved by adjusting either concentration of HNPs, or laser power, or irradiation time. HNPs were modified with antibody specific to cancer biomarker epidermal growth factor receptor, then applied to human lung cancer (A549) and mouse hepatocyte cells (AML12), and in vitro PTT effect was studied. In addition, the biomechanical properties of A549 cells were quantified using atomic force microscopy. This study shows the potential applications of these HNPs in fluorescence imaging, SERS detection, and PTT with good photostability and biocompatibility. PMID:27877887

  3. Surface enhanced Raman spectroscopy for urinary tract infection diagnosis and antibiogram

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Kyriakides, Alexandros; Pitris, Constantinos

    2010-02-01

    Urinary tract infection diagnosis and antibiogram require a minimum of 48 hours using standard laboratory practice. This long waiting period contributes to an increase in recurrent infections, rising health care costs, and a growing number of bacterial strains developing resistance to antibiotics. In this work, Surface Enhanced Raman Spectroscopy (SERS) was used as a novel method for classifying bacteria and determining their antibiogram. Five species of bacteria were classified with > 90% accuracy using their SERS spectra and a classification algorithm involving novel feature extraction and discriminant analysis. Antibiotic resistance or sensitivity was determined after just a two-hour exposure of bacteria to ciprofloxacin (sensitive) and amoxicillin (resistant) and analysis of their SERS spectra. These results can become the basis for the development of a novel method that would provide same day diagnosis and selection of the most appropriate antibiotic for most effective treatment of a urinary tract infection.

  4. Discrimination of rectal cancer through human serum using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Zhang, Su; Jin, Lili

    2015-05-01

    In this paper, surface-enhanced Raman spectroscopy (SERS) was used to detect the changes in blood serum components that accompany rectal cancer. The differences in serum SERS data between rectal cancer patients and healthy controls were examined. Postoperative rectal cancer patients also participated in the comparison to monitor the effects of cancer treatments. The results show that there are significant variations at certain wavenumbers which indicates alteration of corresponding biological substances. Principal component analysis (PCA) and parameters of intensity ratios were used on the original SERS spectra for the extraction of featured variables. These featured variables then underwent linear discriminant analysis (LDA) and classification and regression tree (CART) for the discrimination analysis. Accuracies of 93.5 and 92.4 % were obtained for PCA-LDA and parameter-CART, respectively.

  5. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  6. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process

    NASA Astrophysics Data System (ADS)

    Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank; Maiwald, Michael

    2017-03-01

    A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions.

  7. Enhancement of the Optoelectronic Properties of PEDOT: PSS-PbS Nanoparticles Composite Thin Films Through Nanoparticles' Capping Ligand Exchange

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, Diana F.; Hernández-Casillas, Laura P.; Sepúlveda-Guzmán, Selene; Vazquez-Rodriguez, Sofia; García-Gutiérrez, Domingo I.

    2018-02-01

    The influence of the capping ligand on nanoparticles' optical and electronic properties is a topic of great interest currently being investigated by several research groups in different countries. In the present study, PbS nanoparticles originally synthesized with oleic acid, myristic acid and hexanoic acid underwent a ligand exchange process to replace the original carboxylic acid for uc(l)-cysteine as the capping layer, and were thoroughly characterized by means of transmission electron microscopy and its related techniques, such as energy dispersive x-ray spectroscopy and scanning-transmission electron microscopy, and Fourier transform infrared, Raman and x-ray photoelectron spectroscopy. Afterwards, these PbS nanoparticles were dispersed into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) matrix to fabricate a composite thin film which displayed the optical absorption properties of the PbS nanoparticles and the electrical transport properties of the PEDOT:PSS matrix, in order to evaluate the impact of the nanoparticles' capping ligand on the optoelectronic properties of the fabricated composite thin films. Composite thin films with PbS nanoparticles showing uc(l)-cysteine as the capping layer displayed clear photoresponse and a threefold increment in their conductivities compared to pristine PEDOT:PSS. The properties of PEDOT:PSS, known as a hole transport layer in most organic photovoltaic devices, were enhanced by adding PbS nanoparticles with different capping ligands, producing a promising composite material for optoelectronic applications by proper selection of the nanoparticles' capping layer.

  8. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement

    PubMed Central

    Kong, Chae-Ryon; Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong; Galindo, Luis; Dasari, Ramachandra R.; Feld, Michael S.

    2011-01-01

    Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scattered photons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests. PMID:22125761

  9. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-01

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.

  10. Rapid identification of staphylococci by Raman spectroscopy.

    PubMed

    Rebrošová, Katarína; Šiler, Martin; Samek, Ota; Růžička, Filip; Bernatová, Silvie; Holá, Veronika; Ježek, Jan; Zemánek, Pavel; Sokolová, Jana; Petráš, Petr

    2017-11-01

    Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.

  11. Electronic resonances in broadband stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  12. Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement.

    PubMed

    Jasuja, Kabeer; Berry, Vikas

    2009-08-25

    Interfacing electron-rich metal nanoparticles with graphene derivatives can sensitively regulate the properties of the resultant hybrid with potential applications in metal-doped graphene field-effect transistors (FETs), surface-enhanced Raman spectroscopy, and catalysis. Here, we show that by controlling the rate of diffusion and catalytic reduction of gold ions on graphene oxide (GO), dendritic "snowflake-shaped" gold nanostructures (SFGNs) can be templated on graphene. The structural features of the SFGNs and their interfacing mechanism with GO were characterized by microscopic analysis and Raman-scattering. We demonstrate that (a) SFGNs grow on GO-surface via diffusion limited aggregation; (b) SFGN's morphology (dendritic to globular), size (diameter of 150-500 nm and a height of 45-55 nm), coverage density, and dispersion stability can be controlled by regulating the chemiophysical forces; (c) SFGNs enhance the Raman signal by 2.5 folds; and (d) SFGNs act as antireduction resist during GO-SFGN's chemical reduction. Further, the SFGNs interfacing with graphene reduces the apparent band gap (from 320 to 173 meV) and the Schottky barrier height (from 126 to 56 meV) of the corresponding FET.

  13. A DFT study on surface-enhanced Raman spectroscopy of aromatic dithiol derivatives adsorbed on gold nanojunctions

    NASA Astrophysics Data System (ADS)

    You, Tingting; Lang, Xiufeng; Huang, Anping; Yin, Penggang

    2018-01-01

    A computational study on aromatic dithiol derivatives (HS-Ar-X-Ar-SH, X = O, S, Se, NH, CH2, Ndbnd N, CHdbnd CH, Ctbnd C) interacting with gold cluster(s) was presented to investigate the chemical enhancement mechanism related to surface-enhanced Raman spectroscopy (SERS) for molecular junctions. Density functional theory (DFT) were performed on derivatives molecules as well as their single-end-linked (SEL) or double-end-linked (DEL) complexes for geometric, spectra, electronic and excitation properties, leading to discussions on dominant factor during SERS process. The resulted enhancement factors of SEL and DEL complexes exhibited specific dependency on linking atom or functional group between two phenyls, which was in accordance with the variation of polarizabilities and molecule-cluster transition energy.

  14. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.

    PubMed

    Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa

    2012-05-30

    Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Enhancement of Fluorescence and Raman Scattering in Cyanine-Dye Molecules on the Surface of Silicon-Coated Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamalieva, A. N.; Toropov, N. A.; Bogdanov, K. V.; Vartanyan, T. A.

    2018-03-01

    A method of formation of a composite structure based on silver nanoparticles and a thin protective silicon film (Ag NPs/Si) is developed. Enhancement of the fluorescence and Raman scattering in cyaninedye molecules deposited onto the formed nanostructure is observed. The optical properties and morphology stability of particles that are in contact with cyanine-dye solutions in organic solvents are studied. It is shown that the Ag NPs/Si composite structure can be multiply used as an SERS-active surface.

  16. Ultra-high sensitivity imaging of cancer using SERRS nanoparticles

    NASA Astrophysics Data System (ADS)

    Kircher, Moritz F.

    2016-05-01

    "Surface-enhanced Raman spectroscopy" (SERS) nanoparticles have gained much attention in recent years for in silico, in vitro and in vivo sensing applications. Our group has developed novel generations of biocompatible "surfaceenhanced resonance Raman spectroscopy" (SERRS) nanoparticles as novel molecular imaging agents. Via rigorous optimization of the different variables contributing to the Raman enhancement, we were able to design SERRS nanoparticles with so far unprecedented sensitivity of detection under in vivo imaging conditions (femto-attomolar range). This has resulted in our ability to visualize, with a single nanoparticle, many different cancer types (after intravenous injection) in mouse models. The cancer types we have tested so far include brain, breast, esophagus, stomach, pancreas, colon, sarcoma, and prostate cancer. All mouse models used are state-of-the-art and closely mimic the tumor biology in their human counterparts. In these animals, we were able to visualize not only the bulk tumors, but importantly also microscopic extensions and locoregional satellite metastases, thus delineating for the first time the true extent of tumor spread. Moreover, the particles enable the detection of premalignant lesions. Given their inert composition they are expected to have a high chance for clinical translation, where we envision them to have an impact in various scenarios ranging from early detection, image-guidance in open or minimally invasive surgical procedures, to noninvasive imaging in conjunction with spatially offset (SESORS) Raman detection devices.

  17. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering

    PubMed Central

    Lin, Kai-Qiang; Yi, Jun; Zhong, Jin-Hui; Hu, Shu; Liu, Bi-Ju; Liu, Jun-Yang; Zong, Cheng; Lei, Zhi-Chao; Wang, Xiang; Aizpurua, Javier; Esteban, Rubén; Ren, Bin

    2017-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interests as a highly sensitive label-free tool. The local field produced by the excitation of localized surface plasmon resonances (LSPRs) dominates the overall enhancement of SERS. Such an electromagnetic enhancement is unfortunately accompanied by a strong modification in the relative intensity of the original Raman spectra, which highly distorts spectral features providing chemical information. Here we propose a robust method to retrieve the fingerprint of intrinsic chemical information from the SERS spectra. The method is established based on the finding that the SERS background originates from the LSPR-modulated photoluminescence, which contains the local field information shared also by SERS. We validate this concept of retrieval of intrinsic fingerprint information in well controlled single metallic nanoantennas of varying aspect ratios. We further demonstrate its unambiguity and generality in more complicated systems of tip-enhanced Raman spectroscopy (TERS) and SERS of silver nanoaggregates. PMID:28348368

  18. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced raman scattering (SERS)

    USDA-ARS?s Scientific Manuscript database

    Silver/biopolymer nanoparticles were prepared by adding 100 mg silver nitrate to 2% polyvinyl alcohol solution and reduced the silver nitrate into silver ion using 2 % trisodium citrate for high performance Surface Enhanced Raman Scattering (SERS) substrates. Optical properties of nanoparticle were ...

  19. Rapid and label-free screening and identification of Anthrax simulants by Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lai, Antonia; Almaviva, Salvatore; Spizzichino, Valeria; Palucci, Antonio; Addari, Lorella; Luciani, Domenico; Mengali, Sandro; Marquette, Christophe; Berthuy, Ophélie; Jankiewicz, Bartlomiej; Pierno, Luigi

    2014-10-01

    In the framework of RAMBO (Rapid-Air Monitoring particle against biological threats) project of the European Defense Agency (EDA), the feasibility of an unattended Surface Enhanced Raman Spectroscopy (SERS) sensor for biological threats detection was investigated. Its main goal concern Bacillus anthrax detection, both as vegetative cells and endospores. However since such bacteria are classified in Risk Group 3 (very dangerous microorganism), Bacillus thuringiensis and Bacillus atrophaeus were used as simulants. In order to bind selectively the target bacilli, Phages properly selected were immobilized on an active commercially available SERS substrate (functionalization). The Phages are a type of virus that infect selectively, by means of receptors, specific bacteria. Moreover they can resist on water or air environments without losing their binding capabilities. The sensing surface was characterized by standard micro-Raman equipments to assess the background Raman features. The Raman measurements have been carried out from 10X to 100X of magnification to differentiate between average and local features. Moreover the fast response was acquired by limiting the measure time at less than 1 minute. Samples of vegetative cells and endospores of Bacilli were randomly dispersed on the functionalized SERS substrates. The results obtained are promising: samples with and without bacilli could be distinguished one from the other. This is a step toward the use of SERS as an effective and fast technique for early warning of biological threats.

  20. Hyper-Raman spectroscopy of Earth related materials

    NASA Astrophysics Data System (ADS)

    Hellwig, H.

    2004-12-01

    Raman and infrared spectroscopy proved extremely successful in obtaining structural information and thermodynamic data on samples under high pressure conditions in a diamond anvil cell [1,2]. With substantial advances in CCD detector technology and the possibility to focus visible laser light down to several microns, Raman spectroscopy can nowadays be regarded one of the standard techniques for diamond anvil cell investigations. Nevertheless, Raman scattering suffers from often strong fluorescence and the strong Raman signal of the diamonds. Infrared spectroscopy is limited by the sample size and the diffraction limit of mid- or far-infrared radiation. With increasing pressure, diamonds also show strong infrared activity, which can interfere with the signal from the sample. Detectors in the mid- and far-infrared are inherently noisy, often leading to low signal-to-noise ratios for infrared measurements. With new techniques and instrumentation available, such as low noise CCD cameras and stable diode-pumped solid state laser systems, more demanding techniques become feasible as well. Especially hyper-Raman scattering, a nonlinear optical variant of infrared spectroscopy, can be used on a more routine basis for the first time. Pioneering work in the 70s and 80s have explored some of the capabilities of Hyper-Raman spectroscopy [3]. Unlike infrared spectroscopy, Hyper-Raman is not limited by the diffraction limit of mid- or far-infrared radiation, typically restricting the lower frequency limit to several hundred wave numbers. The major advantages of hyper-Raman are essentially background free spectra and the use of wavelengths in the near-infrared and visible, making possible micro focusing and taking advantage of high efficiencies, low noise, and smooth wavelength dependencies of CCD detectors. Hyper-Raman does not suffer from saturation caused by strong absorption in the infrared and is therefore less sensitive to surface effects. For centrosymmetric materials

  1. Paper-based surfaced enhanced Raman spectroscopy for drug level testing with tear fluid

    NASA Astrophysics Data System (ADS)

    Yamada, Kenji; Yokoyama, Moe; Jeong, Hieyong; Kido, Michiko; Ohno, Yuko

    2015-07-01

    The purpose of this study was to show the effectiveness of therapeutic drug level testing by Paper-based Surfaced Enhanced Raman Spectroscopy (PSERS) for artificial lacrimal fluid. We have been used substrates which consist of a common filter paper and gold nano-rods. The targets were Phenobarbital (PB) which dissolved in artificial lacrimal fluid. We measured them using PSERS which the wavelength was 785nm, the power was 30mW. It was found that there were the strong peaks of PB at 997cm-1 and 1026cm-1 which corresponded with solid PB spectral peak for 1mM artificial lacrimal fluid. The results demonstrated the usefulness of this method. It is concluded that our method for therapeutic drug level testing is very efficient.

  2. Enhanced antimicrobial activities of silver-nanoparticle-decorated reduced graphene nanocomposites against oral pathogens.

    PubMed

    Peng, Jian-Min; Lin, Jia-Cheng; Chen, Zhuo-Yu; Wei, Meng-Chao; Fu, Yuan-Xiang; Lu, Shu-Shen; Yu, Dong-Sheng; Zhao, Wei

    2017-02-01

    As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Raman spectroscopic instrumentation and plasmonic methods for material characterization

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki

    The advent of nanotechnology has led to incredible growth in how we consume, make and approach advanced materials. By exploiting nanoscale material properties, unique control of optical, thermal, mechanical, and electrical characteristics becomes possible. This thesis describes the development of a novel localized surface plasmon resonant (LSPR) color sensitive photosensor, based on functionalization of gold nanoparticles onto tianium dioxide nanowires and sensing by a metal-semiconducting nanowire-metal photodiode structure. This LSPR photosensor has been integrated into a system that incorporates Raman spectroscopy, microfluidics, optical trapping, and sorting flow cytometry into a unique material characterization system called the microfluidic optical fiber trapping Raman sorting flow cytometer (MOFTRSFC). Raman spectroscopy is utilized as a powerful molecular characterization technique used to analyze biological, mineralogical and nanomaterial samples. To combat the inherently weak Raman signal, plasmonic methods have been applied to exploit surface enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR), increasing Raman intensity by up to 5 orders of magnitude. The resultant MOFTRSFC system is a prototype instrument that can effectively trap, analyze, and sort micron-sized dielectric particles and biological cells. Raman spectroscopy has been presented in several modalities, including the development of a portable near-infrared Raman spectrometer and other emerging technologies.

  4. Raman Enhancement Effect on Thin GaSe Flake and Its Thickness Dependence

    NASA Astrophysics Data System (ADS)

    Quan, Lin; Song, Yuqing; Zhang, Guanghui; Wu, Yukun; Jin, Ke; Ding, Huaiyi; Pan, Nan; Luo, Yi; Wang, Xiaoping

    Chemical enhancement is one of the important mechanisms in surface-enhanced Raman spectroscopy, however, its origin is still under debate. Two dimensional (2D) layered material is thought to be a strong candidate to investigate the chemical mechanism of Raman enhancement because it has flat surface, well defined structure and without the interference of electromagnetic enhancement. Herein we report the systematic studies of Raman enhancement effect on the gallium selenide (GaSe) flake by using copper phthalocyanine (CuPc) molecule as a probe. It is found that the Raman signal of CuPc on the monolayer GaSe can be significantly increased by one order of magnitude than that on the SiO2/Si substrate. Meanwhile, the enhancement effect is found to decrease with increasing the thickness of GaSe flake. The origin of the Raman enhancement is attributed to the chemical mechanism resulted from the charge transfer between the GaSe flake and the detected molecules. The supposition is further verified by the investigation of Raman enhancement effect of CuPc with different thicknesses on the GaSe flake. Our work will shed more light on the understanding of the chemical mechanism for Raman enhancement and expand more practical applications of GaSe.

  5. Tip-enhanced near-field Raman spectroscopy with a scanning tunneling microscope and side-illumination optics.

    PubMed

    Yi, K J; He, X N; Zhou, Y S; Xiong, W; Lu, Y F

    2008-07-01

    Conventional Raman spectroscopy (RS) suffers from low spatial resolution and low detection sensitivity due to the optical diffraction limit and small interaction cross sections. It has been reported that a highly localized and significantly enhanced electromagnetic field could be generated in the proximity of a metallic tip illuminated by a laser beam. In this study, a tip-enhanced RS system was developed to both improve the resolution and enhance the detection sensitivity using the tip-enhanced near-field effects. This instrument, by combining RS with a scanning tunneling microscope and side-illumination optics, demonstrated significant enhancement on both optical sensitivity and spatial resolution using either silver (Ag)-coated tungsten (W) tips or gold (Au) tips. The sensitivity improvement was verified by observing the enhancement effects on silicon (Si) substrates. Lateral resolution was verified to be below 100 nm by mapping Ag nanostructures. By deploying the depolarization technique, an apparent enhancement of 175% on Si substrates was achieved. Furthermore, the developed instrument features fast and reliable optical alignment, versatile sample adaptability, and effective suppression of far-field signals.

  6. Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ivashchenko, Olena; Jurga-Stopa, Justyna; Coy, Emerson; Peplinska, Barbara; Pietralik, Zuzanna; Jurga, Stefan

    2016-02-01

    This article presents a study on the detection of antibiotics in magnetite/Ag/antibiotic nanocomposites using Fourier transform infrared (FTIR) and Raman spectroscopy. Antibiotics with different spectra of antimicrobial activities, including rifampicin, doxycycline, cefotaxime, and ceftriaxone, were studied. Mechanical mixtures of antibiotics and magnetite/Ag nanocomposites, as well as antibiotics and magnetite nanopowder, were investigated in order to identify the origin of FTIR bands. FTIR spectroscopy was found to be an appropriate technique for this task. The spectra of the magnetite/Ag/antibiotic nanocomposites exhibited very weak (for doxycycline, cefotaxime, and ceftriaxone) or even no (for rifampicin) antibiotic bands. This FTIR "invisibility" of antibiotics is ascribed to their adsorbed state. FTIR and Raman measurements show altered Csbnd O, Cdbnd O, and Csbnd S bonds, indicating adsorption of the antibiotic molecules on the magnetite/Ag nanocomposite structure. In addition, a potential mechanism through which antibiotic molecules interact with magnetite/Ag nanoparticle surfaces is proposed.

  7. Detection of tobacco-related biomarkers in urine samples by surface-enhanced Raman spectroscopy coupled with thin-layer chromatography.

    PubMed

    Huang, Rongfu; Han, Sungyub; Li, Xiao Sheryl

    2013-08-01

    The nicotine metabolites, cotinine and trans-3'-hydroxycotinine (3HC) are considered as superior biomarkers for identifying tobacco exposure. More importantly, the ratio of 3HC to cotinine is a good indicator to phenotype individuals for cytochrome P450 2A6 activity and to individualize pharmacotherapy for tobacco addiction. In this paper, a simple, robust and novel method based on surface-enhanced Raman spectroscopy coupled with thin-layer chromatography (TLC) was developed to directly quantify the biomarkers in human urine samples. This is the first time surface-enhanced Raman spectroscopy (SERS) was used to detect cotinine and 3HC in urine samples. The linear dynamic range for the detection of cotinine is from 40 nM to 8 μM while that of 3HC is from 1 μM to 15 μM. The detection limits are 10 nM and 0.2 μM for cotinine and 3HC, respectively. The proposed method was further validated by quantifying the concentration of both cotinine and 3HC in smokers' urine samples. This TLC-SERS method allows the direct detection of cotinine in the urine samples of both active and passive smokers and the detection of 3HC in smokers.

  8. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  9. Development of high-sensitive, reproducible colloidal surface-enhanced Raman spectroscopy active substrate using silver nanocubes for potential biosensing applications

    NASA Astrophysics Data System (ADS)

    Hasna, Kudilatt; Lakshmi, Kiran; Ezhuthachan Jayaraj, Madambi Kunjukuttan; Kumar, Kumaran Rajeev; Matham, Murukeshan Vadakke

    2016-04-01

    Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the thrust research areas that could find potential applications in bio and chemical sensing. We developed colloidal SERS active substrate with excellent sensitivity and high reproducibility using silver nanocube (AgNC) synthesized via the solvothermal method. Finite-difference time-domain simulation was carried out in detail to visualize dipole generation in the nanocube during localized surface plasmon resonance and to locate the respective hot spots in AgNC responsible for the huge Raman enhancement. The prediction is verified by the SERS analysis of the synthesized nanocubes using Rhodamine 6G molecule. An excellent sensitivity with a detection limit of 10-17 M and a very high enhancement factor of 1.2×108 confirms the "hot spots" in the nanocube. SERS activity is also carried out for crystal violet and for food adulterant Sudan I molecule. Finally, label-free DNA detection is performed to demonstrate the versatility of SERS as a potential biosensor.

  10. Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument

    NASA Astrophysics Data System (ADS)

    Poggialini, F.; Campanella, B.; Giannarelli, S.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Safi, A.; Palleschi, V.

    2018-03-01

    When compared to other analytical techniques, LIBS shows relatively low precision and, generally, high Limits of Detection (LODs). Until recently, the attempts in improving the LIBS performances have been based on the use of more stable/powerful lasers, high sensitivity detectors or controlled environmental parameters. This can hinder the competitiveness of LIBS by increasing the instrumental setup cost and the difficulty of operation. Sample treatment has proved to be a viable and simple way to increase the LIBS signal; in particular, the Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) methodology uses a deposition of metal nanoparticles on the sample to greatly increase the emission of the LIBS plasma. In this work, we used a simple, fast, "green" and low-cost method to synthetize silver nanoparticles by using coffee extract as reducing agents for a silver nitrate solution. This allowed us to obtain nanoparticles of about 25 nm in diameter. We then explored the application of such nanoparticles to the NELIBS analysis of metallic samples with a mobile LIBS instrument. By adjusting the laser parameters and optimizing the sample preparation procedure, we obtained a NELIBS signal that is 4 times the LIBS one. This showed the potential of green-synthetized nanoparticle for NELIBS applications and suggests the possibility of an in-situ application of the technique.

  11. Microfluidic Channels on Nanopatterned Substrates: Monitoring Protein Binding to Lipid Bilayers with Surface-Enhanced Raman Spectroscopy

    PubMed Central

    Banerjee, Amrita; Perez-Castillejos, R.; Hahn, D.; Smirnov, Alex I.; Grebel, H.

    2013-01-01

    We used Surface Enhanced Raman Spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between microfluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells (Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules. PMID:24932024

  12. Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis.

    PubMed

    Brosseau, Christa L; Gambardella, Alessa; Casadio, Francesca; Grzywacz, Cecily M; Wouters, Jan; Van Duyne, Richard P

    2009-04-15

    Tailored ad-hoc methods must be developed for successful identification of minute amounts of natural dyes on works of art using Surface-Enhanced Raman Spectroscopy (SERS). This article details two of these successful approaches using silver film over nanosphere (AgFON) substrates and silica gel coupled with citrate-reduced Ag colloids. The latter substrate functions as the test system for the coupling of thin-layer chromatography and SERS (TLC-SERS), which has been used in the current research to separate and characterize a mixture of several artists' dyes. The poor limit of detection of TLC is overcome by coupling with SERS, and dyes which co-elute to nearly the same spot can be distinguished from each other. In addition, in situ extractionless non-hydrolysis SERS was used to analyze dyed reference fibers, as well as historical textile fibers. Colorants such as alizarin, purpurin, carminic acid, lac dye, crocin, and Cape jasmine were thus successfully identified.

  13. Raman Spectroscopy of Poly-Urea Formaldehyde Microcapsules

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina; Chipara, Mircea; Martinez, Melissa

    2015-03-01

    The objective of this research project was to add self-healing capabilities to polymeric nanocomposites. We used the ``classical'' method to obtain self-healing polymers with the addition of TiO2 nanoparticles in the self-healing system. Self-healing polymers are obtained by dispersion of first generation Grubbs catalysts and microcapsules filled with monomers (typically DCPD). These kind of ``smart materials'' are able to survive to high mechanical stress via the ignition of the so called ``autonomous self-healing mechanism'' which is actually a ring opening methatesis polymerization (ROMP) reaction triggered by mechanical stresses in excess over a threshold limit through the rupture of microcapsules and the release of the monomeric content. As a preliminary step for adding self-healing capabilities in nanocomposites, the synthesis of microcapsules filled with dicyclopentadiene (DCPD) is vital for the addition of self-healing capabilities to polymeric matrices. We synthesized polyurea-formaldehyde (PUF) microcapsules filled with monomer (DCPD) using the in-situ polymerization. The synthesis was monitored by Raman spectroscopy, optical microscopy, and pH measurements that has been extensively used as a non-invasive techniques in the characterization of polymers and monitoring of organic reactions. The goal of this research was to assess the formation of the microcapsules during synthesis and the presence of the DCPD in the microcapsules. Samples were taken during the synthesis every 30 minutes and analyzed by Raman spectroscopy, and optical microscopy keeping a control over the pH of the solution.

  14. Scanning Angle Raman spectroscopy in polymer thin film characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Vy H.T.

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directionsmore » for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.« less

  15. Micro-Raman spectroscopy for meat type detection

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C. W.; Wiedemair, V.; Balthasar, D.

    2015-06-01

    The recent horse meat scandal in Europe increased the demand for optical sensors that can identify meat type. Micro-Raman spectroscopy is a promising technique for the discrimination of meat types. Here, we present micro-Raman measurements of chicken, pork, turkey, mutton, beef and horse meat test samples. The data was analyzed with different combinations of data normalization and classification approaches. Our results show that Raman spectroscopy can discriminate between different meat types. Red and white meat are easily discriminated, however a sophisticated chemometric model is required to discriminate species within these groups.

  16. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors.

    PubMed

    Diaz, Roberto Jose; McVeigh, Patrick Z; O'Reilly, Meaghan A; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold B; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C; Rutka, James T

    2014-07-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50nm or 120nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. This study demonstrates the use of magnetic resonance image-guided transcranial focused ultrasound to open the BBB and enable spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS)-based molecular imaging for experimental tumor tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy

    PubMed Central

    Huang, Yi-Fan; Kooyman, Patricia J.; Koper, Marc T. M.

    2016-01-01

    Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts. PMID:27514695

  18. Infrared and NIR Raman spectroscopy in medical microbiology

    NASA Astrophysics Data System (ADS)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  19. Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Adamopoulos, G.; Robertson, J.; Morrison, N. A.; Godet, C.

    2004-12-01

    In the present study, we report the hydrogen content estimation of the hydrogenated amorphous carbon (a-C:H) films using visible Raman spectroscopy in a fast and nondestructive way. Hydrogenated diamondlike carbon films were deposited by the plasma enhanced chemical vapor deposition, plasma beam source, and integrated distributed electron cyclotron resonance techniques. Methane and acetylene were used as source gases resulting in different hydrogen content and sp2/sp3 fraction. Ultraviolet-visible (UV-Vis) spectroscopic ellipsometry (1.5-5eV ) as well as UV-Vis spectroscopy were provided with the optical band gap (Tauc gap). The sp2/sp3 fraction and the hydrogen content were independently estimated by electron energy loss spectroscopy and elastic recoil detection analysis-Rutherford back scattering, respectively. The Raman spectra that were acquired in the visible region using the 488nm line shows the superposition of Raman features on a photoluminescence (PL) background. The direct relationship of the sp2 content and the optical band gap has been confirmed. The difference in the PL background for samples of the same optical band gap (sp2 content) and different hydrogen content was demonstrated and an empirical relationship between the visible Raman spectra PL background slope and the corresponding hydrogen content was extracted.

  20. Principles and applications of Raman spectroscopy in pharmaceutical drug discovery and development.

    PubMed

    Gala, Urvi; Chauhan, Harsh

    2015-02-01

    In recent years, Raman spectroscopy has become increasingly important as an analytical technique in various scientific areas of research and development. This is partly due to the technological advancements in Raman instrumentation and partly due to detailed fingerprinting that can be derived from Raman spectra. Its versatility of applications, rapidness of collection and easy analysis have made Raman spectroscopy an attractive analytical tool. The following review describes Raman spectroscopy and its application within the pharmaceutical industry. The authors explain the theory of Raman scattering and its variations in Raman spectroscopy. The authors also highlight how Raman spectra are interpreted, providing examples. Raman spectroscopy has a number of potential applications within drug discovery and development. It can be used to estimate the molecular activity of drugs and to establish a drug's physicochemical properties such as its partition coefficient. It can also be used in compatibility studies during the drug formulation process. Raman spectroscopy's immense potential should be further investigated in future.

  1. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    PubMed

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  2. Surface-enhanced Raman sensor for trace chemical detection in water

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Farquharson, Stuart; Rainey, Petrie M.

    1999-11-01

    Surface-enhanced Raman spectroscopy (SERS) promises to be one of the most sensitive methods for chemical detection and in recent years SERS has been used for chemical, biochemical, environmental, and physiological applications. A variety of methods using various media (electrodes, colloids, and substrates) have been successfully developed to enhance Raman signals by six orders of magnitude and more. However, SERS has not become a routine analytical technique because these methods are unable to provide quantitative measurements. This is largely due to the inability to fabricate a sampling medium that provides reversible chemical adsorption, analysis-to-analysis reproducibility, unrestricted solution requirements (reagent concentration and pH) or sample phase (liquid or solid). In an effort to overcome these restrictions, we have developed metal-doped sol-gels to provide surface-enhancement of Raman scattering.

  3. Raman and photothermal spectroscopies for explosive detection

    NASA Astrophysics Data System (ADS)

    Finot, Eric; Brulé, Thibault; Rai, Padmnabh; Griffart, Aurélien; Bouhélier, Alexandre; Thundat, Thomas

    2013-06-01

    Detection of explosive residues using portable devices for locating landmine and terrorist weapons must sat- isfy the application criteria of high reproducibility, specificity, sensitivity and fast response time. Vibrational spectroscopies such as Raman and infrared spectroscopies have demonstrated their potential to distinguish the members of the chemical family of more than 30 explosive materials. The characteristic chemical fingerprints in the spectra of these explosives stem from the unique bond structure of each compound. However, these spectroscopies, developed in the early sixties, suffer from a poor sensitivity. On the contrary, MEMS-based chemical sensors have shown to have very high sensitivity lowering the detection limit down to less than 1 picogram, (namely 10 part per trillion) using sensor platforms based on microcantilevers, plasmonics, or surface acoustic waves. The minimum amount of molecules that can be detected depends actually on the transducer size. The selectivity in MEMS sensors is usually realized using chemical modification of the active surface. However, the lack of sufficiently selective receptors that can be immobilized on MEMS sensors remains one of the most critical issues. Microcantilever based sensors offer an excellent opportunity to combine both the infrared photothermal spectroscopy in their static mode and the unique mass sensitivity in their dynamic mode. Optical sensors based on localized plasmon resonance can also take up the challenge of addressing the selectivity by monitoring the Surface Enhanced Raman spectrum down to few molecules. The operating conditions of these promising localized spectroscopies will be discussed in terms of reliability, compactness, data analysis and potential for mass deployment.

  4. Periodontitis diagnostics using resonance Raman spectroscopy on saliva

    NASA Astrophysics Data System (ADS)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V.

    2013-07-01

    In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm-1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.

  5. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    PubMed

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  6. Detection and identification of Huo-Xue-Hua-Yu decoction (HXHYD) using surface-enhanced Raman scattering (SERS) spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Lin, Jia; Chen, Rong; Feng, Shangyuan; Yu, Yun; Lin, Duo; Huang, Meizhen; Shi, Hong; Huang, Hao

    2015-04-01

    We have evaluated the capabilities of surface-enhanced Raman scattering (SERS) technology for analyzing two Huo-Xue-Hua-Yu decoctions (HXHYDs) prepared according to different prescriptions. The aim of this study was to evaluate the relevance of SERS technology applied to decoction of traditional Chinese medicines (TCM). HXHYD I was prepared according to the original prescription; the same preparation method was used for the HXHYD II, except for the crudeweight ratio described in the original prescription. There was no Raman signal in conventional Raman spectra of HXHYDs. Silver nanoparticles were directly mixed with HXHYDs to enhance the Raman scattering of biochemical constituents, and high quality SERS spectra were obtained. Significant differences in SERS spectra between HXHYD I and II can be observed, which showed special changes in the percentage of biochemical constituents in different decoctions. Principal components analysis (PCA) combined with linear discriminant analysis (LDA) were employed to generate diagnostic algorithms for classification of SERS spectra of two HXHYDs, and showed that a diagnostic accuracy of 100% can be achieved. This work demonstrated that the SERS technique has potential for spectral characteristic detection for decoction of TCM with high sensitivity, and that this technique, combined with PCA-LDA, can be used for quality control of the extracted decoction of TCM and production management of Chinese herbal preparations.

  7. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers

    PubMed Central

    Wu, Mu-ying; Ling, Dong-xiong; Ling, Lin; Li, William; Li, Yong-qing

    2017-01-01

    Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints. PMID:28211526

  8. Monitoring cell culture media degradation using surface enhanced Raman scattering (SERS) spectroscopy.

    PubMed

    Calvet, Amandine; Ryder, Alan G

    2014-08-20

    The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Multivariate qualitative analysis of banned additives in food safety using surface enhanced Raman scattering spectroscopy.

    PubMed

    He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei

    2015-02-25

    A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Raman Spectroscopy of Microbial Pigments

    PubMed Central

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  11. Approximate chemical analysis of volcanic glasses using Raman spectroscopy

    PubMed Central

    Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.

    2015-01-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038

  12. Paper-basd surface enhanced Raman spectroscopy of pnenobarbital sodium for point-of-care therapeutic drug monitoring

    NASA Astrophysics Data System (ADS)

    Yokoyama, Moe; Yamada, Kenji; Nishimura, Takahiro; Kido, Michiko; Jeong, Hieyong; Ohno, Yuko

    2015-03-01

    Therapeutic drug monitoring (TDM) contributes to safe and effective pharmacotherapy in clinical fields. A simple, rapid, low-cost, and minimally-invasive drug measurement method attracts much interest for point-of-care TDM. Tear fluids can be collected minimally-invasively compared to blood sampling and there is a correlation between a drug concentration in tears and that in bloods. Surface enhanced Raman spectroscopy (SERS) with paper-based substrate is useful for point-of-care TDM owing to inexpensiveness and high-sensitivity. Paper is also a safe tear collection tool. Then we are studying on a paper-based SERS of tear specimen for point-of-care TDM. In this paper, to improve sensitivity in measuring drug concentration in tear fluids, we fabricated a SERS substrate by coating gold nano-rods on a paper substrate and evaluated whether the fabricated substrate can enhance Raman scattering. Sodium phenobarbital (PB), an anti-convulsant agent, was used as a target. In experiment, the fabricated substrate indicated the lower detection limit of PB in a solution than a plain paper substrate. This result showed the potential of the paper based SERS substrate to measure drug concentration in tears simply and inexpensively.

  13. Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis

    NASA Astrophysics Data System (ADS)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-06-01

    The inappropriate use of antibiotics leads to antibiotic resistance, which is a major health care problem. The current method for determination of bacterial susceptibility to antibiotics requires overnight cultures. However most of the infections cannot wait for the results to receive treatment, so physicians administer general spectrum antibiotics. This results in ineffective treatments and aggravates the rising problem of antibiotic resistance. In this work, a rapid method for diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. The advantages of this novel method include its rapidness and efficiency which will potentially allow doctors to prescribe the most appropriate antibiotic for an infection. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Bacterial strains were diluted in order to reach the concentration of (2x105 cfu/ml), cells/ml which is equivalent to the minimum concentration found in urine samples from UTIs. Even though the concentration of bacteria was low, species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. This technique can be applied directly to urine samples, and with the enhancement provided by SERS, this method has the potential to be developed into a rapid method for same day UTI diagnosis and antibiogram.

  14. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    NASA Astrophysics Data System (ADS)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  15. Combination of inverted pyramidal nanovoid with silver nanoparticles to obtain further enhancement and its detection for ricin

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Wang, Bin; Wu, Shixuan; Guo, Tingke; Li, Haoyu; Guo, Zhaoqing; Wu, Junhua; Jia, Peiyuan; Wang, Yuxia; Xu, Xiaoxuan; Wang, Yufang; Zhang, Cunzhou

    2015-02-01

    We have obtained the surface-enhanced Raman scattering substrate by depositing silver nanoparticles on the surface of the inverted pyramidal nanovoid in order to improve the enhance effects. Experimental results showed that the combined substrate exhibited greater enhancement than the nanovoid substrate or nanoparticles. In order to test the SERS activity of the combined substrates, Rh6G and ricin toxin were used as Raman probes. Finite element method was employed to simulate electric field and induced charge distribution of the substrates, which have been used to explore the interaction between nanoparticles and nanovoid as well as mechanism of the great enhancement.

  16. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    PubMed

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  17. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles

    PubMed Central

    Redding, Brandon; Schwab, Mark J.; Pan, Yong-le

    2015-01-01

    The combination of optical trapping with Raman spectroscopy provides a powerful method for the study, characterization, and identification of biological micro-particles. In essence, optical trapping helps to overcome the limitation imposed by the relative inefficiency of the Raman scattering process. This allows Raman spectroscopy to be applied to individual biological particles in air and in liquid, providing the potential for particle identification with high specificity, longitudinal studies of changes in particle composition, and characterization of the heterogeneity of individual particles in a population. In this review, we introduce the techniques used to integrate Raman spectroscopy with optical trapping in order to study individual biological particles in liquid and air. We then provide an overview of some of the most promising applications of this technique, highlighting the unique types of measurements enabled by the combination of Raman spectroscopy with optical trapping. Finally, we present a brief discussion of future research directions in the field. PMID:26247952

  18. Surface-enhanced hyper-Raman spectroscopy with a picosecond laser: gold and copper colloids

    NASA Astrophysics Data System (ADS)

    Lipscomb, Leigh Ann; Nie, Shuming; Feng, Sibo; Yu, Nai-Teng

    1990-07-01

    We have obtained surface-enhanced hyper-Raman scattering (SEHRS) spectra of crystal violet, rhodamine 6G and Ru(trpy) (BPE) 32+ adsorbed on gold and copper colloidal surfaces (where trpy=2,2',2″-terpyridine, BPE=trans-bis(4-pyridyl)ethylene). Our results demonstrate that the SEHRS effect is not intrinsically restricted to a Ag substrate and that surface enhancements at the emitted hyper-Raman photon frequencies are not required for observing SEHRS signals.

  19. Surface Enhanced Raman Scattering Monitoring of Chain Alignment in Freely Suspended Nanomembranes

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Lio, Wilber Y.; Tsukruk, Vladimir V.

    2005-09-01

    The molecular chain reorganization in freely standing membranes with encapsulated gold nanoparticles was studied with surface enhanced Raman scattering (SERS) in the course of their elastic deformations. The efficient SERS was enabled by optimizing the design of gold nanoparticle forming chainlike aggregates, thus creating an exceptional ability to conduct in situ monitoring. Small deformations resulted in the radial orientation of side phenyl rings of polymer backbones while larger deflections led to the polymer chains bridging adjacent nanoparticles within one-dimensional aggregates.

  20. Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances.

    PubMed

    Wiens, Roger C; Sharma, Shiv K; Thompson, Justin; Misra, Anupam; Lucey, Paul G

    2005-08-01

    Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) of solid samples have both been shown to be feasible with sample-to-instrument distances of many meters. The two techniques are very useful together, as the combination of elemental compositions from LIBS and molecular vibrational information from Raman spectroscopy strongly complement each other. Remote LIBS and Raman spectroscopy spectra were taken together on a number of mineral samples including sulfates, carbonates and silicates at a distance of 8.3 m. The complementary nature of these spectra is highlighted and discussed. A factor of approximately 20 difference in intensity was observed between the brightest Raman line of calcite, at optimal laser power, and the brighter Ca I LIBS emission line measured with 55 mJ/pulse laser power. LIBS and Raman spectroscopy have several obstacles to devising a single instrument capable of both techniques. These include the differing spectral ranges and required detection sensitivity. The current state of technology in these areas is discussed.

  1. Room Temperature Synthesis of Highly Monodisperse and Sers-Active Glucose-Reduced Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boitor, R. A.; Tódor, I. Sz.; Leopold, L. F.; Leopold, N.

    2015-07-01

    A novel method of synthesizing gold nanoparticles was developed through which glucose-coated nanospheres of high monodispersity were synthesized at room temperature. More than 85% of the nanoparticles showed a mean diameter of 8-9 nm. The nanoparticles were characterized through TEM, UV-Vis absorption spectroscopy, dynamic light scattering (DLS), and Zeta potential measurements and were found to be highly stable in colloidal form over time with a surface potential of -38.7 mV. The nanoparticles also showed a great Raman enhancing factor when they were tested as a surface-enhanced Raman scattering (SERS) substrate on various analytes such as rhodamine 6G, crystal violet chloride, cresyl violet chloride, rose bengal, and the Cu(II) 4-(2-pyridylazo)resorcinol complex at micromolar concentrations.

  2. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes.

    PubMed

    Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2010-05-12

    Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.

  3. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  4. Unraveling the Raman Enhancement Mechanism on 1T'-Phase ReS2 Nanosheets.

    PubMed

    Miao, Peng; Qin, Jing-Kai; Shen, Yunfeng; Su, Huimin; Dai, Junfeng; Song, Bo; Du, Yunchen; Sun, Mengtao; Zhang, Wei; Wang, Hsing-Lin; Xu, Cheng-Yan; Xu, Ping

    2018-04-01

    2D transition metal dichalcogenides materials are explored as potential surface-enhanced Raman spectroscopy substrates. Herein, a systematic study of the Raman enhancement mechanism on distorted 1T (1T') rhenium disulfide (ReS 2 ) nanosheets is demonstrated. Combined Raman and photoluminescence studies with the introduction of an Al 2 O 3 dielectric layer unambiguously reveal that Raman enhancement on ReS 2 materials is from a charge transfer process rather than from an energy transfer process, and Raman enhancement is inversely proportional while the photoluminescence quenching effect is proportional to the layer number (thickness) of ReS 2 nanosheets. On monolayer ReS 2 film, a strong resonance-enhanced Raman scattering effect dependent on the laser excitation energy is detected, and a detection limit as low as 10 -9 m can be reached from the studied dye molecules such as rhodamine 6G and methylene blue. Such a high enhancement factor achieved through enhanced charge interaction between target molecule and substrate suggests that with careful consideration of the layer-number-dependent feature and excitation-energy-related resonance effect, ReS 2 is a promising Raman enhancement platform for sensing applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tip enhanced Raman spectroscopy, DFT and PED calculations of 4″-trimethylsilylethylsulfanyl-4,4‧-di(phenyleneethynylene)benzene thiol adsorbed on silver

    NASA Astrophysics Data System (ADS)

    Fletcher, Melissa C.; Alexson, Dimitri M.; Moore, Martin M.; Prokes, S. M.; Glembocki, Orest; Vivoni, Alberto; McCoy, Rhonda; Mishra, Soni; Tandon, Poonam; Hosten, Charles M.

    2015-11-01

    Monolayers of α,ω-dithiol oligo(phenyleneethynlene) molecules are critical to the field of molecular electronics because of their abilities to form bonds with many metallic surfaces and rectify current. In this study Fourier Transformation-Raman, surface-enhanced Raman scattering (SERS) spectroscopy and Tip-enhanced Raman Spectroscopy (TERS) were used to characterize a selectively oriented self-assembled monolayer of 4″-trimethylsilylethylsulfanyl-4,4‧-bis-(phenyleneethynylene)benzenethiol (OPE‧) on silver coated nanospheres. Selective orientation was achieved by synthesizing 4″-trimethylsilylethylsulfanyl-4,4‧-bis-(phenyleneethynylene)benzene disulfide, which undergoes oxidative dissociation and covalently bonds to the metal surface. The Ag coated nanosphere surfaces were characterized by scanning electron microscopy (SEM), which showed a large area of surface charging. The SERS and TERS spectra show similar results; however, a greater enhancement was achieved with the TERS relative to the SERS spectra. Assignments of vibrational bands were based on DFT calculations performed at the B3LYP level with good agreement between theoretical and experimental values. An average percent difference of 2.5 cm-1 was obtained for the non-CH stretching frequencies and a scaling factor was not applied to theoretically generated frequencies. A red shift of the ν(C-S) peak at 1087 cm-1 was observed when OPE‧ was adsorbed on a Ag surface. Vibrations specific to the trimethylsilylethyl (TMSE) group were visible in the TERS spectra, and disappear upon deprotection.

  6. Micro-fluidic channels on nanopatterned substrates: Monitoring protein binding to lipid bilayers with surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Amrita; Perez-Castillejos, R.; Hahn, D.; Smirnov, Alex I.; Grebel, H.

    2010-04-01

    We used surface-enhanced Raman spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between micro-fluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells ( Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules.

  7. On-chip ultra-thin layer chromatography and surface enhanced Raman spectroscopy.

    PubMed

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-09-07

    We demonstrate that silver nanorod (AgNR) array substrates can be used for on-chip separation and detection of chemical mixtures by combining ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The UTLC-SERS plate consists of an AgNR array fabricated by oblique angle deposition. The capability of the AgNR substrates to separate the different compounds in a mixture was explored using a mixture of four dyes and a mixture of melamine and Rhodamine 6G at varied concentrations with different mobile phase solvents. After UTLC separation, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the potential for separating the test dyes with plate heights as low as 9.6 μm. The limits of detection are between 10(-5)-10(-6) M. Furthermore, we show that the coupling of UTLC with SERS improves the SERS detection specificity, as small amounts of target analytes can be separated from the interfering background components.

  8. Application of Raman spectroscopy technology to studying Sudan I

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhang, Guoping; Chen, Chen

    2006-06-01

    Being an industrial dye, the Sudan I may have a toxic effect after oral intake on the body, and has recently been shown to cause cancer in rats, mice and rabbits. Because China and some other countries have detected the Sudan I in samples of the hot chilli powder and the chilli products, it is necessary to study the characteristics of this dye. As one kind of molecule scattering spectroscopy, Raman spectroscopy is characterized by the frequency excursion caused by interactions of molecules and photons. The frequency excursion reflects the margin between certain two vibrational or rotational energy states, and shows the information of the molecule. Because Raman spectroscopy can provides quick, easy, reproducible, and non-destructive analysis, both qualitative and quantitative, with no sample preparation required, Raman spectroscopy has been a particularly promising technique for analyzing the characteristics and structures of molecules, especially organic ones. Now, it has a broad application in biological, chemical, environmental and industrial applications. This paper firstly introduces Sudan I dye and the Raman spectroscopy technology, and then describes its application to the Sudan I. Secondly, the fingerprint spectra of the Sudan I are respectively assigned and analyzed in detail. Finally, the conclusion that the Raman spectroscopy technology is a powerful tool to determine the Sudan I is drawn.

  9. Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cui, B.; Clime, L.; Li, K.; Veres, T.

    2008-04-01

    This work demonstrates the fabrication of metallic nanoprism (triangular nanostructure) arrays using a low-cost and high-throughput process. In the method, the triangular structure is defined by the shadow of a pyramid during angle evaporation of a metal etching mask. The pyramids were created by nanoimprint lithography in polymethylmethacrylate (PMMA) using a mould having an inverse-pyramid-shaped hole array formed by KOH wet etching of silicon. Silver and gold nanoprism arrays with a period of 200 nm and an edge length of 100 nm have been fabricated and used as effective substrates for surface enhanced Raman spectroscopy (SERS) detection of rhodamine 6G (R6G) molecules. Numerical calculations confirmed the great enhancement of electric field near the sharp nanoprism corners, as well as the detrimental effect of the chromium adhesion layer on localized surface plasmon resonance. The current method can also be used to fabricate non-equilateral nanoprism and three-dimensional (3D) nanopyramid arrays, and it can be readily extended to other metals.

  10. High-durability catalytic electrode composed of Pt nanoparticle-supported carbon nanowalls synthesized by radical-injection plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Imai, Shun; Kondo, Hiroki; Cho, Hyungjun; Kano, Hiroyuki; Ishikawa, Kenji; Sekine, Makoto; Hiramatsu, Mineo; Ito, Masafumi; Hori, Masaru

    2017-10-01

    For polymer electrolyte fuel cell applications, carbon nanowalls (CNWs) were synthesized by radical-injection plasma-enhanced chemical vapor deposition, and a high density of Pt nanoparticles (>1012 cm-2) was supported on the CNWs using a supercritical fluid deposition system. The high potential cycle tests were applied and the electrochemical surface area of the Pt nanoparticle-supported CNWs did not change significantly, even after 20 000 high potential cycles. According to transmission electron microscopy observations, the mean diameter of Pt changed slightly after the cycle tests, while the crystallinity of the CNWs evaluated using Raman spectroscopy showed almost no change.

  11. Single cell analysis using surface enhanced Raman scattering (SERS) tags

    PubMed Central

    Nolan, John P.; Duggan, Erika; Liu, Er; Condello, Danilo; Dave, Isha; Stoner, Samuel A.

    2013-01-01

    Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis. PMID:22498143

  12. Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy.

    PubMed

    Mlynáriková, Katarína; Samek, Ota; Bernatová, Silvie; Růžička, Filip; Ježek, Jan; Hároniková, Andrea; Šiler, Martin; Zemánek, Pavel; Holá, Veronika

    2015-11-24

    Raman spectroscopy has a broad range of applications across numerous scientific fields, including microbiology. Our work here monitors the influence of culture media on the Raman spectra of clinically important microorganisms (Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Candida albicans). Choosing an adequate medium may enhance the reproducibility of the method as well as simplifying the data processing and the evaluation. We tested four different media per organism depending on the nutritional requirements and clinical usage directly on a Petri dish. Some of the media have a significant influence on the microbial fingerprint (Roosvelt-Park Institute Medium, CHROMagar) and should not be used for the acquisition of Raman spectra. It was found that the most suitable medium for microbiological experiments regarding these organisms was Mueller-Hinton agar.

  13. Electromagnetic field enhancement effects in group IV semiconductor nanowires. A Raman spectroscopy approach

    NASA Astrophysics Data System (ADS)

    Pura, J. L.; Anaya, J.; Souto, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Periwal, P.; Baron, T.; Jiménez, J.

    2018-03-01

    Semiconductor nanowires (NWs) are the building blocks of future nanoelectronic devices. Furthermore, their large refractive index and reduced dimension make them suitable for nanophotonics. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. Micro-Raman spectroscopy has been used as a characterization tool for semiconductor nanowires. The light/nanowire interaction can be experimentally assessed through the micro-Raman spectra of individual nanowires. As compared to both metallic and dielectric nanowires, semiconductor nanowires add additional tools for photon engineering. In particular, one can grow heterostructured nanowires, both axial and radial, and also one could modulate the doping level and the surface condition among other factors than can affect the light/NW interaction. We present herein a study of the optical response of group IV semiconductor nanowires to visible photons. The study is experimentally carried out through micro-Raman spectroscopy of different group IV nanowires, both homogeneous and axially heterostructured (SiGe/Si). The results are analyzed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances promising new photon engineering capabilities of semiconductor nanowires.

  14. Kerr-gated picosecond Raman spectroscopy and Raman photon migration of equine bone tissue with 400-nm excitation

    NASA Astrophysics Data System (ADS)

    Morris, Michael D.; Goodship, Allen E.; Draper, Edward R. C.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.

    2004-07-01

    We show that Raman spectroscopy with visible lasers, even in the deep blue is possible with time-gated Raman spectroscopy. A 4 picosec time gate allows efficient fluorescence rejection, up to 1000X, and provides almost background-free Raman spectra with low incident laser power. The technology enables spectroscopy with better than 10X higher scattering efficiency than is possible with the NIR (785 nm and 830 nm) lasers that are conventionally used. Raman photon migration is shown to allow depth penetration. We show for the first time that Kerr-gated Raman spectra of bone tissue with blue laser excitation enables both fluorescence rejection and depth penetration.

  15. Surface enhanced Raman spectroscopy in the presence of hydroquinone assisted by gold nanorods

    NASA Astrophysics Data System (ADS)

    Cabrera Alonso, R.; Guevara, Edgar; Ramírez Elías, Miguel G.; González, Francisco Javier

    2017-08-01

    Hydroquinone is an aromatic organic molecule found in skin lightening creams for dermatological melasma treatment. The absorbance of this substance at high concentrations can be the cause of skin diseases. Nowadays most of the methods used for medical diagnosis for dermatological diseases consist on invasive methods such as biopsies. In recent years non-invasive techniques based on the properties of light and the interaction with biological samples have come to a new way for medical diagnosis. By means of Raman spectroscopy is of great interest the detection of hydroquinone for future medical applications. Due to the low Raman signal that the biological samples present, it is necessary to make use of nanotechnology. Making biosensors (SERS substrates) that allow us to amplify the electromagnetic field for the biological Raman signals.

  16. Raman spectroscopy for cancer detection and characterization in metastasis models

    NASA Astrophysics Data System (ADS)

    Koga, Shigehiro; Oshima, Yusuke; Sato, Mitsunori; Ishimaru, Kei; Yoshida, Motohira; Yamamoto, Yuji; Matsuno, Yusuke; Watanabe, Yuji

    2017-02-01

    Raman spectroscopy provides a wealth of diagnostic information to the surgeon with in situ cancer detection and label-free histopathology in clinical practice. Raman spectroscopy is a developing optical technique which can analyze biological tissues with light scattering. The difference in frequencies between the incident light and the scattering light are called Raman shifts, which correspond to the vibrational energy of the molecular bonds. Raman spectrum gives information about the molecular structure and composition in biological specimens. We had been previously reported that Raman spectroscopy could distinguish various histological types of human lung cancer cells from normal cells in vitro. However, to identify and detect cancer diagnostic biomarkers in vivo on Raman spectroscopy is still challenging, because malignancy can be characterized not only by the cancer cells but also by the environmental factors including immune cells, stroma cells, secretion vesicles and extracellular matrix. Here we investigate morphological and molecular dynamics in both cancer cells and their environment in xenograft models and spontaneous metastasis models using Raman spectroscopy combined with fluorescence microscopy and photoluminescence imaging. We are also constructing a custom-designed Raman spectral imaging system for both in vitro and in vivo assay of tumor tissues to reveal the metastasis process and to evaluate therapeutic effects of anti-cancer drugs and their drug delivery toward the clinical application of the technique.

  17. Nanophotonics with Surface Enhanced Coherent Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Fast, Alexander

    extended samples' surfaces can be visualized with a nanoscale axial resolution providing topographic information. Finally, a platform for coherently interrogating single molecules is presented. Single-molecule limit SE-CARS on non-resonant molecules is achieved by means of 3D local field confinement in the nanojunctions between two spherical gold nanoparticles. Localized plasmon resonance of the dimer nanostructure confines the probe volume down to 1 nm3 and provides the local field enhancement necessary to reach single-molecule detection limit. Nonlinear excitation of Raman vibrations in SE-CARS microspectroscopy allows for higher image acquisition rates than in conventionally used single-molecule surface enhanced Raman spectroscopy (SERS). Therefore, data throughput is significantly improved while preserving spectral information despite the presence of the metal. Data simultaneously acquired from hundreds of nanoantennas allows to establish the peak enhancement factor from the observed count rates and define the maximum allowed local-field that preserves the integrity of the antenna. These results are paramount for the future design of time resolved single-molecule studies with multiple pulsed laser excitations, required for single-molecule coherence manipulation and quantum computing.

  18. Surface-enhanced Raman spectroscopy using 2D plasmons of InN nanostructures

    NASA Astrophysics Data System (ADS)

    Madapu, Kishore K.; Dhara, Sandip

    2018-06-01

    We explored the surface-enhanced Raman scattering (SERS) activity of the InN nanostructures, possessing surface electron accumulation (SEA), using the Rhodamine 6G (R6G) molecules. SERS enhancement is observed for the InN nanostructures which possess SEA. In case of high-temperature grown InN samples, a peak is observed in the low wave number (THz region) of Raman spectra of InN nanostructures originating from excitation of the two-dimensional (2D) plasmons of the SEA. The enhancement factor of four orders was calculated with the assumption of monolayer coverage of analyte molecule. SERS enhancement of InN nanostructures is attributed to the 2D plasmonic nature of InN nanostructures invoking SEA, rather than the contributions from 3D surface plasmon resonance and chemical interaction. The role of 2D plasmon excitation in SERS enhancement is corroborated by the near-field light-matter interaction studies using near-field scanning optical microscopy.

  19. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review

    PubMed Central

    Jaworska, Aleksandra; Fornasaro, Stefano; Sergo, Valter; Bonifacio, Alois

    2016-01-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and various anticonvulsants. In this article, the current applications of SERS in the field of TDM for cancer therapy are discussed in detail and illustrated according to the different strategies and substrates. In particular, future perspectives are provided and special concerns regarding the standardization of self-assembly methods and nanofabrication procedures, quality assurance, and technology readiness are critically evaluated. PMID:27657146

  20. Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II

    PubMed Central

    Bechtel, Kate L.; Shih, Wei-Chuan; Feld, Michael S.

    2009-01-01

    We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using both ordinary least squares regression (OLS) and partial least squares regression (PLS). In particular, we show that IRS provides a robust calibration model that does not increase in error when applied to samples with optical properties outside the range of calibration. PMID:18711512