Sample records for nanoparticle-enhanced surface plasmon

  1. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates

    PubMed Central

    Jackson, J. B.; Halas, N. J.

    2004-01-01

    Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the surface of smooth and roughened nanoshells reveal that surface roughness contributes only slightly to the total enhancement. SERS enhancements as large as 2.5 × 1010 on Ag nanoshell films for the nonresonant molecule p-mercaptoaniline are measured. PMID:15608058

  2. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  3. Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.

    PubMed

    Cho, Chu-Young; Kwon, Min-Ki; Lee, Sang-Jun; Han, Sang-Heon; Kang, Jang-Won; Kang, Se-Eun; Lee, Dong-Yul; Park, Seong-Ju

    2010-05-21

    We demonstrate the surface plasmon-enhanced blue light-emitting diodes (LEDs) using Ag nanoparticles embedded in p-GaN. A large increase in optical output power of 38% is achieved at an injection current of 20 mA due to an improved internal quantum efficiency of the LEDs. The enhancement of optical output power is dependent on the density of the Ag nanoparticles. This improvement can be attributed to an increase in the spontaneous emission rate through resonance coupling between the excitons in multiple quantum wells and localized surface plasmons in Ag nanoparticles embedded in p-GaN.

  4. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles.

    PubMed

    Wu, Pae C; Khoury, Christopher G; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V; Vo-Dinh, Tuan; Brown, April S; Everitt, Henry O

    2009-09-02

    Size-controlled gallium nanoparticles deposited on sapphire were explored as alternative substrates to enhance Raman spectral signatures. Gallium's resilience following oxidation is inherently advantageous in comparison with silver for practical ex vacuo nonsolution applications. Ga nanoparticles were grown using a simple molecular beam epitaxy-based fabrication protocol, and monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry allowed the nanoparticles to be easily controlled for size. The Raman spectra obtained from cresyl fast violet (CFV) deposited on substrates with differing mean nanoparticle sizes represent the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Nonoptimized aggregate enhancement factors of approximately 80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm.

  5. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles

    PubMed Central

    Wu, Pae C; Khoury, Christopher G.; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V.; Vo-Dinh, Tuan; Brown, April S.; Everitt, Henry O.

    2009-01-01

    Size-controlled gallium nanoparticles deposited on sapphire are explored as alternative substrates to enhance Raman spectral signatures. Gallium’s resilience following oxidation is inherently advantageous compared to silver for practical ex vacuo, non-solution applications. Ga nanoparticles are grown using a simple, molecular beam epitaxy-based fabrication protocol, and by monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry, the nanoparticles are easily controlled for size. Raman spectroscopy performed on cresyl fast violet (CFV) deposited on substrates of differing mean nanoparticle size represents the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Non-optimized aggregate enhancement factors of ~80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm. PMID:19655747

  6. Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle

    NASA Astrophysics Data System (ADS)

    Dasri, Thananchai; Chingsungnoen, Artit

    2018-06-01

    Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.

  7. Theoretical analyses of localized surface plasmon resonance spectrum with nanoparticles imprinted polymers

    NASA Astrophysics Data System (ADS)

    Li, Hong; Peng, Wei; Wang, Yanjie; Hu, Lingling; Liang, Yuzhang; Zhang, Xinpu; Yao, Wenjuan; Yu, Qi; Zhou, Xinlei

    2011-12-01

    Optical sensors based on nanoparticles induced Localized Surface Plasmon Resonance are more sensitive to real-time chemical and biological sensing, which have attracted intensive attentions in many fields. In this paper, we establish a simulation model based on nanoparticles imprinted polymer to increase sensitivity of the LSPR sensor by detecting the changes of Surface Plasmon Resonance signals. Theoretical analysis and numerical simulation of parameters effects to absorption peak and light field distribution are highlighted. Two-dimensional simulated color maps show that LSPR lead to centralization of the light energy around the gold nanoparticles, Transverse Magnetic wave and total reflection become the important factors to enhance the light field in our simulated structure. Fast Fourier Transfer analysis shows that the absorption peak of the surface plasmon resonance signal resulted from gold nanoparticles is sharper while its wavelength is bigger by comparing with silver nanoparticles; a double chain structure make the amplitude of the signals smaller, and make absorption wavelength longer; the absorption peak of enhancement resulted from nanopore arrays has smaller wavelength and weaker amplitude in contrast with nanoparticles. These simulation results of the Localized Surface Plasmon Resonance can be used as an enhanced transduction mechanism for enhancement of sensitivity in recognition and sensing of target analytes in accordance with different requirements.

  8. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy.

    PubMed

    McMahon, Jeffrey M; Henry, Anne-Isabelle; Wustholz, Kristin L; Natan, Michael J; Freeman, R Griffith; Van Duyne, Richard P; Schatz, George C

    2009-08-01

    Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 10(10) or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.

  9. Plasmonic nanoparticles enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Meng, Weisi; Huang, Yidong

    2013-12-01

    Here we present investigations on utilizing two kinds of plasmonic nanoparticles (NPs) to enhance the efficiency of dye sensitized solar cells (DSCs). The Au@PVP NPs is proposed and present the specialty of adhesiveness to dye molecules, which could help to localize additional dye molecules near the plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the DSCs by 30% from 3.3% to 4.3%. Meanwhile, an irregular Au-Ag alloy popcorn-shaped NPs (popcorn NPs) with plenty of fine structures is also proposed and realized to enhance the light absorption of DSC. A pronounced absorption enhancement in a broadband wavelength range is observed due to the excitation of localized surface plasmon at different wavelengths. The PCE is enhanced by 32% from 5.94% to 7.85%.

  10. Surface plasmon resonances in liquid metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.

    2017-06-01

    We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition "solid-liquid" in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.

  11. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure.

    PubMed

    Warrier, Anita R; Gandhimathi, R

    2018-04-27

    In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm -1 , 1078.17 cm -1 , 1255.60 cm -1 , 1466.91 cm -1 . The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼10 4 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.

  12. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure

    NASA Astrophysics Data System (ADS)

    Warrier, Anita R.; Gandhimathi, R.

    2018-07-01

    In this article, we report on enhancement in photoluminescence and Raman line intensity of SnS quantum dots embedded in a mesh of Sn nanostructures. SnS nanoparticles synthesized by homogenous precipitation method show strong quantum confinement with a band gap of ∼2.7 eV (blue shift of ∼1 eV compared to bulk SnS particles). The optical band gap of SnS quantum dots is controlled by varying the pH (∼0 to 2.25), ageing time (24 to 144 h) and molarity (0 to 2 M) of the precursors. These SnS nanoparticles are embedded in a mesh of Sn nanostructures which are synthesized from tin chloride by using sodium borohydride as reducing agent. The Sn nanostructures have a morphology dependent, tunable surface plasmon resonance (SPR), ranging from UV (∼295 nm) to visible region (∼400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (∼400 meV). The pure SnS quantum dots have a very weak photoluminescence peak at ∼560 nm and Raman shift of low intensity at 853.08 cm‑1, 1078.17 cm‑1, 1255.60 cm‑1, 1466.91 cm‑1. The coupling of SnS nanoparticles with Sn nanoparticles results in strong exciton-plasmon interactions leading to enhanced photoluminescence and Raman line intensity. The nanohybrids formed using Sn nanosheets whose SPR matches with absorption onset of the SnS nanoparticles shows an enhancement of ∼104 times higher than pure SnS nanoparticles. Thus, Sn nanosheet with surface plasmon resonance in visible region (400 nm) like Au and Ag is a promising material for surface enhanced Raman spectroscopy, plasmon assisted fluorescence imaging and for enhancing the emission intensity of semiconductors with weak emission intensity.

  13. Enhanced luminescence efficiency by surface plasmon coupling of Ag nanoparticles in a polymer light-emitting diode

    NASA Astrophysics Data System (ADS)

    Chen, Sy-Hann; Jhong, Jhen-Yu

    2011-08-01

    This study achieved a substantial enhancement in electroluminescence by coupling localized surface plasmons in a single layer of Ag nanoparticles. Thermal evaporation was used to fabricate 20-nm Ag particles sandwiched between a gallium-doped zinc oxide film and a glass substrate to form novel window materials for use in polymer light-emitting diodes (PLEDs). The PLEDs discussed herein are single-layer devices based on a poly(9,9-di-n-octyl-2,7-fluorene) (PFO) emissive layer. In addition to low cost, this novel fabrication method can effectively prevent interruption or degradation of the charge transport properties of the active layer to meet the high performance requirements of PLEDs. Due to the surface-plasmon-enhanced emission, the electroluminescence intensity was increased by nearly 1-fold, compared to that of the same PLED without the interlayer of Ag nanoparticles.

  14. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-07-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy-Bessel-Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light-matter interaction and optical sensing performance.

  15. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  16. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hashemi Zadeh, Sakineh; Rashidi-Huyeh, Majid; Palpant, Bruno

    2017-10-01

    Owing to their remarkable optical properties, noble metals' nanoparticles are proposed for many applications. Controlling the temperature dependence of these properties may then appear to be of great relevance. In this paper, we investigate the thermo-optical properties of silver nanoparticles. Different silver nanocolloids were prepared with different surface plasmon resonance modes. The thermo-extinction spectra of the colloidal solutions were then evaluated by measuring the extinction spectra at different temperatures. This reveals a typical peak-valley profile around each surface plasmon resonance mode. Mie theory was used to study theoretically the impact of nanoparticle size on the thermo-optical properties. The results allow us to interpret properly the experimental findings.

  17. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  18. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    PubMed

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  19. Localized-surface-plasmon enhanced emission from porous silicon by gold nanoparticles.

    PubMed

    Wang, Hui; An, Zhenghua; Ren, Qijun; Wang, Hengliang; Mao, Feilong; Chen, Zhanghai; Shen, Xuechu

    2011-12-01

    The porous silicon (PS) samples, decorated by Au nanoparticles (NPs) possessing localized-surface-plasmon (LSP) resonance, are prepared by the conventional anodization method. Photoluminescence (PL) is studied systematically, in particular, its dependence on the excitation power. It is found that undecorated PS samples exhibit a saturation behavior in PL intensity with increasing the pumping laser power, while the luminescence of Au-decorated PS hybrid samples have a purely linear dependence on the excitation power. In the linear response region of PS samples, addition of metal NPs layer moderately suppresses the emission while, in the saturation region, the net emission is enhanced by approximately up to 4-fold. Several possible mechanisms are discussed. We believe that the observed PL enhancement in saturation region is dominantly due to the resonant coupling between the LSP of Au NPs and the electronic excitation of PS, which inhibits the nonradiative Auger recombination process at high excitation power. These results indicate that the plasmon effect could be useful for designing even more efficient optoelectronic devices such as super bright light emitting devices and solar cells with high efficiencies. Despite many challenges, Au NPs can potentially be applied to introduce LSP resonance for the future silicon-based optoelectronics or photonics.

  20. Vertical plasmonic nanowires for 3D nanoparticle trapping

    NASA Astrophysics Data System (ADS)

    Wu, Jingzhi; Gan, Xiaosong

    2011-12-01

    Nanoparticle trapping is considered to be more challenging than trapping micron-sized objects because of the diffraction limit of light and the severe Brownian motion of the nanoparticles. We introduce a nanoparticle trapping approach based on plasmonic nanostructures, which consist of nanopillars with high aspect ratio. The plasmonic nanopillars behave as plasmonic resonators that rely on paired nano-pillars supporting gap plasmon modes. The localized surface plasmon resonance effect provides strong electromagnetic field enhancement and enables confinement of nanoparticles in three dimensional space. Numerical simulations indicate that the plasmonic structure provides stronger optical forces for trapping nanoparticles. The study of thermal effect of the plasmonic structure shows that the impact of the thermal force is significant, which may determine the outcome of the nanoparticle trapping.

  1. Plasmon enhanced fluorescence with aggregated shell-isolated nanoparticles.

    PubMed

    Osorio-Román, Igor O; Guerrero, Ariel R; Albella, Pablo; Aroca, Ricardo F

    2014-10-21

    Shell-isolated nanoparticles (SHINs) nanostructures provide a versatile substrate where the localized surface plasmon resonances (LSPRs) are well-defined. For SHINEF, the silver (or gold) metal core is protected by the SiO2 coating, which is thicker than the critical distance for minimum quenching by the metal. In the present work, it is shown that an increase in the SHINEF enhancement factor may be achieved by inducing SHIN aggregation with electrolytes in solution. The proof of concept is demonstrated using NaCl as aggregating agent, although other inorganic salts will also aggregate SHIN nanoparticles. As much as a 10-fold enhancement in the SHINEF enhancement factor (EF) may be achieved by tuning the electrolyte concentrations in solution. The SHINEF experiments include the study of the aggregation effect controlling gold SHIN's surface concentration via spraying. Au-SHINs are sprayed onto layer-by-layer (LbL) and Langmuir-Blodgett (LB) films, and samples are fabricated using fluorophores with low and also high quantum yield.

  2. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant

    2014-10-01

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain

  3. Ferric plasmonic nanoparticles, aptamers, and magnetofluidic chips: toward the development of diagnostic surface-enhanced Raman spectroscopy assays

    NASA Astrophysics Data System (ADS)

    Marks, Haley; Huang, Po-Jung; Mabbott, Samuel; Graham, Duncan; Kameoka, Jun; Coté, Gerard

    2016-12-01

    Conjugation of aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound nanoclusters that cause a measurable change in the colloid's optical properties. The optimization of a surface-enhanced Raman spectroscopy (SERS) competitive binding assay utilizing plasmonic "target" and magnetic "probe" nanoparticles for the detection of the toxin bisphenol-A (BPA) is presented. These assay nanoclusters were housed inside three types of optofluidic chips patterned with magnetically activated nickel pads, in either a straight or array pattern. Both Fe2O3 and Fe2CoO4 were compared as potential magnetic cores for the silver-coated probe nanoparticles. We found that the Ag@Fe2O3 particles were, on average, more uniform in size and more stable than Ag@Fe2CoO4, whereas the addition of cobalt significantly improved the collection time of particles. Using Raman mapping of the assay housed within the magnetofluidic chips, it was determined that a 1×5 array of 50 μm square nickel pads provided the most uniform SERS enhancement of the assay (coefficient of variation ˜25%) within the magnetofluidic chip. Additionally, the packaged assay demonstrated the desired response to BPA, verifying the technology's potential to translate magnetic nanoparticle assays into a user-free optical analysis platform.

  4. Ferric plasmonic nanoparticles, aptamers, and magnetofluidic chips: toward the development of diagnostic surface-enhanced Raman spectroscopy assays

    PubMed Central

    Marks, Haley; Huang, Po-Jung; Mabbott, Samuel; Graham, Duncan; Kameoka, Jun; Coté, Gerard

    2016-01-01

    Abstract. Conjugation of aptamers and their corresponding analytes onto plasmonic nanoparticles mediates the formation of nanoparticle assemblies: molecularly bound nanoclusters that cause a measurable change in the colloid’s optical properties. The optimization of a surface-enhanced Raman spectroscopy (SERS) competitive binding assay utilizing plasmonic “target” and magnetic “probe” nanoparticles for the detection of the toxin bisphenol-A (BPA) is presented. These assay nanoclusters were housed inside three types of optofluidic chips patterned with magnetically activated nickel pads, in either a straight or array pattern. Both Fe2O3 and Fe2CoO4 were compared as potential magnetic cores for the silver-coated probe nanoparticles. We found that the Ag@Fe2O3 particles were, on average, more uniform in size and more stable than Ag@Fe2CoO4, whereas the addition of cobalt significantly improved the collection time of particles. Using Raman mapping of the assay housed within the magnetofluidic chips, it was determined that a 1×5 array of 50  μm square nickel pads provided the most uniform SERS enhancement of the assay (coefficient of variation ∼25%) within the magnetofluidic chip. Additionally, the packaged assay demonstrated the desired response to BPA, verifying the technology’s potential to translate magnetic nanoparticle assays into a user-free optical analysis platform. PMID:27997017

  5. Nanoparticle-Enhanced Silver-Nanowire Plasmonic Electrodes for High-Performance Organic Optoelectronic Devices.

    PubMed

    Kim, Taehyo; Kang, Saewon; Heo, Jungwoo; Cho, Seungse; Kim, Jae Won; Choe, Ayoung; Walker, Bright; Shanker, Ravi; Ko, Hyunhyub; Kim, Jin Young

    2018-05-21

    Improved performance in plasmonic organic solar cells (OSCs) and organic light-emitting diodes (OLEDs) via strong plasmon-coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core-shell silver-silica nanoparticles (Ag@SiO 2 NPs) is demonstrated. NP-enhanced plasmonic AgNW (Ag@SiO 2 NP-AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon-coupling effect caused by decorating core-shell Ag@SiO 2 NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A -1 (at 3.2 V) and a power efficiency of 25.14 lm W -1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO 2 NP-AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high-performance OODs, which can be further explored in various plasmonic and optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.

    PubMed

    Mendes, Manuel J; Hernández, Estela; López, Esther; García-Linares, Pablo; Ramiro, Iñigo; Artacho, Irene; Antolín, Elisa; Tobías, Ignacio; Martí, Antonio; Luque, Antonio

    2013-08-30

    A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude.In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance.The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.

  7. Nanogap embedded silver gratings for surface plasmon enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Kunal

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal and dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures have shown to provide very efficient and extreme light concentration at the nano-scale in recent years. The enhanced electric field produced within a few hundred nanometers of these surfaces can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences and improving the qualities and capabilities of fluorescence based detectors and imaging equipment remains a big challenge for industry manufacturers. We report a novel fabrication technique for producing nano-gap embedded periodic grating substrates on the nanoscale using a store bought HD-DVD and conventional soft lithography procedures. Polymethylsilsesquioxane (PMSSQ) polymer is used as the ink for the micro-contact printing process with PDMS stamps obtained from the inexpensive HD-DVDs as master molds. Fluorescence enhancement factors of up to 118 times were observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for a robust and inexpensive optical system with applications such as low-level fluorescence based analyte detection, single molecule imaging, and surface enhanced Raman studies. Preliminary results in single molecule experiments have also been obtained by imaging individual 3 nm and 20 nm dye-doped nanoparticles attached to the silver plasmonic gratings using epi-fluorescence microscopy.

  8. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  9. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

    PubMed

    Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub

    2016-01-13

    Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level.

  10. Wide-range tuning of the surface plasmon resonance of silver/gold core shell and alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Hubenthal, Frank; Ziegler, Torsten; Hendrich, Christian; Träger, Frank

    2004-03-01

    For many applications like surface enhanced Raman scattering in which the optical field enhancement associated with surface plasmon excitation is exploited, tunability of this collective resonance over a wide range is required. For this purpose we have prepared Ag/Au core shell and Ag/Au alloyed nanoparticles with different shell thicknesses and different percentages of the two metals. The nanoparticles were made by subsequent deposition of Ag and Au atoms on dielectric substrates followed by diffusion and nucleation or heat treatment. Depending on the Au shell thickness the plasmon frequency can be tuned, e.g. from 2.8 eV (442 nm) to 2.1 eV (590 nm). Annealing of the core-shell nanoparticles causes a shift of the resonance frequency to 2.6 eV. Theoretical modelling allows us to attribute this observation to the production of alloyed nanoparticles. Possible application of the Ag/Au nanoparticles will be discussed.

  11. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    NASA Astrophysics Data System (ADS)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  12. Optimization of Immunolabeled Plasmonic Nanoparticles for Cell Surface Receptor Analysis

    PubMed Central

    Seekell, Kevin; Price, Hillel; Marinakos, Stella; Wax, Adam

    2011-01-01

    Noble metal nanoparticles hold great potential as optical contrast agents due to a unique feature, known as the plasmon resonance, which produces enhanced scattering and absorption at specific frequencies. The plasmon resonance also provides a spectral tunability that is not often found in organic fluorophores or other labeling methods. The ability to functionalize these nanoparticles with antibodies has led to their development as contrast agents for molecular optical imaging. In this review article, we present methods for optimizing the spectral agility of these labels. We discuss synthesis of gold nanorods, a plasmonic nanoparticle in which the plasmonic resonance can be tuned during synthesis to provide imaging within the spectral window commonly utilized in biomedical applications. We describe recent advances in our group to functionalize gold and silver nanoparticles using distinct antibodies, including EGFR, HER-2 and IGF-1, selected for their relevance to tumor imaging. Finally, we present characterization of these nanoparticle labels to verify their spectral properties and molecular specificity. PMID:21911063

  13. Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing

    NASA Astrophysics Data System (ADS)

    Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi

    2018-03-01

    Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.

  14. Surface-enhanced Raman spectroscopy of double-shell hollow nanoparticles: electromagnetic and chemical enhancements.

    PubMed

    Mahmoud, Mahmoud A

    2013-05-28

    Enhancements of the Raman signal by the newly prepared gold-palladium and gold-platinum double-shell hollow nanoparticles were examined and compared with those using gold nanocages (AuNCs). The surface-enhanced Raman spectra (SERS) of thiophenol adsorbed on the surface of AuNCs assembled into a Langmuir-Blodgett monolayer were 10-fold stronger than AuNCs with an inner Pt or Pd shell. The chemical and electromagnetic enhancement mechanisms for these hollow nanoparticles were further proved by comparing the Raman enhancement of nitrothiophenol and nitrotoulene. Nitrothiophenol binds to the surface of the nanoparticles by covalent interaction, and Raman enhancement by both the two mechanisms is possible, while nitrotoulene does not form any chemical bond with the surface of the nanoparticles and hence no chemical enhancement is expected. Based on discrete dipole approximation (DDA) calculations and the experimental SERS results, AuNCs introduced a high electromagnetic enhancement, while the nanocages with inner Pt or Pd shell have a strong chemical enhancement. The optical measurements of the localized surface plasmon resonance (LSPR) of the nanocages with an outer Au shell and an inner Pt or Pd shell were found, experimentally and theoretically, to be broad compared with AuNCs. The possible reason could be due to the decrease of the coherence time of Au oscillated free electrons and fast damping of the plasmon energy. This agreed well with the fact that a Pt or Pd inner nanoshell decreases the electromagnetic field of the outer Au nanoshell while increasing the SERS chemical enhancement.

  15. Significant Enhancement of MgZnO Metal-Semiconductor-Metal Photodetectors via Coupling with Pt Nanoparticle Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Guo, Zexuan; Jiang, Dayong; Hu, Nan; Yang, Xiaojiang; Zhang, Wei; Duan, Yuhan; Gao, Shang; Liang, Qingcheng; Zheng, Tao; Lv, Jingwen

    2018-06-01

    We proposed and demonstrated MgZnO metal-semiconductor-metal (MSM) ultraviolet photodetectors (UV) assisted with surface plasmons (SPs) prepared by the radio frequency magnetron sputtering deposition method. After the decoration of their surface with Pt nanoparticles (NPs), the responsivity of all the electrode spacing (3, 5, and 8 μm) photodetectors were enhanced dramatically; to our surprise, comparing with them the responsivity of larger spacing sample, more SPs were gathered which are smaller than others in turn. A physical mechanism focused on SPs and depletion width is given to explain the above results.

  16. In Situ Generation of Plasmonic Nanoparticles for Manipulating Photon-Plasmon Coupling in Microtube Cavities.

    PubMed

    Yin, Yin; Wang, Jiawei; Lu, Xueyi; Hao, Qi; Saei Ghareh Naz, Ehsan; Cheng, Chuanfu; Ma, Libo; Schmidt, Oliver G

    2018-04-24

    In situ generation of silver nanoparticles for selective coupling between localized plasmonic resonances and whispering-gallery modes (WGMs) is investigated by spatially resolved laser dewetting on microtube cavities. The size and morphology of the silver nanoparticles are changed by adjusting the laser power and irradiation time, which in turn effectively tune the photon-plasmon coupling strength. Depending on the relative position of the plasmonic nanoparticles spot and resonant field distribution of WGMs, selective coupling between the localized surface plasmon resonances (LSPRs) and WGMs is experimentally demonstrated. Moreover, by creating multiple plasmonic-nanoparticle spots on the microtube cavity, the field distribution of optical axial modes is freely tuned due to multicoupling between LSPRs and WGMs. The multicoupling mechanism is theoretically investigated by a modified quasipotential model based on perturbation theory. This work provides an in situ fabrication of plasmonic nanoparticles on three-dimensional microtube cavities for manipulating photon-plasmon coupling which is of interest for optical tuning abilities and enhanced light-matter interactions.

  17. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA.

    PubMed

    Wang, Jiajia; Jia, Zhenhong

    2018-02-23

    A porous silicon microcavity (PSiMC) with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs)/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA). Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR) of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  18. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis

    2015-12-01

    Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement

  19. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.

    PubMed

    Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun

    2015-06-04

    Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.

  20. Fabrication of large area plasmonic nanoparticle grating structure on silver halide based transmission electron microscope film and its application as a surface enhanced Raman spectroscopy substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Singh, M. N.

    The plasmonic responses of silver nanoparticle grating structures of different periods made on silver halide based electron microscope film are investigated. Raster scan of the conventional scanning electron microscope (SEM) is used to carry out electron beam lithography for fabricating the plasmonic nanoparticle grating (PNG) structures. Morphological characterization of the PNG structures, carried out by the SEM and the atomic force microscope, indicates that the depth of the groove decreases with a decrease in the grating period. Elemental characterization performed by the energy dispersive spectroscopy and the x-ray diffraction shows the presence of nanoparticles of silver in the PNG grating.more » The optical characterization of the gratings shows that the localized surface plasmon resonance peak shifts from 366 to 378 nm and broadens with a decrease in grating period from 10 to 2.5 μm. The surface enhanced Raman spectroscopy of the Rhodamine-6G dye coated PNG structure shows the maximum enhancement by two orders of magnitude in comparison to the randomly distributed silver nanoparticles having similar size and shape as the PNG structure.« less

  1. Plasmonics and SERS activity of post-transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bezerra, A. G.; Machado, T. N.; Woiski, T. D.; Turchetti, D. A.; Lenz, J. A.; Akcelrud, L.; Schreiner, W. H.

    2018-05-01

    Nanoparticles of the post-transition metals, In, Sn, Pb, and Bi, and of the metalloid Sb were produced by laser ablation synthesis in solution (LASiS) and tested for localized surface plasmon resonances (LSPR) and surface-enhanced Raman scattering (SERS). The nanoparticles were characterized by UV-Vis optical absorption, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Several organic and biological molecules were tested, and SERS activity was demonstrated for all tested nanoparticles and molecules. The Raman enhancement factor for each nanoparticle class and molecule was experimentally determined. The search for new plasmonic nanostructures is important mainly for life sciences-related applications and this study expands the range of SERS active systems.

  2. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.

    PubMed

    Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping

    2013-01-09

    This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.

  3. Plasmon Enhanced Hetero-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong

    2015-03-01

    Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.

  4. SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Fan; Deng, Xin-Yu; Xue, Xiangxin; Wang, Li; Sun, Yantao; Feng, Jing-Dong; Zhang, Yongjun; Wang, Yaxin; Jung, Young Mee

    2018-01-01

    A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56 nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

  5. Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers

    PubMed Central

    Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min

    2015-01-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications. PMID:25586238

  6. Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers.

    PubMed

    Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min

    2015-01-14

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications.

  7. Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas.

    PubMed

    Simoncelli, Sabrina; Roller, Eva-Maria; Urban, Patrick; Schreiber, Robert; Turberfield, Andrew J; Liedl, Tim; Lohmüller, Theobald

    2016-11-22

    DNA origami is a powerful approach for assembling plasmonic nanoparticle dimers and Raman dyes with high yields and excellent positioning control. Here we show how optothermal-induced shrinking of a DNA origami template can be employed to control the gap sizes between two 40 nm gold nanoparticles in a range from 1 to 2 nm. The high field confinement achieved with this optothermal approach was demonstrated by detection of surface-enhanced Raman spectroscopy (SERS) signals from single molecules that are precisely placed within the DNA origami template that spans the nanoparticle gap. By comparing the SERS intensity with respect to the field enhancement in the plasmonic hot-spot region, we found good agreement between measurement and theory. Our straightforward approach for the fabrication of addressable plasmonic nanosensors by DNA origami demonstrates a path toward future sensing applications with single-molecule resolution.

  8. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    PubMed Central

    Wang, Alan X.; Kong, Xianming

    2015-01-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428

  9. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

    PubMed

    Wang, Alan X; Kong, Xianming

    2015-06-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  10. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  11. Gold Nanoparticles with Externally Controlled, Reversible Shifts of Local Surface Plasmon Resonance Bands

    PubMed Central

    Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.

    2010-01-01

    We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619

  12. Design, fabrication, and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy and plasmonic applications

    NASA Astrophysics Data System (ADS)

    Hao, Qingzhen

    Metal/dielectric nanostructures have the ability to sustain coherent electron oscillations known as surface plasmons. Due to their capability of localizing and guiding light in sub-wavelength metal nanostructures beyond diffraction limits, surface plasmon-based photonics, or “plasmonics” has opened new physical phenomena and lead to novel applications in metamaterials, optoelectronics, surface enhanced spectroscopy and biological sensing. This dissertation centers on design, fabrication, characterization of metallic nanostructures and their applications in surface-enhanced Raman spectroscopy (SERS) and actively tunable plasmonics. Metal-dielectric nanostructures are the building blocks for photonic metamaterials. One valuable design guideline for metamaterials is the Babinet’s principle, which governs the optical properties of complementary nanostructures. However, most complementary metamaterials are designed for the far infrared region or beyond, where the optical absorption of metal is small. We have developed a novel dual fabrication method, capable of simultaneously producing optically thin complementary structures. From experimental measurements and theoretical simulations, we showed that Babinet’s principle qualitatively holds in the visible region for the optically thin complements. The complementary structure is also a good platform to study subtle differences between nanoparticles and nanoholes in SERS (a surface sensitive technique, which can enhance the conventional Raman cross-section by 106˜108 fold, thus very useful for highly sensitive biochemical sensing). Through experimental measurement and theoretical analysis, we showed that the SERS enhancement spectrum (plot of SERS enhancement versus excitation wavelengths), dominated by local near-field, for nanoholes closely follows their far-field optical transmission spectrum. However, the enhancement spectrum for nanoparticles red-shifts significantly from their far-field optical extinction

  13. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination.

    PubMed

    Zhang, Lulu; Xing, Jun; Wen, Xinglin; Chai, Jianwei; Wang, Shijie; Xiong, Qihua

    2017-09-14

    Passive solar evaporation represents a promising and environmentally benign method of water purification/desalination. Plasmonic nanoparticles have been demonstrated as an effective approach for enhancing solar steam generation through a plasmonic heating effect, nonetheless the efficiency is constrained by unnecessary bulk heating of the entire liquid volume, while the noble metals commonly used are not cost-effective in terms of availability and their sophisticated preparation. Herein, a paper-like plasmonic device consisting of a microporous membrane and indium nanoparticles (In NPs/MPM) is fabricated through a simple thermal evaporation method. Due to the light-weight and porous nature of the device, the broadband light absorption properties, and theoretically the excellent plasmonic heating effect from In NP which could be even higher than gold, silver and aluminium nanoparticles, our device can effectively enhance solar water evaporation by floating on the water surface and its utility has been demonstrated in the solar desalination of a real seawater sample. The durability of the device in solar seawater desalination has also been investigated over multiple cycles with stable performances. This portable device could provide a solution for individuals to do water/seawater purification in under-developed areas with limited/no access to electricity or a centralized drinking water supply.

  14. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole.

    PubMed

    Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan

    2013-12-15

    In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines. © 2013 Elsevier B.V. All rights reserved.

  15. Spectral dependence of fluorescence near plasmon resonant metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yeechi

    The optical properties of fluorophores are significantly modified when placed within the near field (0--100 nm) of plasmon resonant metal nanostructures, due to the competition between increased decay rates and "hotspots" of concentrated electric fields. The decay rates and effective electric field intensities are highly dependent on the relative position of dye and metal and the overlap between plasmon resonance and dye absorption and emission. Understanding these dependencies can greatly improve the performance of biosensing and nanophotonic devices. In this dissertation, the fluorescence intensity of organic dyes and CdSe quantum dots near single metal nanoparticles is studied as a function of the local surface plasmon resonance (LSPR) of the nanoparticle. Single metal nanoparticles have narrow, well-defined, intense local surface plasmon resonances that are tunable across the visible spectrum by changes in size and shape. First, we show that organic dyes can be self-assembled on single silver nanoprisms into known configurations by the hybridization of thiolated DNA oligomers. We correlate the fluorescence intensity of the dyes to the LSPR of the individual nanoprism to which they are attached. For each of three different organic dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak 40--120 meV higher in energy than the emission peak of the fluorophore. Second, the plasmon-enhanced fluorescence from CdSe/CdS/CdZnS/ZnS core/shell quantum dots is studied near a variety of silver and gold nanoparticles. With single-particle scattering spectroscopy, the localized surface plasmon resonance spectra of single metal nanoparticles is correlated with the photoluminescence excitation (PLE) spectra of the nearby quantum dots. The PLE

  16. Single-electron induced surface plasmons on a topological nanoparticle

    PubMed Central

    Siroki, G.; Lee, D.K.K.; Haynes, P. D.; Giannini, V.

    2016-01-01

    It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators—materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. For topological insulators, the effects of these surface states will be more strongly pronounced in the case of nanoparticles. Here we show that under the influence of light a single electron in a topologically protected surface state creates a surface charge density similar to a plasmon in a metallic nanoparticle. Such an electron can act as a screening layer, which suppresses absorption inside the particle. In addition, it can couple phonons and light, giving rise to a previously unreported topological particle polariton mode. These effects may be useful in the areas of plasmonics, cavity electrodynamics and quantum information. PMID:27491515

  17. Tunable plasmon-enhanced broadband light harvesting for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Que, Meidan; Zhu, Liangliang; Yang, Yawei; Liu, Jie; Chen, Peng; Chen, Wei; Yin, Xingtian; Que, Wenxiu

    2018-04-01

    In this work, we report a reliable method for synthesizing (Au, Au/Ag core)/(TiO2 shell) nanostructures with their plasmonic wavelengths covering the visible light region for perovskite solar cells. The mono- and bi-metallic core-shell nanoparticles exhibit tunable localized surface plasmon resonance wavelength and function as "light tentacle" to improve the photo-electricity conversion efficiency. Plasmonic nanoparticles with different sizes and shapes, different thicknesses of TiO2 shell and Ag interlayer are found to have a strong influence on the localized surface plasmon resonance enhancement effect. The experimental photovoltaic performance of perovskite solar cells is significantly enhanced when the plasmonic nanoparticles are embedded inmesoporous TiO2 scaffolds. A champion photo-electricity conversion efficiency of 17.85% is achieved with nanoparticles (Au/Ag, λLSPR = 650 nm), giving a 18.7% enhancement over that of the pristine device (15.04%). Finite-difference time-domain simulations show that nanorod Au in mesoporus TiO2 scaffold induces the most intense electromagnetic coupling, and provides a novel emitter for photon flux in mesoporous perovskite solar cells. These theoretical results are consistent with the corresponding experimental those. Thus, enhancing the incident light intensities around 650 nm will be most favorable to the improvement of the photo-electricity conversion efficiency of perovskite solar cells.

  18. Surface Plasmon-Assisted Solar Energy Conversion.

    PubMed

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  19. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film.

    PubMed

    Wang, Kai; Schonbrun, Ethan; Crozier, Kenneth B

    2009-07-01

    We experimentally demonstrate the enhanced propulsion of gold nanoparticles by surface plasmon polaritons (SPPs). Three dimensional finite difference time domain (FDTD) simulations indicate considerably enhanced optical forces due to the field enhancement provided by SPPs and the near-field coupling between the gold particles and the film. This coupling is an important part of the enhanced propulsion phenomenon. Finally, the measured optical force is compared with that predicted by FDTD simulations and proven to be reasonable.

  20. Interaction between plasmonic nanoparticles revisited with transformation optics.

    PubMed

    Aubry, Alexandre; Lei, Dang Yuan; Maier, Stefan A; Pendry, J B

    2010-12-03

    The interaction between plasmonic nanoparticles is investigated by means of transformation optics. The optical response of a dimer can be decomposed as a sum of modes whose resonances redshift when the nanoparticles approach each other. The extinction and scattering cross sections as well as the field enhancement induced by the dimer are derived analytically taking into account radiation damping. Interestingly, some invisibility dips occur in the scattering spectrum and originate from a destructive interference between each surface plasmon mode.

  1. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    PubMed Central

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-01-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics. PMID:27872494

  2. Single Nanoparticle Plasmonic Sensors

    PubMed Central

    Sriram, Manish; Zong, Kelly; Vivekchand, S. R. C.; Gooding, J. Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  3. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR) sensor applications

    NASA Astrophysics Data System (ADS)

    Diyanah Samsuri, Nurul; Maisarah Mukhtar, Wan; Rashid, Affa Rozana Abdul; Dasuki, Karsono Ahmad; Awangku Yussuf, Awangku Abdul Rahman Hj.

    2017-11-01

    Gold nanoparticles (GNPs) have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR) sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR) and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.

  4. Plasmon-Enhanced Photocleaving Dynamics in Colloidal MicroRNA-Functionalized Silver Nanoparticles Monitored with Second Harmonic Generation.

    PubMed

    Kumal, Raju R; Abu-Laban, Mohammad; Landry, Corey R; Kruger, Blake; Zhang, Zhenyu; Hayes, Daniel J; Haber, Louis H

    2016-10-11

    The photocleaving dynamics of colloidal microRNA-functionalized nanoparticles are studied using time-dependent second harmonic generation (SHG) measurements. Model drug-delivery systems composed of oligonucleotides attached to either silver nanoparticles or polystyrene nanoparticles using a nitrobenzyl photocleavable linker are prepared and characterized. The photoactivated controlled release is observed to be most efficient on resonance at 365 nm irradiation, with pseudo-first-order rate constants that are linearly proportional to irradiation powers. Additionally, silver nanoparticles show a 6-fold plasmon enhancement in photocleaving efficiency over corresponding polystyrene nanoparticle rates, while our previous measurements on gold nanoparticles show a 2-fold plasmon enhancement compared to polystyrene nanoparticles. Characterizations including extinction spectroscopy, electrophoretic mobility, and fluorimetry measurements confirm the analysis from the SHG results. The real-time SHG measurements are shown to be a highly sensitive method for investigating plasmon-enhanced photocleaving dynamics in model drug delivery systems.

  5. Plasmon-Induced Magnetic Resonance Enhanced Raman Spectroscopy.

    PubMed

    Chen, Shu; Zhang, Yuejiao; Shih, Tien-Mo; Yang, Weimin; Hu, Shu; Hu, Xiaoyan; Li, Jianfeng; Ren, Bin; Mao, Bingwei; Yang, Zhilin; Tian, Zhongqun

    2018-04-11

    Plasmon-induced magnetic resonance has shown great potentials in optical metamaterials, chemical (bio)-sensing, and surface-enhanced spectroscopies. Here, we have theoretically and experimentally revealed (1) a correspondence of the strongest near-field response to the far-field scattering valley and (2) a significant improvement in Raman signals of probing molecules by the plasmon-induced magnetic resonance. These revelations are accomplished by designing a simple and practical metallic nanoparticle-film plasmonic system that generates magnetic resonances at visible-near-infrared frequencies. Our work may provide new insights for understanding the enhancement mechanism of various plasmon-enhanced spectroscopies and also helps further explore light-matter interactions at the nanoscale.

  6. Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach.

    PubMed

    Pustovit, Vitaliy N; Shahbazyan, Tigran V

    2006-06-01

    We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.

  7. Colloidal aluminum nanoparticles with tunable localized surface plasmon resonances for energy applications

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Smith, Kenneth; Arinze, Ebuka; Nyirjesy, Gabrielle; Bragg, Arthur; Thon, Susanna

    Localized surface plasmon resonances (LSPRs) of noble metal nanoparticles are of interest for energy applications due to their visible and near infrared wavelength sensitivity. However, application of these materials in optoelectronic devices is limited by their rarity and high cost. Earth-abundant, inexpensive and non-toxic aluminum is a promising alternative material with a plasmon resonance that can also be tuned via size-, shape- and surface-oxide-control. Here, we employ solution-processed methods to synthesize stable colloidal aluminum nanoparticles. We systematically investigate parameters in the synthesis that control size, shape and oxidation of the aluminum nanoparticles and tune their LSPRs over the ultraviolet and visible spectral regions. We optically characterize the nanoparticle solutions and evaluate their potential for future integration into photovoltaic, photocatalytic and photosensing systems.

  8. Advanced wide-field surface plasmon microscopy of single adsorbing nanoparticles

    NASA Astrophysics Data System (ADS)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    In-situ detection and characterization of nanoparticles in biological media as well as in food or other complex samples is still a big challenge for existing analytical methods. Here we describe a label-free and cost-effective analytical method for detection of nanoparticles in the concentration range 106 -1010 NPs/ml. The proposed method is based on the surface plasmon resonance microscopy (SPRM) with a large field of view ( 1.3mm2 ). It is able to detect and count adsorbing nanoparticles individually, totally up to the hundreds of thousands of NPs on the sensor surface. At constant diffusion conditions the detection rate is proportional to the number concentration of NPs, this provides an approach to determine the NPs concentration. The adsorption of nanoparticle can be manipulated by the surface functionalization, pH and electrolyte concentration of suspensions. Images of detected nanoparticles can be quantified in order to characterize them individually. The image intensity grows quasi-linearly with nanoparticle size for the given material. However, the size and material of nanoparticle cannot be resolved directly from the image. For determination of chemical composition, SPRM can be assisted by electrochemical analysis. In this case, the gold sensor surface is used both as a resonant media for plasmon microscopy and as a working electrode. Under potential sweep, the adsorbed NPs can be subjected to electrochemical dissolution, which is detected optically. The potential of this conversion characterizes the material of NPs.

  9. Probing plasmon resonances of individual aluminum nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Zhongxia; Mao, Peng; Cao, Lu; Song, Fengqi

    2018-01-01

    The plasmon resonances of individual aluminum nanoparticles are investigated by electron energy-loss spectroscopy (EELS) in scanning transmission electron microscope (STEM). Surface plasmon mode and bulk plasmon mode of Al nanoparticles are clearly characterized in the EEL spectra. Discrete dipole approximation (DDA) calculations show that as the particle diameter increases from 20 nm to 100 nm, the plasmon resonance shifts to lower energy and higher mode of surface plasmon arises when the diameter reaches 60 nm and larger.

  10. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  11. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars

  12. Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions.

    PubMed

    de Ceglia, Domenico; Vincenti, Maria Antonietta; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2017-02-20

    Plasmonic resonators can provide large local electric fields when the gap between metal components is filled with an ordinary dielectric. We consider a new concept consisting of a hybrid nanoantenna obtained by introducing a resonant, plasmonic nanoparticle strategically placed inside the gap of an aptly sized metallic antenna. The system exhibits two nested, nearly overlapping plasmonic resonances whose signature is a large field enhancement at the surface and within the bulk of the plasmonic nanoparticle that leads to unusually strong, linear and nonlinear light-matter coupling.

  13. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    PubMed

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  14. Magnesium Nanoparticle Plasmonics.

    PubMed

    Biggins, John S; Yazdi, Sadegh; Ringe, Emilie

    2018-06-13

    Nanoparticles of some metals (Cu/Ag/Au) sustain oscillations of their electron cloud called localized surface plasmon resonances (LSPRs). These resonances can occur at optical frequencies and be driven by light, generating enhanced electric fields and spectacular photon scattering. However, current plasmonic metals are rare, expensive, and have a limited resonant frequency range. Recently, much attention has been focused on earth-abundant Al, but Al nanoparticles cannot resonate in the IR. The earth-abundant Mg nanoparticles reported here surmount this limitation. A colloidal synthesis forms hexagonal nanoplates, reflecting Mg's simple hexagonal lattice. The NPs form a thin self-limiting oxide layer that renders them stable suspended in 2-propanol solution for months and dry in air for at least two week. They sustain LSPRs observable in the far-field by optical scattering spectroscopy. Electron energy loss spectroscopy experiments and simulations reveal multiple size-dependent resonances with energies across the UV, visible, and IR. The symmetry of the modes and their interaction with the underlying substrate are studied using numerical methods. Colloidally synthesized Mg thus offers a route to inexpensive, stable nanoparticles with novel shapes and resonances spanning the entire UV-vis-NIR spectrum, making them a flexible addition to the nanoplasmonics toolbox.

  15. Resonances of nanoparticles with poor plasmonic metal tips

    NASA Astrophysics Data System (ADS)

    Ringe, Emilie; Desantis, Christopher J.; Collins, Sean M.; Duchamp, Martial; Dunin-Borkowski, Rafal E.; Skrabalak, Sara E.; Midgley, Paul A.

    2015-11-01

    The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd.

  16. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

    NASA Astrophysics Data System (ADS)

    Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2016-06-01

    Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.

  17. Large enhancement of UV luminescence emission of ZnO nanoparticles by coupling excitons with Ag surface plasmons

    NASA Astrophysics Data System (ADS)

    Kuiri, Probodh K.; Pramanik, Subhamay

    2018-04-01

    For an emitter based on bandgap emission, defect mediated emission has always been considered as the most important loss. Here, a novel approach which can overcome such emission loss is proposed using films of ZnO nanoparticles (NPs) on Ag NPs embedded in silica. The effects of the size of Ag NPs on the enhancement of ultra-violet (UV) photoluminescence (PL) of ZnO NPs for such a system have been studied. For the ZnO NPs without Ag NPs, two emission bands have been seen: one in the UV region and the other one in the visible region. This UV PL emission intensity has been seen to increase significantly with a drastic reduction of the visible PL emission intensity in the case of the sample containing ZnO NPs on silica embedded Ag NPs. A linear increase in UV emission with increase in the size of Ag NPs has been found. For the largest size of Ag NPs (˜10 nm, considered in the present study), the PL emission enhancement becomes about 4 times higher than that of sample without Ag NPs. The observed enhancement of the UV PL emission was caused by coupling between spontaneous emission in ZnO and surface plasmons of Ag. The larger Ag NPs provided a larger scattering cross section in coupling surface plasmons to light leading to an increase in UV emission. Thus, it is possible to convert the useless defect emission to the useful excitonic emission with a large enhancement factor.

  18. Surface plasmon mediated Raman scattering in metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bachelier, G.; Mlayah, A.

    2004-05-01

    The Raman scattering due to confined acoustic vibrations in metal particles is studied theoretically. Various coupling mechanisms between the surface plasmon polaritons and the confined vibrations are investigated. Their relative contribution to the light scattering is discussed. We found that two mechanisms play an important role: (i) modulation of the interband dielectric susceptibility via deformation potential due to pure radial vibrations and (ii) modulation of the surface polarization charges by quadripolar vibrations. The dependence of the Raman spectra on the nanoparticles size and size distribution and on the excitation energy is studied in connection with the nature of the excited plasmon-polariton states. We found a good agreement between calculated line shapes and relatives intensities of the Raman bands and the experimental spectra reported in the literature.

  19. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.

    PubMed

    Kim, Richard S; Zhu, Jinfeng; Park, Jeung Hun; Li, Lu; Yu, Zhibin; Shen, Huajun; Xue, Mei; Wang, Kang L; Park, Gyechoon; Anderson, Timothy J; Pei, Qibing

    2012-06-04

    We report the plasmon-assisted photocurrent enhancement in Ag-nanoparticles (Ag-NPs) embedded PEDOT:PSS/P3HT:PCBM organic solar cells, and systematically investigate the causes of the improved optical absorption based on a cylindrical Ag-NPs optical model which is simulated with a 3-Dimensional finite difference time domain (FDTD) method. The proposed cylindrical Ag-NPs optical model is able to explain the optical absorption enhancement by the localized surface plasmon resonance (LSPR) modes, and to provide a further understanding of Ag-NPs shape parameters which play an important role to determine the broadband absorption phenomena in plasmonic organic solar cells. A significant increase in the power conversion efficiency (PCE) of the plasmonic solar cell was experimentally observed and compared with that of the solar cells without Ag-NPs. Finally, our conclusion was made after briefly discussing the electrical effects of the fabricated plasmonic organic solar cells.

  20. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.

    PubMed

    Pennanen, Antti M; Toppari, J Jussi

    2013-01-14

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  1. Macroscopic monolayer of plasmon coupled gold nanoparticles on mirror for fluorescence enhancement

    NASA Astrophysics Data System (ADS)

    Kaydashev, V. E.; Zolotukhin, P.; Belanova, A.; Anokhin, A. S.; Zharinov, V. S.; Kaidashev, E. M.

    2018-04-01

    We study an ability of a large quasi-homogeneous monolayer of Au plasmon coupled nanoparticles separated from continuous Au film by polymer spacer to enhance a fluorescence of adsorbed molecular species. A fluorescence response of Methylene Blue molecules is studied as a function of polymer film thickness. A change of plasmonic properties of a system, its ability to enhance a fluorescence and the possible heating of a structure upon light absorption are discussed.

  2. Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Liu, Qisheng; Wei, Yunwei; Shahid, Malik Zeeshan; Yao, Mingming; Xu, Bo; Liu, Guangning; Jiang, Kejian; Li, Cuncheng

    2018-03-01

    Spectrum-enhanced Au@ZnO plasmonic nanoparticles (NPs) are developed for fabrication of the dye-sensitized solar cells (DSSCs), and their remarkable enhanced performances are achieved due to Surface Plasmon Resonance (SPR) effects. When being doped different blended amounts of the Au@ZnO NPs within the photoanode layers, various enhanced effects in the SPR-based DSSCs are exhibited. Compared with the power conversion efficiency (PCE, 7.50%) achieved for bare DSSC, device with doped Au@ZnO NPs of 1.93% delivers the top PCE of 8.91%, exhibiting about 20% enhancement. To elaborate the charge transfer process in the Au@ZnO NPs blended DSSCs, the photoluminescence (PL), electrochemical impedance spectra (EIS), etc are performed. We find that both the enhanced SPR absorption properties and the suppressed recombination process of charges contribute much to the improved performance of Au@ZnO-incorporated DSSCs.

  3. Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy

    PubMed Central

    Zhang, Jing; Li, Jinxing; Tang, Shiwei; Fang, Yangfu; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Zheng, Lirong; Cui, Xugao; Mei, Yongfeng

    2015-01-01

    The synergy effect in nature could enable fantastic improvement of functional properties and associated effects. The detection performance of surface-enhanced Raman scattering (SERS) can be highly strengthened under the cooperation with other factors. Here, greatly-enhanced SERS detection is realized based on rolled-up tubular nano-resonators decorated with silver nanoparticles. The synergy effect between whispering-gallery-mode (WGM) and surface plasmon leads to an extra enhancement at the order of 105 compared to non-resonant flat SERS substrates, which can be well tuned by altering the diameter of micron- and nanotubes and the excitation laser wavelengths. Such synchronous and coherent coupling between plasmonics and photonics could lead to new principle and design for various sub-wavelength optical devices, e.g. plasmonic waveguides and hyperbolic metamaterials. PMID:26443526

  4. Nano-Gap Embedded Plasmonic Gratings for Surface Plasmon Enhanced Fluorescence

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Kunal; Bok, Sangho; Korampally, Venumadhav; Gangopadhyay, Shubhra

    2012-02-01

    Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal/dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures on the sub wavelength scale have been shown to provide very efficient and extreme light concentration at the nano-scale. The enhanced electric field produced within a few hundred nanometers of these structures can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences. Improving the qualities and capabilities of fluorescence based detectors and imaging equipment has been a big challenge to the industry manufacturers. We report the novel fabrication of nano-gap embedded periodic grating substrates on the nanoscale using micro-contact printing and polymethylsilsesquioxane (PMSSQ) polymer. Fluorescence enhancement of up to 118 times was observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for low-level fluorescence detection and single molecule imaging.

  5. Optical Characterization of Single Plasmonic Nanoparticles

    PubMed Central

    Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli; Wang, Lin-Yung; Chang, Wei-Shun; Link, Stephan

    2015-01-01

    This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles. PMID:24979351

  6. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2-4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  7. Tunable plasmonic properties of Ag-Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhatia, Pradeep; Verma, S. S.; Sinha, M. M.

    2018-05-01

    Compatibility problems with electronic processes, limited availability and the high cost of noble metals motivate towards the search of alternative materials to enhance the suitability and efficiency of plasmonic based devices. Alloy or coated bimetallic material configuration is an attractive way to engineer a system possessing tuneable plasmonic properties. Magneto-plasmonic nanoparticles (MPNPs) present the possibility to exhibit their tuneable magnetic and optical properties with extensive applications. We studied the optical properties of Ag-Fe alloy for different compositions. The Localised Surface Plasmon Resonance (LSPR) tunability of Agx-Fe1-x (x = 0.25, 0.50 and 0.75) alloy for nanospheres has been calculated by using Discrete Dipole Approximation (DDA) simulation technique. It is found that absorption and scattering efficiencies of Ag-Fe alloy are found in near ultra violet and visible region of electromagnetic spectrum. Large LSPR shift has been observed in absorption and scattering efficiencies peak for 40 nm and 80 nm size of nanospheres alloys. It is concluded that the LSPR can be tuned by changing nanoparticle size and the alloy composition. Results of the plasmonics properties for Ag-Fe alloy at wavelength 330-545nm (absorption) and 331-507nm (scattering) will open the avenues for new applications in optical imaging, biomedical fields particularly in (calorimetric)-DNA, pentose's, proteins (absorption) and plasmonic-enhanced spectroscopies/spectrometer devices (scattering) for determination of optical densities of cell cultures.

  8. Enhanced Propagating Surface Plasmon Signal Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.

    2016-12-21

    Overcoming the dissipative nature of propagating surface plasmons (PSPs) is pre-requisite to realizing functional plasmonic circuitry, in which large bandwidth signals can be manipulated over length scales far-below the diffraction limit of light. To this end, we report on a novel PSP enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatio-temporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved non-linear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from amore » hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 microns in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10X enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a non-linear scheme. Larger readout trenches achieve higher readout levels, however reduced transmission through the trench limits the trench size to 6 microns for maximum readout levels. However, the use of an array of trenches increases the maximum enhancement to near 30X. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry.« less

  9. Microscopic theory of optical absorption in graphene enhanced by lattices of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mueller, Niclas S.; Reich, Stephanie

    2018-06-01

    We present a microscopic description of plasmon-enhanced optical absorption in graphene, which is based on perturbation theory. We consider the interaction of graphene with a lattice of plasmonic nanoparticles, as was previously realized experimentally. By using tight-binding wave functions for the electronic states of graphene and the dipole approximation for the plasmon, we obtain analytic expressions for the coupling matrix element and enhanced optical absorption. The plasmonic nanostructure induces nonvertical optical transitions in the band structure of graphene with selection rules for the momentum transfer that depend on the periodicity of the plasmonic lattice. The plasmon-mediated optical absorption leads to an anisotropic carrier population around the K point in phase space, which depends on the polarization pattern of the plasmonic near field in the graphene plane. Using Fourier optics, we draw a connection to a macroscopic approach, which is independent from graphene-specific parameters. Each Fourier component of the plasmonic near field corresponds to the momentum transfer of an optical transition. Both approaches lead to the same expression for the integrated optical absorption enhancement, which is relevant for the photocurrent enhancement in graphene-based optoelectronic devices.

  10. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles

    PubMed Central

    2009-01-01

    The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors. PMID:20596433

  11. Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing.

    PubMed

    Arora, Pankaj; Talker, Eliran; Mazurski, Noa; Levy, Uriel

    2018-06-13

    We demonstrate numerically and experimentally the enhancement of Surface Plasmon Resonance (SPR) sensing via dispersion engineering of the plasmonic response using plasmonic nanograting. Following their design and optimization, the plasmonic nanograting structures are fabricated using e-beam lithography and lift-off process and integrated into conventional prism based Kretschmann configuration. The presence of absorptive nanograting near the metal film, provides strong field enhancement with localization and allows to control the dispersion relation which was originally dictated by a conventional SPR structure. This contributes to the enhancement in Q factor which is found to be 3-4 times higher as compared to the conventional Kretschmann configuration. The influence of the incident angle on resonance wavelength is also demonstrated both numerically and experimentally, where, only a negligible wavelength shift is observed with increasing the incident angles for plasmonic nanograting configuration. This surprising feature may be helpful for studying and utilizing light-matter interaction between plasmons and narrow linewidth media (e.g. Rb atom or molecule) having nonlocalities in their susceptibility-momentum relation. Finally, we analyze the role of plasmonic nanograting in enhancing the performance of an SPR sensor. Our results indicate that the integrated SPR-nanograting device shows a great promise as a sensor for various types of analytes.

  12. Fast optoelectric printing of plasmonic nanoparticles into tailored circuits

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.

    2017-04-01

    Plasmonic nanoparticles are able to control light at nanometre-scale by coupling electromagnetic fields to the oscillations of free electrons in metals. Deposition of such nanoparticles onto substrates with tailored patterns is essential, for example, in fabricating plasmonic structures for enhanced sensing. This work presents an innovative micro-patterning technique, based on optoelectic printing, for fast and straightforward fabrication of curve-shaped circuits of plasmonic nanoparticles deposited onto a transparent electrode often used in optoelectronics, liquid crystal displays, touch screens, etc. We experimentally demonstrate that this kind of plasmonic structure, printed by using silver nanoparticles of 40 nm, works as a plasmonic enhanced optical device allowing for polarized-color-tunable light scattering in the visible. These findings have potential applications in biosensing and fabrication of future optoelectronic devices combining the benefits of plasmonic sensing and the functionality of transparent electrodes.

  13. Split-GFP: SERS Enhancers in Plasmonic Nanocluster Probes.

    PubMed

    Chung, Taerin; Koker, Tugba; Pinaud, Fabien

    2016-09-08

    The assembly of plasmonic metal nanoparticles into hot spot surface-enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self-complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split-green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near-field dipolar couplings between AuNPs and provides SERS enhancement factors above 10 8 . Among the different nanoclusters studied, AuNP/GFP chains allow near-infrared SERS detection of the GFP chromophore imidazolinone/exocyclic CC vibrational mode with theoretical enhancement factors of 10 8 -10 9 . For larger AuNP/GFP assemblies, the presence of non-GFP seeded nanogaps between tightly packed nanoparticles reduces near-field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Localized surface plasmons in vibrating graphene nanodisks

    NASA Astrophysics Data System (ADS)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik; Mortensen, N. Asger; Christensen, Johan

    2016-02-01

    Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit of being highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.

  15. Gilded nanoparticles for plasmonically enhanced fluorescence in TiO2:Sm3+ sol-gel films

    PubMed Central

    2014-01-01

    Abstract Silica-gold core-shell nanoparticles were used for plasmonic enhancement of rare earth fluorescence in sol-gel-derived TiO2:Sm3+ films. Local enhancement of Sm3+ fluorescence in the vicinity of separate gilded nanoparticles was revealed by a combination of dark field microscopy and fluorescence spectroscopy techniques. An intensity enhancement of Sm3+ fluorescence varies from 2.5 to 10 times depending on the used direct (visible) or indirect (ultraviolet) excitations. Analysis of fluorescence lifetimes suggests that the locally stronger fluorescence occurs because of higher plasmon-coupled direct absorption of exciting light by the Sm3+ ions or due to plasmon-assisted non-radiative energy transfer from the excitons of TiO2 host to the rare earth ions. PACS 78; 78.67.-n; 78.67.Bf PMID:24666921

  16. Gilded nanoparticles for plasmonically enhanced fluorescence in TiO2:Sm3+ sol-gel films.

    PubMed

    Pikker, Siim; Dolgov, Leonid; Heinsalu, Siim; Mamykin, Sergii; Kiisk, Valter; Kopanchuk, Sergei; Lõhmus, Rünno; Sildos, Ilmo

    2014-03-25

    Silica-gold core-shell nanoparticles were used for plasmonic enhancement of rare earth fluorescence in sol-gel-derived TiO2:Sm3+ films. Local enhancement of Sm3+ fluorescence in the vicinity of separate gilded nanoparticles was revealed by a combination of dark field microscopy and fluorescence spectroscopy techniques. An intensity enhancement of Sm3+ fluorescence varies from 2.5 to 10 times depending on the used direct (visible) or indirect (ultraviolet) excitations. Analysis of fluorescence lifetimes suggests that the locally stronger fluorescence occurs because of higher plasmon-coupled direct absorption of exciting light by the Sm3+ ions or due to plasmon-assisted non-radiative energy transfer from the excitons of TiO2 host to the rare earth ions. 78; 78.67.-n; 78.67.Bf.

  17. Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro

    2013-06-01

    We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.

  18. Room-Temperature and Aqueous-Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visible-Light-Enhanced Hydrogen Generation.

    PubMed

    Shi, Jiayuan; Kuwahara, Yasutaka; Wen, Meicheng; Navlani-García, Miriam; Mori, Kohsuke; An, Taicheng; Yamashita, Hiromi

    2016-09-06

    A straightforward aqueous synthesis of MoO3-x nanoparticles at room temperature was developed by using (NH4 )6 Mo7 O24 ⋅4 H2 O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as-prepared products are nanoparticles with diameters of 90-180 nm. The diffuse reflectance UV-visible-near-IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible-light and near-infrared region, such nanostructures exhibit an enhancement of activity toward visible-light catalytic hydrogen generation. MoO3-x nanoparticles synthesized with a molar ratio of Mo(VI) /Mo(V) 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as-prepared plasmonic MoO3-x nanoparticles, which reveals its potential application in visible-light catalytic hydrogen production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of the size of silver nanoparticles on SERS signal enhancement

    NASA Astrophysics Data System (ADS)

    He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.

    2017-08-01

    The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.

  20. Surface plasmon resonances of protein-conjugated gold nanoparticles on graphitic substrates

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Hoang, Trinh X.; Nghiem, Thi H. L.; Woods, Lilia M.

    2013-10-01

    We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine serum molecules aggregating on gold surfaces can be quantitatively determined for gold nanoparticles with arbitrary size by means of the Mie theory and the absorption spectra. The presence of a graphene substrate near the protein-conjugated gold nanoparticles results in a red shift of the surface plasmon resonances of the nanoparticles. This effect can be modulated upon changing the graphene chemical potential. Our findings show that the graphene and graphite affect the absorption spectra in a similar way.

  1. Gap-Mode Surface-Plasmon-Enhanced Photoluminescence and Photoresponse of MoS2.

    PubMed

    Wu, Zhi-Qian; Yang, Jing-Liang; Manjunath, Nallappagar K; Zhang, Yue-Jiao; Feng, Si-Rui; Lu, Yang-Hua; Wu, Jiang-Hong; Zhao, Wei-Wei; Qiu, Cai-Yu; Li, Jian-Feng; Lin, Shi-Sheng

    2018-05-22

    2D materials hold great potential for designing novel electronic and optoelectronic devices. However, 2D material can only absorb limited incident light. As a representative 2D semiconductor, monolayer MoS 2 can only absorb up to 10% of the incident light in the visible, which is not sufficient to achieve a high optical-to-electrical conversion efficiency. To overcome this shortcoming, a "gap-mode" plasmon-enhanced monolayer MoS 2 fluorescent emitter and photodetector is designed by squeezing the light-field into Ag shell-isolated nanoparticles-Au film gap, where the confined electromagnetic field can interact with monolayer MoS 2 . With this gap-mode plasmon-enhanced configuration, a 110-fold enhancement of photoluminescence intensity is achieved, exceeding values reached by other plasmon-enhanced MoS 2 fluorescent emitters. In addition, a gap-mode plasmon-enhanced monolayer MoS 2 photodetector with an 880% enhancement in photocurrent and a responsivity of 287.5 A W -1 is demonstrated, exceeding previously reported plasmon-enhanced monolayer MoS 2 photodetectors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGES

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  3. Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Yu, Zhenzhong; Li, Qiang; Fan, Qigao; Zhu, Yixin

    2018-05-01

    We demonstrate surface-plasmon (SP) enhanced light emission from InGaN/GaN near ultraviolet (NUV) multiple quantum wells (MQWs) using Ag thin films and nano-particles (NPs). Two types of Ag NP arrays are fabricated on the NUV-MQWs, one is fabricated on p-GaN layer with three different sizes of about 120, 160 and 240 nm formed by self-assembled process, while the other is embedded close to the MQWs. In addition, the influence of the surface plasmon polariton (SPP) and localized surface plasmon (LSP) in NUV-MQWs has been investigated by photoluminescence (PL) measurement. Both PL measurements and theoretical simulation results show that the NUV light would be extracted more effectively under LSP mode than that of SPP mode. The highest enhancement of PL intensity is increased by 324% for the sample with NPs embedded in etched p-GaN near the MQWs as compared with the bare MQWs, also is about 1.24 times higher than the MQW sample covered with Ag NPs on the surface, indicating strong surface scattering and SP coupling between Ag NPs and NUV-MQWs.

  4. Ambiance-dependent agglomeration and surface-enhanced Raman spectroscopy response of self-assembled silver nanoparticles for plasmonic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Gwamuri, Jephias; Venkatesan, Ragavendran; Sadatgol, Mehdi; Mayandi, Jeyanthinath; Guney, Durdu O.; Pearce, Joshua M.

    2017-07-01

    The agglomeration/dewetting process of thin silver films provides a scalable method of obtaining self-assembled nanoparticles (SANPs) for plasmonics-based thin-film solar photovoltaic (PV) devices. We show the effect of annealing ambiance on silver SANP average size, particle/cluster finite shape, substrate area coverage/particle distribution, and how these physical parameters influence optical properties and surface-enhanced Raman scattering (SERS) responses of SANPs. Statistical analysis performed indicates that generally Ag SANPs processed in the presence of a gas (argon and nitrogen) ambiance tend to have smaller average size particles compared to those processed under vacuum. Optical properties are observed to be highly dependent on particle size, separation distance, and finite shape. The greatest SERS enhancement was observed for the argon-processed samples. There is a correlation between simulation and experimental data that indicate argon-processed AgNPs have a great potential to enhance light coupling when integrated to thin-film PV.

  5. Origin of Plasmon Lineshape and Enhanced Hot Electron Generation in Metal Nanoparticles.

    PubMed

    You, Xinyuan; Ramakrishna, S; Seideman, Tamar

    2018-01-04

    Plasmon-generated hot carriers are currently being studied intensively for their role in enhancing the efficiency of photovoltaic and photocatalytic processes. Theoretical studies of the hot electrons subsystem have generated insight, but we show that a unified quantum-mechanical treatment of the plasmon and hot electrons reveals new physical phenomena. Instead of a unidirectional energy transfer process in Landau damping, back energy transfer is predicted in small metal nanoparticles (MNPs) within a model-Hamiltonian approach. As a result, the single Lorentzian plasmonic line shape is modulated by a multipeak structure, whose individual line width provides a direct way to probe the electronic dephasing. More importantly, the hot electron generation can be enhanced greatly by matching the incident energy to the peaks of the modulated line shape.

  6. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  7. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.

    PubMed

    Gisbert Quilis, Nestor; Lequeux, Médéric; Venugopalan, Priyamvada; Khan, Imran; Knoll, Wolfgang; Boujday, Souhir; Lamy de la Chapelle, Marc; Dostalek, Jakub

    2018-05-23

    The facile preparation of arrays of plasmonic nanoparticles over a square centimeter surface area is reported. The developed method relies on tailored laser interference lithography (LIL) that is combined with dry etching and it offers means for the rapid fabrication of periodic arrays of metallic nanostructures with well controlled morphology. Adjusting the parameters of the LIL process allows for the preparation of arrays of nanoparticles with a diameter below hundred nanometers independently of their lattice spacing. Gold nanoparticle arrays were precisely engineered to support localized surface plasmon resonance (LSPR) with different damping at desired wavelengths in the visible and near infrared part of the spectrum. The applicability of these substrates for surface enhanced Raman scattering is demonstrated where cost-effective, uniform and reproducible substrates are of paramount importance. The role of deviations in the spectral position and the width of the LSPR band affected by slight variations of plasmonic nanostructures is discussed.

  8. Three-Dimensional Hierarchical Plasmonic Nano-Architecture Enhanced Surface-Enhanced Raman Scattering Immuno-Sensor for Cancer Biomarker Detection in Blood Plasma

    PubMed Central

    Li, Ming; Cushing, Scott K.; Zhang, Jianming; Suri, Savan; Evans, Rebecca; Petros, William P.; Gibson, Laura F.; Ma, Dongling; Liu, Yuxin; Wu, Nianqiang

    2013-01-01

    A three-dimensional (3D) hierarchical plasmonic nano-architecture has been designed for a sensitive surface-enhanced Raman scattering (SERS) immuno-sensor for protein biomarker detection. The capture antibody molecules are immobilized on a plasmonic gold triangle nano-array pattern. On the other hand, the detection antibody molecules are linked to the gold nano-star@Raman-reporter@silica sandwich nanoparticles. When protein biomarkers are present, the sandwich nanoparticles are captured over the gold triangle nano-array, forming a confined 3D plasmonic field, leading to the enhanced electromagnetic field in intensity and in 3D space. As a result, the Raman reporter molecules are exposed to a high density of “hot spots”, which amplifies the Raman signal remarkably, improving the sensitivity of the SERS immuno-sensor. This SERS immuno-sensor exhibits a wide linear range (0.1 pg/mL to 10 ng/mL), and a low limit of detection (7 fg/mL) toward human immunoglobulin G (IgG) protein in the buffer solution. This biosensor has been successfully used for detection of the vascular endothelial growth factor (VEGF) in the human blood plasma from clinical breast cancer patient samples. PMID:23659430

  9. Influence of surface plasmon resonance of Sn nanoparticles and nanosheets on the photoluminescence and Raman spectra of SnS quantum dots

    NASA Astrophysics Data System (ADS)

    Warrier, Anita R.; Gandhimathi, R.

    2018-04-01

    We report on enhancement of photoluminescence of SnS quantum dots by embedding them in a mesh of Sn nanostructures. SnS quantum dots with band gap ˜2.7 eV are embedded in a mesh of Sn nanostructures, that are synthesized from tin chloride solution using sodium borohydride as reducing agent. The synthesized Sn nanostructures have a morphology dependent, tunable surface plasmon resonance ranging from UV region (295 nm) to visible region (400 nm) of the electromagnetic spectrum. In the SnS-Sn nanohybrids, the excitons are strongly coupled with plasmons leading to a shift in the excitonic binding energy (˜ 400 meV). Due to the influence of Sn nanoparticles on the SnS quantum dots, the photoluminescence and Raman line intensity is enhanced by an order of ˜103 The enhancement is more pronounced for Sn nanosheets due to the large surface area and visible light surface plasmon resonance.

  10. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.

    PubMed

    Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong

    2016-08-02

    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.

  11. Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal

    PubMed Central

    Ferreira de Macedo, Erenildo; Ducatti Formaggio, Daniela Maria; Salles Santos, Nivia; Batista Tada, Dayane

    2017-01-01

    Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10–40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40–50-times higher and an LOD 64-times lower. PMID:29186024

  12. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    DOE PAGES

    Zhang, Z.; Li, R.; To, H.; ...

    2016-11-22

    Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  13. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Li, R.; To, H.; Andonian, G.; Pirez, E.; Meade, D.; Maxson, J.; Musumeci, P.

    2017-09-01

    Nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  14. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Li, R.; To, H.

    Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  15. Distance-Dependent Plasmon-Enhanced Singlet Oxygen Production and Emission for Bacterial Inactivation.

    PubMed

    Planas, Oriol; Macia, Nicolas; Agut, Montserrat; Nonell, Santi; Heyne, Belinda

    2016-03-02

    Herein, we synthesized a series of 10 core-shell silver-silica nanoparticles with a photosensitizer, Rose Bengal, tethered to their surface. Each nanoparticle possesses an identical silver core of about 67 nm, but presents a different silica shell thickness ranging from 5 to 100 nm. These hybrid plasmonic nanoparticles thus afford a plasmonic nanostructure platform with a source of singlet oxygen ((1)O2) at a well-defined distance from the metallic core. Via time-resolved and steady state spectroscopic techniques, we demonstrate the silver core exerts a dual role of enhancing both the production of (1)O2, through enhanced absorption of light, and its radiative decay, which in turn boosts (1)O2 phosphorescence emission to a greater extent. Furthermore, we show both the production and emission of (1)O2 in vitro to be dependent on proximity to the plasmonic nanostructure. Our results clearly exhibit three distinct regimes as the plasmonic nanostructure moves apart from the (1)O2 source, with a greater enhancement for silica shell thicknesses ranging between 10 and 20 nm. Moreover, these hybrid plasmonic nanoparticles can be delivered to both Gram-positive and Gram-negative bacteria boosting both photoantibacterial activity and detection limit of (1)O2 in cells.

  16. Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles.

    PubMed

    Kong, Xianming; Squire, Kenny; Li, Erwen; LeDuff, Paul; Rorrer, Gregory L; Tang, Suning; Chen, Bin; McKay, Christopher P; Navarro-Gonzalez, Rafael; Wang, Alan X

    2016-12-01

    In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.

  17. Quantum and Classical Plasmonic Phenomena in Nanoparticle Arrays

    NASA Astrophysics Data System (ADS)

    Govorov, Alexander; Besteiro, Lucas; Khosravi Khorashad, Larousse; Kong, Xiang-Tian; Roller, Eva-Maria; Liedl, Tim

    Using both classical and quantum approaches, we model plasmonic phenomena in nanoparticle (NP) dimers and trimers. Using a model of three nanoparticles, we propose a mechanism of non-dissipative and ultrafast plasmon passage assisted by hot spots. For this, the NP trimer should include two Au-NPs and one Ag-NP. In the Au-Ag-Au trimer, the two Au-plasmons become coupled via the virtual plasmon of the Ag-NP. The efficient and ultra-fast passage of the Au-plasmons assisted by the virtual Ag-plasmon only becomes possible when the inter-NP gaps in the trimer are small. In this coupling regime, the inter-NP gap regions become plasmonic hot spots that greatly enhance the plasmonic passage effect. At this moment, the plasmonic passage phenomenon was already observed experimentally using optical spectroscopy and the DNA-origami NP complexes. Other systems of our interest were a NP dimer and a nanostar with plasmonic hot spots. For those systems, we predict strong enhancement of the generation of energetic (hot) carriers.

  18. Colorimetric determination of Timolol concentration based on localized surface plasmon resonance of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Amirjani, Amirmostafa; Bagheri, Mozhgan; Heydari, Mojgan; Hesaraki, Saeed

    2016-09-01

    In this work, a rapid and simple colorimetric method based on the surface plasmon resonance of silver nanoparticles (AgNPs) was developed for the detection of the drug Timolol. The method used is based on the interaction of Timolol with the surface of the as-synthesized AgNPs, which promotes aggregation of the nanoparticles. This aggregation exploits the surface plasmon resonance through the electric dipole-dipole interaction and coupling among the agglomerated particles, hence bringing forth distinctive changes in the spectra as well as the color of colloidal silver. UV-vis spectrophotometery was used to monitor the changes of the localized surface plasmon resonance of AgNPs at wavelengths of 400 and 550 nm. The developed colorimetric sensor has a wide dynamic range of 1.0 × 10-7 M-1.0 × 10-3 M for detection of Timolol with a low detection limit of 1.2 × 10-6 M. The proposed method was successfully applied for the determination of Timolol concentration in ophthalmic eye-drop solution with a response time lower than 40 s.

  19. Sensing the temperature influence on plasmonic field of metal nanoparticles by photoluminescence of fullerene C{sub 60} in layered C{sub 60}/Au system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeshchenko, Oleg A., E-mail: yes@univ.kiev.ua; Bondarchuk, Illya S.; Kozachenko, Viktor V.

    2015-04-21

    Influence of temperature on the plasmonic field in the temperature range of 78–278 K was studied employing surface plasmon enhanced photoluminescence from the fullerene C{sub 60} thin film deposited on 2D array of Au nanoparticles. It was experimentally found that temperature dependence of plasmonic enhancement factor of C{sub 60} luminescence decreases monotonically with the temperature increase. Influence of temperature on plasmonic enhancement factor was found to be considerably stronger when the frequency of surface plasmon absorption band of Au nanoparticles and the frequency of fullerene luminescence band are in resonance. Electron-phonon scattering and thermal expansion of Au nanoparticles were considered asmore » two competing physical mechanisms of the temperature dependence of plasmonic field magnitude. The calculations revealed significant prevalence of the electron-phonon scattering. The temperature induced increase in the scattering rate leads to higher plasmon damping that causes the decrease in the magnitude of plasmonic field.« less

  20. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles.

    PubMed

    Zhang, Weina; Li, Juan; Lei, Hongxiang; Li, Baojun

    2017-12-13

    By introducing an 18 nm thick Au nanofilm, selective enhancement of green emission from lanthanide-doped (β-NaYF 4 :Yb 3+ /Er 3+ ) upconversion nanoparticles (UCNPs) is demonstrated. The Au nanofilm is deposited on a microfiber surface by the sputtering method and then covered with the UCNPs. The plasma on the surface of the Au nanofilm can be excited by launching a 980 nm wavelength laser beam into the microfiber, resulting in an enhancement of the local electric field and a strong thermal effect. A 36-fold luminescence intensity enhancement of the UCNPs at 523 nm is observed, with no obvious reduction in the photostability of the UCNPs. Further, the intensity ratios of the emissions at 523-545 nm and at 523-655 nm are enhanced with increasing pump power, which is attributed to the increasing plasmon-induced thermal effect. Therefore, the fabricated device is further demonstrated to exhibit an excellent ability in temperature sensing. By controlling the pump power and the UCNP concentration, a wide temperature range (325-811 K) and a high temperature resolution (0.035-0.046 K) are achieved in the fabricated device.

  1. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons.

    PubMed

    Chen, Jing-Dong; Xiang, Jin; Jiang, Shuai; Dai, Qiao-Feng; Tie, Shao-Long; Lan, Sheng

    2018-05-17

    Large metallic nanoparticles with sizes comparable to the wavelength of light are expected to support high-order plasmon modes exhibiting resonances in the visible to near infrared spectral range. However, the radiation behavior of high-order plasmon modes, including scattering spectra and radiation patterns, remains unexplored. Here, we report on the first observation and characterization of the high-order plasmon modes excited in large gold nanospheres by using the surface plasmon polaritons generated on the surface of a thin gold film. The polarization-dependent scattering spectra were measured by inserting a polarization analyzer in the collection channel and the physical origins of the scattering peaks observed in the scattering spectra were clearly identified. More interestingly, the radiation of electric quadrupoles and octupoles was resolved in both frequency and spatial domains. In addition, the angular dependences of the radiation intensity for all plasmon modes were extracted by fitting the polarization-dependent scattering spectra with multiple Lorentz line shapes. A significant enhancement of the electric field was found in the gap plasmon modes and it was employed to generate hot-electron intraband luminescence. Our findings pave the way for exploiting the high-order plasmon modes of large metallic nanoparticles in the manipulation of light radiation and light-matter interaction.

  2. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.

    PubMed

    Kühler, Paul; Weber, Max; Lohmüller, Theobald

    2014-06-25

    We demonstrate a strategy for surface-enhanced Raman spectroscopy (SERS) of supported lipid membranes with arrays of plasmonic nanoantennas. Colloidal lithography refined with plasma etching is used to synthesize arrays of triangular shaped gold nanoparticles. Reducing the separation distance between the triangle tips leads to plasmonic coupling and to a strong enhancement of the electromagnetic field in the nanotriangle gap. As a result, the Raman scattering intensity of molecules that are located at this plasmonic "hot-spot" can be increased by several orders of magnitude. The nanoantenna array is then embedded with a supported phospholipid membrane which is fluid at room temperature and spans the antenna gap. This configuration offers the advantage that molecules that are mobile within the bilayer membrane can enter the "hot-spot" region via diffusion and can therefore be measured by SERS without static entrapment or adsorption of the molecules to the antenna itself.

  3. Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří

    2017-06-01

    There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.

  4. Hexagonal Ag nanoarrays induced enhancement of blue light emission from amorphous oxidized silicon nitride via localized surface plasmon coupling.

    PubMed

    Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan

    2014-11-17

    A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.

  5. Surface-enhanced Raman spectroscopy using 2D plasmons of InN nanostructures

    NASA Astrophysics Data System (ADS)

    Madapu, Kishore K.; Dhara, Sandip

    2018-06-01

    We explored the surface-enhanced Raman scattering (SERS) activity of the InN nanostructures, possessing surface electron accumulation (SEA), using the Rhodamine 6G (R6G) molecules. SERS enhancement is observed for the InN nanostructures which possess SEA. In case of high-temperature grown InN samples, a peak is observed in the low wave number (THz region) of Raman spectra of InN nanostructures originating from excitation of the two-dimensional (2D) plasmons of the SEA. The enhancement factor of four orders was calculated with the assumption of monolayer coverage of analyte molecule. SERS enhancement of InN nanostructures is attributed to the 2D plasmonic nature of InN nanostructures invoking SEA, rather than the contributions from 3D surface plasmon resonance and chemical interaction. The role of 2D plasmon excitation in SERS enhancement is corroborated by the near-field light-matter interaction studies using near-field scanning optical microscopy.

  6. Gold Nanoparticles Deposited Polyaniline-TiO2 Nanotube for Surface Plasmon Resonance Enhanced Photoelectrochemical Biosensing.

    PubMed

    Zhu, Jie; Huo, Xiaohe; Liu, Xiaoqiang; Ju, Huangxian

    2016-01-13

    A novel ternary composite composed of TiO2 nanotubes (TiONTs), polyaniline (PANI), and gold nanoparticles (GNPs) was prepared for photoelectrochemical (PEC) biosensing. PANI was initially coated on TiONTs with an oxidative polymerization method, and 12-phosphotungstic acid was then used as a highly localized photoactive reducing agent to deposit GNPs on TiONT-PANI. The morphology and composition of the composite were characterized by various spectroscopic and microscopic methods. Electrochemical impedance spectroscopy was also conducted to demonstrate the excellent electrical conductivity of the composite. A PEC biosensor was fabricated by immobilizing a mixture of lactate dehydrogenase and the composite onto ITO electrodes, which regenerated nicotinamide adenine dinucleotide (NAD(+)) to complete the enzymatic cycle and led to an improved method for PEC detection of lactate. Because of the surface plasmon resonance enhanced effect of GNPs, the electrochromic performance of PANI, and excellent conductivity and biocompatibility of the composite, this method showed a dynamic range of 0.5-210 μM, sensitivity of 0.0401 μA μM(-1), and a detection limit of 0.15 μM.

  7. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis.

    PubMed

    Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh

    2017-03-08

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO 2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.

  8. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    NASA Astrophysics Data System (ADS)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  9. The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells.

    PubMed

    Liu, Wei-Liang; Lin, Fan-Cheng; Yang, Yu-Chen; Huang, Chen-Hsien; Gwo, Shangjr; Huang, Michael H; Huang, Jer-Shing

    2013-09-07

    Plasmonic core-shell nanoparticles (PCSNPs) can function as nanoantennas and improve the efficiency of dye-sensitized solar cells (DSSCs). To achieve maximum enhancement, the morphology of PCSNPs needs to be optimized. Here we precisely control the morphology of Au@TiO2 PCSNPs and systematically study its influence on the plasmonic enhancement effect. The enhancement mechanism was found to vary with the thickness of the TiO2 shell. PCSNPs with a thinner shell mainly enhance the current, whereas particles with a thicker shell improve the voltage. While pronounced plasmonic enhancement was found in the near infrared regime, wavelength-independent enhancement in the visible range was observed and attributed to the plasmonic heating effect. Emission lifetime measurement confirms that N719 molecules neighboring nanoparticles with TiO2 shells exhibit a longer lifetime than those in contact with metal cores. Overall, PCSNPs with a 5 nm shell give the highest efficiency enhancement of 23%. Our work provides a new synthesis route for well-controlled Au@TiO2 core-shell nanoparticles and gains insight into the plasmonic enhancement in DSSCs.

  10. Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated Around Plasmonic Nanoparticles

    PubMed Central

    Lukianova-Hleb, Ekaterina; Hu, Ying; Latterini, Loredana; Tarpani, Luigi; Lee, Seunghyun; Drezek, Rebekah A.; Hafner, Jason H.; Lapotko, Dmitri O.

    2010-01-01

    We have used short laser pulses to generate transient vapor nanobubbles around plasmonic nanoparticles. The photothermal, mechanical and optical properties of such bubbles were found to be different from those of plasmonic nanoparticle and vapor bubbles as well. This phenomena was considered as a new complex nanosystem – plasmonic nanobubble (PNB). Mechanical and optical scattering properties of PNB depended upon the nanoparticle surface and heat capacity, clusterization state, and the optical pulse length. The generation of the PNB required much higher laser pulse fluence thresholds than the explosive boiling level, and was characterized by the relatively high lower threshold of the minimal size (lifetime) of PNB. Optical scattering by PNB and its diameter (measured as the lifetime) has been varied with the fluence of laser pulse and this has demonstrated the tunable nature of PNB. PMID:20307085

  11. Generation of spin currents by surface plasmon resonance

    PubMed Central

    Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.

    2015-01-01

    Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821

  12. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-05-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this

  13. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules.

    PubMed

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-26

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans -1,2-bis(4-pyridyl)ethylene (BPE).

  14. Near-infrared surface-enhanced fluorescence using silver nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Furtaw, Michael D.

    Fluorescence spectroscopy is a widely used detection technology in many research and clinical assays. Further improvement to assay sensitivity may enable earlier diagnosis of disease, novel biomarker discovery, and ultimately, improved outcomes of clinical care along with reduction in costs. Near-infrared, surface-enhanced fluorescence (NIR-SEF) is a promising approach to improve assay sensitivity via simultaneous increase in signal with a reduction in background. This dissertation describes research conducted with the overall goal to determine the extent to which fluorescence in solution may be enhanced by altering specific variables involved in the formation of plasmon-active nanostructures of dye-labeled protein and silver nanoparticles in solution, with the intent of providing a simple solution that may be readily adopted by current fluorescence users in the life science research community. First, it is shown that inner-filtering, re-absorption of the emitted photons, can red-shift the optimal fluorophore spectrum away from the resonant frequency of the plasmon-active nanostructure. It is also shown that, under certain conditions, the quality factor may be a better indicator of SEF than the commonly accepted overlap of the fluorophore spectrum with the plasmon resonance of the nanostructure. Next, it is determined that streptavidin is the best choice for carrier protein, among the most commonly used dye-labeled detection antibodies, to enable the largest fluorescence enhancement when labeled with IRDye 800CW and used in combination with silver nanoparticles in solution. It is shown that the relatively small and symmetric geometry of streptavidin enables substantial electromagnetic-field confinement when bound to silver nanoparticles, leading to strong and reproducible enhancement. The role of silver nanoparticle aggregation is demonstrated in a droplet-based microfluidic chip and further optimized in a standard microtiter-plate format. A NIR-SEF technology

  15. Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions.

    PubMed

    Zhu, S; Chen, T P; Cen, Z H; Goh, E S M; Yu, S F; Liu, Y C; Liu, Y

    2010-10-11

    The split of surface plasmon resonance of self-assembled gold nanoparticles on Si substrate is observed from the dielectric functions of the nanoparticles. The split plasmon resonances are modeled with two Lorentz oscillators: one oscillator at ~1 eV models the polarization parallel to the substrate while the other at ~2 eV represents the polarization perpendicular to the substrate. Both parallel and perpendicular resonances are red-shifted when the nanoparticle size increases. The red shifts in both resonances are explained by the image charge effect of the Si substrate.

  16. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  17. Plasmonic nanoparticles for bioanalytics and therapy at the limit

    NASA Astrophysics Data System (ADS)

    Schneider, T.; Wirth, J.; Garwe, F.; Csáki, A.; Fritzsche, W.

    2011-12-01

    Noble metal nanoparticles interacting with electromagnetic waves exhibit the effect of localized surface plasmon resonance (LSPR) based on the collective oscillation of their conduction electrons. Local refractive index changes by a (bio) molecular layer surrounding the nanoparticle are important for a variety of research areas like optics and life sciences. In this work we demonstrate the potential of two applications in the field of molecular plasmonics, single nanoparticle sensors and nanoantennas, situated between plasmonics effects and the molecular world.

  18. Tailoring plasmonic nanoparticles and fractal patterns

    NASA Astrophysics Data System (ADS)

    Rosa, Lorenzo; Juodkazis, Saulius

    2011-12-01

    We studied new three-dimensional tailoring of nano-particles by ion-beam and electron-beam lithographies, aiming for features and nano-gaps down to 10 nm size. Electron-beam patterning is demonstrated for 2D fabrication in combination with plasmonic metal deposition and lift-off, with full control of spectral features of plasmonic nano-particles and patterns on dielectric substrates. We present wide-angle bow-tie rounded nano-antennas whose plasmonic resonances achieve strong field enhancement at engineered wavelength range, and show how the addition of fractal patterns defined by standard electron beam lithography achieve light field enhancement from visible to far-IR spectral range and scalable up towards THz band. Field enhancement is evaluated by FDTD modeling on full-3D simulation domains using complex material models, showing the modeling method capabilities and the effect of staircase approximations on field enhancement and resonance conditions, especially at metal corners, where a minimum rounding radius of 2 nm is resolved and a five-fold reduction of spurious ringing at sharp corners is obtained by the use of conformal meshing.

  19. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic

  20. Plasmonic enhancement of electroluminescence

    NASA Astrophysics Data System (ADS)

    Guzatov, D. V.; Gaponenko, S. V.; Demir, H. V.

    2018-01-01

    Here plasmonic effect specifically on electroluminescence (EL) is studied in terms of radiative and nonradiative decay rates for a dipole near a metal spherical nanoparticle (NP). Contribution from scattering is taken into account and is shown to play a decisive role in EL enhancement owing to pronounced size-dependent radiative decay enhancement and weak size effect on non-radiative counterpart. Unlike photoluminescence where local incident field factor mainly determines the enhancement possibility and level, EL enhancement is only possible by means of quantum yield rise, EL enhancement being feasible only for an intrinsic quantum yield Q0 < 1. The resulting plasmonic effect is independent of intrinsic emitter lifetime but is exclusively defined by the value of Q0, emission spectrum, NP diameter and emitter-metal spacing. For 0.1< Q0 < 0.25, Ag nanoparticles are shown to enhance LED/OLED intensity by several times over the whole visible whereas Au particles feature lower effect within the red-orange range only. Independently of positive effect on quantum yield, metal nanoparticles embedded in an electroluminescent device will improve its efficiency at high currents owing to enhanced overall recombination rate which will diminish manifestation of Auger processes. The latter are believed to be responsible for the known undesirable efficiency droop in semiconductor commercial quantum well based LEDs at higher current. For the same reason plasmonics can diminish quantum dot photodegradation from Auger process induced non-radiative recombination and photoionization thus opening a way to avoid negative Auger effects in emerging colloidal semiconductor LEDs.

  1. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells.

    PubMed

    Zhang, Cai; Tang, Ning; Shang, Liangliang; Fu, Lei; Wang, Weiying; Xu, Fujun; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2017-05-24

    We report the enhancement of the polarization and internal quantum efficiency (IQE) of deep-UV LEDs by evaporating Al nanoparticles on the device surface to induce localized surface plasmons (LSPs). The deep-UV LEDs polarization is improved due to part of TM emission turns into TE emission through LSPs coupling. The significantly enhanced IQE is attributed to LSPs coupling, which suppress the participation of delocalized and dissociated excitons to non-radiative recombination process.

  2. A Stable Plasmonic Cu@Cu2 O/ZnO Heterojunction for Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Lou, Yongbing; Zhang, Yake; Cheng, Lin; Chen, Jinxi; Zhao, Yixin

    2018-05-09

    The localized surface plasmon resonance (LSPR) effect has been widely utilized in photocatalysis, but most reported LSPR materials are based on noble metals of gold or silver with high chemical stability. Plasmonic copper nanoparticles that exhibit an LSPR absorbance at 600 nm are promising for many applications, such as photocatalysis. Unfortunately, plasmonic copper nanoparticles are affected by serious surface oxidation in air. Herein, a novel lollipop-shaped Cu@Cu 2 O/ZnO heterojunction nanostructure was designed, for the first time, to stabilize the plasmonic Cu core by decorating Cu@Cu 2 O core-shell structures with ZnO nanorods. This Cu@Cu 2 O/ZnO nanostructure exhibited significantly enhanced stability than that of regular Cu@Cu 2 O, which accounted for the remarkably enhanced photocatalytic H 2 evolution rate through water splitting, relative to pristine ZnO nanorods, over an extended wavelength range due to the plasmonic Cu core. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanical control of the plasmon coupling with Au nanoparticle arrays fixed on the elastomeric film via chemical bond

    NASA Astrophysics Data System (ADS)

    Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu

    2017-03-01

    We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV-vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV-vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.

  4. Optical invisibility through metasurfaces made of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Monti, A.; Alù, A.; Toscano, A.; Bilotti, F.

    2015-03-01

    In this paper, we investigate the application of the mantle cloaking technique to near-infrared and visible frequencies, analyzing and designing thin covers consisting of 2D arrays of plasmonic nanoparticles. First, we validate and generalize an analytical model recently appeared in the literature to describe a 2D array of plasmonic nanoparticles as a metasurface characterized by its homogenized surface reactance. We prove that the proposed model allows to efficiently design 2D mantle cloaks with an assigned surface reactance, enabling, thus, the extension of the mantle cloaking technique to optical frequencies. Then, we design realistic optical mantle cloaks made of 2D arrays of spheroidal plasmonic nanoparticles with a high eccentricity. We show that the proposed cloaks allow significant, moderately broadband cloaking effects at visible frequencies. In our designs, we consider realistic losses and non-critical nanoparticle dimensions to envision a practical realization of the proposed cloaks.

  5. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules

    PubMed Central

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-01

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans-1,2-bis(4-pyridyl)ethylene (BPE). PMID:28134754

  6. Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodriguez, Raul D.; Sheremet, Evgeniya; Deckert-Gaudig, Tanja; Chaneac, Corinne; Hietschold, Michael; Deckert, Volker; Zahn, Dietrich R. T.

    2015-05-01

    Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly localized electromagnetic field contribute to the appearance of this mode. The localized excitation that generates this mode is confirmed by tip-enhanced Raman spectroscopy (TERS). The appearance of the spin-waves only when the TERS tip is in close proximity to a nanocrystal edge suggests that the coupling of a localized plasmon with spin-waves arises due to broken symmetry at the nanoparticle border and the additional electric field confinement. Beyond phonon confinement effects previously reported in similar systems, this work offers significant insights on the plasmon-assisted generation and detection of spin-waves optically induced.Nanomaterials have the remarkable characteristic of displaying physical properties different from their bulk counterparts. An additional degree of complexity and functionality arises when oxide nanoparticles interact with metallic nanostructures. In this context the Raman spectra due to plasmonic enhancement of iron oxide nanocrystals are here reported showing the activation of spin-waves. Iron oxide nanoparticles on gold and silver tips are found to display a band around 1584 cm-1 attributed to a spin-wave magnon mode. This magnon mode is not observed for nanoparticles deposited on silicon (111) or on glass substrates. Metal-nanoparticle interaction and the strongly

  7. Surface Plasmon Enhanced Sensitive Detection for Possible Signature of Majorana Fermions via a Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    PubMed Central

    Chen, Hua-Jun; Zhu, Ka-Di

    2015-01-01

    In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929

  8. Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au-TiO2 3D Nanocomposites.

    PubMed

    Farsinezhad, Samira; Banerjee, Shyama Prasad; Bangalore Rajeeva, Bharath; Wiltshire, Benjamin D; Sharma, Himani; Sura, Anton; Mohammadpour, Arash; Kar, Piyush; Fedosejevs, Robert; Shankar, Karthik

    2017-01-11

    Localized surface plasmon resonances (LSPR) in TiO 2 nanorod and nanotube arrays decorated by gold nanoparticles can be exploited to improve photocatalytic activity, enhance nonlinear optical coefficients, and increase light harvesting in solar cells. However, the LSPR typically has a low quality factor, and the resonance is often obscured by the Urbach tail of the TiO 2 band gap absorption. Attempts to increase the LSPR extinction intensity by increasing the density of gold nanoparticles on the surface of the TiO 2 nanostructures invariably produce peak broadening due to the effects of either agglomeration or polydispersity. We present a new class of hybrid nanostructures containing gold nanoparticles (NPs) partially embedded in nanoporous/nanotubular TiO 2 by performing the anodization of cosputtered Ti-Au thin films containing a relatively high ratio of Au:Ti. Our method of anodizing thin film stacks containing alternate layers of Ti and TiAu results in very distinctive LSPR peaks with quality factors as high as 6.9 and ensemble line widths as small as 0.33 eV even in the presence of an Urbach tail. Unusual features in the anodization of such films are observed and explained, including oscillatory current transients and the observation of coherent heterointerfaces between the Au NPs and anatase TiO 2 . We further show that such a plasmonic NP-embedded nanotube structure dramatically outperforms a plasmonic NP-decorated anodic nanotube structure in terms of the extinction coefficient, and achieves a strongly enhanced two-photon fluorescence due to the high density of gold nanoparticles in the composite film and the plasmonic local field enhancement.

  9. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis

    DOE PAGES

    Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo; ...

    2017-02-06

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less

  10. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Daksh; Aspetti, Carlos O.; Cargnello, Matteo

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. In this paper, we report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confinemore » light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si–Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ~40% compared to similar Au–TiO 2 system without Si core, in ethanol photoreforming reactions. Finally, these highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.« less

  11. SERS of Methylene Blue induced by plasmonic coupled nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Kaydashev, V. E.; Lyanguzov, N. V.; Anokhin, A. S.; Chernishov, A.; Kaidashev, E. M.

    2018-04-01

    We study the surface enhanced Raman scattering of Methylene Blue (MB) dye molecules induced by large quasihomogeneous arrays of plasmon coupled 5-8 nm Au nanoparticle separated by distances less than 10 nm. Also, the variation of the fluorescence enhancement/SERS properties for as-prepared coupled particles and agglomerated particles obtained upon heat treatment and percolation-like films is analyzed for two measurement protocols, i.e. when measured through the solution and for a monolayer of MB molecules chemisorbed on a surface.

  12. Application of silver nanoparticles in the detection of SYBR Green I by surface enhanced Raman and surface-enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Wu, Jian; Wang, Chunyan; Zhang, Tian; Chen, Tao

    2018-05-01

    Silver nanomaterials have remarkable application in biomedical detection due to their unique surface plasmon resonance (SPR) characteristics. It can be used for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Current research elaborates a technique for improvement of SYBR Green I detection obtained from surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) by silver nanoparticles with the average size about 70 nm. Primarily, SYBR Green I is an important fluorescent dye used in polymerase chain reaction (PCR). It is found that both Raman and fluorescence can be used for detection of this dye. Furthermore, the enhanced efficiency of the Raman and fluorescence by SERS and SEF is observed in this study, the enhancement factor for Raman signals is 3.2 × 103, and the fluorescence intensity bincreased two times by SEF. The quantitative detection of SYBR Green I by SERS and SEF can be achieved. The present work can be used to improve the detection of SYBR Green I by SERS and SEF. It would also be employed for high-sensitive detection of other materials in the future.

  13. Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Bandarenka, Hanna V.; Girel, Kseniya V.; Bondarenko, Vitaly P.; Khodasevich, Inna A.; Panarin, Andrei Yu.; Terekhov, Sergei N.

    2016-05-01

    Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10-11 M.

  14. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    PubMed

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  15. Superior plasmon absorption in iron-doped gold nanoparticles.

    PubMed

    Amendola, Vincenzo; Saija, Rosalba; Maragò, Onofrio M; Iatì, Maria Antonia

    2015-05-21

    Although the excitation of localized surface plasmons is associated with enhanced scattering and absorption of incoming photons, only the latter is relevant for the efficient conversion of light into heat. Here we show that the absorption cross section of gold nanoparticles is sensibly increased when iron is included in the lattice as a substitutional dopant, i.e. in a gold-iron nanoalloy. Such an increase is size and shape dependent, with the best performance observed in nanoshells where a 90-190% improvement is found in a size range that is crucial for practical applications. Our findings are unexpected according to the common belief and previous experimental observations that alloys of Au with transition metals show a depressed plasmonic response. These results are promising for the design of efficient plasmonic converters of light into heat and pave the way to more in-depth investigations of the plasmonic properties in noble metal nanoalloys.

  16. Plasmon-enhanced Raman detection of body-fluid components

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Banchelli, Martina; De Angelis, Marella; D'Andrea, Cristiano; Pini, Roberto

    2018-02-01

    Plasmon-enhanced spectroscopies such as surface-enhanced Raman spectroscopy (SERS) concern the detection of enhanced optical responses of molecules in close proximity to plasmonic structures, which results in a strong increase in sensitivity. Recent advancements in nanofabrication methods have paved the way for a controlled design of tailor-made nanostructures with fine-tuning of their optical and surface properties. Among these, silver nanocubes (AgNCs) represent a convenient choice in SERS owing to intense electromagnetic fields localized at their extremities, which are further intensified in the gap regions between closely spaced nanoparticles. The integration of AgNCs assemblies within an optofluidic platform may confer potential for superior optical investigation due to a molecular enrichment on the plasmonic structures to collect an enhanced photonic response. We developed a novel sensing platform based on an optofluidic system involving assembled silver nanocubes of 50 nm in size for ultrasensitive SERS detection of biomolecules in wet conditions. The proposed system offers the perspective of advanced biochemical and biological characterizations of molecules as well as of effective detection of body fluid components and other molecules of biomedical interest in their own environment.

  17. Far-side geometrical enhancement in surface-enhanced Raman scattering with Ag plasmonic films

    NASA Astrophysics Data System (ADS)

    Perera, M. Nilusha M. N.; Gibbs, W. E. Keith; Juodkazis, Saulius; Stoddart, Paul R.

    2018-01-01

    Surface-enhanced Raman scattering (SERS) is a surface sensitive technique where the large increase in scattering has primarily been attributed to electromagnetic and chemical enhancements. While smaller geometrical enhancements due to thin film interference and cavity resonances have also been reported, an additional enhancement in the SERS signal, referred to as the `far-side geometrical enhancement', occurs when the SERS substrate is excited through an underlying transparent dielectric substrate. Here the far-side geometrically-enhanced SERS signal has been explored experimentally in more detail. Thermally evaporated Ag plasmonic films functionalised with thiophenol were used to study the dependence of the geometrically-enhanced SERS signal on the excitation wavelength, supporting substrate material and excitation angle of incidence. The results were interpreted using a `geometrical enhancement factor' (GEF), defined as the ratio of far-side to near-side SERS signal intensity. The experimental results confirmed that the highest GEFs of 3.2-3.5× are seen closer to the localized surface plasmon resonance peak of the Ag metallic nanostructures. Interestingly, the GEF for Ag plasmonic films deposited on glass and sapphire were the same within the measurement errors, whereas increasing angle of incidence showed a decrease in the GEF. Given this improved understanding of the far-side geometrical SERS enhancement, the potential for further signal amplification and optimisation for practical sensing applications can now be considered, especially for SERS detection modes at the farend of optical fibre probes and through process windows.

  18. Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+,Er3+ upconversion nanoparticles

    PubMed Central

    Lu, Dawei; Mao, Chenchen; Cho, Suehyun K.; Ahn, Sungmo; Park, Wounjhang

    2016-01-01

    Energy transfer upconversion (ETU) is known to be the most efficient frequency upconversion mechanism. Surface plasmon can further enhance the upconversion process, opening doors to many applications. However, ETU is a complex process involving competing transitions between multiple energy levels and it has been difficult to precisely determine the enhancement mechanisms. In this paper, we report a systematic study on the dynamics of the ETU process in NaYF4:Yb3+,Er3+ nanoparticles deposited on plasmonic nanograting structure. From the transient near-infrared photoluminescence under various excitation power densities, we observed faster energy transfer rates under stronger excitation conditions until it reached saturation where the highest internal upconversion efficiency was achieved. The experimental data were analyzed using the complete set of rate equations. The internal upconversion efficiency was found to be 56% and 36%, respectively, with and without the plasmonic nanograting. We also analyzed the transient green emission and found that it is determined by the infrared transition rate. To our knowledge, this is the first report of experimentally measured internal upconversion efficiency in plasmon enhanced upconversion material. Our work decouples the internal upconversion efficiency from the overall upconverted luminescence efficiency, allowing more targeted engineering for efficiency improvement. PMID:26739230

  19. Predicting plasmonic coupling with Mie-Gans theory in silver nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Ranjan, M.

    2013-09-01

    Plasmonic coupling is observed in the self-aligned arrays of silver nanoparticles grown on ripple-patterned substrate. Large differences observed in the plasmon resonance wavelength, measured and calculated using Mie-Gans theory, predict that strong plasmonic coupling exists in the nanoparticles arrays. Even though plasmonic coupling exists both along and across the arrays, but it is found to be much stronger along the arrays due to shorter interparticle gap and particle elongation. This effect is responsible for observed optical anisotropy in such arrays. Measured red-shift even in the transverse plasmon resonance mode with the increasing nanoparticles aspect ratio in the arrays, deviate from the prediction of Mie-Gans theory. This essentially means that plasmonic coupling is dominating over the shape anisotropy. Plasmon resonance tuning is presented by varying the plasmonic coupling systematically with nanoparticles aspect ratio and ripple wavelength. Plasmon resonance red-shifts with the increasing aspect ratio along the ripple, and blue-shifts with the increasing ripple wavelength across the ripple. Therefore, reported bottom-up approach for fabricating large area-coupled nanoparticle arrays can be used for various field enhancement-based plasmonic applications.

  20. Molecular imaging and sensing using plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Crow, Matthew James

    Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression

  1. Plasmonic resonances of nanoparticles from large-scale quantum mechanical simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Xiang, Hongping; Zhang, Mingliang; Lu, Gang

    2017-09-01

    Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn-Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.

  2. High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands

    NASA Astrophysics Data System (ADS)

    Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.

    2013-07-01

    We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.

  3. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy.

    PubMed

    DeVetter, Brent M; Mukherjee, Prabuddha; Murphy, Catherine J; Bhargava, Rohit

    2015-05-21

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min(-1). This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.

  4. Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy

    PubMed Central

    DeVetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit

    2015-01-01

    Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min 1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. PMID:25905515

  5. Topological collective plasmons in bipartite chains of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Downing, Charles A.; Weick, Guillaume

    2017-03-01

    We study a bipartite linear chain constituted by spherical metallic nanoparticles, where each nanoparticle supports a localized surface plasmon. The near-field dipolar interaction between the localized surface plasmons gives rise to collective plasmons, which are extended over the whole nanoparticle array. We derive analytically the spectrum and the eigenstates of the collective plasmonic excitations. At the edge of the Brillouin zone, the spectrum is of a pseudorelativistic nature similar to that present in the electronic band structure of polyacetylene. We find the effective Dirac Hamiltonian for the collective plasmons and show that the corresponding spinor eigenstates represent one-dimensional Dirac-like massive bosonic excitations. Therefore, the plasmonic lattice exhibits similar effects to those found for electrons in one-dimensional Dirac materials, such as the ability for transmission with highly suppressed backscattering due to Klein tunneling. We also show that the system is governed by a nontrivial Zak phase, which predicts the manifestation of edge states in the chain. When two dimerized chains with different topological phases are connected, we find the appearance of the bosonic version of a Jackiw-Rebbi midgap state. We further investigate the radiative and nonradiative lifetimes of the collective plasmonic excitations and comment on the challenges for experimental realization of the topological effects found theoretically.

  6. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lamowski, Simon; Mann, Charlie-Ray; Hellbach, Felicitas; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2018-03-01

    We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry, and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical insight and significantly reduced computational cost.

  7. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    NASA Astrophysics Data System (ADS)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  8. Plasmon-Enhanced Optical Sensors: A Review

    PubMed Central

    Li, Ming; Cushing, Scott K

    2014-01-01

    Surface plasmon resonance (SPR) has found extensive applications in chemi-sensors and biosensors. Plasmons play different roles in different types of optical sensors. SPR transduces a signal in a colorimetric sensor through shifts in the spectral position and intensity in response to external stimuli. SPR can also concentrate the incident electromagnetic field in a nanostructure, modulating fluorescence emission and enabling plasmon-enhanced fluorescence to be used for ultrasensitive detection. Furthermore, plasmons have been extensively used for amplifying a Raman signal in a surface-enhanced Raman scattering sensor. This paper presents a review of recent research progress in plasmon-enhanced optical sensing, giving an emphasis on the physical basis of plasmon-enhanced sensors and how these principles guide the design of sensors. In particular, this paper discusses the design strategies for nanomaterials and nanostructures to plasmonically enhance optical sensing signals, also highlighting the applications of plasmon-enhanced optical sensors in health care, homeland security, food safety and environmental monitoring. PMID:25365823

  9. Enhancement factor statistics of surface enhanced Raman scattering in multiscale heterostructures of nanoparticles.

    PubMed

    Zito, Gianluigi; Rusciano, Giulia; Sasso, Antonio

    2016-08-07

    Suitable metal nanostructures may induce surface-enhanced Raman scattering (SERS) enhancement factors (EFs) large-enough to reach single-molecule sensitivity. However, the gap hot-spot EF probability density function (PDF) has the character of a long-tail distribution, which dramatically mines the reproducibility of SERS experiments. Herein, we carry out electrodynamic calculations based on a 3D finite element method of two plasmonic nanostructures, combined with Monte Carlo simulations of the EF statistics under different external conditions. We compare the PDF produced by a homodimer of nanoparticles with that provided by a self-similar trimer. We show that the PDF is sensitive to the spatial distribution of near-field enhancement specifically supported by the nanostructure geometry. Breaking the symmetry of the plasmonic system is responsible for inducing particular modulations of the PDF tail resembling a multiple Poisson distribution. We also study the influence that molecular diffusion towards the hottest hot-spot, or selective hot-spot targeting, might have on the EF PDF. Our results quantitatively assess the possibility of designing the response of a SERS substrate so as to contain the intrinsic EF PDF variance and significantly improving, in principle, the reproducibility of SERS experiments.

  10. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.

    PubMed

    Kravets, V G; Kabashin, A V; Barnes, W L; Grigorenko, A N

    2018-06-27

    When metal nanoparticles are arranged in an ordered array, they may scatter light to produce diffracted waves. If one of the diffracted waves then propagates in the plane of the array, it may couple the localized plasmon resonances associated with individual nanoparticles together, leading to an exciting phenomenon, the drastic narrowing of plasmon resonances, down to 1-2 nm in spectral width. This presents a dramatic improvement compared to a typical single particle resonance line width of >80 nm. The very high quality factors of these diffractively coupled plasmon resonances, often referred to as plasmonic surface lattice resonances, and related effects have made this topic a very active and exciting field for fundamental research, and increasingly, these resonances have been investigated for their potential in the development of practical devices for communications, optoelectronics, photovoltaics, data storage, biosensing, and other applications. In the present review article, we describe the basic physical principles and properties of plasmonic surface lattice resonances: the width and quality of the resonances, singularities of the light phase, electric field enhancement, etc. We pay special attention to the conditions of their excitation in different experimental architectures by considering the following: in-plane and out-of-plane polarizations of the incident light, symmetric and asymmetric optical (refractive index) environments, the presence of substrate conductivity, and the presence of an active or magnetic medium. Finally, we review recent progress in applications of plasmonic surface lattice resonances in various fields.

  11. Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light

    NASA Astrophysics Data System (ADS)

    Dal'Toé, Adrieli T. O.; Colpani, Gustavo Lopes; Padoin, Natan; Fiori, Márcio Antônio; Soares, Cíntia

    2018-05-01

    Lanthanum doped titanium dioxide decorated with silver plasmonic nanoparticles (Ag-La/TiO2 NPs) materials were prepared using a simple ultrasound-assisted wet impregnation method followed by silver photodeposition. The obtained photocatalysts with different Ag contents were characterized by XRD, FE-SEM, EDX, TEM, BET, XPS, DRS and PL techniques. Moreover, the size distribution of the nanoparticles aggregates was assessed. The characterization analysis revealed that La doping slightly changed the crystalline phase of TiO2, increased the amount of surface hydroxyl groups and interacted with TiO2 nanoparticles via Ti-O-La bond, while Ag photodeposition enhanced the absorption of visible light due to the effects of localized surface plamon resonance and significantly decreased electronic recombination rate by the Schottky junction. Furthermore, the combination of Ag-La induced the formation of oxygen vacancies, which increased the amount of adsorbed surface hydroxyl groups in Ag-La/TiO2. In addition, Ag-La possibly decreased the semiconductor surface energy, which acted positively in the reduction of NPs aggregation. These features along with better textural properties (greater surface areas) played a fundamental role in the enhancement of the photocatalytic activity of Ag-La/TiO2 composites for the decolorization of methylene blue under UV-visible irradiation compared to the mono-metallic (La/TiO2 and Ag/TiO2) modified photocatalysts. Finally, a mechanism for the transfer of charge carriers in Ag-La/TiO2 photocatalyst under UV-visible irradiation was proposed.

  12. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  13. Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability.

    PubMed

    Lama, Pemba; Suslov, Anatoliy; Walser, Ardie D; Dorsinville, Roger

    2014-06-02

    Nonlinear optical characterizations were performed on monodispersed silver (Ag) nanoparticles (NPs) of various sizes using a picosecond Z-scan technique with excitation wavelengths of 532 nm and 1064 nm. The Ag NPs were fabricated using a heterogeneous condensation technique in a gas medium. The nonlinear refraction values were higher for the monodispersed Ag NPs whose surface plasmon resonance (SPR) peak is closer to the excitation wavelength. The higher nonlinear optical response is explained in terms of an electric field enhancement near the SPR. Moreover, the fabrication method allows the tailoring of the nonlinear refraction index of the Ag NPs by tuning the SPR peak of the sample. A comparison of the nonlinear refraction index of the monodispersed and polydispersed Ag NPs showed that the nonlinear refractive index of the monodispersed Ag NPs is higher.

  14. Enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by coupling to Au-nanoparticle plasmons

    NASA Astrophysics Data System (ADS)

    Xing, Jieying; Chen, Yinsong; Liu, Yuebo; Liang, Jiezhi; Chen, Jie; Ren, Yuan; Han, Xiaobiao; Zhong, Changming; Yang, Hang; Huang, Dejia; Hou, Yaqian; Wu, Zhisheng; Liu, Yang; Zhang, Baijun

    2018-05-01

    We demonstrate the enhancement of emission of InGaN/GaN multiple-quantum-well nanorods by nearly a factor of 2 by coupling them to localized surface plasmons of Au nano-particles (NPs). The Au NPs are fabricated in situ on the nanorods using a Ni/SiO2/Au/SiNx compound functional layer. This layer serves as a combination dry-etch mask for fabricating the nanorods and the Au NPs, as well as providing isolation necessary to prevent fluorescence quenching. Time-resolved photoluminescence measurements confirm that emission enhancement originates from the coupling.

  15. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  16. Self-referenced directional enhanced Raman scattering using plasmon waveguide resonance for surface and bulk sensing

    NASA Astrophysics Data System (ADS)

    Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei

    2018-01-01

    Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.

  17. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  18. Nonlinear magneto-plasmonics

    DOE PAGES

    Zheng, Wei; Liu, Xiao; Hanbicki, Aubrey T.; ...

    2015-10-19

    Nonlinear magneto-plasmonics (NMP) describes systems where nonlinear optics, magnetics and plasmonics are all involved. In such systems, nonlinear magneto-optical Kerr effect (nonlinear MOKE) plays an important role as a characterization method, and Surface Plasmons (SPs) work as catalyst to induce many new effects. Magnetization-induced second-harmonic generation (MSHG) is the major nonlinear magneto-optical process involved. The new effects include enhanced MSHG, controlled and enhanced magnetic contrast, etc. Nanostructures such as thin films, nanoparticles, nanogratings, and nanoarrays are critical for the excitation of SPs, which makes NMP an interdisciplinary research field in nanoscience and nanotechnology. In this review article, we organize recentmore » work in this field into two categories: surface plasmon polaritons (SPPs) representing propagating surface plasmons, and localized surface plasmons (LSPs), also called particle plasmons. We review the structures, experiments, findings, and the applications of NMP from various groups.« less

  19. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph. P.; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong

    2016-01-01

    Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement

  20. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain.

    PubMed

    Tomitaka, Asahi; Arami, Hamed; Raymond, Andrea; Yndart, Adriana; Kaushik, Ajeet; Jayant, Rahul Dev; Takemura, Yasushi; Cai, Yong; Toborek, Michal; Nair, Madhavan

    2017-01-05

    Magneto-plasmonic nanoparticles are one of the emerging multi-functional materials in the field of nanomedicine. Their potential for targeting and multi-modal imaging is highly attractive. In this study, magnetic core/gold shell (MNP@Au) magneto-plasmonic nanoparticles were synthesized by citrate reduction of Au ions on magnetic nanoparticle seeds. Hydrodynamic size and optical properties of magneto-plasmonic nanoparticles synthesized with the variation of Au ions and reducing agent concentrations were evaluated. The synthesized magneto-plasmonic nanoparticles exhibited superparamagnetic properties, and their magnetic properties contributed to the concentration-dependent contrast in magnetic resonance imaging (MRI). The imaging contrast from the gold shell part of the magneto-plasmonic nanoparticles was also confirmed by X-ray computed tomography (CT). The transmigration study of the magneto-plasmonic nanoparticles using an in vitro blood-brain barrier (BBB) model proved enhanced transmigration efficiency without disrupting the integrity of the BBB, and showed potential to be used for brain diseases and neurological disorders.

  1. Surface plasmon resonance and polarization change properties in centrosymmetric nanoright-triangle dimer arrays

    NASA Astrophysics Data System (ADS)

    Ma, Qilin; Liu, Guangqiang; Chen, Yiqing; Zhao, Qian; Guo, Jing; Yang, Shaosong; Cai, Weiping

    2018-03-01

    Dimer nanoparticles in a sandwich structure exhibit a large electric-field intensity enhancement. The dispersion relation between the surface plasmon resonance (SPR) and particle size has not been reported yet, owing to the effects of the particle size, shape, materials, etc. A sandwich structure, which contains a nano-right-triangle dimer array, SiO2 spacer, and Au film, is proposed, with a significant electric-field intensity enhancement and polarization-changing properties. The dependence of the peak positions of the two localized surface plasmon resonance (LSPR) modes as a function of the triangle thicknesses is discussed; different trends are observed for the different LSPR modes. We introduce a concept on the rule for LSPR peak position change, which can contribute to a better understanding of the LSPR modes. In addition, centrosymmetric but not axisymmetric structures, which like in our study exhibit surface plasmon polaritons typically show different responses to a different polarization of the incident light. Here, we showed that our centrosymmetric but not axisymmetric structure can change the linearly polarized light into a circularly or elliptically polarized wave, by surface plasmon-induced polarization properties. Far-field distribution maps are used to study the properties of the surface plasmons-induced circular or elliptic polarization wave. These findings could be employed to better understand the surface plasmon-induced polarization properties showed in previous reports and near-field of surface plasmons. These findings could be employed to better understand the near-field of surface plasmons and polarization properties.

  2. Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinhua; Zhou, Huaijuan; Qian, Shi

    Close-packed TiO{sub 2} nanotube arrays are prepared on metallic Ti surface by electrochemical anodization. Subsequently, by magnetron sputtering, Au nanoparticles are coated onto the top sidewall and tube inwall. The Au@TiO{sub 2} systems can effectively kill Staphylococcus aureus and Escherichia coli in darkness due to the existence of Au nanoparticles. On the basis of classical optical theories, the antibacterial mechanism is proposed from the perspective of localized surface plasmon resonance. Respiratory electrons of bacterial membrane transfer to Au nanoparticles and then to TiO{sub 2}, which makes bacteria steadily lose electrons until death. This work provides insights for the better understandingmore » and designing of noble metal nanoparticles-based plasmonic heterostructures for antibacterial application.« less

  3. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.

    PubMed

    Li, Kun; Hogan, Nathaniel J; Kale, Matthew J; Halas, Naomi J; Nordlander, Peter; Christopher, Phillip

    2017-06-14

    Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO 2 /Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.

  4. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahbubur; Im, Sang Hyuk; Lee, Jae-Joon

    2016-03-01

    We demonstrated the localized surface plasmon resonance (LSPR) effect of Ni nanoparticles (NiNPs) on the performance of dye-sensitized solar cells (DSSCs). Our study revealed that NiNPs in a conventional I-/I3- electrolyte (NiNPs@I-/I3-) increased the net optical absorption of a N719 dye over a broad wavelength range by LSPR, and concurrently improved the power conversion efficiency (PCE) in DSSCs. At an optimized concentration of the NiNPs@I-/I3- electrolyte (1 mg mL-1), N719-sensitized DSSCs with a photoanode thickness of ca. 2, 5, and 10 μm, exhibited net PCEs of 2.32, 6.02, and 9.83%, respectively. These efficiencies were consistent with a net improvement of 43.2, 20.4, and 12.7%, respectively and were mainly attributed to a significant enhancement of the short circuit current density (Jsc) by the LSPR from the NiNPs. Similar effects were observed for cells sensitized by the N3, Ru505, and Z907 dyes. Furthermore, the NiNPs exhibited excellent resistance to corrosion from a conventional I-/I3- electrolyte over a period of 60 days.We demonstrated the localized surface plasmon resonance (LSPR) effect of Ni nanoparticles (NiNPs) on the performance of dye-sensitized solar cells (DSSCs). Our study revealed that NiNPs in a conventional I-/I3- electrolyte (NiNPs@I-/I3-) increased the net optical absorption of a N719 dye over a broad wavelength range by LSPR, and concurrently improved the power conversion efficiency (PCE) in DSSCs. At an optimized concentration of the NiNPs@I-/I3- electrolyte (1 mg mL-1), N719-sensitized DSSCs with a photoanode thickness of ca. 2, 5, and 10 μm, exhibited net PCEs of 2.32, 6.02, and 9.83%, respectively. These efficiencies were consistent with a net improvement of 43.2, 20.4, and 12.7%, respectively and were mainly attributed to a significant enhancement of the short circuit current density (Jsc) by the LSPR from the NiNPs. Similar effects were observed for cells sensitized by the N3, Ru505, and Z907 dyes. Furthermore, the Ni

  5. Nanorice Particles: Hybrid Plasmonic Nanostructures

    NASA Technical Reports Server (NTRS)

    Le, Fei (Inventor); Halas, Nancy J. (Inventor); Nordlander, Peter (Inventor); Brandl, Daniel (Inventor); Wang, Hui (Inventor)

    2010-01-01

    A new hybrid nanoparticle, i.e., a nanorice particle, which combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells, is described herein. This geometry possesses far greater structural tunability than previous nanoparticle geometries, along with much larger local field enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than presently known dielectric-conductive material nanostructures. In an embodiment, a nanoparticle comprises a prolate spheroid-shaped core having a first aspect ratio. The nanoparticle also comprises at least one conductive shell surrounding said prolate spheroid-shaped core. The nanoparticle has a surface plasmon resonance sensitivity of at least 600 nm RIU(sup.-1). Methods of making the disclosed nanorice particles are also described herein.

  6. Surface-enhanced Raman scattering of the adsorption of pesticide endosulfan on gold nanoparticles.

    PubMed

    Hernández-Castillo, M I; Zaca-Morán, O; Zaca-Morán, P; Orduña-Diaz, A; Delgado-Macuil, R; Rojas-López, M

    2015-01-01

    The absorption of pesticide endosulfan on the surface of gold nanoparticles results from the formation of micrometric structures (1-10 μm) with irregular shape because of the aggregation of individual particles. Such aggregation of gold nanoparticles after absorption of pesticide shows a surface-enhanced Raman scattering (SERS) spectrum, whose intensity depends on the concentration of endosulfan. In addition, the discoloration of the colloidal solution and a diminishing of the intensity of the surface plasmon resonance absorption from individual particles were observed by UV-visible spectroscopy. At the same time, a second band between 638 and 700 nm confirms the formation of aggregates of gold nanoparticles as the concentration of endosulfan increases. Finally, we used the SERS intensity of the S-O stretching vibration at 1239 cm(-1) from the SO3 group as a measure of concentration of pesticide endosulfan. This method could be used to estimate the level of pollution in water by endosulfan in a simple and practical form.

  7. Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.

    PubMed

    Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho

    2018-03-14

    In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.

  8. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening.

    PubMed

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-07-03

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.

  9. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  10. Design and Development of Nanostructured Surfaces for Enhanced Optical Sensing

    NASA Astrophysics Data System (ADS)

    Santiago Cordoba, Miguel A.

    At smaller size regimes, materials' physicochemical properties change with respect to bulk analogs. In the case of metal nanoparticles like gold or silver, specific wavelengths of light can induce a coherent oscillation of their conduction electrons, generating an optical field confined to the nanoparticle surface. This phenomenon is termed surface plasmon, and has been used as an enhancing mechanism in optical sensing, allowing the detection of foreign materials at small concentrations. The goal of this dissertation is to develop nanostructured materials relying on surface plasmons that can be combined with different optical sensing platforms in order to enhance current detection limits. Initially, we focus on the development of surfactant free, stimuli responsive nanoparticle thin films, which undergo an active release when exposed to a stimulus such as a change in pH. These nanoparticle thin films provide faster analyte particle transport and direct electronic coupling with the analyte molecule, all without attenuating the evanescent wave from the optical transducer to the particle. These stimuli responsive nanostructured substrates are tested within a surface enhanced Raman platform for the detection of biomolecular probes at sub-nanomolar concentrations and microL sample sizes. Furthermore, the developed nanosubstrates can be patterned, providing a versatile nanoparticle thin film for multiplexing analysis, offering a substantial advantage over conventional surface based nanoparticle detection methods. Our results encouraged further optimization of light-matter interactions in optical detection platforms. It is for that reason that this dissertation evolves towards confined optical systems. Particularly, whispering gallery microcavities confine electromagnetic waves - at high volumes - at the boundary of a dielectric resonator. In this dissertation, we examined the sensitivity of whispering gallery modes combining optical microcavities with plasmonic

  11. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance.

    PubMed

    Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen

    2018-06-27

    Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.

  12. Formation of silver nanoparticle at phospholipid template using Langmuir-Blodgett technique and its Surface-enhanced Raman Spectroscopy application

    NASA Astrophysics Data System (ADS)

    Mahato, M.; Sarkar, R.; Pal, P.; Talapatra, G. B.

    2015-10-01

    The biosynthesis of metal nanoparticle and their suitable assembly has recently gained tremendous interest for its application in biomedical arena such as substrates for surface-enhanced Raman scattering and others. In this article, an easy, low-cost, fast, bio-friendly and toxic-reducing agent free protocol has been described for the preparation of silver nanoparticle film using biocompatible 1,2-dipalmitoyl-sn-glycero-3-phosphocholine phospholipid Langmuir monolayer template. Interactions, docking and attachment of silver ions to the above-mentioned phospholipid monolayer have been studied by surface pressure-area isotherm and compressibility analysis at the air-water interface. We have deposited the Langmuir-Blodgett monolayer/multilayer containing silver nanoparticle onto glass/SiO2/quartz substrates. The formation of phospholipid-silver nanoparticle complex in Langmuir-Blodgett film has been characterized by field emission-scanning electron microscopy and high-resolution tunneling electron microscopy images. We have applied this deposited film as a substrate for surface-enhanced Raman scattering application using rhodamine 123 to understand the existence of the surface plasmon activity of silver nanoparticle.

  13. Graphene enhanced surface plasmon resonance sensing based on Goos-Hänchen shift

    NASA Astrophysics Data System (ADS)

    Chen, Huifang; Tong, Jinguang; Wang, Yiqin; Jiang, Li

    2018-03-01

    A graphene/Ag structure is engineered as an enhanced platform for surface plasmon resonance sensing due to the high impermeability nature of graphene and the superior surface plasmon resonance performance of Ag. This structure is ultrasensitive to even tiny refractive index change of analytes based on Goos-Hänchen shift measurement compared to the traditional SPR sensor with bare Au film. The graphene/Ag configuration is consisted of five components, including BK7 glass slide, titanium thin film, silver thin film, two-dimensional graphene layers and biomolecular analyte layer. We have optimized the parameters of each layer and theoretically analyzed Goos-Hänchen shift of the plasmonic structure under surface plasmon resonance effect. The optimized graphene/Ag structure is monolayer graphene coated on Ag thin film with the thickness of 42 nm.

  14. Optical manipulation and catalytic activity enhanced by surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Zou, Ningmu; Min, Jiang; Jiao, Wenxiang; Wang, Guanghui

    2017-02-01

    For optical manipulation, a nano-optical conveyor belt consisting of an array of gold plasmonic non-concentric nano-rings (PNNRs) is demonstrated for the realization of trapping and unidirectional transportation of nanoparticles by polarization rotation of excitation beam. These hot spots of an asymmetric plasmonic nanostructure are polarization dependent, therefore, one can use the incident polarization state to manipulate the trapped targets. Trapped particles could be transferred between adjacent PNNRs in a given direction just by rotating the polarization of incident beam due to unbalanced potential. The angular dependent distribution of electric field around PNNR has been solved using the three- dimensional finite-difference time-domain (FDTD) technique. For optical enhanced catalytic activity, the spectral properties of dimers of Au nanorod-Au nanorod nanostructures under the excitation of 532nm photons have been investigated. With a super-resolution catalytic mapping technique, we identified the existence of "hot spot" in terms of catalytic reactivity at the gap region within the twined plasmonic nanostructure. Also, FDTD calculation has revealed an intrinsic correlation between hot electron transfer.

  15. Polycrystalline Silicon Thin-film Solar cells with Plasmonic-enhanced Light-trapping

    PubMed Central

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-01-01

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm2, which can be increased up to 17-18 mA/cm2 (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  16. Midinfrared Surface Plasmons in Carbon Nanotube Plasmonic Metasurface

    NASA Astrophysics Data System (ADS)

    Afinogenov, Boris I.; Kopylova, Daria S.; Abrashitova, Ksenia A.; Bessonov, Vladimir O.; Anisimov, Anton S.; Dyakov, Sergey A.; Gippius, Nikolay A.; Gladush, Yuri G.; Fedyanin, Andrey A.; Nasibulin, Albert G.

    2018-02-01

    We report an experimental observation of the midinfrared surface plasmon excited in a carbon nanotube plasmonic metasurface. The absorption of a 400-nm-thick single-walled carbon nanotube film perforated with laser-drilled subwavelength holes arranged in a 2D lattice is resonantly enhanced by 75% as compared with the unstructured film. The enhancement of absorption has a resonant behavior associated with the excitation of the surface plasmon and occurs at the wavelengths around 15 μ m for the lattice period of 10 μ m . The spectral position and the magnitude of the resonance are controlled entirely by the structure geometry and can be tuned in a broad range. We demonstrate that periodic patterning can be applied to tailor the bolometric performance of carbon nanotube thin films. Namely, the voltage response of the metasurface is enhanced by 100% at the wavelength of the plasmon resonance as compared with the unstructured film. We discuss mechanisms of the enhancement and compare experimental results with the finite-difference time-domain and scattering-matrix method simulations.

  17. Enhancement radiative cooling performance of nanoparticle crystal via oxidation

    NASA Astrophysics Data System (ADS)

    Jia, Zi-Xun; Shuai, Yong; Li, Meng; Guo, Yanmin; Tan, He-ping

    2018-03-01

    Nanoparticle-crystal is a promising candidate for large scale metamaterial fabrication. However, in radiative cooling application, the maximum blackbody radiation wavelength locates far from metal's plasmon wavelength. In this paper, it will be shown if the metallic nanoparticle crystal can be properly oxidized, the absorption performance within room temperature blackbody radiation spectrum can be improved. Magnetic polariton and surface plasmon polariton have been explained for the mechanism of absorption improvement. Three different oxidation patterns have been investigated in this paper, and the results show they share a similar enhancing mechanism.

  18. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation.

    PubMed

    Lachaine, Rémi; Boutopoulos, Christos; Lajoie, Pierre-Yves; Boulais, Étienne; Meunier, Michel

    2016-05-11

    Metallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic. However, identifying and tailoring nanoparticles morphology to specific applications remains challenging and limits the development of efficient nanoplasmonic technologies. In this work, we report a strategy for the rational design of gold plasmonic nanoshells (AuNS) for the efficient ultrafast laser-based nanoscale bubble generation and cell membrane perforation, which constitute one of the most crucial challenges toward the development of effective gene therapy treatments. We design an in silico rational design framework that we use to tune AuNS morphology to simultaneously optimize for the reduction of the cavitation threshold while preserving the particle structural integrity. Our optimization procedure yields optimal AuNS that are slightly detuned compared to their plasmonic resonance conditions with an optical breakdown threshold 30% lower than randomly selected AuNS and 13% lower compared to similarly optimized gold nanoparticles (AuNP). This design strategy is validated using time-resolved bubble spectroscopy, shadowgraphy imaging and electron microscopy that confirm the particle structural integrity and a reduction of 51% of the cavitation threshold relative to optimal AuNP. Rationally designed AuNS are finally used to perforate cancer cells with an efficiency of 61%, using 33% less energy compared to AuNP, which demonstrate that our rational design framework is readily transferable to a cell environment

  19. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening

    PubMed Central

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-01-01

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications. PMID:26138830

  20. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering

    PubMed Central

    Zheng, Peng; Cushing, Scott K.; Suri, Savan; Wu, Nianqiang

    2015-01-01

    The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized and propagating surface plasmons. In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the ‘gap’ defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors. PMID:25586930

  1. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.

    PubMed

    Manera, Maria Grazia; Ferreiro-Vila, Elías; Garcia-Martin, José Miguel; Garcia-Martin, Antonio; Rella, Roberto

    2014-08-15

    A comparison between sensing performance of traditional SPR (Surface Plasmon Resonance) and magneto-optic SPR (MOSPR) transducing techniques is presented in this work. MOSPR comes from an evolution of traditional SPR platform aiming at modulating Surface Plasmon wave by the application of an external magnetic field in transverse configuration. Previous work demonstrated that, when the Plasmon resonance is excited in these structures, the external magnetic field induces a modification of the coupling of the incident light with the Surface Plasmon Polaritons (SPP). Besides, these structures can lead to an enhancement in the magneto-optical (MO) activity when the SPP is excited. This phenomenon is exploited in this work to demonstrate the possibility to use the enhanced MO signal as proper transducer signal for investigating biomolecular interactions in liquid phase. To this purpose, the transducer surface was functionalized by thiol chemistry and used for recording the binding between Bovine Serum Albumin molecules immobilized onto the surface and its complementary target. Higher sensing performance in terms of sensitivity and lower limit of detection of the MOSPR biosensor with respect to traditional SPR sensors is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Plasmon-photon conversion to near-infrared emission from Yb(3+): (Au/Ag-nanoparticles) in tungsten-tellurite glasses.

    PubMed

    Rivera, V A G; Ledemi, Yannick; Pereira-da-Silva, Marcelo A; Messaddeq, Younes; Marega, Euclydes

    2016-01-04

    This manuscript reports on the interaction between (2)F5/2→(2)F7/2 radiative transition from Yb(3+) ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb(3+) emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb(3+) ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb(3+) ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity's quality factor (Q) and the coupling (g) between the nanoparticles and the Yb(3+) ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb(3+) ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance.

  3. Plasmon-photon conversion to near-infrared emission from Yb3+: (Au/Ag-nanoparticles) in tungsten-tellurite glasses

    PubMed Central

    Rivera, V. A. G.; Ledemi, Yannick; Pereira-da-Silva, Marcelo A.; Messaddeq, Younes; Marega Jr, Euclydes

    2016-01-01

    This manuscript reports on the interaction between 2F5/2→2F7/2 radiative transition from Yb3+ ions and localized surface plasmon resonance (from gold/silver nanoparticles) in a tungsten-tellurite glass. Such an interaction, similar to the down-conversion process, results in the Yb3+ emission in the near-infrared region via resonant and non-resonant energy transfers. We associated such effects with the dynamic coupling described by the variations generated by the Hamiltonian HDC in either the oscillator strength, or the local crystal field, i.e. the line shape changes in the emission band. Here, the Yb3+ ions emission is achieved through plasmon-photon coupling, observable as an enhancement or quenching in the luminescence spectra. Metallic nanoparticles have light-collecting capability in the visible spectrum and can accumulate almost all the photon energy on a nanoscale, which enable the excitation and emission of the Yb3+ ions in the near-infrared region. This plasmon-photon conversion was evaluated from the cavity’s quality factor (Q) and the coupling (g) between the nanoparticles and the Yb3+ ions. We have found samples of low-quality cavities and strong coupling between the nanoparticles and the Yb3+ ions. Our research can be extended towards the understanding of new plasmon-photon converters obtained from interactions between rare-earth ions and localized surface plasmon resonance. PMID:26725938

  4. Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays.

    PubMed

    Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua

    2010-12-20

    We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.

  5. Plasmonic extinction in gold nanoparticle-polymer films as film thickness and nanoparticle separation decrease below resonant wavelength

    NASA Astrophysics Data System (ADS)

    Dunklin, Jeremy R.; Bodinger, Carter; Forcherio, Gregory T.; Keith Roper, D.

    2017-01-01

    Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ˜70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ˜130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ˜1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ˜514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.

  6. Encapsulated Annealing: Enhancing the Plasmon Quality Factor in Lithographically–Defined Nanostructures

    PubMed Central

    Bosman, Michel; Zhang, Lei; Duan, Huigao; Tan, Shu Fen; Nijhuis, Christian A.; Qiu, Cheng–Wei; Yang, Joel K. W.

    2014-01-01

    Lithography provides the precision to pattern large arrays of metallic nanostructures with varying geometries, enabling systematic studies and discoveries of new phenomena in plasmonics. However, surface plasmon resonances experience more damping in lithographically–defined structures than in chemically–synthesized nanoparticles of comparable geometries. Grain boundaries, surface roughness, substrate effects, and adhesion layers have been reported as causes of plasmon damping, but it is difficult to isolate these effects. Using monochromated electron energy–loss spectroscopy (EELS) and numerical analysis, we demonstrate an experimental technique that allows the study of these effects individually, to significantly reduce the plasmon damping in lithographically–defined structures. We introduce a method of encapsulated annealing that preserves the shape of polycrystalline gold nanostructures, while their grain-boundary density is reduced. We demonstrate enhanced Q–factors in lithographically–defined nanostructures, with intrinsic damping that matches the theoretical Drude damping limit. PMID:24986023

  7. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    NASA Astrophysics Data System (ADS)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  8. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    PubMed

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Extending the high-order-harmonic spectrum using surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Ebadian, H.; Mohebbi, M.

    2017-08-01

    Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.

  10. Quasistatic limit for plasmon-enhanced optical chirality

    NASA Astrophysics Data System (ADS)

    Finazzi, Marco; Biagioni, Paolo; Celebrano, Michele; Duò, Lamberto

    2015-05-01

    We discuss the possibility of enhancing the chiroptical response from molecules uniformly distributed around nanostructures that sustain localized plasmon resonances. We demonstrate that the average optical chirality in the near field of any plasmonic nanostructure cannot be significantly higher than that in a plane wave. This conclusion stems from the quasistatic nature of the nanoparticle-enhanced electromagnetic fields and from the fact that, at optical frequencies, the magnetic response of matter is much weaker than the electric one.

  11. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    PubMed

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    PubMed

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  13. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.

    PubMed

    Peng, Tianhuan; Miao, Junjian; Gao, Zhaoshuai; Zhang, Linjuan; Gao, Yi; Fan, Chunhai; Li, Di

    2018-03-01

    Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy.

    PubMed

    Liu, Fanxin; Cao, Zhishen; Tang, Chaojun; Chen, Ling; Wang, Zhenlin

    2010-05-25

    We have demonstrated that by coating with a thin dielectric layer of tetrahedral amorphous carbon (ta-C), a biocompatible and optical transparent material in the visible range, the Ag nanoparticle-based substrate becomes extremely suitable for surface-enhanced Raman spectroscopy (SERS). Our measurements show that a 10 A or thicker ta-C layer becomes efficient to protect the oxygen-free Ag in air and prevent Ag ionizing in aqueous solutions. Furthermore, the Ag nanoparticles substrate coated with a 10 A ta-C film shows a higher enhancement of Raman signals than the uncoated substrate. These observations are further supported by our numerical simulations. We suggest that biomolecule detections in analytic assays could be easily realized using ta-C-coated Ag-based substrate for SERS especially in the visible range. The coated substrate also has higher mechanical stability, chemical inertness, and technological compliance, and may be useful, for example, to enhance TiO(2) photocatalysis and solar-cell efficiency by the surface plasmons.

  15. Correlation of surface enhanced Raman spectroscopy and nanoparticle aggregation with rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Hoff, Christopher A.

    Surface enhanced Raman spectroscopy (SERS) has fascinated the analytical chemistry field for decades. The SERS phenomenon has progressively leveraged the inherently insensitive Raman phenomenon from a novelty vibrational spectroscopy method into one capable of single molecule detection, with attendant molecular level selectivity and information. Yet, even after 40 years since its discovery, the core mechanism behind this phenomenon is still debated. This thesis presents results from a series of photometric titrations wherein solutions of 30 nm Au@Ag nanoparticles (NPs) were titrated with rhodamine 6G (R6G), spanning five orders of magnitude in R6G concentration, and which elucidate the conditions required for the onset of SERS by R6G in this system. The experiments illustrated the correlation between the Raman response and the plasmonic (via UV-Vis spectroscopy) properties of the nanoparticle solutions. It was found that the onset of R6G SERS was related much more closely to the aggregation of the nanoparticles in solution than to their R6G adsorbed surface coverage. However, triggering aggregation with sodium chloride appeared to enhance SERS by an independent mechanism, which is operative only at low, i.e., [NaCl] > 100 mM concentration.

  16. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    NASA Astrophysics Data System (ADS)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  17. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET)more » mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.« less

  18. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang (Ken)

    2015-05-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb3+/Er3+ nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications.

  19. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    NASA Astrophysics Data System (ADS)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  20. Utilization of Plasmonic and Photonic Crystal Nanostructures for Enhanced Micro- and Nanoparticle Manipulation

    PubMed Central

    Simmons, Cameron S.; Knouf, Emily Christine; Tewari, Muneesh; Lin, Lih Y.

    2011-01-01

    A method to manipulate the position and orientation of submicron particles nondestructively would be an incredibly useful tool for basic biological research. Perhaps the most widely used physical force to achieve noninvasive manipulation of small particles has been dielectrophoresis(DEP).1 However, DEP on its own lacks the versatility and precision that are desired when manipulating cells since it is traditionally done with stationary electrodes. Optical tweezers, which utilize a three dimensional electromagnetic field gradient to exert forces on small particles, achieve this desired versatility and precision.2 However, a major drawback of this approach is the high radiation intensity required to achieve the necessary force to trap a particle which can damage biological samples.3 A solution that allows trapping and sorting with lower optical intensities are optoelectronic tweezers (OET) but OET's have limitations with fine manipulation of small particles; being DEP-based technology also puts constraint on the property of the solution.4,5 This video article will describe two methods that decrease the intensity of the radiation needed for optical manipulation of living cells and also describe a method for orientation control. The first method is plasmonic tweezers which use a random gold nanoparticle (AuNP) array as a substrate for the sample as shown in Figure 1. The AuNP array converts the incident photons into localized surface plasmons (LSP) which consist of resonant dipole moments that radiate and generate a patterned radiation field with a large gradient in the cell solution. Initial work on surface plasmon enhanced trapping by Righini et al and our own modeling have shown the fields generated by the plasmonic substrate reduce the initial intensity required by enhancing the gradient field that traps the particle.6,7,8 The plasmonic approach allows for fine orientation control of ellipsoidal particles and cells with low optical intensities because of more

  1. Correction: Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles.

    PubMed

    Sharma, Vikash; Chotia, Chanderbhan; Tarachand; Ganesan, Vedachalaiyer; Okram, Gunadhor S

    2017-07-21

    Correction for 'Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles' by Vikash Sharma et al., Phys. Chem. Chem. Phys., 2017, 19, 14096-14106.

  2. Photocurrent enhancement of graphene photodetectors by photon tunneling of light into surface plasmons

    NASA Astrophysics Data System (ADS)

    Maleki, Alireza; Cumming, Benjamin P.; Gu, Min; Downes, James E.; Coutts, David W.; Dawes, Judith M.

    2017-10-01

    We demonstrate that surface plasmon resonances excited by photon tunneling through an adjacent dielectric medium enhance the photocurrent detected by a graphene photodetector. The device is created by overlaying a graphene sheet over an etched gap in a gold film deposited on glass. The detected photocurrents are compared for five different excitation wavelengths, ranging from {λ }0=570 {{nm}} to {λ }0=730 {{nm}}. Although the device is not optimized, the photocurrent excited with incident p-polarized light (which excites resonant surface plasmons) is significantly amplified in comparison with that for s-polarized light (without surface plasmon resonances). We observe that the photocurrent is greater for shorter wavelengths (for both s- and p-polarizations) with increased photothermal current. Position-dependent Raman spectroscopic analysis of the optically-excited graphene photodetector indicates the presence of charge carriers in the graphene near the metallic edge. In addition, we show that the polarity of the photocurrent reverses across the gap as the incident light spot moves across the gap. Graphene-based photodetectors offer a simple architecture which can be fabricated on dielectric waveguides to exploit the plasmonic photocurrent enhancement of the evanescent field. Applications for these devices include photodetection, optical sensing and direct plasmonic detection.

  3. Ultrafast plasmon-enhanced hot electron process in model heterojunctions: Ag/TiO2 and Ag/graphite

    NASA Astrophysics Data System (ADS)

    Petek, Hrvoje

    We study the plasmonically enhanced nonlinear photoemission from Ag nanocluster-decorated graphite and TiO2(110) surfaces by time-resolved two-photon photoemission spectroscopy (TR-2PP). Evaporating Ag atoms on graphite and TiO2 surfaces forms pancake-like Ag clusters with 5 nm diameter and 1-1.5 nm height through self-limiting growth mode. The Ag nanoparticles enhance the two-photon photoemission (2PP) signal by approximately two-orders of magnitude as compared with the bare surfaces for p-polarized excitation. In the case of s-polarization there is essentially no enhancement for graphite, and only about an order-of-magnitude enhancement for TiO2. Wavelength dependent measurements of the enhancement reveal that for Ag/graphite there is a single plasmonic resonance due to the ⊥-plasmon mode at 3.6 eV. By contrast, for Ag/TiO2 there are ⊥ and ||-plasmon modes with resonant energies of 3.8 and 3.1 eV, respectively. Apparently the dielectric properties of the substrate have strong influence on the type and frequency of Ag plasmonic modes that can exist on the surfaces. 2PP spectra of the Ag/graphite and Ag/TiO2 surfaces reveal two distinct components that are common to both. The high energy component consists of a coherent 2PP process from an occupied interface state, which only exists in the presence of Ag. We identify this state, as an interface state formed by charge donation from the Ag-5s band to the unoccupied states of the substrates. The low energy component consists of a hot electron signal that is created by plasmon dephasing. TR-2PP measurements are performed on the plasmon-induced electron dynamics to assess their relevance for plasmonically enhanced femtochemistry. This research was supported by NSF Grant CHE-1414466.

  4. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection.

    PubMed

    Qi, Zhiyang; Zhai, Yusheng; Wen, Long; Wang, Qilong; Chen, Qin; Iqbal, Sami; Chen, Guangdian; Xu, Ji; Tu, Yan

    2017-05-22

    The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10 -5 A cm -2 . The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

  5. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection

    NASA Astrophysics Data System (ADS)

    Qi, Zhiyang; Zhai, Yusheng; Wen, Long; Wang, Qilong; Chen, Qin; Iqbal, Sami; Chen, Guangdian; Xu, Ji; Tu, Yan

    2017-07-01

    The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10-5 A cm-2. The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

  6. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    PubMed

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  7. Au plasmonics in a WS{sub 2}-Au-CuInS{sub 2} photocatalyst for significantly enhanced hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Zhongzhou; School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083; Wang, Zhenxing, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn

    2015-11-30

    Promoting the activities of photocatalysts is still the critical challenge in H{sub 2} generation area. Here, a Au plasmon enhanced photocatalyst of WS{sub 2}-Au-CuInS{sub 2} is developed by inserting Au nanoparticles between WS{sub 2} nanotubes and CuInS{sub 2} (CIS) nanoparticles. Due to the localized surface plasmonic resonance properties from Au nanoparticles, WS{sub 2}-Au-CIS shows the best performance as compared to Au-CIS, CIS, WS{sub 2}-CIS, CIS-Au, WS{sub 2}-Au, and WS{sub 2}-CIS-Au. The surface plasmonic resonance effects dramatically intensify the absorption of visible light and help to inject hot electrons into the semiconductors. Our findings open up an efficient method to optimizemore » the type-II structures for photocatalytic water splitting.« less

  8. Plasmonic nanoparticle scattering for color holograms

    PubMed Central

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-01-01

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field. PMID:25122675

  9. Plasmonic nanoparticle scattering for color holograms.

    PubMed

    Montelongo, Yunuen; Tenorio-Pearl, Jaime Oscar; Williams, Calum; Zhang, Shuang; Milne, William Ireland; Wilkinson, Timothy David

    2014-09-02

    This work presents an original approach to create holograms based on the optical scattering of plasmonic nanoparticles. By analogy to the diffraction produced by the scattering of atoms in X-ray crystallography, we show that plasmonic nanoparticles can produce a wave-front reconstruction when they are sampled on a diffractive plane. By applying this method, all of the scattering characteristics of the nanoparticles are transferred to the reconstructed field. Hence, we demonstrate that a narrow-band reconstruction can be achieved for direct white light illumination on an array of plasmonic nanoparticles. Furthermore, multicolor capabilities are shown with minimal cross-talk by multiplexing different plasmonic nanoparticles at subwavelength distances. The holograms were fabricated from a single subwavelength thin film of silver and demonstrate that the total amount of binary information stored in the plane can exceed the limits of diffraction and that this wavelength modulation can be detected optically in the far field.

  10. Plasmonic activity on gold nanoparticles embedded in nanopores formed in a surface layer of silica glass by swift-heavy-ion irradiation.

    PubMed

    Nomura, Ken-ichi; Ohki, Yoshimichi; Fujimaki, Makoto; Wang, Xiaomin; Awazu, Koichi; Komatsubara, Tetsuro

    2009-11-25

    Silica glass was irradiated by swift heavy ions by selecting the ion species and its energy in order to induce the largest damaged regions. These regions were then selectively etched by hydrofluoric acid vapour to form nanopores on the glass surface. Subsequently, gold nanoparticles were embedded into the nanopores by vacuum evaporation, followed by thermal treatment. In the new plasmonic structure obtained with these procedures, the localized surface plasmon excitation wavelength induced around the gold nanoparticles was found to show a redshift, which agreed well with the theoretical calculation, when water was introduced into the nanopores. This indicates that the fabricated structure can be used as a sensing element to detect the adhesion of substances such as biomolecules to the nanoparticles by measuring the redshift.

  11. Controlling Plasmon-Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules.

    PubMed

    Wang, Mingsong; Hartmann, Gregory; Wu, Zilong; Scarabelli, Leonardo; Rajeeva, Bharath Bangalore; Jarrett, Jeremy W; Perillo, Evan P; Dunn, Andrew K; Liz-Marzán, Luis M; Hwang, Gyeong S; Zheng, Yuebing

    2017-10-01

    By harnessing photoswitchable intersystem crossing (ISC) in spiropyran (SP) molecules, active control of plasmon-enhanced fluorescence in the hybrid systems of SP molecules and plasmonic nanostructures is achieved. Specifically, SP-derived merocyanine (MC) molecules formed by photochemical ring-opening reaction display efficient ISC due to their zwitterionic character. In contrast, ISC in quinoidal MC molecules formed by thermal ring-opening reaction is negligible. The high ISC rate can improve fluorescence quantum yield of the plasmon-modified spontaneous emission, only when the plasmonic electromagnetic field enhancement is sufficiently high. Along this line, extensive photomodulation of fluorescence is demonstrated by switching the ISC in MC molecules at Au nanoparticle aggregates, where strongly enhanced plasmonic hot spots exist. The ISC-mediated plasmon-enhanced fluorescence represents a new approach toward controlling the spontaneous emission of fluorophores near plasmonic nanostructures, which expands the applications of active molecular plasmonics in information processing, biosensing, and bioimaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.

    PubMed

    Yi, Zi; Li, Xiao-Yan; Liu, Feng-Juan; Jin, Pei-Yan; Chu, Xia; Yu, Ru-Qin

    2013-05-15

    Surface-enhanced Raman scattering (SERS) has emerged as a promising spectroscopic technique for biosensing. However, to design a SERS-based biosensor, almost all currently used methods involve the time-consuming and complicated modification of the metallic nanoparticles with the Raman active dye and biorecognition element, which restricts their widespread applications. Herein, we report a label-free, homogeneous and easy-to-operate biosensing platform for the rapid, simple and sensitive SERS detection by using the unmodified gold nanoparticles (Au NPs). This strategy utilizes the difference in adsorption property of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) on citrate-coated Au NPs. In the presence of dsDNA, the aggregation of Au NPs takes place after adding salt solution because the dsDNA cannot adsorb on the Au NPs to protect them from salt-induced aggregation. Such aggregation gives rise to the plasmonic coupling of adjacent metallic NPs and turns on the enhancement of the Raman scattering, displaying a strong SERS signal. In contrast, the ssDNA can adsorb on the Au NPs surface through strong electrostatic attraction and protect them from salt-induced aggregation, showing a weak SERS signal. This approach is not only straightforward and simple in design but also rapid and convenient in operation. The feasibility and universality of the design have been demonstrated successfully by the detection of DNA and Hg(2+), and the assay possesses the superior signal-to-background ratio as high as ∼30 and excellent selectivity. The method can be extended to detect various analytes, such as other metal ions, proteins and small molecules by using the oligonucleotides that can selectively bind the analytes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Surface Plasmon Resonance of Counterions coated Charged Silver Nanoparticles and Application in Bio-interaction

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata; Naveen Kumar, N.; Mallick, Vivek

    2018-05-01

    Silver nanoparticles (SNPs) play very significant roles in biomedical applications, e.g., biosensors in numerous assays for quantitative detection, and the surface chemistry adds an important factor in that. In this investigation, we coated SNPs either by anionic citrates, like tri-lithium citrate (TLC) or tri-potassium citrate (TKC) which are associated with Li+ or K+ counterions, respectively; or by cationic surfactants, like cetylpyridinium chloride (CPC) or cetylpyridinium iodide (CPI) which are associated with Cl‑ or I‑ counterions, respectively, at the surface of nanoparticles. Our aim was to study (i) how the counterions affect the optical property of SNPs and (ii) the interaction of coated SNPs with a protein, hen egg white lysozyme (HEWL). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques were used to measure the size, and UV absorption spectroscopy was used to characterize the surface plasmon resonance (SPR) band of SNPs. ζ-potential, fluorescence quenching and circular dichroism (CD) spectroscopy techniques were used for characterizing the protein-nanoparticles interaction.

  14. Linear ultrafast dynamics of plasmon and magnetic resonances in nanoparticles

    NASA Astrophysics Data System (ADS)

    Lazzarini, Carlo Maria; Tadzio, Levato; Fitzgerald, Jamie M.; Sánchez-Gil, José A.; Giannini, Vincenzo

    2017-12-01

    In this study we present an analytical description of the ultrafast localized surface plasmon and magnetic resonance dynamics in a single nanoparticle (Ag or Si), driven by an ultrashort (fs time scale) Gaussian pulse. Three possible scenarios have been found depending on the incident field, i.e., pulse duration much shorter than, similar to, and much longer than the localized surface plasmon resonance (LSPR) lifetime. A rich physics arises for τpulse<τLSPR , even in the linear regime. The surface plasmon dynamics is manifested as (i) a temporal delay of the surface plasmon excitation with regard to the freely propagating pulse and as (ii) a negative exponential tail after the exciting pulse is over. In addition, for sub-fs pulses clear oscillations in the near-field decay have been observed. A similar scenario has been observed considering a nonabsorbing Si sphere. Nanoparticle resonance dynamics may lead to a wealth of new phenomena and applications in nanophotonics such as multipole order resonance interference, pulse-induced delay or temporal shaping on the fs scale, high harmonic generation, attosecond near-field pulse sources, and electron acceleration from metasurface or 3D engineered nanostructures.

  15. Surface Plasmon Resonance or Biocompatibility—Key Properties for Determining the Applicability of Noble Metal Nanoparticles

    PubMed Central

    Craciun, Ana Maria; Focsan, Monica; Vulpoi, Adriana

    2017-01-01

    Metal and in particular noble metal nanoparticles represent a very special class of materials which can be applied as prepared or as composite materials. In most of the cases, two main properties are exploited in a vast number of publications: biocompatibility and surface plasmon resonance (SPR). For instance, these two important properties are exploitable in plasmonic diagnostics, bioactive glasses/glass ceramics and catalysis. The most frequently applied noble metal nanoparticle that is universally applicable in all the previously mentioned research areas is gold, although in the case of bioactive glasses/glass ceramics, silver and copper nanoparticles are more frequently applied. The composite partners/supports/matrix/scaffolds for these nanoparticles can vary depending on the chosen application (biopolymers, semiconductor-based composites: TiO2, WO3, Bi2WO6, biomaterials: SiO2 or P2O5-based glasses and glass ceramics, polymers: polyvinyl alcohol (PVA), Gelatin, polyethylene glycol (PEG), polylactic acid (PLA), etc.). The scientific works on these materials’ applicability and the development of new approaches will be targeted in the present review, focusing in several cases on the functioning mechanism and on the role of the noble metal. PMID:28773196

  16. Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies

    NASA Astrophysics Data System (ADS)

    Philip, Anish; Ankudze, Bright; Pakkanen, Tuula T.

    2018-06-01

    Large-sized gold nanoparticles (AuNPs) were synthesized with a new polyethylenimine - assisted seed - mediated method for surface-enhanced Raman scattering (SERS) studies. The size and polydispersity of gold nanoparticles are controlled in the growth step with the amounts of polyethylenimine (PEI) and seeds. Influence of three silicon oxide supports having different surface morphologies, namely halloysite (Hal) nanotubes, glass plates and inverse opal films of SiO2, on the performance of gold nanoparticles in Raman scattering of a 4-aminothiophenol (4-ATP) analyte was investigated. Electrostatic interaction between positively charged polyethylenimine-capped AuNPs and negatively charged surfaces of silicon oxide supports was utilized in fabrication of the SERS substrates using deposition and infiltration methods. The Au-photonic crystal of the three SERS substrate groups is the most active one as it showed the highest analytical enhancement factor (AEF) and the lowest detection limit of 1x10-8 M for 4-ATP. Coupling of the optical properties of photonic crystals with the plasmonic properties of AuNPs provided Au-photonic crystals with the high SERS activity. The AuNPs clusters formed both in the photonic crystal and on the glass plate are capable of forming more hot spots as compared to sparsely distributed AuNPs on Hal nanotubes and thereby increasing the SERS enhancement.

  17. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers

    PubMed Central

    Guozhi, Jia; Peng, Wang; Yanbang, Zhang; Kai, Chang

    2016-01-01

    Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSPs of massless Dirac electrons, which could result in novel tunable plasmonic metamaterials in the terahertz and infrared frequency regime, are relatively unexplored. Here we report for first time the observation of LSPs in Bi2Se3 topological insulator hierarchical nanoflowers, which are consisted of a large number of Bi2Se3 nanocrystals. The existence of LSPs can be demonstrated by surface enhanced Raman scattering and absorbance spectra ranging from ultraviolet to near-infrared. LSPs produce an enhanced photothermal effect stimulated by near-infrared laser. The excellent photothermal conversion effect can be ascribed to the existence of topological surface states, and provides us a new way for practical application of topological insulators in nanoscale heat source and cancer therapy. PMID:27172827

  18. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers.

    PubMed

    Guozhi, Jia; Peng, Wang; Yanbang, Zhang; Kai, Chang

    2016-05-12

    Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSPs of massless Dirac electrons, which could result in novel tunable plasmonic metamaterials in the terahertz and infrared frequency regime, are relatively unexplored. Here we report for first time the observation of LSPs in Bi2Se3 topological insulator hierarchical nanoflowers, which are consisted of a large number of Bi2Se3 nanocrystals. The existence of LSPs can be demonstrated by surface enhanced Raman scattering and absorbance spectra ranging from ultraviolet to near-infrared. LSPs produce an enhanced photothermal effect stimulated by near-infrared laser. The excellent photothermal conversion effect can be ascribed to the existence of topological surface states, and provides us a new way for practical application of topological insulators in nanoscale heat source and cancer therapy.

  19. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.

    PubMed

    Yang, Ying-Ying; Scrinzi, Armin; Husakou, Anton; Li, Qian-Guang; Stebbings, Sarah L; Süßmann, Frederik; Yu, Hai-Juan; Kim, Seungchul; Rühl, Eckart; Herrmann, Joachim; Lin, Xue-Chun; Kling, Matthias F

    2013-01-28

    Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two.

  20. Optical transverse spin coupling through a plasmonic nanoparticle for particle-identification and field-mapping.

    PubMed

    Yang, A P; Du, L P; Meng, F F; Yuan, X C

    2018-05-17

    Electromagnetic fields at near-field exhibit distinctive properties with respect to their free-space counterparts. In particular, an optical transverse spin appearing in a confined electromagnetic field provides the foundation for many intriguing physical effects and applications. We present a transverse spin coupling configuration where plasmonic nanoparticles are employed to couple the transverse spin in a focused beam to that of a surface plasmon polariton. The plasmonic resonance of nanoparticles on a metal film plays a significant role in transverse spin coupling. We demonstrate in experiments that Ag and Au nanoparticles yield distinct imaging patterns when scanned over a focused field, because of their different plasmonic responses to the transverse and longitudinal electric fields. Such resonance-dependent spin-coupling enables the identification of nanoparticles using a focused field, as well as electric field mapping of a specific field component of a focused beam using a plasmonic nanoparticle. These interesting findings regarding the transverse spin coupling with a plasmonic nanoparticle may find valuable applications in near-field and nano-optics.

  1. Tailoring of quantum dot emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings.

    PubMed

    Margapoti, Emanuela; Gentili, Denis; Amelia, Matteo; Credi, Alberto; Morandi, Vittorio; Cavallini, Massimiliano

    2014-01-21

    We report on the tailoring of quantum dot (QD) emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Ag nanoparticles (NPs) with CdSe QDs embedded in a polymeric matrix are spatially organised in mesoscopic rings and coupled in a tuneable fashion by breath figure formation. The mean distance between NPs and QDs and consequently the intensity of QD photoluminescence, which is enhanced by the coupling of surface plasmons and excitons, are tuned by acting on the NP concentration.

  2. Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film

    NASA Astrophysics Data System (ADS)

    Li, Kuanguo; Jiang, Kang; Zhang, Lan; Wang, Yong; Mao, Lei; Zeng, Jie; Lu, Yonghua; Wang, Pei

    2016-04-01

    Enhanced electromagnetic field in the tiny gaps between metallic nanostructures holds great promise in optical applications. Herein, we report novel out-of-plane nanogaps composed of micrometer-sized Ag triangular nanoplates (AgTN) on Ag films. Notably, the new coupled plasmonic structure can dramatically enhance the surface-enhanced Raman scattering (SERS) by visible laser excitation, although the micrometer-sized AgTN has localized plasmon resonance at infrared wavelength. This enhancement is derived from the gap plasmon polariton between the AgTN and Ag film, which is excited via the antenna effect of the corner and edge of the AgTN. Systematic SERS studies indicated that the plasmon enhancement was on the order of corner > edge > face. These results were further verified by theoretical simulations. Our device paves the way for rational design of sensitive SERS substrates by judiciously choosing appropriate nanoparticles and optimizing the gap distance.

  3. Zirconium(IV) oxide: New coating material for nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Abdulrahman, Heman Burhanalden; Kołątaj, Karol; Kudelski, Andrzej

    2018-03-01

    One tool that can be used for determining the structure and composition of surfaces of various materials (even in in situ conditions) is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In SHINERS measurements, the surface under investigation is covered with a layer of surface-protected plasmonic nanoparticles, and then the Raman spectrum of the surface analysed is recorded. The plasmonic cores of the used core-shell structures act as electromagnetic nanoresonators, significantly locally enhancing the intensity of the electric field of the incident radiation, leading to a large increase in the efficiency of the generation of the Raman signal from molecules in the close proximity to the deposited SHINERS nanoresonators. A protective layer (from transparent dielectrics such as SiO2, Al2O3 or TiO2) prevents direct interaction between the plasmonic metal and the analysed surface (such interactions may lead to changes in the structure of the surface) and, in the case of plasmonic cores other than gold cores, the dielectric layer increases the chemical stability of the metal core. In this contribution, we show for the first time that core-shell nanoparticles having a silver core (both a solid and hollow one) and a shell of zirconium(IV) oxide are very efficient SHINERS nanoresonators that are significantly more stable in acidic and alkaline media than the silver-silica core-shell structures typically used for SHINERS experiments.

  4. Spectral Selectivity of Plasmonic Interactions between Individual Up-Converting Nanocrystals and Spherical Gold Nanoparticles.

    PubMed

    Piątkowski, Dawid; Schmidt, Mikołaj K; Twardowska, Magdalena; Nyk, Marcin; Aizpurua, Javier; Maćkowski, Sebastian

    2017-08-04

    We experimentally demonstrate strong spectral selectivity of plasmonic interaction that occurs between α-NaYF₄:Er 3+ /Yb 3+ nanocrystals, which feature two emission bands, and spherical gold nanoparticles, with plasmon frequency resonant with one of the emission bands. Spatially-resolved luminescence intensity maps acquired for individual nanocrystals, together with microsecond luminescence lifetime images, show two qualitatively different effects that result from the coupling between plasmon excitations in metallic nanoparticles and emitting states of the nanocrystals. On the one hand, we observe nanocrystals, whose emission intensity is strongly enhanced for both resonant and non-resonant bands with respect to the plasmon resonance. Importantly, this increase is accompanied with shortening of luminescence decays times. In contrast, a significant number of nanocrystals exhibits almost complete quenching of the emission resonant with the plasmon resonance of gold nanoparticles. Theoretical analysis indicates that such an effect can occur for emitters placed at distances of about 5 nm from gold nanoparticles. While under these conditions, both transitions experience significant increases of the radiative emission rates due to the Purcell effect, the non-radiative energy transfer between resonant bands results in strong quenching, which in that situation nullifies the enhancement.

  5. Concentration Dependence of Gold Nanoparticles for Fluorescence Enhancement

    NASA Astrophysics Data System (ADS)

    Solomon, Joel; Wittmershaus, Bruce

    Noble metal nanoparticles possess a unique property known as surface plasmon resonance in which the conduction electrons oscillate due to incoming light, dramatically increasing their absorption and scattering of light. The oscillating electrons create a varying electric field that can affect nearby molecules. The fluorescence and photostability of fluorophores can be enhanced significantly when they are near plasmonic nanoparticles. This effect is called metal enhanced fluorescence (MEF). MEF from two fluorescence organic dyes, Lucifer Yellow CH and Riboflavin, was measured with different concentrations of 50-nm colloidal gold nanoparticles (Au-NP). The concentration range of Au-NP was varied from 2.5 to 250 pM. To maximize the interaction, the dyes were chosen so their emission spectra had considerable overlap with the absorption spectra of the Au-NP, which is common in MEF studies. If the dye molecules are too close to the surface of Au-NP, fluorescence quenching can occur instead of MEF. To try to observe this difference, silica-coated Au-NP were compared to citrate-based Au-NP; however, fluorescence quenching was observed with both Au-NP. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  6. Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Hiroshi; Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501; Zhang, Ran

    2015-07-27

    We report the development of bio-compatible cellulose nanofibers doped with light emitting silicon nanocrystals and Au nanoparticles via facile electrospinning. By performing photoluminescence (PL) spectroscopy as a function of excitation wavelength, we demonstrate plasmon-enhanced PL by a factor of 2.2 with negligible non-radiative quenching due to plasmon-enhanced scattering of excitation light from Au nanoparticles to silicon nanocrystals inside the nanofibers. These findings provide an alternative approach for the development of plasmon-enhanced active systems integrated within the compact nanofiber geometry. Furthermore, bio-compatible light-emitting nanofibers prepared by a cost-effective solution-based processing are very promising platforms for biophotonic applications such as fluorescence sensingmore » and imaging.« less

  7. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance

    PubMed Central

    Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V.

    2008-01-01

    This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold–silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron–surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron–surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron–surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances—approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron–surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping. PMID:18846243

  8. Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance.

    PubMed

    Hu, Min; Novo, Carolina; Funston, Alison; Wang, Haining; Staleva, Hristina; Zou, Shengli; Mulvaney, Paul; Xia, Younan; Hartland, Gregory V

    2008-01-01

    This article provides a review of our recent Rayleigh scattering measurements on single metal nanoparticles. Two different systems will be discussed in detail: gold nanorods with lengths between 30 and 80 nm, and widths between 8 and 30 nm; and hollow gold-silver nanocubes (termed nanoboxes or nanocages depending on their exact morphology) with edge lengths between 100 and 160 nm, and wall thicknesses of the order of 10 nm. The goal of this work is to understand how the linewidth of the localized surface plasmon resonance depends on the size, shape, and environment of the nanoparticles. Specifically, the relative contributions from bulk dephasing, electron-surface scattering, and radiation damping (energy loss via coupling to the radiation field) have been determined by examining particles with different dimensions. This separation is possible because the magnitude of the radiation damping effect is proportional to the particle volume, whereas, the electron-surface scattering contribution is inversely proportional to the dimensions. For the nanorods, radiation damping is the dominant effect for thick rods (widths greater than 20 nm), while electron-surface scattering is dominant for thin rods (widths less than 10 nm). Rods with widths in between these limits have narrow resonances-approaching the value determined by the bulk contribution. For nanoboxes and nanocages, both radiation damping and electron-surface scattering are significant at all sizes. This is because these materials have thin walls, but large edge lengths and, therefore, relatively large volumes. The effect of the environment on the localized surface plasmon resonance has also been studied for nanoboxes. Increasing the dielectric constant of the surroundings causes a red-shift and an increase in the linewidth of the plasmon band. The increase in linewidth is attributed to enhanced radiation damping.

  9. Plasmon enhanced terahertz emission from single layer graphene.

    PubMed

    Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M

    2014-09-23

    We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

  10. Gold nanoparticle-based plasmonic random fiber laser

    NASA Astrophysics Data System (ADS)

    Hu, Zhijia; Liang, Yunyun; Xie, Kang; Gao, Pengfei; Zhang, Douguo; Jiang, Haiming; Shi, Fan; Yin, Leicheng; Gao, Jiangang; Ming, Hai; Zhang, Qijin

    2015-03-01

    We have reported the realization of a plasmonic random fiber laser based on the localized surface plasmonic resonance of gold nanoparticles (NPs) in the liquid core optical fiber. The liquid core material contains a dispersive solution of gold NPs and laser dye pyrromethene 597 in toluene. It was experimentally proved that the fluorescence quenching of the dye is restrained in the optical fiber, which is considered one of the main sources of loss in the traditional laser system. Meanwhile, the random lasing can be more easily obtained in the random laser system with more overlap between the plasmonic resonance of the gold NPs and the photoluminescence spectrum of the dye molecules.

  11. Competition Between Extinction and Enhancement in Surface Enhanced Raman Spectroscopy.

    PubMed

    van Dijk, Thomas; Sivapalan, Sean T; Devetter, Brent M; Yang, Timothy K; Schulmerich, Matthew V; Murphy, Catherine J; Bhargava, Rohit; Carney, P Scott

    2013-04-04

    Conjugated metallic nanoparticles are a promising means to achieve ultrasensitive and multiplexed sensing in intact three-dimensional samples, especially for biological applications, via surface enhanced Raman scattering (SERS). We show that enhancement and extinction are linked and compete in a collection of metallic nanoparticles. Counterintuitively, the Raman signal vanishes when nanoparticles are excited at their plasmon resonance, while increasing nanoparticle concentrations at off-resonance excitation sometimes leads to decreased signal. We develop an effective medium theory that explains both phenomena. Optimal choices of excitation wavelength, individual particle enhancement factor and concentrations are indicated. The same processes which give rise to enhancement also lead to increased extinction of both the illumination and the Raman scattered light. Nanoparticles attenuate the incident field (blue) and at the same time provide local enhancement for SERS. Likewise the radiation of the Raman-scattered field (green) is enhanced by the near-by sphere but extinguished by the rest of the spheres in the suspension on propagation.

  12. Self-Assembly of Semiconducting-Plasmonic Gold Nanoparticles with Enhanced Optical Property for Photoacoustic Imaging and Photothermal Therapy

    PubMed Central

    Yang, Zhen; Song, Jibin; Dai, Yunlu; Chen, Jingyi; Wang, Feng; Lin, Lisen; Liu, Yijing; Zhang, Fuwu; Yu, Guocan; Zhou, Zijian; Fan, Wenpei; Huang, Wei; Fan, Quli; Chen, Xiaoyuan

    2017-01-01

    Although various noble metal and semiconducting molecules have been developed as photoacoustic (PA) agents, the use of semiconducting polymer-metal nanoparticle hybrid materials to enhance PA signal has not been explored. A novel semiconducting-plasmonic nanovesicle was fabricated by self-assembly of semiconducting poly(perylene diimide) (PPDI) and poly(ethylene glycol (PEG) tethered gold nanoparticles (Au@PPDI/PEG). A highly localized and strongly enhanced electromagnetic (EM) field is distributed between adjacent gold nanoparticles in the vesicular shell, where the absorbing collapsed PPDI is present. Significantly, the EM field in turn enhances the light absorption efficiency of PPDI, leading to a much greater photothermal effect and a stronger photoacoustic signal compared to PDI nanoparticle or gold nanovesicle alone. The optical property of the hybrid vesicle can be further tailored by controlling the ratio of PPDI and gold nanoparticle as well as the adjustable interparticle distance of gold nanoparticles localized in the vesicular shell. In vivo imaging and therapeutic evaluation demonstrated that the hybrid vesicle is an excellent probe for cancer theranostics. PMID:28740543

  13. Self-Assembly of Semiconducting-Plasmonic Gold Nanoparticles with Enhanced Optical Property for Photoacoustic Imaging and Photothermal Therapy.

    PubMed

    Yang, Zhen; Song, Jibin; Dai, Yunlu; Chen, Jingyi; Wang, Feng; Lin, Lisen; Liu, Yijing; Zhang, Fuwu; Yu, Guocan; Zhou, Zijian; Fan, Wenpei; Huang, Wei; Fan, Quli; Chen, Xiaoyuan

    2017-01-01

    Although various noble metal and semiconducting molecules have been developed as photoacoustic (PA) agents, the use of semiconducting polymer-metal nanoparticle hybrid materials to enhance PA signal has not been explored. A novel semiconducting-plasmonic nanovesicle was fabricated by self-assembly of semiconducting poly(perylene diimide) (PPDI) and poly(ethylene glycol (PEG) tethered gold nanoparticles (Au@PPDI/PEG). A highly localized and strongly enhanced electromagnetic (EM) field is distributed between adjacent gold nanoparticles in the vesicular shell, where the absorbing collapsed PPDI is present. Significantly, the EM field in turn enhances the light absorption efficiency of PPDI, leading to a much greater photothermal effect and a stronger photoacoustic signal compared to PDI nanoparticle or gold nanovesicle alone. The optical property of the hybrid vesicle can be further tailored by controlling the ratio of PPDI and gold nanoparticle as well as the adjustable interparticle distance of gold nanoparticles localized in the vesicular shell. In vivo imaging and therapeutic evaluation demonstrated that the hybrid vesicle is an excellent probe for cancer theranostics.

  14. Nanoparticle Enhancement Cascade for Sensitive Multiplex Measurements of Biomarkers in Complex Fluids with Surface Plasmon Resonance Imaging.

    PubMed

    Hendriks, Jan; Stojanovic, Ivan; Schasfoort, Richard B M; Saris, Daniël B F; Karperien, Marcel

    2018-06-05

    There is a large unmet need for reliable biomarker measurement systems for clinical application. Such systems should meet challenging requirements for large scale use, including a large dynamic detection range, multiplexing capacity, and both high specificity and sensitivity. More importantly, these requirements need to apply to complex biological samples, which require extensive quality control. In this paper, we present the development of an enhancement detection cascade for surface plasmon resonance imaging (SPRi). The cascade applies an antibody sandwich assay, followed by neutravidin and a gold nanoparticle enhancement for quantitative biomarker measurements in small volumes of complex fluids. We present a feasibility study both in simple buffers and in spiked equine synovial fluid with four cytokines, IL-1β, IL-6, IFN-γ, and TNF-α. Our enhancement cascade leads to an antibody dependent improvement in sensitivity up to 40 000 times, resulting in a limit of detection as low as 50 fg/mL and a dynamic detection range of more than 7 logs. Additionally, measurements at these low concentrations are highly reliable with intra- and interassay CVs between 2% and 20%. We subsequently showed this assay is suitable for multiplex measurements with good specificity and limited cross-reactivity. Moreover, we demonstrated robust detection of IL-6 and IL-1β in spiked undiluted equine synovial fluid with small variation compared to buffer controls. In addition, the availability of real time measurements provides extensive quality control opportunities, essential for clinical applications. Therefore, we consider this method is suitable for broad application in SPRi for multiplex biomarker detection in both research and clinical settings.

  15. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.

    PubMed

    Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin

    2018-08-30

    Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.

    PubMed

    Harrison, R K; Ben-Yakar, Adela

    2010-10-11

    We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.

  17. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches

    PubMed Central

    Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura

    2015-01-01

    Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727

  18. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer

    NASA Astrophysics Data System (ADS)

    He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing

    2018-05-01

    In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.

  19. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer.

    PubMed

    He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing

    2018-05-11

    In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO 2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO 2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO 2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.

  20. Exciton enhancement and exciplex quenching by plasmonic effect of Aluminum nanoparticle arrays in a blue organic light emitting diode.

    PubMed

    Khadir, Samira; Diallo, AmadouThierno; Chakaroun, Mahmoud; Boudrioua, Azzedine

    2017-05-01

    We report the investigation of plasmonic effect of array of aluminum nanoparticles (Al-NPs) on blue micro-OLED subject to exciplex emission. N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) andcarbazol derivative 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) have been used as the emitting layer (EML) and hole transport layer (HTL), respectively. For the reference µ-OLED without Al-NPs, we observed two emission peaks attributed to CBP emission and exciplex emission formed at the NPB/CBP (EML/HTL) interface. By the incorporation of the Al-NPs array, obtained by e-beam lithography technique on the ITO anode, the exciplex emission has been widely depressed. Moreover, thanks to localized surface plasmon resonance (LSPR), an enhancement of the CBP emission has been achieved indicating an efficient energy coupling between the LSPR of the Al-NPs and the CBP excitons. Thus, an enhancement of about 20% of the efficiency of the µ-OLED with Al-NPs in comparison to the reference device has been obtained.

  1. Enhancing nanoparticle electrodynamics with gold nanoplate mirrors.

    PubMed

    Yan, Zijie; Bao, Ying; Manna, Uttam; Shah, Raman A; Scherer, Norbert F

    2014-05-14

    Mirrors and optical cavities can modify and enhance matter-radiation interactions. Here we report that chemically synthesized Au nanoplates can serve as micrometer-size mirrors that enhance electrodynamic interactions. Because of their plasmonic properties, the Au nanoplates enhance the brightness of scattered light from Ag nanoparticles near the nanoplate surface in dark-field microscopy. More importantly, enhanced optical trapping and optical binding of Ag nanoparticles are demonstrated in interferometric optical traps created from a single laser beam and its reflection from individual Au nanoplates. The enhancement of the interparticle force constant is ≈20-fold more than expected from the increased intensity due to standing wave interference. We show that the additional stability for optical binding arises from the restricted axial thermal motion of the nanoparticles that couples to and reduces the fluctuations in the lateral plane. This new mechanism greatly advances the photonic synthesis of ultrastable nanoparticle arrays and investigation of their properties.

  2. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.

    PubMed

    Tian, Yuanyuan; Shuai, Zhenhua; Shen, Jingjing; Zhang, Lei; Chen, Shufen; Song, Chunyuan; Zhao, Baomin; Fan, Quli; Wang, Lianhui

    2018-06-01

    A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray.

    PubMed

    Belushkin, Alexander; Yesilkoy, Filiz; Altug, Hatice

    2018-05-22

    Nanoplasmonic devices have become a paradigm for biomolecular detection enabled by enhanced light-matter interactions in the fields from biological and pharmaceutical research to medical diagnostics and global health. In this work, we present a bright-field imaging plasmonic biosensor that allows visualization of single subwavelength gold nanoparticles (NPs) on large-area gold nanohole arrays (Au-NHAs). The sensor generates image heatmaps that reveal the locations of single NPs as high-contrast spikes, enabling the detection of individual NP-labeled molecules. We implemented the proposed method in a sandwich immunoassay for the detection of biotinylated bovine serum albumin (bBSA) and human C-reactive protein (CRP), a clinical biomarker of acute inflammatory diseases. Our method can detect 10 pg/mL of bBSA and 27 pg/mL CRP in 2 h, which is at least 4 orders of magnitude lower than the clinically relevant concentrations. Our sensitive and rapid detection approach paired with the robust large-area plasmonic sensor chips, which are fabricated using scalable and low-cost manufacturing, provides a powerful platform for multiplexed biomarker detection in various settings.

  4. Measuring near-field nanoparticle concentration profiles by correlating surface plasmon resonance reflectance with effective refractive index of nanofluids.

    PubMed

    Kim, Iltai; Kihm, Kenneth D

    2010-02-01

    Time-dependent and near-field nanoparticle concentrations are determined by correlating the surface plasmon resonance (SPR) reflectance intensities with the effective refractive index (ERI) of the nanofluid under evaporation. A critical angle measurement for total internal reflection identifies the ERI of the nanofluid at different nanoparticle concentrations. The corresponding SPR reflectance intensities correlate the nanofluidic ERI with the nanoparticle concentrations. Example applications for evaporating nanofluidic droplets containing 47 nmAl(2)O(3) particles demonstrate the feasibility of this new imaging tool for measuring time-resolved and full-field nanoparticle concentration profiles.

  5. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    NASA Astrophysics Data System (ADS)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  6. Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing

    PubMed Central

    Zhao, Fusheng; Zeng, Jianbo; Shih, Wei-Chuan

    2017-01-01

    Plasmonic metal nanostructures have shown great potential in sensing applications. Among various materials and structures, monolithic nanoporous gold disks (NPGD) have several unique features such as three-dimensional (3D) porous network, large surface area, tunable plasmonic resonance, high-density hot-spots, and excellent architectural integrity and environmental stability. They exhibit a great potential in surface-enhanced spectroscopy, photothermal conversion, and plasmonic sensing. In this work, interactions between smaller colloidal gold nanoparticles (AuNP) and individual NPGDs are studied. Specifically, colloidal gold nanoparticles with different sizes are loaded onto NPGD substrates to form NPG hybrid nanocomposites with tunable plasmonic resonance peaks in the near-infrared spectral range. Newly formed plasmonic hot-spots due to the coupling between individual nanoparticles and NPG disk have been identified in the nanocomposites, which have been experimentally studied using extinction and surface-enhanced Raman scattering. Numerical modeling and simulations have been employed to further unravel various coupling scenarios between AuNP and NPGDs. PMID:28657586

  7. Laser ablative decoration of micro-diamonds by gold nanoparticles for fabrication of hybrid plasmonic-dielectric antennae

    NASA Astrophysics Data System (ADS)

    Ivanova, A. K.; Ionin, A. A.; Khmelnitskii, R. A.; Kudryashov, S. I.; Levchenko, A. O.; Mel'nik, N. N.; Rudenko, A. A.; Saraeva, I. N.; Umanskaya, S. P.; Zayarny, D. A.; Nguyen, L. V.; Nguyen, T. T. H.; Pham, M. H.; Pham, D. V.; Do, T. H.

    2017-06-01

    Hybrid plasmonic-dielectric antennae are fabricated by laser ablation of gold in water sols of micro-diamonds. Electron microscopy and energy-dispersive x-ray spectroscopy of their deposits on a silicon wafer surface indicate close proximity of gold nanoparticles and micro-diamonds, which is supported by photoluminescence studies demonstrating strong (eight-fold) damping of micro-diamond luminescence owing to the attachment of the gold nanoparticles. UV-near-IR spectroscopy of their sols reveals a considerable plasmonic effect, related to red spectral shifts of surface plasmon resonance for the gold nanoparticles in the laser-ablation-fabricated antennae.

  8. Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro

    2018-04-01

    Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.

  9. Plasmonic properties of gold nanoparticles covered by silicon suboxide thin film

    NASA Astrophysics Data System (ADS)

    Baranov, Evgeniy; Zamchiy, Alexandr; Safonov, Aleksey; Starinskiy, Sergey; Khmel, Sergey

    2017-10-01

    The optical properties of nanocomposite material consisting of gold nanoparticles without/with silicon suboxide thin film were obtained. The gold film was deposited by thermal vacuum evaporation and then it was annealed in a vacuum chamber to form gold nanoparticles. The silicon suboxide thin films were deposited by the gas-jet electron beam plasma chemical vapor deposition method. The intensity of the localized surface plasmon resonance increased and the plasmon maximum peak shifted from 520 nm to 537 nm.

  10. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    NASA Astrophysics Data System (ADS)

    Kim, Shin Ae; Byun, Kyung Min; Kim, Kyujung; Jang, Sung Min; Ma, Kyungjae; Oh, Youngjin; Kim, Donghyun; Kim, Sung Guk; Shuler, Michael L.; Kim, Sung June

    2010-09-01

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  11. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shioi, Masahiko, E-mail: shioi.masahiko@jp.panasonic.com; Department of Electric and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501; Jans, Hilde

    With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in watermore » experimentally.« less

  12. Geometric interpretations for resonances of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Oulton, Rupert F.; Kivshar, Yuri S.

    2015-07-01

    The field of plasmonics can be roughly categorized into two branches: surface plasmon polaritons (SPPs) propagating in waveguides and localized surface plasmons (LSPs) supported by scattering particles. Investigations along these two directions usually employ different approaches, resulting in more or less a dogma that the two branches progress almost independently of each other, with few interactions. Here in this work we interpret LSPs from a Bohr model based geometric perspective relying on SPPs, thus establishing a connection between these two sub-fields. Besides the clear explanations of conventional scattering features of plasmonic nanoparticles, based on this geometric model we further demonstrate other anomalous scattering features (higher order modes supported at lower frequencies, and blueshift of the resonance with increasing particle sizes) and multiple electric resonances of the same order supported at different frequencies, which have been revealed to originate from backward SPP modes and multiple dispersion bands supported in the corresponding plasmonic waveguides, respectively. Inspired by this geometric model, it is also shown that, through solely geometric tuning, the absorption of each LSP resonance can be maximized to reach the single channel absorption limit, provided that the scattering and absorption rates are tuned to be equal.

  13. Are the triple surface plasmon resonances in Zn nanoparticles true?

    PubMed

    Amekura, H; Shinotsuka, H; Yoshikawa, H

    2017-12-08

    It has been experimentally and numerically confirmed that zinc (Zn) nanoparticles (NPs) dispersed in silica exhibit two optical extinction peaks around ∼250 nm (1st peak) and ∼1050 nm (2nd peak), both of which were ascribed to surface plasmon resonances (SPRs) in the broad sense, i.e., the dual SPRs. Recently, Kuiri and Majhi (KM) observed the 3rd peak around ∼900 nm by calculations, and proposed the triple SPRs for Zn NPs without any experimental confirmation. This paper claims that the 3rd peak has never been observed in any experiments nor in any calculations except given by KM. They justified the triple resonances from an approximated SPR criterion, ε 1 Zn (ω) + 2ε 1 SiO 2 (ω) = 0, which is not valid for non-idealized metals like Zn, because the imaginary part of the dielectric function ε 2 Zn (ω) is not negligible. Instead, a rigorous SPR criterion predicts the dual resonances only. From comparisons with ab initio band calculations, the 1st and 2nd extinction peak are ascribed to resonantly enhanced inter-band transitions (so-called electronic resonance) and intra-band transitions (SPR in the narrow sense), respectively. Since either of the peaks arises from the resonant enhancement due to the dielectric function, both the peaks are regarded as SPRs in the broad sense, i.e. the dual SPRs.

  14. Insight on agglomerates of gold nanoparticles in glass based on surface plasmon resonance spectrum: study by multi-spheres T-matrix method

    NASA Astrophysics Data System (ADS)

    Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.

    2018-01-01

    The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various

  15. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

    NASA Astrophysics Data System (ADS)

    Naldoni, Alberto; Riboni, Francesca; Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.; Kildishev, Alexander V.

    2016-06-01

    Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.

  16. Alpha-fetoprotein detection by using a localized surface plasmon coupled fluorescence fiber-optic biosensor

    NASA Astrophysics Data System (ADS)

    Chang, Ying-Feng; Chen, Ran-Chou; Li, Ying-Chang; Yu, Chih-Jen; Hsieh, Bao-Yu; Chou, Chien

    2007-11-01

    Alpha-fetoprotein (AFP) detection by using a localized surface plasmon coupled fluorescence (LSPCF) fiber-optic biosensor is setup and experimentally demonstrated. It is based on gold nanoparticle (GNP) and coupled with localized surface plasmon wave on the surface of GNP. In this experiment, the fluorophores are labeled on anti-AFP which are bound to protein A conjugated GNP. Thus, LSPCF is excited with high efficiency in the near field of localized surface plasmon wave. Therefore, not only the sensitivity of LSPCF biosensor is enhanced but also the specific selectivity of AFP is improved. Experimentally, the ability of real time measurement in the range of AFP concentration from 0.1ng/ml to 100ng/ml was detected. To compare with conventional methods such as enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA), the LSPCF fiber-optic biosensor performs higher or comparable detection sensitivity, respectively.

  17. Probing the Sulfur-Modified Capping Layer of Gold Nanoparticles Using Surface Enhanced Raman Spectroscopy (SERS) Effects.

    PubMed

    Prado, Adilson R; Souza, Danilo Oliveira de; Oliveira, Jairo P; Pereira, Rayssa H A; Guimarães, Marco C C; Nogueira, Breno V; Dixini, Pedro V; Ribeiro, Moisés R N; Pontes, Maria J

    2017-12-01

    Gold nanoparticles (AuNP) exhibit particular plasmonic properties when stimulated by visible light, which makes them a promising tool to many applications in sensor technology and biomedical applications, especially when associated to sulfur-based compounds. Sulfur species form a great variety of self-assembled structures that cap AuNP and this interaction rules the optical and plasmonic properties of the system. Here, we report the behavior of citrate-stabilized gold nanospheres in two distinct sulfur colloidal solutions, namely, thiocyanate and sulfide ionic solutions. Citrate-capped gold nanospheres were characterized using ultraviolet-visible (UV-Vis) absorption, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM). In the presence of sulfur species, we have observed the formation of NP clusters and chain-like structures, giving rise to surface-enhanced effects. Surface-enhanced Raman spectroscopy (SERS) pointed to a modification in citrate vibrational modes, which suggests substitution of citrate by either thiocyanate or sulfide ions with distinct dynamics, as showed by in situ fluorescence. Moreover, we report the emergence of surface-enhanced infrared absorption (SEIRA) effect, which corroborates SERS conclusions. Further, SEIRA shows a great potential as a tool for specification of sulfur compounds in colloidal solutions, which is particularly useful when dealing with sensor technology.

  18. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells

    PubMed Central

    Ahmadivand, Arash; Gerislioglu, Burak; Tomitaka, Asahi; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih

    2018-01-01

    Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δω~0.35 cm−1) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic

  19. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells.

    PubMed

    Ahmadivand, Arash; Gerislioglu, Burak; Tomitaka, Asahi; Manickam, Pandiaraj; Kaushik, Ajeet; Bhansali, Shekhar; Nair, Madhavan; Pala, Nezih

    2018-02-01

    Engineered terahertz (THz) plasmonic metamaterials have emerged as promising platforms for quick infection diagnosis, cost-effective and real-time pharmacology applications owing to their non-destructive and harmless interaction with biological tissues in both in vivo and in vitro assays. As a recent member of THz metamaterials family, toroidal metamaterials have been demonstrated to be supporting high-quality sharp resonance modes. Here we introduce a THz metasensor based on a plasmonic surface consisting of metamolecules that support ultra-narrow toroidal resonances excited by the incident radiation and demonstrate detection of an ultralow concertation targeted biomarker. The toroidal plasmonic metasurface was designed and optimized through extensive numerical studies and fabricated by standard microfabrication techniques. The surface then functionalized by immobilizing the antibody for virus-envelope proteins (ZIKV-EPs) for selective sensing. We sensed and quantified the ZIKV-EP in the assays by measuring the spectral shifts of the toroidal resonances while varying the concentration. In an improved protocol, we introduced gold nanoparticles (GNPs) decorated with the same antibodies onto the metamolecules and monitored the resonance shifts for the same concentrations. Our studies verified that the presence of GNPs enhances capturing of biomarker molecules in the surrounding medium of the metamaterial. By measuring the shift of the toroidal dipolar momentum (up to Δ ω ~0.35 cm -1 ) for different concentrations of the biomarker proteins, we analyzed the sensitivity, repeatability, and limit of detection (LoD) of the proposed toroidal THz metasensor. The results show that up to 100-fold sensitivity enhancement can be obtained by utilizing plasmonic nanoparticles-integrated toroidal metamolecules in comparison to analogous devices. This approach allows for detection of low molecular-weight biomolecules (≈13 kDa) in diluted solutions using toroidal THz plasmonic

  20. Performance Improvement of Polymer Solar Cells by Surface-Energy-Induced Dual Plasmon Resonance.

    PubMed

    Yao, Mengnan; Shen, Ping; Liu, Yan; Chen, Boyuan; Guo, Wenbin; Ruan, Shengping; Shen, Liang

    2016-03-09

    The surface plasmon resonance (SPR) effect of metal nanoparticles (MNPs) is effectively applied on polymer solar cells (PSCs) to improve power conversion efficiency (PCE). However, universality of the reported results mainly focused on utilizing single type of MNPs to enhance light absorption only in specific narrow wavelength range. Herein, a surface-energy-induced dual MNP plasmon resonance by thermally evaporating method was presented to achieve the absorption enhancement in wider range. The differences of surface energy between silver (Ag), gold (Au), and tungsten trioxide (WO3) compared by contact angle images enable Ag and Au prefer to respectively aggregate into isolated islands rather than films at the initial stage of the evaporation process, which was clearly demonstrated in the atomic force microscopy (AFM) measurement. The sum of plasmon-enhanced wavelength range induced by both Ag NPs (350-450 nm) and Au NPs (450-600 nm) almost cover the whole absorption spectra of active layers, which compatibly contribute a significant efficiency improvement from 4.57 ± 0.16 to 6.55 ± 0.12% compared to the one without MNPs. Besides, steady state photoluminescence (PL) measurements provide strong evidence that the SPR induced by the Ag-Au NPs increase the intensity of light absorption. Finally, ultraviolet photoelectron spectroscopy (UPS) reveals that doping Au and Ag causes upper shift of both the work function and valence band of WO3, which is directly related to hole collection ability. We believe the surface-energy-induced dual plasmon resonance enhancement by simple thermally evaporating technique might pave the way toward higher-efficiency PSCs.

  1. Probing the Ultimate Limits of Plasmonic Enhancement

    PubMed Central

    Ciracì, C.; Hill, R. T.; Mock, J. J.; Urzhumov, Y.; Fernández-Domínguez, A. I.; Maier, S. A.; Pendry, J. B.; Chilkoti, A.; Smith, D. R.

    2013-01-01

    Metals support surface plasmons at optical wavelengths and have the ability to localize light to sub-wavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. Here we show that the dominant limiting factor is not the resistive loss of the metal, but the intrinsic nonlocality of its dielectric response. A semi-classical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. We demonstrate the accuracy of this model by studying the optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems. PMID:22936772

  2. Microfluidic transmission surface plasmon resonance enhancement for biosensor applications

    NASA Astrophysics Data System (ADS)

    Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2017-01-01

    The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.

  3. Aluminum nanostructures for ultraviolet plasmonics

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Khlopin, Dmitry; Zhang, Feifei; Schuermans, Silvère; Proust, Julien; Maurer, Thomas; Gérard, Davy; Plain, Jérôme

    2017-08-01

    An electromagnetic field is able to produce a collective oscillation of free electrons at a metal surface. This allows light to be concentrated in volumes smaller than its wavelength. The resulting waves, called surface plasmons can be applied in various technological applications such as ultra-sensitive sensing, Surface Enhanced Raman Spectroscopy, or metal-enhanced fluorescence, to name a few. For several decades plasmonics has been almost exclusively studied in the visible region by using nanoparticles made of gold or silver as these noble metals support plasmonic resonances in the visible and near-infrared range. Nevertheless, emerging applications will require the extension of nano-plasmonics toward higher energies, in the ultraviolet range. Aluminum is one of the most appealing metal for pushing plasmonics up to ultraviolet energies. The subsequent applications in the field of nano-optics are various. This metal is therefore a highly promising material for commercial applications in the field of ultraviolet nano-optics. As a consequence, aluminum (or ultraviolet, UV) plasmonics has emerged quite recently. Aluminium plasmonics has been demonstrated efficient for numerous potential applications including non-linear optics, enhanced fluorescence, UV-Surface Enhanced Raman Spectroscopy, optoelectronics, plasmonic assisted solid-state lasing, photocatalysis, structural colors and data storage. In this article, different preparation methods developed in the laboratory to obtain aluminum nanostructures with different geometries are presented. Their optical and morphological characterizations of the nanostructures are given and some proof of principle applications such as fluorescence enhancement are discussed.

  4. Three-dimensional scanning near field optical microscopy (3D-SNOM) imaging of random arrays of copper nanoparticles: implications for plasmonic solar cell enhancement.

    PubMed

    Ezugwu, Sabastine; Ye, Hanyang; Fanchini, Giovanni

    2015-01-07

    In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface. We demonstrated our technique using random arrays of copper nanoparticles (Cu-NPs) at different particle diameter and concentration. Bright regions in the 3D-SNOM images, corresponding to constructive interference of forward-scattered plasmonic waves, were obtained at heights Δz ≥ 220 nm from the surface for random arrays of Cu-NPs of ∼ 60-100 nm in diameter. These heights are too large to use Cu-NPs in contact of the active layer for light harvesting in thin organic solar cells, which are typically no thicker than 200 nm. Using a 200 nm transparent spacer between the system of Cu-NPs and the solar cell active layer, we demonstrate that forward-scattered light can be conveyed in 200 nm thin film solar cells. This architecture increases the solar cell photoconversion efficiency by a factor of 3. Our 3D-SNOM technique is general enough to be suitable for a large number of other applications in nanoplasmonics.

  5. Observation of surface plasmon polaritons in 2D electron gas of surface electron accumulation in InN nanostructures.

    PubMed

    Madapu, Kishore K; Sivadasan, A K; Baral, Madhusmita; Dhara, Sandip

    2018-07-06

    Recently, heavily doped semiconductors have been emerging as an alternative to low-loss plasmonic materials. InN, belonging to the group III nitrides, possesses the unique property of surface electron accumulation (SEA), which provides a 2D electron gas (2DEG) system. In this report, we demonstrated the surface plasmon properties of InN nanoparticles originating from SEA using the real-space mapping of the surface plasmon fields for the first time. The SEA is confirmed by Raman studies, which are further corroborated by photoluminescence and photoemission spectroscopic studies. The frequency of 2DEG corresponding to SEA is found to be in the THz region. The periodic fringes are observed in the near-field scanning optical microscopic images of InN nanostructures. The observed fringes are attributed to the interference of propagated and back-reflected surface plasmon polaritons (SPPs). The observation of SPPs is solely attributed to the 2DEG corresponding to the SEA of InN. In addition, a resonance kind of behavior with the enhancement of the near-field intensity is observed in the near-field images of InN nanostructures. Observation of SPPs indicates that InN with SEA can be a promising THz plasmonic material for light confinement.

  6. Observation of surface plasmon polaritons in 2D electron gas of surface electron accumulation in InN nanostructures

    NASA Astrophysics Data System (ADS)

    Madapu, Kishore K.; Sivadasan, A. K.; Baral, Madhusmita; Dhara, Sandip

    2018-07-01

    Recently, heavily doped semiconductors have been emerging as an alternative to low-loss plasmonic materials. InN, belonging to the group III nitrides, possesses the unique property of surface electron accumulation (SEA), which provides a 2D electron gas (2DEG) system. In this report, we demonstrated the surface plasmon properties of InN nanoparticles originating from SEA using the real-space mapping of the surface plasmon fields for the first time. The SEA is confirmed by Raman studies, which are further corroborated by photoluminescence and photoemission spectroscopic studies. The frequency of 2DEG corresponding to SEA is found to be in the THz region. The periodic fringes are observed in the near-field scanning optical microscopic images of InN nanostructures. The observed fringes are attributed to the interference of propagated and back-reflected surface plasmon polaritons (SPPs). The observation of SPPs is solely attributed to the 2DEG corresponding to the SEA of InN. In addition, a resonance kind of behavior with the enhancement of the near-field intensity is observed in the near-field images of InN nanostructures. Observation of SPPs indicates that InN with SEA can be a promising THz plasmonic material for light confinement.

  7. Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, N. R.; Neri, F.; Trusso, S.; Lucotti, A.; Ossi, P. M.

    2012-09-01

    Using UV pulses from KrF excimer laser, Au targets were ablated in varying pressures of argon to deposit Au nanoparticle (NP) arrays. The morphology of these films from island structures to isolated NPs, observed by SEM and TEM, depends on the gas pressure (10-100 Pa) and pulse number keeping other deposition parameters constant. By fast imaging of the plasma with an iCCD camera at different time delays with respect to the arrival of the laser pulse, we study the plasma propagation regime and we measured its initial velocity. These data and the measured average ablated mass per pulse were introduced to the mixed propagation model to calculate the average asymptotic size of clusters grown in the plume which were compared with NP sizes from TEM measurements. UV-visible Spectroscopy revealed changes of surface plasmon resonance with respect to NP size and spatial density and distribution on the surface. Suitable wavelength to excite the localized surface plasmon was chosen to detect ultra-low concentrations of Rhodamine and Apomorphine as an application to biomedical sensors, using Surface Enhanced Raman Spectroscopy (SERS). A comparison of SERS spectra taken under identical conditions from commercial substrates and from PLD substrates show that the latter have superior performances.

  8. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time

  9. Tuning sputtered gold thickness to enhance absorption and emission in core-shell type erbium doped upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Manurung, R. V.; Wu, C. T.; Chattopadhyay, S.

    2018-03-01

    Upconversion nanoparticles (UCNPs) converts near-infrared excitation to visible emission with advantages e.g. photostable, non-blinking, and background-free probes for bioimaging and biosensor. However, low quantum yield and low efficiency (∼1%) as drawback need to be enhanced. A plasmonic gold nano-structured surface was designed and fabricated to couple with the 980 nm radiation and produce plasmonic enhancement of the upconversion luminescence. The synthesis of the UCNPs was done by thermal decomposition and SiO2 coating prepared by the reverse microemulsion process. Here, we report a novel tunable plasmon-enhanced fluorescence by modulating the thickness and surface roughness of gold island film on Si. The localized surface plasmon resonance (LSPR) at 980 nm was obtained, matched with the native excitation of UCNPs resulting in maximum enhancement of 10-fold of green emission band at 540 nm for the Er-doped UCNPs.

  10. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-01

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl4- and Ag+ ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate).

  11. Plasmon Mapping in Au@Ag Nanocube Assemblies

    PubMed Central

    2014-01-01

    Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag core–shell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles. PMID:25067991

  12. Control of surface plasmon excitation via the scattering of light by a nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zharov, A. A.; Zharov, A. A.; Zharova, N. A., E-mail: zhani@appl.sci-nnov.ru

    2016-07-15

    We study an excitation of surface plasmons (SPs) due to the scattering of light by a dipole nanoparticle located near a flat air–metal interface. It is well known that such a scattering can reveal asymmetric behavior of excited SPs with respect to the plane of incidence of light. This asymmetric SP excitation, which takes place at the incidence of elliptically polarized light, is often associated with the so-called photonic spin Hall effect caused by the interplay between rotating polarization of a nanoparticle and the intrinsic field angular momentum of the SP. We show that this photonic spin Hall effect canmore » be applied for the SP excitation control, which allows managing the SP directivity pattern and amplitude. The possibilities of SP control can also be extended using nanoparticles with anisotropic polarizability. We believe that manipulations with SPs at a nanometer scale may find some applications in modern nanoplasmonics.« less

  13. Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles.

    PubMed

    Jin, Yuanhao; Li, Qunqing; Li, Guanhong; Chen, Mo; Liu, Junku; Zou, Yuan; Jiang, Kaili; Fan, Shoushan

    2014-01-06

    The output power of the light from GaN-based light-emitting diodes (LEDs) was enhanced by fabricating gold (Au) nanoparticles on the surface of p-GaN. Quasi-aligned Au nanoparticle arrays were prepared by depositing Au thin film on an aligned suspended carbon nanotube thin film surface and then putting the Au-CNT system on the surface of p-GaN and thermally annealing the sample. The size and position of the Au nanoparticles were confined by the carbon nanotube framework, and no other additional residual Au was distributed on the surface of the p-GaN substrate. The output power of the light from the LEDs with Au nanoparticles was enhanced by 55.3% for an injected current of 100 mA with the electrical property unchanged compared with the conventional planar LEDs. The enhancement may originate from the surface plasmon effect and scattering effect of the Au nanoparticles.

  14. Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles

    PubMed Central

    2014-01-01

    The output power of the light from GaN-based light-emitting diodes (LEDs) was enhanced by fabricating gold (Au) nanoparticles on the surface of p-GaN. Quasi-aligned Au nanoparticle arrays were prepared by depositing Au thin film on an aligned suspended carbon nanotube thin film surface and then putting the Au-CNT system on the surface of p-GaN and thermally annealing the sample. The size and position of the Au nanoparticles were confined by the carbon nanotube framework, and no other additional residual Au was distributed on the surface of the p-GaN substrate. The output power of the light from the LEDs with Au nanoparticles was enhanced by 55.3% for an injected current of 100 mA with the electrical property unchanged compared with the conventional planar LEDs. The enhancement may originate from the surface plasmon effect and scattering effect of the Au nanoparticles. PMID:24393473

  15. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.

    PubMed

    Fang, Yimin; Wang, Hui; Yu, Hui; Liu, Xianwei; Wang, Wei; Chen, Hong-Yuan; Tao, N J

    2016-11-15

    systems and nanoscale materials with high throughput. The plasmonic approach has two imaging modes: electrochemical current imaging and interfacial impedance imaging. The former images local electrochemical current associated with electrochemical reactions (faradic current), and the latter maps local interfacial impedance, including nonfaradic contributions (e.g., double layer charging). The plasmonic imaging technique can perform voltammetry (cyclic or square wave) in an analogous manner to the traditional electrochemical methods. It can also be integrated with bright field, dark field, and fluorescence imaging capabilities in one optical setup to provide additional capabilities. To date the plasmonic imaging technique has found various applications, including mapping of heterogeneous surface reactions, analysis of trace substances, detection of catalytic reactions, and measurement of graphene quantum capacitance. The plasmonic and other emerging optical imaging techniques (e.g., dark field and fluorescence microscopy), together with the scanning probe-based electrochemical imaging and single nanoparticle analysis techniques, provide new capabilities for one to study single nanoparticle electrochemistry with unprecedented spatial and temporal resolutions. In this Account, we focus on imaging of electrochemical reactions at single nanoparticles.

  16. Polymer-coated surface enhanced Raman scattering (SERS) gold nanoparticles for multiplexed labeling of chronic lymphocytic leukemia cells

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Parker, Edward P. K.; Walker, Gilbert C.; Wang, Chen

    2012-01-01

    The ease and flexibility of functionalization and inherent light scattering properties of plasmonic nanoparticles make them suitable contrast agents for measurement of cell surface markers. Immunophenotyping of lymphoproliferative disorders is traditionally undertaken using fluorescence detection methods which have a number of limitations. Herein, surface-enhanced Raman scattering (SERS) gold nanoparticles conjugated to monoclonal antibodies are used for the selective targeting of CD molecules on the surface of chronic lymphocytic leukemia (CLL) cells. Raman-active reporters were physisorbed on to the surface of 60 nm spherical Au nanoparticles, the particles were coated with 5kDa polyethylene glycol (PEG) including functionalities for conjugation to monoclonal IgG1 antibodies. A novel method for quantifying the number of antibodies bound to SERS probes on an individual basis as opposed to obtaining averages from solution was demonstrated using metal dots in transmission electron microscopy (TEM). The specificity of the interaction between SERS probes and surface CD molecules of CLL cells was assessed using Raman spectroscopy and dark field microscopy. An in-depth study of SERS probe targeting to B lymphocyte marker CD20 was undertaken, and proof-of-concept targeting using different SERS nanoparticle dyes specific for cell surface CD19, CD45 and CD5 demonstrated using SERS spectroscopy.

  17. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing.

    PubMed

    Kong, Xianming; Li, Erwen; Squire, Kenny; Liu, Ye; Wu, Bo; Cheng, Li-Jing; Wang, Alan X

    2017-11-01

    Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.

    PubMed

    Roiter, Yuri; Minko, Iryna; Nykypanchuk, Dmytro; Tokarev, Ihor; Minko, Sergiy

    2012-01-07

    The mechanism of nanoparticle actuation by stimuli-responsive polymer brushes triggered by changes in the solution pH was discovered and investigated in detail in this study. The finding explains the high spectral sensitivity of the composite ultrathin film composed of a poly(2-vinylpyridine) (P2VP) brush that tunes the spacing between two kinds of nanoparticles-gold nanoislands immobilized on a transparent support and gold colloidal particles adsorbed on the brush. The optical response of the film relies on the phenomenon of localized surface plasmon resonances in the noble metal nanoparticles, giving rise to an extinction band in visible spectra, and a plasmon coupling between the particles and the islands that has a strong effect on the band position and intensity. Since the coupling is controlled by the interparticle spacing, the pH-triggered swelling-shrinking transition in the P2VP brush leads to pronounced changes in the transmission spectra of the hybrid film. It was not established in the previous publications how the actuation of gold nanoparticles within a 10-15 nm interparticle distance could result in the 50-60 nm shift in the absorbance maximum in contrast to the model experiments and theoretical estimations of several nanometer shifts. In this work, the extinction band was deconvoluted into four spectrally separated and overlapping contributions that were attributed to different modes of interactions between the particles and the islands. These modes came into existence due to variations in the thickness of the grafted polymeric layer on the profiled surface of the islands. In situ atomic force microscopy measurements allowed us to explore the behavior of the Au particles as the P2VP brush switched between the swollen and collapsed states. In particular, we identified an interesting, previously unanticipated regime when a particle position in a polymer brush was switched between two distinct states: the particle exposed to the surface of the

  19. Surface plasmon-enhanced fluorescence on Au nanohole array for prostate-specific antigen detection

    PubMed Central

    Zhang, Qingwen; Wu, Lin; Wong, Ten It; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Liedberg, Bo; Wang, Yi

    2017-01-01

    Localized surface plasmon (LSP) has been widely applied for the enhancement of fluorescence emission for biosensing owing to its potential for strong field enhancement. However, due to its small penetration depth, LSP offers limited fluorescence enhancement over a whole sensor chip and, therefore, insufficient sensitivity for the detection of biomolecules, especially large molecules. We demonstrate the simultaneous excitation of LSP and propagating surface plasmon (PSP) on an Au nanohole array under Kretschmann configuration for the detection of prostate-specific antigen with a sandwich immunoassay. The proposed method combines the advantages of high field enhancement by LSP and large surface area probed by PSP field. The simulated results indicated that a maximum enhancement of electric field intensity up to 1,600 times can be achieved under the simultaneous excitation of LSP and PSP modes. The sandwich assay of PSA carried out on gold nanohole array substrate showed a limit of detection of 140 fM supporting coexcitation of LSP and PSP modes. The limit of detection was approximately sevenfold lower than that when only LSP was resonantly excited on the same substrate. The results of this study demonstrate high fluorescence enhancement through the coexcitation of LSP and PSP modes and pave a way for its implementation as a highly sensitive bioassay. PMID:28392689

  20. Self-assembled diatom substrates with plasmonic functionality

    NASA Astrophysics Data System (ADS)

    Kwon, Sun Yong; Park, Sehyun; Nichols, William T.

    2014-04-01

    Marine diatoms have an exquisitely complex exoskeleton that is promising for engineered surfaces such as sensors and catalysts. For such applications, creating uniform arrays of diatom frustules across centimeter scales will be necessary. Here, we present a simple, low-cost floating interface technique to self-assemble the diatom frustules. We show that well-prepared diatoms form floating hexagonal close-packed arrays at the air-water interface that can be transferred directly to a substrate. We functionalize the assembled diatom surfaces with gold and characterize the plasmonic functionality by using surface enhanced Raman scattering (SERS). Thin gold films conform to the complex, hierarchical diatom structure and produce a SERS enhancement factor of 2 × 104. Small gold nanoparticles attached to the diatom's surface produce a higher enhancement of 7 × 104 due to stronger localization of the surface plasmons. Taken together, the large-scale assembly and plasmonic functionalization represent a promising platform to control the energy and the material flows at a complex surface for applications such as sensors and plasmonic enhanced catalysts.

  1. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    Semiconductor photovoltaics (solar-to-electrical) and photocatalysis (solar-to-chemical) requires sunlight to be converted into excited charge carriers with sufficient lifetimes and mobility to drive a current or photoreaction. Thin semiconductor films are necessary to reduce the charge recombination and mobility losses, but thin films also limit light absorption, reducing the solar energy conversion efficiency. Further, in photocatalysis, the band edges of semiconductor must straddle the redox potentials of a photochemical reaction, reducing light absorption to half the solar spectrum in water splitting. Plasmonics transforms metal nanoparticles into antennas with resonances tuneable across the solar spectrum. If energy can be transferred from the plasmon to the semiconductor, light absorption in the semiconductor can be increased in thin films and occur at energies smaller than the band gap. This thesis investigates why, despite this potential, plasmonic solar energy harvesting techniques rarely appear in top performing solar architectures. To accomplish this goal, the possible plasmonic enhancement mechanisms for solar energy conversion were identified, isolated, and optimized by combining systematic sample design with transient absorption spectroscopy, photoelectrochemical and photocatalytic testing, and theoretical development. Specifically, metal semiconductor nanostructures were designed to modulate the plasmon's scattering, hot carrier, and near field interactions as well as remove heating and self-catalysis effects. Transient absorption spectroscopy then revealed how the structure design affected energy and charge carrier transfer between metal and semiconductor. Correlating this data with wavelength-dependent photoconversion efficiencies and theoretical developments regarding metal-semiconductor interactions identified the origin of the plasmonic enhancement. Using this methodology, it has first been proven that three plasmonic enhancement routes are

  2. Enhanced Luminescence Performance of Quantum Wells by Coupling Piezo-Phototronic with Plasmonic Effects.

    PubMed

    Huang, Xin; Jiang, Chunyan; Du, Chunhua; Jing, Liang; Liu, Mengmeng; Hu, Weiguo; Wang, Zhong Lin

    2016-12-27

    With a promising prospect of light-emitting diodes as an attractive alternative to conventional light sources, remaining challenges still cannot be addressed owing to their limited efficiency. Among the continued scientific efforts, significant improvement on the emission efficiency has been achieved via either piezo-phototronic effect-based strain modulation or resonant excitation of plasmons in metallic nanostructures. Here, we present the investigation on the coupling process between piezo-phototronic effect and localized surface plasmonic resonance for enhancing the photoluminescence of InGaN/GaN quantum wells coated with Ag nanoparticles. The underlying physical mechanism of experimental results originates from tuning plasmonic resonance controlled by the shift of emission wavelength via piezo-phototronic effect, and it is further confirmed with the support of theoretical calculations. As a result, our research provides an approach to the integration of plasmonics with piezo-phototronic effect and brings widespread applications to high-efficiency artificial lighting, on-chip integrated plasmonic circuits, subwavelength optical communication, and micro-optoelectronic mechanical systems.

  3. Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains

    NASA Astrophysics Data System (ADS)

    Downing, Charles A.; Mariani, Eros; Weick, Guillaume

    2018-01-01

    We consider a chain of regularly-spaced spherical metallic nanoparticles, where each particle supports three degenerate localized surface plasmons. Due to the dipolar interaction between the nanoparticles, the localized plasmons couple to form extended collective modes. Using an open quantum system approach in which the collective plasmons are interacting with vacuum electromagnetic modes and which, importantly, readily incorporates retardation via the light-matter coupling, we analytically evaluate the resulting radiative frequency shifts of the plasmonic bandstructure. For subwavelength-sized nanoparticles, our analytical treatment provides an excellent quantitative agreement with the results stemming from laborious numerical calculations based on fully-retarded solutions to Maxwell’s equations. Indeed, the explicit expressions for the plasmonic spectrum which we provide showcase how including retardation gives rise to a logarithmic singularity in the bandstructure of transverse-polarized plasmons. We further study the impact of retardation effects on the propagation of plasmonic excitations along the chain. While for the longitudinal modes, retardation has a negligible effect, we find that the retarded dipolar interaction can significantly modify the plasmon propagation in the case of transverse-polarized modes. Moreover, our results elucidate the analogy between radiative effects in nanoplasmonic systems and the cooperative Lamb shift in atomic physics.

  4. The effect of interaction between surface plasmons of gold nanoparticles and optical active centers on luminescence of Eu3+- doped Zn2SnO4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Thien, Nguyen Duy; Vu, Le Van; Long, Nguyen Ngoc

    2018-04-01

    The enhancement and quenching of Eu3+ ion emission were investigated in Zn2SnO4:Eu3+@Au (ZTO:Eu3+@Au) nanocomposites. Under 361 nm excitation we revealed the extinction of the intrinsic defect emission and the enhancement of Eu3+ ion emission when Au content in samples is increased, but under excitation wavelength of 394 nm we observed only the suppression of Eu3+ ion emission. The cause of the observed PL behavior is related to the interaction between surface plasmon induced by gold nanoparticles and luminescence centers in the samples.

  5. Limitations of a localized surface plasmon resonance sensor on Salmonella detection

    USDA-ARS?s Scientific Manuscript database

    We have designed a localized surface plasmon resonance (LSPR) biosensor to perform the whole cell detection of Salmonella using gold nanoparticls fabricated by oblique angle deposition technique. The LSPR sensor showed a plasmon peak shift due to the Salmonella antigen and anti-Salmonella antibody r...

  6. Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O.

    PubMed

    Wu, Qingmen; Si, Mengting; Zhang, Bing; Zhang, Kang; Li, Huanhuan; Mi, Longfei; Jiang, Yang; Rong, Yan; Chen, Junling; Fang, Yingcui

    2018-07-20

    By studying oxidation of AgNPs (Ag nanoparticles) and decomposition of the produced silver oxide, we demonstrate that the localized surface plasmon resonance (LSPR) of AgNPs was damped by Ag 2 O produced during oxygen plasma irradiation (OPI). The AgNPs were fabricated by evaporation of high pure silver under high vacuum. The oxidation was conducted in oxygen plasma generated by radio frequency glow discharging in vacuum, and the decomposition was performed by annealing the silver oxide in nitrogen ambient at temperatures ranging from room temperature to 450 °C. Samples were characterized by color, absorption spectra, surface enhanced Raman scattering, x-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The bandgap of the silver oxide was calculated. We propose that AgNPs are only partially oxidized into silver oxide during OPI, and the LSPR of the AgNPs left without being oxidation is strongly damped by the produced silver oxide. This LSPR damping is responsible for the transparency of the sample after OPI for 2 s.

  7. Strong damping of the localized surface plasmon resonance of Ag nanoparticles by Ag2O

    NASA Astrophysics Data System (ADS)

    Wu, Qingmen; Si, Mengting; Zhang, Bing; Zhang, Kang; Li, Huanhuan; Mi, Longfei; Jiang, Yang; Rong, Yan; Chen, Junling; Fang, Yingcui

    2018-07-01

    By studying oxidation of AgNPs (Ag nanoparticles) and decomposition of the produced silver oxide, we demonstrate that the localized surface plasmon resonance (LSPR) of AgNPs was damped by Ag2O produced during oxygen plasma irradiation (OPI). The AgNPs were fabricated by evaporation of high pure silver under high vacuum. The oxidation was conducted in oxygen plasma generated by radio frequency glow discharging in vacuum, and the decomposition was performed by annealing the silver oxide in nitrogen ambient at temperatures ranging from room temperature to 450 °C. Samples were characterized by color, absorption spectra, surface enhanced Raman scattering, x-ray photoelectron spectroscopy, and field emission scanning electron microscopy. The bandgap of the silver oxide was calculated. We propose that AgNPs are only partially oxidized into silver oxide during OPI, and the LSPR of the AgNPs left without being oxidation is strongly damped by the produced silver oxide. This LSPR damping is responsible for the transparency of the sample after OPI for 2 s.

  8. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    PubMed

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  9. Material influence on hot spot distribution in the nanoparticle heterodimer on film

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Zeng, Xiping; Cao, Wenbin; Wen, Weijia

    2018-04-01

    The metal nanoparticle aggregated on film, as an effective plasma enhancement pathway, has been widely used in various surface plasmon-related fields. In this study, the hot spots on the metal nanoparticle dimer composed of different materials (Agsbnd Au, Agsbnd Pd, and Agsbnd Cu) on metal (Au) film were investigated with finite element method. Based on the results, the hot spot distribution affected by the material can be confirmed by the electric field distribution of the metal nanoparticle dimer on the film. The aggregation effects of Au and Ag nanoparticles in Ausbnd Ag dimer system are not significant. However, for the Pdsbnd Ag dimer system, the hot spot aggregation effect is slightly larger than that of the Pd nanoparticle under the Ag nanoparticle. Besides, the non-uniform hot spots would bring about the light focusing phenomenon that the light intensity under Ag nanoparticle is almost 100 times greater than that under Cu nanoparticle in Agsbnd Cu dimer system. These results were further confirmed by the surface charge distribution, and analyzed based on the plasmonic hybridization theory. The data about the nanoparticle dimer on the dielectric (Si) film demonstrate the importance of induced image charges on the film surface in such a light focusing phenomenon. Our findings can enhance the understanding of the surface plasmon coupling in different materials, which may have great application prospects in surface plasmon-related fields, such as SERS, plasmonic enhanced solar cell, and plasmonic sensoring, etc.

  10. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications.

    PubMed

    Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing

    2015-02-04

    In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.

  11. Microcavity surface plasmon resonance bio-sensors

    NASA Astrophysics Data System (ADS)

    Mosavian, Nazanin

    This work discusses a miniature surface plasmon biosensor which uses a dielectric sub- micron diameter core with gold spherical shell. The shell has a subwavelength nanoaperture believed to excite stationary plasmon resonances at the biosensor's surface. The sub-micron cavity enhances the measurement sensitivity of molecules binding to the sensor surface. We used visible-range optical spectroscopy to study the wavelength shift as bio-molecules absorbed-desorbed at the shell surface. We also used Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) ablation to study the characteristics of microcavity surface plasmon resonance sensor (MSPRS) and the inner structure formed with metal deposition and its spectrum. We found that resonances at 580 nm and 670 nm responded to bound test agents and that Surface Plasmon Resonance (SPR) sensor intensity could be used to differentiate between D-glucose and L-glucose. The responsiveness of the system depended upon the mechanical integrity of the metallic surface coating.

  12. The use of surface enhanced absorption, scattering and catalytic properties of gold nanoparticles in some bio- and biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.

    2005-08-01

    Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.

  13. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    , Zhengtong Liu, Hsiao-Kuan Yuan, Rasmus H Pedersen, Alexandra Boltasseva, Jiji Chen, Joseph Irudayaraj, Alexander V Kildishev and Vladimir M Shalaev Confinement and propagation characteristics of subwavelength plasmonic modes R F Oulton, G Bartal, D F P Pile and X Zhang Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film F de León-Pérez, G Brucoli, F J García-Vidal and L Martín-Moreno Shaping and manipulation of light fields with bottom-up plasmonic structures C Girard, E Dujardin, G Baffou and R Quidant Gold nanorods and nanospheroids for enhancing spontaneous emission A Mohammadi, V Sandoghdar and M Agio Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon J-Y Laluet, A Drezet, C Genet and T W Ebbesen Mode mapping of plasmonic stars using TPL microscopy P Ghenuche, S Cherukulappurath and R Quidant Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field G A Wurtz, W Hendren, R Pollard, R Atkinson, L Le Guyader, A Kirilyuk, Th Rasing, I I Smolyaninov and A V Zayats Nanoplasmonic renormalization and enhancement of Coulomb interactions M Durach, A Rusina, V I Klimov and M I Stockman Bulk and surface sensitivities of surface plasmon waveguides Pierre Berini Mapping plasmons in nanoantennas via cathodoluminescence R Gómez-Medina, N Yamamoto, M Nakano and F J García de Abajo Theoretical analysis of gold nano-strip gap plasmon resonators T Søndergaard, J Jung, S I Bozhevolnyi and G Della Valle Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings J Gómez Rivas, G Vecchi and V Giannini Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit Mark W Knight and Naomi J Halas Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency T H Taminiau, F D Stefani and N F van Hulst Green

  14. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    DOE PAGES

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; ...

    2016-01-12

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presentingmore » an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.« less

  15. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presentingmore » an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.« less

  16. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  17. EDITORIAL: Plasmas and plasmons: links in nanosilver Plasmas and plasmons: links in nanosilver

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-03-01

    Silver has long been valued not just for its rarity but also for its broad ranging attractive properties as a conductor, catalyst and antimicrobial agent, among others. In nanoscale structures, silver takes on a number of additional attributes, as properties such as antimicrobial activity show size dependence. In addition plasmonic properties are exhibited, which enhance local electromagnetic fields and can be hugely beneficial in sensing and imaging applications. As a result silver nanoparticles are increasingly in demand. In this issue researchers describe a microplasma-assisted electrochemical synthesis that allows excellent control over the size and spacing of the resulting particles, which are important parameters for optimizing their performance in device applications [1]. Wet chemistry [2] and lithography [3] are common processes for silver nanoparticle synthesis. However, other methods are constantly in development. Biosynthesis approaches have been attracting increasing interest as more environmentally friendly alternatives. Takayuki Kuwabara and colleagues at Xiamen University in China used the sundried biomass of Cinnamomum camphora leaf to reduce silver nitrate [4], demonstrating a cost-efficient alternative to conventional methods which might also be suitable for large-scale production. At Zhejiang Normal University researchers noted that the abasic site (AP site) in the DNA duplex can act as a capping scaffold in the generation of fluorescent silver nanoclusters [5]. In addition the resulting fluorescence of the nanocrystals can be used for detecting DNA single-nucleotide polymorphism. Researchers in Malaysia have also noted the potential sensing applications of nanoparticles of another noble metal for swine DNA [6]. They observed that single-strand DNA was absorbed on gold nanoparticles and led to a colour shift from pinkish-red to grey-purple. The shift was the result of a reduction in the surface plasmon resonance peak at 530 nm and new features

  18. Application of STEM/EELS to Plasmon-Related Effects in Optical Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camden, Jon

    In this project we employed EELS/STEM to understand the near-field enhancements that drive current applications of plasmonic nanostructures. In particular, we explore the connection between optical and electron excitation of plasmon modes in metallic nanostructures: (1) Probing the structural parameters and dielectric properties of multimetallic nanoparticles; (2) Characterization of the near-electric-field enhancements obtained upon excitation of the localized surface plasmon resonance and understand the connection between electron- and photon-driven plasmons; (3) Understanding the behavior of molecules in plasmon-enhanced fields which is essential to emerging applications such as plasmon-assisted catalysis and solar energy harvesting.

  19. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.

    PubMed

    Wei, Wenzuo; Hong, Ruijin; Jing, Ming; Shao, Wen; Tao, Chunxian; Zhang, Dawei

    2018-01-05

    Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.

  20. Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector.

    PubMed

    Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo

    2017-01-13

    Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects.

  1. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection.

    PubMed

    Li, Shuang; Liu, Jinglong; Lu, Yanli; Zhu, Long; Li, Candong; Hu, Lijiang; Li, Jun; Jiang, Jing; Low, Szeshin; Liu, Qingjun

    2018-06-01

    Localized surface plasmon resonance (LSPR) induced charge separation were concentrated on the metal nanoparticles surface, which made it sensitive to the surface refractive index changes during optical sensing. Similarly, electrochemical detection was based on the electron transformation on the electrode surface. Herein, we fabricated a nanochip by decorating a nanocone-array substrate with gold nanoparticles and silver nanoparticles for dynamic electro-optical spectroscopy. Mercaptophenyl boronic acid (MPBA) was immobilized firmly on the nanochip by the metal-S bond for sensitive sialic acid sensing. Owing to the high stability of gold nanoparticles and the high sensitivity of silver nanoparticles, the nanochip showed good performance in LSPR detection with rich and high responses. Besides, the nanochip also showed sensitive electrical signals during electrochemical detection due to the excitation of the energetic charges from the nanoparticles surface to the reaction system. The dynamic electro-optical spectroscopy was based on a unique combination of LSPR and linear sweep voltammetry (LSV). On the one hand, electrochemical signals activated the electrons on the nanochip to promote the propagation and resonance of surface plasmon. On the other hand, LSPR concentrated the electrons on the nanochip surface, which made the electrons easily driven to enhance the current in electrochemical detection. Results showed that mutual promotion of electrochemical-LSPR on nanochip covered a linear dynamic range from 0.05 mM to 5 mM on selective sialic acid detection with a low detection limit of 17 μM. The synchronous amplification of the electro-optical response during electrochemical-LSPR, opened up a new perspective for efficient and sensitive biochemical detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Silica-covered star-shaped Au-Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces.

    PubMed

    Krajczewski, Jan; Kołątaj, Karol; Pietrasik, Sylwia; Kudelski, Andrzej

    2018-03-15

    One of the tools used for determining the composition of surfaces of various materials is shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS is a modification of "standard" surface-enhanced Raman spectroscopy (SERS), in which, before Raman spectra are recorded, the surfaces analysed are covered with a layer of plasmonic nanoparticles protected by a very thin layer of a transparent dielectric. The plasmonic cores of the core-shell nanoparticles used in SHINERS measurements generate a local enhancement of the electric field of the incident electromagnetic radiation, whereas the transparent coatings prevent the metal cores from coming into direct contact with the material being analysed. In this contribution, we propose a new type of SHINERS nanoresonators that contain spiky, star-shaped metal cores (produced from a gold/silver alloy). These spiky, star-shaped Au-Ag nanoparticles have been covered by a layer of silica. The small radii of the ends of the tips of the spikes of these plasmonic nanostructures make it possible to generate a very large enhancement of the electromagnetic field there, with the result that such SHINERS nanoresonators are significantly more efficient than the standard semi-spherical nanostructures. The Au-Ag alloy nanoparticles were synthesised by the reduction of a solution containing silver nitrate and chloroauric acid by ascorbic acid. The final geometry of the nanostructures thus formed was controlled by changing the ratio between the concentrations of AuCl 4 - and Ag + ions. The shape of the synthesised star-shaped Au-Ag nanoparticles does not change significantly during the two standard procedures for depositing a layer of silica (by the decomposition of sodium silicate or the decomposition of tetraethyl orthosilicate). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Optical properties of plasmonic nanostructures: Theory & experiments

    NASA Astrophysics Data System (ADS)

    Bala Krishna, Juluri

    Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are

  4. Surface plasmon resonance-induced photocatalysis by Au nanoparticles decorated mesoporous g-C{sub 3}N{sub 4} nanosheets under direct sunlight irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonda, Surendar; Kumar, Santosh; Shanker, Vishnu, E-mail: vishnu@nitw.ac.in

    Highlights: • The Au/mp-g-C{sub 3}N{sub 4} was synthesized via a template-free and green in situ strategy. • Au/mp-g-C{sub 3}N{sub 4} nanosheets possesses high surface area and porous structure. • Au/mp-g-C{sub 3}N{sub 4} showed dramatic photocurrent response and photocatalytic activity. • The high performance is due to SPR of Au and mesoporous structure. • Au/mp-g-C{sub 3}N{sub 4} nanosheets exhibited high photostability. - Abstract: In recent years, surface plasmon-induced photocatalytic materials with tunable mesoporous framework have attracted considerable attention in energy conversion and environmental remediation. Herein we report a novel Au nanoparticles decorated mesoporous graphitic carbon nitride (Au/mp-g-C{sub 3}N{sub 4}) nanosheets viamore » a template-free and green in situ photo-reduction method. The synthesized Au/mp-g-C{sub 3}N{sub 4} nanosheets exhibit a strong absorption edge in visible and near-IR region owing to the surface plasmon resonance effect of Au nanoparticles. More attractively, Au/mp-g-C{sub 3}N{sub 4} exhibited much higher photocatalytic activity than that of pure mesoporous and bulk g-C{sub 3}N{sub 4} for the degradation of rhodamine B under sunlight irradiation. Furthermore, the photocurrent and photoluminescence studies demonstrated that the deposition of Au nanoparticles on the surface of mesoporous g-C{sub 3}N{sub 4} could effectively inhibit the recombination of photogenerated charge carriers leading to the enhanced photocatalytic activity. More importantly, the synthesized Au/mp-g-C{sub 3}N{sub 4} nanosheets possess high reusability. Hence, Au/mp-g-C{sub 3}N{sub 4} could be promising photoactive material for energy and environmental applications.« less

  5. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Carles, R.; Bayle, M.; Bonafos, C.

    2018-04-01

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  6. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles.

    PubMed

    Carles, R; Bayle, M; Bonafos, C

    2018-04-27

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  7. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse.

    PubMed

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-18

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10 -9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  8. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    NASA Astrophysics Data System (ADS)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  9. Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier.

    PubMed

    Gan, Qiaoqiang; Bartoli, Filbert J; Kafafi, Zakya H

    2013-05-07

    Recent advances in molecular organic photovoltaics (OPVs) have shown 10% power conversion efficiency (PCE) for single-junction cells, which put them in direct competition with PVs based on amorphous silicon. Incorporation of plasmonic nanostructures for light trapping in these thin-film devices offers an attractive solution to realize higher-efficiency OPVs with PCE>10%. This article reviews recent progress on plasmonic-enhanced OPV devices using metallic nanoparticles, and one-dimensional (1D) and two-dimensional (2D) patterned periodic nanostructures. We discuss the benefits of using various plasmonic nanostructures for broad-band, polarization-insensitive and angle-independent absorption enhancement, and their integration with one or two electrode(s) of an OPV device. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Using the Localized Surface Plasmon Resonance of Gold Nanoparticles to Monitor Lipid Membrane Assembly and Protein Binding.

    PubMed

    Messersmith, Reid E; Nusz, Greg J; Reed, Scott M

    2013-12-19

    Gold nanoparticles provide a template for preparing supported lipid layers with well-defined curvature. Here, we utilize the localized surface plasmon resonance (LSPR) of gold nanoparticles as a sensor for monitoring the preparation of lipid layers on nanoparticles. The LSPR is very sensitive to the immediate surroundings of the nanoparticle surface and it is used to monitor the coating of lipids and subsequent conversion of a supported bilayer to a hybrid membrane with an outer lipid leaflet and an inner leaflet containing hydrophobic alkanethiol. We demonstrate that both decanethiol and propanethiol are able to form hybrid membranes and that the membrane created over the shorter thiol can be stripped from the gold along with the lipid leaflet using β-mercaptoethanol. The sensitivity of the nanoparticle LSPR to the refractive index (RI) of its surroundings is greater when the shorter thiol is used (37.8 ± 1.5 nm per RI unit) than when the longer thiol is used (27.5 ± 0.5 nm per RI unit). Finally, C-reactive protein binding to the membrane is measured using this sensor allowing observation of both protein-membrane and nanoparticle-nanoparticle interactions without chemical labeling of protein or lipids.

  11. Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations

    NASA Astrophysics Data System (ADS)

    Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-08-01

    TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.

  12. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.

    PubMed

    Lin, Hung-Yu; Kuo, Yang; Liao, Cheng-Yuan; Yang, C C; Kiang, Yean-Woei

    2012-01-02

    The authors numerically investigate the absorption enhancement of an amorphous Si solar cell, in which a periodical one-dimensional nanowall or two-dimensional nanopillar structure of the Ag back-reflector is fabricated such that a dome-shaped grating geometry is formed after Si deposition and indium-tin-oxide coating. In this investigation, the effects of surface plasmon (SP) interaction in such a metal nanostructure are of major concern. Absorption enhancement in most of the solar spectral range of significant amorphous Si absorption (320-800 nm) is observed in a grating solar cell. In the short-wavelength range of high amorphous Si absorption, the weakly wavelength-dependent absorption enhancement is mainly caused by the broadband anti-reflection effect, which is produced through the surface nano-grating structures. In the long-wavelength range of diminishing amorphous Si absorption, the highly wavelength-sensitive absorption enhancement is mainly caused by Fabry-Perot resonance and SP interaction. The SP interaction includes the contributions of surface plasmon polariton and localized surface plasmon.

  13. Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy.

    PubMed

    Tabatabaei, Mohammadali; Wallace, Gregory Q; Caetano, Fabiana A; Gillies, Elizabeth R; Ferguson, Stephen S G; Lagugné-Labarthet, François

    2016-01-01

    The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (C 4 F 8 ) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.

  14. Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation

    PubMed Central

    Mock, Jack J.; Hill, Ryan T.; Tsai, Yu-Ju; Chilkoti, Ashutosh; Smith, David R.

    2012-01-01

    The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nano-gap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer, and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with Angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity. PMID:22429053

  15. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in; Manda, Premkumar

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phasesmore » arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.« less

  16. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    NASA Astrophysics Data System (ADS)

    Singh, Manish Kumar; Manda, Premkumar; Singh, A. K.; Mandal, R. K.

    2015-10-01

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ˜9 atom per cent; 8 atom per cent and Ag ˜ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  17. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification

    DTIC Science & Technology

    2014-08-01

    AFRL-RH-WP-TR-2014-0107 PLASMONIC APTAMER -GOLD NANOPARTICLE SENSORS FOR SMALL MOLECULE FINGERPRINT IDENTIFICATION Jorge Chávez Grant Slusher...Plasmonic Aptamer -Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM...The utilization of the plasmonic response of aptamer -gold nanoparticle conjugates (Apt-AuNPs) to design cross- reactive arrays for fingerprint

  18. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.

    PubMed

    Shang, Qiuyu; Zhang, Shuai; Liu, Zhen; Chen, Jie; Yang, Pengfei; Li, Chun; Li, Wei; Zhang, Yanfeng; Xiong, Qihua; Liu, Xinfeng; Zhang, Qing

    2018-06-13

    Manipulating strong light-matter interaction in semiconductor microcavities is crucial for developing high-performance exciton polariton devices with great potential in next-generation all-solid state quantum technologies. In this work, we report surface plasmon enhanced strong exciton-photon interaction in CH 3 NH 3 PbBr 3 perovskite nanowires. Characteristic anticrossing behaviors, indicating a Rabi splitting energy up to ∼564 meV, are observed near exciton resonance in hybrid perovskite nanowire/SiO 2 /Ag cavity at room temperature. The exciton-photon coupling strength is enhanced by ∼35% on average, which is mainly attributed to surface plasmon induced localized excitation field redistribution. Further, systematic studies on SiO 2 thickness and nanowire dimension dependence of exciton-photon interaction are presented. These results provide new avenues to achieve extremely high coupling strengths and push forward the development of electrically pumped and ultralow threshold small lasers.

  19. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  20. Photochemical Synthesis of Silver Nanodecahedrons and Related Nanostructures for Plasmonic Field Enhancement Applications

    NASA Astrophysics Data System (ADS)

    Lu, Haifei

    Noble-metal nanocrystals have received considerable attention in recent years for their size and shape dependent localized surface Plasmon resonances (LSPR). Various applications based on colloidal nanoparticles, such as surface enhanced Raman scattering (SERS), surface enhanced fluorescence (SEF), plasmonic sensing, photothermal therapy etc., have been broadly explored in the field of biomedicine, because of their extremely large optical scattering and absorption cross sections, as well as giant electric field enhancement on their surface. However, despite its high chemical stability, gold exhibits quite large losses and electric field enhancement is comparatively weaker than silver. Silver nanoparticles synthesized by the traditional technique only cover an LSPR ranged from 420~500 nm. On the other hand, the range of 500~660 nm, which is covered by several easily available commercial laser lines, very limited colloidal silver nanostructures with controllable size and shape have been reported, and realization of tuning the resonance to longer wavelengths is very important for the practical applications. In this thesis, a systematic study on photochemical synthesis of silver nanodecahedrons (NDs) and related nanostructures, and their plasmonic field enhancements are presented. First, the roles of chemicals and the light source during the formation of silver nanoparticles have been studied. We have also developed a preparation route for the production size-controlled silver nanodecahedrons (LSPR range 420 ~ 660 nm) in high purity. Indeed our experiments indicate that both the chemicals and the light sources can affect the shape and purity of final products. Adjusting the molar ratio between sodium citrate and silver nitrate can help to control the crystal structure following rapid reduction from sodium borohydride. Light from a blue LED (465 nm) can efficiently transform the polyvinylpyrrolidone stabilized small silver nanoparticles into silver NDs through photo

  1. Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold

    PubMed Central

    Lalisse, Adrien; Tessier, Gilles; Plain, Jérome; Baffou, Guillaume

    2016-01-01

    Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications in nanoplasmonics that require high material temperature under operation, such as heat assisted magnetic recording (HAMR) or thermophotovoltaics. This article presents a detailed investigation of the plasmonic properties of TiN and ZrN nanoparticles in comparison with gold nanoparticles, as a function of the nanoparticle morphology. As a main result, metal nitrides are shown to be poor near-field enhancers compared to gold, no matter the nanoparticle morphology and wavelength. The best efficiencies of metal nitrides as compared to gold in term of near-field enhancement are obtained for small and spherical nanoparticles, and they do not exceed 60%. Nanoparticle enlargements or asymmetries are detrimental. These results mitigate the utility of metal nitrides for high-temperature applications such as HAMR, despite their high temperature sustainability. Nevertheless, at resonance, metal nitrides behave as efficient nanosources of heat and could be relevant for applications in thermoplasmonics, where heat generation is not detrimental but desired. PMID:27934890

  2. Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold.

    PubMed

    Lalisse, Adrien; Tessier, Gilles; Plain, Jérome; Baffou, Guillaume

    2016-12-09

    Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications in nanoplasmonics that require high material temperature under operation, such as heat assisted magnetic recording (HAMR) or thermophotovoltaics. This article presents a detailed investigation of the plasmonic properties of TiN and ZrN nanoparticles in comparison with gold nanoparticles, as a function of the nanoparticle morphology. As a main result, metal nitrides are shown to be poor near-field enhancers compared to gold, no matter the nanoparticle morphology and wavelength. The best efficiencies of metal nitrides as compared to gold in term of near-field enhancement are obtained for small and spherical nanoparticles, and they do not exceed 60%. Nanoparticle enlargements or asymmetries are detrimental. These results mitigate the utility of metal nitrides for high-temperature applications such as HAMR, despite their high temperature sustainability. Nevertheless, at resonance, metal nitrides behave as efficient nanosources of heat and could be relevant for applications in thermoplasmonics, where heat generation is not detrimental but desired.

  3. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.

    PubMed

    Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R

    2016-08-18

    Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry.

  4. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kai; Zhan, Yaohui, E-mail: yhzhan@suda.edu.cn, E-mail: xfli@suda.edu.cn; Wu, Shaolong

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-stepmore » electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.« less

  5. Plasmonics analysis of nanostructures for bioapplications

    NASA Astrophysics Data System (ADS)

    Xie, Qian

    Plasmonics, the science and technology of the plasmons, is a rapidly growing field with substantial broader impact in numerous different fields, especially for bio-applications such as bio-sensing, bio-photonics and photothermal therapy. Resonance effects associated with plasmatic behavior i.e. surface Plasmon resonance (SPR) and localize surface Plasmon resonance (LSPR), are of particular interest because of their strong sensitivity to the local environment. In this thesis, plasmonic resonance effects are discussed from the basic theory to applications, especially the application in photothermal therapy, and grating bio-sensing. This thesis focuses on modeling different metallic nanostructures, i.e. nanospheres, nanorods, core-shell nanoparticles, nanotori and hexagonal closed packed nanosphere structures, to determine their LSPR wavelengths for use in various applications. Experiments regarding photothermal therapy using gold nanorods are described and a comparison is presented with results obtained from simulations. Lastly, experiments of grating-based plasmon-enhanced bio-sensing are also discussed. In chapter one, the physics of plasmonics is reviewed, including surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). In the section on surface plasmon resonance, the physics behind the phenomenon is discussed, and also, the detection methods and applications in bio-sensing are described. In the section on localized surface plasmon resonance (LSPR), the phenomenon is described with respect to sub wavelength metallic nanoparticles. In chapter two, specific plasmonic-based bio-applications are discussed including plasmonic and magneto-plasmonic enhanced photothermal therapy and grating-based SPR bio-sening. In chapter three, which is the most important part in the thesis, optical modeling of different gold nanostructures is presented. The modeling tools used in this thesis are Comsol and custom developed Matlab programs. In Comsol, the

  6. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.

    PubMed

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-28

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.

  7. Switchable polarization-sensitive surface plasmon resonance of highly stable gold nanorods liquid crystals composites

    NASA Astrophysics Data System (ADS)

    Liu, Qingkun; Qian, Jun; Cai, Fuhong; Smalyukh, Ivan I.; He, Sailing

    2011-12-01

    In this work, we demonstrate the bulk self-alignment of gold nanorods (GNRs) dispersed in lyotropic nematic liquid crystals (LCs) with high optical absorption coefficient at the surface plasmon resonant wavelength. The polymer-coated GNRs which show spontaneous long-range orientational ordering along the director of LC host exhibit long-term stability as well as high concentration. External magnetic field and shearing allow for alignment and realignment of the orientation of gold nanorods by changing the director of the liquid crystal matrix. This results in a switchable polarization-sensitive surface plasmon resonance exhibiting stark differences from that of the same nanorods in isotropic fluids. The devise-scale bulk nanoparticle alignment may enable optical metamaterial mass production and control of surface plasmon resonance of nanoparticles.

  8. Field enhancement in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Piltan, Shiva; Sievenpiper, Dan

    2018-05-01

    Efficient generation of charge carriers from a metallic surface is a critical challenge in a wide variety of applications including vacuum microelectronics and photo-electrochemical devices. Replacing semiconductors with vacuum/gas as the medium of electron transport offers superior speed, power, and robustness to radiation and temperature. We propose a metallic resonant surface combining optical and electrical excitations of electrons and significantly reducing powers required using plasmon-induced enhancement of confined electric field. The properties of the device are modeled using the exact solution of the time-dependent Schrödinger equation at the barrier. Measurement results exhibit strong agreement with an analytical solution, and allow us to extract the field enhancement factor at the surface. Significant photocurrents are observed using combination of {{W}} {{{c}}{{m}}}-2 optical power and 10 V DC excitation on the surface. The model suggests optical field enhancement of 3 orders of magnitude at the metal interface due to plasmonic resonance. This simple planar structure provides valuable evidence on the electron emission mechanisms involved and it can be used for implementation of semiconductor compatible vacuum devices.

  9. Measuring melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy.

    PubMed

    Cho, Kyunghee; Fasoli, Jennifer B; Yoshimatsu, Keiichi; Shea, Kenneth J; Corn, Robert M

    2015-01-01

    This paper describes how changes in the refractive index of single hydrogel nanoparticles (HNPs) detected with near-infrared surface plasmon resonance microscopy (SPRM) can be used to monitor the uptake of therapeutic compounds for potential drug delivery applications. As a first example, SPRM is used to measure the specific uptake of the bioactive peptide melittin into N-isopropylacrylamide (NIPAm)-based HNPs. Point diffraction patterns in sequential real-time SPRM differential reflectivity images are counted to create digital adsorption binding curves of single 220 nm HNPs from picomolar nanoparticle solutions onto hydrophobic alkanethiol-modified gold surfaces. For each digital adsorption binding curve, the average single nanoparticle SPRM reflectivity response, ⟨Δ%RNP⟩, was measured. The value of ⟨Δ%RNP⟩ increased linearly from 1.04 ± 0.04 to 2.10 ± 0.10% when the melittin concentration in the HNP solution varied from zero to 2.5 μM. No change in the average HNP size in the presence of melittin is observed with dynamic light scattering measurements, and no increase in ⟨Δ%RNP⟩ is observed in the presence of either FLAG octapeptide or bovine serum albumin. Additional bulk fluorescence measurements of melittin uptake into HNPs are used to estimate that a 1% increase in ⟨Δ%RNP⟩ observed in SPRM corresponds to the incorporation of approximately 65000 molecules into each 220 nm HNP, corresponding to roughly 4% of its volume. The lowest detected amount of melittin loading into the 220 nm HNPs was an increase in ⟨Δ%RNP⟩ of 0.15%, corresponding to the absorption of 10000 molecules.

  10. T-matrix method in plasmonics: An overview

    NASA Astrophysics Data System (ADS)

    Khlebtsov, Nikolai G.

    2013-07-01

    Optical properties of isolated and coupled plasmonic nanoparticles (NPs) are of great interest for many applications in nanophotonics, nanobiotechnology, and nanomedicine owing to rapid progress in fabrication, characterization, and surface functionalization technologies. To simulate optical responses from plasmonic nanostructures, various electromagnetic analytical and numerical methods have been adapted, tested, and used during the past two decades. Currently, the most popular numerical techniques are those that do not suffer from geometrical and composition limitations, e.g., the discrete dipole approximation (DDA), the boundary (finite) element method (BEM, FEM), the finite difference time domain method (FDTDM), and others. However, the T-matrix method still has its own niche in plasmonic science because of its great numerical efficiency, especially for systems with randomly oriented particles and clusters. In this review, I consider the application of the T-matrix method to various plasmonic problems, including dipolar, multipolar, and anisotropic properties of metal NPs; sensing applications; surface enhanced Raman scattering; optics of 1D-3D nanoparticle assemblies; plasmonic particles and clusters near and on substrates; and manipulation of plasmonic NPs with laser tweezers.

  11. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural and plasmonic properties of gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Sivapalan, Sean T.

    The design of gold nanoparticles for surface-enhanced Raman scattering (SERS) and plasmonic enhanced fluorescence are more involved than simply maximizing the local field enhancement. The enhancement is a function of the excitation wavelength relative to the plasmon resonance as well as the distance of the reporter molecules from the nanoparticles' surface. For suspension based measurements, additional considerations must also be made regarding absorption and scattering effects as light propagates through the sample. These effects are in addition to the other more commonly observed effects such as nanocrystal shape. With such a wide number of variables in play, a series of studies breaking down each of these components and their contribution to the observed enhancement is warranted. In this thesis, a series of experiments were undertaken using a platform based on polyelectrolyte coating of gold nanoparticles by layer-by-layer deposition. The reporter molecules are bound onto the surface of polyelectrolyte coated nanoparticles before trap coating them with an additional oppositely charged polyelectrolyte layer. By etching away the gold nanoparticle using potassium cyanide, we are then able to quantify the number of reporter molecule per nanoparticle using mass spectrometry. With this quantitative approach, we can the directly compare the effects of the aforementioned enhancement mechanisms on the observed signal intensity. This method overcomes some of the disparities in literature between reported values of enhancement due to assumption in the number of reporter molecules contribution to the signal intensity. Using our group's expertise, we synthesized gold nanoparticle libraries of nanorods, cubes, trisoctahedra and spheres of different sizes. Each geometric configuration was characterized using a recently developed TEM technique---nano-beam coherent area diffraction. The as-synthesized were exposed to a coherent electron beam with probe size similar to that of

  13. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors.

    PubMed

    Fan, J R; Wu, W G; Chen, Z J; Zhu, J; Li, J

    2017-03-09

    As plasmonic antennas for surface-plasmon-assisted control of optical fields at specific frequencies, metallic nanostructures have recently emerged as crucial optical components for fascinating plasmonic color engineering. Particularly, plasmonic resonant nanocavities can concentrate lightwave energy to strongly enhance light-matter interactions, making them ideal candidates as optical elements for fine-tuning color displays. Inspired by the color mixing effect found on butterfly wings, a new type of plasmonic, multiresonant, narrow-band (the minimum is about 45 nm), high-reflectance (the maximum is about 95%), and dynamic color-tuning reflector is developed. This is achieved from periodic patterns of plasmonic resonant nanocavities in free-standing capped-pillar nanostructure arrays. Such cavity-coupling structures exhibit multiple narrow-band selective and continuously tunable reflections via plasmon standing-wave resonances. Consequently, they can produce a variety of dark-field vibrant reflective colors with good quality, strong color signal and fine tonal variation at the optical diffraction limit. This proposed multicolor scheme provides an elegant strategy for realizing personalized and customized applications in ultracompact photonic data storage and steganography, colorimetric sensing, 3D holograms and other plasmon-assisted photonic devices.

  14. Plasmon enhanced power conversion efficiency in inverted bulk heterojunction organic solar cell

    NASA Astrophysics Data System (ADS)

    Mohan, Minu; Ramkumar, S.; Namboothiry, Manoj A. G.

    2017-08-01

    P3HT:PCBM is one of the most studied polymer-fullerene system. However the reported power conversion efficiency (PCE) values falls within the range of 4% to 5%. The thin film architecture in OPVs exhibits low PCE compared to inorganic photovoltaic cells. This is mainly due to the low exciton diffusion length that limits the active layer thickness which in turn reduces the absorption of incident light. Several strategies are adapted in order to increase the absorption in the active layer without increasing the film thickness. Inclusion of metal nanoparticles into the polymer layer of bulk heterojunction (BHJ) solar cells is one of the promising methods. Incorporation of metal nanostructures increases the absorption of organic materials due to the high electromagnetic field strength in the vicinity of the excited surface plasmons. In this work, we used 60 nm Au plasmonic structures to improve the efficiency of organic solar cell. The prepared metal nano structures were characterized through scanning electron microscopy (SEM), and UV-Visible spectroscopy techniques. These prepared metallic nanoparticles can be incorporated either into the electron transport layer (ETL) or into the active P3HT:PC71BM layer. The effect of incorporation of plasmonic gold (Au) nanoparticle in the inverted bulk heterojunction organic photovoltaic cells (OPVs) of P3HT:PC71BM fabricated in ambient air condition is in progress. Initial studies shows an 8.5% enhancement in the PCE with the incorporation of Au nanoparticles under AM1.5G light of intensity 1 Sun.

  15. Surface enhanced Raman spectroscopy based nanoparticle assays for rapid, point-of-care diagnostics

    NASA Astrophysics Data System (ADS)

    Driscoll, Ashley J.

    Nucleotide and immunoassays are important tools for disease diagnostics. Many of the current laboratory-based analytical diagnostic techniques require multiple assay steps and long incubation times before results are acquired. In the development of bioassays designed for detecting the emergence and spread of diseases in point-of-care (POC) and remote settings, more rapid and portable analytical methods are necessary. Nanoparticles provide simple and reproducible synthetic methods for the preparation of substrates that can be applied in colloidal assays, providing gains in kinetics due to miniaturization and plasmonic substrates for surface enhanced spectroscopies. Specifically, surface enhanced Raman spectroscopy (SERS) is finding broad application as a signal transduction method in immunological and nucleotide assays due to the production of narrow spectral peaks from the scattering molecules and the potential for simultaneous multiple analyte detection. The application of SERS to a no-wash, magnetic capture assay for the detection of West Nile Virus Envelope and Rift Valley Fever Virus N antigens is described. The platform utilizes colloid based capture of the target antigen in solution, magnetic collection of the immunocomplexes and acquisition of SERS spectra by a handheld Raman spectrometer. The reagents for a core-shell nanoparticle, SERS based assay designed for the capture of target microRNA implicated in acute myocardial infarction are also characterized. Several new, small molecule Raman scatterers are introduced and used to analyze the enhancing properties of the synthesized gold coated-magnetic nanoparticles. Nucleotide and immunoassay platforms have shown improvements in speed and analyte capture through the miniaturization of the capture surface and particle-based capture systems can provide a route to further surface miniaturization. A reaction-diffusion model of the colloidal assay platform is presented to understand the interplay of system

  16. Application of Localized Surface Plasmons for the Enhancement of Thin-Film Amorphous Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Hungerford, Chanse D.

    Photovoltaics (PV) is a rapidly growing electricity source and new PV technologies are continually being developed. Increasing the efficiency of PV will continue to drive down the costs of solar installations. One area of research that is necessary for increasing PV performance is light management. This is especially true for thin-film devices that are unable to maximize absorption of the solar spectrum in a single pass. Methods for light trapping include texturing, high index nanostructures, nanophotonic structures, and plasmonics. This research focus on the use of plasmonic structures, in this case metallic nanoparticles, to increase the power conversion efficiency of solar cells. Three different designs are investigated. First was an a-Si:H solar cell, approximately 300nm thick, with a rear reflector consisting of metallic nanoparticles and a mirror. This structure is referred to as a plasmonic back reflector. Simulations indicate that a maximum absorption increase of 7.2% in the 500nm to 800nm wavelength range is possible versus a flat reference. Experiments did not show enhancement, likely due to absorption in the transparent conducting oxide and the parasitic absorption in the small metallic nanoparticles. The second design was an a-Si:H solar cell with embedded metal nanoparticles. Experimental devices were successfully fabricated by breaking the i-layer deposition into two steps and introducing colloidal nanoparticles between the two depositions. These devices performed worse than the controls, but the results provide proof that fabrication of such a device is possible and may be improved in the future. Suggestions for improvements are discussed. The final device investigated was an ultra-thin, undoped solar cell. The device used an absorber layer < 100nm thick, with the thinnest device using an i-layer of only approximately 15nm. Loses due to the doped layers in the standard p-i-n structure can be reduced by replacing the doped layers with MoO 3 and Li

  17. Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.

    PubMed

    Tan, Shijing; Liu, Liming; Dai, Yanan; Ren, Jindong; Zhao, Jin; Petek, Hrvoje

    2017-05-03

    Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite (Gr) has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we deposit Ag nanoclusters (NC) on Gr to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. By tuning the wavelength of p-polarized femtosecond excitation pulses, we find an enhancement of 2PP yields by 2 orders of magnitude, which we attribute to excitation of a surface-normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from (i) coherent two-photon absorption of an occupied interface state (IFS) 0.2 eV below the Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer, and (ii) hot electrons in the π*-band of Gr, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the IFS photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.

  18. Light trapping and surface plasmon enhanced high-performance NIR photodetector

    PubMed Central

    Luo, Lin-Bao; Zeng, Long-Hui; Xie, Chao; Yu, Yong-Qiang; Liang, Feng-Xia; Wu, Chun-Yan; Wang, Li; Hu, Ji-Gang

    2014-01-01

    Heterojunctions near infrared (NIR) photodetectors have attracted increasing research interests for their wide-ranging applications in many areas such as military surveillance, target detection, and light vision. A high-performance NIR light photodetector was fabricated by coating the methyl-group terminated Si nanowire array with plasmonic gold nanoparticles (AuNPs) decorated graphene film. Theoretical simulation based on finite element method (FEM) reveals that the AuNPs@graphene/CH3-SiNWs array device is capable of trapping the incident NIR light into the SiNWs array through SPP excitation and coupling in the AuNPs decorated graphene layer. What is more, the coupling and trapping of freely propagating plane waves from free space into the nanostructures, and surface passivation contribute to the high on-off ratio as well. PMID:24468857

  19. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    PubMed

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction

    NASA Astrophysics Data System (ADS)

    Low, Jingxiang; Qiu, Shuoqi; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2018-03-01

    Surface plasmon resonance (SPR) effect has been utilized in many solar conversion applications because of its ability to convert visible photons into "hot electron" energy. However, the direct evidence and enhancement of this unique effect are still great challenges, limiting its practical applications. Here we present the direct evidence and enhancement of SPR effect using TiO2 nanotube arrays (TNTAs) loaded with Ag nanoparticles (NPs) as a proof-of-concept example. Particularly, electrochemical deposition method is applied to deposit Ag NPs into the inner space of TNTAs for enhancing SPR effect of Ag NPs, as demonstrated by Raman and light absorption spectroscopies. This enhanced SPR effect is because multi-scattered light within TNTAs can be effectively utilized by Ag NPs in the inner space of TNTAs. Moreover, combining synchronous-illumination X-ray photoelectron and electrochemical impedance spectroscopy characterization, we confirm that the SPR effect of Ag NPs can enhance photocatalytic performance of TNTAs mainly from two aspects: (i) injection of "hot electrons" from Ag NPs to TNTAs and (ii) acceleration of charge carrier migration on the TNTAs through a unique near field effect. The direct evidence and enhancement of SPR effect open new perspectives in design of functional plasmonic nanomaterials with high solar conversion efficiency.

  1. Elucidating the sole contribution from electromagnetic near-fields in plasmon-enhanced Cu 2O photocathodes

    DOE PAGES

    DuChene, Joseph S.; Williams, Benjamin P.; Johnston-Peck, Aaron C.; ...

    2015-11-05

    Despite many promising reports of plasmon-enhanced photocatalysis, the inability to identify the individual contributions from multiple enhancement mechanisms has delayed the development of general design rules for engineering efficient plasmonic photocatalysts. Herein, we construct a plasmonic photocathode comprised of Au@SiO 2 (core@shell) nanoparticles embedded within a Cu 2O nanowire network to exclusively examine the contribution from one such mechanism: electromagnetic near-field enhancement. The influence of the local electromagnetic field intensity is correlated with the overall light-harvesting efficiency of the device through variation of the SiO 2 shell thickness (5—22 nm) to systematically tailor the distance between the plasmonic Au nanoparticlesmore » and the Cu 2O nanowires. A three-fold increase in device photocurrent is achieved upon integrating the Au@SiO 2 nanoparticles into the Cu 2O nanowire network, further enabling a ~40% reduction in semiconductor film thickness while maintaining photocathode performance. Photoelectrochemical results are further correlated with photoluminescence studies and optical simulations to confirm that the near-field enhancement is the sole mechanism responsible for increased light absorption in the plasmonic photocathode.« less

  2. The fabrication of flip-covered plasmonic nanostructure surfaces with enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Jung, Joo-Yun; Sung, Sang-Keun; Kim, Kwang-Seop; Cheon, So-Hui; Lee, Jihye; Choi, Jun-Hyuk; Lee, Eungsug

    2017-01-01

    Exposed nanostructure surfaces often suffer from external dynamic wear, particularly when used in human interaction, resulting in surface defects and the degradation of plasmonic resonance properties particularly in terms of transmittance extinction rate and peak-to-valley slope. In this work, a method for the fabrication of flip-covered silver nanostructure-arrayed surfaces is shown to enhance wear resistance. Selectively transferred silver dot and silver webbed-trench exposed reference samples were fabricated by metal nanoimprint, and flip-covered samples were created by flipping and bonding reference samples onto a PET film coated with an adhesive layer. The samples' spectral transmittance was measured before and after a dynamic wear test. Some spectral shift was observed due to the change in refractive index of the surrounding media, but this was not as significant as the effects of the other chosen geometry factors. It was found that dynamic wear had a greater effect on the plasmonic resonance behavior of the exposed samples than in those that had been flip-covered. This suggests that flip-covering may be an effective strategy for the protection of plasmonic resonators against dynamic wear. It is expected that the slight variations in spectral transmittance could be compensated through proper tuning of the sample geometry.

  3. An investigation of localised surface plasmon resonance (LSPR) of Ag nanoparticles produced by pulsed laser deposition (PLD) technique

    NASA Astrophysics Data System (ADS)

    Gezgin, Serap Yiǧit; Kepceoǧlu, Abdullah; Kılıç, Hamdi Şükür

    2017-02-01

    Noble metal nano-structures such as Ag, Cu, Au are used commonly to increase power conversion efficiency of the solar cell by using their surface plasmons. The plasmonic metal nanoparticles of Ag among others that have strong LSPR in near UV range. They increase photon absorbance via embedding in the active semiconductor of the solar cell. Thin films of Ag are grown in the desired particle size and interparticle distance easily and at low cost by PLD technique. Ag nanoparticle thin films were grown on micro slide glass at 25-36 mJ laser pulse energies under by PLD using ns-Nd:YAG laser. The result of this work have been presented by carrying out UV-VIS and AFM analysis. It was concluded that a laser energy increases, the density and size of Ag-NPs arriving on the substrate increases, and the interparticle distance was decreases. Therefore, LSPR wavelength shifts towards to longer wavelength region.

  4. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    PubMed

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  5. Surface Plasmon Damping Quantified with an Electron Nanoprobe

    PubMed Central

    Bosman, Michel; Ye, Enyi; Tan, Shu Fen; Nijhuis, Christian A.; Yang, Joel K. W.; Marty, Renaud; Mlayah, Adnen; Arbouet, Arnaud; Girard, Christian; Han, Ming-Yong

    2013-01-01

    Fabrication and synthesis of plasmonic structures is rapidly moving towards sub-nanometer accuracy in control over shape and inter-particle distance. This holds the promise for developing device components based on novel, non-classical electro-optical effects. Monochromated electron energy-loss spectroscopy (EELS) has in recent years demonstrated its value as a qualitative experimental technique in nano-optics and plasmonic due to its unprecedented spatial resolution. Here, we demonstrate that EELS can also be used quantitatively, to probe surface plasmon kinetics and damping in single nanostructures. Using this approach, we present from a large (>50) series of individual gold nanoparticles the plasmon Quality factors and the plasmon Dephasing times, as a function of energy/frequency. It is shown that the measured general trend applies to regular particle shapes (rods, spheres) as well as irregular shapes (dendritic, branched morphologies). The combination of direct sub-nanometer imaging with EELS-based plasmon damping analysis launches quantitative nanoplasmonics research into the sub-nanometer realm. PMID:23425921

  6. Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters

    PubMed Central

    Lukianova-Hleb, Ekaterina Y; Oginsky, Alexander O; Shenefelt, Derek L; Drezek, Rebekah A; Hafner, Jason H; Farach-Carson, Mary C; Lapotko, Dmitri O

    2011-01-01

    The synergistic physical and biological effects of selective targeting and activation of plasmonic nanoparticles were studied for a transient vapor nanobubble mode. Simultaneous optical activation of two plasmon resonances in multi-nanoparticle clusters significantly improved the selectivity and efficacy of the nanobubble generation through and was termed “rainbow plasmonic nanobubbles.” The rainbow nanobubble mechanism has been studied in water and in living cells in vitro. This mechanism provided maximal selectivity of the nanobubble generation in both models and therefore, can the therapeutic selectivity and optical contrast of gold nanoparticles in a heterogeneous physiological microenvironment at cell level. PMID:21804947

  7. Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing.

    PubMed

    Nie, W J; Zhang, Y X; Yu, H H; Li, R; He, R Y; Dong, N N; Wang, J; Hübner, R; Böttger, R; Zhou, S Q; Amekura, H; Chen, F

    2018-03-01

    We report on the synthesis of embedded gold (Au) nanoparticles (NPs) in Nd:YAG single crystals using ion implantation and subsequent thermal annealing. Both linear and nonlinear absorption of the Nd:YAG crystals have been enhanced significantly due to the embedded Au NPs, which is induced by the surface plasmon resonance (SPR) effect in the visible light wavelength band. Particularly, through a typical Z-scan system excited by a femtosecond laser at 515 nm within the SPR band, the nonlinear absorption coefficients of crystals with Au NPs have been observed to be nearly 5 orders of magnitude larger than that without Au NPs. This giant enhancement of nonlinear absorption properties is correlated with the saturable absorption (SA) effect, which is the basis of passive Q-switching or mode-locking for pulsed laser generation. In addition, the linear and nonlinear absorption enhancement could be tailored by varying the fluence of implanted Au + ions, corresponding to the NP size and concentration modulation. Finally, the Nd:YAG wafer with embedded Au NPs has been applied as a saturable absorber in a Pr:LuLiF 4 crystal laser cavity, and efficient pulsed laser generation at 639 nm has been realized, which presents superior performance to the MoS 2 saturable absorber based system. This work opens an avenue to enhance and modulate the nonlinearities of dielectrics by embedding plasmonic Au NPs for efficient pulsed laser operation.

  8. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers.

    PubMed

    Chang, Chia-Chi; Imae, Toyoko; Chen, Liang-Yih; Ujihara, Masaki

    2015-12-28

    Confeito-like gold nanoparticles (AuNPs; average diameter = 80 nm) exhibiting a plasmon absorption band at 590 nm were adsorbed through immersion-adsorption on two self-assembled monolayers (SAMs) of 3-aminopropyltriethoxysilane (APTES-SAM) and polystyrene spheres coated with amine-terminated poly(amido amine) dendrimers (DEN/PS-SAM). The surface enhanced Raman scattering (SERS) effect on the SAM substrates was examined using the molecules of a probe dye, rhodamine 6G (R6G). The Raman scattering was strongly intensified on both substrates, but the enhancement factor (>10,000) of the AuNP/DEN/PS-SAM hierarchy substrate was 5-10 times higher than that of the AuNP/APTES-SAM substrate. This strong enhancement is attributed to the large surface area of the substrate and the presence of hot spots. Furthermore, analyzing the R6G concentration dependence of SERS suggested that the enhancement mechanism effectively excited the R6G molecules in the first layer on the hot spots and invoked the strong SERS effect. These results indicate that the SERS activity of confeito-like AuNPs on SAM substrates has high potential in molecular electronic devices and ultrasensitive analyses.

  9. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels

    NASA Astrophysics Data System (ADS)

    Desario, Paul A.; Pietron, Jeremy J.; Devantier, Devyn E.; Brintlinger, Todd H.; Stroud, Rhonda M.; Rolison, Debra R.

    2013-08-01

    We demonstrate plasmonic enhancement of visible-light-driven splitting of water at three-dimensionally (3D) networked gold-titania (Au-TiO2) aerogels. The sol-gel-derived ultraporous composite nanoarchitecture, which contains 1 to 8.5 wt% Au nanoparticles and titania in the anatase form, retains the high surface area and mesoporosity of unmodified TiO2 aerogels and maintains stable dispersion of the ~5 nm Au guests. A broad surface plasmon resonance (SPR) feature centered at ~550 nm is present for the Au-TiO2 aerogels, but not Au-free TiO2 aerogels, and spans a wide range of the visible spectrum. Gold-derived SPR in Au-TiO2 aerogels cast as films on transparent electrodes drives photoelectrochemical oxidation of aqueous hydroxide and extends the photocatalytic activity of TiO2 from the ultraviolet region to visible wavelengths exceeding 700 nm. Films of Au-TiO2 aerogels in which Au nanoparticles are deposited on pre-formed TiO2 aerogels by a deposition-precipitation method (DP Au/TiO2) also photoelectrochemically oxidize aqueous hydroxide, but less efficiently than 3D Au-TiO2, despite having an essentially identical Au nanoparticle weight fraction and size distribution. For example, 3D Au-TiO2 containing 1 wt% Au is as active as DP Au/TiO2 with 4 wt% Au. The higher photocatalytic activity of 3D Au-TiO2 derives only in part from its ability to retain the surface area and porosity of unmodified TiO2 aerogel. The magnitude of improvement indicates that in the 3D arrangement either a more accessible photoelectrochemical reaction interphase (three-phase boundary) exists or more efficient conversion of excited surface plasmons into charge carriers occurs, thereby amplifying reactivity over DP Au/TiO2. The difference in photocatalytic efficiency between the two forms of Au-TiO2 demonstrates the importance of defining the structure of Au||TiO2 interfaces within catalytic Au-TiO2 nanoarchitectures.We demonstrate plasmonic enhancement of visible-light-driven splitting of

  10. Development of a Tip-Enhanced Near-Field Optical Microscope for Nanoscale Interrogation of Surface Chemistry and Plasmonic Phenomena

    NASA Astrophysics Data System (ADS)

    Heilman, Alexander Lee

    Optical microscopy and spectroscopy are invaluable tools for the physical and chemical characterization of materials and surfaces in a wide range of scientific disciplines. However, the application of conventional optical methods in the study of nanomaterials is inherently limited by diffraction. Tip-enhanced near-field optical microscopy (TENOM) is a hybrid technique that marries optical spectroscopy with scanning probe microscopy to overcome the spatial resolution limit imposed by diffraction. By coupling optical energy into the plasmonic modes of a sharp metal probe tip, a strong, localized optical field is generated near the tip's apex and is used to enhance spectroscopic emissions within a sub-diffraction-limited volume. In this thesis, we describe the design, construction, validation, and application of a custom TENOM instrument with a unique attenuated total reflectance (ATR)-geometry excitation/detection system. The specific goals of this work were: (i) to develop a versatile TENOM instrument capable of investigating a variety of optical phenomena at the nanoscale, (ii) to use the instrument to demonstrate chemical interrogation of surfaces with sub-diffraction-limited spatial resolution (i.e., at super resolution), (iii) to apply the instrument to study plasmonic phenomena that influence spectroscopic enhancement in TENOM measurements, and (iv) to leverage resulting insights to develop systematic improvements that expand the ultimate capabilities of near-field optical interrogation techniques. The TENOM instrument described herein is comprised of three main components: an atomic force microscope (AFM), a side-on confocal Raman microscope, and a novel ATR excitation/detection system. The design of each component is discussed along with the results of relevant validation experiments, which were performed to rigorously assess each component's performance. Finite-difference time-domain (FDTD) optical simulations were also developed and used extensively to

  11. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    PubMed

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  12. Temperature dependent localized surface plasmon resonance properties of supported gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Ranjit; Ranjan, Pranay

    2016-05-01

    The well known localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) supported on a dielectric substrate depends on the particle shape, size and type of dielectric material. The particle size and shape mainly vary with the method of preparation and the parameters involved there in. In this report, we show preparation of AuNPs supported on quartz substrate by direct current sputtering followed by thermal annealing at an optimized temperature of 400 °C. The samples were characterized using optical absorption spectra, scanning electron microscopy (SEM) and the energy dispersive x-ray spectrum. The LSPR position could be tuned by varying annealing temperature. The LSPR was found to be blue shifted up to 10 nm with annealing temperature varying from 400 °C to 800 °C. The change in LSPR was ascribed to the morphology of AuNPs over quartz.

  13. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness.

    PubMed

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-12-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  14. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-10-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  15. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    NASA Astrophysics Data System (ADS)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  16. Substrate-induced interfacial plasmonics for photovoltaic conversion

    PubMed Central

    Li, Xinxi; Jia, Chuancheng; Ma, Bangjun; Wang, Wei; Fang, Zheyu; Zhang, Guoqing; Guo, Xuefeng

    2015-01-01

    Surface plasmon resonance (SPR) is widely used as light trapping schemes in solar cells, because it can concentrate light fields surrounding metal nanostructures and realize light management at the nanoscale. SPR in photovoltaics generally occurs at the metal/dielectric interfaces. A well-defined interface is therefore required to elucidate interfacial SPR processes. Here, we designed a photovoltaic device (PVD) with an atomically flat TiO2 dielectric/dye/graphene/metal nanoparticle (NP) interface for quantitatively studying the SPR enhancement of the photovoltaic conversion. Theoretical and experimental results indicated that the graphene monolayer was transparent to the electromagnetic field. This transparency led to significant substrate-induced plasmonic hybridization at the heterostructure interface. Combined with interparticle plasmonic coupling, the substrate-induced plasmonics concentrated light at the interface and enhanced the photo-excitation of dyes, thus improving the photoelectric conversion. Such a mechanistic understanding of interfacial plasmonic enhancement will further promote the development of efficient plasmon-enhanced solar cells and composite photocatalysts. PMID:26412576

  17. Alizarin Dye based ultrasensitive plasmonic SERS probe for trace level Cadmium detection in drinking water

    PubMed Central

    Dasary, Samuel S.R.; Zones, Yolanda K.; Barnes, Sandra L.; Ray, P. C.; Singh, Anant K.

    2015-01-01

    Alizarin functionalized on plasmonic gold nanoparticle displays strong surface enhanced Raman scattering from the various Raman modes of Alizarin, which can be exploited in multiple ways for heavy metal sensing purposes. The present article reports a surface enhanced Raman spectroscopy (SERS) probe for trace level Cadmium in water samples. Alizarin, a highly Raman active dye was functionalized on plasmonic gold surface as a Raman reporter, and then 3-mercaptopropionic acid, 2,6-Pyridinedicarboxylic acid at pH 8.5 was immobilized on the surface of the nanoparticle for the selective coordination of the Cd (II). Upon addition of Cadmium, gold nanoparticle provide an excellent hotspot for Alizarin dye and Raman signal enhancement. This plasmonic SERS assay provided an excellent sensitivity for Cadmium detection from the drinking water samples. We achieved as low as 10 ppt sensitivity from various drinking water sources against other Alkali and heavy metal ions. The developed SERS probe is quite simple and rapid with excellent repeatability and has great potential for prototype scale up for field application. PMID:26770012

  18. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    NASA Astrophysics Data System (ADS)

    Shishodia, Manmohan Singh; Juneja, Soniya

    2016-05-01

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  19. UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling

    DTIC Science & Technology

    2016-06-20

    AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3.  DATES COVERED (From - To)  03 Feb 2014 to 02 Feb 2016 4.  TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several

  20. UV Nano Lights - Nonlinear Quantum Dot-Plasmon Coupling

    DTIC Science & Technology

    2016-06-20

    AFRL-AFOSR-JP-TR-2016-0072 UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling Eric Waclawik QUEENSLAND UNIVERSITY OF TECHNOLOGY Final Report 06...Final 3.  DATES COVERED (From - To)  03 Feb 2014 to 02 Feb 2016 4.  TITLE AND SUBTITLE UV Nano-Lights - Nonlinear Quantum Dot- Plasmon Coupling 5a...in the form of the localised surface plasmon resonance of the gold component of nanoparticle hybrids could enhance nonlinear emission by several

  1. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    PubMed

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  2. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate.

    PubMed

    Ding, Lijun; Gao, Yan; Di, Junwei

    2016-09-15

    Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System.

    PubMed

    Qian, Siyu; Lin, Ming; Ji, Wei; Yuan, Huizhen; Zhang, Yang; Jing, Zhenguo; Zhao, Jianzhang; Masson, Jean-François; Peng, Wei

    2018-05-25

    MicroRNA (miRNA) regulates gene expression and plays a fundamental role in multiple biological processes. However, if both single-stranded RNA and DNA can bind with capture DNA on the sensing surface, selectively amplifying the complementary RNA signal is still challenging for researchers. Fiber-optic surface plasmon resonance (SPR) sensors are small, accurate, and convenient tools for monitoring biological interaction. In this paper, we present a high sensitivity microRNA detection technique using phenylboronic acid functionalized Au nanoparticles (PBA-AuNPs) in fiber-optic SPR sensing systems. Due to the inherent difficulty directly detecting the hybridized RNA on the sensing surface, the PBA-AuNPs were used to selectively amplify the signal of target miRNA. The result shows that the method has high selectivity and sensitivity for miRNA, with a detection limit at 2.7 × 10 -13 M (0.27 pM). This PBA-AuNPs amplification strategy is universally applicable for RNA detection with various sensing technologies, such as surface-enhanced Raman spectroscopy and electrochemistry, among others.

  4. Luminescence enhancement in nanocomposite consisting of polyvinyl alcohol incorporated gold nanoparticles and Nile blue 690 perchlorate.

    PubMed

    Chubinidze, Ketevan; Partsvania, Besarion; Sulaberidze, Tamaz; Khuskivadze, Aleksandre; Davitashvili, Elene; Koshoridze, Nana

    2014-11-01

    We have experimentally demonstrated that the emission of visible light from the polymer matrix doped with luminescent dye and gold nanoparticles (GNPs) can be enhanced with the use of surface plasmon coupling. GNPs can enhance the luminescence intensity of nearby luminescent dye because of the interactions between the dipole moments of the dye and the surface plasmon field of the GNPs. The electric charge on the GNPs and the distance between GNPs and luminescent dye molecules have a significant effect on the luminescence intensity, and this enhancement depends strongly upon the excitation wavelength of the pumping laser source. In particular, by matching the plasmon frequency of GNPs to the frequency of the laser light source we have observed a strong luminescence enhancement of the nanocomposite consisting of GNPs coupled with luminescent dye Nile blue 690 perchlorate. This ability of controlling luminescence can be beneficially used in developing contrast agents for highly sensitive and specific optical sensing and imaging. This opens new possibilities for plasmonic applications in the solar energy field.

  5. Interfacial preparation and optical transmission surface plasmon resonance of Janus metamaterials membrane

    NASA Astrophysics Data System (ADS)

    Du, Yixuan; Zhang, Xiaowei; Li, Yunbo

    2018-01-01

    Janus metamaterials membrane had been fabricated using self-assembly strategy at the oil/water interface with thiol-terminated polymers. Janus metamaterials membrane exhibits a characteristic surface plasmon absorption band, in which the peak position is sensitive to the addition of polymer. The optical transmission surface plasmon resonance (T-SPR) peak has a blue shift at the visible region with addition of thiol-terminated polystyrene (PS-SH). With thiol-terminated poly (ethylene glycol) (PEG-SH) attachment onto the surface side of gold nanoparticles (AuNPs), the T-SPR band has a successive blue shift. One surprising thing is that it has a flat terrace on T-SPR band from 580 to 740 nm. In addition, The T-SPR of Janus metamaterials membrane dramatically changed with the addition PS-SH when the PEG-SH was capped on the opposite side. The morphologies of AuNPs membrane and Janus metamaterials membrane support the above mentioned result of SPR. In virtue of tunable SPR band, the Janus metamaterials membrane has great potential application in science-based design of optical sensing sensors and surface-enhanced optic sensitive detection.

  6. An improved, non-functionalized route to plasmonic nanoparticle based cellular probing through osmolyte mediation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Siddhanta, Soumik; Barman, Ishan

    2017-02-01

    Engineering nanostructured probes for ultra-sensitive detection of specific molecular species, our research seeks to capture the complex changes in cells and tissues that can predict disease progression in an individual. While such nanoparticle-based platforms are rapidly gaining a foothold in cancer diagnostics, one of the most concerning factors is the vulnerability of cells to the interaction with functional nanoparticles thereby raising the specter of systemic toxicity. The nanoparticles end up damaging the cells and disrupting cellular functions thereby impeding their imaging aim. Furthermore, PEGylation, and similar routes, force a tradeoff between desired nanoparticle properties (recognition, uptake, and reduced toxicity) and sensitivity of plasmon-enhanced spectroscopic sensing methods, such as surface-enhanced Raman spectroscopy (SERS) where the proximal presence of noble metal NP and the organic molecule of interest is key. In this work, we report a trehalose-mediated, non-surface functionalized route for cell-nanoparticle interactions that maintains cell viability while allowing selective interaction of the nanoparticle with the cell surface receptors and subsequent internalization. Through careful electron microscopy of nanoparticle-prostate cancer cells interactions, we elucidated that there exists a dynamic equilibrium between "free" cytosolic diffusion of the nanoparticles and endocytosis through vesicle formation - and trehalose tilts the scale in favor of the latter to mask the toxic effects of the nanoparticles. The precise molecular interpretation of this behavior was further probed through SERS, which directly points towards the protein stabilization properties of trehalose mediation during interaction of the nanoparticles with the plasma membrane components.

  7. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    NASA Astrophysics Data System (ADS)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  8. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.

    PubMed

    Gruenke, Natalie L; Cardinal, M Fernanda; McAnally, Michael O; Frontiera, Renee R; Schatz, George C; Van Duyne, Richard P

    2016-04-21

    Ultrafast surface-enhanced Raman spectroscopy (SERS) has the potential to study molecular dynamics near plasmonic surfaces to better understand plasmon-mediated chemical reactions such as plasmonically-enhanced photocatalytic or photovoltaic processes. This review discusses the combination of ultrafast Raman spectroscopic techniques with plasmonic substrates for high temporal resolution, high sensitivity, and high spatial resolution vibrational spectroscopy. First, we introduce background information relevant to ultrafast SERS: the mechanisms of surface enhancement in Raman scattering, the characterization of plasmonic materials with ultrafast techniques, and early complementary techniques to study molecule-plasmon interactions. We then discuss recent advances in surface-enhanced Raman spectroscopies with ultrafast pulses with a focus on the study of molecule-plasmon coupling and molecular dynamics with high sensitivity. We also highlight the challenges faced by this field by the potential damage caused by concentrated, highly energetic pulsed fields in plasmonic hotspots, and finally the potential for future ultrafast SERS studies.

  9. Mechanistic Insights into Photocatalyzed Hydrogen Desorption from Palladium Surfaces Assisted by Localized Surface Plasmon Resonances.

    PubMed

    Spata, Vincent A; Carter, Emily A

    2018-04-24

    Nanoparticles synthesized from plasmonic metals can absorb low-energy light, producing an oscillation/excitation of their valence electron density that can be utilized in chemical conversions. For example, heterogeneous photocatalysis can be achieved within heterometallic antenna-reactor complexes (HMARCs), by coupling a reactive center at which a chemical reaction occurs to a plasmonic nanoparticle that acts as a light-absorbing antenna. For example, HMARCs composed of aluminum antennae and palladium (Pd) reactive centers have been demonstrated recently to catalyze selective hydrogenation of acetylene to ethylene. Here, we explore within a theoretical framework the rate-limiting step of hydrogen photodesorption from a Pd surface-crucial to achieving partial rather than full hydrogenation of acetylene-to understand the mechanism behind the photodesorption process within the HMARC assembly. To properly describe electronic excited states of the metal-molecule system, we employ embedded complete active space self-consistent field and n-electron valence state perturbation theory to second order within density functional embedding theory. The results of these calculations reveal that the photodesorption mechanism does not create a frequently invoked transient negative ion species but instead enhances population of available excited-state, low-barrier pathways that exhibit negligible charge-transfer character.

  10. Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions

    NASA Astrophysics Data System (ADS)

    Compaijen, P. J.; Malyshev, V. A.; Knoester, J.

    2018-02-01

    We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, as x-1 and x-2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon transport at large distances. In addition, even though this signal is spread in the propagation direction and has the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with distance, indicating that this part of the signal is confined to the array.

  11. Surface plasmon-enhanced photovoltaic device

    DOEpatents

    Kostecki, Robert; Mao, Samuel

    2014-10-07

    Photovoltaic devices are driven by intense photoemission of "hot" electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.

  12. Hybrid plasmonic nanodevices: Switching mechanism for the nonlinear emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragas, Andrea V.; Singh, Mahi R.

    2014-03-31

    Control of the light emission at the nanoscale is of central interest in nanophotonics due to the many applications in very different fields, ranging from quantum information to biophysics. Resonant excitation of surface plasmon polaritons in metal nanoparticles create nanostructured and enhanced light fields around those structures, which produce their strong interaction in a hybrid nanodevice with other plasmonic or non-plasmonic objects. This interaction may in turn also modulate the far field with important consequences in the applications. We show in this paper that the nonlinear emission from semiconductor quantum dots is strongly affected by the close presence of metalmore » nanoparticles, which are resonantly excited. Using a pulsed laser, optical second harmonic is generated in the quantum dot, and it is highly enhanced when the laser is tuned around the nanoparticle plasmon resonance. Even more interesting is the demonstration of a switching mechanism, controlled by an external continuous-wave field, which can enhance or extinguish the SH signal, even when the pulsed laser is always on. Experimental observations are in excellent agreement with the theoretical calculations, based on the dipole-dipole near-field coupling of the objects forming the hybrid system.« less

  13. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.

    PubMed

    Pham, Xuan-Hung; Hahm, Eunil; Kim, Tae Han; Kim, Hyung-Mo; Lee, Sang Hun; Lee, Yoon-Sik; Jeong, Dae Hong; Jun, Bong-Hyun

    2017-06-23

    In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 10 10 . The detection limit of liposome was calculated to be 1.3 × 10 -17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.

  14. Nanoengineered Plasmonic Hybrid Systems for Bio-nanotechnology

    NASA Astrophysics Data System (ADS)

    Leong, Kirsty

    Plasmonic hybrid systems are fabricated using a combination of lithography and layer-by-layer directed self-assembly approaches to serve as highly sensitive nanosensing devices. This layer-by-layer directed self-assembly approach is utilized as a hybrid methodology to control the organization of quantum dots (QDs), nanoparticles, and biomolecules onto inorganic nanostructures with site-specific attachment and functionality. Here, surface plasmon-enhanced nanoarrays are fabricated where the photoluminescence of quantum dots and conjugated polymer nanoarrays are studied. This study was performed by tuning the localized surface plasmon resonance and the distance between the emitter and the metal surface using genetically engineered polypeptides as binding agents and biotin-streptavidin binding as linker molecules. In addition, these nanoarrays were also chemically modified to support the immobilization and label-free detection of DNA using surface enhanced Raman scattering. The surface of the nanoarrays was chemically modified using an acridine containing molecule which can act as an intercalating agent for DNA. The self-assembled monolayer (SAM) showed the ability to immobilize and intercalate DNA onto the surface. This SAM system using surface enhanced Raman scattering (SERS) serves as a highly sensitive methodology for the immobilization and label-free detection of DNA applicable into a wide range of bio-diagnostic platforms. Other micropatterned arrays were also fabricated using a combination of soft lithography and surface engineering. Selective single cell patterning and adhesion was achieved through chemical modifications and surface engineering of poly(dimethylsiloxane) surface. The surface of each microwell was functionally engineered with a SAM which contained an aldehyde terminated fused-ring aromatic thiolated molecule. Cells were found to be attracted and adherent to the chemically modified microwells. By combining soft lithography and surface engineering

  15. Facile Photochemical Synthesis of Au/Pt/g-C3N4 with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation.

    PubMed

    Xue, Jinjuan; Ma, Shuaishuai; Zhou, Yuming; Zhang, Zewu; He, Man

    2015-05-13

    A novel plasmonic photocatalyst, Au/Pt/g-C3N4, was prepared by a facile calcination-photodeposition technique. The samples were characterized by X-ray diffraction, energy-dispersive spectroscopy, transmission electron microscopy, and UV-vis diffuse reflectance spectroscopy, and the results demonstrated that the Au and Pt nanoparticles (7-15 nm) were well-dispersed on the surfaces of g-C3N4. The Au/Pt codecorated g-C3N4 heterostructure displayed enhanced photocatalytic activity for antibiotic tetracycline hydrochloride (TC-HCl) degradation, and the degradation rate was 3.4 times higher than that of pure g-C3N4 under visible light irradiation. The enhancement of photocatalytic activity could be attributed to the surface plasmon resonance effect of Au and electron-sink function of Pt nanoparticles, which improve the optical absorption property and photogenerated charge carriers separation of g-C3N4, synergistically facilitating the photocatalysis process. Finally, a possible photocatalytic mechanism for degrading TC-HCl by Au/Pt/g-C3N4 heterostructure was tentatively proposed.

  16. Plasmonic and silicon spherical nanoparticle antireflective coatings

    NASA Astrophysics Data System (ADS)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  17. Plasmonic and silicon spherical nanoparticle antireflective coatings

    PubMed Central

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  18. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    PubMed

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  19. Significantly enhanced UV luminescence by plasmonic metal on ZnO nanorods patterned by screen-printing.

    PubMed

    Zhao, Jun; Cui, Shuyuan; Zhang, Xingang; Li, Wenqing

    2018-08-31

    A smart synthetic method is conceived to construct large batches of ZnO nanostructures to meet market demand for light-emitting diodes. Utilizing the localized surface plasmon resonance of metal nanoparticles (NPs) facilitates the recombination of electron-hole pairs and the release of photons. Compared to raw ZnO nanorods (NRs), ZnO NRs@HfO 2 @Al NPs show a ∼120× enhancement in ultraviolet (UV) photoluminescence (PL), while ZnO NRs@HfO 2 @Ag NPs show a six-fold enhancement. Because the surface plasmon energy of Al is nearer the ZnO band gap, the PL enhancement of ZnO NRs covered with Al is stronger than that of those covered with Ag. Based on this analysis, three-dimensional graphical ZnO NR arrays were manufactured by screen-printing, a mass production technique. After covering the arrays with layers of HfO 2 and Al NPs, the UV PL intensities of the corresponding substrates were increased by approximately 16×. This indicates the potential to mass-produce highly efficient optoelectronic devices.

  20. Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements.

    PubMed

    He, Jinna; Fan, Chunzhen; Ding, Pei; Zhu, Shuangmei; Liang, Erjun

    2016-02-10

    Surface enhanced coherent anti-Stokes Raman scattering (SECARS) is a sensitive tool and promising for single molecular detection and chemical selective imaging. However, the enhancement factors (EF) were only 10~100 for colloidal silver and gold nanoparticles usually used as SECARS substrates. In this paper, we present a design of SECARS substrate consisting of three asymmetric gold disks and strategies for maximizing the EF by engineering near-field properties of the plasmonic Fano nanoassembly. It is found that the E-field "hot spots" corresponding to three different frequencies involved in SECARS process can be brought to the same spatial locations by tuning incident orientations, giving rise to highly confined SECARS "hot spots" with the EF reaching single-molecule sensitivity. Besides, an even higher EF of SECARS is achieved by introducing double Fano resonances in this plasmonic nanoassembly via further enlarging the sizes of the constituent disks. These findings put an important step forward to the plasmonic substrate design for SECARS as well as for other nonlinear optical processes.

  1. Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater

    PubMed Central

    Zhang, Zhijian; Kusimo, Abisola; Yu, Miao

    2014-01-01

    We present an optofluidic microvalve utilizing an embedded, surface plasmon-enhanced fiber optic microheater. The fiber optic microheater is formed by depositing a titanium thin film on the roughened end-face of a silica optical fiber that serves as a waveguide to deliver laser light to the titanium film. The nanoscale roughness at the titanium-silica interface enables strong light absorption enhancement in the titanium film through excitation of localized surface plasmons as well as facilitates bubble nucleation. Our experimental results show that due to the unique design of the fiber optic heater, the threshold laser power required to generate a bubble is greatly reduced and the bubble growth rate is significantly increased. By using the microvalve, stable vapor bubble generation in the microchannel is demonstrated, which does not require complex optical focusing and alignment. The generated vapor bubble is shown to successfully block a liquid flow channel with a size of 125 μm × 125 μm and a flow rate of ∼10 μl/min at ∼120 mW laser power. PMID:25538813

  2. Temperature dependent localized surface plasmon resonance properties of supported gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laha, Ranjit; Ranjan, Pranay

    2016-05-23

    The well known localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) supported on a dielectric substrate depends on the particle shape, size and type of dielectric material. The particle size and shape mainly vary with the method of preparation and the parameters involved there in. In this report, we show preparation of AuNPs supported on quartz substrate by direct current sputtering followed by thermal annealing at an optimized temperature of 400 °C. The samples were characterized using optical absorption spectra, scanning electron microscopy (SEM) and the energy dispersive x-ray spectrum. The LSPR position could be tuned by varying annealingmore » temperature. The LSPR was found to be blue shifted up to 10 nm with annealing temperature varying from 400 °C to 800 °C. The change in LSPR was ascribed to the morphology of AuNPs over quartz.« less

  3. Surface-plasmon resonance-enhanced multiphoton emission of high-brightness electron beams from a nanostructured copper cathode.

    PubMed

    Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P

    2013-02-15

    We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.

  4. Conductive connection induced speed-up of localized-surface-plasmon dynamics

    NASA Astrophysics Data System (ADS)

    Cun, Peng; Wang, Meng; Huang, Cuiying; Huang, Pei; He, Xinkui; Wei, Zhiyi; Zhang, Xinping

    2018-01-01

    Conductive connection of localized surface plasmons (LSPs) was achieved by depositing a layer of continuous gold film onto the top surface of a matrix of randomly distributed gold nanoparticles (AuNPs) that were originally isolated on a glass substrate. Ultrafast spectroscopic response of such plasmonic nanostructures was investigated by femtosecond pump-probe detection technique. The transient-absorption data showed large redshift and broadening of the resonance spectrum of the conductively connected AuNPs with respect to the isolated ones. Such effects led to modulation on the evolution dynamics of LSPs in a transient transition spectral band. Making use of the temporal and spectral dislocation between the edges of transition band, we achieved much increased speed of the plasmonic optical switching effect.

  5. 3D plasmonic nanoarchitectures for extreme light concentration

    NASA Astrophysics Data System (ADS)

    Arnob, Md Masud Parvez; Zhao, Fusheng; Shih, Wei-Chuan

    2017-08-01

    Plasmonic nanomaterials are known to concentrate incident light to their surfaces by collective electron oscillation. Plasmonic hot-spot refers to locations where electromagnetic fields are particularly enhanced relative to the incident field. Traditional plasmonic nanomaterials are 1D (e.g., colloidal nanoparticles) or 2D (lithographically patterned nanostructure arrays) in nature, which typically result in sparse field concentration patterns. To improve efficiency and better utilization of hot-spots, we investigate 3D plasmonic nanoarchitecture where abundant hot-spots are formed in a 3D volumetric fashion, a feature drastically departing from traditional nanostructures.

  6. Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers.

    PubMed

    Huang, Yu; Ma, Lingwei; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2016-01-28

    By three-dimensional (3D) finite element method (FEM) plasmon mapping, gradual plasmon evolutions of both bonding dipole plasmon (BDP) and charge transfer plasmon (CTP) modes are visualized. In particular, the evolved BDP mode provides a physical insight into the rapid degeneration of electromagnetic hot spots in practical applications, while the rising CTP mode enables a huge near-field enhancement for potential plasmonic devices at infrared wavelengths.

  7. Magnetic circular dichroism of thiolate-protected plasmonic gold nanoparticles: separating the effects of interband transitions and surface magnetoplasmon resonance

    NASA Astrophysics Data System (ADS)

    Shiratsu, Taisuke; Yao, Hiroshi

    2016-10-01

    Magneto-optical activity is demonstrated in thiolate-protected Au nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiolate-protected Au nanoparticles with the mean diameters ranging from 2.0 to 4.7 nm. The nanoparticles larger than 2.4 nm in diameter exhibit a derivative-like MCD signal, indicating the presence of two circular modes of surface magnetoplasmon, but the spectral shape is so asymmetric that its identification is rather difficult. This is due to the contribution of interband transitions occurring at around the localized surface plasmon resonance (LSPR) frequency. We then develop an efficient method to phenomenologically separate the effects of magnetoplasmonic intraband (= Drude) and interband transitions in the measured MCD spectra using an approximation that the optical response of the Au nanoparticle with a critical size (˜2.0 nm) for the disappearance of LSPR, which is also experimentally obtainable, is substantially dominated by the interband transitions. The consistency of the method is ensured for tiopronin-protected Au nanoparticles, and a very small bisignate magnetoplasmonic response hidden in the total MCD spectrum can be extracted. The practical advantage of the proposed method is that we can intuitively and effectively evaluate the characteristic features of the surface magnetoplasmon of thiolate-protected Au nanoparticles without performing complicated Mie or quasielectrostatic calculations.

  8. Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.

  9. Focusing short-wavelength surface plasmons by a plasmonic mirror.

    PubMed

    Ogut, Erdem; Yanik, Cenk; Kaya, Ismet Inonu; Ow-Yang, Cleva; Sendur, Kursat

    2018-05-01

    Emerging applications in nanotechnology, such as superresolution imaging, ultra-sensitive biomedical detection, and heat-assisted magnetic recording, require plasmonic devices that can generate intense optical spots beyond the diffraction limit. One of the important drawbacks of surface plasmon focusing structures is their complex design, which is significant for ease of integration with other nanostructures and fabrication at low cost. In this study, a planar plasmonic mirror without any nanoscale features is investigated that can focus surface plasmons to produce intense optical spots having lateral and vertical dimensions of λ/9.7 and λ/80, respectively. Intense optical spots beyond the diffraction limit were produced from the plasmonic parabolic mirror by exciting short-wavelength surface plasmons. The refractive index and numerical aperture of the plasmonic parabolic mirror were varied to excite short-wavelength surface plasmons. Finite-element method simulations of the plasmonic mirror and scanning near-field optical microscopy experiments have shown very good agreement.

  10. Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons

    PubMed Central

    Yao, Yung-Chi; Hwang, Jung-Min; Yang, Zu-Po; Haung, Jing-Yu; Lin, Chia-Ching; Shen, Wei-Chen; Chou, Chun-Yang; Wang, Mei-Tan; Huang, Chun-Ying; Chen, Ching-Yu; Tsai, Meng-Tsan; Lin, Tzu-Neng; Shen, Ji-Lin; Lee, Ya-Ju

    2016-01-01

    Enhancement of the external quantum efficiency of a GaN-based vertical-type light emitting diode (VLED) through the coupling of localized surface plasmon (LSP) resonance with the wave-guided mode light is studied. To achieve this experimentally, Ag nanoparticles (NPs), as the LSP resonant source, are drop-casted on the most top layer of waveguide channel, which is composed of hydrothermally synthesized ZnO nanorods capped on the top of GaN-based VLED. Enhanced light-output power and external quantum efficiency are observed, and the amount of enhancement remains steady with the increase of the injected currents. To understand the observations theoretically, the absorption spectra and the electric field distributions of the VLED with and without Ag NPs decorated on ZnO NRs are determined using the finite-difference time-domain (FDTD) method. The results prove that the observation of enhancement of the external quantum efficiency can be attributed to the creation of an extra escape channel for trapped light due to the coupling of the LSP with wave-guided mode light, by which the energy of wave-guided mode light can be transferred to the efficient light scattering center of the LSP. PMID:26935648

  11. Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat

    USDA-ARS?s Scientific Manuscript database

    A rapid, sensitive and multiplexed imaging surface plasmon resonance (iSPR) biosensor assay was developed and validated for three Fusarium toxins, deoxynivalenol (DON), zearalenone (ZEA) and T-2 toxin. The iSPR assay was based on a competitive inhibition format with secondary antibodies (Ab2) conjug...

  12. Self-assembled nanoparticle aggregates: Organizing disorder for high performance surface-enhanced spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasolato, C.; Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, Rome; Domenici, F., E-mail: fabiodomenici@gmail.com

    2015-06-23

    The coherent oscillations of the surface electron gas, known as surface plasmons, in metal nanostructures can give rise to the localization of intense electromagnetic fields at the metal-dielectric interface. These strong fields are exploited in surface enhanced spectroscopies, such as Surface Enhanced Raman Scattering (SERS), for the detection and characterization of molecules at very low concentration. Still, the implementation of SERS-based biosensors requires a high level of reproducibility, combined with cheap and simple fabrication methods. For this purpose, SERS substrates based on self-assembled aggregates of commercial metallic nanoparticles (Nps) can meet all the above requests. Following this line, we reportmore » on a combined micro-Raman and Atomic Force Microscopy (AFM) analysis of the SERS efficiency of micrometric silver Np aggregates (enhancement factors up to 10{sup 9}) obtained by self-assembly. Despite the intrinsic disordered nature of these Np clusters, we were able to sort out some general rules relating the specific aggregate morphology to its plasmonic response. We found strong evidences of cooperative effects among the NPs within the cluster and namely a clear dependence of the SERS-efficiency on both the cluster area (basically linear) and the number of stacked NPs layers. A cooperative action among the superimposed layers has been proved also by electromagnetic simulations performed on simplified nanostructures consisting of stacking planes of ordered Nps. Being clear the potentialities of these disordered self-assembled clusters, in terms of both easy fabrication and signal enhancement, we developed a specific nanofabrication protocol, based on electron beam lithography and molecular functionalization, that allowed for a fine control of the Np assemblies into designed shapes fixing their area and height. In particular, we fabricated 2D ordered arrays of disordered clusters choosing gold Nps owing to their high stability. AFM

  13. Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin.

    PubMed

    Khlebtsov, Boris N; Tuchina, Elena S; Khanadeev, Vitaly A; Panfilova, Elizaveta V; Petrov, Pavel O; Tuchin, Valery V; Khlebtsov, Nikolai G

    2013-04-01

    We fabricated composite nanoparticles consisting of a plasmonic core (gold nanorods or gold-silver nanocages) and a hematoporphyrin-doped silica shell. The dual photodynamic and photothermal activities of such nanoparticles against Staphylococcus aureus 209 P were studied and compared with the activities of reference solutions (hematoporphyrin or silica-coated plasmonic nanoparticles). Bacteria were incubated with nanocomposites or with the reference solutions for 15 min, which was followed by CW light irradiation with a few exposures of 5 to 30 min. To stimulate the photodynamic and photothermal activities of the nanocomposites, we used LEDs (405 and 625 nm) and a NIR laser (808 nm), respectively. We observed enhanced inactivation of S. aureus 209 P by nanocomposites in comparison with the reference solutions. By using fluorescence microscopy and spectroscopy, we explain the enhanced antimicrobial effect of hematoporphyrin-doped nanocomposites by their selective accumulation in the vicinity of the bacteria. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    PubMed

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  15. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. Themore » theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.« less

  16. On the Effect of Dipole-Dipole Interactions on the Quantum Statistics of Surface Plasmons in Multiparticle Spaser Systems

    NASA Astrophysics Data System (ADS)

    Shesterikov, A. V.; Gubin, M. Yu.; Karpov, S. N.; Prokhorov, A. V.

    2018-04-01

    The problem of controlling the quantum dynamics of localized plasmons has been considered in the model of a four-particle spaser composed of metallic nanoparticles and semiconductor quantum dots. Conditions for the observation of stable steady-state regimes of the formation of surface plasmons in this model have been determined in the mean-field approximation. It has been shown that the presence of strong dipole-dipole interactions between metallic nanoparticles of the spaser system leads to a considerable change in the quantum statistics of plasmons generated on the nanoparticles.

  17. Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje

    We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.

  18. Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy

    PubMed Central

    Wang, Jiangcai; Lin, Weihua; Cao, En; Xu, Xuefeng; Liang, Wenjie; Zhang, Xiaofang

    2017-01-01

    The performance of chemical reactions has been enhanced immensely with surface plasmon resonance (SPR)-based sensors. In this review, the principle and application of SPR sensors are introduced and summarized thoroughly. We introduce the mechanism of the SPR sensors and present a thorough summary about the optical design, including the substrate and excitation modes of the surface plasmons. Additionally, the applications based on SPR sensors are described by the Raman and fluorescence spectroscopy in plasmon-driven surface catalytic reactions and the measurement of refractive index sensing, especially. PMID:29212139

  19. Graphene as a local probe to investigate near-field properties of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie

    2018-04-01

    Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).

  20. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy.

    PubMed

    Yang, Yamin; Hu, Yue; Du, Henry; Ren, Lei; Wang, Hongjun

    2018-01-01

    In recognition of the potentials of gold nanoparticles (Au NPs) in enhanced photodynamic therapy (PDT) for cancer, it is desirable to further understand the shape-dependent surface plasmonic resonance (SPR) properties of various gold nanostructures and evaluate their performances in PDT. Monodispersed colloidal spherical solid Au NPs were synthesized by UV-assisted reduction using chloroauric acid and sodium citrate, and hollow gold nanorings (Au NRs) with similar outer diameter were synthesized based on sacrificial galvanic replacement method. The enhanced electromagnetic (EM) field distribution and their corresponding efficiency in enhancing singlet oxygen ( 1 O 2 ) generation of both gold nanostructures were investigated based on theoretical simulation and experimental measurements. Their shape-dependent SPR response and resulted cell destruction during cellular PDT in combination with 5-aminolevulinic acid (5-ALA) were further studied under different irradiation conditions. With comparable cellular uptake, more elevated formation of 1 O 2 in 5-ALA-enabled PDT was detected with the presence of Au NRs than that with Au NPs under broadband light irradiation in both cell-free and intracellular conditions. As a result of the unique morphological attributes, exhibiting plasmonic effect of Au NRs was still achievable in the near infrared (NIR) region, which led to an enhanced therapeutic efficacy of PDT under NIR light irradiation. Shape-dependent SPR response of colloidal Au NPs and Au NRs and their respective effects in promoting PDT efficiency were demonstrated in present study. Our innovative colloidal Au NRs with interior region accessible to surrounding photosensitizers would serve as efficient enhancers of PDT potentially for deep tumor treatment.

  1. Electron transfer dynamics and yield from gold nanoparticle to different semiconductors induced by plasmon band excitation

    NASA Astrophysics Data System (ADS)

    Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.

    2018-06-01

    Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.

  2. Fiber Surface Modification Technology for Fiber-Optic Localized Surface Plasmon Resonance Biosensors

    PubMed Central

    Zhang, Qiang; Xue, Chenyang; Yuan, Yanling; Lee, Junyang; Sun, Dong; Xiong, Jijun

    2012-01-01

    Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS. PMID:22736974

  3. Strong interaction between dye molecule and electromagnetic field localized around 1 Nm3 at gaps of nanoparticle dimers by plasmon resonance

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Yamamoto, Yuko S.

    2017-11-01

    Electronic transition rates of a molecule located at a crevasse or a gap of a plasmonic nanoparticle (NP) dimer are largely enhanced up to the factor of around 106 due to electromagnetic (EM) coupling between plasmonic and molecular electronic resonances. The coupling rate is determined by mode density of the EM fields at the crevasse and the oscillator strength of the local electronic resonance of a molecule. The enhancement by EM coupling at a gap of plasmonic NP dimer enables us single molecule (SM) Raman spectroscopy. Recently, this type of research has entered a new regime wherein EM enhancement effects cannot be treated by conventional theorems, namely EM mechanism. Thus, such theorems used for the EM enhancement effect should be re-examined. We here firstly summarize EM mechanism by using surface-enhanced Raman scattering (SERS), which is common in EM enhancement phenomena. Secondly, we focus on recent two our studies on probing SM fluctuation by SERS within the spatial resolution of sub-nanometer scales. Finally, we discuss the necessity of re-examining the EM mechanism with respect to two-fold breakdowns of the weak coupling assumption: the breakdown of Kasha's rule induced by the ultra-fast plasmonic de-excitation and the breakdown of the weak coupling by EM coupling rates exceeding both the plasmonic and molecular excitonic dephasing rates.

  4. Terahertz plasmon and surface-plasmon modes in hollow nanospheres

    PubMed Central

    2012-01-01

    We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121

  5. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices

    PubMed Central

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  6. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices.

    PubMed

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-05-16

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers.

  7. Preliminary Understanding of Surface Plasmon-Enhanced Circular Dichroism Spectroscopy by Single Particle Imaging

    NASA Astrophysics Data System (ADS)

    Zhan, Kangshu

    Monitoring chiral optical signals of biomolecules as their conformation changes is an important means to study their structures, properties, and functions. Most measurements, however, are ensemble measurements because chiral optical signals from a single biomolecule is often too weak to be detected. In this dissertation, I present my early attempts to study conformational changes of adsorbed proteins by taking advantage of the enhanced electromagnetic (EM) field around a well-designed plasmonic nanofeature. In particular, I discuss the detection of protein adsorption and denaturation on metallic nanoparticles using single particle scattering and CD spectroscopic imaging. Particles of two distinctively different sizes were compared and two different sample protein molecules were studied. A combination of experimental and computational tools was used to simulate and interpret the collected scattering and CD results. The first chapter provides a brief overview of the state-of-art research in CD spectroscopic studies at the single particle level. Three different means to make particles capable of chiral detection are discussed. Various applications beyond single particle imaging are presented to showcase the potential of the described research project, beyond our immediate goals. The second chapter describes my initial characterization of large, metallic, anisotropic nanorods and the establishment of experimental procedures used later for spectrum reconstruction, data visualization and analysis. The physical shape and structure of the particles were imaged by scanning electron microscopy (SEM), the chemical composition by energy dispersive X-ray Spectroscopy (EDS), and the optical properties by darkfield microscopy. An experimental protocol was developed to connect information collected from separate techniques for the same particle, with the aims of discovering any possible structural-property correlation. The reproducibility of the single particle imaging method was

  8. Enhanced emission of Nile Red on plasmonic platforms

    NASA Astrophysics Data System (ADS)

    Synak, Anna; Bojarski, Piotr; Grobelna, Beata; Gryczyński, Ignacy; Fudala, Rafał; Mońka, Michal

    2018-04-01

    Strongly enhanced fluorescence of Nile Red deposited in the vicinity of silver nanoparticles and gold semitransparent mirror was observed. The properties of three different plasmonic platforms based on TiO2, TiO2-GLYMO (1:1) and SiO2 matrices were studied with spectroscopic and microscopic techniques. Significant differences of Nile Red spectroscopic properties in both matrices were observed. In particular, the sensitivity of Nile Red fluorescence enhancement and its peak location to the polarity of local surrounding was found.

  9. High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies.

    PubMed

    Zhang, Dawei; Zhang, Kuang; Wu, Qun; Ding, Xumin; Sha, Xuejun

    2017-02-06

    In this paper, a planar waveguide based on spoof surface plasmon polaritons (SSPPs) with metals on both sides of the corrugated strip as grounds is firstly proposed in microwave region. Simple and efficient conversion between guided waves and SSPPs is realized by gradient corrugated strip with grounds on both sides. Compared with plasmonic waveguide with flaring ground [Laser Photonics Rev. 8, 146 (2014)], the addition of grounds suppresses the radiation loss effectively and improves the low-frequency performance with tighter field confinement, which leads to a wider operating bandwidth. Moreover, as the asymptotic frequency of SSPPs decreasing, the confinement of SSPPs is further enhanced by a defected ground structure (DGS), which is achieved by the periodic grooves symmetrical to those on the corrugated strip. Therefore, miniaturization of the proposed waveguide can be realized. Measured results validate both high efficiency of momentum and impedance matching and enhanced performance in the region of lower frequencies with the wave vectors close to those in free space. Such results have significant values in plasmonic functional devices and integrated circuits in microwave frequencies.

  10. Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties.

    PubMed

    Pedrueza, E; Sancho-Parramon, J; Bosch, S; Valdés, J L; Martinez-Pastor, J P

    2013-02-15

    The anti-reflective effect of dielectric coatings used in silicon solar cells has traditionally been the subject of intensive studies and practical applications. In recent years the interest has permanently grown in plasmonic layers based on metal nanoparticles, which are shown to increase light trapping in the underlying silicon. In the present work we have combined these two concepts by means of in situ synthesis of Au nanoparticles in a dielectric matrix (TiO2), which is commonly used as an anti-reflective coating in silicon solar cells, and added the third element: a 10-20% porosity in the matrix. The porosity is formed by means of a controllable wet etching by low concentration HF. As a consequence, the experimentally measured reflectance of silicon coated by such a plasmonic layer decreases to practically zero in a broad wavelength region around the localized surface plasmon resonance. Furthermore, we demonstrate that extinction and reflectance spectra of silicon coated by the plasmonic films can be successfully accounted for by means of Fresnel formulae, in which a double refractive index of the metal-dielectric material is used. This double refractive index cannot be explained by effective medium theory (Maxwell-Garnett, for example) and appears when the contribution of Au nanoparticles located at the TiO2/Si interface is high enough to result in formation of interface surface plasmon modes.

  11. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Oates, T. W. H.; Wormeester, H.; Arwin, H.

    2011-12-01

    In this article, spectroscopic ellipsometry studies of plasmon resonances at metal-dielectric interfaces of thin films are reviewed. We show how ellipsometry provides valuable non-invasive amplitude and phase information from which one can determine the effective dielectric functions, and how these relate to the material nanostructure and define exactly the plasmonic characteristics of the system. There are three related plasmons that are observable using spectroscopic ellipsometry; volume plasmon resonances, surface plasmon polaritons and particle plasmon resonances. We demonstrate that the established method of exploiting surface plasmon polaritons for chemical and biological sensing may be enhanced using the ellipsometric phase information and provide a comprehensive theoretical basis for the technique. We show how the particle and volume plasmon resonances in the ellipsometric spectra of nanoparticle films are directly related to size, surface coverage and constituent dielectric functions of the nanoparticles. The regularly observed splitting of the particle plasmon resonance is theoretically described using modified effective medium theories within the framework of ellipsometry. We demonstrate the wealth of information available from real-time in situ spectroscopic ellipsometry measurements of metal film deposition, including the evolution of the plasmon resonances and percolation events. Finally, we discuss how generalized and Mueller matrix ellipsometry hold great potential for characterizing plasmonic metamaterials and sub-wavelength hole arrays.

  12. Optimized organic photovoltaics with surface plasmons

    NASA Astrophysics Data System (ADS)

    Omrane, B.; Landrock, C.; Aristizabal, J.; Patel, J. N.; Chuo, Y.; Kaminska, B.

    2010-06-01

    In this work, a new approach for optimizing organic photovoltaics using nanostructure arrays exhibiting surface plasmons is presented. Periodic nanohole arrays were fabricated on gold- and silver-coated flexible substrates, and were thereafter used as light transmitting anodes for solar cells. Transmission measurements on the plasmonic thin film made of gold and silver revealed enhanced transmission at specific wavelengths matching those of the photoactive polymer layer. Compared to the indium tin oxide-based photovoltaic cells, the plasmonic solar cells showed overall improvements in efficiency up to 4.8-fold for gold and 5.1-fold for the silver, respectively.

  13. Enhanced Circular Dichroism via Symmetry Breaking in a Chiral Plasmonic Nanoparticle Oligomer

    NASA Astrophysics Data System (ADS)

    Le, Khai Q.

    2018-02-01

    A chiral plasmonic nanoparticle oligomer, consisting of four symmetrically arranged nanodisks of different heights and having different optical absorption responses to left and right-handed circularly polarized light illumination, has been experimentally reported in the literature. The resulting circular dichroism (CD) signal was detectable with state of the art CD spectrometers but was much weaker than those of existing chiral nanostructures, i.e., three-dimensional (3-D) chiral metamaterials. In this letter, via symmetry breaking in such an oligomer, the author demonstrates that the CD can be enhanced up to six times compared to that of a symmetric oligomer, and is in the range of a relevant 3-D chiral metamolecule. Through investigation of geometrical parameters including particle size, asymmetric and symmetric gaps, the CD evolution was reported, which provides a useful guideline for design of two-dimensional chiral oligomers adopted as efficient probes for CD spectroscopic applications.

  14. Individual and collective modes of surface magnetoplasmon in thiolate-protected silver nanoparticles studied by MCD spectroscopy.

    PubMed

    Yao, Hiroshi; Shiratsu, Taisuke

    2016-06-07

    Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+); (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+-ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement.

  15. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    PubMed

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples.

  16. Enhancement in volatile organic compound sensitivity of aged Ag nanoparticle aggregates by plasma exposure

    NASA Astrophysics Data System (ADS)

    Hosomi, Kei; Ozaki, Koichi; Nishiyama, Fumitaka; Takahiro, Katsumi

    2018-01-01

    Silver nanoparticles (Ag NPs) tarnish easily upon exposure to ambient air, and eventually lose their ability as a plasmonic sensor via weakened localized surface plasmon resonance (LSPR). We have demonstrated the enhancement in plasmonic sensitivity of tarnished Ag NP aggregates to vapors of volatile organic compounds (VOCs) such as ethanol and butanol by Ar plasma exposure. The response of Ag NP aggregates to the VOC vapors was examined by measuring the change in optical extinction spectra before and after exposure to the vapors. The sensitivity of Ag NP aggregates decreased gradually when stored in ambient air. The performance of tarnished Ag NPs for ethanol sensing was recovered by exposure to argon (Ar) plasma for 15 s. The reduction from oxidized Ag to metallic one was recognized, while morphological change was hardly noticeable after the plasma exposure. We conclude, therefore, that a compositional change rather than a morphological change occurred on Ag NP surfaces enhances the sensing ability of tarnished Ag NP aggregates to the VOC vapors.

  17. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance.

    PubMed

    Huang, Wenyu; Qian, Wei; El-Sayed, Mostafa A

    2006-10-18

    Femtosecond laser irradiation of assembled nanoprisms on a quartz substrate at their strong absorbing surface plasmon resonance frequency causes their propulsion from the substrate. SEM and AFM show that the particles fly while keeping their prismatic shape, but they decrease in size by an amount that can be calculated assuming atomic sublimation. Several mechanisms are mentioned, but the sublimation mechanism, which rapidly builds up pressure under the particle and propels it away from substrate, is discussed in detail. From the kinetic energy given to the flying nanoparticle, an initial velocity of approximately 160 m/s ( approximately 360 miles/h) is calculated. The dependence of the observed flying mechanism on the rate of energy deposition (i.e., with nanosecond vs femtosecond laser pulses) is discussed.

  18. Effect of film thickness on localized surface plasmon enhanced chemical sensor

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2014-05-01

    A highly-sensitive, reliable, simple and inexpensive chemical detection and identification platform is demonstrated. The sensing technique is based on localized surface plasmon enhanced Raman scattering measurements from gold-coated highly-ordered symmetric nanoporous ceramic membranes fabricated from anodic aluminum oxide. To investigate the effects of the thickness of the sputter-coated gold films on the sensitivity of sensor, and optimize the performance of the substrates, the geometry of the nanopores and the film thicknesses are varied in the range of 30 nm to 120 nm. To characterize the sensing technique and the detection limits, surface enhanced Raman scatterings of low concentrations of a standard chemical adsorbed on the gold coated substrates are collected and analyzed. The morphology of the proposed substrates is characterized by atomic force microscopy and the optical properties including transmittance, reflectance and absorbance of each substrate are also investigated.

  19. Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells

    NASA Astrophysics Data System (ADS)

    Lima, Bismarck C.; Gómez-Malagón, L. A.; Gomes, A. S. L.; Garcia, J. A. M.; Kassab, L. R. P.

    2017-12-01

    Rare-earth-doped tellurite glass containing metallic nanoparticles can be exploited to manage the solar spectrum in order to increase solar cell efficiency. It is therefore possible to modify the incident solar spectrum profile to the spectrum that optimizes the solar cell recombination process by covering the solar cell with plasmonic luminescent downshifting layers. With this approach, the losses due to thermalization are minimized and the efficiency is increased. Due to the down-conversion process that couples the plasmon resonance of the metallic nanoparticles and the rare-earth electronic energy levels, it is possible to convert photons from the ultraviolet region to the visible and near-band-gap region of the semiconductor. It is demonstrated here that plasmon-assisted efficiency enhancements of 14.0% and 34.5% can be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glass containing silver nanoparticles.

  20. Localized, plasmon-mediated heating from embedded nanoparticles in nanocomposites

    NASA Astrophysics Data System (ADS)

    Maity, Somsubhra; Downen, Lori; Bochinski, Jason; Clarke, Laura

    2010-03-01

    Metallic nanoparticles exhibit a surface plasmon resonance which, when excited with visible light, results in a dramatic increase in the nanoparticle temperature. Previously such localized heating has been primarily employed in biomedical research and other experiments involving aqueous environments. In this work, we investigated use of the nanoparticles in solid phase to re-shape, bond, melt, and otherwise process nanofibrous mats of ˜200 nm diameter nanofibers doped with ˜80 nm spherical gold nanoparticles. Under low light intensities (100 mW/cm^2 @ 532 nm) and dilute nanoparticle loading (˜0.15% volume fraction), irradiation of a few minutes melted nanofibrous mats of poly (ethylene oxide) (Tm = 65 degree C). Control samples without gold nanoparticles displayed no melting. Because the heat is generated from within the material and only at the nanoparticle locations, this technique enables true nanoprocessing -- the non-contact, controlled application of heat at specific nano-sized locations within a material to effect desired local changes. Funded by CMMI-0829379.

  1. Plasmonic enhancement of ultraviolet fluorescence

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, < 400 nm), where significant opportunity exists for both fundamental and application research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50

  2. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less

  3. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles.

    PubMed

    Golub, Eyal; Pelossof, Gilad; Freeman, Ronit; Zhang, Hong; Willner, Itamar

    2009-11-15

    Metallic or semiconductor nanoparticles (NPs) are used as labels for the electrochemical, photoelectrochemical, or surface plasmon resonance (SPR) detection of cocaine using a common aptasensor configuration. The aptasensors are based on the use of two anticocaine aptamer subunits, where one subunit is assembled on a Au support, acting as an electrode or a SPR-active surface, and the second aptamer subunit is labeled with Pt-NPs, CdS-NPs, or Au-NPs. In the different aptasensor configurations, the addition of cocaine results in the formation of supramolecular complexes between the NPs-labeled aptamer subunits and cocaine on the metallic surface, allowing the quantitative analysis of cocaine. The supramolecular Pt-NPs-aptamer subunits-cocaine complex allows the detection of cocaine by the electrocatalyzed reduction of H(2)O(2). The photocurrents generated by the CdS-NPs-labeled aptamer subunits-cocaine complex, in the presence of triethanol amine as a hole scavenger, allows the photoelectrochemical detection of cocaine. The supramolecular Au-NPs-aptamer subunits-cocaine complex generated on the Au support allows the SPR detection of cocaine through the reflectance changes stimulated by the electronic coupling between the localized plasmon of the Au-NPs and the surface plasmon wave. All aptasensor configurations enable the analysis of cocaine with a detection limit in the range of 10(-6) to 10(-5) M. The major advantage of the sensing platform is the lack of background interfering signals.

  4. Ion beam induced optical and surface modification in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-01

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  5. Partially coherent surface plasmon modes

    NASA Astrophysics Data System (ADS)

    Niconoff, G. M.; Vara, P. M.; Munoz-Lopez, J.; Juárez-Morales, J. C.; Carbajal-Dominguez, A.

    2011-04-01

    Elementary long-range plasmon modes are described assuming an exponential dependence of the refractive index in the neighbourhood of the interface dielectric-metal thin film. The study is performed using coupling mode theory. The interference between two long-range plasmon modes generated that way allows the synthesis of surface sinusoidal plasmon modes, which can be considered as completely coherent generalized plasmon modes. These sinusoidal plasmon modes are used for the synthesis of new partially coherent surface plasmon modes, which are obtained by means of an incoherent superposition of sinusoidal plasmon modes where the period of each one is considered as a random variable. The kinds of surface modes generated have an easily tuneable profile controlled by means of the probability density function associated to the period. We show that partially coherent plasmon modes have the remarkable property to control the length of propagation which is a notable feature respect to the completely coherent surface plasmon mode. The numerical simulation for sinusoidal, Bessel, Gaussian and Dark Hollow plasmon modes are presented.

  6. Luminescence quantum yields of gold nanoparticles varying with excitation wavelength

    NASA Astrophysics Data System (ADS)

    Cheng, Yuqing; He, Yingbo; Zhao, Jingyi; Shen, Hongming; Xia, Keyu; Lua, Guowei; Gong, Qihuang

    2016-11-01

    Luminescence quantum yields (QYs) of gold nanoparticles including nanorods, nanobipyramids and nanospheres are measured elaborately at single nanoparticle level with different excitation wavelengths. It is found that the QYs of the nanostructures are essentially dependent on the excitation wavelength. The QY is higher when the excitation wavelength is blue-detuned and close to the nanoparticles' surface plasmon resonant peak. A phenomenological model based on plasmonic resonator concept is proposed to understand the experimental findings. The excitation wavelength dependent of QY is attributed to the wavelength dependent coupling efficiency between the free electrons oscillation and the intrinsic plasmon resonant radiative mode. These studies should contribute to the understanding of one-photon luminescence from metallic nanostructures and plasmonic surface enhanced spectroscopy.

  7. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering

    PubMed Central

    Lin, Kai-Qiang; Yi, Jun; Zhong, Jin-Hui; Hu, Shu; Liu, Bi-Ju; Liu, Jun-Yang; Zong, Cheng; Lei, Zhi-Chao; Wang, Xiang; Aizpurua, Javier; Esteban, Rubén; Ren, Bin

    2017-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy has attracted tremendous interests as a highly sensitive label-free tool. The local field produced by the excitation of localized surface plasmon resonances (LSPRs) dominates the overall enhancement of SERS. Such an electromagnetic enhancement is unfortunately accompanied by a strong modification in the relative intensity of the original Raman spectra, which highly distorts spectral features providing chemical information. Here we propose a robust method to retrieve the fingerprint of intrinsic chemical information from the SERS spectra. The method is established based on the finding that the SERS background originates from the LSPR-modulated photoluminescence, which contains the local field information shared also by SERS. We validate this concept of retrieval of intrinsic fingerprint information in well controlled single metallic nanoantennas of varying aspect ratios. We further demonstrate its unambiguity and generality in more complicated systems of tip-enhanced Raman spectroscopy (TERS) and SERS of silver nanoaggregates. PMID:28348368

  8. Plasmonic tunnel junctions for single-molecule redox chemistry.

    PubMed

    de Nijs, Bart; Benz, Felix; Barrow, Steven J; Sigle, Daniel O; Chikkaraddy, Rohit; Palma, Aniello; Carnegie, Cloudy; Kamp, Marlous; Sundararaman, Ravishankar; Narang, Prineha; Scherman, Oren A; Baumberg, Jeremy J

    2017-10-20

    Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.

  9. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.

    PubMed

    Zhang, Kun; Ji, Ji; Li, Yixin; Liu, Baohong

    2014-07-01

    Surface-enhanced Raman scattering (SERS) has proven to be promising for the detection of trace analytes; however, the precise nanofabrication of a specific and sensitive plasmonic SERS-active substrate is still a major challenge that limits the scope of its applications. In this work, gold nanoparticles are self-assembled into densely packed two-dimensional arrays at a liquid/liquid interface between dimethyl carbonate and water in the absence of template controller molecules. Both the simulation and experiment results show that the particles within these film-like arrays exhibit strong electromagnetic coupling and enable large amplification of Raman signals. In order to realize the level of sensing specificity, the surface chemistry of gold nanoparticles (Au NPs) is rationally tailored by incorporating an appropriate chemical moiety that specifically captures molecules of interest. The ease of fabrication and good uniformity make this platform ideal for in situ SERS sensing of trace targets in complex samples.

  10. Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement

    PubMed Central

    2011-01-01

    Background When a fluorophore is placed in the vicinity of a metal nanoparticle possessing a strong plasmon field, its fluorescence emission may change extensively. Our study is to better understand this phenomenon and predict the extent of quenching and/or enhancement of fluorescence, to beneficially utilize it in molecular sensing/imaging. Results Plasmon field intensities on/around gold nanoparticles (GNPs) with various diameters were theoretically computed with respect to the distance from the GNP surface. The field intensity decreased rapidly with the distance from the surface and the rate of decrease was greater for the particle with a smaller diameter. Using the plasmon field strength obtained, the level of fluorescence alternation by the field was theoretically estimated. For experimental studies, 10 nm GNPs were coated with polymer layer(s) of known thicknesses. Cypate, a near infrared fluorophore, was placed on the outermost layer of the polymer coated GNPs, artificially separated from the GNP at known distances, and its fluorescence levels were observed. The fluorescence of Cypate on the particle surface was quenched almost completely and, at approximately 5 nm from the surface, it was enhanced ~17 times. The level decreased thereafter. Theoretically computed fluorescence levels of the Cypate placed at various distances from a 10 nm GNP were compared with the experimental data. The trend of the resulting fluorescence was similar. The experimental results, however, showed greater enhancement than the theoretical estimates, in general. The distance from the GNP surface that showed the maximum enhancement in the experiment was greater than the one theoretically predicted, probably due to the difference in the two systems. Conclusions Factors affecting the fluorescence of a fluorophore placed near a GNP are the GNP size, coating material on GNP, wavelengths of the incident light and emitted light and intrinsic quantum yield of the fluorophore. Experimentally

  11. pH tunability and influence of alkali metal basicity on the plasmonic resonance of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta

    2017-07-01

    Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.

  12. Plasmon-mediated Energy Conversion in Metal Nanoparticle-doped Hybrid Nanomaterials

    NASA Astrophysics Data System (ADS)

    Dunklin, Jeremy R.

    Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was obtained between measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two current material limitations for efficient light harvesting: low monolayer content and lack of optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced broadband optical extinction, and energetic electron injection were probed using a combination of spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and electronic energy supports design and implementation into several emerging sustainable water and energy applications.

  13. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    DOEpatents

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  14. Plasmonic light-sensitive skins of nanocrystal monolayers

    NASA Astrophysics Data System (ADS)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  15. Enhanced Plasmonic Biosensors of Hybrid Gold Nanoparticle-Graphene Oxide-Based Label-Free Immunoassay

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Fu; Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yu-Sheng; Wu, Wei-Ren

    2018-05-01

    In this study, we propose a modified gold nanoparticle-graphene oxide sheet (AuNP-GO) nanocomposite to detect two different interactions between proteins and hybrid nanocomposites for use in biomedical applications. GO sheets have high bioaffinity, which facilitates the attachment of biomolecules to carboxyl groups and has led to its use in the development of sensing mechanisms. When GO sheets are decorated with AuNPs, they introduce localized surface plasmon resonance (LSPR) in the resonance energy transfer of spectral changes. Our results suggest a promising future for AuNP-GO-based label-free immunoassays to detect disease biomarkers and rapidly diagnose infectious diseases. The results showed the detection of antiBSA in 10 ng/ml of hCG non-specific interfering protein with dynamic responses ranging from 1.45 nM to 145 fM, and a LOD of 145 fM. Considering the wide range of potential applications of GO sheets as a host material for a variety of nanoparticles, the approach developed here may be beneficial for the future integration of nanoparticles with GO nanosheets for blood sensing. The excellent anti-interference characteristics allow for the use of the biosensor in clinical analysis and point-of-care testing (POCT) diagnostics of rapid immunoassay products, and it may also be a potential tool for the measurement of biomarkers in human serum.

  16. Enhanced Plasmonic Biosensors of Hybrid Gold Nanoparticle-Graphene Oxide-Based Label-Free Immunoassay.

    PubMed

    Chiu, Nan-Fu; Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yu-Sheng; Wu, Wei-Ren

    2018-05-16

    In this study, we propose a modified gold nanoparticle-graphene oxide sheet (AuNP-GO) nanocomposite to detect two different interactions between proteins and hybrid nanocomposites for use in biomedical applications. GO sheets have high bioaffinity, which facilitates the attachment of biomolecules to carboxyl groups and has led to its use in the development of sensing mechanisms. When GO sheets are decorated with AuNPs, they introduce localized surface plasmon resonance (LSPR) in the resonance energy transfer of spectral changes. Our results suggest a promising future for AuNP-GO-based label-free immunoassays to detect disease biomarkers and rapidly diagnose infectious diseases. The results showed the detection of antiBSA in 10 ng/ml of hCG non-specific interfering protein with dynamic responses ranging from 1.45 nM to 145 fM, and a LOD of 145 fM. Considering the wide range of potential applications of GO sheets as a host material for a variety of nanoparticles, the approach developed here may be beneficial for the future integration of nanoparticles with GO nanosheets for blood sensing. The excellent anti-interference characteristics allow for the use of the biosensor in clinical analysis and point-of-care testing (POCT) diagnostics of rapid immunoassay products, and it may also be a potential tool for the measurement of biomarkers in human serum.

  17. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.

    PubMed

    Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K

    2014-11-25

    Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.

  18. Green preparation of gold nanoparticles with Tremella fuciformis for surface enhanced Raman scattering sensing

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Liu, Jun; Fan, Linpeng; Li, Daili; Chen, Xinzhu; Zhou, Ji; Li, Jingliang

    2018-01-01

    A simple in-situ synthesis method was developed to fabricate complex of Tremella fuciformis (TF) and gold nanoparticles (Au NPs). TF, one of the most popular fungi in the cuisine and medicine, acted as a biomass reducing agent and scaffold in the preparation of Au NPs. The intensities of the localized surface plasmon resonance (LSPR) of the complex of TF and Au NPs (Au@TFs) increased as the complex shrunk due to drying. The textures of TF prevent the aggregation of Au NPs during the drying process. The TFs show strong adsorption capacity for cationic dyes. It is suggested that the adsorption of the dyes onto TFs are achieved through electrostatic interactions between the TF and the dyes. Kinetics studies indicated that adsorption process could be well described by a pseudo-second-order model. Furthermore, the as-prepared Au@TFs were used as surface enhanced Raman scattering (SERS) substrates for analyzing trace dye molecules. The shrinkage of the TFs caused by drying concentrated dyes on their fruiting bodies, which led to the enhancement of Raman signals of dyes. The Au NPs on TF further enhanced the Raman signals. In-situ synthesis of Au NPs on TF may promote the applications of fungus materials in optical sensing of targets.

  19. Immunogold Nanoparticles for Rapid Plasmonic Detection of C. sakazakii.

    PubMed

    Aly, Mohamed A; Domig, Konrad J; Kneifel, Wolfgang; Reimhult, Erik

    2018-06-25

    Cronobacter sakazakii is a foodborne pathogen that can cause a rare, septicemia, life-threatening meningitis, and necrotizing enterocolitis in infants. In general, standard methods for pathogen detection rely on culture, plating, colony counting and polymerase chain reaction DNA-sequencing for identification, which are time, equipment and skill demanding. Recently, nanoparticle- and surface-based immunoassays have increasingly been explored for pathogen detection. We investigate the functionalization of gold nanoparticles optimized for irreversible and specific binding to C. sakazakii and their use for spectroscopic detection of the pathogen. We demonstrate how 40-nm gold nanoparticles grafted with a poly(ethylene glycol) brush and functionalized with polyclonal antibodies raised against C. sakazakii can be used to specifically target C. sakazakii . The strong extinction peak of the Au nanoparticle plasmon polariton resonance in the optical range is used as a label for detection of the pathogens. Individual binding of the nanoparticles to the C. sakazakii surface is also verified by transmission electron microscopy. We show that a high degree of surface functionalization with anti- C. sakazakii optimizes the detection and leads to a detection limit as low as 10 CFU/mL within 2 h using a simple cuvette-based UV-Vis spectrometric readout that has great potential for further optimization.

  20. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects.

    PubMed

    Sugawa, Kosuke; Tamura, Takahiro; Tahara, Hironobu; Yamaguchi, Daisuke; Akiyama, Tsuyoshi; Otsuki, Joe; Kusaka, Yasuyuki; Fukuda, Nobuko; Ushijima, Hirobumi

    2013-11-26

    Ordered arrays of copper nanostructures were fabricated and modified with porphyrin molecules in order to evaluate fluorescence enhancement due to the localized surface plasmon resonance. The nanostructures were prepared by thermally depositing copper on the upper hemispheres of two-dimensional silica colloidal crystals. The wavelength at which the surface plasmon resonance of the nanostructures was generated was tuned to a longer wavelength than the interband transition region of copper (>590 nm) by controlling the diameter of the underlying silica particles. Immobilization of porphyrin monolayers onto the nanostructures was achieved via self-assembly of 16-mercaptohexadecanoic acid, which also suppressed the oxidation of the copper surface. The maximum fluorescence enhancement of porphyrin by a factor of 89.2 was achieved as compared with that on a planar Cu plate (CuP) due to the generation of the surface plasmon resonance. Furthermore, it was found that while the fluorescence from the porphyrin was quenched within the interband transition region, it was efficiently enhanced at longer wavelengths. It was demonstrated that the enhancement induced by the proximity of the fluorophore to the nanostructures was enough to overcome the highly efficient quenching effects of the metal. From these results, it is speculated that the surface plasmon resonance of copper has tremendous potential for practical use as high functional plasmonic sensor and devices.

  1. Optical absorption of carbon-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  2. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.

    PubMed

    Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N; Kabashin, Andrei V

    2018-05-01

    When excited over a periodic metamaterial lattice of gold nanoparticles (~ 100nm), localized plasmon resonances (LPR) can be coupled by a diffraction wave propagating along the array plane, which leads to a drastic narrowing of plasmon resonance lineshapes (down to a few nm full-width-at-half-maximum) and the generation of singularities of phase of reflected light. These phenomena look very promising for the improvement of performance of plasmonic biosensors, but conditions of implementation of such diffractively coupled plasmonic resonances, also referred to as plasmonic surface lattice resonances (PSLR), are not always compatible with biosensing arrangement implying the placement of the nanoparticles between a glass substrate and a sample medium (air, water). Here, we consider conditions of excitation and properties of PSLR over arrays of glass substrate-supported single and double Au nanoparticles (~ 100-200nm), arranged in a periodic metamaterial lattice, in direct and Attenuated Total Reflection (ATR) geometries, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. First, we identify medium (PSLR air , PSLR wat for air and water, respectively) and substrate (PSLR sub ) modes corresponding to the coupling of individual plasmon oscillations at medium- and substrate-related diffraction cut-off edges. We show that spectral sensitivity of medium modes to RI variations is determined by the lattice periodicity in both direct and ATR geometries (~ 320nm per RIU change in our case), while substrate mode demonstrates much lower sensitivity. We also show that phase sensitivity of PSLR can exceed 10 5 degrees of phase shift per RIU change and thus outperform the relevant parameter for all other plasmonic sensor counterparts. We finally demonstrate the applicability of surface lattice resonances in plasmonic metamaterial arrays to biosensing using standard streptavidin-biotin affinity model. Combining advantages of

  3. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy

    PubMed Central

    Yang, Yamin; Hu, Yue; Du, Henry; Ren, Lei; Wang, Hongjun

    2018-01-01

    Introduction In recognition of the potentials of gold nanoparticles (Au NPs) in enhanced photodynamic therapy (PDT) for cancer, it is desirable to further understand the shape-dependent surface plasmonic resonance (SPR) properties of various gold nanostructures and evaluate their performances in PDT. Materials and methods Monodispersed colloidal spherical solid Au NPs were synthesized by UV-assisted reduction using chloroauric acid and sodium citrate, and hollow gold nanorings (Au NRs) with similar outer diameter were synthesized based on sacrificial galvanic replacement method. The enhanced electromagnetic (EM) field distribution and their corresponding efficiency in enhancing singlet oxygen (1O2) generation of both gold nanostructures were investigated based on theoretical simulation and experimental measurements. Their shape-dependent SPR response and resulted cell destruction during cellular PDT in combination with 5-aminolevulinic acid (5-ALA) were further studied under different irradiation conditions. Results With comparable cellular uptake, more elevated formation of 1O2 in 5-ALA-enabled PDT was detected with the presence of Au NRs than that with Au NPs under broadband light irradiation in both cell-free and intracellular conditions. As a result of the unique morphological attributes, exhibiting plasmonic effect of Au NRs was still achievable in the near infrared (NIR) region, which led to an enhanced therapeutic efficacy of PDT under NIR light irradiation. Conclusion Shape-dependent SPR response of colloidal Au NPs and Au NRs and their respective effects in promoting PDT efficiency were demonstrated in present study. Our innovative colloidal Au NRs with interior region accessible to surrounding photosensitizers would serve as efficient enhancers of PDT potentially for deep tumor treatment. PMID:29670350

  4. Shape-dependent dispersion and alignment of nonaggregating plasmonic gold nanoparticles in lyotropic and thermotropic liquid crystals.

    PubMed

    Liu, Qingkun; Tang, Jianwei; Zhang, Yuan; Martinez, Angel; Wang, Shaowei; He, Sailing; White, Timothy J; Smalyukh, Ivan I

    2014-05-01

    We use both lyotropic liquid crystals composed of prolate micelles and thermotropic liquid crystals made of rod-like molecules to uniformly disperse and unidirectionally align relatively large gold nanorods and other complex-shaped nanoparticles at high concentrations. We show that some of these ensuing self-assembled orientationally ordered soft matter systems exhibit polarization-dependent plasmonic properties with strongly pronounced molar extinction exceeding that previously achieved in self-assembled composites. The long-range unidirectional alignment of gold nanorods is mediated mainly by anisotropic surface anchoring interactions at the surfaces of gold nanoparticles. Polarization-sensitive absorption, scattering, and extinction are used to characterize orientations of nanorods and other nanoparticles. The experimentally measured unique optical properties of these composites, which stem from the collective plasmonic effect of the gold nanorods with long-range order in a liquid crystal matrix, are reproduced in computer simulations. A simple phenomenological model based on anisotropic surface interaction explains the alignment of gold nanorods dispersed in liquid crystals and the physical underpinnings behind our observations.

  5. Individual and collective modes of surface magnetoplasmon in thiolate-protected silver nanoparticles studied by MCD spectroscopy

    NASA Astrophysics Data System (ADS)

    Yao, Hiroshi; Shiratsu, Taisuke

    2016-05-01

    Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+) (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+ - ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement.Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD

  6. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation.

    PubMed

    Zargar, Behrooz; Hatamie, Amir

    2013-04-01

    Isoniazid is an important antibiotic, which is widely used to treat tuberculosis. This study presents a colorimetric method for the determination of Isoniazid based on localized surface plasmon resonance (LSPR) property of gold nanoparticles. An LSPR band is produced by reducing gold ions in solution using Isoniazid as the reducing agent. Influences of the following relevant variables were examined and optimized in the experiment, formation time of gold nanoparticles, pH, buffer and stabilizer. These tests demonstrated that under optimum conditions the absorbance of Au nanoparticles at 530 nm related linearly to the concentration of Isoniazid in the range of 1.0-8.0 μg mL(-1) with a detection limit of 0.98 μg mL(-1). This colorimetric method has been successfully applied to the determine Isoniazid in tablets and spiked serum samples. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for analysis of Isoniazid. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation

    NASA Astrophysics Data System (ADS)

    Zargar, Behrooz; Hatamie, Amir

    2013-04-01

    Isoniazid is an important antibiotic, which is widely used to treat tuberculosis. This study presents a colorimetric method for the determination of Isoniazid based on localized surface plasmon resonance (LSPR) property of gold nanoparticles. An LSPR band is produced by reducing gold ions in solution using Isoniazid as the reducing agent. Influences of the following relevant variables were examined and optimized in the experiment, formation time of gold nanoparticles, pH, buffer and stabilizer. These tests demonstrated that under optimum conditions the absorbance of Au nanoparticles at 530 nm related linearly to the concentration of Isoniazid in the range of 1.0-8.0 μg mL-1 with a detection limit of 0.98 μg mL-1. This colorimetric method has been successfully applied to the determine Isoniazid in tablets and spiked serum samples. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for analysis of Isoniazid.

  8. Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement.

    PubMed

    Zhao, Mengzhen; Wang, Xu; Ren, Shaokang; Xing, Yikang; Wang, Jun; Teng, Nan; Zhao, Dongxia; Liu, Wei; Zhu, Dan; Su, Shao; Shi, Jiye; Song, Shiping; Wang, Lihua; Chao, Jie; Wang, Lianhui

    2017-07-05

    DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.

  9. Some optical and catalytic properties of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tabor, Christopher Eugene

    Nanomaterials have been the focus of many previous publications and studies. This fact is due to the wealth of new and tunable properties that exist when a material is confined in size. This thesis discusses some of those properties pertaining to metallic nanoparticles. The primarily focus is on the plasmonic properties of gold nanoparticles with a final chapter discussing nanocatalysis and the nature of nanocatalytic reactions. The strong electromagnetic field that is induced at the surface of a plasmonic nanoparticle can be utilized for many important applications, including spectroscopic enhancements for molecular sensors and electromagnetic waveguides for sub-wavelength light manipulation. For many of these applications, it is necessary to use two or more nanoparticles in close proximity with overlapping plasmonic fields. Knowledge of how these overlapping fields are affected by the particle orientation, size, and shape is critically important, not only in understanding the fundamental properties of plasmons but also in designing future architectures that employ plasmonic particles. The field of metallic nanoparticles is introduced from its beginning, with artistic use as early as the 4th century AD through current applications and understanding. The broad spectrum of current methodologies for fabricating nanoparticles is discussed, from top down methods using lithography and from bottom up methods using metal salt reduction in solution. There are several methods used in this thesis, all of which are discussed in great detail, with some details pertaining to the specific instrumentation used here. The first study is on the transfer of surface supported gold nanoprisms from a substrate into solution using photo-thermal heating with a femtosecond pulse coincident with the plasmon resonance frequency of the nanoprisms. The mechanism of transfer is discovered to be due to super heating of solvent molecules dissolved at the particle-substrate interface. This process

  10. Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan

    2017-08-01

    Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.

  11. Plasmonic enhancement of second-harmonic generation of dielectric layer embedded in metal-dielectric-metal structure

    NASA Astrophysics Data System (ADS)

    Kang, Byungjun; Imakita, Kenji; Fujii, Minoru; Hayashi, Shinji

    2018-03-01

    The enhancement of second-harmonic generation from a dielectric layer embedded in a metal-dielectric-metal structure upon excitation of surface plasmon polaritons is demonstrated experimentally. The metal-dielectric-metal structure consisting of a Gex(SiO2)1-x layer sandwiched by two Ag layers was prepared, and the surface plasmon polaritons were excited in an attenuated total reflection geometry. The measured attenuated total reflection spectra exhibited two reflection dips corresponding to the excitation of two different surface plasmon polariton modes. Strong second-harmonic signals were observed under the excitation of these surface plasmon polariton modes. The results demonstrate that the second-harmonic intensity of the Gex(SiO2)1-x layer is highly enhanced relative to that of the single layer deposited on a substrate. Under the excitation of one of the two surface plasmon polariton modes, the estimated enhancement factor falls in a range between 39.9 and 171, while under the excitation of the other surface plasmon polariton mode, it falls in a range between 3.96 and 84.6.

  12. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    NASA Astrophysics Data System (ADS)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  13. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    PubMed

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  14. Fast Electron Spectroscopy of Enhanced Plasmonic N anoantenna Resonances

    NASA Astrophysics Data System (ADS)

    Day, Jared K.

    Surface plasmons are elementary excitations of the collective and coherent oscillations of conductive band electrons coupled with photons at the surface of metals. Surface plasmons of metallic nanostructures can efficiently couple to light making them a new class of optical antennas that can confine and control light at nanometer scale dimensions. Nanoscale optical antennas can be used to enhance the energy transfer between nanoscale systems and freely-propagating radiation. Plasmonic nanoantennas have already been used to enhance single molecule detection, diagnosis and treat cancer, harvest solar energy, to create metamaterials with new optical properties and to enhance photo-chemical reactions. The applications for plasmonic nanoantennas are only limited by the fundamental understanding of their unique optical properties and the rational design of new coupled antenna systems. It is therefore necessary to interrogate and image the local electromagnetic response of nanoantenna systems to establish intuition between near-field coupling dynamics and far-field optical properties. This thesis focuses on the characterization and enhancement of the longitudinal multipolar plasmonic resonances of Au nanorod nanoantennas. To better understand these resonances fast electron spectroscopy is used to both visualize and probe the near- and far-field properties of multipolar resonances of individual nanorods and more complex nanorod systems through cathodoluminescence (CL). CL intensity maps show that coupled nanorod systems enhance and alter nanorod resonances away from ideal resonant behavior creating hybridized longitudinal modes that expand and relax at controllable locations along the nanorod. These measurements show that complex geometries can strengthen and alter the local density of optical states for nanoantenna designs with more functionality and better control of localized electromagnetic fields. Finally, the electron excitations are compared to plane wave optical

  15. Rapid and PCR-free DNA detection by nanoaggregation-enhanced chemiluminescence

    Treesearch

    Renu Singh; Alexandra Feltmeyer; Olga Saiapina; Jennifer Juzwik; Brett Arenz; Abdennour Abbas

    2017-01-01

    The aggregation of gold nanoparticles (AuNPs) is known to induce an enhancement of localized surface plasmon resonance due to the coupling of plasmonic fields of adjacent nanoparticles. Here we show that AuNPs aggregation also causes a significant enhancement of chemiluminescence in the presence of luminophores. The phenomenon is used to introduce a rapid and sensitive...

  16. Dependence of the absorption and optical surface plasmon scattering of MoS₂ nanoparticles on aspect ratio, size, and media.

    PubMed

    Yadgarov, Lena; Choi, Charina L; Sedova, Anastasiya; Cohen, Ayala; Rosentsveig, Rita; Bar-Elli, Omri; Oron, Dan; Dai, Hongjie; Tenne, Reshef

    2014-04-22

    The optical and electronic properties of suspensions of inorganic fullerene-like nanoparticles of MoS2 are studied through light absorption and zeta-potential measurements and compared to those of the corresponding microscopic platelets. The total extinction measurements show that, in addition to excitonic peaks and the indirect band gap transition, a new peak is observed at 700-800 nm. This spectral peak has not been reported previously for MoS2. Comparison of the total extinction and decoupled absorption spectrum indicates that this peak largely originates from scattering. Furthermore, the dependence of this peak on nanoparticle size, shape, and surface charge, as well as solvent refractive index, suggests that this transition arises from a plasmon resonance.

  17. Proposal for a self-excited electrically driven surface plasmon polariton generator

    NASA Astrophysics Data System (ADS)

    Bordo, V. G.

    2017-01-01

    We propose a generator of surface plasmon polaritons (SPPs) which, unlike spasers or plasmon lasers, does not require stimulated emission in the system. Its principle of operation is based on a positive feedback which an ensemble of classical oscillating dipoles experiences from a reflective surface located in its near field. The generator design includes a nanocavity between two metal surfaces which contains metal nanoparticles in its interior. The whole structure is placed onto a prism surface that allows one to detect the generated SPPs in the Kretschmann configuration. The generation process is driven by a moderate DC voltage applied between the metal covers of the cavity. Both the generation criterion and the steady-state operation of the generator are investigated.

  18. Zr-doped TiO2 as a thermostabilizer in plasmon-enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pasche, Anastasia; Grohe, Bernd; Mittler, Silvia; Charpentier, Paul A.

    2017-07-01

    Harvesting solar energy is a promising solution toward meeting the world's ever-growing energy demand. Dye-sensitized solar cells (DSSCs) are hybrid organic-inorganic solar cells with tremendous potential for commercial application, but they are plagued by inefficiency due to their poor sunlight absorption. Plasmonic silver nanoparticles (AgNPs) have been shown to enhance the absorptive properties of DSSCs, but their plasmonic resonance can cause thermal damage resulting in cell deterioration. Hence, the influence of Zr-doped TiO2 on the efficiency of plasmon-enhanced DSSCs was studied, showing that 5 mol.% Zr-doping of the photoactive TiO2 material can improve the photovoltaic performance of DSSCs by 44%. By examining three different DSSC designs, it became clear that the efficiency enhancing effect of Zr strongly depends on the proximity of the Zr-doped material to the plasmonic AgNPs.

  19. Plasmonic behaviour of phenylenediamine functionalised silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Akmal Che Lah, Nurul; Samykano, Mahendran; Rafie Johan, Mohd; Syahierah Othman, Nuurul; Mawardi Saari, Mohd; Bey Fen, Leo; Zalikha Khalil, Nur

    2017-09-01

    The surface functionalisation of AgNPs has demonstrated improved capability for various applications by modifying their surface chemical conditions. In this study, AgNPs functionalised with p-phenylenediamine (PPD) ligand were prepared, and the plasmonic effects of the nanocomposites were then investigated. The synthesis and functionalisation of Ag nanocomposites were achieved through chemical modification reaction of naphthalene group through hydrothermal synthesis. The influence of the chemical modification reaction on the plasmonic behaviour and size variation were obtained via optical measurement techniques such as UV-visible spectroscopy (UV-Vis) for absorbance characteristic, photoluminescence for emission response and micro-Raman spectroscopy (MRS) for SERS study on the presence of regions containing AgNPs and PPD ligand. It was observed that the one-step process of deprotonation of the amino group on the aromatic rings gives the re-arrangement of the electron cloud towards the π-conjugated system. High-resolution transmission electron microscope (TEM) analysis showed the formation of the nanocomposites and the AgNPs (for ~4 and ~5 nm of diameter sizes) are well-dispersed over the PPD matrix. The nanocomposites are assembled into higher dimensional structures through coordination with functional PPD ligand and also increasing the PPD amount led to the increase in the surface area of the nanoparticles.

  20. Stable silver/biopolymer hybrid plasmonic nanostructures for high performance surface enhanced raman scattering (SERS)

    USDA-ARS?s Scientific Manuscript database

    Silver/biopolymer nanoparticles were prepared by adding 100 mg silver nitrate to 2% polyvinyl alcohol solution and reduced the silver nitrate into silver ion using 2 % trisodium citrate for high performance Surface Enhanced Raman Scattering (SERS) substrates. Optical properties of nanoparticle were ...

  1. Optical Isolator Utilizing Surface Plasmons

    PubMed Central

    Zayets, Vadym; Saito, Hidekazu; Ando, Koji; Yuasa, Shinji

    2012-01-01

    Feasibility of usage of surface plasmons in a new design of an integrated optical isolator has been studied. In the case of surface plasmons propagating at a boundary between a transition metal and a double-layer dielectric, there is a significant difference of optical loss for surface plasmons propagating in opposite directions. Utilizing this structure, it is feasible to fabricate a competitive plasmonic isolator, which benefits from a broad wavelength operational bandwidth and a good technological compatibility for integration into the Photonic Integrated Circuits (PIC). The linear dispersion relation was derived for plasmons propagating in a multilayer magneto-optical slab. PMID:28817012

  2. Photodynamic inactivation assisted by localized surface plasmon resonance of silver nanoparticles: In vitro evaluation on Escherichia coli and Streptococcus mutans.

    PubMed

    Ribeiro, Martha S; de Melo, Luciana S A; Farooq, Sajid; Baptista, Alessandra; Kato, Ilka T; Núñez, Silvia C; de Araujo, Renato E

    2018-06-01

    Localized surface plasmon resonance (LSPR) of gold nanoparticles has been reported to increase the antimicrobial effect of the photodynamic therapy. Although silver nanoparticles (AgNPs) are an efficient growth inhibitor of microorganisms, no studies exploring LSPR of AgNPs to enhance the photodynamic inactivation (PDI) have been related. In this work, we described the LSPR phenomenon of AgNP sand investigated its interaction with riboflavin, a natural photosensitizer. We evaluated the use of AgNPs coated with pectin (p-AgNP) in riboflavin (Rb)-mediated PDI of Escherichia coli (Gram- bacteria) and Streptococcus mutans (Gram + bacteria) using a blue light-emitting diode (λ = 455 ± 20 nm) of optical power 200 mW. Irradiance was 90 mW/cm 2 and radiant exposure varied according to the time exposure. Uptake of Rb and p-AgNP by the cells was evaluated by measuring the supernatant absorption spectra of the samples. We observed that LSPR of p-AgNPs was able to enhance the riboflavin photodynamic action on S. mutans but not on E. coli, probably due to the lower uptake of Rb by E. coli. Taken together, our results provide insights to explore the use of the LPRS promoted by silver nanostructures to optimize antimicrobial PDI protocols. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Nonlinear Photochromic Switching in the Plasmonic Field of a Nanoparticle Array

    NASA Astrophysics Data System (ADS)

    Otolski, Christopher J.; Argyropoulos, Christos; Elles, Christopher G.

    2017-06-01

    Plasmonic nanostructures provide unique environments for non-resonant excitation and switching of photochromic compounds. In this study, photochromic diarylethene molecules were deposited on top of a periodically ordered array of gold nanorods (170 x 80 nm) and then irradiated with <100 fs laser pulses. Irradiation at 800 nm drives the plasmon resonance of the nanoparticle array and induces the photochromic conversion of molecules via non-resonant two-photon excitation. Transmission measurements using broadband continuum laser pulses probe the progress of the photochemical cycloreversion reaction as molecules switch from a visible-absorbing closed-ring structure to a transparent open-ring structure. The spatial dependence of the two-photon conversion of molecules in the plasmonic near field of the array is modeled using calculated field enhancements, and compared with similar measurements for a film of molecules on a glass substrate. Wavelength-dependent polarization effects in the near field of the array lead to interesting anisotropy results in the transmission signal. The results emphasize the importance of both the spatial dependence and anisotropy of the enhanced electric fields in driving non-resonant photochromic reactions.

  4. Ag/Bi2MoO6-x with enhanced visible-light-responsive photocatalytic activities via the synergistic effect of surface oxygen vacancies and surface plasmon

    NASA Astrophysics Data System (ADS)

    Wang, Danjun; Shen, Huidong; Guo, Li; Wang, Chan; Fu, Feng; Liang, Yucang

    2018-04-01

    In this study, a heterostructured Ag/Bi2MoO6-x photocatalyst was rationally designed and successfully fabricated via the deposition of plasmonic silver nanoparticles onto the surface of Bi2MoO6 with surface oxygen vacancy (denoted as Bi2MoO6-x). Bi2MoO6-x (Abbr. BMO6-x was first synthesized via a solvothermal synthesis and calcination process. The plasmonic silver nanoparticles were then loaded onto the surface of BMO6-x using a simple photoreduction process to form Ag/BMO6-x composite. Surface oxygen vacancies (SOVs) in BMO6-x were confirmed by electron paramagnetic resonance (EPR) spectrum. The structures of BMO6-xand Ag/BiMoO6-x) were characterized using high-resolution transmission electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Under visible light irradiation, sample Ag/BMO6-x exhibits a highest visible-light-responsive photocatalytic performance compared to those of pure-Bi2MoO6 (BMO), BMO6-x and Ag/BMO for the degradation of rhodamine B (RhB), which is attributed predominantly to the synergistic effect of SOVs and Ag surface plasmonic resonance (SPR) on the surface of Bi2MoO6-x leading to the efficient separation and migration of photogenerated electrons/holes and hence broadening light responsive region. The significant improvement of the migration and separation of photogenerated electrons/holes in the Ag/BMO6-x was evidenced by photoluminescence spectra, time-resolved fluorescence decay, photocurrent, and electrochemical impedance spectrum. The ESR with spin-trap technique and reactive species trapping experiments confirm that the mainly active species O2- and h+ are playing key roles in the RhB photodegradation process over Ag/BMO6-x. This study not only provides an understandable synergistic effect of SOVs and SPR Ag but also pioneers a new approach for fabricating a series of highly catalytically active metal-semiconductor photocatalysts with surface atom defects.

  5. Out-of-Plane Designed Soft Metasurface for Tunable Surface Plasmon Polariton.

    PubMed

    Liu, Xin; Huang, Zhao; Zhu, Chengkai; Wang, Li; Zang, Jianfeng

    2018-02-14

    Reliable and repeatable tunability gives functional diversity for reconfigurable plasmonics devices, while reversible and large mechanical deformation enabled by soft materials provides a new way for the global or partial regulation of metadevices. Here, we demonstrate a soft metasurface with an out-of-plane design for tuning the energy of surface plasmon polaritons (SPPs) bloch wave using theory, simulation, and experiments. Our metasurface is composed of two-layered gold nanoribbon arrays (2GNRs) on a soft substrate. The out-of-plane coupling mechanism is systematically analyzed in terms of separation height effect. Moreover, by harnessing mechanical deformation, continuously tunable plasmonic resonance has been achieved in the visible and near-infrared ranges. We further studied the angle-dependent reflection spectra of our metastructure. Compared with its planar counterpart, our soft and two-layered metastructure exhibits diverse tunability and significant field enhancement by out-of-plane interactions. Our approach in designing soft metasurface with out-of-plane structures can be extended to more-complex photonic devices and finds prominent applications such as biosensing, high-density plasmonic circuits, surface-enhanced luminescence, and surface-enhanced Raman scattering.

  6. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    NASA Astrophysics Data System (ADS)

    Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.

    2014-05-01

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  7. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2018-04-23

    Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.

  8. Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.

    PubMed

    He, Jiaqing; Shen, Qingchen; Yang, Shuai; He, Gufeng; Tao, Peng; Song, Chengyi; Wu, Jianbo; Deng, Tao; Shang, Wen

    2018-01-03

    This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.

  9. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.

    PubMed

    Prabhakar, Amit; Mukherji, Soumyo

    2010-12-21

    In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.

  10. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.

    PubMed

    Ahmadivand, Arash; Pala, Nezih

    2015-01-01

    In this work, we have investigated the hybridization of plasmon resonance modes in completely copper (Cu)-based subwavelength nanoparticle clusters from simple symmetric dimers to complex asymmetric self-assembled structures. The quality of apparent bonding and antibonding plasmon resonance modes for all of the clusters has been studied, and we examined the spectral response of each one of the proposed configurations numerically using the finite-difference time domain (FDTD) method. The effect of the geometric sizes of nanoparticles used and substrate refractive index on the cross-sectional profiles of each of the studied structures has been calculated and drawn. We proved that Fano-like resonance can be formed in Cu-based heptamer clusters as in analogous noble metallic particles (e.g., Au and Ag) by determining the coupling strength and interference between sub-radiant and super-radiant resonance modes. Employing certain Cu nanodiscs in designing an octamer structure, we measured the quality of the Fano dip formation along the scattering diagram. Accurate tuning of the geometric sizes for the Cu-based octamer yields an opportunity to observe isotropic, deep, and narrow Fano minima along the scattering profile that are in comparable condition with the response of other plasmonic metallic substances. Immersing investigated final Cu-based octamer in various liquids with different refractive indices, we determined the sensing accuracy of the cluster based on the performance of the Fano dip. Plotting a linear diagram of plasmon energy differences over the refractive index variations as a figure of merit (FoM), which we have quantified as 13.25. With this method, the precision of the completely Cu-based octamer is verified numerically using the FDTD tool. This study paves the way toward the use of Cu as an efficient, low-cost, and complementary metal-oxide semiconductor (CMOS)-compatible plasmonic material with optical properties that are similar to analogous plasmonic

  11. Synthesis of Immunotargeted Magneto-plasmonic Nanoclusters

    PubMed Central

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-01-01

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting. PMID:25177973

  12. Synthesis of immunotargeted magneto-plasmonic nanoclusters.

    PubMed

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-08-22

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.

  13. Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.

    PubMed

    Chen, Guojian; Wang, Dongzhu; Hong, Wei; Sun, Lu; Zhu, Yongxiang; Chen, Xudong

    2017-03-01

    Discontinuous plasmonic-3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near-field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal-coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence-imaging, and optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  15. Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon

    2018-02-01

    In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.

  16. Multipole surface plasmons in metallic nanohole arrays

    NASA Astrophysics Data System (ADS)

    Nishida, Munehiro; Hatakenaka, Noriyuki; Kadoya, Yutaka

    2015-06-01

    The quasibound electromagnetic modes for the arrays of nanoholes perforated in thin gold film are analyzed both numerically by the rigorous coupled wave analysis (RCWA) method and semianalytically by the coupled mode method. It is shown that when the size of the nanohole occupies a large portion of the unit cell, the surface plasmon polaritons (SPPs) at both sides of the film are combined by the higher order waveguide modes of the holes to produce multipole surface plasmons: coupled surface plasmon modes with multipole texture on the elec-tric field distributions. Further, it is revealed that the multipole texture either enhances or suppresses the couplings between SPPs depending on their diffraction orders and also causes band inversion and reconstruction in the coupled SPP band structure. Due to the multipole nature of the quasibound modes, multiple dark modes coexist to produce a variety of Fano resonance structures on the transmission and reflection spectra.

  17. A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support

    NASA Astrophysics Data System (ADS)

    Sato, Yuichi; Naya, Shin-ichi; Tada, Hiroaki

    2015-10-01

    Ultrathin Cu layers (˜2 atomic layers) have been selectively formed on the Au surfaces of Au nanoparticle-loaded rutile TiO2 (Au@Cu/TiO2) by a deposition precipitation-photodeposition technique. Cyclic voltammetry and photochronopotentiometry measurements indicate that the reaction proceeds via the underpotential deposition. The ultrathin Cu shell drastically increases the activity of Au/TiO2 for the selective oxidation of amines to the corresponding aldehydes under visible-light irradiation (λ > 430 nm). Photochronoamperometry measurements strongly suggest that the striking Cu shell effect stems from the enhancement of the charge separation in the localized surface plasmon resonance-excited Au/TiO2.

  18. Conditions of excitation and sensitivity of diffractively-coupled surface lattice resonances over plasmonic nanoparticle arrays in ATR geometry

    NASA Astrophysics Data System (ADS)

    Danilov, Artem; Tselikov, Gleb; Wu, Fan; Kravets, Vasyl G.; Ozerov, Igor; Bedu, Frederic; Grigorenko, Alexander N.; Kabashin, Andrei V.

    2018-02-01

    We investigate conditions of excitation and properties of Plasmonic Surface Lattice Resonances (PSLR) over glass substrate-supported Au nanoparticle dimers ( 100-200 nm) arranged in a periodic metamaterial lattice, in Attenuated Total Reflection (ATR) optical excitation geometry, and assess their sensitivities to variations of refractive index (RI) of the adjacent sample dielectric medium. We show that spectral sensitivity of PSLR to RI variations is determined by the lattice periodicity ( 320 nm per RIU change in our case), while ultranarrow resonance lineshapes (down to a few nm full-widthat-half-maximum) provide very high figure-of-merit values evidencing the possibility of ultrasensitive biosensing measurements. Combining advantages of nanoscale architectures, including a strong concentration of electric field, the possibility of manipulation at the nanoscale etc, and high phase and spectral sensitivities, PSLRs promise a drastic advancement of current state-of-the-art plasmonic biosensing technology.

  19. Ag/SiO2 nanoparticle-based plasmonic enhancement of light output in nanohole-patterned InGaN/GaN blue light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yun, Jin-Hyeon; Kim, Kyu Cheol; Yu, Yeon Tae; Yang, Jin Kyu; Polyakov, Alexander Y.; Lee, In-Hwan

    2017-10-01

    Improved performance of blue InGaN/GaN light-emitting diodes (LEDs) is realized as a result of fabricating nanohole patterns in the p-GaN contact layer and embedding the nanoholes with Ag/SiO2 nanoparticles to generate localized surface plasmons (LSPs). Good matching between LSP resonance energy and LED emission energy together with the close proximity between nanoparticles and the active region results in strong coupling between them. Consequently, the photoluminescence and electroluminescence intensities increased to 1.75 and 1.10, respectively, compared with nanohole patterned reference LEDs.

  20. Plasmonically enhanced electromotive force of narrow bandgap PbS QD-based photovoltaics.

    PubMed

    Li, Xiaowei; McNaughter, Paul D; O'Brien, Paul; Minamimoto, Hiro; Murakoshi, Kei

    2018-05-30

    Electromotive force of photovoltaics is a key to define the output power density of photovoltaics. Multiple exciton generation (MEG) exhibited by semiconductor quantum dots (QDs) has great potential to enhance photovoltaic performance owing to the ability to generate more than one electron-hole pairs when absorbing a single photon. However, even in MEG-based photovoltaics, limitation of modifying the electromotive force exists due to the intrinsic electrochemical potential of the conduction band-edges of QDs. Here we report a pronouncedly improved photovoltaic performance by constructing a PbS QD-sensitized electrode that comprises plasmon-active Au nanoparticles embedded in a titanium dioxide thin film. Significant enhancement on electromotive force is characterized by the onset potential of photocurrent generation using MEG-effective PbS QDs with a narrow bandgap energy (Eg = 0.9 eV). By coupling with localized surface plasmon resonance (LSPR), such QDs exhibit improved photoresponses and the highest output power density over the other QDs with larger bandgap energies (Eg = 1.1 and 1.7 eV) under visible light irradiation. The wavelength-dependent onset potential and the output power density suggest effective electron injection owing to the enhanced density of electrons excited by energy overlapping between MEG and LSPR.