Sample records for nanoparticles composite film

  1. Thermal dewetting behavior of polystyrene composite thin films with organic-modified inorganic nanoparticles.

    PubMed

    Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi

    2014-07-29

    The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

  2. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    NASA Astrophysics Data System (ADS)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  3. Thermoelectric properties of conducting polyaniline/BaTiO3 nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Anno, H.; Yamaguchi, K.; Nakabayashi, T.; Kurokawa, H.; Akagi, F.; Hojo, M.; Toshima, N.

    2011-05-01

    Conducting polyaniline (PANI)/BaTiO3 nanoparticle composite films with different molar ratio values R=1, 5, 10, and 100 have been prepared on a quartz substrate by casting the m-cresol solution of PANI, (±)-10-camphorsulfonic acid (CSA) and BaTiO3 nanoparticle with an average diameter of about 20 nm. The CSA-doped PANI/BaTiO3 composite films were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, and UV-Vis transmission spectroscopy. The Seebeck coefficient and the electrical conductivity of the films with different R values, together with CSA-doped PANI films, were measured in the temperature range from room temperature to ~400 K. The relation between the Seebeck coefficient and the electrical conductivity in the composite films are discussed from a comparison of them with those of CSA-doped PANI films and other PANI composite films.

  4. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  5. Enhancement of the Optoelectronic Properties of PEDOT: PSS-PbS Nanoparticles Composite Thin Films Through Nanoparticles' Capping Ligand Exchange

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, Diana F.; Hernández-Casillas, Laura P.; Sepúlveda-Guzmán, Selene; Vazquez-Rodriguez, Sofia; García-Gutiérrez, Domingo I.

    2018-02-01

    The influence of the capping ligand on nanoparticles' optical and electronic properties is a topic of great interest currently being investigated by several research groups in different countries. In the present study, PbS nanoparticles originally synthesized with oleic acid, myristic acid and hexanoic acid underwent a ligand exchange process to replace the original carboxylic acid for uc(l)-cysteine as the capping layer, and were thoroughly characterized by means of transmission electron microscopy and its related techniques, such as energy dispersive x-ray spectroscopy and scanning-transmission electron microscopy, and Fourier transform infrared, Raman and x-ray photoelectron spectroscopy. Afterwards, these PbS nanoparticles were dispersed into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) matrix to fabricate a composite thin film which displayed the optical absorption properties of the PbS nanoparticles and the electrical transport properties of the PEDOT:PSS matrix, in order to evaluate the impact of the nanoparticles' capping ligand on the optoelectronic properties of the fabricated composite thin films. Composite thin films with PbS nanoparticles showing uc(l)-cysteine as the capping layer displayed clear photoresponse and a threefold increment in their conductivities compared to pristine PEDOT:PSS. The properties of PEDOT:PSS, known as a hole transport layer in most organic photovoltaic devices, were enhanced by adding PbS nanoparticles with different capping ligands, producing a promising composite material for optoelectronic applications by proper selection of the nanoparticles' capping layer.

  6. Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

    PubMed Central

    Chu, Zhuangzhuang; Zhao, Tianrui; Li, Lin; Fan, Jian; Qin, Yuyue

    2017-01-01

    Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of nano-Ag and nano-ZnO. The addition of nanoparticles into the pure PLA film decreased the tensile strength and elasticity modulus and increased the elongation of breaks—in other words, the flexibility and extensibility of these composites improved. According to the results of differential scanning calorimetry (DSC), the glass transition temperature of the PLA nano-composite films decreased, and the crystallinity of these films increased; a similar result was apparent from X-ray diffraction (XRD) analysis. The water vapor permeability (WVP) and opacity of the PLA nano-composite films augmented compared with pure PLA film. Incorporation of nanoparticles to the PLA films significantly improved the antimicrobial activity to inhibit the growth of Escherichia coli. The results indicated that PLA films with nanoparticles could be considered a potential environmental-friendly packaging material. PMID:28773018

  7. Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina

    2017-11-01

    A novel electrosynthetic method was introduced to synthesize of Sm 2 O 3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm 2 O 3 films have then been fabricated by POAP electropolymerization in the presence of Sm 2 O 3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm 2 O 3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm 2 O 3 and POAP/Sm 2 O 3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm 2 O 3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles

    NASA Astrophysics Data System (ADS)

    Thérien-Aubin, Héloïse; Lukach, Ariella; Pitch, Natalie; Kumacheva, Eugenia

    2015-04-01

    We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase.We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic

  9. Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu

    2008-10-01

    Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.

  10. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Dinh, D. A.; Hui, K. S.; Hui, K. N.; Cho, Y. R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-04-01

    A green facile chemical approach to control the dimensions of Ag nanoparticles-graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N2/H2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  11. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    NASA Astrophysics Data System (ADS)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  12. High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film

    NASA Astrophysics Data System (ADS)

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.

    2016-05-01

    We report a flexible hydrogen sensor, composed of WS2 nanosheet-Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2-Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2-Pd composite film distinctly outperforms the graphene-Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.

  13. Optical properties of MgF2 nano-composite films dispersed with noble metal nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Soujima, Nobuaki; Shibuya, Takehisa

    2015-03-01

    Porous MgF2 films synthesized by a sol-gel method exhibit the lowest refractive index among the dielectric optical materials and are the most useful materials for the anti-reflection coatings. On the other hand, surface plasmon resonance (SPR) absorptions of noble metal nanoparticles in various solid matrices have been extensively studied. New functional materials like a SERS (Surface Enhanced Raman Spectroscopy) tips are expected by synthesizing composite materials between porous MgF2 films featured by the network of MgF2 nanoparticles and noble metal nanoparticles introduced within the network. In this study, fundamental physical properties including morphology and optical properties are characterized for these materials to make clear the potential of the composite system. Composite materials of MgF2 films dispersed with noble metal (Ag, Au) nanoparticles were prepared using the sol-gel technique with various annealing temperatures and densities of noble metal nanoparticles. The structural morphology was analyzed by an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The size and shape distributions of the metal nanoparticles were observed using a transmission electron microscope (TEM). The optical properties of fabricated composite films were characterized by UV-Vis-NIR and FT-IR spectrophotometers. The absorption spectra due to the surface plasmon resonance (SPR) of the metal nanoparticles were analyzed using the dielectric function considering the effective medium approximation, typically Maxwell-Garnett model. The Raman scattering spectra were also studied to check the enhancement effect of specimen dropped on the MgF2: Ag nano-composite films deposited on Si substrate. Enhancement of the Raman intensity of pyridine solution specimen was observed.

  14. Composite Films Formed by Cellulose nanocrystals and Latex Nanoparticles: Optical, Structural, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Vollick, Brandon McRae

    This thesis describes the preparation of iridescent, birefringent, composite films composed of cellulose nanocrystals (CNCs), latex nanoparticles (NPs) and a NP crosslinker; hexanediamine (HDA). First, aqueous suspensions were prepared with varying quantities of CNCs, NPs and HDA before equilibrating for one week. The cholesteric (Ch) phase was then cast and dried into a film. The optical, structural and mechanical properties of the film was analyzed. Second, films with identical compositions of CNCs, NPs, and HDA were fabricated in three different ways to yield films of different morphology, (i) fast drying of an isotropic suspension, yielding an isotropic film, (ii) slow drying of an isotropic suspension, yielding a partially Ch films, (iii) slow drying of an equilibrated suspension, yielding a highly Ch film. The optical and mechanical properties of the films was analyzed.

  15. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  16. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2015-10-05

    Silver nanoparticles (AgNPs) were synthesized using amino acids (tyrosine and tryptophan) as reducing and capping agents, and they were incorporated into the agar to prepare antimicrobial composite films. The AgNPs solutions exhibited characteristic absorption peak at 420 nm that showed a red shift to ∼434 nm after forming composite with agar. XRD data demonstrated the crystalline structure of AgNPs with dominant (111) facet. Apparent surface color and transmittance of agar films were greatly influenced by the AgNPs. The incorporation of AgNPs into agar did not exhibit any change in chemical structure, thermal stability, moisture content, and water vapor permeability. The water contact angle, tensile strength, and modulus decreased slightly, but elongation at break increased after AgNPs incorporation. The agar/AgNPs nanocomposite films possessed strong antibacterial activity against Listeria monocytogenes and Escherichia coli. The agar/AgNPs film could be applied to the active food packaging by controlling the food-borne pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Simple preparation of fluorescent composite films based on cerium and europium doped LaF3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Secco, Henrique de L.; Ferreira, Fabio F.; Péres, Laura O.

    2018-03-01

    The combination of materials to form hybrids with unique properties, different from those of the isolated components, is a strategy used to prepare functional materials with improved properties aiming to allow their application in specific fields. The doping of lanthanum fluoride with other rare earth elements is used to obtain luminescent particles, which may be useful to the manufacturing of electronic devices' displays and biological markers, for instance. The application of the powder of nanoparticles has limitations in some fields; to overcome this, the powder may be incorporated in a suitable polymeric matrix. In this work, lanthanum fluoride nanoparticles, undoped and doped with cerium and europium, were synthesized through the co-precipitation method in aqueous solution. Aiming the formation of solid state films, composites of nanoparticles in an elastomeric matrix, the nitrile rubber (NBR), were prepared. The flexibility and the transparency of the matrix in the regions of interest are advantages for the application of the luminescent composites. The composites were applied as films using the casting and the spin coating techniques and luminescent materials were obtained in the samples doped with europium and cerium. Scanning electron microscopy images showed an adequate dispersion of the particles in the matrix in both film formation techniques. Aggregates of the particles were detected in the samples which may affect the uniformity of the emission of the composites.

  18. Borylation of α,β-Unsaturated Acceptors by Chitosan Composite Film Supported Copper Nanoparticles

    PubMed Central

    Wen, Wu; Han, Biao; Yan, Feng; Ding, Liang; Li, Bojie; Wang, Liansheng

    2018-01-01

    We describe here the preparation of copper nanoparticles stabilized on a chitosan/poly (vinyl alcohol) composite film. This material could catalyze the borylation of α,β-unsaturated acceptors in aqueous media under mild conditions. The corresponding organoboron compounds as well as their converted β-hydroxyl products were all obtained in good to excellent yields. It is noteworthy that this catalyst of copper nanoparticles can be easily recycled eight times and remained catalytically reactive. This newly developed methodology provides an efficient and sustainable pathway for the synthesis of organoboron compounds and application of copper nanoparticles. PMID:29757981

  19. Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties.

    PubMed

    Shankar, Shiv; Tanomrod, Nattareya; Rawdkuen, Saroat; Rhim, Jong-Whan

    2016-11-01

    Silver nanoparticles (AgNPs) was synthesized by a green method using an aqueous extract of Caesalpinia mimosoides Lamk (CMLE) as reducing and stabilizing agents, and they were used for the preparation of pectin-based antimicrobial composite films. The AgNPs were spherical in shape with the size in the range of 20-80nm and showed the absorption peak around 500nm. The pectin/AgNPs composite film exhibited characteristic absorption peak of AgNPs at 480nm. The surface color and light transmittance of the pectin films were greatly influenced by the addition of AgNPs. The lightness of the films decreased, however, redness and yellowness of the films increased after incorporation of AgNPs. UV-light barrier property of the pectin film increased significantly with a little decrease in the transparency. Though there were no structural changes in the pectin film by the incorporation of CMLE and AgNPs as indicated by the FTIR results, the film properties such as thermal stability, mechanical strength, and water vapor barrier properties of the pectin films increased. The pectin/AgNPs nanocomposite films exhibited strong antibacterial activity against food-borne pathogenic bacteria, Escherichia coli and Listeria monocytogenes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of plasmonic field due to gold nanoparticles and magnetic field on photocurrents of zinc porphyrin-viologen linked compound-gold nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Yonemura, Hiroaki; Niimi, Tomoki; Yamada, Sunao

    2016-03-01

    Composite films of zinc-porphyrin-viologen (ZnP-V2+) linked compound containing six methylene group [ZnP(6)V]-gold nanoparticles (AuNP) were fabricated by combining electrostatic layer-by-layer adsorption and the Langmuir-Blodgett method. The anodic photocurrents of the ZnP(6)V-AuNP composite films are higher than those of the ZnP(6)V films. The large photocurrents in ZnP(6)V-AuNP composite films are most likely attributable to the combination of localized surface plasmon resonance due to AuNP and photoinduced intramolecular electron transfer from excited state of ZnP to V2+. The photocurrents of the ZnP(6)V-AuNP composite films increase in the presence of magnetic field. The photocurrents increase with low magnetic fields (B ≤ 150 mT) and are almost constant under high magnetic fields (B ≥ 150 mT). Magnetic field effects (MFEs) were clearly observed for both ZnP(6)V-AuNP composite films and ZnP(6)V films. The MFEs can be explained by a radical pair mechanism.

  1. Photoluminescence from Au nanoparticles embedded in Au:oxide composite films

    NASA Astrophysics Data System (ADS)

    Liao, Hongbo; Wen, Weijia; Wong, George K.

    2006-12-01

    Au:oxide composite multilayer films with Au nanoparticles sandwiched by oxide layers (such as SiO2, ZnO, and TiO2) were prepared in a magnetron sputtering system. Their photoluminescence (PL) spectra were investigated by employing a micro-Raman system in which an Argon laser with a wavelength of 514 nm was used as the pumping light. Distinct PL peaks located at a wavelength range between 590 and 680 nm were observed in most of our samples, with Au particle size varying from several to hundreds of nanometers. It was found that the surface plasmon resonance (SPR) in these composites exerted a strong influence on the position of the PL peaks but had little effect on the PL intensity.

  2. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

    2016-03-01

    The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

  3. Polymer film-nanoparticle composites as new multimodality, non-migrating breast biopsy markers.

    PubMed

    Kaplan, Jonah A; Grinstaff, Mark W; Bloch, B Nicolas

    2016-03-01

    To develop a breast biopsy marker that resists fast and slow migration and has permanent visibility under commonly used imaging modalities. A polymer-nanoparticle composite film was prepared by embedding superparamagnetic iron oxide nanoparticles and a superelastic Nitinol wire within a flexible polyethylene matrix. MRI, mammography, and ultrasound were used to visualize the marker in agar, ex vivo chicken breast, bovine liver, brisket, and biopsy training phantoms. Fast migration caused by the "accordion effect" was quantified after simulated stereotactic, vacuum-assisted core biopsy/marker placement, and centrifugation was used to simulate accelerated long-term (i.e., slow) migration in ex vivo bovine tissue phantoms. Clear marker visualization under MRI, mammography, and ultrasound was observed. After deployment, the marker partially unfolds to give a geometrically constrained structure preventing fast and slow migration. The marker can be deployed through an 11G introducer without fast migration occurring, and shows substantially less slow migration than conventional markers. The polymer-nanoparticle composite biopsy marker is clearly visible on all clinical imaging modalities and does not show substantial migration, which ensures multimodal assessment of the correct spatial information of the biopsy site, allowing for more accurate diagnosis and treatment planning and improved breast cancer patient care. Polymer-nanoparticle composite biopsy markers are visualized using ultrasound, MRI, and mammography. Embedded iron oxide nanoparticles provide tuneable contrast for MRI visualization. Permanent ultrasound visibility is achieved with a non-biodegradable polymer having a distinct ultrasound signal. Flexible polymer-based biopsy markers undergo shape change upon deployment to minimize migration. Non-migrating multimodal markers will help improve accuracy of pre/post-treatment planning studies.

  4. Novel antifouling nano-enhanced thin-film composite membrane containing cross-linkable acrylate-alumoxane nanoparticles for water softening.

    PubMed

    Ghaemi, Negin

    2017-01-01

    A novel thin-film composite (TFC) nanofiltration membrane was prepared using polymerization of pyrrole monomers on the PES ultrafiltration membrane. To improve the characteristics of hydrophobic polypyrrole (PPy) thin-film layer, cross-linkable acrylate-functionalized alumoxane nanoparticles with different concentrations were embedded into the thin-film during polymerization process, and thin-film nanocomposite (TFNC) membranes were prepared. The characteristics and performance of TFC and TFNC membranes were assessed through the morphological analyses (SEM, AFM), measurement of hydrophilicity and solid-liquid interfacial free energy, water permeability and Mg 2+ removal tests. Addition of proper amount of nanoparticles into the polymerization mixture led to the preparation of membranes with more hydrophilic, thinner and smoother active layer as well as higher water permeability compared to TFC control membrane. TFNC membrane prepared with 0.025g of nanoparticles was the most efficient membrane since it exhibited the highest rejection of MgCl 2 and MgSO 4 salts. Antifouling capability of membranes, in terms of flux recovery and fouling parameters, demonstrated the high tolerance of TFNC against fouling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.

    2014-03-01

    Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.

  6. Preparation and characterization of WO3 nanoparticles, WO3/TiO2 core/shell nanocomposites and PEDOT:PSS/WO3 composite thin films for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.

    2016-03-01

    In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.

  7. Supercapacitors: Ferroelectric Polymer-Ceramic Nanoparticle Composite Films for Use in the Capacitive Storage of Electrical Energy

    NASA Astrophysics Data System (ADS)

    Parsons, Dana; Pierce, Andrew; Porter, Tim; Dillingham, Randy; Cornelison, David

    2010-03-01

    Most new alternative energy solutions including wind and solar power, will require short term energy storage for widespread implementation. One means of storage would be the use of capacitors owing to their rapid delivery of power and longevity compared to chemical batteries. Capacitor materials exhibiting high dielectric permittivity and breakdown strength, as well as light weight and environmental safety are most desirable. Recently, new classes of capacitor dielectric materials, consisting of ferroelectric polymer matrices containing ceramic nanoparticles have attracted renewed interest due to their high potential energy storage, charge and discharge properties and lightweight. In this study, polyvinylidene flouride (PVDF) thin films containing nanoparticles of the ceramic titanium dioxide created using a physical vapor deposition process, are analyzed for use as dielectrics for a supercapacitor. Measured results of the film parameters including dielectric properties and breakdown voltages will be presented. These parameters will be analyzed with respect to film characteristics such as, dispersion of the ceramic particles, thickness of the films and composition ratios.

  8. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites.

    PubMed

    Farahani, Rouhollah Dermanaki; Janier, Mathieu; Dubé, Martine

    2018-03-23

    In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film's electrical resistivity from 9.4 × 10 3 down to 3.1 × 10 -4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors' resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens' cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.

  9. Enhanced nonlinear current-voltage behavior in Au nanoparticle dispersed CaCu 3 Ti 4 O 12 composite films

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Wang, Can; Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Ming, Hai; Wang, Pei; Zhang, Dongxiang; Yang, Guozhen

    2011-10-01

    An enhanced nonlinear current-voltage behavior has been observed in Au nanoparticle dispersed CaCu 3Ti 4O 12 composite films. The double Schottky barrier model is used to explain the enhanced nonlinearity in I-V curves. According to the energy-band model and fitting result, the nonlinearity in Au: CCTO film is mainly governed by thermionic emission in the reverse-biased Schottky barrier. This result not only supports the mechanism of double Schottky barrier in CCTO, but also indicates that the nonlinearity of current-voltage behavior could be improved in nanometal composite films, which has great significance for the resistance switching devices.

  10. Effect of temperature on optical properties of PMMA/SiO2 composite thin film

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-05-01

    Effect of temperature on PMMA/SiO2 composites thin films were investigated. Nanocomposite flexible thin films of 60 µm thicknesses with different loading of SiO2 nanoparticles were prepared using solution casting method. SEM images show that SiO2 nanoparticles are distributed uniformly in PMMA matrix without any lumps on the surface, and PMMA/SiO2 nano composite thin films had a smoother and regular morphology. UV-Vis and optical band gap measurements revealed that both the concentration of SiO2 nanoparticles and temperature affect the optical properties of the composite thin film in comparison to the pure PMMA film.

  11. Conductive films of silver nanoparticles as novel susceptors for induction welding of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Dermanaki Farahani, Rouhollah; Janier, Mathieu; Dubé, Martine

    2018-03-01

    In the present work, a conductive film of silver nanoparticles (nAg) as a novel heating element type, called susceptor, was developed and tested for induction welding of carbon fiber/polyphenylene sulfide (CF/PPS) thermoplastic composites, i.e., unidirectional pre-impregnated 16 plies of CF/PPS compression-molded in a quasi-isotropic stacking sequence. The nAg were synthesized, dispersed in deionized (DI) water and casted onto a pure PPS film, resulting in a conductive film upon the evaporation of DI water and thermal post-annealing. The thermal annealing at 250 °C significantly (by 7 orders) decreased the film’s electrical resistivity from 9.4 × 103 down to 3.1 × 10-4 Ω cm. The new susceptors led to fast heating rates in induction welding when compared to the standard stainless steel mesh susceptors under similar welding conditions. Lap shear mechanical testing revealed that the apparent lap shear strength (LSS) is sensitive to the susceptors’ resistivity and the input current. A relatively high LSS value was achieved for the specimens welded using the new susceptors which exceeded the value of those welded using stainless steel mesh susceptors (28.3 MPa compared to 20 MPa). The weld interface and specimens’ cross-section observation revealed that the nAg were dispersed and embedded into the resin upon welding. This study contains preliminary results that show high potential of nanoparticles as effective susceptors to further improve the mechanical performance of the joints in welding of thermoplastic composites.

  12. Deposition of Nanostructured Thin Film from Size-Classified Nanoparticles

    NASA Technical Reports Server (NTRS)

    Camata, Renato P.; Cunningham, Nicholas C.; Seol, Kwang Soo; Okada, Yoshiki; Takeuchi, Kazuo

    2003-01-01

    Materials comprising nanometer-sized grains (approximately 1_50 nm) exhibit properties dramatically different from those of their homogeneous and uniform counterparts. These properties vary with size, shape, and composition of nanoscale grains. Thus, nanoparticles may be used as building blocks to engineer tailor-made artificial materials with desired properties, such as non-linear optical absorption, tunable light emission, charge-storage behavior, selective catalytic activity, and countless other characteristics. This bottom-up engineering approach requires exquisite control over nanoparticle size, shape, and composition. We describe the design and characterization of an aerosol system conceived for the deposition of size classified nanoparticles whose performance is consistent with these strict demands. A nanoparticle aerosol is generated by laser ablation and sorted according to size using a differential mobility analyzer. Nanoparticles within a chosen window of sizes (e.g., (8.0 plus or minus 0.6) nm) are deposited electrostatically on a surface forming a film of the desired material. The system allows the assembly and engineering of thin films using size-classified nanoparticles as building blocks.

  13. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less

  14. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    PubMed

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C.

  15. One-Step Synthesis of Silver Nanoparticles on Polydopamine-Coated Sericin/Polyvinyl Alcohol Composite Films for Potential Antimicrobial Applications.

    PubMed

    Cai, Rui; Tao, Gang; He, Huawei; Song, Kai; Zuo, Hua; Jiang, Wenchao; Wang, Yejing

    2017-04-30

    Silk sericin has great potential as a biomaterial for biomedical applications due to its good hydrophilicity, reactivity, and biodegradability. To develop multifunctional sericin materials for potential antibacterial application, a one-step synthesis method for preparing silver nanoparticles (AgNPs) modified on polydopamine-coated sericin/polyvinyl alcohol (PVA) composite films was developed. Polydopamine (PDA) acted as both metal ion chelating and reducing agent to synthesize AgNPs in situ on the sericin/PVA composite film. Scanning electron microscopy and energy dispersive spectroscopy analysis revealed that polydopamine could effectively facilitate the high-density growth of AgNPs as a 3-D matrix. X-ray diffractometry studies suggested the synthesized AgNPs formed good face-centered cubic crystalline structures. Contact angle measurement and mechanical test indicated AgNPs modified PDA-sericin/PVA composite film had good hydrophilicity and mechanical property. The bacterial growth curve and inhibition zone assays showed the AgNPs modified PDA-sericin/PVA composite film had long-term antibacterial activities. This work develops a new method for the preparation of AgNPs modified PDA-sericin/PVA film with good hydrophilicity, mechanical performance and antibacterial activities for the potential antimicrobial application in biomedicine.

  16. Preparation and characterization of WO{sub 3} nanoparticles, WO{sub 3}/TiO{sub 2} core/shell nanocomposites and PEDOT:PSS/WO{sub 3} composite thin films for photocatalytic and electrochromic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyadjiev, Stefan I., E-mail: boiajiev@gmail.com; Santos, Gustavo dos Lopes; Szűcs, Júlia

    2016-03-25

    In this study, monoclinic WO{sub 3} nanoparticles were obtained by thermal decomposition of (NH{sub 4}){sub x}WO{sub 3} in air at 600 °C. On them by atomic layer deposition (ALD) TiO{sub 2} films were deposited, and thus core/shell WO{sub 3}/TiO{sub 2} nanocomposites were prepared. We prepared composites of WO{sub 3} nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO{submore » 3} and core/shell WO{sub 3}/TiO{sub 2} nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO{sub 3} thin films, and the coloring and bleaching states were studied.« less

  17. In situ Synthesis of Metal Nanoparticle Embedded Free Standing Multifunctional PDMS Films.

    PubMed

    Goyal, Anubha; Kumar, Ashavani; Patra, Prabir K; Mahendra, Shaily; Tabatabaei, Salomeh; Alvarez, Pedro J J; John, George; Ajayan, Pulickel M

    2009-07-01

    We demonstrate a simple one-step method for synthesizing noble metal nanoparticle embedded free standing polydimethylsiloxane (PDMS) composite films. The process involves preparing a homogenous mixture of metal salt (silver, gold and platinum), silicone elastomer and the curing agent (hardener) followed by curing. During the curing process, the hardener crosslinks the elastomer and simultaneously reduces the metal salt to form nanoparticles. This in situ method avoids the use of any external reducing agent/stabilizing agent and leads to a uniform distribution of nanoparticles in the PDMS matrix. The films were characterized using UV-Vis spectroscopy, transmission electron microscopy and X-ray photoemission spectroscopy. The nanoparticle-PDMS films have a higher Young's modulus than pure PDMS films and also show enhanced antibacterial properties. The metal nanoparticle-PDMS films could be used for a number of applications such as for catalysis, optical and biomedical devices and gas separation membranes. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Migration of copper from nanocopper/LDPE composite films.

    PubMed

    Liu, Fang; Hu, Chang-Ying; Zhao, Quan; Shi, Yu-Jie; Zhong, Huai-Ning

    2016-11-01

    Three nanocopper/low-density polyethylene (LDPE) composite films were tested in food simulants (3% acetic acid and 10% ethanol) and real food matrices (rice vinegar, bottled water and Chinese liquor) to explore the behaviours of copper migration using ICP-OES and GFAAS. The effects of exposure time, temperature, nanocopper concentration and contact media on the release of copper from nanocopper/LDPE composite films were studied. It was shown that the migration of copper into 10% ethanol was much less than that into 3% acetic acid at the same conditions. With the increase of nanocopper concentration, exposure time and temperature, the release of copper increased. Copper migration does not appear to be significant in the case of bottled water and Chinese liquor compared with rice vinegar with a maximum value of 0.54 μg mL -1 for the CF-0.25# bags at 70°C for 2 h. The presence and morphology of copper nanoparticles in the films and the topographical changes of the films were confirmed by field emission scanning electron microscope (FE-SEM) and atomic force microscope (AFM). In this manner, copper nanoparticles of different morphologies, sizes and distribution were found, and samples with higher nanocopper concentration had a more irregular topography. In the case of Fourier transform infrared spectroscopy (FTIR), no chemical bonds formed between copper nanoparticles and LDPE. Copper nanoparticles were just as physically dispersed in LDPE.

  19. Directed Self-Organization of Polymer-Grafted Nanoparticles in Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Zhang, Ren

    The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. Surface modification of NPs with grafted polymer ligands has emerged as a versatile means to control the interaction and organization of particle constituents in polymer-matrix composite materials. In this study, by incorporating polymer-grafted nanoparticles (PGNPs) into polymeric thin films, we aim to understand and control the spatial organization of PGNPs through the interactions between polymer brush layer and matrix chains. As model systems, we investigate thermodynamic behaviors of polystyrene-tethered gold nanoparticles (denoted as AuPS) dispersed in polymer thin film matrices with identical and different chemical compositions (PS and PMMA, respectively), and evaluate the influence of external perturbation fields on directed organization of nanofillers. With the presence of unfavorable enthalpic interactions between grafted and free polymer chains (i.e. AuPS/ PMMA blend thin films), phase-separated structures are generated upon thermal annealing, characterized with morphologies ranging from discrete droplets to spinodal structures, which is consistent with composition-dependent classic binary polymer blends phase separation. The phase separation kinetics of AuPS/ PMMA blends exhibit distinct features compared to the parent PS/ PMMA homopolymer blends. We further illustrate phase-separated AuPS-rich domains can be directed into unidirectionally aligned anisotropic structures through soft-shear dynamic zone annealing (DZA-SS) process with tunable domain aspect ratios. To exert exquisite control over the shape, size and location of phase-separated PGNP domains, topographically patterned elastomer confinement is introduced to PGNP/ polymer blend thin films during thermal annealing. When the phase

  20. Metal nanoparticle-graphene oxide composites: Photophysical properties and sensing applications

    NASA Astrophysics Data System (ADS)

    Murphy, Sean J.

    Composite nanomaterials allow for attractive properties of multiple functional components to be combined. Fundamental understanding of the interaction between different nanomaterials, their surroundings, and nearby molecular species is pertinent for implementation into devices. Metal nanoparticles have been used for their optical properties in many applications including stained glass, cancer therapy, solar steam generation, surface enhanced Raman spectroscopy (SERS), and catalysis. Carbon-based nanomaterials such as graphene and carbon nanotubes show potential for a wide variety of applications including solar energy harvesting, chemical sensors, and electronics. Combining useful and in some cases new properties of composite nanomaterials offers exciting opportunities in fundamental science and device development. In this dissertation, I aim to address understanding photoinduced interaction between porphyrin and silver nanoparticles, inter-sheet interaction between stacked graphene oxide (GO) sheets in thin films, complexation of reduced GO with Raman active target molecule in SERS applications, and efficacy of graphene-metal nanoparticle composites for sensing applications. Molecule-metal nanoparticle composite material made up of photoactive porphyrin and silver nanoparticles was studied using various spectroscopic tools. UV-visible absorption and surface enhanced Raman spectroscopic results suggest formation of a charge-transfer complex for porphyrin-silver nanoparticle composite. Ultrafast transient absorption and fluorescence upconversion spectroscopies further corroborate electronic interaction by providing evidence for excited state electron transfer between porphyrin and silver nanoparticles. Understanding electronic interaction between adsorbed photoactive molecules and metal nanoparticles may be of use for applications in photocatalysis or light-energy harvesting. Graphene oxide (GO) thin films have been prepared and studied using transient absorption

  1. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes.

    PubMed

    Xiao, Fei; Zhao, Faqiong; Li, Jiangwen; Yan, Rui; Yu, Jingjing; Zeng, Baizhao

    2007-07-16

    A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at -0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0x10(-8)-6.0x10(-6) M, and the detection limit is estimated to be 5.0x10(-9) M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.

  2. New deposition technique for metal films containing inorganic fullerene-like (IF) nanoparticles.

    PubMed

    Goldbart, Ohad; Yoffe, Alexander; Cohen, Sidney R; Rosentsveig, Rita; Feldman, Yishay; Rapoport, Lev; Tenne, Reshef

    2013-07-22

    This study describes a new method for fabrication of thin composite films using physical vapor deposition (PVD). Titanium (Ti) and hybrid films of titanium containing tungsten disulphide nanoparticles with inorganic fullerene-like structure (Ti/IF-WS2) were fabricated with a modified PVD machine. The evaporation process includes the pulsed deposition of IF-WS2 by a sprayer head. This process results in IF-WS2 nanoparticles embedded in a Ti matrix. The layers were characterized by various techniques, which confirm the composition and structure of the hybrid film. The Ti/IF-WS2 shows better wear resistance and a lower friction coefficient when compared to the Ti layer or Ti substrate. The Ti/IF films show very good antireflective properties in the visible and near-IR region. Such films may find numerous applications, for example, in the aerospace and medical technology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly Transparent, Nanofiller-Reinforced Scratch-Resistant Polymeric Composite Films Capable of Healing Scratches.

    PubMed

    Li, Yang; Chen, Shanshan; Li, Xiang; Wu, Mengchun; Sun, Junqi

    2015-10-27

    Integration of healability and mechanical robustness is challenging in the fabrication of highly transparent films for applications as protectors in optical and displaying devices. Here we report the fabrication of healable, highly transparent and scratch-resistant polymeric composite films that can conveniently and repeatedly heal severe damage such as cuts of several tens of micrometers wide and deep. The film fabrication process involves layer-by-layer (LbL) assembly of a poly(acrylic acid) (PAA) blend and branched poly(ethylenimine) (bPEI) blend, where each blend contains the same polyelectrolytes of low and high molecular weights, followed by annealing the resulting PAA/bPEI films with aqueous salt solution and incorporation of CaCO3 nanoparticles as nanofillers. The rearrangement of low-molecular-weight PAA and bPEI under aqueous salt annealing plays a critical role in eliminating film defects to produce optically highly transparent polyelectrolyte films. The in situ formation of tiny and well-dispersed CaCO3 nanoparticles gives the resulting composite films enhanced scratch-resistance and also retains the healing ability of the PAA/bPEI matrix films. The reversibility of noncovalent interactions among the PAA, bPEI, and CaCO3 nanoparticles and the facilitated migration of PAA and bPEI triggered by water enable healing of the structural damage and restoration of optical transparency of the PAA/bPEI films reinforced with CaCO3 nanoparticles.

  4. Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy

    2017-01-01

    The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.

  5. Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and Anti-Microbial Properties.

    PubMed

    Becaro, Aline A; Puti, Fernanda C; Correa, Daniel S; Paris, Elaine C; Marconcini, José M; Ferreira, Marcos D

    2015-03-01

    This paper reports the antibacterial effect and physico-chemical characterization of films containing silver nanoparticles for use as food packaging. Two masterbatches (named PEN and PEC) con- taining silver nanoparticles embedded in distinct carriers (silica and titanium dioxide) were mixed with low-density polyethylene (LDPE) in different compositions and extruded to produce plain films. These films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the films showed the formation of agglomerates of nanoparticles in both PEN and PEC composites. X-ray analyses confirmed the presence of SiO2 in PEN samples and TiO2 in PEC samples. Thermal analyses indicated an increase in thermal stability of the PEC compositions. The antimicrobial efficacy was determined by applying the test strain for Escherichia coli and Staphylococcus aureus, according to the Japanese Industrial Standard Method (JIS Z 2801:2000). The films analyzed showed antimicrobial properties against the tested microorganisms, presenting better activity against the S. aureus than E. Coli. These findings suggest that LDPE films with silver nanoparticles are promising to provide a significant contribution to the quality and safety of packaged food.

  6. Controlled surface functionality of magnetic nanoparticles by layer-by-layer assembled nano-films

    NASA Astrophysics Data System (ADS)

    Choi, Daheui; Son, Boram; Park, Tai Hyun; Hong, Jinkee

    2015-04-01

    Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide broad functional opportunities, we fabricated F-MNP bio-toolbox by using three different materials: synthetic polymers, natural polymers, and carbon materials. Each of these F-MNPs displays distinct properties, such as enhanced thickness or unique morphologies. In an effort to explore their biomedical applications, we generated basic fibroblast growth factor (bFGF)-loaded F-MNPs. The bFGF-loaded F-MNPs exhibited different release mechanisms and loading amounts, depending on the film material and composition order. Moreover, bFGF-loaded F-MNPs displayed higher biocompatibility and possessed superior proliferation properties than the bare MNPs and pure bFGF, respectively. We conclude that by simply optimizing the building materials and the nanoparticle's film composition, MNPs exhibiting various bioactive properties can be generated.Over the past several years, the preparation of functionalized nanoparticles has been aggressively pursued in order to develop desired structures, compositions, and structural order. Among the various nanoparticles, iron oxide magnetic nanoparticles (MNPs) have shown great promise because the material generated using these MNPs can be used in a variety of biomedical applications and possible bioactive functionalities. In this study, we report the development of various functionalized MNPs (F-MNPs) generated using the layer-by-layer (LbL) self-assembly method. To provide

  7. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS₂ Nanoparticles.

    PubMed

    Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev; Tenne, Reshef

    2018-02-26

    Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS₂ (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.

  8. High-coercivity FePt nanoparticle assemblies embedded in silica thin films.

    PubMed

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Li, A; Ramanujan, R V; Ramanath, G

    2009-01-14

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 degrees C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H(c)>630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  9. Stratification during evaporative assembly of multicomponent nanoparticle films

    DOE PAGES

    Liu, Xiao; Liu, Weiping; Carr, Amanda J.; ...

    2018-01-03

    Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. In this paper, we present AFM on the surfacemore » composition of films comprising poly(styrene) nanoparticles (diameter 25–90 nm) and silica nanoparticles (diameter 8–14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120–460), while we utilize Pe ~ 0.3–4, enabling us to test theories that have been developed for different regimes of Pe. We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Finally, our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification.« less

  10. Stratification during evaporative assembly of multicomponent nanoparticle films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao; Liu, Weiping; Carr, Amanda J.

    Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. In this paper, we present AFM on the surfacemore » composition of films comprising poly(styrene) nanoparticles (diameter 25–90 nm) and silica nanoparticles (diameter 8–14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120–460), while we utilize Pe ~ 0.3–4, enabling us to test theories that have been developed for different regimes of Pe. We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Finally, our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification.« less

  11. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles.

    PubMed

    Zhang, Wei; Chen, Jiwang; Chen, Yue; Xia, Wenshui; Xiong, Youling L; Wang, Hongxun

    2016-03-15

    Chitosan/whey protein isolate film incorporated with sodium laurate-modified TiO2 nanoparticles was developed. The nanocomposite film was characterized by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, and investigated in physicochemical properties as color, tensile strength, elongation at break, water vapor permeability and water adsorption isotherm. Our results showed that the nanoparticles improved the compatibility of whey protein isolate and chitosan. Addition of nanoparticles increased the whiteness of chitosan/whey protein isolate film, but decreased its transparency. Compared with binary film, the tensile strength and elongation at break of nanocomposite film were increased by 11.51% and 12.01%, respectively, and water vapor permeability was decreased by 7.60%. The equilibrium moisture of nanocomposite film was lower than binary film, and its water sorption isotherm of the nanocomposite film fitted well to Guggenheim-Anderson-deBoer model. The findings contributed to the development of novel food packaging materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS2 Nanoparticles

    PubMed Central

    Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev

    2018-01-01

    Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS2 (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end. PMID:29495394

  13. Silver Nanoparticles Synthesized Using Mint Extract and their Application in Chitosan/Gelatin Composite Packaging Film

    NASA Astrophysics Data System (ADS)

    Bhoir, Shraddha A.; Chawla, S. P.

    The present study reports synthesis of silver nanoparticles (AgNPs) using mint extract (ME) in the presence of polyvinyl alcohol (PVA) as capping material. PVA, ME and silver nitrate at concentration of 1%, 0.01% and 0.02%, respectively were found to be optimum for the synthesis of nanoparticles. The formation of AgNPs was confirmed by measuring surface plasmon resonance (SPR) peak. The intensity of SPR peak remained unaltered thus suggesting stability of colloid without aggregation during storage. The nanoparticles inhibited the growth of food borne bacteria namely Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus. The incorporation of these nanoparticles in chitosan and gelatin blend resulted in homogenous films. Mechanical properties and water vapor transmission rate of chitosan-gelatin films improved due to addition of AgNPs, whereas optical (opacity and UV light transmittance) and oxygen permeability properties remained unchanged. These films had the ability to inhibit growth of 5 log CFU of the above test organisms. These findings suggest that the AgNPs obtained by reduction of silver by ME can be effectively utilized to prepare antibacterial eco-friendly food packaging material.

  14. Light diffusing films fabricated by strawberry-like PMMA/SiO₂ composite microspheres for LED application.

    PubMed

    Guo, Shuang; Zhou, Shuxue; Li, Huijing; You, Bo

    2015-06-15

    This paper presents a facile method to fabricate volumetric light diffusing films with high transmittance and haze simultaneously by mimicking the micro- and nanostructure of compound eyes. Strawberry-like polymethyl methacrylate/SiO2 composite microspheres were first prepared via the electrostatic attraction between positively charged PMMA spheres and negatively charged SiO2 nanoparticles, and further blended with polyacrylate latex to produce light diffusing coatings. A novel light diffusing film with hemispherical surface was built by casting the light diffusing coatings on optical-grade PET film. Effects of the sizes of PMMA spheres and SiO2 nanoparticles on the optical properties of light diffusing film were investigated by a haze meter and application on a LED lamp. The best result (transmittance 94.6% and haze 84.2%) was achieved for the strawberry-like composite microspheres based on 1 μm PMMA spheres and 50 nm SiO2 nanoparticles. The light-diffusing mechanism of the strawberry-like microspheres in the film was discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A technique to functionalize and self-assemble macroscopic nanoparticle-ligand monolayer films onto template-free substrates.

    PubMed

    Fontana, Jake; Spillmann, Christopher; Naciri, Jawad; Ratna, Banahalli R

    2014-05-09

    This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the nanoparticles then quickly phase separate the nanoparticles from the aqueous based suspension and confine them to the air-fluid interface. This drives the ligand-capped nanoparticles to form monolayer domains at the air-fluid interface. The use of water-miscible organic solvents is important as it enables the transport of the nanoparticles from the interface onto template-free substrates. The flow is mediated by a surface tension gradient and creates macroscopic, high-density, monolayer nanoparticle-ligand films. This self-assembly technique may be generalized to include the use of particles of different compositions, size, and shape and may lead to an efficient assembly method to produce low-cost, macroscopic, high-density, monolayer nanoparticle films for wide-spread applications.

  16. Metal Nanoparticles Embedded in Cellulose Nanocrystal Based Films: Material Properties and Post-use Analysis.

    PubMed

    Lizundia, Erlantz; Goikuria, Uribarri; Vilas, José Luis; Cristofaro, Francesco; Bruni, Giovanna; Fortunati, Elena; Armentano, Ilaria; Visai, Livia; Torre, Luigi

    2018-04-25

    The dispersion of nanoparticles having different size-, shape-, and composition-dependent properties is an exciting approach to design and synthesize multifunctional materials and devices. This work shows a detailed investigation of the preparation and properties of free-standing nanocomposite films based on cellulose nanocrystals (CNC) loaded with three different types of metal nanoparticles. CNC-based nanocomposites having zinc oxide (ZnO), titanium dioxide (TiO 2 ), and silver oxide (Ag 2 O) have been obtained through evaporation-induced self-assembly (EISA) in acqueous solution. Morphological and optical characteristics, chemical properties, wettability, and antimicrobial assays of the produced films were conducted. Furthermore, disintegrability in composting condition of CNC based nanocomposites was here investigated for the first time. The morphological observations revealed the formation of a chiral nematic structure with uniformly distributed nanoparticles. The bionanocomposite films based on the metal nanoparticles had effective antimicrobial activity, killing both Escherichia coli RB ( E. coli RB) and Staphylococcus aureus 8325-4 ( S. aureus 8325-4). The simplicity method of film preparation, the large quantity of cellulose in the world, and the free-standing nature of the nanocomposite films offer highly advantageous characteristics that can for the new development of multifunctional materials.

  17. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer

    NASA Astrophysics Data System (ADS)

    Lee, Seong Yun; Kim, Jae Young; Lee, Jun Young; Song, Ho Jun; Lee, Sangkug; Choi, Kyung Ho; Shin, Gyojic

    2014-06-01

    An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications.

  18. Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films

    NASA Astrophysics Data System (ADS)

    Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan

    2018-04-01

    We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.

  19. Plasmonic extinction in gold nanoparticle-polymer films as film thickness and nanoparticle separation decrease below resonant wavelength

    NASA Astrophysics Data System (ADS)

    Dunklin, Jeremy R.; Bodinger, Carter; Forcherio, Gregory T.; Keith Roper, D.

    2017-01-01

    Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ˜70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ˜130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ˜1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ˜514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.

  20. Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties.

    PubMed

    Berry, Keith R; Russell, Aaron G; Blake, Phillip A; Keith Roper, D

    2012-09-21

    Optical and thermal activity of plasmon-active nanoparticles in transparent dielectric media is of growing interest in thermal therapies, photovoltaics and optoelectronic components in which localized surface plasmon resonance (LSPR) could play a significant role. This work compares a new method to embed gold nanoparticles (AuNPs) in dense, composite films with an extension of a previously introduced method. Microscopic and spectroscopic properties of the two films are related to thermal behavior induced via laser excitation of LSPR at 532 nm in the optically transparent dielectric. Gold nanoparticles were incorporated into effectively nonporous 680 μm thick polydimethylsiloxane (PDMS) films by (1) direct addition of organic-coated 16 nm nanoparticles; and (2) reduction of hydrogen tetrachloroaurate (TCA) into AuNPs. Power loss at LSPR excitation frequency and steady-state temperature maxima at 100 mW continuous laser irradiation showed corresponding increases with respect to the mass of gold introduced into the PDMS films by either method. Measured rates of temperature increase were higher for organic-coated NP, but higher gold content was achieved by reducing TCA, which resulted in larger overall temperature changes in reduced AuNP films.

  1. Selective and directional actuation of elastomer films using chained magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet R.; Dickey, Michael D.; Velev, Orlin D.; Tracy, Joseph B.

    2016-01-01

    We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model.We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model. Electronic supplementary information (ESI) available: Two videos for actuation while rotating the sample, experimental details of nanoparticle synthesis, polymer composite preparation, and alignment and bending studies, details of the theoretical model of actuation, and supplemental figures for understanding the behavior of rotating samples and results from modelling. See DOI: 10.1039/c5nr07410j

  2. Thermal Vapor Deposition and Characterization of Polymer-Ceramic Nanoparticle Thin Films and Capacitors

    NASA Astrophysics Data System (ADS)

    Iwagoshi, Joel A.

    Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V

  3. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties.

    PubMed

    Hosseini, Seyed Fakhreddin; Rezaei, Masoud; Zandi, Mojgan; Farahmandghavi, Farhid

    2016-03-01

    The objective of this work was to develop active bio-based nanocomposite films from fish gelatin (FG) and chitosan nanoparticles (CSNPs) incorporated with Origanum vulgare L. essential oil (OEO). CSNPs were obtained by ionic gelation of chitosan with sodium tripolyphosphate, which presented a spherical morphology with size range of 40-80nm. Remarkable differences in the surface morphology were observed between the control and bioactive nanocomposite films as revealed by SEM and AFM images. FTIR results confirmed that an interaction between polymer matrix and essential oil had occurred, as shown by an increase in the amplitude of peaks at wavenumbers 1242cm(-1) and 1451cm(-1). Meanwhile, XRD peaks of OEO-containing films were more intense, indicating that the introduction of essential oil into the film matrix induces an increase in crystallinity. TGA analysis demonstrated that the addition of OEO had no impact on thermal stability of the films. Inclusion of OEO in the film matrix resulted in less resistant and more flexible films, with a decrease in water vapor permeability (WVP). The FG/CSNPs bioactive films exhibited distinctive antimicrobial activity against four test food pathogens, namely Staphylococcus aureus, Listeria monocytogenes, Salmonella enteritidis and Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Nanoparticles doped film sensing based on terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Weimin; Fan, Fei; Chang, Shengjiang; Hou, Jiaqing; Chen, Meng; Wang, Xianghui; Bai, Jinjun

    2017-12-01

    A nanoparticles concentration sensor based on doped film and terahertz (THz) metamaterial has been proposed. By coating the nanoparticles doped polyvinyl alcohol (PVA) film on the surface of THz metamaterial, the effects of nanoparticle concentration on the metamaterial resonances are investigated through experiments and numerical simulations. Results show that resonant frequency of the metamaterial linearly decreases with the increment of doping concentration. Furthermore, numerical simulations illustrate that the redshift of resonance results from the changes of refractive index of the doped film. The concentration sensitivity of this sensor is 3.12 GHz/0.1%, and the refractive index sensitivity reaches 53.33 GHz/RIU. This work provides a non-contact, nondestructive and sensitive method for the detection of nanoparticles concentration and brings out a new application on THz film metamaterial sensing.

  5. Introduction of gold nanoparticles into myoglobin-Nafion film for direct electrochemistry application.

    PubMed

    Xie, Wenting; Kong, Linlin; Kan, Meixiu; Han, Dongmei; Wang, Xueji; Zhang, Hui-Min

    2010-10-01

    An effective myoglobin-Nafion film is prepared by introducing gold nanoparticles in through a simple procedure by ion-exchange combined with electrochemical reduction. Gold nanoparticles are highly dispersed in myoglobin-Nafion film with an average size of 2.3 +/- 0.2 nm. The electrochemical behavior of myoglobin entrapped in the film has been carefully investigated with cyclic voltammetry. The results show that the introduction of gold nanoparticles into myoglobin-Nafion film makes the direct electron transfer of myoglobin efficient. A pair of well-defined redox peaks for myoglobin heme Fe(II)/Fe(III) is observed with a formal potential of -0.150 V in 0.1 M phosphate buffer (pH 7.0). The electrochemical parameters of myoglobin in the composite film are further calculated with the results of the electron-transfer rate constant (k(s)) as 0.93 s(-1) and the charge transfer coefficient (alpha) as 0.69. The experimental results also demonstrate that the immobilized myoglobin retains its electrocatalytic activity for the reduction of hydrogen peroxide and the catalytic reduction peak of myoglobin appear in a linear relationship with H2O2 concentration in the range of 10.0-235.0 microM with correlation coefficient of 0.9970. Thus fabricated Au/Mb/Nafion electrode should give a new approach for developing redox protein or enzyme-based biosensors.

  6. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells.

    PubMed

    Genchi, Giada Graziana; Ceseracciu, Luca; Marino, Attilio; Labardi, Massimiliano; Marras, Sergio; Pignatelli, Francesca; Bruschini, Luca; Mattoli, Virgilio; Ciofani, Gianni

    2016-07-01

    Poly(vinylidene fluoride-trifluoroethylene, P(VDF-TrFE)) and P(VDF-TrFE)/barium titanate nanoparticle (BTNP) films are prepared and tested as substrates for neuronal stimulation through direct piezoelectric effect. Films are characterized in terms of surface, mechanical, and piezoelectric features before in vitro testing on SH-SY5Y cells. In particular, BTNPs significantly improve piezoelectric properties of the films (4.5-fold increased d31 ). Both kinds of films support good SH-SY5Y viability and differentiation. Ultrasound (US) stimulation is proven to elicit Ca(2+) transients and to enhance differentiation in cells grown on the piezoelectric substrates. For the first time in the literature, this study demonstrates the suitability of polymer/ceramic composite films and US for neuronal stimulation through direct piezoelectric effect. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  8. Surface modification of thin film composite membrane by nanoporous titanate nanoparticles for improving combined organic and inorganic antifouling properties.

    PubMed

    Emadzadeh, D; Ghanbari, M; Lau, W J; Rahbari-Sisakht, M; Rana, D; Matsuura, T; Kruczek, B; Ismail, A F

    2017-06-01

    In this study, nanoporous titanate (NT) nanoparticle synthesized by the solvothermal method was used to modify polyamide layer of thin film composite membranes with the aim of improving membrane resistances against organic and inorganic fouling. Thin film nanocomposite membranes (NMs) were synthesized by adding mNTs (modified nanoparticles) into polyamide selective layer followed by characterization using different analytical instruments. The results of XPS and XRD confirmed the presence of mNTs in the polyamide layer of NMs, while FESEM, AFM, zeta potential and contact angle measurement further supported the changes in physical and chemical properties of the membrane surface upon mNTs incorporation. Results of fouling showed that NM1 (the membrane incorporated with 0.01w/v% mNTs) always demonstrated lower degree of flux decline compared to the control membrane when membranes were tested with organic, inorganic and multicomponent synthesized water, brackish water or seawater. Besides showing greater antifouling resistance, the NM also displayed significantly higher water flux compared to the control M membrane. The findings of this work confirmed the positive impact of mNTs in improving the properties of NM with respect to fouling mitigation and flux improvement. Copyright © 2017. Published by Elsevier B.V.

  9. Effect of Ag nanoparticle concentration on the electrical and ferroelectric properties of Ag/P(VDF-TrFE) composite films

    DOE PAGES

    Paik, Haemin; Choi, Yoon -Young; Hong, Seungbum; ...

    2015-09-04

    Here, we investigated the effect of the Ag nanoparticles on the ferroelectric and piezoelectric properties of Ag/poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) composite films. We found that the remanent polarization and direct piezoelectric coefficient increased up to 12.14 μC/cm 2 and 20.23 pC/N when the Ag concentration increased up to 0.005 volume percent (v%) and decreased down to 9.38 μC/cm 2 and 13.45 pC/N when it increased up to 0.01 v%. Further increase in Ag concentration resulted in precipitation of Ag phase and significant leakage current that hindered any meaningful measurement of the ferroelectric and piezoelectric properties. 46% increase of the remanent polarization valuemore » and 27% increase of the direct piezoelectric coefficient were observed in the film with the 0.005 v% of the Ag nanoparticles added without significant changes to the crystalline structure confirmed by both X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) experiments. The enhancements of both the ferroelectric and piezoelectric properties are attributed to the increase in the effective electric field induced by the reduction in the effective volume of P(VDF-TrFE) that results in more aligned dipoles.« less

  10. Synthesis and Characterization of Protein-Conjugated Silver Nanoparticles/Silver Salt Loaded Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Film for Prevention of Bacterial Infections and Potential Use in Bone Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Bakare, Rotimi Ayotunde

    /BSA nanoparticles solution used for loading and on the molecular weight of type I collagen used in collagen immobilization on PHBV film. At physiological pH, optimum amount of nanoparticles was retained on Type I collagen immobilized PHBV film because at pH 7.4, protonated amino groups of collagen immobilized PHBV film promote strong electrostatic interaction with the carboxylate anions of BSA stabilized silver nanoparticles. The second part of this study dealt with formulating AgCl/PHBV film that can potentially release silver ions for effective antimicrobial activity. In this study, we formulated AgCl/PHBV composite film by a salt exchange mechanism. Thermogravimetric analysis (TGA) was used to quantify the amount of NaCl present before and after salt exchange. The Na content in the pre-washed and partially washed NaCl/PHBV film was found to be 43.60% and 1.24% by mass, respectively. The AgCl/PBHV composite film was acid digested and assayed for Na+ and Ag+ content by using Atomic Absorption Spectrometry (AAS) and was found to be 2.15 and 10.25 ppm, respectively. XPS technique was used to characterize the surface elemental composition of the AgCl/PHBV composite film. The survey spectrum of AgCl/PHBV film showed emergence of Ag 3d and Cl 2s peaks compared to pure PHBV which was predominantly composed of C 1s and O 1s peaks. The release kinetics of silver ions from AgCl/PHBV composite film showed an initial burst of about 1.5 ppm of silver ions during the first day of desorption followed by a gradual release of silver ions at an average rate of 0.3 ppm per day during the span of two weeks studied. Ag/BSA nanoparticles loaded collagen immobilized PHBV films and AgCl/PHBV composite films were tested for antibacterial efficacy against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Colony forming unit and optical density measurements of Ag/BSA nanoparticles loaded collagen immobilized PHBV films showed broad antimicrobial activity at low Ag/BSA nanoparticles

  11. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  12. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  13. Plasma - enhanced dispersion of metal and ceramic nanoparticles in polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Maguire, Paul; Liu, Yazi; Askari, Sadegh; Patel, Jenish; Macia-Montero, Manuel; Mitra, Somak; Zhang, Richao; Sun, Dan; Mariotti, Davide

    2015-09-01

    In this work we demonstrate a facile method to synthesize a nanoparticle/PEDOT:PSS hybrid nanocomposite material in aqueous solution through atmospheric pressure direct current (DC) plasma processing at room temperature. Both metal (Au) and ceramic (TiO2) nanoparticle composite films have been fabricated. Nanoparticle dispersion is enhanced considerable and remains stable. TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. Increased nanoparticle/PEDOT:PSS nanocomposite electrical conductivity has been observed. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma processed Au or TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are thought to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer bonding. This is expected to have a significant benefit in materials processing with inorganic nanoparticles for applications in energy storage, photocatalysis and biomedical sensors. Engineering and Physical Sciences Research Council (EPSRC: EP/K006088/1, EP/K006142, Nos. EP/K022237/1).

  14. Anti-microbial surfaces: An approach for deposition of ZnO nanoparticles on PVA-Gelatin composite film by screen printing technique.

    PubMed

    Meshram, J V; Koli, V B; Phadatare, M R; Pawar, S H

    2017-04-01

    Initially micro-organisms get exposed to the surfaces, this demands development of anti-microbial surfaces to inhibit their proliferation. Therefore, herein, we attempt screen printing technique for development of PVA-GE/ZnO nanocomposite (PG/ZnO) films. The synthesis of PG/ZnO nanocomposite includes two steps as: (i) Coating of Zinc Oxide nanoparticles (ZnO NPs) by poly ethylene glycol in order to be compatible with organic counterparts. (ii) Deposition of coated nanoparticles on the PG film surface. The results suggest the enhancement in anti-microbial activity of PG/ZnO nanocomposite over pure ZnO NPs against both Gram positive Bacillus subtilis and Gram negative Escherichia coli from zone of inhibition. The uniformity in deposition is further confirmed by scanning electron microscopy (SEM) images. The phase identification of ZnO NPs and formation of PG/ZnO nanocomposite has been confirmed by X-ray diffraction (XRD) analysis and UV-vis spectroscopy (UV-vis). The Attenuated total reflection Spectroscopy (ATR) analysis indicates the ester bond between PVA and gelatin molecules. The thermal stability of nanocomposite is studied by thermogravimetric analysis (TGA) revealing increase in crystallinity due to ZnO NPs which could be utilized to inhibit the growth of micro-organisms. The tensile strength is found to be higher and percent elongation is double of PG/ZnO nanocomposite than PG composite film. Copyright © 2016. Published by Elsevier B.V.

  15. One-step synthesis of bifunctional PEGDA/TiO2 composite film by photopolymerization for the removal of Congo red

    NASA Astrophysics Data System (ADS)

    Wei, Yun-Yun; Sun, Xiao-Ting; Xu, Zhang-Run

    2018-07-01

    Wrinkled structures can provide enlarged surface areas for some living organisms to ingest nutrients. Imitating biological wrinkle structures offers an efficient way to enhance the adsorption surface for removing hazardous pollutants in wastewater. In this work, poly-(ethylene glycol) double acrylate (PEGDA)/TiO2 composite film with tunable surface wrinkles was synthesized. TiO2 nanoparticles were evenly immobilized in the PEGDA hydrogel simply by a facile photopolymerization method within 700 ms. Various wrinkle morphologies were obtained by precisely controlling UV exposure time. The composite film was characterized by X-ray diffraction, scanning electron microscopy, diffuse reflection spectroscopy, etc. Congo red was chosen as a model pollutant to demonstrate the adsorption and degradation capacity of the composite film. The experimental results showed that the introduction of wrinkled polymer improved the dispersibility of TiO2 nanoparticles. The removal efficiency reached 100% after 180-min adsorption in the darkness and 180-min UV irradiation. The composite film exhibited a much higher enrichment and photocatalysis capacity than the pure TiO2 powder, and could be developed as a reusable film for the removal of the organic pollutants in wastewater.

  16. Composite nanoparticles for gene delivery.

    PubMed

    Wang, Yuhua; Huang, Leaf

    2014-01-01

    Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle-lipid-based composite nanoparticles will be classified based on the components and reviewed in details.

  17. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    NASA Astrophysics Data System (ADS)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  18. Nanodiamond embedded ta-C composite film by pulsed filtered vacuum arc deposition from a single target

    NASA Astrophysics Data System (ADS)

    Iyer, Ajai; Etula, Jarkko; Ge, Yanling; Liu, Xuwen; Koskinen, Jari

    2016-11-01

    Detonation Nanodiamonds (DNDs) are known to have sp3 core, sp2 shell, small size (few nm) and are gaining importance as multi-functional nanoparticles. Diverse methods have been used to form composites, containing detonation nanodiamonds (DNDs) embedded in conductive and dielectric matrices for various applications. Here we show a method, wherein DND-ta-C composite film, consisting of DNDs embedded in ta-C matrix have been co-deposited from the same cathode by pulsed filtered cathodic vacuum arc method. Transmission Electron Microscope analysis of these films revel the presence of DNDs embedded in the matrix of amorphous carbon. Raman spectroscopy indicates that the presence of DNDs does not adversely affect the sp3 content of DND-ta-C composite film compared to ta-C film of same thickness. Nanoindentation and nanowear tests indicate that DND-ta-C composite films possess improved mechanical properties in comparison to ta-C films of similar thickness.

  19. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post

  20. Antibacterial activity of DLC films containing TiO2 nanoparticles.

    PubMed

    Marciano, F R; Lima-Oliveira, D A; Da-Silva, N S; Diniz, A V; Corat, E J; Trava-Airoldi, V J

    2009-12-01

    Diamond-like carbon (DLC) films have been the focus of extensive research in recent years due to their potential applications as surface coatings on biomedical devices. Titanium dioxide (TiO2) in the anatase crystalline form is a strong bactericidal agent when exposed to near-UV light. In this work we investigate the bactericidal activity of DLC films containing TiO2 nanoparticles. The films were grown on 316L stainless-steel substrates from a dispersion of TiO2 in hexane using plasma-enhanced chemical vapor deposition. The composition, bonding structure, surface energy, stress, and surface roughness of these films were also evaluated. The antibacterial tests were performed against Escherichia coli (E. coli) and the results were compared to the bacterial adhesion force to the studied surfaces. The presence of TiO2 in DLC bulk was confirmed by Raman spectroscopy. As TiO2 content increased, I(D)/I(G) ratio, hydrogen content, and roughness also increased; the films became more hydrophilic, with higher surface free energy and the interfacial energy of bacteria adhesion decreased. Experimental results show that TiO2 increased DLC bactericidal activity. Pure DLC films were thermodynamically unfavorable to bacterial adhesion. However, the chemical interaction between the E. coli and the studied films increased for the films with higher TiO2 concentration. As TiO2 bactericidal activity starts its action by oxidative damage to the bacteria wall, a decrease in the interfacial energy of bacteria adhesion causes an increase in the chemical interaction between E. coli and the films, which is an additional factor for the increasing bactericidal activity. From these results, DLC with TiO2 nanoparticles can be useful for producing coatings with antibacterial properties.

  1. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  2. Antimicrobial activity of biopolymeric thin films containing flavonoid natural compounds and silver nanoparticles fabricated by MAPLE: A comparative study

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.

    2016-06-01

    The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.

  3. Using sub-micron silver-nanoparticle based films to counter biofilm formation by Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Gillett, A. R.; Baxter, S. N.; Hodgson, S. D.; Smith, G. C.; Thomas, P. J.

    2018-06-01

    Composite films comprised of silver nanoparticles (AgNPs) grown using a low-cost straightforward chemical bath based method have been deposited on glass microscope slides to investigate their potential as a sacrificial antibacterial coating. The as-deposited films have been characterised using scanning electron microscopy (SEM) and optical profilometry. These suggested that the films were relatively uniform in coverage. Chemical composition of the AgNP films has been studied by using X-ray photoelectron spectroscopy (XPS). The XPS analysis indicated that the Ag was in a metallic form able to sustain plasmon behaviour, and that low levels of residual nanoparticle precursors were present. Particle size was characterised using transmission electron microscopy (TEM) which showed an average particle size of 10.6 nm. The effectiveness of the films as an antibacterial coating was tested against Escherichia coli. The AgNP film was determined to be effective in the killing of E. coli cells over a 24 h period when compared to equivalent samples that contained no silver. Of particular note was that only minimal bacterial growth was detected over the first 12 h of testing, up to 78.6 times less than the control samples, suggesting the film is very efficient at slowing initial biofilm formation. The use of AgNP based films that have been synthesised using a novel low-cost, low-temperature and highly upscalable method is demonstrated as a promising solution for the deployment of silver as an effective sacrifical antimicrobial coating to counter the formation of potentially hazardous Gram negative biofilms.

  4. Direct electrochemistry and electrocatalysis of heme proteins immobilised in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide composite films in room-temperature ionic liquids.

    PubMed

    Wang, Ting; Wang, Lu; Tu, Jiaojiao; Xiong, Huayu; Wang, Shengfu

    2013-12-01

    The direct electrochemistry and electrocatalysis of heme proteins entrapped in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide (CNN-CS-DMF) composite films were investigated in the hydrophilic ionic liquid [bmim][BF4]. The surface morphologies of a representative set of films were characterised via scanning electron microscopy. The proteins immobilised in the composite films were shown to retain their native secondary structure using UV-vis spectroscopy. The electrochemical performance of the heme proteins-CNN-CS-DMF films was evaluated via cyclic voltammetry and chronoamperometry. A pair of stable and well-defined redox peaks was observed for the heme protein films at formal potentials of -0.151 V (HRP), -0.167 V (Hb), -0.155 V (Mb) and -0.193 V (Cyt c) in [bmim][BF4]. Moreover, several electrochemical parameters of the heme proteins were calculated by nonlinear regression analysis of the square-wave voltammetry. The addition of CNN significantly enhanced not only the electron transfer of the heme proteins but also their electrocatalytic activity toward the reduction of H2O2. Low apparent Michaelis-Menten constants were obtained for the heme protein-CNN-CS-DMF films, demonstrating that the biosensors have a high affinity for H2O2. In addition, the resulting electrodes displayed a low detection limit and improved sensitivity for detecting H2O2, which indicates that the biocomposite film can serve as a platform for constructing new non-aqueous biosensors for real detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  6. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  7. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement.

    PubMed

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 10(5) for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm(-1) of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.

  8. Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance.

    PubMed

    Naderizadeh, Sara; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-01

    Nanoparticle films are one of the most suitable platforms for obtaining sub-micrometer and nanometer dual-scale surface texture required for liquid repellency. The assembly of superhydrophobic nanoparticles into conformal and strongly adherent films having abrasion-induced wear resistance still poses a significant challenge. Various techniques have been developed over the years to render nanoparticle films with good liquid repellent properties and transparency. However, forming abrasion resistant superhydrophobic nanoparticle films on hard surfaces is challenging. One possibility is to partially embed or weld nanoparticles in thin thermoplastic primers applied over metals. Hexamethyldisilazane-functionalized fumed silica nanoparticle films spray deposited on aluminum surfaces were rendered abrasion resistant by thermally welding them into thermoplastic polyurethane (TPU) primer applied a priori over aluminum. Different solvents, nanoparticle concentrations and annealing temperatures were studied to optimize nanoparticle film morphology and hydrophobicity. Thermal annealing at 150 °C enhanced stability and wear resistance of nanoparticle films. A thin thermal interface layer of graphene nanoplatelets (GnPs) between the primer and the nanoparticle film significantly improved superhydrophobic wear resistance after annealing. As such, superhydrophobic nanocomposite films with the GnPs thermal interface layer displayed superior abrasion-induced wear resistance under 20 kPa compared to films having no GnPs-based thermal interface. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Takele, H.; Schürmann, U.; Greve, H.; Paretkar, D.; Zaporojtchenko, V.; Faupel, F.

    2006-02-01

    Nanocomposite films containing Au nanoparticles embedded in a polymer matrix were prepared by vapour phase co-deposition of Au and polymers (Teflon AF and Poly(α -methylstyrene)) in high vacuum. The microstructure of the composite materials as well as metal content strongly depend on the condensation coefficient of the Au atoms, the deposition rates of the components, the substrate temperature, and the type of polymer matrix. The condensation coefficient, which varies between 0.03 and 1, was determined from energy dispersive X-ray spectrometer (EDX) and surface profilometry. It is shown that the microstructure of nanocomposites (size, size distribution, and interparticle separation of metal clusters), which was determined by transmission electron microscopy, can be controlled by the deposition parameters and the choice of polymer matrix. The optical absorption in the visible region due to the particle plasmon resonance has a strong dependence on the metal filling factor. The correlation between the microstructure of nanocomposites and optical properties, studied using UV-Vis spectroscopy, was also established. Further more, the electrical properties of the composites were studied as a function of the metal volume fraction. It was observed that the nanocomposite films exhibit a percolation threshold at a metal volume fraction of 0.43 and 0.20 for gold nanoclusters in Teflon AF and Poly(α-methylstyrene), respectively.

  10. Facile one-step construction of covalently networked, self-healable, and transparent superhydrophobic composite films

    NASA Astrophysics Data System (ADS)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-07-01

    Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.

  11. Deposition of functional nanoparticle thin films by resonant infrared laser ablation.

    NASA Astrophysics Data System (ADS)

    Haglund, Richard; Johnson, Stephen; Park, Hee K.; Appavoo, Kannatessen

    2008-03-01

    We have deposited thin films containing functional nanoparticles, using tunable infrared light from a picosecond free-electron laser (FEL). Thin films of the green light-emitting molecule Alq3 were first deposited by resonant infrared laser ablation at 6.68 μm, targeting the C=C ring mode of the Alq3. TiO2 nanoparticles 50-100 nm diameter were then suspended in a water matrix, frozen, and transferred by resonant infrared laser ablation at 2.94 μm through a shadow mask onto the Alq3 film. Photoluminescence was substantially enhanced in the regions of the film covered by the TiO2 nanoparticles. In a second experiment, gold nanoparticles with diameters in the range of 50-100 nm were suspended in the conducting polymer and anti-static coating material PEDOT:PSS, which was diluted by mixing with N-methyl pyrrolidinone (NMP). The gold nanoparticle concentration was 8-10% by weight. The mixture was frozen and then ablated by tuning the FEL to 3.47 μm, the C-H stretch mode of NMP. Optical spectroscopy of the thin film deposited by resonant infrared laser ablation exhibited the surface-plasmon resonance characteristic of the Au nanoparticles. These experiments illustrate the versatility of matrix-assisted resonant infrared laser ablation as a technique for depositing thin films containing functionalized nanoparticles.

  12. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  13. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  14. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    DOE PAGES

    Huang, Jingyu; Xiao, Yihan; Xu, Ting

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules withmore » a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. Lastly, the present studies opened a viable route to achieve designer functional composite thin films via kinetic control.« less

  15. Preparation and characterization of silver nanoparticles homogenous thin films

    NASA Astrophysics Data System (ADS)

    Hegazy, Maroof A.; Borham, E.

    2018-06-01

    The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.

  16. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  17. Improvement of the Heat Resistance of Prussian Blue Nanoparticles in a Clay Film Composed of Smectite Clay and ε-Caprolactam.

    PubMed

    Ono, Kenta; Nakamura, Takashi; Ebina, Takeo; Ishizaki, Manabu; Kurihara, Masato

    2018-06-04

    Prussian blue (PB) is limited in its application by its breakdown at elevated temperatures. To improve the heat resistance of PB, we prepared a composite film comprising PB nanoparticles (NPs), smectite clay, and an organic compound. The composite film had a microstructure in which PB NPs were intercalated between smectite/organic compound layers. The predominant oxidation temperature of the PB NPs in the composite film was around 500 °C in air, higher than the oxidation temperature of bulk PB in air (250 °C). This improvement in the oxidation temperature may be due to the composite film acting as a barrier to oxygen gas. These results indicate the effectiveness of clay materials for the improvement of heat resistance for low-temperature decomposition compounds, not only PB but also other porous coordination polymers.

  18. Method for producing nanowire-polymer composite electrodes

    DOEpatents

    Pei, Qibing; Yu, Zhibin

    2017-11-21

    A method for producing flexible, nanoparticle-polymer composite electrodes is described. Conductive nanoparticles, preferably metal nanowires or nanotubes, are deposited on a smooth surface of a platform to produce a porous conductive layer. A second application of conductive nanoparticles or a mixture of nanoparticles can also be deposited to form a porous conductive layer. The conductive layer is then coated with at least one coating of monomers that is polymerized to form a conductive layer-polymer composite film. Optionally, a protective coating can be applied to the top of the composite film. In one embodiment, the monomer coating includes light transducing particles to reduce the total internal reflection of light through the composite film or pigments that absorb light at one wavelength and re-emit light at a longer wavelength. The resulting composite film has an active side that is smooth with surface height variations of 100 nm or less.

  19. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  20. Nanoparticle formation after nanosecond-laser irradiation of thin gold films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratautas, Karolis; Gedvilas, Mindaugas; Raciukaitis, Gediminas

    2012-07-01

    Evolution in nanoparticle formation was observed after nanosecond-laser irradiation of thin gold films on a silicon substrate and physical phenomena leading to the formation of nanoparticles were studied. Gold films of different thickness (3, 5, 10, 15, 20, and 25 nm) were evaporated on the silicon (110) substrate and irradiated with the pulsed nanosecond laser using different pulse energies and the number of pulses in a burst. Experimentally morphological changes appeared in the films only when the pulse energy was high enough to initiate the phase transition. The threshold energy density for phase transitions in the films was estimated frommore » the thermal model of the laser beam and sample interaction. With the pulse energy just above the threshold, it was possible to observe evolution of nanoparticle formation from a plane metal film by changing the number of pulses applied, as duration of the pulse burst represented the time how long the liquid phase existed. The final size of nanoparticles was a function of the film thickness and was found to be independent of the pulse energy and the number of pulses.« less

  1. Review Article: Overview of lanthanide pnictide films and nanoparticles epitaxially incorporated into III-V semiconductors

    DOE PAGES

    Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.; ...

    2017-03-30

    The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less

  2. Review Article: Overview of lanthanide pnictide films and nanoparticles epitaxially incorporated into III-V semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.

    The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less

  3. Hierarchical Nanoparticle Topography in Amphiphilic Copolymer Films Controlled by Thermodynamics and Dynamics

    PubMed Central

    Caporizzo, M. A.; Ezzibdeh, R. M.

    2016-01-01

    This study systematically investigates how polymer composition changes nanoparticle (NP) grafting and diffusion in solvated random copolymer thin films. By thermal annealing from 135 to 200 °C, thin films with a range of hydrophobicity are generated by varying acrylic acid content from 2% (SAA2) to 29% (SAA29). Poly(styrene-random-tert butyl acrylate) films, 100 nm thick, that are partially converted to poly(styrene-random-acrylic acid), SAA, reversibly swell in ethanol solutions containing amine-functionalized SiO2 nanoparticles with a diameter of 45 nm. The thermodynamics and kinetics of NP grafting are directly controlled by the AA content in the SAA films. At low AA content, namely SAA4, NP attachment saturates at a monolayer, consistent with a low solubility of NPs in SAA4 due to a weakly negative χ parameter. When the AA content exceeds 4%, NPs sink into the film to form multilayers. These films exhibit hierarchical surface roughness with a RMS roughness greater than the NP size. Using a quartz crystal microbalance, NP incorporation in the film is found to saturate after a mass equivalence of about 3 close-packed layers of NPs have been incorporated within the SAA. The kinetics of NP grafting is observed to scale with AA content. The surface roughness is greatest at intermediate times (5–20 min) for SAA13 films, which also exhibit superhydrophobic wetting. Because clustering and aggregation of the NPs within SAA29 films reduce film transparency, SAA13 films provide both maximum hydrophobicity and transparency. The method in this study is widely applicable because it can be applied to many substrate types, can cover large areas, and retains the amine functionality of the particles which allows for subsequent chemical modification. PMID:25689222

  4. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  5. Methods for Preparing Nanoparticle-Containing Thermoplastic Composite Laminates

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor); Gruber, Mark B. (Inventor)

    2016-01-01

    High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.

  6. Formation of diamond nanoparticle thin films by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki

    2016-03-01

    Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.

  7. Templated assembly of Co-Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films.

    PubMed

    Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A

    2013-01-07

    Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.

  8. Material influence on hot spot distribution in the nanoparticle heterodimer on film

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Huang, Yingzhou; Wei, Hua; Wang, Shuxia; Zeng, Xiping; Cao, Wenbin; Wen, Weijia

    2018-04-01

    The metal nanoparticle aggregated on film, as an effective plasma enhancement pathway, has been widely used in various surface plasmon-related fields. In this study, the hot spots on the metal nanoparticle dimer composed of different materials (Agsbnd Au, Agsbnd Pd, and Agsbnd Cu) on metal (Au) film were investigated with finite element method. Based on the results, the hot spot distribution affected by the material can be confirmed by the electric field distribution of the metal nanoparticle dimer on the film. The aggregation effects of Au and Ag nanoparticles in Ausbnd Ag dimer system are not significant. However, for the Pdsbnd Ag dimer system, the hot spot aggregation effect is slightly larger than that of the Pd nanoparticle under the Ag nanoparticle. Besides, the non-uniform hot spots would bring about the light focusing phenomenon that the light intensity under Ag nanoparticle is almost 100 times greater than that under Cu nanoparticle in Agsbnd Cu dimer system. These results were further confirmed by the surface charge distribution, and analyzed based on the plasmonic hybridization theory. The data about the nanoparticle dimer on the dielectric (Si) film demonstrate the importance of induced image charges on the film surface in such a light focusing phenomenon. Our findings can enhance the understanding of the surface plasmon coupling in different materials, which may have great application prospects in surface plasmon-related fields, such as SERS, plasmonic enhanced solar cell, and plasmonic sensoring, etc.

  9. Dewetting dynamics of a gold film on graphene: implications for nanoparticle formation.

    PubMed

    Namsani, Sadanandam; Singh, Jayant K

    2016-01-01

    The dynamics of dewetting of gold films on graphene surfaces is investigated using molecular dynamics simulation. The effect of temperature (973-1533 K), film diameter (30-40 nm) and film thickness (0.5-3 nm) on the dewetting mechanism, leading to the formation of nanoparticles, is reported. The dewetting behavior for films ≤5 Å is in contrast to the behavior seen for thicker films. The retraction velocity, in the order of ∼300 m s(-1) for a 1 nm film, decreases with an increase in film thickness, whereas it increases with temperature. However at no point do nanoparticles detach from the surface within the temperature range considered in this work. We further investigated the self-assembly behavior of nanoparticles on graphene at different temperatures (673-1073 K). The process of self-assembly of gold nanoparticles is favorable at lower temperatures than at higher temperatures, based on the free-energy landscape analysis. Furthermore, the shape of an assembled structure is found to change from spherical to hexagonal, with a marked propensity towards an icosahedral structure based on the bond-orientational order parameters.

  10. Kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying

    NASA Astrophysics Data System (ADS)

    Kameya, Yuki

    2017-06-01

    A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas-liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.

  11. Self-assembled silver nanoparticle films at an air-liquid interface and their applications in SERS and electrochemistry

    NASA Astrophysics Data System (ADS)

    Wang, Li; Sun, Yujing; Che, Guangbo; Li, Zhuang

    2011-06-01

    In this paper, we present a novel technique to prepare silver nanoparticle films by controlling the self-assembly of nanoparticles at an air-liquid interface. In an ethanol-water phase, silver nanoparticles were prepared by reduction of AgNO 3 aqueous solution with NaBH 4 in the presence of cinnamic acid. It was found that the silver nanoparticles in this process could be trapped at the air-liquid interface to form 2-dimensional nanoparticle films. The morphology of nanoparticle films could be controlled by systematic variation of the experimental parameters. It is worth noting that the nanoparticle films could serve as the active substrates for surface-enhanced Raman scattering (SERS). 4-Aminothiophenol (4-ATP) molecule was used as a test probe to investigate the SERS sensitivity of different nanoparticle films. The results indicated that the nanoparticle films showed excellent Raman enhancement effect. Furthermore, the nanoparticle films prepared by our strategy were found to be efficient electrocatalysts for anodic oxidation of formaldehyde in alkaline medium.

  12. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    PubMed

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-05-15

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films

    NASA Astrophysics Data System (ADS)

    Oh, Yoonseok; Lee, Jeeyoung; Lee, Myeongkyu

    2018-03-01

    We here show that Ag-Au bimetallic nanoparticles (NPs) can be produced by dewetting an Ag/Au bilayer film coated on glass using a nanosecond-pulsed laser beam. Elemental analysis revealed that the obtained bimetallic NPs are Ag-Au alloys, with two elements well mixed over the whole volume of the particle. The composition of the produced particles was controllable by changing the relative thickness of each layer. The localized surface plasmon resonance (LSPR) peak was red-shifted with an increasing Au content and the LSPR wavelength could be tuned from 415 to 525 nm by varying the alloy composition. A film area of several square centimeters could be transformed into Ag-Au NPs by a single laser pulse of 6 ns duration. This study provides a facile and scalable route to prepare bimetallic NPs for plasmonic and other applications.

  14. Amphiphilic Fluorinated Polymer Nanoparticle Film Formation and Dissolved Oxygen Sensing Application

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Zhu, Huie; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-04-01

    Fluorinated polymer nanoparticle films were prepared by dissolving amphiphilic fluorinated polymer, poly (N-1H, 1H-pentadecafluorooctylmethacrylamide) (pC7F15MAA) in two miscible solvents (AK-225 and acetic acid). A superhydrophobic and porous film was obtained by dropcasting the solution on substrates. With higher ratios of AK-225 to acetic acid, pC7F15MAA was densified around acetic acid droplets, leading to the formation of pC7F15MAA nanoparticles. The condition of the nanoparticle film preparation was investigated by varying the mixing ratio or total concentration. A highly sensitive dissolved oxygen sensor system was successfully prepared utilizing a smart surface of superhydrophobic and porous pC7F15MAA nanoparticle film. The sensitivity showed I0/I40 = 126 in the range of dissolved oxygen concentration of 0 ~ 40 mg L-1. The oxygen sensitivity was compared with that of previous reports.

  15. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release.

    PubMed

    Mazzarino, Letícia; Borsali, Redouane; Lemos-Senna, Elenara

    2014-11-01

    Mucoadhesive films containing curcumin-loaded nanoparticles were developed, aiming to prolong the residence time of the dosage form in the oral cavity and to increase drug absorption through the buccal mucosa. Films were prepared by the casting method after incorporation of curcumin-loaded chitosan-coated polycaprolactone nanoparticles into plasticized chitosan solutions. Different molar masses of mucoadhesive polysaccharide chitosan and concentrations of plasticizer glycerol were used to optimize the preparation conditions. Films obtained using medium and high molar mass chitosan were found to be homogeneous and flexible. Curcumin-loaded nanoparticles were uniformly distributed on the film surface, as evidenced by atomic force microscopy and high-resolution field-emission gun scanning electron microscopy (FEG-SEM) images. Analyses of film cross sections using FEG-SEM demonstrate the presence of nanoparticles inside the films. In addition, films proved to have a good rate of hydration in simulated saliva solution, displaying a maximum swelling of around 80% and in vitro prolonged-controlled delivery of curcumin. These results indicate that the mucoadhesive films containing nanoparticles offer a promising approach for buccal delivery of curcumin, which may be particularly useful in the treatment of periodontal diseases that require a sustained drug delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    PubMed

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2 *) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  17. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method.

    PubMed

    Rhim, Jong-Whan; Wang, Long-Feng; Lee, Yonghoon; Hong, Seok-In

    2014-03-15

    Silver nanoparticles (AgNPs) were prepared by a laser ablation method and composite films with the AgNPs and agar were prepared by solvent casting method. UV-vis absorbance test and transmission electron microscopy (TEM) analysis results revealed that non-agglomerated spherical AgNPs were formed by the laser ablation method. The surface color of the resulting agar/AgNPs films exhibited the characteristic plasmonic effect of the AgNPs with the maximum absorption peaks of 400-407 nm. X-ray diffraction (XRD) test results also exhibited characteristic AgNPs crystals with diffraction peaks observed at 2θ values of 38.39°, 44.49°, and 64.45°, which were corresponding to (111), (200), and (220) crystallographic planes of face-centered cubic (fcc) silver crystals, respectively. Thermogravimetric analysis (TGA) results showed that thermal stability of the agar/AgNPs composite films was increased by the inclusion of metallic silver. Water vapor barrier properties and surface hydrophobicity of the agar/AgNPs films increased slightly with the increase in AgNPs content but they were not statistically significant (p>0.05), while mechanical strength and stiffness of the composite films decreased slightly (p<0.05). The agar/AgNPs films exhibited distinctive antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli O157:H7) bacterial pathogens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Temperature evolution in silver nanoparticle doped PETN composite

    NASA Astrophysics Data System (ADS)

    Kameswari, D. P. S. L.; Kiran, P. Prem

    2018-04-01

    Optical absorption and the associated spatio-temporal evolution of temperature silver nanoparticles doped energetic material composite is presented. Silver nanoparticles of radii 10 - 150 nm are doped in Penta Erythrtol Tetra Nitrate (PETN), a secondary energetic material to form the composite materials. Of all the composites the ones doped with 35 nm sized nanoparticles have shown maximum absorption at excitation wavelength of 532 nm. The spatio-temporal evolution of temperature within these composites up on excitation with ns laser pulses of energy density 0.5 J/cm2 is studied. The role of particle sizes on the temperature of composites is studied and a maximum temperature of 2200 K at the nanoparticle interface is observed for 35 nm doped PETN composite.

  19. Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticles.

    PubMed

    Li, Kang-Kang; Yin, Shou-Wei; Yang, Xiao-Quan; Tang, Chuan-He; Wei, Zi-Hao

    2012-11-21

    The objective of this research was to fabricate novel antimicrobial films based on zein colloidal nanoparticles coated with sodium caseinate (SC), an emulsifier/stabilizer. Thymol-loaded zein-SC nanoparticles were prepared using an antisolvent technique, with the average particle size and zeta potential about 200 ± 20 nm and -40 mV, respectively. Zein-SC nanoparticle-based films exhibited higher mechanical resistance and water barrier capacity than the SC films and concomitant good extensibility as compared with zein films. Thymol loadings endowed zein-SC nanoparticle-based films with antimicrobial activity against Escherichia coli and Salmonella as well as DPPH radical scavenging activity. Water vapor permeability, microstructure, mechanical, and controlled release properties of the films were evaluated. The possible relationship between some selected physical properties and microstructure were also discussed. Atomic force microscopy (AFM) analysis indicated that thymol loadings resulted in the emergence phenomena of the nanoparticles to form large particles or packed structure, consisting of clusters of nanoparticles, within the film matrix, in a thymol loading dependent manner. The appearance of large particles or an agglomerate of particles may weaken the compactness of protein network of films and thus impair the water barrier capacity, mechanical resistance, and extensibility of the films. The release kinetics of thymol from nanoparticle-based films can be described as a two-step biphasic process, that is, an initial burst effect followed by subsequent slower release, and zein-SC nanoparticles within the films matrices gave them the ability to sustain the release of thymol. In addition, a schematic illustration of the formation pathway of zein-SC nanoparticle-based films with or without thymol was proposed to illuminate the possible relationship between some selected physical properties and the microstructure of the films.

  20. Nonlinear optical behavior of DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kulyk, B.; Krupka, O.; Smokal, V.; Figà, V.; Czaplicki, R.; Sahraoui, B.

    2018-03-01

    The third-order nonlinear optical properties of gold nanoparticles embedded in the DNA-based composites were investigated by means of the third harmonic generation. With this purpose, the thin films comprising DNA-based complexes and Au nanoparticles were spin-deposited on glass substrate and their optical and nonlinear optical features were studied using the Maker-fringe technique at a laser fundamental wavelength of 1064 nm. The values of the third-order susceptibility χ (3)(- 3ω; ω, ω, ω) of the composite films based on DNA complex doped with 5 wt% of N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo)aniline were found to be significantly higher than those for pure composite films. Meanwhile, the presence of Au nanoparticles noticeable decreases the third-order nonlinear response of DNA-based composite mainly due to the enhanced absorption and scattering of laser and generated beam, respectively.

  1. Binary metal oxide nanoparticle incorporated composite multilayer thin films for sono-photocatalytic degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Gokul, Paramasivam; Vinoth, Ramalingam; Neppolian, Bernaurdshaw; Anandhakumar, Sundaramurthy

    2017-10-01

    We report reduced graphene oxide (rGO) supported binary metal oxide (CuO-TiO2/rGO) nanoparticle (NP) incorporated multilayer thin films based on Layer-by-Layer (LbL) assembly for enhanced sono-photocatalytic degradation of methyl orange under exposure to UV radiation. Multilayer thin films were fabricated on glass and quartz slides, and investigated using scanning electron microscopy and UV-vis spectroscopy. The loading of catalyst NPs on the film resulted in the change of morphology of the film from smooth to rough with uniformly distributed NPs on the surface. The growth of the control and NP incorporated films followed a linear regime as a function of number of layers. The%degradation of methyl orange as a function of time was investigated by UV-vis spectroscopy and total organic carbon (TOC) measurements. Complete degradation of methyl orange was achieved within 13 h. The amount of NP loading in the film significantly influenced the%degradation of methyl orange. Catalyst reusability studies revealed that the catalyst thin films could be repeatedly used for up to five times without any change in photocatalytic activity of the films. The findings of the present study support that the binary metal oxide catalyst films reported here are very useful for continuous systems, and thus, making it an option for scale up.

  2. Plasmonic properties of gold nanoparticles covered by silicon suboxide thin film

    NASA Astrophysics Data System (ADS)

    Baranov, Evgeniy; Zamchiy, Alexandr; Safonov, Aleksey; Starinskiy, Sergey; Khmel, Sergey

    2017-10-01

    The optical properties of nanocomposite material consisting of gold nanoparticles without/with silicon suboxide thin film were obtained. The gold film was deposited by thermal vacuum evaporation and then it was annealed in a vacuum chamber to form gold nanoparticles. The silicon suboxide thin films were deposited by the gas-jet electron beam plasma chemical vapor deposition method. The intensity of the localized surface plasmon resonance increased and the plasmon maximum peak shifted from 520 nm to 537 nm.

  3. An electrochemiluminescence sensor based on a Ru(bpy)3(2+)-silica-chitosan/nanogold composite film.

    PubMed

    Cai, Zhi-min; Wu, Yan-fang; Huang, Yun-he; Li, Qiu-ping; Chen, Xiao-mei; Chen, Xi

    2012-05-30

    Chitosan, a cationic polysaccharide containing amino and hydroxyl groups, was used to fabricate an electrochemiluminescence (ECL) sensor. In the sensor construction, a glassy carbon electrode (GCE) was first coated by a chitosan film which embedded gold nanoparticles, and then the film was modified by introducing carboxyl groups on the surface, which were used to immobilize tris(2,2'-bipyridyl)ruthenium(II) doped amino-functional silica nanoparticles (NH(2)-RuSiNPs) through amido links. The successful modification was confirmed by scanning electronic microscopy and cyclic voltammetry. A binding model between the chitosan/nanogold composite film and NH(2)-RuSiNPs was also proposed, in which the amido link was the dominant bonding, accompanied with hydrogen bond interaction. ECL studies revealed that the sensor had very good response to different concentrations of 2-(dibutylamino) ethanol. This sensor was also applied in methamphetamine determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  5. Gas expanded polymer process to anneal nanoparticle dispersion in thin films

    DOE PAGES

    Ambuken, Preejith V.; Stretz, Holly A.; Dadmun, Mark; ...

    2015-04-21

    A spin-coating solution comprising poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles used to create organic photovoltaic (OPV) active layers have been shown to adopt a non-uniform concentration profile across the thin film dimension. This inhomogeneous distribution can reduce the efficiency of the device. For our new process, gas expanded polymer (GXP) annealing, is applied to P3HT/PCBM thin film blends, enabling the distribution of the PCBM nanoparticles to be manipulated by varying the GXP processing conditions. Films of 50 nm thickness (nominally) created by spin casting a blend of P3HT mixed with PCBM were annealed by oscillatory GXP andmore » GXP at constant pressure using high pressure CO 2. An increase in P3HT crystallinity (detected by X-ray diffraction and UV-vis spectroscopy) along with a more uniform distribution of PCBM nanoparticles in the thickness dimension, as interpreted from neutron reflectivity measurements, were observed after oscillatory GXP annealing. In addition, static water contact angles suggest that the film/air interface is enriched in PCBM relative to the as-cast film. Finally, these results demonstrate that GXP annealing, which is commercially scalable, can be successfully used to create a uniform distribution of PCBM nanoparticles across the thickness dimension in a P3HT thin film.« less

  6. Effect of adjustable molecular chain structure and pure silica zeolite nanoparticles on thermal, mechanical, dielectric, UV-shielding and hydrophobic properties of fluorinated copolyimide composites

    NASA Astrophysics Data System (ADS)

    Li, Qing; Liao, Guangfu; Zhang, Shulai; Pang, Long; Tong, Hao; Zhao, Wenzhe; Xu, Zushun

    2018-01-01

    A series of polyimide (PI) films, polyimide/pure silica zeolite nanoparticles (PSZN) blend films and polyimide/amine-functionalized pure silica zeolite nanoparticles (APSZN) composite films were successfully prepared by random copolycondensation. Thereinto, PSZN were synthesized by hydrothermal method. The polyimides were derived from 4,4‧-diaminodiphenyl ether (ODA), and three adjustable molar ratios (3:1, 1:1, 1:3) of 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl] propane dianhydride (BPADA) and 4,4‧-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). The effects of PSZN, APSZN and different chain structure on PI films were specifically evaluated in terms of morphology, thermal, mechanical, dielectric and UV-shielding properties, etc. Comparison was given among pure PI flims, PI/PSZN blend films and PI/APSZN composite flims. The results showed that the thermal and mechanical properties of PI films were drastically impaired after adding PSZN. On the contrary, the strength, toughness and thermal stability were improved after adding APSZN. Moreover, the dielectric constants of the PI/APSZN composite flims were lowered but UV-shielding properties were enhanced. Interestingly, we found that the greatest effects were obtained through introducing APSZN in PI derived by the 1:1 ratio of BPADA:6FDA. The corresponding PI/APSZN composite flim exhibited the most reinforced and toughened properties, the largest decrement of dielectric constant and the best UV-shielding efficiency, which made the composite flim be used as ultraviolet shielding material in outer space filled with high temperature and intensive ultraviolet light. Meanwhile, this work also provided a facile way to synthesize composite materials with adjustable performance.

  7. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Design, characterization and ex vivo evaluation of chitosan film integrating of insulin nanoparticles composed of thiolated chitosan derivative for buccal delivery of insulin.

    PubMed

    Mortazavian, Elaheh; Dorkoosh, Farid Abedin; Rafiee-Tehrani, Morteza

    2014-05-01

    The purpose of this study is to optimize and characterize of chitosan buccal film for delivery of insulin nanoparticles that were prepared from thiolated dimethyl ethyl chitosan (DMEC-Cys). Insulin nanoparticles composed of chitosan and dimethyl ethyl chitosan (DMEC) were also prepared as control groups. The release of insulin from nanoparticles was studied in vitro in phosphate buffer solution (PBS) pH 7.4. Optimization of chitosan buccal films has been carried out by central composite design (CCD) response surface methodology. Independent variables were different amounts of chitosan and glycerol as mucoadhesive polymer and plasticizer, respectively. Tensile strength and bioadhesion force were considered as dependent variables. Ex vivo study was performed on excised rabbit buccal mucosa. Optimized insulin nanoparticles were obtained with acceptable physicochemical properties. In vitro release profile of insulin nanoparticles revealed that the highest solubility of nanoparticles in aqueous media is related to DMEC-Cys nanoparticles. CCD showed that optimized buccal film containing 4% chitosan and 10% glycerol has 5.81 kg/mm(2) tensile strength and 2.47 N bioadhesion forces. Results of ex vivo study demonstrated that permeation of insulin nanoparticles through rabbit buccal mucosa is 17.1, 67.89 and 97.18% for chitosan, DMEC and DMEC-Cys nanoparticles, respectively. Thus, this study suggests that DMEC-Cys can act as a potential enhancer for buccal delivery of insulin.

  9. Electrophoretic deposition of Cu2ZnSn(S0.5Se0.5)4 films using solvothermal synthesized nanoparticles

    NASA Astrophysics Data System (ADS)

    Badkoobehhezaveh, Amir Masoud; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza

    2018-01-01

    In this paper, a simple, practical, and fast solvothermal route is presented for synthesizing the Cu2ZnSn(S0.5Se0.5)4 nanoparticles (CZTSSe). In this method, the precursors were dissolved in triethylenetetramine and placed in an autoclave at 240 °C for 1 h under controlled pressure and constant stirring. After washing the samples for several times with absolute ethanol, the obtained CZTSSe nanoparticles were successfully deposited on fluorine doped tin oxide substrates by convenient electrophoretic deposition (EPD) using colloidal nanoparticles. The most appropriate parameters for EPD of pre-synthesized CZTSSe nanoparticles which result in proper surface properties, controlled thickness, and high film quality are investigated by adjusting applied voltage, pH, and deposition time. X-ray diffraction pattern and Raman spectroscopy of the pre-synthesized nanoparticles show kesterite structure formation. The particle size of the CZTSSe nanoparticles is in the range of 100 to 400 nm and for some agglomerates, it is about 2 µm confirmed by scanning electron microscope. The deposited film with optimized parameter has acceptable quality without any crack in it with the thickness of about 4-5 µm. Energy-dispersive X-ray spectroscopy confirms that the chemical composition of the samples is in near stoichiometric Cu-poor and Zn-rich region, which guarantees the p-type character of the film. The diffuse reflectance spectroscopy also demonstrates that the optical band gap of the sample is about 1.2 eV.

  10. Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging.

    PubMed

    Siqueira, Maria C; Coelho, Gustavo F; de Moura, Márcia R; Bresolin, Joana D; Hubinger, Silviane Z; Marconcini, José M; Mattoso, Luiz H C

    2014-07-01

    In this study, silver nanoparticles were prepared and incorporated into carboxymethylcellulose films to evaluate the antimicrobial activity for food packaging applications. The techniques carried out for material characterization were: infrared spectroscopy and thermal analysis for the silver nanoparticles and films, as well as particle size distribution for the nanoparticles and water vapor permeability for the films. The antimicrobial activity of silver nanoparticles prepared by casting method was investigated. The minimum inhibitory concentration (MIC) value of the silver nanoparticles to test Gram-positive (Enterococcus faecalis) and Gram-negative (Escherichia coli) microorganisms was carried out by the serial dilution technique, tested in triplicate to confirm the concentration used. The results were developed using the Mcfarland scale which indicates that the presence or absence of turbidity tube demonstrates the inhibition of bacteria in relation to the substance inoculated. It was found that the silver nanoparticles inhibited the growth of the tested microorganisms. The carboxymethylcellulose film embedded with silver nanoparticles showed the best antimicrobial effect against Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria (0.1 microg cm(-3)).

  11. Enhanced Performance Consistency in Nanoparticle/TIPS Pentacene-Based Organic Thin Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Xiao, Kai; Durant, William Mark

    2011-01-01

    In this study, inorganic silica nanoparticles are used to manipulate the morphology of 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS pentacene) thin films and the performance of solution-processed organic thin-film transistors (OTFTs). This approach is taken to control crystal anisotropy, which is the origin of poor consistency in TIPS pentacene based OTFT devices. Thin film active layers are produced by drop-casting mixtures of SiO{sub 2} nanoparticles and TIPS pentacene. The resultant drop-cast films yield improved morphological uniformity at {approx}10% SiO{sub 2} loading, which also leads to a 3-fold increase in average mobility and nearly 4 times reduction in the ratio of measured mobility standard deviationmore » ({mu}{sub Stdev}) to average mobility ({mu}{sub Avg}). Grazing-incidence X-ray diffraction, scanning and transmission electron microscopy as well as polarized optical microscopy are used to investigate the nanoparticle-mediated TIPS pentacene crystallization. The experimental results suggest that the SiO{sub 2} nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity.« less

  12. Mercury adsorption to gold nanoparticle and thin film surfaces

    NASA Astrophysics Data System (ADS)

    Morris, Todd Ashley

    Mercury adsorption to gold nanoparticle and thin film surfaces was monitored by spectroscopic techniques. Adsorption of elemental mercury to colloidal gold nanoparticles causes a color change from wine-red to orange that was quantified by UV-Vis absorption spectroscopy. The wavelength of the surface plasmon mode of 5, 12, and 31 nm gold particles blue-shifts 17, 14, and 7.5 nm, respectively, after a saturation exposure of mercury vapor. Colorimetric detection of inorganic mercury was demonstrated by employing 2.5 nm gold nanoparticles. The addition of low microgram quantities of Hg 2+ to these nanoparticles induces a color change from yellow to peach or blue. It is postulated that Hg2+ is reduced to elemental mercury by SCN- before and/or during adsorption to the nanoparticle surface. It has been demonstrated that surface plasmon resonance spectroscopy (SPRS) is sensitive to mercury adsorption to gold and silver surfaces. By monitoring the maximum change in reflectivity as a function of amount of mercury adsorbed to the surface, 50 nm Ag films were shown to be 2--3 times more sensitive than 50 nm Au films and bimetallic 15 nm Au/35 nm Ag films. In addition, a surface coverage of ˜40 ng Hg/cm2 on the gold surface results in a 0.03° decrease in the SPR angle of minimum reflectivity. SPRS was employed to follow Hg exposure to self-assembled monolayers (SAMs) on Au. The data indicate that the hydrophilic or hydrophobic character of the SAM has a significant effect on the efficiency of Hg penetration. Water adsorbed to carboxylic acid end group of the hydrophilic SAMs is believed to slow the penetration of Hg compared to methyl terminated SAMs. Finally, two protocols were followed to remove mercury from gold films: immersion in concentrated nitric acid and thermal annealing up to 200°C. The latter protocol is preferred because it removes all of the adsorbed mercury from the gold surface and does not affect the morphology of the gold surface.

  13. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy.

    PubMed

    Ferreira, Sonia C; Conde, Ana; Arenas, María A; Rocha, Luis A; Velhinho, Alexandre

    2014-12-19

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiC np ) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiC np on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiC np . The current peaks and the steady-state current density recorded at each voltage step increases with the SiC np volume fraction due to the oxidation of the SiC np . The formation mechanism of the anodic film on Al/SiC np composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiC np in the anodic film.

  14. Anodization Mechanism on SiC Nanoparticle Reinforced Al Matrix Composites Produced by Power Metallurgy

    PubMed Central

    Ferreira, Sonia C.; Conde, Ana; Arenas, María A.; Rocha, Luis A.; Velhinho, Alexandre

    2014-01-01

    Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film. PMID:28788295

  15. Resistive switching characteristics of manganese oxide thin film and nanoparticle assembly hybrid devices

    NASA Astrophysics Data System (ADS)

    Abbas, Haider; Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Kang, Tae Su; Yoon, Tae-Sik; Kang, Chi Jung

    2018-06-01

    Improved resistive switching characteristics are demonstrated in a hybrid device with Pt/Ti/MnO (thin film)/MnO (nanoparticle)/Pt structure. The hybrid devices of MnO thin film and nanoparticle assembly were fabricated. MnO nanoparticles with an average diameter of ∼30 nm were chemically synthesized and assembled as a monolayer on a Pt bottom electrode. A MnO thin film of ∼40 nm thickness was deposited on the nanoparticle assembly to form the hybrid structure. Resistive switching could be induced by the formation and rupture of conducting filaments in the hybrid oxide layers. The hybrid device exhibited very stable unipolar switching with good endurance and retention characteristics. It showed a larger and stable memory window with a uniform distribution of SET and RESET voltages. Moreover, the conduction mechanisms of ohmic conduction, space-charge-limited conduction, Schottky emission, and Poole–Frenkel emission have been investigated as possible conduction mechanisms for the switching of the devices. Using MnO nanoparticles in the thin film and nanoparticle heterostructures enabled the appropriate control of resistive random access memory (RRAM) devices and markedly improved their memory characteristics.

  16. Formulation and Characterization of Acetaminophen Nanoparticles in Orally Disintegrating Films

    NASA Astrophysics Data System (ADS)

    AI-Nemrawi, Nusaiba K.

    The purpose of this study is to prepare acetaminophen loaded nanoparticles to be cast directly, while still in the emulsion form, into Orally Disintegrating Films (ODF). By casting the nanoparticles in the films, we expected to keep the particles in a stable form where the nanoparticles would be away from each other to prevent their aggregation. Once the films are applied on the buccal mucosa, they are supposed to dissolve within seconds, releasing the nanoparticles. Then the nanoparticles could be directly absorbed through the mucosa to the blood stream and deliver acetaminophen there. The oral cavity mucosa is one of the most attractive sites for systemic drug delivery due to its high permeability and blood supply. Furthermore, it is robust and shows short recovery times after stress or damage, and the drug bypasses first pass effect and avoids presystemic elimination in the GI tract. Nanoencapsulation increases drug efficacy, specificity, tolerability and therapeutic index. These Nanocapsules have several advantages in the protection of premature degradation and interaction with the biological environment, enhancement of absorption into a selected tissue, bioavailability, retention time and improvement of intracellular penetration. The most important characteristics of nanoparticles are their size, encapsulation efficiency (EE), zeta potential (surface charge), and the drug release profiles. Unfortunately, nanoparticles tend to precipitate or aggregate into larger particles within a short time after preparation or during storage. Some solutions for this problem were mentioned in literature including lyophilization and spray drying. These methods are usually expensive and give partial solutions that might have secondary problems; such as low re-dispersion efficacy of the lyophilized NPs. Furthermore, most of the formulations of NPs are invasive or topical. Few formulas are available to be given orally. Fast disintegrating films (ODFs) are rapidly gaining interest

  17. Effect of POLYURETHANE/NANO-SiO2 Composites Coating on Thermo-Mechanical Properties of Polyethylene Film

    NASA Astrophysics Data System (ADS)

    Ching, Yern Chee; Yaacob, Iskandar Idris

    2011-06-01

    Polyethylene (PE) film was coated with polyurethane/nanosilica composite layer using rod Mayer process. The polyurethane/nanosilica system was prepared by dispersing nanosilica powder into solvent borne polyurethane (PU) binder under vigorous stirring. The silica nanoparticle used has an average diameter of 16 nm, and their weight fraction were varied from 0 % to 14 %. Two different thicknesses of the PU/nanosilica coating layer were fabricated which were about 4 μm and 8 μm. The structure and thermal mechanical features of the nanocomposite coated PE film were characterized by scanning electron microscope (SEM), dynamic mechanical analyzer (DMA), thermogravimetric analyzer (TGA) as well as tensile tests. The results showed that thin layer coating of the PU/nanosilica composite reduced tensile strength of PE substrate slightly. However, the nanocomposite coating of up to 8 μm reduced the elongation % of PE substrate significantly. PU/nanosilica composite coating layer increased the tensile modulus and stiffness of PE substrate. There was no influence of the PU/nanosilica composite coating to the thermal degradation rate of PE film.

  18. Synthesis and Characterization of Composite Hydroxyapatite-Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Charlena; Nuzulia, N. A.; Handika

    2017-03-01

    Hydroxyapatite (HAp) is commonly used as bone implant coating recently; however, the material has disadvantage such as lack of antibacterial properties, that can cause an bacterial infection. Addition of silver nanoparticles is expected to be able to provide antibacterial properties. Silver nanoparticles was obtained by reduction of AgNO3 using glucose monohydrate with microwave heating at 100p for 4 minutes. The composite of hydroxyapatite-silver nanoparticles was synthesized using chemical methods by coprecipitation suspension of Ca(OH)2 with (NH4)HPO4, followed by adding silver nanoparticles solution. The size of the synthesized silver nanoparticles was 30-50 nm and exhibited good antibacterial activity. Nevertheless, when it was composited with HAp to form HAp-AgNPs, there was no antibacterial activity due to very low concentration of silver nanoparticles. This was indicated by the absence of silver nanoparticles diffraction patterns. Infrared spectra indicated the presence of chemical shift and the results of scanning electron microscope showed size of the HAp-AgNPs composite was smaller than that of the HAp. This showed the interaction between HAp and the silver nanoparticles.

  19. Effects of solvents on the synthesis of CuInSe2 nanoparticles for thin film solar cells.

    PubMed

    Lee, Jaehyeong; Lee, Soo-Ho; Hahn, Jae-Sub; Sun, Ho-Jung; Park, Gyungse; Shim, Joongpyo

    2014-12-01

    Chalcopyrite CuInSe2 (CIS) nanoparticles were synthesized in oleic acid, 1-octadecene, oleyl amine and tetraethylene glycol at temperature above 200 degrees C. Depending on the solvent used and reaction temperature, the obtained nanoparticles had different shapes, sizes, chemical compositions, and crystal and thermal properties. CIS powders synthesized in oleic acid, 1-octadecene and oleyl amine above 200 degrees C exhibited chalcopyrite structure. On the other hand, powders prepared in tetraethylene glycol contained a mixture of CIS and CuSe compounds. The CIS powder obtained in oleyl amine had a high thermal stability over 500 degrees C. CIS thin films prepared from nanoparticles were heat-treated in order to observe changes in their property. After 10 min heat-treatment at 500 degrees C, their crystal structure and chemical composition were slightly changed, and their band gap energies were ca. 1.01 eV except in the case of powders prepared in tetraethylene glycol.

  20. Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.

    PubMed

    Puniredd, Sreenivasa Reddy; Weiyi, Seah; Srinivasan, M P

    2008-04-01

    We report the formation of Pd-Pt nanoparticles within a dendrimer-laden ultrathin film matrix immobilized on a solid support and constructed by covalent layer-by-layer (LbL) assembly using supercritical carbon dioxide (SCCO2) as the processing medium. Particle size distribution and composition were controlled by precursor composition. The precursor compositions are optimized for Pd-Pt nanoparticles and later extended to the formation of Fe-Ni nanoparticles. As an example of the application of nanoparticles in tribology, Fe-Ni nanoparticle-laden films were observed to exhibit better tribological properties than those containing the monometallic species, thereby suggesting that combination of nanoparticles can be used to derive greater benefits.

  1. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.

    PubMed

    Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong

    2017-04-01

    In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.

  2. Characterization of Magnetic NiFe Nanoparticles with Controlled Bimetallic Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yan; Chi, Yanxiu; Shan, Shiyao

    2014-02-25

    The exploration of the magnetic properties of bimetallic alloy nanoparticles for various technological applications requires the ability to control the morphology, composition, and surface properties. In this report, we describe new findings of an investigation of the morphology and composition of NiFe alloy nanoparticles synthesized under controlled conditions. The controllability over the bimetallic composition has been demonstrated by the observation of an approximate linear relationship between the composition in the nanoparticles and in the synthetic feeding. The morphology of the NiFe nanoparticles is consistent with an fcc-type alloy, with the lattice strain increasing linearly with the iron content in themore » nanoparticles. The alloy nanoparticles exhibit remarkable resistance to air oxidation in comparison with Ni or Fe particles. The thermal stability and the magnetic properties of the as-synthesized alloy nanoparticles are shown to depend on the composition. The alloy nanoparticles have also be sown to display low saturation magnetization and coercivity values in comparison with the Ni nanoparticles, in line with the superparamagnetic characteristic. These findings have important implications for the design of stable and controllable magnetic nanoparticles for various technological applications.« less

  3. Enhancement of antioxidant and antibacterial properties for tannin acid/chitosan/tripolyphosphate nanoparticles filled electrospinning films: Surface modification of sliver nanoparticles.

    PubMed

    Zhan, Fuchao; Sheng, Feng; Yan, Xiangxing; Zhu, Yingrui; Jin, Weiping; Li, Jing; Li, Bin

    2017-11-01

    The tannin acid/chitosan/tripolyphosphate nanoparticles were encapsulated in polyvinyl alcohol (PVA)/poly-acrylic acid (PAA) electrospinning films by electrostatic spinning technology. To optimize the prepared condition, properties and morphology of nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The optimized initial concentration of tannin, chitosan and tripolyphosphate solutions were 1, 1, 0.5mg/ml, respectively, with adding proportion for 5:5:1. The average diameter of tannin acid/chitosan/tripolyphosphate nanoparticles was ∼80nm. The electrospinning films showed an excellent water-resistant property with 0.5wt%N,N'-Methylenebisacrylamide (MBA). Due to the antioxidant and antibacterial of tannic acid, the films possessed these properties. The antioxidant and antibacterial of these fibers significantly improved after in situ formation of silver nanoparticles (AgNPs). Electrospun films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    PubMed

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage.

    PubMed

    Suo, Biao; Li, Huarong; Wang, Yuexia; Li, Zhen; Pan, Zhili; Ai, Zhilu

    2017-05-01

    There has been limited research on the use of ZnO nanoparticle-coated film for the quality preservation of pork meat under low temperature. In the present study, ZnO nanoparticles were mixed with sodium carboxymethyl cellulose (CMC-Na) to form a nanocomposite film, to investigate the effect of ZnO nanoparticle-coated film on pork meat quality and the growth of bacteria during storage under low temperature. When ZnO nanoparticle-coated film was used as the packaging material for pork meat for 14 days of cold storage at 4 °C, the results demonstrated a significant effect on restricting the increases in total volatile basic nitrogen and pH levels, limiting the decreases of lightness (increased L* value) and redness (increased a* value), and maintaining the water-holding capacity compared to the control pork samples (P < 0.05). The present study also discovered that the ZnO nanoparticle-coated film restrained the increase in total plate count (TPC). When Staphylococcus aureus was used as the representative strain, scanning electron microscopy revealed that ZnO nanoparticles increased the occurrence of cell membrane rupture under cold conditions. ZnO nanoparticle-coated film helps retain the quality of pork meat during cold storage by increasing the occurrence of microorganism injury. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Electrodeposition of catalytic and magnetic gold nanoparticles on dendrimer-carbon nanotube layer-by-layer films.

    PubMed

    Siqueira, José R; Gabriel, Rayla C; Zucolotto, Valtencir; Silva, Anielle C A; Dantas, Noelio O; Gasparotto, Luiz H S

    2012-11-07

    Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.

  7. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    PubMed

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  8. Assessment of morphology, topography and chemical composition of water-repellent films based on polystyrene/titanium dioxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Bolvardi, Beleta; Seyfi, Javad; Hejazi, Iman; Otadi, Maryam; Khonakdar, Hossein Ali; Drechsler, Astrid; Holzschuh, Matthias

    2017-02-01

    In this study, polystyrene (PS)/titanium dioxide (TiO2) films were fabricated through simple solution casting technique via a modified phase separation process. The presented approach resulted in a remarkable reduction in the required amount of nanoparticles for achieving superhydrophobicity. Scanning electron microscopy (SEM) and 3D confocal microscopy were utilized to characterize surface morphology and topography of samples, respectively. An attempt was made to give an in-depth analysis on the surface rough structure using 3D roughness profiles. It was found that high inclusions of non-solvent and nanoparticles resulted in a stable self-cleaning behavior due to the strong presence of hydrophobic TiO2 nanoparticles on the surface. Quite unexpectedly, low inclusions of nanoparticles and non-solvent also resulted in superhydrophobic property mainly due to the proper level of induced surface roughness. XPS analysis was also utilized to determine the chemical composition of the films' surfaces. The results of falling drop experiments showed that the sample containing a higher level of nanoparticles had a much lower mechanical resistance against the induced harsh conditions. All in all, the presented method has shown promising potential in fabrication of superhydrophobic surfaces with self-cleaning behavior using the lowest content of nanoparticles.

  9. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Cai, K. F.; Yao, X.

    2009-12-01

    A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ˜25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (˜147 μV K -1) and low electrical conductivity (˜0.017 S cm -1). The formation mechanism of the PbTe nanoparticles and films is proposed.

  10. Thin films of Ag–Au nanoparticles dispersed in TiO2: influence of composition and microstructure on the LSPR and SERS responses

    NASA Astrophysics Data System (ADS)

    Borges, Joel; Ferreira, Catarina G.; Fernandes, João P. C.; Rodrigues, Marco S.; Proença, Manuela; Apreutesei, Mihai; Alves, Eduardo; Barradas, Nuno P.; Moura, Cacilda; Vaz, Filipe

    2018-05-01

    Thin films containing monometallic (Ag,Au) and bimetallic (Ag–Au) noble nanoparticles were dispersed in TiO2, using reactive magnetron sputtering and post-deposition thermal annealing. The influence of metal concentration and thermal annealing in the (micro)structural evolution of the films was studied, and its correlation with the localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) behaviours was evaluated. The Ag/TiO2 films presented columnar to granular microstructures, developing Ag clusters at the surface for higher annealing temperatures. In some cases, the films presented dendrite-type fractal geometry, which led to an almost flat broadband optical response. The Au/TiO2 system revealed denser microstructures, with Au nanoparticles dispersed in the matrix, whose size increased with annealing temperature. This microstructure led to the appearance of LSPR bands, although some Au segregation to the surface hindered this effect for higher concentrations. The structural results of the Ag–Au/TiO2 system suggested the formation of bimetallic Ag–Au nanoparticles, which presence was supported by the appearance of a single narrow LSPR band. In addition, the Raman spectra of Rhodamine-6G demonstrated the viability of these systems for SERS applications, with some indication that the Ag/TiO2 system might be preferential, contrasting to the notorious behaviour of the bimetallic system in terms of LSPR response.

  11. Porous silicon film formation from silicon-nanoparticle inks: The possibility of effects of van der Waals interactions on uniform film formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki; Nagoya, Wataru; Moriki, Kazuya; Sato, Seiichi

    2018-02-01

    Porous Si films were formed on electrically insulative, semiconductive, and conductive substrates by depositing aqueous and nonaqueous Si nanoparticle inks. In this study, we focused on whether the Si ink deposition resulted in the formation of uniform porous Si films on various substrates. As a result of the experiments, we found that the inks showing better substrate wettabilities did not necessarily result in more uniform film formation on the substrates. This implies that the ink-solvent wettability and the nanoparticle-substrate interactions play important roles in the uniform film formation. As one of the interactions, we discussed the influence of van der Waals interactions by calculating the Hamaker constants. The calculation results indicated that the uniform film formation was hampered when the nanoparticle surface had a repulsive van der Waals interaction with the substrate.

  12. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide.

    PubMed

    Castro, Pedro M; Baptista, Patrícia; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela E

    2018-05-22

    Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Lattice-patterned LC-polymer composites containing various nanoparticles as additives

    PubMed Central

    2012-01-01

    In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices. PMID:22222011

  14. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less

  15. Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors.

    PubMed

    Ogata, Tomonari; Yagi, Ryohei; Nakamura, Nozomi; Kuwahara, Yutaka; Kurihara, Seiji

    2012-08-01

    Modulation of the refractive index of a polymer was achieved by combining it with diamond nanoparticles (NDs). The increase in the refractive index was controlled by the amount of NDs added, according to the Lorentz-Lorenz equation. The refractive index of poly(vinyl alcohol) (PVA), which was used as the base polymer, increased from 1.52 to 1.88. A multilayer film consisting of alternating layers of ND-PVA composite and poly(methyl methacrylate) exhibited ca. 80% reflectance with 10 bilayers.

  16. Intrinsic stress modulation in diamond like carbon films with incorporation of gold nanoparticles by PLA

    NASA Astrophysics Data System (ADS)

    Panda, Madhusmita; Krishnan, R.; Krishna, Nanda Gopala; Madapu, Kishore K.; Kamruddin, M.

    2018-04-01

    Intrinsic stress modulation in the diamond-like carbon (DLC) coatings with incorporation of gold nanoparticles was studied qualitatively from Raman shift. The films were deposited on Si (1 0 0) substrates by using Pulsed laser ablation (PLA) of pure pyrolytic graphite target and with a gold foil on it. Films compositional and chemical behavior was studied by X-ray photoelectron spectroscopy (XPS) and Visible Raman spectroscopy, respectively. The sp3 content obtained from XPS shows dramatic variation in DLC, DLC-Au(100), DLC-Au(200) and DLC-Au(300) as 39%, 41%, 47% and 66% with various gold contentsas 0%, 12%, 7.3% and 4.7%, respectively. The Raman spectra of DLC/Au films showed G-peak shift towards lower wavenumber indicating the reduction of intrinsic stress (internal compressive stress). The sp2, sp3 fraction in the films are also determined from FWHM (G-Peak).

  17. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition.

    PubMed

    Fleischer, Candace C; Kumar, Umesh; Payne, Christine K

    2013-09-01

    Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.

  18. Ferroelectric properties of composites containing BaTiO 3 nanoparticles of various sizes

    NASA Astrophysics Data System (ADS)

    Adam, Jens; Lehnert, Tobias; Klein, Gabi; McMeeking, Robert M.

    2014-01-01

    Size effects, including the occurrence of superparaelectric phases associated with small scale, are a significant research topic for ferroelectrics. Relevant phenomena have been explored in detail, e.g. for homogeneous, thin ferroelectric films, but the related effects associated with nanoparticles are usually only inferred from their structural properties. In contrast, this paper describes all the steps and concepts necessary for the direct characterization and quantitative assessment of the ferroelectric properties of as-synthesized and as-received nanoparticles. The method adopted uses electrical polarization measurements on polymer matrix composites containing ferroelectric nanoparticles. It is applied to ten different BaTiO3 particle types covering a size range from 10 nm to 0.8 μm. The influence of variations of particle characteristics such as tetragonality and dielectric constant is considered based on measurements of these properties. For composites containing different particle types a clearly differing polarization behaviour is found. For decreasing particle size, increasing electric field is required to achieve a given level of polarization. The size dependence of a measure related to the coercive field revealed by this work is qualitatively in line with the state of the knowledge for ferroelectrics having small dimensions. For the first time, such results and size effects are described based on data from experiments on collections of actual nanoparticles.

  19. Tunable-Porosity Membranes From Discrete Nanoparticles

    PubMed Central

    Marchetti, Patrizia; Mechelhoff, Martin; Livingston, Andrew G.

    2015-01-01

    Thin film composite membranes were prepared through a facile single-step wire-wound rod coating procedure in which internally crosslinked poly(styrene-co-butadiene) polymer nanoparticles self-assembled to form a thin film on a hydrophilic ultrafiltration support. This nanoparticle film provided a defect-free separation layer 130–150 nm thick, which was highly permeable and able to withstand aggressive pH conditions beyond the range of available commercial membranes. The nanoparticles were found to coalesce to form a rubbery film when heated above their glass transition temperature (Tg). The retention properties of the novel membrane were strongly affected by charge repulsion, due to the negative charge of the hydroxyl functionalized nanoparticles. Porosity was tuned by annealing the membranes at different temperatures, below and above the nanoparticle Tg. This enabled fabrication of membranes with varying performance. Nanofiltration properties were achieved with a molecular weight cut-off below 500 g mol−1 and a low fouling tendency. Interestingly, after annealing above Tg, memory of the interstitial spaces between the nanoparticles persisted. This memory led to significant water permeance, in marked contrast to the almost impermeable films cast from a solution of the same polymer. PMID:26626565

  20. Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani

    It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less

  1. Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films

    DOE PAGES

    Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani; ...

    2017-09-26

    It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less

  2. The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

    PubMed

    Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Au nanoparticles films used in biological sensing

    NASA Astrophysics Data System (ADS)

    Rosales Pérez, M.; Delgado Macuil, R.; Rojas López, M.; Gayou, V. L.; Sánchez Ramírez, J. F.

    2009-05-01

    Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm-1 due to surface enhancement infrared absorption.

  4. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  5. Influence of film thickness on topology and related magnetic interactions in Fe nanoparticle films

    NASA Astrophysics Data System (ADS)

    Ausanio, G.; Iannotti, V.; Amoruso, S.; Bruzzese, R.; Wang, X.; Aruta, C.; Arzeo, M.; Lanotte, L.

    2013-08-01

    Fe nanoparticle (NP)-assembled thin films with different thickness were prepared by femtosecond-pulsed laser deposition using different deposition times. The proper selection of the deposition time allows to control, to a certain degree, the morphology and topology of the deposited Fe nanoparticles (NPs) assembly, fostering non-uniform dense assemblies of NPs, with the consequent reduction of the influence of the exchange interactions on the macroscopic magnetic properties with decreasing thickness. The magnetic behavior of the Fe NP-assembled films with decreasing thickness is characterized by higher coercive field ( H c) values (a factor ≈4.5) and a good compromise between the hysteresis loops squareness and moderate exchange interactions, strongly correlated with the NPs topology.

  6. Composite Materials with Magnetically Aligned Carbon Nanoparticles and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Salem, David R. (Inventor); Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor)

    2018-01-01

    The present invention relates to magnetically aligned carbon nanoparticle composites and methods of preparing the same. The composites comprise carbon nanoparticles, host material, magnetically sensitive nanoparticles and surfactant. The composites may have enhanced mechanical, thermal, and/or electrical properties.

  7. Determination of diffusion coefficient for released nanoparticles from developed gelatin/chitosan bilayered buccal films.

    PubMed

    Mahdizadeh Barzoki, Zahra; Emam-Djomeh, Zahra; Mortazavian, Elaheh; Rafiee-Tehrani, Niyousha; Behmadi, Homa; Rafiee-Tehrani, Morteza; Moosavi-Movahedi, Ali Akbar

    2018-06-01

    This study aims at the mathematical optimization by Box-Behnken statistical design, fabrication by ionic gelation technique and in vitro characterization of insulin nanoparticles containing thiolated N- dimethyl ethyl chitosan (DMEC-Cys) conjugate. Then Optimized insulin nanoparticles were loaded into the buccal film, and in-vitro drug release from films was investigated, and diffusion coefficient was predicted. The optimized nanoparticles were shown to have mean particle size diameter of 148nm, zeta potential of 15.5mV, PdI of 0.26 and AE of 97.56%. Cell viability after incubation with optimized nanoparticles and films were assessed using an MTT biochemical assay. In vitro release study, FTIR and cytotoxicity also indicated that nanoparticles made of this thiolated polymer are suitable candidates for oral insulin delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Synthesis of thick mesoporous gamma-alumina films, loading of Pt nanoparticles, and use of the composite film as a reusable catalyst.

    PubMed

    Dandapat, Anirban; Jana, Debrina; De, Goutam

    2009-04-01

    Nanocrystalline mesoporous gamma-Al2O3 film of high thickness has been developed and characterized. The films were prepared on ordinary glass substrates by a single dip-coating method using boehmite (AlOOH) sols derived from aluminum tri-sec-butoxide in presence of cetyltrimethylammonium bromide (CTAB) as structure-directing agent. The dried films were heat-treated at 500 degrees C in air to remove the organics and strengthen the network. The GIXRD of the heat-treated (500 degrees C) film shows a broad peak in the low-angle region supporting the formation of worm-hole-like disordered mesostructures. The high-angle GIXRD, FTIR, and TEM of the films confirm the formation of gamma-Al2O3. N2 adsorption-desorption analyses showed that the heat-treated (500 degrees C) film has a BET surface area of 171 m(2) g(-1) with a pore volume of 0.188 cm(3) g(-1) and mean pore diameter 4.3 nm. Pt nanoparticles (NPs) (approximately 2.7 mol % with respect to the equivalent AlO(1.5)) were generated inside the mesopores of the heat-treated films simply by soaking H2PtCl6 solutions into it, and followed by thermal decomposition at 500 degrees C. The surface area and pore volume of the Pt-incorporated film have been reduced to 101 m(2) g(-1) and 0.119 cm(3) g(-1) respectively, confirming the inclusion of Pt NPs inside the pores. FESEM and TEM studies revealed uniform distribution of Pt NPs (2-8.5 nm; average diameter 4.9 nm) in the films. Catalytic properties of the Pt-incorporated films were investigated in two model (one inorganic and other organic) systems: reduction of hexacyanoferrate(III) ions by thiosulfate to ferrocyanide, and p-nitrophenol to p-aminophenol. In both the cases, the catalyst showed excellent activities, and the reduction reactions followed smoothly, showing isosbestic points in the UV-visible spectra. The catalyst films can be separated easily after the reactions and reused several times.

  9. A green synthesis method for large area silver thin film containing nanoparticles.

    PubMed

    Shinde, N M; Lokhande, A C; Lokhande, C D

    2014-07-05

    The green synthesis method is inexpensive and convenient for large area deposition of thin films. For the first time, a green synthesis method for large area silver thin film containing nanoparticles is reported. Silver nanostructured films are deposited using silver nitrate solution and guava leaves extract. The study confirmed that the reaction time plays a key role in the growth and shape/size control of silver nanoparticles. The properties of silver films are studied using UV-visible spectrophotometer, scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle, Fourier-transform Raman (FT-Raman) spectroscopy and Photoluminescence (PL) techniques. Finally, as an application, these films are used effectively in antibacterial activity study. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon-gold covalent bond.

    PubMed

    Laurentius, Lars; Stoyanov, Stanislav R; Gusarov, Sergey; Kovalenko, Andriy; Du, Rongbing; Lopinski, Gregory P; McDermott, Mark T

    2011-05-24

    Tailoring the surface chemistry of metallic nanoparticles is generally a key step for their use in a wide range of applications. There are few examples of organic films covalently bound to metal nanoparticles. We demonstrate here that aryl films are formed on gold nanoparticles from the spontaneous reduction of diazonium salts. The structure and the bonding of the film is probed with surface-enhanced Raman scattering (SERS). Extinction spectroscopy and SERS show that a nitrobenzene film forms on gold nanoparticles from the corresponding diazonium salt. Comparison of the SERS spectrum with spectra computed from density functional theory models reveals a band characteristic of a Au-C stretch. The observation of this stretch is direct evidence of a covalent bond. A similar band is observed in high-resolution electron energy loss spectra of nitrobenzene layers on planar gold. The bonding of these types of films through a covalent interaction on gold is consistent with their enhanced stability observed in other studies. These findings provide motivation for the use of diazonium-derived films on gold and other metals in applications where high stability and/or strong adsorbate-substrate coupling are required.

  11. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films

    NASA Astrophysics Data System (ADS)

    Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-05-01

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 +/- 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous

  12. Preparation and Characterization of Antimicrobial Films Based on LDPE/Ag Nanoparticles with Potential Uses in Food and Health Industries.

    PubMed

    Olmos, Dania; Pontes-Quero, Gloria María; Corral, Angélica; González-Gaitano, Gustavo; González-Benito, Javier

    2018-01-24

    In this work, the antimicrobial effect of silver nanoparticles in polyethylene based nanocomposites has been investigated using a non-conventional processing method to produce homogeneous materials. High energy ball milling under cryogenic conditions was used to achieve a powder of well-blended low-density polyethylene and commercial silver nanoparticles. The final composites in the form of films were obtained by hot pressing. The effect of various silver nanoparticles content (0, 0.5, 1 and 2 wt %) on the properties of low-density polyethylene and the antimicrobial effectiveness of the composite against DH5α Escherichia coli were studied. The presence of silver nanoparticles did not seem to affect the surface energy and thermal properties of the materials. Apart from the inhibition of bacterial growth, slight changes in the aspect ratio of the bacteria with the content of particles were observed, suggesting a direct relationship between the presence of silver nanoparticles and the proliferation of DH5α E. coli ( Escherichia coli ) cells. Results indicate that these materials may be used to commercially produce antimicrobial polymers with potential applications in the food and health industries.

  13. Preparation and Characterization of Antimicrobial Films Based on LDPE/Ag Nanoparticles with Potential Uses in Food and Health Industries

    PubMed Central

    Pontes-Quero, Gloria María; Corral, Angélica

    2018-01-01

    In this work, the antimicrobial effect of silver nanoparticles in polyethylene based nanocomposites has been investigated using a non-conventional processing method to produce homogeneous materials. High energy ball milling under cryogenic conditions was used to achieve a powder of well-blended low-density polyethylene and commercial silver nanoparticles. The final composites in the form of films were obtained by hot pressing. The effect of various silver nanoparticles content (0, 0.5, 1 and 2 wt %) on the properties of low-density polyethylene and the antimicrobial effectiveness of the composite against DH5α Escherichia coli were studied. The presence of silver nanoparticles did not seem to affect the surface energy and thermal properties of the materials. Apart from the inhibition of bacterial growth, slight changes in the aspect ratio of the bacteria with the content of particles were observed, suggesting a direct relationship between the presence of silver nanoparticles and the proliferation of DH5α E. coli (Escherichia coli) cells. Results indicate that these materials may be used to commercially produce antimicrobial polymers with potential applications in the food and health industries. PMID:29364193

  14. Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix

    NASA Astrophysics Data System (ADS)

    Bagratashvili, V. N.; Rybaltovsky, A. O.; Minaev, N. V.; Timashev, P. S.; Firsov, V. V.; Yusupov, V. I.

    2010-05-01

    Fluorinated acrylic polymer (FAP) films have been impregnated with silver precursor (Ag(hfac)COD) by supercritical fluid technique and next irradiated with laser (λ = 532 nm). Laser-chemically reduced Ag atoms have been assembled into massifs of Ag nanoparticles (3 - 8 nm) in FAP/Ag(hfac)COD films matrix in the form of periodic layered nanostructures (horizontal to film surface) with unexpectedly short period (90 - 180 nm). The wavelet analysis of TEM images reveals the existence of even shorter-period structures in such films. Photolysis with non-coherent light or pyrolysis of FAP/Ag(hfac)COD film results in formation of Ag nanoparticles massifs but free of any periodic nanoparticle assemblies. Our interpretation of the observed effect of laser formation of short-period nano-sized Ag nanoparticle assemblies is based on self-enhanced interference process in the course of modification of optical properties of film.

  15. Mitochondria-Targeting Magnetic Composite Nanoparticles for Enhanced Phototherapy of Cancer.

    PubMed

    Guo, Ranran; Peng, Haibao; Tian, Ye; Shen, Shun; Yang, Wuli

    2016-09-01

    Photothermal therapy (PTT) and photodynamic therapy (PDT) are promising cancer treatment modalities in current days while the high laser power density demand and low tumor accumulation are key obstacles that have greatly restricted their development. Here, magnetic composite nanoparticles for dual-modal PTT and PDT which have realized enhanced cancer therapeutic effect by mitochondria-targeting are reported. Integrating PTT agent and photosensitizer together, the composite nanoparticles are able to generate heat and reactive oxygen species (ROS) simultaneously upon near infrared (NIR) laser irradiation. After surface modification of targeting ligands, the composite nanoparticles can be selectively delivered to the mitochondria, which amplify the cancer cell apoptosis induced by hyperthermia and the cytotoxic ROS. In this way, better photo therapeutic effects and much higher cytotoxicity are achieved by utilizing the composite nanoparticles than that treated with the same nanoparticles missing mitochondrial targeting unit at a low laser power density. Guided by NIR fluorescence imaging and magnetic resonance imaging, then these results are confirmed in a humanized orthotropic lung cancer model. The composite nanoparticles demonstrate high tumor accumulation and excellent tumor regression with minimal side effect upon NIR laser exposure. Therefore, the mitochondria-targeting composite nanoparticles are expected to be an effective phototherapeutic platform in oncotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Piezoelectric Nanoparticle-Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  17. Composite nanoparticles containing rare earth metal and methods of preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandapallil, Binil Itty Ipe; Krishnan, Lakshmi; Johnson, Francis

    The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.

  18. Effect of annealing temperature on the structural, morphological, and mechanical properties of polycrystalline zirconium oxynitride composite films deposited by plasma focus device

    NASA Astrophysics Data System (ADS)

    Khan, Ijaz A.; Kashif, Muhammad; Farid, Amjad; Rawat, Rajdeep S.; Ahmad, Riaz

    2017-12-01

    In this article, we reveal the post deposition annealing effect on the structural, morphological, and mechanical properties of polycrystalline zirconium oxynitride (P-ZrON) composite films deposited for 40 focus shots using a plasma focus device. The development of Zr(101), ZrN(111), ZrN(200), Zr3N4(320), ZrN0.28(002), and m-ZrO2(200) diffraction peaks confirms the deposition of P-ZrON composite films. The peak intensity, crystallite size, dislocation density, compressive stress, and texture coefficient of the Zr3N4(320) plane and the microstructural features such as the shape, size and distribution of nanoparticles as well as the film compactness are influenced by the annealing temperature. Elemental analysis confirms the presence of Zr, N, and O in the deposited films. The microhardness of the P-ZrON composite film annealed at 500 °C is found to be 11.87 GPa which is 7.8 times that of virgin zirconium.

  19. Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles.

    PubMed

    Li, Shuo; Bandy, Jason A; Hamers, Robert J

    2018-02-14

    Silver nanoparticles embedded into the diamond thin films enhance the optical absorption and the photocatalytic activity toward the solvated electron-initiated reduction of N 2 to NH 3 in water. Here, we demonstrate the formation of diamond films with embedded Ag nanoparticles <100 nm in diameter. Cross-sectional scanning electron microscopy (SEM), energy-dependent SEM, and energy-dispersive X-ray analysis demonstrate the formation of encapsulated nanoparticles. Optical absorption measurements in the visible and ultraviolet region show that the resulting films exhibit plasmonic resonances in the visible and near-ultraviolet region. Measurements of photocatalytic activity using supraband gap (λ < 225 nm) and sub-band gap (λ > 225 nm) excitation show significantly enhanced ability to convert N 2 to NH 3 . Incorporation of Ag nanoparticles induces a nearly 5-fold increase in activity using a sub-band gap excitation with λ > 225 nm. Our results suggest that internal photoemission, in which electrons are excited from Ag into diamond's conduction band, is an important process that extends the wavelength region beyond diamond's band gap. Other factors, including Ag-induced optical scattering and formation of graphitic impurities are also discussed.

  20. Electrical properties of a novel 1,3-bis-(p-iminobenzoic acid) indane Langmuir-Blodgett films containing ZnS nanoparticles.

    PubMed

    Sari, H; Uzunoglu, T; Capan, R; Serin, N; Serin, T; Tarimci, C; Hassan, A K; Namli, H; Turhan, O

    2007-08-01

    ZnS nanoparticles have been formed in a newly synthesized 1,3-bis-(p-iminobenzoic acid) indane (IBI) by exposing Zn2+ doped multilayered Langmuir-Blodgett (LB) film to H2S gas after the growth. The formation of ZnS nanoparticles in the LB film structure was verified by measuring UV-Visible absorption spectra. DC electrical measurements were carried out for thin films of IBI prepared in a metal/LB films/metal sandwich structure with and without ZnS nanoparticles. It was observed that ZnS nanoparticles in the LB films cause a blue-shift in the absorption spectra as well as a decrease in both capacitance and conductivity values. By analysing I-V curves and assuming a Schottky conduction mechanism the barrier height was found to be about 1.13 eV and 1.21 eV for IBI LB films without and with ZnS nanoparticles, respectively. It is thought that the presence of ZnS nanoparticles influences the barrier height at the metal-organic film interface and causes a change in electrical conduction properties of LB films.

  1. Characterization of films made with chayote tuber and potato starches blending with cellulose nanoparticles.

    PubMed

    Aila-Suárez, Selene; Palma-Rodríguez, Heidi M; Rodríguez-Hernández, Adriana I; Hernández-Uribe, Juan P; Bello-Pérez, Luis A; Vargas-Torres, Apolonio

    2013-10-15

    The aim of this study was to characterize chayotextle starch films reinforced with cellulose (C) and cellulose nanoparticle (CN) (at concentrations of 0.3%, 0.5%, 0.8% and 1.2%), using thermal, mechanical, physicochemical, permeability, and water solubility tests. C was acid-treated to obtain CN. The films were prepared by casting; potato starch and C were used as the control. The solubility of the starch films decreased with the addition of C and CN compared with its respective film without C and CN. No statistical difference (α=0.05) was found in the films added with different concentrations of C and CN. In general, the mechanical properties were improved with the addition of C and CN, and higher values of tensile strength and elastic modulus were determined in the films reinforced with CN. The melting temperature and enthalpy increased with the addition of C and CN, and the values of both thermal parameters were higher in the films with CN than with C; the enthalpy value of the film decreased when the concentration of C or CN increased in the composite. Low concentration of C and CN is better distributed in the matrix film. The addition of C and CN in the starch films improved some mechanical, barrier, and functional properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

    NASA Astrophysics Data System (ADS)

    Awad, M. A.; Raaif, M.

    2018-05-01

    Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

  3. Tensile characteristics of metal nanoparticle films on flexible polymer substrates for printed electronics applications.

    PubMed

    Kim, Sanghyeok; Won, Sejeong; Sim, Gi-Dong; Park, Inkyu; Lee, Soon-Bok

    2013-03-01

    Metal nanoparticle solutions are widely used for the fabrication of printed electronic devices. The mechanical properties of the solution-processed metal nanoparticle thin films are very important for the robust and reliable operation of printed electronic devices. In this paper, we report the tensile characteristics of silver nanoparticle (Ag NP) thin films on flexible polymer substrates by observing the microstructures and measuring the electrical resistance under tensile strain. The effects of the annealing temperatures and periods of Ag NP thin films on their failure strains are explained with a microstructural investigation. The maximum failure strain for Ag NP thin film was 6.6% after initial sintering at 150 °C for 30 min. Thermal annealing at higher temperatures for longer periods resulted in a reduction of the maximum failure strain, presumably due to higher porosity and larger pore size. We also found that solution-processed Ag NP thin films have lower failure strains than those of electron beam evaporated Ag thin films due to their highly porous film morphologies.

  4. Size dependent nonlinear optical properties of spin coated zinc oxide-polystyrene nanocomposite films

    NASA Astrophysics Data System (ADS)

    Jeeju, Pullarkat P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P.

    2012-11-01

    Using simple wet chemical method at room temperature, zinc oxide (ZnO) nanoparticles embedded in polystyrene (PS) matrix were synthesized. The size of the ZnO nanoparticles could be varied by varying the precursor concentration, reaction time and stirring speed. Transparent films of ZnO/PS nanocomposites of thickness around 1 μm were coated on ultrasonically cleaned glass substrates by spin coating. The optical absorptive nonlinearity in ZnO/PS nanocomposite films was investigated using open aperture Z-scan technique with nanosecond laser pulses at 532 nm. The results indicate optical limiting type nonlinearity in the films due to two-photon absorption in ZnO. These films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. The observed nonlinear absorption is strongly dependent on particle size and the normalized transmittance could be reduced to as low as 0.43 by the suitable choice of the ZnO nanoparticle size. These composite films can hence be used as efficient optical limiters for sensor protection. The much-pronounced nonlinear response of these composite films, compared to pure ZnO, combined with the improved stability of ZnO nanoparticles in the PS matrix offer prospects of application of these composite films in the fabrication of stable non-linear optical devices.

  5. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    PubMed

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  6. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-12-01

    Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (Tlum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm-2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.

  7. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity.

    PubMed

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-01-01

    Highly transparent, energy-saving, and superhydrophobic nanostructured SiO 2 /VO 2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO 2 layer and a top protective layer that consists of SiO 2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO 2 layer. The transmittance of the composite films in visible region ( T lum ) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO 2 films and tungsten-doped VO 2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO 2 /VO 2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW . cm -2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.

  8. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    PubMed

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Nayfeh, Munir H.; Yau, Siu-Tung

    A composite material formed by dispersing ultrasmall silicon nanoparticles in polyaniline has been used as the electrode material for supercapacitors. Electrochemical characterization of the composite indicates that the nanoparticles give rise to double-layer capacitance while polyaniline produces pseudocapacitance. The composite shows significantly improved capacitance compared to that of polyaniline. The enhanced capacitance results in high power (220 kW kg -1) and energy-storage (30 Wh kg -1) capabilities of the composite material. A prototype supercapacitor using the composite as the charge storage material has been constructed. The capacitor showed the enhanced capacitance and good device stability during 1000 charging/discharging cycles.

  10. Influence of 20 MeV electron irradiation on the optical properties and phase composition of SiOx thin films

    NASA Astrophysics Data System (ADS)

    Hristova-Vasileva, Temenuga; Petrik, Peter; Nesheva, Diana; Fogarassy, Zsolt; Lábár, János; Kaschieva, Sonia; Dmitriev, Sergei N.; Antonova, Krassimira

    2018-05-01

    Homogeneous films from SiO1.3 (250 nm thick) were deposited on crystalline Si substrates by thermal evaporation of silicon monoxide. A part of the films was further annealed at 700 °C to grow amorphous Si (a-Si) nanoclusters in an oxide matrix, thus producing composite a-Si-SiO1.8 films. Homogeneous as well as composite films were irradiated by 20-MeV electrons at fluences of 7.2 × 1014 and 1.44 × 1015 el/cm2. The film thicknesses and optical constants were explored by spectroscopic ellipsometry. The development of the phase composition of the films caused by the electron-beam irradiation was studied by transmission electron microscopy. The ellipsometric and electron microscopy results have shown that the SiOx films are optically homogeneous and the electron irradiation with a fluence of 7.2 × 1014 el/cm2 has led to small changes in the optical constants and the formation of very small a-Si nanoclusters. The irradiation of the a-Si-SiOx composite films caused a decrease in the effective refractive index and, at the same time, an increase in the refractive index of the oxide matrix. Irradiation induced increase in the optical band gap and decrease in the absorption coefficient of the thermally grown amorphous Si nanoclusters have also been observed. The obtained results are discussed in terms of the formation of small amorphous silicon nanoclusters in the homogeneous layers and electron irradiation induced reduction in the nanocluster size in the composite films. The conclusion for the nanoparticle size reduction is supported by infrared transmittance results.

  11. Automated Composites Processing Technology: Film Module

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.

  12. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  13. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    NASA Astrophysics Data System (ADS)

    Igbenehi, H.; Jiguet, S.

    2012-09-01

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  14. Mechanical control of the plasmon coupling with Au nanoparticle arrays fixed on the elastomeric film via chemical bond

    NASA Astrophysics Data System (ADS)

    Bedogni, Elena; Kaneko, Satoshi; Fujii, Shintaro; Kiguchi, Manabu

    2017-03-01

    We have fabricated Au nanoparticle arrays on the flexible poly(dimethylsiloxane) (PDMS) film. The nanoparticles were bound to the film via a covalent bond by a ligand exchange reaction. Thanks to the strong chemical bonding, highly stable and uniformly dispersed Au nanoparticle arrays were fixed on the PDMS film. The Au nanoparticle arrays were characterized by the UV-vis, scanning electron microscope (SEM) and surface enhanced Raman scattering (SERS). The UV-vis and SEM measurements showed the uniformity of the surface-dispersed Au nanoparticles, and SERS measurement confirmed the chemistry of the PDMS film. Reflecting the high stability and the uniformity of the Au nanoparticle arrays, the plasmon wavelength of the Au nanoparticles reversely changed with modulation of the interparticle distance, which was induced by the stretching of the PDMS film. The plasmon wavelength linearly decreased from 664 to 591 nm by stretching of 60%. The plasmon wavelength shift can be explained by the change in the strength of the plasmon coupling which is mechanically controlled by the mechanical strain.

  15. Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graak, Pinki; Devi, Ranjna; Kumar, Dinesh

    2016-05-06

    Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.

  16. Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

    PubMed Central

    Zhong, Tuhua; Oporto, Gloria S.; Jaczynski, Jacek; Jiang, Changle

    2015-01-01

    Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction. PMID:26137482

  17. Anomalous Drag Reduction and Hydrodynamic Interactions of Nanoparticles in Polymer Nanocomposite Thin Films

    NASA Astrophysics Data System (ADS)

    Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael

    2015-03-01

    One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.

  18. Electroless growth of silver nanoparticles into mesostructured silica block copolymer films.

    PubMed

    Bois, Laurence; Chassagneux, Fernand; Desroches, Cédric; Battie, Yann; Destouches, Nathalie; Gilon, Nicole; Parola, Stéphane; Stéphan, Olivier

    2010-06-01

    Silver nanoparticles and silver nanowires have been grown inside mesostructured silica films obtained from block copolymers using two successive reduction steps: the first one involves a sodium borohydride reduction or a photoreduction of silver nitrate contained in the film, and the second one consists of a silver deposit on the primary nanoparticles, carried out by silver ion solution reduction with hydroxylamine chloride. We have demonstrated that the F127 block copolymer ((PEO)(106)(PPO)(70)(PEO)(106)), "F type", mesostructured silica film is a suitable "soft" template for the fabrication of spherical silver nanoparticles arrays. Silver spheres grow from 7 to 11 nm upon the second reduction step. As a consequence, a red shift of the surface plasmon resonance associated with metallic silver has been observed and attributed to plasmonic coupling between particles. Using a P123 block copolymer ((PEO)(20)(PPO)(70)(PEO)(20)), "P type", mesostructured silica film, we have obtained silver nanowires with typical dimension of 10 nm x 100 nm. The corresponding surface plasmon resonance is blue-shifted. The hydroxylamine chloride treatment appears to be efficient only when a previous chemical reduction is performed, assuming that the first sodium borohydride reduction induces a high concentration of silver nuclei in the first layer of the porous silica (film/air interface), which explains their reactivity for further growth.

  19. Annealing effects on electrical behavior of gold nanoparticle film: Conversion of ohmic to non-ohmic conductivity

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Zeinab; Mansour, Nastaran

    2017-02-01

    This paper reports on the electrical behavior of self-assembled gold nanoparticle films before and after high-temperature annealing in ambient environment. These films are made by depositing gold nanoparticles from a colloidal solution on glass substrates using centrifuge deposition technique. The current-voltage (I-V) characteristics of these films exhibits ohmic and non-ohmic properties for un-annealed and annealed films respectively. As the annealing time duration increases, the onset of non-ohmic behavior occurs at higher voltages. To understand the underlying mechanisms for the observed electrical conduction behavior in these films and how electrical conduction is effected by film morphology and structural properties before and after annealing, systematic comparative studies based on scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray photoelectron spectroscopy (XPS) have been performed. The morphology of the films shows that the assembled gold nanoparticles are distributed on the substrate in a random way before annealing. After 2 h annealing gold nanoparticles exhibit a higher filling fraction when examined by SEM, which means that they coalesce, upon annealing, with respect to un-annealed films. The UV-vis absorption spectra of the films show that there is a red-shift and broadening in the absorption band for the annealed films. The observed phenomenon is related to the plasmon near-field coupling effect and suggests that the nanoparticle ensembles interspacing has decreased. The structural and crystallinity of the films exhibit amorphous structure before annealing and pure crystalline phases with a preferential growth direction along the (111) plane after annealing. The XPS analysis further suggests the existence of the stable thin oxide layer in the phase of Au2O3 in the annealed films. The I-V characteristics have been described by Simmons' model for tunnel transport through metal-insulator-metal (MIM) junctions. The Fowler

  20. TEACHING COMPOSITION WITH FILM.

    ERIC Educational Resources Information Center

    COURSEN, HERBERT R., JR.

    A COMPOSITION PROGRAM DESIGNED TO GIVE UPWARD BOUND STUDENTS A FEELING OF SUCCESS WAS BASED ON FILMS WHICH THE STUDENTS VIEWED, DISCUSSED, AND WROTE ABOUT. THE FILMS FELL ROUGHLY INTO THE CATEGORIES OF SOCIAL PROBLEMS, POLITICS AND PROPAGANDA, AND ART AND MUSIC. FOLLOWING CLASS DISCUSSIONS, STUDENTS WERE REQUIRED MERELY TO "WRITE ABOUT THE…

  1. Silica Coating of Nonsilicate Nanoparticles for Resin-Based Composite Materials

    PubMed Central

    Kaizer, M.R.; Almeida, J.R.; Gonçalves, A.P.R.; Zhang, Y.; Cava, S.S.; Moraes, R.R.

    2016-01-01

    This study was designed to develop and characterize a silica-coating method for crystalline nonsilicate ceramic nanoparticles (Al2O3, TiO2, and ZrO2). The hypothesis was that the coated nonsilicate nanoparticles would stably reinforce a polymeric matrix due to effective silanation. Silica coating was applied via a sol-gel method, with tetraethyl orthosilicate as a silica precursor, followed by heat treatment. The chemical and microstructural characteristics of the nanopowders were evaluated before and after silica coating through x-ray diffraction, BET (Brunauer-Emmett-Teller), energy-dispersive x-ray spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy analyses. Coated and noncoated nanoparticles were silanated before preparation of hybrid composites, which contained glass microparticles in addition to the nanoparticles. The composites were mechanically tested in 4-point bending mode after aging (10,000 thermal cycles). Results of all chemical and microstructural analyses confirmed the successful obtaining of silica-coated nanoparticles. Two distinct aspects were observed depending on the type of nanoparticle tested: 1) formation of a silica shell on the surface of the particles and 2) nanoparticle clusters embedded into a silica matrix. The aged hybrid composites formulated with the coated nanoparticles showed improved flexural strength (10% to 30% higher) and work of fracture (35% to 40% higher) as compared with composites formulated with noncoated nanoparticles. The tested hypothesis was confirmed: silanated silica-coated nonsilicate nanoparticles yielded stable reinforcement of dimethacrylate polymeric matrix due to effective silanation. The silica-coating method presented here is a versatile and promising novel strategy for the use of crystalline nonsilicate ceramics as a reinforcing phase of polymeric composite biomaterials. PMID:27470069

  2. Direct detection of cysteine using functionalized BaTiO3 nanoparticles film based self-powered biosensor.

    PubMed

    Selvarajan, Sophia; Alluri, Nagamalleswara Rao; Chandrasekhar, Arunkumar; Kim, Sang-Jae

    2017-05-15

    Simple, novel, and direct detection of clinically important biomolecules have continuous demand among scientific community as well as in market. Here, we report the first direct detection and facile fabrication of a cysteine-responsive, film-based, self-powered device. NH 2 functionalized BaTiO 3 nanoparticles (BT-NH 2 NPs) suspended in a three-dimensional matrix of an agarose (Ag) film, were used for cysteine detection. BaTiO 3 nanoparticles (BT NPs) semiconducting as well as piezoelectric properties were harnessed in this study. The changes in surface charge properties of the film with respect to cysteine concentrations were determined using a current-voltage (I-V) technique. The current response increased with cysteine concentration (linear concentration range=10µM-1mM). Based on the properties of the composite (BT/Ag), we created a self-powered cysteine sensor in which the output voltage from a piezoelectric nanogenerator was used to drive the sensor. The potential drop across the sensor was measured as a function of cysteine concentrations. Real-time analysis of sensor performance was carried out on urine samples by non-invasive method. This novel sensor demonstrated good selectivity, linear concentration range and detection limit of 10µM; acceptable for routine analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    NASA Astrophysics Data System (ADS)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  4. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan

    2017-08-01

    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  5. Preparation of gelatin films incorporated with tea polyphenol nanoparticles for enhancing controlled-release antioxidant properties

    USDA-ARS?s Scientific Manuscript database

    Tea polyphenols (TP) were incorporated into edible gelatin films either alone or incorporated into nanoparticles in order to determine the physico-chemical properties of the film and the antioxidant properties of TP in a solid gelatin matrix. The TP containing nanoparticles were prepared by cross-li...

  6. Fabrication and evaluation of dispersed-Ag nanoparticles-in-polyimide thin films

    NASA Astrophysics Data System (ADS)

    Sonehara, Makoto; Watanabe, Yuki; Yamaguchi, Sota; Kato, Takanori; Yoshisaku, Yasuaki; Sato, Toshiro; Itoh, Eiji

    2017-10-01

    A thin-film common-mode filter (TF-CMF) for cell phones in the UHF band was fabricated and evaluated. The TF-CMF consisted of multiple metal-insulator-metal (MIM) capacitors and inductors. The sizes of the 0.70-1.0 GHz band-type and 1.8-2.0 GHz band-type TF-CMFs are 1,140 × 1,260 × 10.5 µm3, and 1,060 × 1,060 × 10.5 µm3, respectively. The footprint in both types of TF-CMFs is over 1 mm2. In order to miniaturize the TF-CMF, we proposed to change a polyimide-only to a polyimide with dispersed Ag nanoparticles with high permittivity in the insulator layer for the MIM capacitor of the TF-CMF. A polyimide (\\text{polyimide precursor}:\\text{toluene with dispersed Ag nanoparticles} = 100:1) thin film with dispersed high-density Ag nanoparticles has a relative permittivity of about 8, which is twice as high as that of the polyimide-only thin film. If the capacitance and distance between electrodes are the same, then the capacitor footprint may be halved.

  7. Dielectric and transport properties of thin films precipitated from sols with silicon nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kononov, N. N., E-mail: nnk@kapella.gpi.ru; Dorofeev, S. G.; Ishchenko, A. A.

    2011-08-15

    Dielectric properties of thin films precipitated on solid substrates from colloidal solutions containing silicon nanoparticles (average diameter is 10 nm) are studied by optical ellipsometry and impedance-spectroscopy. In the optical region, the values of real {epsilon} Prime and imaginary {epsilon} Double-Prime components of the complex permittivity {epsilon} vary within 2.1-1.1 and 0.25-0.75, respectively. These values are significantly lower than those of crystalline silicon. Using numerical simulation within the Bruggeman effective medium approximation, we show that the experimental {epsilon} Prime and {epsilon} Double-Prime spectra can be explained with good accuracy, assuming that the silicon film is a porous medium consisting ofmore » silicon monoxide (SiO) and air voids at a void ratio of 0.5. Such behavior of films is mainly caused by the effect of outer shells of silicon nanoparticles interacting with atmospheric oxygen on their dielectric properties. In the frequency range of 10-10{sup 6} Hz, the experimentally measured {epsilon} Prime and {epsilon} Double-Prime spectra of thin nanoscale silicon films are well approximated by the semi-empirical Cole-Cole dielectric dispersion law with the term related to free electric charges. The experimentally determined power-law frequency dependence of the ac conductivity means that the electrical transport in films is controlled by electric charge hopping through localized states in the unordered medium of outer shells of silicon nanoparticles composing films. It is found that the film conductivity at frequencies of {<=}2 Multiplication-Sign 10{sup 2} Hz is controlled by proton transport through Si-OH groups on the silicon nanoparticle surface.« less

  8. Tunable assembly of vanadium dioxide nanoparticles to create porous film for energy-saving applications.

    PubMed

    Ding, Shangjun; Liu, Zhanqiang; Li, Dezeng; Zhao, Wei; Wang, Yaoming; Wan, Dongyun; Huang, Fuqiang

    2013-03-13

    Nanoparticle-assembled vanadium dioxide (VO2) films have been easily prepared with the assistance of cetyltrimethylammonium vanadate (CTAV) precursor which exhibits self-assembly properties. The obtained VO2 film has a micro/nano hierarchical porous structure, so its visible-light transmittance is significantly improved (∼25% increased compared to continuous film). The VO2 particle density as well as the film porosity can be facilely controlled by adjusting experimental parameters such as dip-coating speed. Accordingly, film optical properties can also be tuned to a large extent, in particular the visible transmittance (Tvis) and near-infrared switching efficiency (ΔTnir). These VO2 nanoparticle-assembled films prepared by this novel method provide a useful model to research the balance between Tvis and ΔTnir.

  9. Simulation study of depositing the carbon film on nanoparticles in the magnetized methane plasma

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Hosein; Pourali, Nima; Ebadi, Zahra

    2018-03-01

    Plasma coating of nanoparticles in low-temperature magnetized methane plasma is studied by a simulation approach. To this end, by using the global model, the electron temperature and concentration of different species considered in this plasma are determined in the center of a capacitively coupled discharge. Then, the plasma-wall transition region in the presence of an oblique magnetic field is simulated by the multi-component fluid description. Nanoparticles with different radii are injected into the transition region and surface deposition and heating models, as well as dynamics and charging models, are employed to examine the coating process. The results of the simulation show that the non-spherical growth of nanoparticles is affected by the presence of the magnetic field, as with passing time, an oscillating increase is seen in the thickness of the film deposited on nanoparticles. Also, it is shown that the uniformity of the deposited film is dependent on the rotation velocity of nanoparticles. Generally, the obtained results imply that the sphericity of nanoparticles and uniformity of the film coated on them are controllable by the magnitude and orientation of the magnetic field.

  10. New intelligent multifunctional SiO2/VO2 composite films with enhanced infrared light regulation performance, solar modulation capability, and superhydrophobicity

    PubMed Central

    Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin

    2017-01-01

    Abstract Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol–gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (T lum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm−2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications. PMID:28970866

  11. Bioactive films of zein/magnetite magnetically stimuli-responsive for controlled drug release

    NASA Astrophysics Data System (ADS)

    Marín, Tíffany; Montoya, Paula; Arnache, Oscar; Pinal, Rodolfo; Calderón, Jorge

    2018-07-01

    The Zein films in two configurations with magnetite nanoparticles (zein/NPs) and magnetite-acetaminophen (zein/NPs/Drug) were used as magnetically stimuli-responsive systems to propose a model of controlled release by dissolution and diffusion mechanism. Composite material films of zein/NPs and zein/NPs/Drug were made by dispersion of magnetite nanoparticles into zein solution then solvent casting of the solution on a flat Teflon substrate. The properties of composite films were analyzed by magnetization curves of (MvsH) and measurements of magnetic force microscopy (MFM). Drug release from the zein/NPs/Drug composite films was determined using a type II dissolution apparatus for a period of 2 h under applied magnetic field conditions. In addition, the diffusion mechanism was tested with zein/NPs films into diffusion cell containing acetaminophen solution for 24 h and using a permanent magnet as a remote trigger device. The results showed that the magnetite nanoparticles contained in the zein/NPs and zein/NPs/Drug composite films are stable, i.e., they do not undergo sufficiently high levels of oxidation as to alter their magnetic properties. Furthermore, the dissolution and diffusion results lead us to conclude that zein composite films effectively behave as stimuli-responsive systems triggered by an external magnetic field applied. The result is a model controlled release system whereby drug release can be controlled by adjusting the magnitude of the applied magnetic field.

  12. Magnetic domain formation in monolayer nanoparticle films

    NASA Astrophysics Data System (ADS)

    Maranville, Brian; Krycka, Kathryn; Borchers, Julie; Hogg, Charles; Majetich, Sara; Ijiri, Yumi

    2009-03-01

    Self-assembled magnetic nanoparticle films offer promise as data storage media, but an understanding of the interactions is missing. Modified Langmuir-Blodgett methods were used to prepare monolayer films of 7 and 11 nm diameter Fe3O4 nanoparticles with large structural domains. Small-angle neutron scattering (SANS) shows a peak at a wavevector Q corresponding to the particle size and spacing, and scattering at intermediate Q indicating possible long-range correlations. We extend to lower Q with off-specular neutron reflectivity, achieving high intensity by sacrificing resolution along one in-plane direction y while retaining high resolution in the other in-plane direction x and the normal direction z. We measure in saturation and zero field to extract magnetic scattering. In high fields, the specular scattering (Qx=0) is increased, consistent with aligned moments. Preliminary results show weak magnetic scattering for nonzero Qx . Since the maximal Qx roughly corresponds to the lowest Q in SANS, the combination of these techniques allows us to quantify field-dependent magnetic domain size.

  13. Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles.

    PubMed

    Liu, Caihong; Faria, Andreia F; Ma, Jun; Elimelech, Menachem

    2017-01-03

    We demonstrate the functionalization of thin-film composite membranes with zwitterionic polymers and silver nanoparticles (AgNPs) for combating biofouling. Combining hydrophilic zwitterionic polymer brushes and biocidal AgNPs endows the membrane with dual functionality: antiadhesion and bacterial inactivation. An atom transfer radical polymerization (ATRP) reaction is used to graft zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brushes to the membrane surface, while AgNPs are synthesized in situ through chemical reduction of silver. Two different membrane architectures (Ag-PSBMA and PSBMA-Ag TFC) are developed according to the sequence AgNPs, and PSBMA brushes are grafted on the membrane surface. A static adhesion assay shows that both modified membranes significantly reduced the adsorption of proteins, which served as a model organic foulant. However, improved antimicrobial activity is observed for PSBMA-Ag TFC (i.e., AgNPs on top of the polymer brush) in comparison to the Ag-PSBMA TFC membrane (i.e., polymer brush on top of AgNPs), indicating that architecture of the antifouling layer is an important factor in the design of zwitterion-silver membranes. Confocal laser scanning microscopy (CLSM) imaging indicated that PSBMA-Ag TFC membranes effectively inhibit biofilm formation under dynamic cross-flow membrane biofouling tests. Finally, we demonstrate the regeneration of AgNPs on the membrane after depletion of silver from the surface of the PSBMA-Ag TFC membrane.

  14. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties.

    PubMed

    Mollahosseini, Arash; Rahimpour, Ahmad

    2013-01-01

    A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP-MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.

  15. The role of interparticle heterogeneities in the selenization pathway of Cu-Zn-Sn-S nanoparticle thin films: A real-time study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Nathaniel J.; Mainz, Roland; Walker, Bryce C.

    2015-06-10

    Real-time energy dispersive x-ray diffraction (EDXRD) analysis has been utilized to observe the selenization of Cu-Zn-Sn-S nanoparticle films coated from three nanoparticle populations: Cu- and Sn-rich particles roughly 5 nm in size, Zn-rich nanoparticles ranging from 10 to 20 nm in diameter, and a mixture of both types of nanoparticles (roughly 1:1 by mass), which corresponds to a synthesis recipe yielding CZTSSe solar cells with reported total-area efficiencies as high as 7.9%. The EDXRD studies presented herein show that the formation of copper selenide intermediates during the selenization of mixed-particle films can be primarily attributed to the small, Cu- andmore » Sn-rich particles. Moreover, the formation of these copper selenide phases represents the first stage of the CZTSSe grain growth mechanism. The large, Zn-rich particles subsequently contribute their composition to form micrometer-sized CZTSSe grains. In conclusion, these findings enable further development of a previously proposed selenization pathway to account for the roles of interparticle heterogeneities, which in turn provides a valuable guide for future optimization of processes to synthesize high quality CZTSSe absorber layers.« less

  16. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.

    PubMed

    Krogstad, Emily A; Ramanathan, Renuka; Nhan, Christina; Kraft, John C; Blakney, Anna K; Cao, Shijie; Ho, Rodney J Y; Woodrow, Kim A

    2017-11-01

    Current approaches for topical vaginal administration of nanoparticles result in poor retention and extensive leakage. To overcome these challenges, we developed a nanoparticle-releasing nanofiber delivery platform and evaluated its ability to improve nanoparticle retention in a murine model. We individually tailored two components of this drug delivery system for optimal interaction with mucus, designing (1) mucoadhesive fibers for better retention in the vaginal tract, and (2) PEGylated nanoparticles that diffuse quickly through mucus. We hypothesized that this novel dual-functioning (mucoadhesive/mucus-penetrating) composite material would provide enhanced retention of nanoparticles in the vaginal mucosa. Equivalent doses of fluorescent nanoparticles were vaginally administered to mice in either water (aqueous suspension) or fiber composites, and fluorescent content was quantified in cervicovaginal mucus and vaginal tissue at time points from 24 h to 7d. We also fabricated composite fibers containing etravirine-loaded nanoparticles and evaluated the pharmacokinetics over 7d. We found that our composite materials provided approximately 30-fold greater retention of nanoparticles in the reproductive tract at 24 h compared to aqueous suspensions. Compared to nanoparticles in aqueous suspension, the nanoparticles in fiber composites exhibited sustained and higher etravirine concentrations after 24 h and up to 7d, demonstrating the capabilities of this new delivery platform to sustain nanoparticle release out to 3d and drug retention out to one week after a single administration. This is the first report of nanoparticle-releasing fibers for vaginal drug delivery, as well as the first study of a single delivery system that combines two components uniquely engineered for complementary interactions with mucus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  18. Honeycomb-like thin films of polystyrene-block-poly(2-vinylpyridine) embedded with gold or silver nanoparticles formed at the planer liquid/liquid interface.

    PubMed

    Wang, Di; Ma, Huihui; Chu, Chunxiao; Hao, Jingcheng; Liu, Hong-Guo

    2013-07-15

    Composite thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) decorated with Au or Ag nanoclusters and nanoparticles were fabricated at the interfaces of chloroform solution of PS-b-P2VP and aqueous solutions of HAuCl4 or AgNO3. Transmission electron microscopy (TEM) investigations indicated that large area of a single-layer honeycomb structure was formed, which is composed of polygons (most of them are hexagons) whose walls look like spindles with the length of several hundreds of nanometers. Large amount of Au or Ag nanoparticles are embedded in the walls and the undersides of the honeycomb structures. The formation of these novel composite structures was attributed to the adsorption of block copolymer molecules and inorganic species of AuCl4(-) and Ag(+) ions at the liquid-liquid interface, the combination of the polymer molecules and the inorganic ions, and the self-assembly of the composite molecules. After UV-light irradiation and KBH4 aqueous solution treatment, the inorganic species were reduced completely, as confirmed by UV-vis spectra and X-ray photoelectron spectra. These composite films exhibited high catalytic activities for the reduction of 4-nitrophenol (4-NP) by KBH4 in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    NASA Astrophysics Data System (ADS)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  20. Phase behavior of confined polymer blends and nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Chung, Hyun-Joong

    We have investigated phase behavior in polymer blend films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) with 33wt% AN content and their nanoparticle (NP) composites by using the combination of imaging techniques, including atomic force microscopy (AFM), focused-ion beam (FIB), transmission and scanning electron microscopy (TEM and SEM), as well as depth profiling techniques of Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD). For neat PMMA:SAN films, we present a novel morphology map based on pattern development mechanisms. Six distinct mechanisms are found for thickness values (d) and bulk compositions between 50-1000 nm and φPMMA = 0.3 to 0.8, respectively. When PMMA is depleted from the mid-layer by preferential wetting at φ PMMA = 0.3 (A), stable PMMA/SAN/PMMA trilayer structure is obtained. With increasing φPMMA (0.4 to 0.7), pattern development is driven by phase separation in the mid-layer, which produces circular domains (B), irregular domains (C), and bicontinuous patterns (D). Here, the growth of circular domains can be explained by the coalescence mechanism, which predicts ξ˜(sigma/eta) 1/3d2/3t1/3 , where ξ, sigma, and eta are correlation length between domains, interfacial tension between phases, and viscosity, respectively. In bicontinuous patterns, hydrodynamic pumping mechanism is suppressed with thickness confinement. When SAN composition is lean, φPMMA = 0.8 (E), the SAN phase is minority component in the mid-layer and breaks up into droplets in smooth PMMA film. When film thickness is less than 80 nm at φPMMA = 0.4 or 0.5 (F), films initially display trilayer structure, which then ruptures upon dewetting of the SAN mid-layer. Building upon the understanding of the neat PMMA:SAN blend films, we have performed the first systematic on the effect of NPs in morphology evolution and stability of polymer blend films. Whereas the location of NP impacts morphology evolution, silica

  1. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp; Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192; Kawamura, S.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. Themore » resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.« less

  2. Effect of silver nanoparticles on the spectral luminescent properties of a gelatin film

    NASA Astrophysics Data System (ADS)

    Efendiev, T. Sh.; Kruchenok, J. V.; Rubinov, A. N.

    2013-03-01

    We studied the absorption and fluorescence spectra of a rhodamine 6G-activated gelatin film of thickness 10 μm, with and without silver nanoparticles. We observed that doping the film with nanoparticles of diameter 5 nm leads to an increase in the intensity of the absorption spectrum by a factor of 1.17 and its short-wavelength shift (~1.5 nm), while the intensity of the fluorescence spectrum increases by a factor of ~2.

  3. Tailored Waveform of Dielectric Barrier Discharge to Control Composite Thin Film Morphology.

    PubMed

    Brunet, Paul; Rincón, Rocío; Matouk, Zineb; Chaker, Mohamed; Massines, Françoise

    2018-02-06

    Nanocomposite thin films of TiO 2 in a polymer-like matrix are grown in a filamentary argon (Ar) dielectric barrier discharge (DBD) from a suspension of TiO 2 nanoparticles in isopropanol (IPA). The sinusoidal voltage producing the plasma is designed to independently control the matrix growth rate and the transport of nanoparticle (NP) aggregates to the surface. The useful FSK (frequency shift keying) modulation mode is chosen to successively generate two sinusoidal voltages: a high frequency of 15 kHz and a low frequency ranging from 0.5 to 3 kHz. The coating surface coverage by the NPs and the thickness of the matrix are measured as a function of the FSK parameters. The duty cycle between these two signals is varied from 0 to 100%. It is observed that the matrix thickness is mainly controlled by the power of the discharge, which largely depends on the high-frequency value. The quantity of NPs deposited in the composite thin film is proportional to the duration of the low frequency applied. The FSK waveform has a double modulation effect, allowing us to obtain a uniform coating as the NPs are not affected by the high frequency and the matrix growth rate is limited when the low frequency is applied. When it is close to a frequency limit, the low frequency acts like a filter for the NP aggregates. The higher the frequency, the smaller the size of the aggregates transferred to the surface. By changing only the FSK modulation parameters, the thin film can be switched from superhydrophobic to superhydrophilic, and under suitable conditions, a nanocomposite thin film is obtained.

  4. Natural and synthetic mineral silicates as functional nanoparticles in polymer composites

    NASA Astrophysics Data System (ADS)

    Shao, Hua

    A new strategy is described for the substantial enhancement of the barrier properties for both a thermoset epoxy polymer and a thermoplastic polyolefin by sandwiching a novel self-supported clay fabric film between thin polymer sheets. The success of this strategy is attributed to the high orientation of clay nanolayers in the paper-like clay fabric films and to the filling of the micro- or sub-micro sized voids between imperfectly tiled clay platelet edges by the polymer chains. Thermoplastic polyolefin-clay fabric film composites were fabricated by hot-pressing the clay films between two sheets of high density polyethylene (HDPE) films. The sandwiched composites exhibit more than a 30-fold decrease in O2 transmission rate with respect to the pure HDPE film. Impregnating the self-supported clay papers with epoxy pre-polymers successfully leads to thermoset composite films with more than 2-3 orders of magnitude reduction in O2 permeability in comparison to the pristine epoxy matrix. Owing to the promising use of synthetic Mg-saponite (denoted SAP) as epoxy polymer reinforcing agents, we investigated the cost-effective synthesis of SAP by replacing urea with sodium hydroxide as base source. Co-crystallization of new zeolite phases, such as garronite (denoted GIS) and cancrinite (denoted CAN), occurred along with SAP upon increasing the alkalinity of the reaction mixture. This finding represents the first example of the preparation of a CAN/SAP phase mixture. Moreover, pure-phase cancrinite with rod-like morphology up to several mum in length was synthesized under Mg-free conditions. Also, the Si/AI ratio within the synthesis gel has an influence on the chemical composition and textural properties of pure CAN crystals. Microporous cancrinite is a promising candidate for reinforcing epoxy polymers, considering that CAN represents a substantial fraction of the mixed CAN-SAP phase formed during the synthesis of saponite. Therefore, the reaction conditions (e

  5. Real-time measurement of size-resolved elemental composition ratio for flame synthesized composite nanoparticle aggregates using a tandem SMPS-ICP-OES

    PubMed Central

    Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim

    2017-01-01

    Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work. PMID:28435179

  6. Real-time measurement of size-resolved elemental composition ratio for flame synthesized composite nanoparticle aggregates using a tandem SMPS-ICP-OES.

    PubMed

    Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim

    2017-01-01

    Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work.

  7. Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film

    NASA Astrophysics Data System (ADS)

    He, Xin; Liu, A.'lei; Hu, Xuyang; Song, Mingxia; Duan, Feng; Lan, Qiuming; Xiao, Jundong; Liu, Junyan; Zhang, Mei; Chen, Yeqing; Zeng, Qingguang

    2016-11-01

    We fabricated a high-performance film heater based on a silver nanowire and polymethyl methacrylate (Ag NW-PMMA) composite film, which was synthesized with the assistance of mechanical lamination and an in situ transfer method. The films exhibit excellent conductivity, high figure of merit, and strong adhesion of percolation network to substrate. By controlling NW density, we prepared the films with a transmittance of 44.9-85.0% at 550 nm and a sheet resistance of 0.13-1.40 Ω sq-1. A stable temperature ranging from 130 °C-40 °C was generated at 3.0 V within 10-30 s, indicating that the resulting film heaters show a rapid thermal response, low driving voltage and stable temperature recoverability. Furthermore, we demonstrated the applications of the film heater in defrosting and a physical therapeutic instrument. A fast defrosting on the composite film with a transmittance of 88% was observed by applying a 9 V driving voltage for 20 s. Meanwhile, we developed a physical therapeutic instrument with two modes of thermotherapy and electronic-pulse massage by using the composite films as two electrodes, greatly decreasing the weight and power consumption compared to a traditional instrument. Therefore, Ag NW-PMMA film can be a promising candidate for diversified heating applications.

  8. Field Effect Transistors Based on Composite Films of Poly(4-vinylphenol) with ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boughias, Ouiza; Belkaid, Mohammed Said; Zirmi, Rachid; Trigaud, Thierry; Ratier, Bernard; Ayoub, Nouh

    2018-04-01

    In order to adjust the characteristic of pentacene thin film transistor, we modified the dielectric properties of the gate insulator, poly(4-vinylphenol), or PVP. PVP is an organic polymer with a low dielectric constant, limiting the performance of organic thin film transistors (OTFTs). To increase the dielectric constant of PVP, a controlled amount of ZnO nanoparticles was homogeneously dispersed in a dielectric layer. The effect of the concentration of ZnO on the relative permittivity of PVP was measured using impedance spectroscopy and it has been demonstrated that the permittivity increases from 3.6 to 5.5 with no percolation phenomenon even at a concentration of 50 vol.%. The performance of OTFTs in terms of charge carrier mobility, threshold voltage and linkage current was evaluated. The results indicate a dramatic increase in both the field effect mobility and the linkage current by a factor of 10. It has been demonstrated that the threshold voltage can be adjusted. It shifts from 8 to 0 when the volume concentration of ZnO varied from 0 vol.% to 50 vol.%.

  9. Tailoring plasmonic properties of metal nanoparticle-embedded dielectric thin films: the sandwich method of preparation

    NASA Astrophysics Data System (ADS)

    Laha, Ranjit; Malar, P.; Osipowicz, Thomas; Kasiviswanathan, S.

    2017-09-01

    Tailoring of plasmonic properties of metal nanoparticle-embedded dielectric thin films are very crucial for many thin film-based applications. We, herein, investigate the various ways of tuning the plasmonic positions of gold nanoparticles (AuNPs)-embedded indium oxide thin films (Au:IO) through a sequence-specific sandwich method. The sandwich method is a four-step process involving deposition of In2O3 film by magnetron sputtering in first and fourth steps, thermal evaporation of Au on to In2O3 film in second and annealing of Au/In2O3 film in the third step. The Au:IO films were characterized by x-ray diffraction, spectrophotometry and transmission electron microscopy. The size and shape of the embedded nanoparticles were found from Rutherford back-scattering spectrometry. Based on dynamic Maxwell Garnett theory, the observed plasmon resonance position was ascribed to the oblate shape of AuNPs formed in sandwich method. Finally, through experimental data, it was shown that the plasmon resonance position of Au:IO thin films can be tuned by 125 nm. The method shown here can be used to tune the plasmon resonance position over the entire range of visible region for the thin films made from other combinations of metal-dielectric pair.

  10. Studies on surface morphology and electrical conductivity of PEDOT:PSS thin films in presence of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhowal, Ashim Chandra; Kundu, Sarathi

    2018-04-01

    PEDOT:PSS is a water soluble conducting polymer consists of positively charged PEDOT and negatively charged PSS. However, this polymer suffers low conductivity problem which restrict its use. In this paper, electrical conductivity of PEDOT:PSS thin films is improved by using charged gold nanoparticles. The nanoparticles used are synthesized using lysozyme protein. The nanoparticles coated with lysozyme protein possess positive zeta potential. In the presence of gold nanoparticles due to electrostatic interaction between positively charged nanoparticles and negatively charged PSS chains, modification takes place in the surface morphology and electrical behaviors of PEDOT:PSS thin films. The changes in the polymer matrix conformations in the presence of nanoparticles are studied by Fourier transformed Infra-red (FTIR) spectroscopy, whereas the surface morphology of prepared thin films before and after interaction with nanoparticles is investigated through atomic force microscopy (AFM). Four probe method is used to measure the variation of electrical conductivity from I-V characteristics curves.

  11. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles

    PubMed Central

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-01-01

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus, Bacillus cereus, Escherichia coli, Bacillus atrophaeus, and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans. Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus. UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles. PMID:29670066

  12. The Effect of UV Aging on Antimicrobial and Mechanical Properties of PLA Films with Incorporated Zinc Oxide Nanoparticles.

    PubMed

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja; Landercy, Nicolas; Duquesne, Emmanuel

    2018-04-18

    The aim of this study was to examine the influence of accelerated UV-aging on the activity against chosen microorganisms and the mechanical properties of poly-lactic acid (PLA) films enhanced with ZnO nanoparticles. The pure PLA films and tri-layered PLAZnO1%/PLA/PLAZnO1% films of 150 µm thickness were extruded. The samples were treated with UV-A and Q-SUN irradiation. After irradiation the antimicrobial activity and mechanical properties of the films were analyzed. The results of the study demonstrated that PLA films did not inhibit the growth of Staphylococcus aureus , Bacillus cereus , Escherichia coli , Bacillus atrophaeus , and Candida albicans cells. PLA films with incorporated zinc oxide nanoparticles decreased the number of analyzed microorganisms. Accelerated UV aging had no negative effect on the activity of the film containing nano-ZnO against Gram-positive bacteria, but it influenced the activity against Gram-negative cells and C. albicans . Q-SUN irradiation decreased the antimicrobial effect of films with incorporated nanoparticles against B. cereus . UV-A and Q-UV irradiation did not influence the mechanical properties of PLA films containing incorporated ZnO nanoparticles.

  13. Enrichment and Viability Inhibition of Circulating Tumor Cells on a Dual Acid-Responsive Composite Nanofiber Film.

    PubMed

    Wang, Wenqian; Cheng, Yaya; Li, Yansheng; Zhou, Hao; Xu, Li-Ping; Wen, Yongqiang; Zhao, Liang; Zhang, Xueji

    2017-04-06

    The formation and metastatic colonization of circulating tumor cells (CTCs) are responsible for the vast majority of cancer-related deaths. Over the last decade, drug-delivery systems (DDSs) have rapidly developed with the emergence of nanotechnology; however, most reported tumor-targeting DDSs are able to deliver drugs only to solid tumor cells and not CTCs. Herein, a novel DDS comprising a composite nanofiber film was constructed to inhibit the viability of CTCs. In this system, gold nanoparticles (Au NPs) were functionalized with doxorubicin (DOX) through an acid-responsive cleavable linker to obtain Au-DOX NPs. Then, the Au-DOX NPs were mixed in a solution of an acid-responsive polymer {i.e., poly[2-(dimethylamino)ethyl methacrylate]} to synthesize the nanofiber film through electrospinning technology. After that, the nanofiber film was modified with a specific antibody (i.e., anti-EpCAM) to enrich the concentration of CTCs on the film. Finally, the Au-DOX NPs were released from the nanofiber film, and they consequently inhibited the viability of CTCs by delivering DOX to the enriched CTCs. This composite nanofiber film was able to decrease the viability of CTCs significantly in the suspended and fluid states, and it is expected to limit the migration and proliferation of tumor cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  15. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.

    PubMed

    Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra

    2014-12-01

    Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits.

  16. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    PubMed

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cryomilling for the fabrication of doxorubicin-containing silica-nanoparticle/polycaprolactone nanocomposite films

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Lim, Jing; Han, Yiyuan; Wang, Lifeng; Chong, Mark Seow Khoon; Teoh, Swee-Hin; Xu, Chenjie

    2016-01-01

    Bionanocomposites need to have a homogeneous distribution of nanomaterials in the polymeric matrix to achieve consistent mechanical and biological functions. However, a significant challenge lies in achieving the homogeneous distribution of nanomaterials, particularly through a solvent-free approach. This report introduces a technology to address this need. Specifically, cryomilling, a solvent-free, low-temperature processing method, was applied to generate a bionanocomposite film with well-dispersed nanoparticles. As a proof-of-concept, polycaprolactone (PCL) and doxorubicin-containing silica nanoparticles (Si-Dox) were processed through cryomilling and subsequently heat pressed to form the PCL/Si-Dox (cPCL/Si-Dox) film. Homogeneous distribution of Si-Dox was observed under both confocal imaging and atomic force microscopy imaging. The mechanical properties of cPCL/Si-Dox were comparable to those of the pure PCL film. Subsequent in vitro release profiles suggested that sustained release of Dox from the cPCL/Si-Dox film was achievable over 50 days. When human cervical cancer cells were seeded directly on these films, uptake of Dox was observed as early as day 1 and significant inhibition of cell growth was recorded on day 5.Bionanocomposites need to have a homogeneous distribution of nanomaterials in the polymeric matrix to achieve consistent mechanical and biological functions. However, a significant challenge lies in achieving the homogeneous distribution of nanomaterials, particularly through a solvent-free approach. This report introduces a technology to address this need. Specifically, cryomilling, a solvent-free, low-temperature processing method, was applied to generate a bionanocomposite film with well-dispersed nanoparticles. As a proof-of-concept, polycaprolactone (PCL) and doxorubicin-containing silica nanoparticles (Si-Dox) were processed through cryomilling and subsequently heat pressed to form the PCL/Si-Dox (cPCL/Si-Dox) film. Homogeneous

  18. Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix

    PubMed Central

    Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda

    2014-01-01

    Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593

  19. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    PubMed

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution

    PubMed Central

    Krull, Scott M.; Patel, Hardik V.; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N.

    2016-01-01

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6 months’ storage at 40 °C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6 months’ storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations. PMID:27402100

  1. TiO2-BASED Composite Films for the Photodegradation of Oxytetracycline

    NASA Astrophysics Data System (ADS)

    Li, Hui; Guan, Ling-Xiao; Feng, Ji-Jun; Li, Fang; Yao, Ming-Ming

    2015-02-01

    The spread of the antibiotic oxytetracycline (OTC) has been thought as a threat to the safety of drinking water. In this paper, the photocatalytic activity of the nanocrystalline Fe/Ca co-doped TiO2-SiO2 composite film for the degradation of OTC was studied. The films were characterized by field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), N2 adsorption/desorption isotherms, photoluminescence (PL) spectra, and UV-Vis diffraction reflectance absorption spectra (DRS). The FE-SEM results indicated that the Fe/Ca co-doped TiO2-SiO2 film was composed of smaller nanoparticles compared to pure TiO2 or TiO2-SiO2 film. The BET surface area results showed that the specific surface area of the pure TiO2, TiO2-SiO2 and Ca2+/Fe3+ co-doped TiO2-SiO2 is 118.3 m2g-1, 294.3 m2g-1 and 393.7 m2g-1, respectively. The DRS and PL spectra revealed that the Fe/Ca co-doped TiO2-SiO2 film had strong visible light adsorption and diminished electrons/holes recombination. Experimental results showed that the Fe/Ca co-doped TiO2-SiO2 film is effective in the degradation of OTC under both UV and visible light irradiation.

  2. Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho

    2014-08-18

    In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.

  3. Biosensors Based on Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  4. Study of electrostatically self-assembled thin films of CdS and ZnS nanoparticle semiconductors

    NASA Astrophysics Data System (ADS)

    Suryajaya

    In this work, CdS and ZnS semiconducting colloid nanoparticles coated with organic shell, containing either SO[3-] or NH[2+] groups, were deposited as thin films using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy and spectroscopic ellipsometry - for optical properties; atomic force microscopy (AFM) - for morphology study; mercury probe - for electrical characterisation; and photon counter - for electroluminescence study. UV-vis spectra show a substantial blue shift of the main absorption band of both CdS and ZnS, either in the form of solutions or films, with respect to the bulk materials. The calculation of nanoparticles' radii yields the value of about 1.8 nm for both CdS and ZnS.The fitting of standard ellipsometry data gave the thicknesses (d) of nanoparticle layers of around 5 nm for both CdS and ZnS which corresponds well to the size of particles evaluated from UV-vis spectral data if an additional thickness of the organic shell is taken into account. The values of refractive index (n) and extinction coefficient (k) obtained were about 2.28 and 0.7 at 633 nm wavelength, for both CdS and ZnS.Using total internal reflection (TIRE), the process of alternative deposition of poly-allylamine hydrochloride (PAH) and CdS (or ZnS) layers could be monitored in-situ. The dynamic scan shows that the adsorption kinetic of the first layer of PAH or nanoparticles was slower than that of the next layer. The fitting of TIRE spectra gavethicknesses of about 7 nm and 12 nm for CdS and ZnS, respectively. It supports the suggestion of the formation of three-dimensional aggregates of semiconductor nanoparticles intercalated with polyelectrolyte.AFM images show the formation of large aggregates of nanoparticles, about 40-50 nm, for the films deposited from original colloid solutions, while smaller aggregates, about 12-20 nm, were obtained if the colloid solutions were diluted.Current-voltage (I-V) and capacitance

  5. Nanoparticles Stabilize Thin Polymer Films: A Fundamental Study to Understand the Phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael E. Mackay

    2009-03-04

    A new understanding of thermodynamics at the nanoscale resulted in a recently discovered first order phase transition that nanoparticles in a polymer film will all segregate to the supporting substrate. This is an unusual phase transition that was predicted using a modeling technique developed at Sandia National Laboratories and required the equivalent of many computational years on one computer. This project is a collaboration between Prof. Michael Mackay's group and Dr. Amalie Frischknecht (Sandia National Laboratories) where experimental observation and theoretical rationalization and prediction are brought together. Other discoveries were that this phase transition could be avoided by changing themore » nanoparticle properties yielding control of the assembly process at the nanoscale. In fact, the nanoparticles could be made to assemble to the supporting substrate, to the air interface or not assemble at all within a thin polymer film of order 100 nm in thickness. However, when the assembly process is present it is so robust that it is possible to make rough liquid films at the nanoscale due to nanoparticles assembling around three-dimensional objects. From this knowledge we are able to design and manufacture new coatings with particular emphasis on polymer-based solar cells. Careful control of the morphology at the nanoscale is expected to provide more efficient devices since the physics of these systems is dictated at this length scale and assembly of nanoparticles to various interfaces is critical to operation.« less

  6. Soft Landing of Bare Nanoparticles with Controlled Size, Composition, and Morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Colby, Robert J.; Laskin, Julia

    2015-01-01

    A kinetically-limited physical synthesis method based on magnetron sputtering and gas aggregation has been coupled with size-selection and ion soft landing to prepare bare metal nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of bare nanoparticles soft landed onto flat glassy carbon and silicon as well as stepped graphite surfaces may be controlled through size-selection with a quadrupole mass filter and the length of deposition, respectively. The bare nanoparticles are observed with AFM to bind randomly to the flat glassymore » carbon surface when soft landed at relatively low coverage (1012 ions). In contrast, on stepped graphite surfaces at intermediate coverage (1013 ions) the soft landed nanoparticles are shown to bind preferentially along step edges forming extended linear chains of particles. At the highest coverage (5 x 1013 ions) examined in this study the nanoparticles are demonstrated with both AFM and SEM to form a continuous film on flat glassy carbon and silicon surfaces. On a graphite surface with defects, however, it is shown with SEM that the presence of localized surface imperfections results in agglomeration of nanoparticles onto these features and the formation of neighboring depletion zones that are devoid of particles. Employing high resolution scanning transmission electron microscopy in the high angular annular dark field imaging mode (STEM-HAADF) and electron energy loss spectroscopy (EELS) it is demonstrated that the magnetron sputtering/gas aggregation synthesis technique produces single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with clearly defined core-shell structure. Therefore, this kinetically-limited physical synthesis technique, when combined with ion soft landing, is a versatile complementary method for preparing a wide

  7. The improvement of characteristics of biodegradable films made from kefiran-whey protein by nanoparticle incorporation.

    PubMed

    Zolfi, Mohsen; Khodaiyan, Faramarz; Mousavi, Mohammad; Hashemi, Maryam

    2014-08-30

    Biodegradable kefiran-whey protein isolate (WPI) nanocomposites were produced using montmorillonite (MMT) and nano-TiO2 as nanoparticles in the percentage of 1, 3, and 5% (w/w) by a casting and solvent-evaporation method. Physical, mechanical, and water-vapor permeability (WVP) properties were determined as a function of nanoparticle concentration. The results revealed that the effect of these nanoparticles was different according to their nature and percentage. The films incorporated with 5% (w/w) MMT showed the highest tensile strength, Young's modulus, puncture strength, and the lowest WVP compared with the control and TiO2 added films. In contrast to MMT, addition of TiO2 nanoparticles due to the plasticizing effect led to a significant change in color and transparency of nanocomposite. Scanning electron microscopy (SEM) observations demonstrated the films' properties in relation to their microstructures. The surface topography results also showed a considerable increase in roughness parameters by incorporating the nanoparticles in kefiran-WPI matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    PubMed

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    Detsri, Ekarat; Rujipornsakul, Sirilak; Treetasayoot, Tanapong; Siriwattanamethanon, Pawarit

    2016-10-01

    In the present study, multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and glutathione (GSH) were used to fabricate multilayer nanoscale thin films. The composite thin films were fabricated by layer-by-layer technique as the films were constructed by the alternate deposition of cationic and anionic polyelectrolytes. The MWCNTs were modified via a noncovalent surface modification method using poly(diallydimethylammonium chloride) to form a cationic polyelectrolyte. An anionic polyelectrolyte was prepared by the chemical reduction of HAuCl4 using sodium citrate as both the stabilizing and reducing agent to form anionic AuNPs. GSH was used as an electrocatalyst toward the electro-oxidation of dopamine. The constructed composite electrode exhibits excellent electrocatalytic activity toward dopamine with a short response time and a wide linear range from 1 to 100 μmol/L. The limits of detection and quantitation of dopamine are (0.316 ± 0.081) μmol/L and (1.054 ± 0.081) μmol/L, respectively. The method is satisfactorily applied for the determination of dopamine in plasma and urine samples to obtain the recovery in the range from 97.90% to 105.00%.

  10. PECASE: Multi-Spectral Photon Detection in Polymer/Nanoparticle Composites-Toward IR Photodectors and Solar Cells Applicable to Unmanned Vehicles

    DTIC Science & Technology

    2016-03-31

    in Polymer/Nanoparticle Composites-Toward IR Photodectors and Solar Cells Applicable to Sb. GRANT NUMBER Unmanned Vehicles N00014-1 0-1-0481 Sc...photodetectors and solar cells deposited by RIR-MAPLE, and developing a simulation tool for optoelectronic device performance that accounts for RIR...MAPLE film properties. 1S. SUBJECT TERMS Hybrid nanocomposites, MAPLE, RIR-MAPLE, intraband absorption, mid-IR photodetectors, organic solar cells

  11. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.

    PubMed

    Wu, Qiong; Xu, Yuxi; Yao, Zhiyi; Liu, Anran; Shi, Gaoquan

    2010-04-27

    Composite films of chemically converted graphene (CCG) and polyaniline nanofibers (PANI-NFs) were prepared by vacuum filtration the mixed dispersions of both components. The composite film has a layered structure, and PANI-NFs are sandwiched between CCG layers. Furthermore, it is mechanically stable and has a high flexibility; thus, it can be bent into large angles or be shaped into various desired structures. The conductivity of the composite film containing 44% CCG (5.5 x 10(2) S m(-1)) is about 10 times that of a PANI-NF film. Supercapacitor devices based on this conductive flexible composite film showed large electrochemical capacitance (210 F g(-1)) at a discharge rate of 0.3 A g(-1). They also exhibited greatly improved electrochemical stability and rate performances.

  12. Compositional disorder and its effect on the thermoelectric performance of Zn₃P₂ nanowire-copper nanoparticle composites.

    PubMed

    Brockway, Lance; Vasiraju, Venkata; Vaddiraju, Sreeram

    2014-03-28

    Recent studies indicated that nanowire format of materials is ideal for enhancing the thermoelectric performance of materials. Most of these studies were performed using individual nanowires as the test elements. It is not currently clear whether bulk assemblies of nanowires replicate this enhanced thermoelectric performance of individual nanowires. Therefore, it is imperative to understand whether enhanced thermoelectric performance exhibited by individual nanowires can be extended to bulk assemblies of nanowires. It is also imperative to know whether the addition of metal nanoparticle to semiconductor nanowires can be employed for enhancing their thermoelectric performance further. Specifically, it is important to understand the effect of microstructure and composition on the thermoelectric performance on bulk compound semiconductor nanowire-metal nanoparticle composites. In this study, bulk composites composed of mixtures of copper nanoparticles with either unfunctionalized or 1,4-benzenedithiol (BDT) functionalized Zn₃P₂ nanowires were fabricated and analyzed for their thermoelectric performance. The results indicated that use of BDT functionalized nanowires for the fabrication of composites leads to interface-engineered composites that have uniform composition all across their cross-section. The interface engineering allows for increasing their Seebeck coefficients and electrical conductivities, relative to the Zn₃P₂ nanowire pellets. In contrast, the use of unfunctionalized Zn₃P₂ nanowires for the fabrication of composite leads to the formation of composites that are non-uniform in composition across their cross-section. Ultimately, the composites were found to have Zn₃P₂ nanowires interspersed with metal alloy nanoparticles. Such non-uniform composites exhibited very high electrical conductivities, but slightly lower Seebeck coefficients, relative to Zn₃P₂ nanowire pellets. These composites were found to show a very high zT of 0.23 at 770

  13. Phase stability and dynamics of entangled polymer-nanoparticle composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales,more » where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.« less

  14. Fibers based on polyethylene with silicon and silicon carbide nanoparticles

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Krutikova, A. A.; Kovaleva, A. N.; Rychagov, O. V.; Ischenko, A. A.

    2017-12-01

    In the paper, fibrous materials based on polyethylene with nanosized silicon and silicon carbide obtained by the plasma chemical method have been obtained. The concentration of nanosilicon nanoparticles was 0.1-1.5%. Fibers absorb UV radiation in the range 200-400 nm. The size of silicon nanoparticles and dispersion in fibers are estimated by X-ray diffraction. It is shown that silicon nanoparticles exert no effect on the formation of the internal structure of the PE matrix. The degree of crystallinity, melting and crystallization temperatures remain constant. The surface properties of films are investigated by triboelectric methods and by determining the wetting angle. The surface properties of composite films do not differ from the properties of PE films with the concentration of nanoparticles from 0.1 to 1.0%. At a 1.5% content of n-SiC, the microrelief of the surface changes, and the friction coefficient of the films increases. The resulting films are recommended for application as a UV protective coating.

  15. Interaction of Se{sup 0} nanoparticles stabilized by poly(vinylpyrrolidone) with gel films of cellulose Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baklagina, Yu. G.; Khripunov, A. K.; Tkachenko, A. A.

    2006-07-15

    The sorption and desorption of poly(vinylpyrrolidone)-Se{sup 0} (PVP-Se{sup 0}) nanoparticles on gel films of cellulose Acetobacter xylinum (CAX) are investigated. It is revealed that the hydrodynamic radius R{sub h} of PVP-Se{sup 0} nanoparticles decreases from 57 nm in the initial solution (without CAX gel films) to 25 nm after the sorption of nanostructures on gel films and then increases to approximately 100 nm after the desorption of nanoparticles with water from dry samples of the CAX gel film-PVP-Se{sup 0} nanocomposite. It is found that selenium atoms do not penetrate into crystallites of the cellulose nanofibrils and replace water molecules sorbedmore » by the primary hydroxyl groups of their walls. Poly(vinylpyrrolidone)-Se{sup 0} nanoclusters differ in the number and size upon their sorption inside the cellulose gel film and on the film surface.« less

  16. Graphene-silica composite thin films as transparent conductors.

    PubMed

    Watcharotone, Supinda; Dikin, Dmitriy A; Stankovich, Sasha; Piner, Richard; Jung, Inhwa; Dommett, Geoffrey H B; Evmenenko, Guennadi; Wu, Shang-En; Chen, Shu-Fang; Liu, Chuan-Pu; Nguyen, SonBinh T; Ruoff, Rodney S

    2007-07-01

    Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiOx/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.

  17. Graphene-silica Composite Thin Films as Transparent Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watcharotone,S.; Dikin, D.; Stankovich, S.

    2007-01-01

    Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiO{sub x}/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.

  18. Direct bandgap materials based on the thin films of SexTe100 − x nanoparticles

    PubMed Central

    2012-01-01

    In this study, we fabricated thin films of SexTe100 − x (x = 0, 3, 6, 9, 12, and 24) nanoparticles using thermal evaporation technique. The results obtained by X-ray diffraction show that the as-synthesized nanoparticles have polycrystalline structure, but their crystallinity decreases by increasing the concentration of Se. They were found to have direct bandgap (Eg), whose value increases by increasing the Se content. These results are completely different than those obtained in the films of SexTe100 − x microstructure counterparts. Photoluminescence and Raman spectra for these films were also demonstrated. The remarkable results obtained in these nanoparticles specially their controlled direct bandgap might be useful for the development of optical disks and other semiconductor devices. PMID:22978714

  19. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  20. Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films

    NASA Astrophysics Data System (ADS)

    Yalçınkaya, Süleyman; Çakmak, Didem

    2017-05-01

    In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.

  1. Wavelength specific excitation of gold nanoparticle thin-films

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.

    2014-01-01

    Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.

  2. Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study.

    PubMed

    Della Gaspera, Enrico; Karg, Matthias; Baldauf, Julia; Jasieniak, Jacek; Maggioni, Gianluigi; Martucci, Alessandro

    2011-11-15

    In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.

  3. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng

    2018-03-01

    High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.

  4. The Possibility of Using Composite Nanoparticles in High Energy Materials

    NASA Astrophysics Data System (ADS)

    Komarova, M. V.; Vorozhtsov, A. B.; Wakutin, A. G.

    2017-01-01

    The effect of nanopowders on the burning rate varying with the metal content in mixtures of different high energy composition is investigated. Experiments were performed on compositions based on an active tetrazol binder and electroexplosive nanoaluminum with addition of copper, nickel, or iron nanopowders, and of Al-Ni, Al-Cu, or Al-Fe composite nanoparticles produced by electrical explosion of heterogeneous metal wires. The results obtained from thermogravimetric analysis of model metal-based compositions are presented. The advantages of the composite nanoparticles and the possibility of using them in high energy materials are discussed.

  5. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    PubMed

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  6. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    PubMed Central

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul

    2016-01-01

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738

  7. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    PubMed

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  8. Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films.

    PubMed

    Liu, Yang-Yi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong

    2018-05-22

    Bio-inspired mineralization is an effective way for fabricating complex inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as biomacromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe 3 O 4 nanoparticles to produce magnetic ACC/Fe 3 O 4 hybrid nanosheets that can be used to construct ACC/Fe 3 O 4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged TeNWs as biomacromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for the fabrication of biomimetic composite films.

  9. Characterisation of corn starch-based films reinforced with taro starch nanoparticles.

    PubMed

    Dai, Lei; Qiu, Chao; Xiong, Liu; Sun, Qingjie

    2015-05-01

    Taro starch nanoparticles (TSNPs) obtained by hydrolysis with pullulanase and the recrystallisation of gelatinised starch were used as reinforcing agents in corn starch films. The influence of TSNPs contents (0.5-15%) on the physical, mechanical, thermal, and structural properties of starch films was investigated. An increase in the concentration of TSNPs led to a significant decrease in the water vapour permeability (WVP) of films. The addition of TSNPs increased the tensile strength (TS) of films from 1.11 MPa to 2.87 MPa. Compared with pure starch films, the surfaces of nanocomposite films became uneven. The onset temperature (To) and melting temperature (Tm) of films containing TSNPs were higher than those of pure starch films. The addition of TSNPs improved the thermal stability of starch films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.

    PubMed

    Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2014-04-23

    The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.

  11. Electronic structure of cyclodextrin–carbon nanotube composite films

    DOE PAGES

    Jeong, Hae Kyung; Echeverria, Elena; Chakraborti, Priyanka; ...

    2017-02-10

    The electronic structures of two kinds of cyclodextrin–carbon nanotube (αCD–CNT and γCD–CNT) composite films are investigated by using (angular dependent) photoelectron spectroscopy to gain insight as to why the αCD–CNT and γCD–CNT composite films show different performances in biosensor applications. The γCD–CNT composite film is likely to have the CD localized on the surface rather than in the bulk of the film, while αCD–CNT has CD relatively more concentrated within the bulk of selvedge region of the film, rather than the surface. The results indicate that the CD, of the γCD–CNT composite, may be more bioactive, and possibly a bettermore » sensor of biomolecules due to the favorable surface position compared with that of αCD–CNT. The valence band of αCD–CNT and γCD–CNT show little difference from the CNT film except for a density of states, originating from CD, evident at a binding energy near 27 eV below Fermi level, meaning that there are few or no redox interactions between the CD and the CNT. The absence of a redox interaction between the CD and the CNT permits a clear electrochemical response to occur when guest biomolecules are captured on the composites, providing a route to biosensor applications.« less

  12. Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles.

    PubMed

    Dong, Hong; Snyder, James F; Tran, Dat T; Leadore, Julia L

    2013-06-20

    In this work, we describe hydrogels, aerogels and films of nanofibrillated cellulose (NFC) functionalized with metal nanoparticles using silver as an example. The TEMPO process used to produce NFC generates negatively charged surface carboxylate groups that provide high binding capability to transition metal species such as Ag(+). The gelation of NFC triggered by transition monovalent metal ions was revealed for the first time. The interaction was utilized to bind Ag(+) on the NFC surface and simultaneously induce formation of NFC-Ag(+) hydrogels, where Ag(+) was slowly reduced to Ag nanoparticles by hydroxyl groups on NFC without additional reducing agent. The NFC-Ag(+) hydrogel was initiated by strong association of carboxylate groups on NFC with Ag(+) and sufficient NFC surface charge reduction. The stiff hydrogel has a storage modulus leveled off at a plateau value of ~6800Pa. Porous aerogels and flat thin films comprising a continuous matrix of NFC were decorated with Ag nanoparticles through freeze-drying or solution-casting of NFC-Ag(+) dispersions with low contents of Ag(+), respectively, followed by UV reduction. The presence of Ag species on NFC reduced coalescence of nanofibrils in the film formation as revealed from AFM phase images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    PubMed Central

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039

  14. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    PubMed

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  15. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films.

    PubMed

    Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-05-01

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 ± 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing. © The Royal Society of Chemistry 2011

  16. Nanoparticle Encapsulation in Diblock Copolymer/Homopolymer Blend Thin Film Mixtures

    NASA Astrophysics Data System (ADS)

    Zhao, Junnan; Chen, Xi; Green, Peter

    2014-03-01

    We investigated the organization of low concentrations of poly (2-vinylpyridine) (P2VP) grafted gold nanoparticles within a diblock copolymer polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP)/homopolymer polystyrene (PS) blend thin film. The PS-b-P2VP copolymers formed micelles, composed of inner cores of P2VP block and outer coronae of PS blocks, throughout the homopolymer PS. All nanoparticles were encapsulated within micelle cores and each micelle contained one or no nanoparticle, on average. When the host PS chains are much longer than corona chains, micelles tended to self-organize at the interfaces. Otherwise, they were dispersed throughout the PS host. In comparison to the neat PS-b-P2VP/PS blend, the nanoparticles/PS-b-P2VP/PS system had a higher density of smaller micelles, influenced largely by the number of nanoparticles in the system. The behavior of this system is understood in terms of the maximization of the nanoparticle/micelle core interactions and of the translational entropies of the micelles and the nanoparticles.

  17. Low Loss Polymer Nanoparticle Composites for RF Applications

    DTIC Science & Technology

    2014-09-17

    size of nanoparticles below a critical dimension ( skin depth).6 It is possible to increase the skin depth of the hybrid material by decreasing the...filled with elastomers,[10-12] polymer-nanoparticle composites,[13, 14] liquid metal filled microfluidic channels,[4, 15] conductive networks on pre

  18. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    DTIC Science & Technology

    2015-12-18

    silver nanoparticles and elastomeric fibres. Nat Nanotechnol...Conductors Based on Block Copolymer Silver Nanoparticle Composites. Acs Nano 2015, 9 (1), 336-344. 2. (a) Yang, T. I.; Brown, R. N. C.; Kempel, L. C...Brown, R. N. C.; CKempel, L.; Kofinas, P., Controlled synthesis of core-shell iron-silica nanoparticles and their magneto-dielectric properties

  19. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications

    PubMed Central

    Hanemann, Thomas; Szabó, Dorothée Vinga

    2010-01-01

    The addition of inorganic spherical nanoparticles to polymers allows the modification of the polymers physical properties as well as the implementation of new features in the polymer matrix. This review article covers considerations on special features of inorganic nanoparticles, the most important synthesis methods for ceramic nanoparticles and nanocomposites, nanoparticle surface modification, and composite formation, including drawbacks. Classical nanocomposite properties, as thermomechanical, dielectric, conductive, magnetic, as well as optical properties, will be summarized. Finally, typical existing and potential applications will be shown with the focus on new and innovative applications, like in energy storage systems.

  20. Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce

    Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less

  1. Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly

    DOE PAGES

    Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce; ...

    2017-09-25

    Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less

  2. Antibacterial effect of composite resins containing quaternary ammonium polyethyleneimine nanoparticles

    NASA Astrophysics Data System (ADS)

    Yudovin-Farber, Ira; Beyth, Nurit; Weiss, Ervin I.; Domb, Abraham J.

    2010-02-01

    Quaternary ammonium polyethyleneimine (QA-PEI)-based nanoparticles were synthesized by crosslinking with dibromopentane followed by N-alkylation with various alkyl halides and further N-methylation with methyl iodide. Insoluble pyridinium-type particles were prepared by suspension polymerization of 4-vinyl pyridine followed by N-alkylation with alkyl halides. Polyamine-based nanoparticles embedded in restorative composite resin at 1% w/w were tested for antibacterial activity against Streptococcus mutans using direct contact test. Activity analysis revealed that the alkyl chain length of the QA-PEI nanoparticles plays a significant role in antibacterial activity of the reagent. The most potent compound was octyl-alkylated QA-PEI embedded in restorative composite resin at 1% w/w that totally inhibited S. mutans growth in 3-month-aged samples. This data indicates that restorative composite resin with antibacterial properties can be produced by the incorporation of QA-PEI nanoparticles.

  3. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier

    2013-10-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.

  4. Nanoparticles with tunable shape and composition fabricated by nanoimprint lithography.

    PubMed

    Alayo, Nerea; Conde-Rubio, Ana; Bausells, Joan; Borrisé, Xavier; Labarta, Amilcar; Batlle, Xavier; Pérez-Murano, Francesc

    2015-11-06

    Cone-like and empty cup-shaped nanoparticles of noble metals have been demonstrated to provide extraordinary optical properties for use as optical nanoanntenas or nanoresonators. However, their large-scale production is difficult via standard nanofabrication methods. We present a fabrication approach to achieve arrays of nanoparticles with tunable shape and composition by a combination of nanoimprint lithography, hard-mask definition and various forms of metal deposition. In particular, we have obtained arrays of empty cup-shaped Au nanoparticles showing an optical response with distinguishable features associated with the excitations of localized surface plasmons. Finally, this route avoids the most common drawbacks found in the fabrication of nanoparticles by conventional top-down methods, such as aspect ratio limitation, blurring, and low throughput, and it can be used to fabricate nanoparticles with heterogeneous composition.

  5. Conjugated polymer-titania nanoparticle hybrid films: random lasing action and ultrasensitive detection of explosive vapors.

    PubMed

    Deng, Changmin; He, Qingguo; He, Chao; Shi, Liqi; Cheng, Jiangong; Lin, Tong

    2010-04-08

    We have first demonstrated that a random laser action generated by a hybrid film composed of a semiconducting organic polymer (SOP) and TiO(2) nanoparticles can be used to detect 2,4,6-trinitrotoluene (TNT) vapors. The hybrid film was fabricated by spin-casting SOP solution dispersed with nanosized TiO(2) particles on quartz glass. The SOP in the hybrid film functioned as both the gain medium and the sensory transducer. A random lasing action was observed with a certain pump power when the size (diameter of 50 nm) and concentration (8.9 x 10(12)/cm(3)) of TiO(2) nanoparticles were optimized. Measurements of fluorescence quenching behavior of the hybrid film in TNT vapor atmosphere (10 ppb) showed that attenuated lasing in optically pumped hybrid film displayed a sensitivity to vapors of explosives more than 20 times higher than was observed from spontaneous emission. This phenomenon has been explained with the four-level laser model. Since the sensory transducer used in the hybrid polymer/nanoparticles system could be replaced by other functional materials, the concept developed could be extended to more general domains of chemical or environment detection.

  6. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Jiang, Yunhong; O'Neill, Alex J.; Ding, Yulong

    2015-04-01

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive ( Staphylococcus aureus) and Gram-negative ( Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  7. Roll to Roll Electric Field "Z" Alignment of Nanoparticles from Polymer Solutions for Manufacturing Multifunctional Capacitor Films.

    PubMed

    Guo, Yuanhao; Batra, Saurabh; Chen, Yuwei; Wang, Enmin; Cakmak, Miko

    2016-07-20

    A roll to roll continuous processing method is developed for vertical alignment ("Z" alignment) of barium titanate (BaTiO3) nanoparticle columns in polystyrene (PS)/toluene solutions. This is accomplished by applying an electric field to a two-layer solution film cast on a carrier: one is the top sacrificial layer contacting the electrode and the second is the polymer solution dispersed with BaTiO3 particles. Flexible Teflon coated mesh is utilized as the top electrode that allows the evaporation of solvent through the openings. The kinetics of particle alignment and chain buckling is studied by the custom-built instrument measuring the real time optical light transmission during electric field application and drying steps. The nanoparticles dispersed in the composite bottom layer form chains due to dipole-dipole interaction under an applied electric field. In relatively weak electric fields, the particle chain axis tilts away from electric field direction due to bending caused by the shrinkage of the film during drying. The use of strong electric fields leads to maintenance of alignment of particle chains parallel to the electric field direction overcoming the compression effect. At the end of the process, the surface features of the top porous electrodes are imprinted at the top of the top sacrificial layer. By removing this layer a smooth surface film is obtained. The nanocomposite films with "Z" direction alignment of BaTiO3 particles show substantially increased dielectric permittivity in the thickness direction for enhancing the performance of capacitors.

  8. Enhanced Fluorescence Properties of Carbon Dots in Polymer Films

    PubMed Central

    Liu, Yamin; Wang, Ping; Shiral Fernando, K. A.; LeCroy, Gregory E.; Maimaiti, Halidan; Harruff-Miller, Barbara A.; Lewis, William K.; Bunker, Christopher E.; Hou, Zhi-Ling; Sun, Ya-Ping

    2016-01-01

    Carbon dots of small carbon nanoparticles surface-functionalized with 2,2′-(ethylenedioxy)bis(ethylamine) (EDA) were synthesized, and the as-synthesized sample was separated on an aqueous gel column to obtain fractions of the EDA-carbon dots with different fluorescence quantum yields. As already discussed in the literature, the variations in fluorescence performance among the fractions were attributed to the different levels and/or effectiveness of the surface functionalization-passivation in the carbon dots. These fractions, as well as carbon nanoparticles without any deliberate surface functionalization, were dispersed into poly(vinyl alcohol) (PVA) for composite films. In the PVA film matrix, the carbon dots and nanoparticles exhibited much enhanced fluorescence emissions in comparison with their corresponding aqueous solutions. The increased fluorescence quantum yields in the films were determined quantitatively by using a specifically designed and constructed film sample holder in the emission spectrometer. The observed fluorescence decays of the EDA-carbon dots in film and in solution were essentially the same, suggesting that the significant enhancement in fluorescence quantum yields from solution to film is static in nature. Mechanistic implications of the results, including a rationalization in terms of the compression effect on the surface passivation layer (similar to a soft corona) in carbon dots when embedded in the more restrictive film environment resulting in more favorable radiative recombinations of the carbon particle surface-trapped electrons and holes, and also potential technological applications of the brightly fluorescent composite films are highlighted and discussed. PMID:28133537

  9. Polyethylene-Carbon Nanotube Composite Film Deposited by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Ata, Nobuhisa; Ohtake, Naoto; Akasaka, Hiroki

    2017-10-01

    Carbon nanotubes (CNTs) are high-performance materials because of their superior electrical conductivity, thermal conductivity, and self-lubrication, and they have been studied for application to polymer composite materials as fillers. However, the methods of fabricating polymer composites with CNTs, such as injection molding, are too complicated for industrial applications. We propose a simple cold spray (CS) technique to obtain a polymer composite of polyethylene (PE) and CNTs. The composite films were deposited by CS on polypropylene and nano-porous structured aluminum substrates. The maximum thickness of the composite film was approximately 1 mm. Peaks at G and D bands were observed in the Raman spectra of the films. Scanning electron microscopy images of the film surface revealed that PE particles were melted by the acceleration gas and CNTs were attached with melted PE. The PE particles solidified after contact with the substrate. These results indicate that PE-CNT composite films were successfully deposited on polypropylene and nano-porous structured aluminum substrates by CS.

  10. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    PubMed

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    NASA Astrophysics Data System (ADS)

    Singh, Amit; Chaudhari, Minakshi; Sastry, Murali

    2006-05-01

    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform.

  12. Preparation and biocompatibility of a chitin nanofiber/gelatin composite film.

    PubMed

    Ogawa, Yoko; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Ochi, Kosuke; Osaki, Tomohiro; Ito, Norihiko; Okamoto, Yoshiharu; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2017-11-01

    The development of chitin-based materials with favorable mechanical properties and biocompatibility is an important research goal owing to the wide-ranging practical applications. In this study, a composite film was prepared using chitin nanofibers and gelatin. The CNF/gelatin composite film was highly viscous and had a fine nanofiber structure. The transmittances indicated high transparency, regardless of nanofiber content. The water content of the CNF/gelatin composite film increased linearly as the gelatin content increased. Although the CNF/gelatin composite film did not induce severe inflammation, it strongly induced fibroblast proliferation, indicating high biocompatibility. Based on these results, the films are suitable for biological applications, e.g., tissue engineering, medicines, and cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Resonant infrared matrix-assisted pulsed laser evaporation of TiO2 nanoparticle films

    NASA Astrophysics Data System (ADS)

    Mayo, Daniel C.; Paul, Omari; Airuoyo, Idemudia J.; Pan, Zhengda; Schriver, Kenneth E.; Avanesyan, Sergey M.; Park, Hee K.; Mu, Richard R.; Haglund, Richard F.

    2013-03-01

    The successful development of flexible, high performance thin films that are competitive with silicon-based technology will likely require fabricating films of hybrid materials that incorporate nanomaterials, glasses, ceramics, polymers, and thin films. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is an ideal method for depositing organic materials and nanoparticles with minimal photochemical or photothermal damage to the deposited material. Furthermore, there are many nonhazardous solvents containing chemical functional groups with infrared absorption bands that are accessible using IR lasers. We report here results of recent work in which RIR-MAPLE has been employed successfully to deposit thin films of TiO2 nanoparticles on Si substrates. Using an Er:YAG laser ( λ=2.94 μm), we investigated a variety of MAPLE matrices containing -OH moieties, including water and all four isomers of butyl alcohol. The alcohol isomers are shown to provide effective and relatively nontoxic solvents for use in the RIR-MAPLE process. In addition, we examine the effects of varying concentration and laser fluence on film roughness and surface coverage.

  14. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Peterson, G.P. (Bud) (Inventor); Hong, Haiping (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  15. High-density arrays of titania nanoparticles using monolayer micellar films of diblock copolymers as templates.

    PubMed

    Li, Xue; Lau, King Hang Aaron; Kim, Dong Ha; Knoll, Wolfgang

    2005-05-24

    Highly dense arrays of titania nanoparticles were fabricated using surface micellar films of poly(styrene-block-2-vinylpyridine) diblock copolymers (PS-b-P2VP) as reaction scaffolds. Titania could be introduced selectively within P2VP nanodomains in PS-b-P2VP films through the binary reaction between water molecules trapped in the P2VP domains and the TiCl(4) vapor precursors. Subsequent UV exposure or oxygen plasma treatment removed the organic matrix, leading to titania nanoparticle arrays on the substrate surface. The diameter of the titania domains and the interparticle distance were defined by the lateral scale present in the microphase-separated morphology of the initial PS-b-P2VP films. The typical diameter of titania nanoparticles obtained by oxygen plasma treatment was of the order of approximately 23 nm. Photoluminescence (PL) properties were investigated for films before and after plasma treatment. Both samples showed PL properties with major physical origin due to self-trapped excitons, indicating that the local environment of the titanium atoms is similar.

  16. Development of chitosan-pullulan composite nanoparticles for nasal delivery of vaccines: in vivo studies.

    PubMed

    Cevher, Erdal; Salomon, Stefan K; Somavarapu, Satyanarayana; Brocchini, Steve; Alpar, H Oya

    2015-01-01

    Here, we aimed at developing chitosan/pullulan composite nanoparticles and testing their potential as novel systems for the nasal delivery of diphtheria toxoid (DT). All the chitosan derivatives [N-trimethyl (TMC), chloride and glutamate] and carboxymethyl pullulan (CMP) were synthesised and antigen-loaded composites were prepared by polyion complexation of chitosan and pullulan derivatives (particle size: 239-405 nm; surface charge: +18 and +27 mV). Their immunological effects after intranasal administration to mice were compared to intramuscular route. Composite nanoparticles induced higher levels of IgG responses than particles formed with chitosan derivative and antigen. Nasally administered TMC-pullulan composites showed higher DT serum IgG titre when compared with the other composites. Co-encapsulation of CpG ODN within TMC-CMP-DT nanoparticles resulted in a balanced Th1/Th2 response. TMC/pullulan composite nanoparticles also induced highest cytokine levels compared to those of chitosan salts. These findings demonstrated that TMC-CMP-DT composite nanoparticles are promising delivery system for nasal vaccination.

  17. Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films.

    PubMed

    Eita, Mohamed; Arwin, Hans; Granberg, Hjalmar; Wågberg, Lars

    2011-11-15

    Over the last decade, the use of nanocellulose in advanced technological applications has been promoted both due the excellent properties of this material in combination with its renewability. In this study, multilayered thin films composed of nanofibrillated cellulose (NFC), polyvinyl amine (PVAm) and silica nanoparticles were fabricated on polydimethylsiloxane (PDMS) using a layer-by-layer adsorption technique. The multilayer build-up was followed in situ by quartz crystal microbalance with dissipation, which indicated that the PVAm-SiO(2)-PVAm-NFC system adsorbs twice as much wet mass material compared to the PVAm-NFC system for the same number of bilayers. This is accompanied with a higher viscoelasticity for the PVAm-SiO(2)-PVAm-NFC system. Ellipsometry indicated a dry-state thickness of 2.2 and 3.4 nm per bilayer for the PVAm-NFC system and the PVAm-SiO(2)-PVAm-NFC system, respectively. Atomic force microscopy height images indicate that in both systems, a porous network structure is achieved. Young's modulus of these thin films was determined by the Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) technique. The Young's modulus of the PVAm/NFC films was doubled, from 1 to 2 GPa, upon incorporation of silica nanoparticles in the films. The introduction of the silica nanoparticles lowered the refractive index of the films, most probably due to an increased porosity of the films. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Magnetically encoded luminescent composite nanoparticles through layer-by-layer self-assembly.

    PubMed

    Song, Erqun; Han, Weiye; Xu, Hongyan; Jiang, Yunfei; Cheng, Dan; Song, Yang; Swihart, Mark T

    2014-11-03

    Sensitive and rapid detection of multiple analytes and the collection of components from complex samples are important in fields ranging from bioassays/chemical assays, clinical diagnosis, to environmental monitoring. A convenient strategy for creating magnetically encoded luminescent CdTe@SiO2 @n Fe3 O4 composite nanoparticles, by using a layer-by-layer self-assembly approach based on electrostatic interactions, is described. Silica-coated CdTe quantum dots (CdTe@SiO2 ) serve as core templates for the deposition of alternating layers of Fe3 O4 magnetic nanoparticles and poly(dimethyldiallyl ammonium chloride), to construct CdTe@SiO2 @n Fe3 O4 (n=1, 2, 3, …︁) composite nanoparticles with a defined number (n) of Fe3 O4 layers. Composite nanoparticles were characterized by zeta-potential analysis, fluorescence spectroscopy, vibrating sample magnetometry, and transmission electron microscopy, which showed that the CdTe@SiO2 @n Fe3 O4 composite nanoparticles exhibited excellent luminescence properties coupled with well-defined magnetic responses. To demonstrate the utility of these magnetically encoded nanoparticles for near-simultaneous detection and separation of multiple components from complex samples, three different fluorescently labeled IgG proteins, as model targets, were identified and collected from a mixture by using the CdTe@SiO2 @n Fe3 O4 nanoparticles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization

    PubMed Central

    Huang, Jun; Liu, Cheng; Xiao, Haiyan; Wang, Juntao; Jiang, Desheng; GU, Erdan

    2007-01-01

    Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composites were prepared by organic-inorganic complex technology and characterized. It has been proved that the ZnTAPc dispersed randomly onto the surface of Fe3O4 nanoparticles to form molecular dispersion layer and there was a relatively strong bond between central zinc cation and oxygen. The nanoparticle composite took the shape of roundish spheres with the mean diameter of about 15 nm. Active amino groups of magnetic carriers could be used to bind laccase via glutaraldehyde. The optimal pH for the activity of the immobilized laccases and free laccase were the same at pH 3.0 and the optimal temperature for laccase immobilization on ZnTAPc-Fe3O4 nanoparticle composite was 45°. The immobilization yields and Km value of the laccase immobilized on ZnTAPc-Fe3O4 nanoparticle composite were 25% and 20.1 μM, respectively. This kind of immobilized laccase has good thermal, storage and operation stability, and could be used as the sensing biocomponent for the fiber optic biosensor based on enzyme catalysis. PMID:18203444

  20. AZO films with Al nano-particles to improve the light extraction efficiency of GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chou, Ying-Hung; Yan, Jheng-Tai; Lee, Hsin-Ying; Lee, Ching-Ting

    2008-02-01

    The co-sputtering Al-doped ZnO (AZO) films with Al nano-particles were used to increase the extraction efficiency of GaN-based light-emitting diodes (LEDs). Fixing the ZnO radio frequency (RF) power of 100W and changing the Al DC power from 0 to 13W, the AZO films with various Al contents can be obtained. In the experimental results, the AZO films deposited with Al DC power of 0, 4.5 and 7W do not have Al segregation. However, the segregated Al nano-particles can be found in the AZO films deposited by Al DC power of 10W and 13W. The co-sputtering 170 nm-thick AZO films with and without Al nano-particles were deposited on the transparent area of LEDs and compared the light output intensity of conventional LEDs. The light intensity of LEDs with AZO films with Al DC power 0, 4.5 and 7W increased 10% than that of conventional LEDs. This was due to the AZO film played a role of anti-reflection coating (ARC) layer. The light intensity of LEDs with AZO film deposited using Al DC power of 10W and 13W increased about 35% and 30%, respectively. It can be deduced that the output light is scattered by the Al nano-particles existed in the AZO film.

  1. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    PubMed Central

    2013-01-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227

  2. Controlled Growth of Carbon Nanotubes on Micropatterned Au/Cr Composite Film and Field Emission from Their Arrays

    NASA Astrophysics Data System (ADS)

    Kamide, Koichi; Araki, Hisashi; Yoshino, Katsumi

    2003-12-01

    Carbon nanotube (CNT) arrays with a controlled density are prepared on a micropatterned Au/Cr composite film formed on a quartz glass plate by pyrolysis of Ni-phthalocyanine at 800°C. It is clarified from characteristic X-ray analyses for those samples that a catalytic Ni nanoparticle is not contained within the base of the whisker-like CNT in contrast to that of the bamboo-like CNT, suggesting that the growth process of the present novel CNT is incompatible with that of the bamboo-like CNT. In the Au/Cr composite film, both the Cr atomic content of approximately 30% and the presence of the Ni catalyst devoid of a particle-like shape are important factors for the growth of CNTs. Field emission from the novel CNT arrays exhibits a lower turn-on voltage and a higher current density compared with that from the bamboo-like arrays formed on a quartz plate.

  3. Preparation of sensitive and recyclable porous Ag/TiO2 composite films for SERS detection

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyi; Yu, Jiajie; Yang, Jingying; Lv, Xiang; Wang, Tianhe

    2015-12-01

    Porous Ag/TiO2 composite films were prepared by spin coating of titania on normal glass slides and subsequent photochemical deposition of silver nanoparticles (AgNPs). The films were characterized by XRD and FESEM to reveal micro structural and morphological differences between films obtained under varied conditions. The SERS properties of these films were investigated using aqueous crystal violet (CV) as probe molecules. The results indicate that the content of polyethylene glycol (PEG) and photo-reduction time had significant influences on both the microstructure and SERS performance of Ag/TiO2 films. The highest SERS sensitivity that allowed as low as 10-10 M aqueous CV to be detected, was achieved with the PEG/(C4H9O)4Ti molar ratio being 0.08% and with 30 min of UV irradiation. With this film a linear relationship was established through experiment between SERS intensity and CV concentration from 10-10 to 10-5 M, which could be used as a calibration curve for CV concentration measurement. In addition, the film could be reused as a SERS substrate for up to four times without significantly losing SERS sensitivity if a simple regeneration was followed. It is visualized that the Ag/TiO2 film on glass has potentials for being developed into a practical SERS substrate with high sensitivity and good reusability.

  4. Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

    PubMed Central

    Buruiana, Tinca; Melinte, Violeta; Buruiana, Emil C

    2017-01-01

    Polymer nanocomposites containing titanium oxide nanoparticles (TiO2 NPs) combined with other inorganic components (Si–O–Si or/and γ-Fe2O3) were prepared by the dispersion of premade NPs (nanocrystalline TiO2, TiO2/SiO2, TiO2/Fe2O3, TiO2/SiO2/Fe2O3) within a photopolymerizable urethane dimethacrylate (polytetrahydrofuran-urethane dimethacrylate, PTHF-UDMA). The physicochemical characterization of nanoparticles and hybrid polymeric composites with 10 wt % NPs (S1–S4) was realized through XRD, TEM and FTIR analyses. The mean size (10–30 nm) and the crystallinity of the NPs varied as a function of the inorganic constituent. The catalytic activity of these hybrid films was tested for the photodegradation of phenol, hydroquinone and dopamine in aqueous solution under UV or visible-light irradiation. The best results were obtained for the films with TiO2/Fe2O3 or TiO2/SiO2/Fe2O3 NPs. The degradation of the mentioned model pollutants varied between 71% and 100% (after 250 min of irradiation) depending on the composition of the hybrid film tested and the light applied (UV–visible light). Also, it was established that such hybrid films can be reused at least for five cycles, without losing too much of the photocatalytic efficiency (ca. 7%). These findings could have implications in the development of new nanocatalysts. PMID:28243566

  5. Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles

    NASA Astrophysics Data System (ADS)

    Suryajaya; Nabok, A.; Davis, F.; Hassan, A.; Higson, S. P. J.; Evans-Freeman, J.

    2008-05-01

    CdS and ZnS semiconducting colloid nanoparticles coated with the organic shell, containing either SO 3- or NH 2+ groups, were prepared using the aqueous phase synthesis. The multilayer films of CdS (or ZnS) were deposited onto glass, quartz and silicon substrates using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy, spectroscopic ellipsometry and atomic force microscopy. A substantial blue shift of the main absorption band with respect to the bulk materials was found for both CdS and ZnS films. The Efros equation in the effective mass approximation (EMA) theoretical model allowed the evaluation of the nanoparticle radius of 1.8 nm, which corresponds well to the ellipsometry results. AFM shows the formation of larger aggregates of nanoparticles on solid surfaces.

  6. Carbon composites with metal nanoparticles for Alcohol fuel cells

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  7. Composite polymeric film and method for its use in installing a very-thin polymeric film in a device

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-04-26

    A composite polymeric film and a method for its use in forming and installing a very thin (< 10 ..mu..m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectiely dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to e successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  8. Composite polymeric film and method for its use in installing a very thin polymeric film in a device

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    A composite polymeric film and a method for its use in forming and installing a very thin (<10 .mu.m) polymeric film are disclosed. The composite film consists of a thin film layer and a backing layer. The backing layer is soluble in a solvent in which the thin film layer is not soluble. In accordance with the method, the composite film is installed in a device in the same position in which it is sought to finally emplace the thin film. The backing layer is then selectively dissolved in the solvent to leave the insoluble thin film layer as an unbacked film. The method permits a very thin film to be successfully installed in devices where the fragility of the film would preclude handling and installation by conventional methods.

  9. Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner-Camcı, Merve; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr

    Ultrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and themore » capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities.« less

  10. Fabrication of Thickness-Controllable Micropatterned Polyelectrolyte-Film/Nanoparticle Surfaces by Using the Plasma Oxidation Method.

    PubMed

    Zhu, Chun-Tao; Ma, Sheng-Hua; Zhang, Ying; Wang, Xue-Jing; Lv, Peng; Han, Xiao-Jun

    2016-04-05

    We have demonstrated a novel way to form thickness-controllable polyelectrolyte-film/nanoparticle patterns by using a plasma etching technique to form, first, a patterned self-assembled monolayer surface, followed by layer-by-layer assembly of polyelectrolyte-films/nanoparticles. Octadecyltrimethoxysilane (ODS) and (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayers (SAMs) were used for polyelectrolyte-film and nanoparticle patterning, respectively. The resolution of the proposed patterning method can easily reach approximately 2.5 μm. The height of the groove structure was tunable from approximately 2.5 to 150 nm. The suspended lipid membrane across the grooves was fabricated by incubating the patterned polyelectrolyte groove arrays in solutions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs). The method demonstrated here reveals a new path to create patterned 2D or 3D structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films

    PubMed Central

    Qadri, Muhammad U.; Diaz Diaz, Alex Fabian; Cittadini, Michaela; Martucci, Alessandro; Pujol, Maria Cinta; Ferré-Borrull, Josep; Llobet, Eduard; Aguiló, Magdalena; Díaz, Francesc

    2014-01-01

    Thin films of tungsten trioxide were deposited on quartz substrates by RF magnetron sputtering. Different annealing temperatures in the range from 423 to 973 K were used under ambient atmosphere. The influence of the annealing temperature on the structure and optical properties of the resulting WO3 thin films were studied. The surface morphology of the films is composed of grains with an average size near 70 nm for the films annealed between 773 and 973 K. Some of the WO3 thin films were also coated with Pt nanoparticles of about 45 nm in size. Spectrometric measurements of transmittance were carried out for both types of WO3 samples in the wavelength range from 200–900 nm, to determine the effect of the exposure to two different gases namely H2 and CO. Films showed fast response and recovery times, in the range of few seconds. The addition of Pt nanoparticles enables reducing the operation temperature to room temperature. PMID:24977386

  12. Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties.

    PubMed

    Mohammadi, Hamid; Kamkar, Abolfazl; Misaghi, Ali

    2018-02-01

    This work examined the physico mechanical parameters and antibacterial activity of CMC/okra mucilage (OM) blend films containing ZnO nanoparticles (NPs). Different proportions of CMC and okra mucilage (100/0; 70/30; 60/40 and 50/50 respectively), were mixed and casted to posterior analysis of formed films. The more colored films were obtained by higher contents of okra mucilage and adding ZnO nanoparticles. The incorporation of ZnO NPs into CMC film decreased the elongation at the break (EB) value of the films and increased the tensile strength (TS) value of the film. With increase in CMC concentration in the films, higher water vapor permeability and higher solubility in water were achieved. Microstructure analysis using SEM showed a smooth and compact surface morphology, homogeneous structure, and a rough surface for CMC, CMC+ZnO, and CMC/OM30%+ZnO, respectively. Nanocomposite films presented antibacterial activity against tested bacteria. Films contained okra mucilage showed more antibacterial activity. The inhibitory activities of resultant films were stronger against S. aureus than E. coli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds.

    PubMed

    Pereira, Gabriela Garrastazu; Detoni, Cassia Britto; Balducci, Anna Giulia; Rondelli, Valeria; Colombo, Paolo; Guterres, Silvia Stanisçuaski; Sonvico, Fabio

    2016-02-15

    Lecithin and hyaluronic acid were used for the preparation of polysaccharide decorated nanoparticles loaded with vitamin E using the cationic lipid dioctadecyldimethylammonium bromide (DODMA). Nanoparticles showed mean particle size in the range 130-350 nm and narrow size distribution. Vitamin E encapsulation efficiency was higher than 99%. These nanoparticles were incorporated in polymeric films containing Aloe vera extract, hyaluronic acid, sodium alginate, polyethyleneoxide (PEO) and polyvinylalcohol (PVA) as an innovative treatment in skin wounds. Films were thin, flexible, resistant and suitable for application on burn wounds. Additionally, in vitro occlusion study highlighted the dependence of the occlusive effect on the presence of nanoparticles. The results obtained show that the bioadhesive films containing vitamin E acetate and Aloe vera could be an innovative therapeutic system for the treatment of skin wounds, such as burns. The controlled release of the vitamin along with a reduction in water loss through damaged skin provided by the nanoparticle-loaded polymer film are considered important features for an improvement in wound healing and skin regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Implications of SPION and NBT nanoparticles upon in-vitro and in-situ biodegradation of LDPE film.

    PubMed

    Kapri, Anil; Zaidi, M G H; Goel, Reeta

    2010-06-01

    Comparative influence of two nanoparticles viz. superparamagnetic iron oxide nanoparticles (SPION) and nanobarium titanate (NBT) was studied upon the in-vitro and in-situ low-density polyethylene (LDPE) biodegradation efficiency of a potential polymer-degrading microbial consortium. Supplementation of 0.01% concentration (w/v) of the nanoparticles in minimal broth significantly increased the bacterial growth, along with early onset of the exponential phase. Under in-vitro conditions, lambda-max shifts were quicker with nanoparticles and Fourier transform infrared spectroscopy (FTIR) illustrated significant changes in CH/CH2 vibrations, along with introduction of hydroxyl residues in the polymer backbone. Further, simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) reported multiple-step decomposition of LDPE degraded in the presence of nanoparticles. These findings were supported by scanning electron micrographs (SEM) which revealed greater dissolution of film surface in the presence of nanoparticles. Furthermore, progressive degradation of the film was greatly enhanced when it was incubated under soil conditions for 3 months with the nanoparticles. The study highlights the significance of bacteria-nanoparticle interactions which can dramatically influence key metabolic processes like biodegradation. The authors also propose the exploration of nanoparticles to influence various other microbial processes for commercial viabilities.

  15. Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning.

    PubMed

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-12-21

    A two-dimensional (2D) bi-layered composite nanofibrous film assembled by one-dimensional (1D) nanofibers with trifunctionality of electrical conduction, magnetism and photoluminescence has been successfully fabricated by layer-by-layer electrospinning. The composite film consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticle (NP)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional layer on one side and a Tb(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent layer on the other side, and the two layers are tightly combined face-to-face together into the novel bi-layered composite film of trifunctionality. The brand-new film has totally different characteristics at the double layers. The electrical conductivity and magnetism of the electrical-magnetic bifunctional layer can be, respectively, tunable via modulating the PANI and Fe 3 O 4 NP contents, and the highest electrical conductivity can reach up to the order of 10 -2 S cm -1 , and predominant intense green emission at 545 nm is obviously observed in the photoluminescent layer under the excitation of 357 nm single-wavelength ultraviolet light. More importantly, the luminescence intensity of the photoluminescent layer remains almost unaffected by the electrical-magnetic bifunctional layer because the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. By comparing with the counterpart single-layered composite nanofibrous film, it is found that the bi-layered composite nanofibrous film has better performance. The novel bi-layered composite nanofibrous film with trifunctionality has potential in the fields of nanodevices, molecular electronics and biomedicine. Furthermore, the design conception and fabrication technique for the bi-layered multifunctional film provide a new and facile strategy towards other films of multifunctionality.

  16. Flux Pinning Enhancement in YBa2Cu3O7-x Films with BaSnO3 Nanoparticles

    DTIC Science & Technology

    2008-10-01

    SUPERCONDUCTOR SCIENCE AND TECHNOLOGY Supercond. Sci. Technol. 19 (2006) L37 –L41 doi:10.1088/0953-2048/19/10/L01 RAPID COMMUNICATION Flux pinning enhancement in...2006 Online at stacks.iop.org/SUST/19/ L37 Abstract Nanoparticles of BaSnO3 were incorporated into YBa2Cu3O7−x (YBCO) films on LaAlO3 substrates for...0953-2048/06/100037+05$30.00 © 2006 IOP Publishing Ltd Printed in the UK L37 1 Rapid Communication materials and sintered together to form a composite

  17. Preparation of novel film-forming armoured latexes using silica nanoparticles as a pickering emulsion stabiliser.

    PubMed

    Shiraz, Hana; Peake, Simon J; Davey, Tim; Cameron, Neil R; Tabor, Rico F

    2018-05-15

    Film-forming polymer latex particles of diameter <300 nm can be prepared in the complete absence of surfactants, stabilised in part by silica nanoparticles through a Pickering type emulsion polymerisation. Control of the silica wettability through modulation of reaction pH or by reaction of the nanoparticles with a hydrophobic silane results in silica-covered latex particles. The oil-in-water polymerisation process used methyl methacrylate (MMA) and n-butyl acrylate (BA) as co-monomers, potassium persulphate (KPS) as an initiator and a commercially available colloidal nano-silica (Ludox®-TM40). It was found that pH control before polymerisation using methacrylic acid (MAA) facilitated the formation of armoured latexes, and mechanistic features of this process are discussed. An alternative, more robust protocol was developed whereby addition of vinyltriethoxysilane (VTES) to control wettability resulted in latexes completely armoured in colloidal nano-silica. The latexes were characterised using SEM, cryo-TEM and AFM imaging techniques. The mechanism behind the adsorption was investigated through surface pressure and contact angle measurements to understand the factors that influence this irreversible adsorption. Results indicate that nanoparticle attachment (but intriguingly not latex size) is dependent on particle wettability, providing new insight into the formation of nanoparticle-armoured latexes, along with opportunities for further development of diversely functionalized inorganic/organic polymer composite particles. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations.

    PubMed

    Mori, Taizo; Hegmann, Torsten

    2016-01-01

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.

  19. Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Micham, Logan; Copa, Christine C.; Criss, James M., Jr.; Mintz, Eric A.

    2011-01-01

    Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).

  20. Effect of TiO2 nanoparticles doping on structural and electrical properties of PVA: NaBr polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sagar, Rohan N.; Ravindrachary, V.; Guruswamy, B.; Hegde, Shreedatta; Mahanthesh, B. K.; Kumari, R. Padma

    2018-05-01

    The effect of TiO2 nanoparticles on morphology and electrical properties of PVA: NaBr composite films were carried out using various techniques. The pure and TiO2 nanoparticle doped PVA: NaBr composite films were prepared using solvent casting method. The FTIR spectral studies shows that the Ti+ ions of TiO2 interacts with hydroxyl group (OH) of PVA via hydrogen bonding and forms the charge transfer complexes (CTC). These interactions are of inter/intra molecular type and affects the surface morphology as well as the electrical properties of composite films. XRD study shows that the crystallinity of the composite increases with doping level. SEM studies shows that the increase in roughness of the surface of the composite films and uniform dispersion of nanofillers in polymer matrix. Electrical properties are analyzed using impedance analyzer and higher conductivity (10-4Scm-1) is achieved for 5 wt % TiO2 doping concentration.

  1. Nanocrystalline TiO₂ Composite Films for the Photodegradation of Formaldehyde and Oxytetracycline under Visible Light Irradiation.

    PubMed

    Wei, Min; Peng, Xue-Lei; Liu, Qi-Sheng; Li, Fang; Yao, Ming-Ming

    2017-06-14

    In order to effectively photodegradate organic pollutants, ZnO composite and Co-B codoped TiO₂ films were successfully deposited on glass substrates via a modified sol-gel method and a controllable dip-coating technique. Combining with UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL) analyses, the multi-modification could not only extend the optical response of TiO₂ to visible light region but also decrease the recombination rate of electron-hole pairs. XRD results revealed that the multi-modified TiO₂ film had an anatase-brookite biphase heterostructure. FE-SEM results indicated that the multi-modified TiO₂ film without cracks was composed of smaller round-like nanoparticles compared to pure TiO₂. BET surface area results showed that the specific surface area of pure TiO₂ and the multi-modified TiO₂ sample was 47.8 and 115.8 m²/g, respectively. By degradation of formaldehyde and oxytetracycline, experimental results showed that the multi-modified TiO₂ film had excellent photodegradation performance under visible light irradiation.

  2. Fabrication and characterization of compositionally-graded shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Cole, Daniel Paul

    2009-12-01

    The miniaturization of engineering devices has created interest in new actuation methods capable of high power and high frequency responses. Shape memory alloy (SMA) thin films have exhibited one of the highest power densities of any material used in these actuation schemes. However, they currently require complex thermomechanical training in order to be actuated, which becomes more difficult as devices approach the microscale. Previous studies have indicated that SMA films with compositional gradients have the added feature of an intrinsic two-way shape memory effect (SME). In this work, a new method for processing and characterizing compositionally-graded transformable thin films is presented. Graded NiTi SMA films were processed using magnetron sputtering. Single and multilayer graded films were deposited onto bulk NiTi substrates and single crystal silicon substrates, respectively. Annealing the films naturally produced a compositional gradient across the film-substrate or film-film interface through diffusion modification. The films were directly characterized using a combination of atomic force microscopy (AFM), x-ray diffraction and Auger electron spectroscopy. The compositional gradient was indirectly characterized by measuring the variation in mechanical properties as a function of depth using nanoindentation. The similarity of the indentation response on graded films of varying thickness was used to estimate the width of the graded interface. The nanoindentation response was predicted using an analysis that accounted for the transformation effects occurring under the tip during loading and the variation of elastic modulus resulting from the compositional gradient. The recovery mechanisms of the graded films are compared with homogeneous films using a new nanoscale technique. An AFM integrated with a heating and cooling stage was used to observe the recovery of inelastic deformation caused through nanoindentation. The graded films exhibited a two-way SME

  3. Synthesis of tin oxide nanoparticle film by cathodic electrodeposition.

    PubMed

    Kim, Seok; Lee, Hochun; Park, Chang Min; Jung, Yongju

    2012-02-01

    Three-dimensional SnO2 nanoparticle films were deposited onto a copper substrate by cathodic electrodeposition in a nitric acid solution. A new formation mechanism for SnO2 films is proposed based on the oxidation of Sn2+ ion to Sn4+ ion by NO+ ion and the hydrolysis of Sn4+. The particle size of SnO2 was controlled by deposition potential. The SnO2 showed excellent charge capacity (729 mAh/g) at a 0.2 C rate and high rate capability (460 mAh/g) at a 5 C rate.

  4. Fabrication of composite films containing zirconia and cationic polyelectrolytes.

    PubMed

    Pang, Xin; Zhitomirsky, Igor

    2004-03-30

    Composite films were prepared by electrophoretic deposition of poly(ethylenimine) or poly(allylamine hydrochloride) combined with cathodic precipitation of zirconia. Films of up to several micrometers thick were obtained on Ni, Pt, stainless-steel, graphite, and carbon-felt substrates. When the concentration of polyelectrolytes in solutions and the deposition time were varied, the amount of the deposited material and its composition can be varied. The electrochemical intercalation of yttria-stabilized zirconia particles into the composite films has been demonstrated. Obtained results pave the way for the electrodeposition of other polymer-ceramic composites. The deposits were studied by thermogravimetric analysis, X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy. The mechanisms of deposition are discussed.

  5. Film Delivery Module For Fiber Placement Fabrication of Hybridized Composite Structures

    NASA Technical Reports Server (NTRS)

    Hulcher, Anthony Bruce; Young, Greg

    2005-01-01

    A new fabrication technology has been developed at the NASA Marshall Space Flight Center that will allow for the fabrication of hybridized composite structures using fiber placement processing. This technology was originally developed in response to a need to address the issue of hydrogen permeation and microcracking in cryogenic propellant tanks. Numerous thin polymeric and metallized films were investigated under low temperatures conditions for use as barrier films in a composite tank. Manufacturing studies conducted at that time did not address the processing issues related to fabrication of a hybridized tank wall. A film processing head was developed that will allow for the processing of thin polymeric and metallized films, metallic foils, and adhesives using fiber placement processing machinery. The film head is designed to enable the simultaneous processing of film materials and composite tape/tow during the composite part layup process and is also capable of processing the film during an independent operation. Several initial demonstrations were conducted to assess the performance of the film module device. Such assessments included film strip lay-up accuracy, capability to fabricate panels having internal film liners, and fabrication of laminates with embedded film layers.

  6. Enhanced electrical conductivity of poly(methyl methacrylate) filled with graphene and in situ synthesized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Athanassiou, Athanassia; Bonaccorso, Francesco; Fragouli, Despina

    2018-06-01

    The improvement of the electrical conductivity of polymers by incorporating graphene has been intensively studied in recent years. To further boost the electrical conductivity, blending third-party additives into the polymer/graphene systems has been demonstrated as a viable strategy. Herein, we propose a simple route to increase the electrical conductivity of poly(methyl methacrylate) (PMMA)/graphene nanoplatelet (GnP) composites, by the in situ synthesis of gold nanoparticles directly into the solid film. In particular, PMMA, GnPs and a gold precursor are solution blended to form the composite films. The subsequent heat-induced formation of gold nanoparticles directly in the solid state film, cause the significant decrease of the percolation threshold of GnPs loading, from 3% to 1% by weight in the composite. This is attributed to the preferential formation of the gold nanoparticles onto the GnPs, with synergistic effects beneficial for the improvement of the electrical conductivity. The formation procedure of the gold nanoparticles, and their arrangement into the composite matrix are studied. We demonstrate that following this straightforward process it is possible to form nanocomposites able to conduct efficiently electric current even at low graphene loadings preserving at the same time the mechanical properties of the polymer matrix.

  7. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    NASA Astrophysics Data System (ADS)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  8. Dialkyldiselenophosphinato-metal complexes - a new class of single source precursors for deposition of metal selenide thin films and nanoparticles

    NASA Astrophysics Data System (ADS)

    Malik, Sajid N.; Akhtar, Masood; Revaprasadu, Neerish; Qadeer Malik, Abdul; Azad Malik, Mohammad

    2014-08-01

    We report here a new synthetic approach for convenient and high yield synthesis of dialkyldiselenophosphinato-metal complexes. A number of diphenyldiselenophosphinato-metal as well as diisopropyldiselenophosphinato-metal complexes have been synthesized and used as precursors for deposition of semiconductor thin films and nanoparticles. Cubic Cu2-xSe and tetragonal CuInSe2 thin films have been deposited by AACVD at 400, 450 and 500 °C whereas cubic PbSe and tetragonal CZTSe thin films have been deposited through doctor blade method followed by annealing. SEM investigations revealed significant differences in morphology of the films deposited at different temperatures. Preparation of Cu2-xSe and In2Se3 nanoparticles using diisopropyldiselenophosphinato-metal precursors has been carried out by colloidal method in HDA/TOP system. Cu2-xSe nanoparticles (grown at 250 °C) and In2Se3 nanoparticles (grown at 270 °C) have a mean diameter of 5.0 ± 1.2 nm and 13 ± 2.5 nm, respectively.

  9. Preparation of a porcine plasma protein composite film and its application.

    PubMed

    Lee, Ji-Hyun; Song, Kyung Bin

    2015-01-01

    To use blood released from slaughtering houses, a porcine plasma protein (PPP)/nanoclay composite film was prepared. The tensile strength and elongation at break values of the PPP composite film with 5% nanoclay were 10.01 MPa and 6.55%, respectively. The PPP composite film containing 1% grapefruit seed extract (GSE) was applied to pork meat, and the populations of inoculated Escherichia coli O157:H7 and Listeria monocytogenes in the pork meat packaged with the PPP composite film decreased by 0.8 and 1.0 log CFU/g, respectively, after 7 days of storage compared to the populations of the control. In addition, thiobarbituric acid values in the pork meat packaged with the PPP composite film were less than those of the control sample during storage. These results suggest that the PPP nanocomposite film containing 1% GSE can be used as a packaging material to maintain the quality of pork meat.

  10. Carbon Materials Metal/Metal Oxide Nanoparticle Composite and Battery Anode Composed of the Same

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2006-01-01

    A method of forming a composite material for use as an anode for a lithium-ion battery is disclosed. The steps include selecting a carbon material as a constituent part of the composite, chemically treating the selected carbon material to receive nanoparticles, incorporating nanoparticles into the chemically treated carbon material and removing surface nanoparticles from an outside surface of the carbon material with incorporated nanoparticles. A material making up the nanoparticles alloys with lithium.

  11. Composite proton exchange membrane based on sulfonated organic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pitia, Emmanuel Sokiri

    As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion

  12. Formation of nanoparticles from thin silver films irradiated by laser pulses in air

    NASA Astrophysics Data System (ADS)

    Nastulyavichus, A. A.; Smirnov, N. A.; Kudryashov, S. I.; Ionin, A. A.; Saraeva, I. N.; Busleev, N. I.; Rudenko, A. A.; Khmel'nitskii, R. A.; Zayarnyi, D. A.

    2018-03-01

    Some specific features of the transport of silver nanoparticles onto a SiO2 substrate under focused nanosecond IR laser pulses is experimentally investigated. A possibility of obtaining silver coatings is demonstrated. The formation of silver nanostructures as a result of pulsed laser ablation in air is studied. Nanoparticles are formed by exposing a silver film to radiation of an HTF MARK (Bulat) laser marker (λ = 1064 nm). The thus prepared nanoparticles are analysed using scanning electron microscopy and optical spectroscopy.

  13. Electrical and optical percolations in PMMA/GNP composite films

    NASA Astrophysics Data System (ADS)

    Arda, Ertan; Mergen, Ömer Bahadır; Pekcan, Önder

    2018-05-01

    Effects of graphene nanoplatelet (GNP) addition on the electrical conductivity and optical absorbance of poly(methyl methacrylate)/graphene nanoplatelet (PMMA/GNP) composite films were studied. Optical absorbance and two point probe resistivity techniques were used to determine the variations of the optical and electrical properties of the composites, respectively. Absorbance intensity, A, and surface resistivity, Rs, of the composite films were monitored as a function of GNP mass fraction (M) at room temperature. Absorbance intensity values of the composites were increased and surface resistivity values were decreased by increasing the content of GNP in the composite. Electrical and optical percolation thresholds of composite films were determined as Mσ = 27.5 wt.% and Mop = 26.6 wt.%, respectively. The conductivity and the optical results were attributed to the classical and site percolation theories, respectively. Optical (βop) and electrical (βσ) critical exponents were calculated as 0.40 and 1.71, respectively.

  14. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites.

  15. Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis

    NASA Astrophysics Data System (ADS)

    Madhavi, V.; Kondaiah, P.; Mohan Rao, G.

    2018-04-01

    Decreasing recombination of photogenerated charge carriers in photocatalysts is a critical issue for enhancing the efficiency of dye degradation. It is one of the greatest challenges to reduce the recombination of photo generated charge carriers in semiconductor. In this paper, we report that there is an enhancement of photocatalytic activity in presence of Sun light, by introducing Plasmon (silver nanoparticles (Ag)) onto the titanium oxide (TiO2) and nitrogen incorporated titanium oxide (N-TiO2) films. These silver nanoparticles facilitate the charge transport and separation of charge carriers. In this paper we find that the phase transformation accurse from rutile to anatase with increase of nitrogen flow rates. The FE-SEM analysis showed the micro structure changes to dense columnar growth with increase of nitrogen flow rates. XPS studies of the N-TiO2 thin films revealed that the substitution of N atoms within the O sites plays a crucial role in narrowing the band gap of the TiO2. This enables the absorption of visible light radiation and leads to operation of the film as a highly reactive and effective photocatalysis. The synergetic effect of silver nanoparticles on TiO2 and N-TiO2 films tailored the photocatalytic acitivity, charge transfer mechanism, and photocurrent studies. The silver nanoparticle loaded N-TiO2 films showed highest degradation of 95% compare to the N-TiO2 films. The photo degradation rate constant of Ag/N-TiO2 film was larger than the N-TiO2 films.

  16. Metallic Films with Fullerene-Like WS2 (MoS2) Nanoparticles: Self-Lubricating Coatings with Potential Applications

    NASA Astrophysics Data System (ADS)

    Eidelman, O.; Friedman, H.; Tenne, R.

    Metallic films impregnated with fullerene-like-WS2 (MoS2) nanoparticles were fabricated on stainless steel and Ti-Ni substrates using galvanic and electroless deposition. The coatings were obtained from aqueous suspensions containing the metallic salts as well as the dispersed nanoparticles. Tribological tests showed that the films have low friction and wear. Such coatings could be useful for numerous civilian and defense-related applications.

  17. Methods, compositions and kits for imaging cells and tissues using nanoparticles and spatial frequency heterodyne imaging

    DOEpatents

    Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian

    2016-04-19

    Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.

  18. Preparation of SiO2@Ag Composite Nanoparticles and Their Antimicrobial Activity.

    PubMed

    Qin, Rui; Li, Guian; Pan, Liping; Han, Qingyan; Sun, Yan; He, Qiao

    2017-04-01

    At normal atmospheric temperature, the modified sol–gel method was employed to synthesize SiO2 nanospheres (SiO2 NSs) whose average size was about 352 nm. Silver nanoparticles (Ag NPs) were uniformly distributed on the surface of SiO2 nanospheres (SiO2 NSs) by applying chemical reduction method at 95 °C and the size of silver nanoparticles (Ag NPs) could be controlled by simply tuning the reaction time and the concentration of sodium citrate. Besides, the size, morphology, structure and optical absorption properties of SiO2@Ag composite nanoparticles were measured and characterized by laser particle size analyzer (LPSA), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and ultraviolet visible absorption spectrometer (UV-Vis), respectively. Furthermore, antimicrobial effect experiments that against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) were carried out to characterize the antibacterial activity of synthesized SiO2@Ag composite nanoparticles. The results show that the prepared SiO2@Ag composite nanoparticles have strong antimicrobial activity, which is associated with the size of silver nanoparticles.

  19. Electrodeposition of MWNT/Bi2Te3 Composite Thermoelectric Films

    NASA Astrophysics Data System (ADS)

    Xu, Han; Wang, Wei

    2013-07-01

    The effect of multiwalled carbon nanotubes (MWNTs) on the electrochemical behavior of the Bi-Te binary system in nitric acid baths was investigated by means of cyclic voltammetry and electrochemical impedance spectroscopy. Based on the results, MWNT/Bi2Te3 composite thermoelectric films were prepared by potentiostatic electrodeposition at room temperature. The morphology, composition, and structure of the MWNT/Bi2Te3 composite films were analyzed by environmental scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. The results show that addition of MWNTs to the electrolyte did not change the electrochemical reduction mechanisms of Bi3+, HTeO{2/+} or their mixture, but the reduction processes of Bi3+, HTeO{2/+}, and their mixture become easier. MWNT/Bi2Te3 composite thermoelectric films can be obtained by potentiostatic electrodeposition at a wide range of potentials with subsequent annealing. The MWNTs in the films act as nucleation sites for Bi2Te3 compound and thereby elevate the film deposition rate. The content of Bi element and MWNTs in the films increased as the potential was shifted negatively. In addition, the MWNTs can enhance the crystallization of Bi2Te3 film.

  20. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    PubMed

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of oleic acid surface coating on the properties of nickel ferrite nanoparticles/PLA composites.

    PubMed

    Yin, Hong; Chow, Gan-Moog

    2009-11-01

    Nickel ferrite nanoparticles with or without oleic acid surface coating were mixed with poly(D,L-lactide) (PLA) by double emulsion method. If the nanoparticles were prepared without oleic acid coating, they adsorbed on the PLA surface. If the nanoparticles were coated with oleic acid, they could be readily encapsulated within the PLA microspheres. A slight depression in glass transition temperature was found in all composites and it could be related to the interfacial energies between nanoparticles and PLA. Optimum mixed composite was achieved by reducing interfacial energy. However, loading capacity was limited in this composite. Increasing the amount of nickel ferrite nanoparticles was not useful to increase loading capacity. Cytotoxicity of the composite decreased significantly when nickel ferrite nanoparticles were effectively encapsulated in PLA microspheres. (c) 2008 Wiley Periodicals, Inc.

  2. Characterization of iron oxide nanoparticle films at the air–water interface in Arctic tundra waters

    DOE PAGES

    Jubb, Aaron M.; Eskelsen, Jeremy R.; Yin, Xiangping Lisa; ...

    2018-04-04

    Here, massive amounts of organic carbon have accumulated in Arctic permafrost and soils due to anoxic and low temperature conditions that limit aerobic microbial respiration. Alternative electron acceptors are thus required for microbes to degrade organic carbon in these soils. Iron or iron oxides have been recognized to play an important role in carbon cycle processes in Arctic soils, although the exact form and role as an electron acceptor or donor remain poorly understood. Here, Arctic biofilms collected during the summers of 2016 and 2017 from tundra surface waters on the Seward Peninsula of western Alaska were characterized with amore » suite of microscopic and spectroscopic methods. We hypothesized that these films contain redox-active minerals bound to biological polymers. The major components of the films were found to be iron oxide nanoparticle aggregates associated with extracellular polymeric substances. The observed mineral phases varied between films collected in different years with magnetite (Fe 2+Fe 2 3+O 4) nanoparticles (<5 nm) predominantly identified in the 2016 films, while for films collected in 2017 ferrihydrite-like amorphous iron oxyhydroxides were found. While the exact formation mechanism of these Artic iron oxide films remains to be explored, the presence of magnetite and other iron oxide/oxyhydroxide nanoparticles at the air–water interface may represent a previously unknown source of electron acceptors for continual anaerobic microbial respiration of organic carbon within poorly drained Arctic tundra.« less

  3. Characterization of iron oxide nanoparticle films at the air–water interface in Arctic tundra waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubb, Aaron M.; Eskelsen, Jeremy R.; Yin, Xiangping Lisa

    Here, massive amounts of organic carbon have accumulated in Arctic permafrost and soils due to anoxic and low temperature conditions that limit aerobic microbial respiration. Alternative electron acceptors are thus required for microbes to degrade organic carbon in these soils. Iron or iron oxides have been recognized to play an important role in carbon cycle processes in Arctic soils, although the exact form and role as an electron acceptor or donor remain poorly understood. Here, Arctic biofilms collected during the summers of 2016 and 2017 from tundra surface waters on the Seward Peninsula of western Alaska were characterized with amore » suite of microscopic and spectroscopic methods. We hypothesized that these films contain redox-active minerals bound to biological polymers. The major components of the films were found to be iron oxide nanoparticle aggregates associated with extracellular polymeric substances. The observed mineral phases varied between films collected in different years with magnetite (Fe 2+Fe 2 3+O 4) nanoparticles (<5 nm) predominantly identified in the 2016 films, while for films collected in 2017 ferrihydrite-like amorphous iron oxyhydroxides were found. While the exact formation mechanism of these Artic iron oxide films remains to be explored, the presence of magnetite and other iron oxide/oxyhydroxide nanoparticles at the air–water interface may represent a previously unknown source of electron acceptors for continual anaerobic microbial respiration of organic carbon within poorly drained Arctic tundra.« less

  4. Molecular interactions in gelatin/chitosan composite films.

    PubMed

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. In Situ Synthesis of Silver Nanoparticles on the Polyelectrolyte-Coated Sericin/PVA Film for Enhanced Antibacterial Application

    PubMed Central

    Cai, Rui; Tao, Gang; Guo, Pengchao; Yang, Meirong; Ding, Chaoxiang; Zuo, Hua; Wang, Lingyan; Zhao, Ping; Wang, Yejing

    2017-01-01

    To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application. PMID:28820482

  6. Application of High-Impact Polystyrene (HIPS) as a Graphene Nanoparticle Reinforced Composite Thermoplastic Adhesive

    NASA Astrophysics Data System (ADS)

    Stitt, Erik

    Adhesive bonding is a more efficient joining method for composites than traditional mechanical fasteners and provides advantages in weight reduction, simplicity, and cost. In addition, the utilization of mechanical fasteners introduces stress concentrations and damage to the fiber-matrix interface. Adhesive bonding with thermoset polymers distributes mechanical loads but also makes disassembly for repair and recycling difficult. The ability to utilize thermoplastic polymers as adhesives offers an approach to address these limitations and can even produce a reversible adhesive joining technology through combining conductive nanoparticles with a thermoplastic polymer. The incorporation of the conductive nanoparticles allows for selective heating of the adhesive via exposure to electromagnetic (EM) radiation and simultaneously can augment the mechanical properties of the adhesive and the adhesive joint. This approach provides a versatile mechanism for efficiently creating and reversing structural adhesive joints across a wide range of materials. In this work, a high-impact polystyrene (HIPS) co-polymer containing butadiene as a toughness modifier is compounded with graphene nano-platelets (GnP) for investigation as a thermoplastic adhesive. The properties of the bulk composite adhesive are tailored by altering the morphology, dispersion, and concentration of GnP. The thermal response of the material to EM radiation in the microwave frequency spectrum was investigated and optimized. Surface treatments of the adhesive films were explored to enhance the viability of this nanoparticle thermoplastic polymer to function as a reversible adhesive. As a result, it has been shown that lap-shear strengths of multi-material joints produced from aforementioned thermoplastic adhesives were comparable to similar thermoset bonded joints.

  7. X-Ray Photoelectron Spectroscopy of Stabilized Zirconia Films with Embedded Au Nanoparticles Formed under Irradiation with Gold Ions

    NASA Astrophysics Data System (ADS)

    Zubkov, S. Yu.; Antonov, I. N.; Gorshkov, O. N.; Kasatkin, A. P.; Kryukov, R. N.; Nikolichev, D. E.; Pavlov, D. A.; Shenina, M. E.

    2018-03-01

    Nanosized films of stabilized zirconia with Au nanoparticles formed by implanting Au ions are studied by X-ray photoelectron spectroscopy and transmission electron microscopy. The effect of irradiation of films with Au ions and postimplantation annealing on the distribution of chemical elements and zirconium- containing ZrO x compounds over the depth of the films is studied. Based on the data on the dimensional shift of the Au 4 f photoelectron line, the average value of the nanoparticle size is determined.

  8. High-Strength Konjac Glucomannan/Silver Nanowires Composite Films with Antibacterial Properties

    PubMed Central

    Lei, Jia; Zhou, Lei; Tang, Yongjian; Luo, Yong; Duan, Tao; Zhu, Wenkun

    2017-01-01

    Robust, high-strength and environmentally friendly antibacterial composite films were prepared by simply blending konjac glucomannan (KGM) and silver nanowires (Ag NWs) in an aqueous system. The samples were then characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis, mechanical property tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS) and antimicrobial tests. The results showed that there was a high ratio of Ag NWs uniformly distributed in the composite films, which was vital for mechanical reinforcement and stable antibacterial properties. The enhanced thermal stability and mechanical intensity increased, while the elongation at break was reduced with an increase in the amount of Ag NWs found in the composite films. When the percentage of Ag NWs in the composite films reached 5%, the tensile strength was 148.21 MPa, Young’s modulus was 13.79 GPa and the ultimate strain was 25.28%. Antibacterial tests showed that the KGM films had no antibacterial effect. After the addition of Ag NWs, the composite films had an obvious inhibitory effect on bacteria, with the uniform dispersion of Ag NWs promoting the antibacterial effect to a certain degree. These results indicated that these composite films would have a potential application in the fields of environmentally friendly packaging or medicine. PMID:28772883

  9. Highly Transparent Wafer-Scale Synthesis of Crystalline WS2 Nanoparticle Thin Film for Photodetector and Humidity-Sensing Applications.

    PubMed

    Pawbake, Amit S; Waykar, Ravindra G; Late, Dattatray J; Jadkar, Sandesh R

    2016-02-10

    In the present investigation, we report a one-step synthesis method of wafer-scale highly crystalline tungsten disulfide (WS2) nanoparticle thin film by using a modified hot wire chemical vapor deposition (HW-CVD) technique. The average size of WS2 nanoparticle is found to be 25-40 nm over an entire 4 in. wafer of quartz substrate. The low-angle XRD data of WS2 nanoparticle shows the highly crystalline nature of sample along with orientation (002) direction. Furthermore, Raman spectroscopy shows two prominent phonon vibration modes of E(1)2g and A1g at ∼356 and ∼420 cm(-1), respectively, indicating high purity of material. The TEM analysis shows good crystalline quality of sample. The synthesized WS2 nanoparticle thin film based device shows good response to humidity and good photosensitivity along with good long-term stability of the device. It was found that the resistance of the films decreases with increasing relative humidity (RH). The maximum humidity sensitivity of 469% along with response time of ∼12 s and recovery time of ∼13 s were observed for the WS2 thin film humidity sensor device. In the case of photodetection, the response time of ∼51 s and recovery time of ∼88 s were observed with sensitivity ∼137% under white light illumination. Our results open up several avenues to grow other transition metal dichalcogenide nanoparticle thin film for large-area nanoelectronics as well as industrial applications.

  10. Mixed pinning landscape in nanoparticle-introduced YGdBa2Cu3Oy films grown by metal organic deposition

    NASA Astrophysics Data System (ADS)

    Miura, M.; Maiorov, B.; Baily, S. A.; Haberkorn, N.; Willis, J. O.; Marken, K.; Izumi, T.; Shiohara, Y.; Civale, L.

    2011-05-01

    We study the field (H) and temperature (T) dependence of the critical current density (Jc) and irreversibility field (Hirr) at different field orientations in Y0.77Gd0.23Ba2Cu3Oy with randomly distributed BaZrO3 nanoparticles (YGdBCO+BZO) and YBa2Cu3Oy (YBCO) films. Both MOD films have large RE2Cu2O5 (225) nanoparticles (˜80 nm in diameter) and a high density of twin boundaries (TB). In addition, YGdBCO+BZO films have a high density of BZO nanoparticles (˜25 nm in diameter). At high temperatures (T > 40 K), the superconducting properties, such as Jc, Hirr, and flux creep rates, are greatly affected by the BZO nanoparticles, while at low temperatures the superconducting properties of both the YBCO and YGdBCO+BZO films show similar field and temperature dependencies. In particular, while the Jc of YBCO films follow a power-law dependence (∝H-α) at all measured T, this dependence is only followed at low T for YGdBCO+BZO films. As a function of T, the YGdBCO+BZO film shows Jc(T,0.01T)~[1-(T/Tc)2]n with n ˜ 1.24 ± 0.05, which points to “δTc pinning.” We analyze the role of different types of defects in the different temperature regimes and find that the strong pinning of the BZO nanoparticles yields a higher Hirr and improved Jc along the c axis and at intermediate orientations at high T. The mixed pinning landscapes due to the presence of disorder of various dimensionalities have an important role in the improvement of in-field properties.

  11. Protein Corona Composition Does Not Accurately Predict Hematocompatibility of Colloidal Gold Nanoparticles

    PubMed Central

    Dobrovolskaia, Marina A.; Neun, Barry W.; Man, Sonny; Ye, Xiaoying; Hansen, Matthew; Patri, Anil K.; Crist, Rachael M.; McNeil, Scott E.

    2014-01-01

    Proteins bound to nanoparticle surfaces are known to affect particle clearance by influencing immune cell uptake and distribution to the organs of the mononuclear phagocytic system. The composition of the protein corona has been described for several types of nanomaterials, but the role of the corona in nanoparticle biocompatibility is not well established. In this study we investigate the role of nanoparticle surface properties (PEGylation) and incubation times on the protein coronas of colloidal gold nanoparticles. While neither incubation time nor PEG molecular weight affected the specific proteins in the protein corona, the total amount of protein binding was governed by the molecular weight of PEG coating. Furthermore, the composition of the protein corona did not correlate with nanoparticle hematocompatibility. Specialized hematological tests should be used to deduce nanoparticle hematotoxicity. PMID:24512761

  12. Composite films from pectin and fish skin gelatin or soybean flour protein.

    PubMed

    Liu, LinShu; Liu, Cheng-Kung; Fishman, Marshall L; Hicks, Kevin B

    2007-03-21

    Composite films were prepared from pectin and fish skin gelatin (FSG) or pectin and soybean flour protein (SFP). The inclusion of protein promoted molecular interactions, resulting in a well-organized homogeneous structure, as revealed by scanning electron microscopy and fracture-acoustic emission analysis. The resultant composite films showed an increase in stiffness and strength and a decrease in water solubility and water vapor transmission rate, in comparison with films cast from pectin alone. The composite films inherited the elastic nature of proteins, thus being more flexible than the pure pectin films. Treating the composite films with glutaraldehyde/methanol induced chemical cross-linking with the proteins and reduced the interstitial spaces among the macromolecules and, consequently, improved their mechanical properties and water resistance. Treating the protein-free pectin films with glutaraldehyde/methanol also improved the Young's modulus and tensile strength, but showed little effect on the water resistance, because the treatment caused only dehydration of the pectin films and the dehydration is reversible. The composite films were biodegradable and possessed moderate mechanical properties and a low water vapor transmission rate. Therefore, the films are considered to have potential applications as packaging or coating materials for food or drug industries.

  13. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    PubMed Central

    Liu, Peng; Chen, Ying; Yu, Zhiwu

    2016-01-01

    A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570), and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrscopy, X-ray diffractometry (XRD), contact angle meter (CA), and scanning electron microscope (SEM). The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570). Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures. PMID:28774141

  14. Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

    PubMed Central

    Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee

    2017-01-01

    We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol–gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications. PMID:28546899

  15. Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting.

    PubMed

    Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee; Oh, Yong-Jun

    2017-01-01

    We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol-gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications.

  16. Mechanical properties of atomic layer deposition-reinforced nanoparticle thin films.

    PubMed

    Zhang, Lei; Prosser, Jacob H; Feng, Gang; Lee, Daeyeon

    2012-10-21

    Nanoparticle thin films (NTFs) exhibit multifunctionality, making them useful for numerous advanced applications including energy storage and conversion, biosensing and photonics. Poor mechanical reliability and durability of NTFs, however, limit their industrial and commercial applications. Atomic layer deposition (ALD) represents a unique opportunity to enhance the mechanical properties of NTFs at a relatively low temperature without drastically changing their original structure and functionality. In this work, we study how ALD of different materials, Al(2)O(3), TiO(2), and SiO(2), affects the mechanical properties of TiO(2) and SiO(2) NTFs. Our results demonstrate that the mechanical properties of ALD-reinforced NTFs are dominantly influenced by the mechanical properties of the ALD materials rather than by the compositional matching between ALD and nanoparticle materials. Among the three ALD materials, Al(2)O(3) ALD provides the best enhancement in the modulus and hardness of the NTFs. Interestingly, Al(2)O(3) ALD is able to enhance not only the modulus and hardness but also the toughness of NTFs. Our study presents an additional benefit of depositing nanometer scale ALD layers in NTFs; that is, we find that the hardness and modulus of ultrathin ALD layers (<5 nm) can be estimated from the mechanical properties of ALD-reinforced NTFs using a simple mixing rule. This investigation also provides insight into the use of nanoindentation for testing the mechanical properties of ultrathin ALD-reinforced NTFs.

  17. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging.

    PubMed

    Tankhiwale, Rasika; Bajpai, S K

    2012-02-01

    The present work describes the preparation of ZnO nanoparticles loaded starch-coated polyethylene film. The presence of ZnO nanoparticles was confirmed by surface plasmon resonance (SPR), X-ray diffraction (XRD) studies and transmission electron microscopy (TEM). The ZnO loaded film was tested for its biocidal action against model bacteria Escherichia coli using zone inhibition and killing kinetics of bacterial growth methods. This newly developed material bears potential to be used as food packaging material to prevent food stuff from bacterial contamination. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    PubMed Central

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  19. Magnetic hydrogel nanocomposites and composite nanoparticles--a review of recent patented works.

    PubMed

    Daniel-da-Silva, Ana L; Carvalho, Rui S; Trindade, Tito

    2013-06-01

    Magnetic hydrogel nanocomposites and composite nanoparticles form a class of soft materials with remote controllable properties that have attracted great attention due to their potential use in diverse applications. These include medical applications such as controlled drug delivery, clinical imaging and cancer hyperthermia and ecological applications as well, such as wastewater treatment. The present review provides an overview of the patents disclosed and research work developed in the last decade on magnetic hydrogel nanocomposites and magnetic hydrogel composite nanoparticles envisaging the above mentioned applications. In this context, recent patented advances on chemical methods for the preparation of bulk hydrogel nanocomposites and composite nanoparticles will be reviewed.

  20. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  1. Work function measurements of copper nanoparticle intercalated polyaniline nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Patil, U. V.; Ramgir, Niranjan S.; Bhogale, A.; Debnath, A. K.; Muthe, K. P.; Gadkari, S. C.; Kothari, D. C.

    2017-05-01

    The nature of contact between the electrode and the sensing material plays a crucial role in governing the sensing mechanism. Thin films of polyaniline (PANI) and copper-polyaniline nanocomposite (NC) have been deposited at room temperatures by in-situ oxidative polymerization of aniline in the presence of Cu nanoparticles. For sensing applications a thin film Au (gold) ˜100 nm is deposited and used as a conducting electrode. To understand the nature of contact (i.e., ohmic or Schottky) the work function of the conducting polyaniline and nanocomposite films were measured using Kelvin Probe method. I-V characteristics of PANI and NC films investigated at room temperatures further corroborates and confirms the formation of Ohmic contact as evident from work function measurements.

  2. Self-Assembly of Magnetic Nanoparticles at the Surface and Within Block Copolymer Films

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ohno, Kohji; Composto, Russell

    2007-03-01

    We investigate the self-assembly of magnetic Fe3O4 nanoparticles in thin films of a symmetric block copolymer of poly(styrene-b-methyl methacrylate), PS-b-PMMA (75 kg/mol). The Fe3O4 nanoparticles (4nm) are grafted by poly(methyl methacrylate) (PMMA) (2.7 kg/mol) brushes to improve their compatibility. The weight percent of Fe3O4 in PS-b-PMMA is 1, 4 and 10. The Fe3O4 reside at the intermaterial dividing surface and also form small disk-like aggregates within the PMMA phase. The addition of Fe3O4 slows down the transition from perpendicular to parallel lamellae morphology at the surface and slowing down increases as weight percent Fe3O4 increases. Using cross-sectional TEM, nanoparticles are found to be rejected from the parallel lamellae and gather preferentially within the perpendicular lamellae. These studies demonstrate that the Fe3O4 particles influence thin film morphology and visa versa. Because of widespread interest in nanodevices, this study shows that arrays of functional nanoparticles can be formed using block copolymer templates.

  3. Film/Adhesive Processing Module for Fiber-Placement Processing of Composites

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2007-01-01

    An automated apparatus has been designed and constructed that enables the automated lay-up of composite structures incorporating films, foils, and adhesives during the automated fiber-placement process. This apparatus, denoted a film module, could be used to deposit materials in film or thin sheet form either simultaneously when laying down the fiber composite article or in an independent step.

  4. Mechanical and solubility properties of bio-nanocomposite film of semi refined kappa carrageenan/ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Saputri, Apriliana Eka; Praseptiangga, Danar; Rochima, Emma; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    The aim of this present work is to develop semi refined kappa carrageenan based bio-nanocomposite film as an alternative to synthetic petroleum based food packaging materials. Among natural polymers, carrageenan is one of the most promising material, since it is a renewable bioresource. The ZnO nanoparticles (0.5%; 1.0%; 1.5% w/w carrageenan) was incorporated into carrageenan polymer to prepare bio-nanocomposite films, where ZnO acts as reinforcement for carrageenan matrix. The mechanical and solubility properties of the prepared films were investigated as a function of ZnO concentration. The results indicated that the addition of ZnO exhibits greater solubility compared to the neat film. The elongation at break is insignificantly different on the films with and without addition ZnO. The tensile strength of the film was highest for the sample with 0.5% ZnO. These mechanical and solubility properties suggest that bio-nanocomposite film of semi refined kappa carrageenan and nanoparticle ZnO can be effectively used as food packaging material.

  5. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Maugeri, P.; Cacciato, G.; Zimbone, M.; Grimaldi, M. G.

    2016-09-01

    In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures. Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5-1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the

  6. Ag–Pt compositional intermetallics made from alloy nanoparticles

    DOE PAGES

    Pan, Yung -Tin; Yan, Yuqi; Shao, Yu -Tsun; ...

    2016-09-07

    Intermetallics are compounds with long-range structural order that often lies in a state of thermodynamic minimum. They are usually considered as favorable structures for catalysis due to their high activity and robust stability. However, formation of intermetallic compounds is often regarded as element specific. For instance, Ag and Pt do not form alloy in bulk phase through the conventional metallurgy approach in almost the entire range of composition. Herein, we demonstrate a bottom-up approach to create a new Ag–Pt compositional intermetallic phase from nanoparticles. By thermally treating the corresponding alloy nanoparticles in inert atmosphere, we obtained an intermetallic material thatmore » has an exceptionally narrow Ag/Pt ratio around 52/48 to 53/47, and a structure of interchangeable closely packed Ag and Pt layers with 85% on tetrahedral and 15% on octahedral sites. This rather unique stacking results in wavy patterns of Ag and Pt planes revealed by scanning transmission electron microscope (STEM). Finally, this Ag–Pt compositional intermetallic phase is highly active for electrochemical oxidation of formic acid at low anodic potentials, 5 times higher than its alloy nanoparticles, and 29 times higher than the reference Pt/C at 0.4 V (vs RHE) in current density.« less

  7. Ag–Pt compositional intermetallics made from alloy nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yung -Tin; Yan, Yuqi; Shao, Yu -Tsun

    Intermetallics are compounds with long-range structural order that often lies in a state of thermodynamic minimum. They are usually considered as favorable structures for catalysis due to their high activity and robust stability. However, formation of intermetallic compounds is often regarded as element specific. For instance, Ag and Pt do not form alloy in bulk phase through the conventional metallurgy approach in almost the entire range of composition. Herein, we demonstrate a bottom-up approach to create a new Ag–Pt compositional intermetallic phase from nanoparticles. By thermally treating the corresponding alloy nanoparticles in inert atmosphere, we obtained an intermetallic material thatmore » has an exceptionally narrow Ag/Pt ratio around 52/48 to 53/47, and a structure of interchangeable closely packed Ag and Pt layers with 85% on tetrahedral and 15% on octahedral sites. This rather unique stacking results in wavy patterns of Ag and Pt planes revealed by scanning transmission electron microscope (STEM). Finally, this Ag–Pt compositional intermetallic phase is highly active for electrochemical oxidation of formic acid at low anodic potentials, 5 times higher than its alloy nanoparticles, and 29 times higher than the reference Pt/C at 0.4 V (vs RHE) in current density.« less

  8. High Rate Micromechanical Behavior of Grafted Polymer Nanoparticle Films

    NASA Astrophysics Data System (ADS)

    Thomas, Edwin

    We report the ultra high strain rate behavior of films comprised of polymer grafted nanoparticles (NPs) and compare the results to homopolymer films. The films are formed by flow coating a suspension of polystyrene (PS) chains of 230 kg/mol grafted to 16nm diameter SiO2\\ at a graft density of 0.6 chains/nm2 resulting a film with 1 vol % SiO2. Films of 267 kg/mol PS were also flow coated and both films were impacted at velocities 350-700 ms-1 using 3.7 micron SiO2\\ projectiles to achieve increments in kinetic energy (KE) of 1:2:4. The KE of the projectiles before and after penetration was measured to determine the penetration energy. TEM and SEM suggest the projectile initially induces plastic flow due to the adiabatic temperature rise from impact. As the projectile deforms the film, the lower magnitude, biaxial stress state in the peripherial regions causes material microvoid formation and initiation of craze growth in the radial and tangential directions. The anchoring of the grafted polymer chains to the NPs increases the penetration energy relative to the pure homopolymer by 50% and the films capacity to delocalize the impact by 200%. These results suggest that highly grafted NP films may be useful in lightweight protection systems. In collaboration with Omri Fried, Olawale Lawal, Yang Jiao, Victor Hsaio, Thevamaran Ramathasan, Mujin Zhou, Richard Vaia.

  9. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    NASA Astrophysics Data System (ADS)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  10. Self-assembly of large-scale crack-free gold nanoparticle films using a ‘drain-to-deposit’ strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Hallinan, Daniel T.

    2016-04-26

    Gold nanoparticles are widely studied due to the ease of controlled synthesis, facile surface modification, and interesting physical properties. However, a technique for depositing large-area, crack-free monolayers on solid substrates is lacking. Herein is presented a method for accomplishing this. Spherical gold nanoparticles were synthesized as an aqueous dispersion. Assembly into monolayers and ligand exchange occurred simultaneously at an organic/aqueous interface. Then the monolayer film was deposited onto arbitrary solid substrates by slowly pumping out the lower, aqueous phase. This allowed the monolayer film (and liquid–liquid interface) to descend without significant disturbance, eventually reaching substrates contained in the aqueous phase.more » The resulting macroscopic quality of the films was found to be superior to films transferred by Langmuir techniques. The surface plasmon resonance and Raman enhancement of the films were evaluated and found to be uniform across the surface of each film.« less

  11. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C.

  12. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  13. Molecular ways to nanoscale particles and films

    NASA Astrophysics Data System (ADS)

    Shen, H.; Mathur, S.

    2002-06-01

    Chemical routes for the synthesis of nanoparticles and films are proving to be highly efficient and versatile in tailoring the elemental combination and intrinsic properties of the target materials. The use of molecular compounds allows a controlled interaction of atoms or molecules, when compared to the solid-state methods, resulting in the formation of compositionally homogeneous deposits or uniform solid particles. Assembling all the elements forming the material in a single molecular compound, the so-called single-source approach augments the formation of nanocrystalline phases at low temperatures with atomically precise structures. To this end, we have shown that predefined reaction (decomposition) chemistry of precursors enforces a molecular level homogeneity in the obtained materials. Following the single-step conversions of appropriate molecular sources, we have obtained films and nanoparticles of oxides (Fe3O4, BaTiO3, ZnAl2O4, CoAl2O4), metal/oxide composites (Ge/GeO2) and ceramic-ceramic composites (LnAIO3/AI2O3; Ln = Pr, Nd). For a comparative evaluation, CoAl2O4 nanoparticles were prepared by both single- and multi-component routes; whereas the single-source approach yielded monophasic high purity spinels, phase contamination, due to monometal phases, was observed in the ceramic obtained from multicomponent mixture. An account of the size-controlled synthesis and characterisation of the new ceramics and composites is presented.

  14. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  15. Modifying the visual appearance of metal nanoparticle composites by infrared laser annealing

    NASA Astrophysics Data System (ADS)

    Halabica, Andrej; Indrobo, J. C.; Magruder, R. H., III; Haglund, R. F., Jr.; Epp, J. M.; Rashkeev, S.; Boatner, L. A.; Pennycook, S. J.; Pantelides, S. T.

    2007-03-01

    It has long been known that noble-metal nanoparticles in insulators can alter their visual appearance. Many metal nanoparticle composites can be created by ion implantation and subsequent annealing to initiate phase separation, nucleation and growth of nanoparticles. The size and size distribution of the nanoparticles - and therefore the color of the composite - are determined by the chemistry and thermodynamics of the annealing process. In this paper we report that we can also alter the color of gold- and silver-implanted silica and alumina by tunable infrared laser irradiation. Essentially a variant of rapid thermal annealing, this laser treatment can shift the plasmon band of the nanoparticles by tens of nm, resulting in significantly altered visual appearance. The amount of energy delivered to the implanted layer, and the subsequent color variation, can be adjusted by changing the wavelength and fluence of the laser. This makes it possible, as we will show, to write or pattern the composite material with 200 μm linewidths. This work is partially supported by DOE (DE-AC05-00OR22725), NSF (DMR-0513048), and by Alcoa Inc.

  16. High-Performance Cellulose Nanofibril Composite Films

    Treesearch

    Yan Qing; Ronald Sabo; Yiqiang Wu; Zhiyong Cai

    2012-01-01

    Cellulose nanofibril/phenol formaldehyde (CNF/PF) composite films with high work of fracture were prepared by filtering a mixture of 2,2,6,6tetramethylpiperidine-1-oxyl (TEMPO) oxidized wood nanofibers and water-soluble phenol formaldehyde with resin contents ranging from 5 to 20 wt%, followed by hot pressing. The composites were characterized by tensile testing,...

  17. In situ self-assembly of polarizing chromogen nanofibers catalyzed with hybrid films of gold nanoparticles and cellulose

    NASA Astrophysics Data System (ADS)

    Liu, Zhiming; Wu, Wenjian

    2017-09-01

    Hybrid materials of metal nanoparticles and biopolymers with catalytic properties are very promising to be used as detectors in biochemical reactions. In this work, the catalytic properties and relevant in situ self-assembly abilities of hybrid films of gold nanoparticles (GNPs) and cellulose for the oxidation of benign chromogen 3,3‧,5,5‧-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2) are revealed for the first time. The peroxidase-like properties of hybrid films are inherited from those of colloidal GNPs and increase with their contents of GNPs. It is discovered that the oxidized products of TMB grow in situ and assemble into rod-like and tumbleweed-like nanofiber assemblies on hybrid films. The rod-like nanofibers show a magnificent polarizing phenomenon under polarized light because of polycrystalline globular nanoparticles inside. The in situ self-assembly of polarizing nanofibers of chromogen catalyzed with hybrid films creates an opportunity for the synthesis of novel organic nanomaterials and the enhanced detection of biochemical products under polarized light.

  18. Properties of polyvinyl alcohol/xylan composite films with citric acid.

    PubMed

    Wang, Shuaiyang; Ren, Junli; Li, Weiying; Sun, Runcang; Liu, Shijie

    2014-03-15

    Composite films of xylan and polyvinyl alcohol were produced with citric acid as a new plasticizer or a cross-linking agent. The effects of citric acid content and polyvinyl alcohol/xylan weight ratio on the mechanical properties, thermal stability, solubility, degree of swelling and water vapor permeability of the composite films were investigated. The intermolecular interactions and morphology of composite films were characterized by FTIR spectroscopy and SEM. The results indicated that polyvinyl alcohol/xylan composite films had good compatibility. With an increase in citric acid content from 10% to 50%, the tensile strength reduced from 35.1 to 11.6 MPa. However, the elongation at break increased sharply from 15.1% to 249.5%. The values of water vapor permeability ranged from 2.35 to 2.95 × 10(-7)g/(mm(2)h). Interactions between xylan and polyvinyl alcohol in the presence of citric acid become stronger, which were caused by hydrogen bond and ester bond formation among the components during film forming. Copyright © 2013. Published by Elsevier Ltd.

  19. In-situ synthesis of magnetic iron-oxide nanoparticle-nanofibre composites using electrospinning.

    PubMed

    Burke, Luke; Mortimer, Chris J; Curtis, Daniel J; Lewis, Aled R; Williams, Rhodri; Hawkins, Karl; Maffeis, Thierry G G; Wright, Chris J

    2017-01-01

    We demonstrate a facile, one-step process to form polymer scaffolds composed of magnetic iron oxide nanoparticles (MNPs) contained within electrospun nano- and micro-fibres of two biocompatible polymers, Poly(ethylene oxide) (PEO) and Poly(vinyl pyrrolidone) (PVP). This was achieved with both needle and free-surface electrospinning systems demonstrating the scalability of the composite fibre manufacture; a 228 fold increase in fibre fabrication was observed for the free-surface system. In all cases the nanoparticle-nanofibre composite scaffolds displayed morphological properties as good as or better than those previously described and fabricated using complex multi-stage techniques. Fibres produced had an average diameter (Needle-spun: 125±18nm (PEO) and 1.58±0.28μm (PVP); Free-surface electrospun: 155±31nm (PEO)) similar to that reported previously, were smooth with no bead defects. Nanoparticle-nanofibre composites were characterised using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) (Nanoparticle average diameter ranging from 8±3nm to 27±5nm), XRD (Phase of iron oxide nanoparticles identified as magnetite) and nuclear magnetic resonance relaxation measurements (NMR) (T1/T2: 32.44 for PEO fibres containing MNPs) were used to verify the magnetic behaviour of MNPs. This study represents a significant step forward for production rates of magnetic nanoparticle-nanofibre composite scaffolds by the electrospinning technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Robust antireflection coatings By UV cross-linking of silica nanoparticles and diazo-resin polycation

    NASA Astrophysics Data System (ADS)

    Ridley, Jason I.; Heflin, James R.; Ritter, Alfred L.

    2007-09-01

    Antireflection coatings have been fabricated by self-assembly using silica nanoparticles. The ionic self-assembled multilayer (ISAM) films are tightly packed and homogeneous. While the geometric properties of a matrix of spherical particles with corresponding void interstices are highly suitable to meet the conditions for minimal reflectivity, it is also a cause for the lack of cohesion within the constituent body, as well as to the substrate surface. This study investigates methods for improving the interconnectivity of the nanoparticle structure. One such method involves UV curing of diazo-resin (DAR)/silica nanoparticle films, thereby converting the ionic interaction into a stronger covalent bond. Factorial analysis and response surface methods are incorporated to determine factors that affect film properties, and to optimize their optical and adhesive capabilities. The second study looks at the adhesive strength of composite multilayer films. Films are fabricated with silica nanoparticles and poly(allylamine hydrochloride) (PAH), and dipped into aqueous solutions of PAH and poly(methacrylic acid, sodium salt) (PMA) to improve cohesion of silica nanoparticles in the matrix, as well as binding strength to the substrate surface. The results of the two studies are discussed.

  1. Thin film of polyelectrolyte complex nanoparticles for protein sensing

    NASA Astrophysics Data System (ADS)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2018-04-01

    Polyelectrolyte complex nanoparticles (PEC NPs) are prepared using two polyelectrolytes poly(Na-4-styrene sulphonate) (PSS) and poly(diallyldimethylammoniumchloride) (PDADMAC) at a molar mixing ratio of n-/n+ ≈ 0.67 by consecutive centrifugation. PEC NPs formation is investigated through dynamic light scattering (DLS) and atomic force microscopy (AFM). Optical behaviors of PEC NPs in thin film confirmation are studied using UV-Vis and photoluminescence spectroscopy. Although absorption peaks of PSS occurs at the same position before and after the formation of PEC NPs but emission peaks are found at ≈ 278 and 305 nm whereas for pure PSS emission peaks exist at ≈ 295 and 365 nm. Hence, thin film of PEC NPs can be applied as very sensitive material for protein sensing since absorption of protein is occurred at ≈ 278 nm. Protein sensing behavior of such PEC NPs thin film is studied using photoluminescence spectroscopy.

  2. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajh, T.; Musumeci, A.; Gosztola, D.

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules thatmore » lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.« less

  3. Properties of cellulose/Thespesia lampas short fibers bio-composite films.

    PubMed

    Ashok, B; Reddy, K Obi; Madhukar, K; Cai, J; Zhang, L; Rajulu, A Varada

    2015-01-01

    Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces.

    PubMed

    Tiguntseva, E; Chebykin, A; Ishteev, A; Haroldson, R; Balachandran, B; Ushakova, E; Komissarenko, F; Wang, H; Milichko, V; Tsypkin, A; Zuev, D; Hu, W; Makarov, S; Zakhidov, A

    2017-08-31

    Recently, hybrid halide perovskites have emerged as one of the most promising types of materials for thin-film photovoltaic and light-emitting devices because of their low-cost and potential for high efficiency. Further boosting their performance without detrimentally increasing the complexity of the architecture is critically important for commercialization. Despite a number of plasmonic nanoparticle based designs having been proposed for solar cell improvement, inherent optical losses of the nanoparticles reduce photoluminescence from perovskites. Here we use low-loss high-refractive-index dielectric (silicon) nanoparticles for improving the optical properties of organo-metallic perovskite (MAPbI 3 ) films and metasurfaces to achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally a 50% enhancement of photoluminescence intensity from a perovskite layer with silicon nanoparticles and 200% enhancement for a nanoimprinted metasurface with silicon nanoparticles on top. Strong increase in light absorption is also demonstrated and described by theoretical calculations. Since both silicon nanoparticle fabrication/deposition and metasurface nanoimprinting techniques are low-cost, we believe that the developed all-dielectric approach paves the way to novel scalable and highly effective designs of perovskite based metadevices.

  5. Synthesis, structural, optical and electrical properties of metal nanoparticle-rare earth ion dispersed in polymer film

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh; Kaur, Gagandeep; Singh, P.; Rai, S. B.

    2013-03-01

    Cu-nanoparticles have been prepared by ablating a copper target submerged in benzene with laser pulses of Nd:YAG (wavelength: 355, 532 nm and 1,064 nm). Colloidal nanoparticles have been characterized by UV-Vis spectroscopy and transmission electron microscopy. The obtained radius for the nanoparticles prepared using 1,064 nm irradiation lies in the range 15-30 nm, with absorption peak at 572 nm. Luminescence properties of Tb3+ ions in the presence and absence of Cu-nanoparticles have been investigated using 355 nm excitation. An enhancement in luminescence of Tb3+ by local field effect causing increase in lifetime of 5D4 level of Tb3+ ion has been observed. Frequency and temperature-dependent conductivity of Tb3+ doped PVA thin films with and without Cu-nanoparticles have been measured in the frequency range 20 Hz-1 MHz and in the temperature range 318-338 K (well below its melting temperature). Real part of the conductivity spectra has been explained in terms of power law. The electrical properties of the thin films show a decrease in dc conductivity on incorporation of the Cu-nanoparticles.

  6. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill.

    PubMed

    Steiner, Denise; Finke, Jan Henrik; Kwade, Arno

    2016-09-25

    Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple.

    PubMed

    Li, Wenhui; Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan; Qin, Yuyue

    2017-07-31

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce.

  8. Effects of PLA Film Incorporated with ZnO Nanoparticle on the Quality Attributes of Fresh-Cut Apple

    PubMed Central

    Li, Lin; Cao, Yun; Lan, Tianqing; Chen, Haiyan

    2017-01-01

    A novel nanopackaging film was synthesized by incorporating ZnO nanoparticles into a poly-lactic acid (PLA) matrix, and its effect on the quality of fresh-cut apple during the period of preservation was investigated at 4 ± 1 °C for 14 days. Six wt % cinnamaldehyde was added into the nano-blend film. Scanning electron microscope (SEM) analysis showed a rougher cross-section of the nano-blend films and an X-ray diffraction (XRD) was carried out to determine the structure of the ZnO nanoparticles. Compared to the pure PLA film, the nano-blend film had a higher water vapor permeability (WVP) and lower oxygen permeability. With the increase of the nanoparticles (NPs) in the PLA, the elongation at break (ε) and elastic modulus (EM) increased, while tensile strength (TS) decreased. Thermogravimetric analysis (TGA) presented a relatively good thermostability. Most importantly, the physical and biochemical properties of the fresh-cut apple were also measured, such as weight loss, firmness, polyphenol oxidase (PPO), total phenolic content, browning index (BI), sensory quality, and microbiological level. The results indicated that nano-blend packaging films had the highest weight loss at the end of storage compared to the pure PLA film; however, nanopackaging provided a better retention of firmness, total phenolic countent, color, and sensory quality. It also had a remarkable inhibition on the growth of microorganisms. Therefore, Nano-ZnO active packaging could be used to improve the shelf-life of fresh-cut produce. PMID:28758980

  9. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    DTIC Science & Technology

    2014-07-28

    particle size of magnetite nanoparticles. The PI will continue to develop composites that could be utilized for developing high- bandwidth radio frequency...to improve the efficiency and decrease the size of the device. High performance stretchable magneto-dielectric materials can be accomplished using...nanoparticles oxidize at dimensions smaller than the critical size for superparamagnetic to ferromagnetic transition, which is essential for minimal

  10. Memory effects in annealed hybrid gold nanoparticles/block copolymer bilayers

    PubMed Central

    2011-01-01

    We report on the use of the self-organization process of sputtered gold nanoparticles on a self-assembled block copolymer film deposited by horizontal precipitation Langmuir-Blodgett (HP-LB) method. The morphology and the phase-separation of a film of poly-n-butylacrylate-block-polyacrylic acid (PnBuA-b-PAA) were studied at the nanometric scale by using atomic force microscopy (AFM) and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The templating capability of the PnBuA-b-PAA phase-separated film was studied by sputtering gold nanoparticles (NPs), forming a film of nanometric thickness. The effect of the polymer chain mobility onto the organization of gold nanoparticle layer was assessed by heating the obtained hybrid PnBuA-b-PAA/Au NPs bilayer at T >Tg. The nanoparticles' distribution onto the different copolymer domains was found strongly affected by the annealing treatment, showing a peculiar memory effect, which modifies the AFM phase response of the Au NPs layer onto the polar domains, without affecting their surfacial composition. The effect is discussed in terms of the peculiar morphological features induced by enhanced mobility of polymer chains on the Au NPs layer. PMID:21711674

  11. Achievement of a high-mobility FET with a cloud-aligned composite oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shunpei; Shima, Yukinori; Hosaka, Yasuharu; Okazaki, Kenichi; Koezuka, Junichi

    2016-11-01

    We have recently discovered that films of a widely used In-Ga-Zn oxide (IGZO) with \\text{In}:\\text{Ga}:\\text{Zn} = 1:1:1 have different material composition states when sputter-deposited under different conditions using the same polycrystalline IGZO target. Significant improvements in on-state current and mobility (as high as 40 cm2·V-1·s-1) are obtained. The results of local composition analysis indicate that the deposited film is not composed of any known homogeneous IGZO compound and that the components of this film are separated into two types of nanoparticle regions: one type is composed mainly of GaO x and GaZnO x , which contribute to on/off (switching) characteristics, and the other is composed mainly of InO x and InZnO x , which contribute to on-state characteristics. These regions constitute a new type of oxide semiconductor (OS) film. The nanoparticles with a blurry boundary extend like a cloud, probably complementing one another. We consider that this OS film has a novel composition, which can be described as a “cloud-aligned composite OS” (CAC-OS).

  12. In situ green synthesis and characterization of sericin-silver nanoparticle composite with effective antibacterial activity and good biocompatibility.

    PubMed

    He, Huawei; Tao, Gang; Wang, Yejing; Cai, Rui; Guo, Pengchao; Chen, Liqun; Zuo, Hua; Zhao, Ping; Xia, Qingyou

    2017-11-01

    Silver nanoparticle has been widely applied to a variety of fields for its outstanding antimicrobial activity. However, the stability of silver nanoparticle limits its application under certain conditions. Thus, improving the stability of silver nanoparticle via biosynthesis is a promising shortcut to expand its application. Sericin from silkworm cocoon has good hydrophilicity, reaction activity, biocompatibility and biodegradability. In this study, we developed a novel, simple, one-step biosynthesis method to prepare sericin-silver nanoparticle composite in situ in solution. Sericin served as the reductant of silver ion, the dispersant and stabilizer of the prepared sericin-silver nanoparticle composite. Natural light was the only power source used to catalyze the synthesis of silver nanoparticle in situ in solution. The novel sericin-silver nanoparticle composite was characterized by ultraviolet-visible and fluorescence spectroscopy, X-ray diffraction, transmission electron microscopy and fourier transform infrared spectroscopy. The results showed silver nanoparticle could be synthesized through the reduction of AgNO 3 by the phenolic hydroxyl group of tyrosine residues of sericin under the catalysis of natural light. The synthesized silver nanoparticle had good crystalline, size distribution and long-term stability at room temperature. Light irradiation was essential for the preparation of sericin-silver nanoparticle composite. The antibacterial activity assay showed 25mg/L and 100mg/L were the minimum concentrations of sericin-silver nanoparticle composite required to inhibit the growth of Staphylococcus aureus and kill this bacterium, respectively. The cytotoxicity assay showed cell viability and cell growth were almost not affected by sericin-silver nanoparticle composite under the concentration of 25mg/L. Our study suggested the preparation of sericin-silver nanoparticle composite was environmentally friendly and energy conservation, and the prepared sericin

  13. Composite membranes from photochemical synthesis of ultrathin polymer films

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Martin, Charles R.

    1991-07-01

    THERE has recently been a resurgence of interest in synthetic membranes and membrane-based processes1-12. This is motivated by a wide variety of technological applications, such as chemical separations1-7, bioreactors and sensors8,9, energy conversion10,11 and drug-delivery systems12. Many of these technologies require the ability to prepare extremely thin, defect-free synthetic (generally polymeric) films, which are supported on microporous supports to form composite membranes. Here we describe a method for producing composite membranes of this sort that incorporate high-quality polymer films less than 50-nm thick. The method involves interfacial photopolymerization of a thin polymer film on the surface of the microporous substrate. We have been able to use this technique to synthesize a variety of functionalized ultrathin films based on electroactive, photoactive and ion-exchange polymers. We demonstrate the method here with composite membranes that show exceptional gas-transport properties.

  14. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles.

    PubMed

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-12-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  15. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-04-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  16. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  17. Fabrication and evaluation of valsartan–polymer– surfactant composite nanoparticles by using the supercritical antisolvent process

    PubMed Central

    Kim, Min-Soo; Baek, In-hwan

    2014-01-01

    The aim of this study was to fabricate valsartan composite nanoparticles by using the supercritical antisolvent (SAS) process, and to evaluate the correlation between in vitro dissolution and in vivo pharmacokinetic parameters for the poorly water-soluble drug valsartan. Spherical composite nanoparticles with a mean size smaller than 400 nm, which contained valsartan, were successfully fabricated by using the SAS process. X-ray diffraction and thermal analyses indicated that valsartan was present in an amorphous form within the composite nanoparticles. The in vitro dissolution and oral bioavailability of valsartan were dramatically enhanced by the composite nanoparticles. Valsartan–hydroxypropyl methylcellulose–poloxamer 407 nanoparticles exhibited faster drug release (up to 90% within 10 minutes under all dissolution conditions) and higher oral bioavailability than the raw material, with an approximately 7.2-fold higher maximum plasma concentration. In addition, there was a positive linear correlation between the pharmacokinetic parameters and the in vitro dissolution efficiency. Therefore, the preparation of composite nanoparticles with valsartan–hydroxypropyl methylcellulose and poloxamer 407 by using the SAS process could be an effective formulation strategy for the development of a new dosage form of valsartan with high oral bioavailability. PMID:25404856

  18. Development and characterisation of composite films made of kefiran and starch.

    PubMed

    Motedayen, Ali Akbar; Khodaiyan, Faramarz; Salehi, Esmail Atai

    2013-02-15

    In this study, new edible composite films were prepared by blending kefiran with corn starch. Film-forming solutions of different ratios of kefiran to corn starch (100/0, 70/30, 50/50, 30/70) were cast at room temperature. The effects of starch addition on the resulting films' physical, mechanical and water-vapor permeability (WVP) properties were investigated. Increasing starch content from 0% to 50% (v/v) decreased the WVP of films; however, with further starch addition the WVP increased. Also, this increase in starch content increased the tensile strength and extensibility of the composite films. However, these mechanical properties decreased at higher starch contents. Dynamic mechanical thermal analysis (DMTA) curves showed that addition of starch at all levels increased the glass transition temperature of films. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. Thus, it was observed that these two film-forming components were compatible, and that an interaction existed between them. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Synthesis of embedded titanium dioxide nanoparticles by oxygen ion implantation in titanium films

    NASA Astrophysics Data System (ADS)

    Rukade, Deepti. A.; Desai, C. A.; Kulkarni, Nilesh; Tribedi, L. C.; Bhattacharyya, Varsha

    2013-02-01

    Thin films of titanium of 100nm thickness are deposited on fused silica substrates. These films are implanted by oxygen ions with implantation energy of 60keV obtained from ECR based highly charged ion accelerator. The implanted films are later annealed in a tube furnace to establish nanophase formation. The post implanted annealed films are characterized by UV-Visible Spectroscopy and Glancing Angle X-ray Diffraction technique (GAXRD). The phase formed and particle size is determined by GAXRD. Nanoparticle formation is confirmed by the UV-VIS spectroscopic analysis that shows quantum size effects in the form of a blue shift in the band-gap energy of titanium-oxide.

  20. Electrochemiluminescence sensor for melamine based on a Ru(bpy)₃²⁺-doped silica nanoparticles/carboxylic acid functionalized multi-walled carbon nanotubes/Nafion composite film modified electrode.

    PubMed

    Chen, Xiaomei; Lian, Sai; Ma, Ying; Peng, Aihong; Tian, Xiaotian; Huang, Zhiyong; Chen, Xi

    2016-01-01

    In this work, a sensitive electrochemiluminescence (ECL) sensor for the determination of melamine (MEL) was developed based on a Ru(bpy)3(2+)-doped silica nanoparticles (RUDS)/carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs)/Nafion composite film modified electrode. The homogeneous spherical RUDS were synthesized by a reverse microemulsion method. As Ru(bpy)3(2+) were encapsulated in the RUDS, Ru(bpy)3(2+) dropping from the modified electrode can be greatly prevented, which is helpful for obtaining a stable ECL signal. Moreover, to improve the conductivity of the film and promote the electron transfer rate on electrode surface, CMWCNTs with excellent electrical conductivity and large surface area were applied in the construction of the sensing film. As CMWCNTs acted as electron bridges making more Ru(bpy)3(2+) participate in the reaction, the ECL intensity was greatly enhanced. Under the optimum conditions, the relative ECL signal (△IECL) was proportional to the logarithmic MEL concentration ranging from 5×10(-13) to 1×10(-7) mol L(-1) with a detection limit of 1×10(-13) mol L(-1). To verify the reliability, the thus-fabricated ECL sensor was applied to determine the concentration of MEL in milk. Based on these investigations, the proposed ECL sensor exhibited good feasibility and high sensitivity for the determination of MEL, promising the applicability of this sensor in practical analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  2. Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite

    NASA Astrophysics Data System (ADS)

    Ehsani, Ali; Jaleh, Babak; Nasrollahzadeh, Mahmoud

    2014-07-01

    Reduced graphene oxide (rGO) was used to support Cu nanoparticles. As electro-active electrodes for supercapacitors composites of reduced graphene oxide/Cu nanoparticles (rGO/CuNPs) and polytyramine (PT) with good uniformity are prepared by electropolymerization. Composite of rGO/CuNPs-PT was synthesized by cyclic voltammetry (CV) methods and electrochemical properties of film were investigated by using electrochemical techniques. The results show that, the rGO/CuNPs-PT/G has better capacitance performance. This is mainly because of the really large surface area and the better electronic and ionic conductivity of rGO/CuNPs-PT/G, which lead to greater double-layer capacitance and faradic pseudo capacitance. Modified graphite electrodes (rGO/CuNPs-PT/G) were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) were employed. In comparison with a Cu-PT/G (Graphite), rGO/CuNPs-PT/G modified electrode shows a significantly higher response for methanol oxidation. A mechanism based on the electro-chemical generation of Cu(III) active sites and their subsequent consumptions by methanol have been discussed.

  3. Synthesis of metal nanoparticle and patterning in polymeric films induced by electron beam

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi; Marignier, Jean-Louis; Mostafavi, Mehran; Belloni, Jacqueline

    2018-03-01

    Using an electron beam, thin polymeric films loaded with metal nanoparticles of silver were prepared by a one-step irradiation-induced reduction of the metal ions embedded in the polymer. The metal nanoparticles were observed by either optical absorption or microscopy. The mechanism of the reduction of metal ions and of the polymer crosslinking were deduced from the average absorbance measurements. In view of realizing specific patterns of high resolution using the electron beam, electron beam produces 200 nm wide lines that can be separated by unexposed spaces of adjustable width, where precursors were dissolved. The resolution of the electron beam has been exploited to demonstrate the achievement of nanopatterning on polymer films using a direct-writing process. This method supplies interesting applications such as masks, replicas, or imprint molds of improved density and contrast.

  4. In situ synthesis of gold nanoparticles in exponentially-growing layer-by-layer films

    PubMed Central

    Shen, Liyan; Rapenne, Laetitia; Chaudouet, Patrick; Ji, Jian; Picart, Catherine

    2014-01-01

    In situ synthesis of inorganic nanoparticles (NPs) in polyelectrolytes multilayers (PEMs) has recently gained much attention. Due to the versatility of their composition, PEMs offer a unique opportunity to synthesize a variety of NPs. So far, mostly cationic precursors have been used and only few studies have investigated the possibility of using amine groups to bind anionic precursors. Here, we use exponentially growing poly(L-lysine)/hyaluronan (PLL/HA) films as a nanoreservoir to bind and sequester aurochlorate (AuCl4−) anions thanks to the large number of free amine groups. The polypeptide-polysaccharide reactive template enabled the formation in a spatially-confined environment of gold NP at a very high yield. The synthesized gold NPs were homogenous and well-dispersed in the nanocomposite. Importantly, there was no particular effect of the film-ending layer (either PLL or HA). The largest particles of ~ 9 nm and the largest amount of gold were obtained at acidic pH of 3. When the pH was increased, smaller and more numerous NPs were synthesized but the total amount of gold was lower. Based on UV-visible spectrometry, FTIR and TEM data, we finally propose a scheme for the mechanism of gold NPs formation, in which several groups of PLL and HA contribute to the binding of gold ions, the nucleation and growth of NPs, and their stabilization in the “bulk” of the film. PMID:22981588

  5. Dispersing nanoparticles in a polymer film via solvent evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shengfeng; Grest, Gary S.

    Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier tomore » prevent the NPs from moving to the interface. Furthermore, our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.« less

  6. Dispersing nanoparticles in a polymer film via solvent evaporation

    DOE PAGES

    Cheng, Shengfeng; Grest, Gary S.

    2016-05-19

    Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier tomore » prevent the NPs from moving to the interface. Furthermore, our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.« less

  7. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    NASA Astrophysics Data System (ADS)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  8. Preparation and characterization of nanocomposite polyvinyl chloride films with NO-generating activity

    NASA Astrophysics Data System (ADS)

    Kozakevych, Roman B.; Korobeinyk, Alina V.; Bolbukh, Yulia M.; Tertykh, Valentin A.; Mikhalovska, Lyuba I.; Zienkiewicz-Strzałka, Malgorzlata; Deryło-Marczewska, Anna

    2018-03-01

    The silica and copper oxide nanoparticles were embedded into the polyvinyl chloride film and obtained filled composites were tested as a catalyst in the reaction of the NO release from appropriate biomolecules. Obtained materials were characterized using scanning electron, atomic-force microscopies and thermomechanical analysis. It has been shown that the introduced particles are distributed uniformly in the polymeric matrix of hybrid composite and such film produces a significant amount of NO when reacts with S-nitrosothiols. At the same time, the unfilled polyvinyl chloride film had no statistically significant catalytic activity.

  9. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    PubMed

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In Situ Oxidation Synthesis of p-Type Composite with Narrow-Bandgap Small Organic Molecule Coating on Single-Walled Carbon Nanotube: Flexible Film and Thermoelectric Performance.

    PubMed

    Gao, Caiyan; Chen, Guangming

    2018-03-01

    Although composites of organic polymers or n-type small molecule/carbon nanotube (CNT) have achieved significant advances in thermoelectric (TE) applications, p-type TE composites of small organic molecules as thick surface coating layers on the surfaces of inorganic nanoparticles still remain a great challenge. Taking advantage of in situ oxidation reaction of thieno[3,4-b]pyrazine (TP) into TP di-N-oxide (TPNO) on single-walled CNT (SWCNT) surface, a novel synthesis strategy is proposed to achieve flexible films of TE composites with narrow-bandgap (1.19 eV) small molecule coating on SWCNT surface. The TE performance can be effectively enhanced and conveniently tuned by poly(sodium-p-styrenesulfonate) content, TPNO/SWCNT mass ratio, and posttreatment by various polar solvents. The maximum of the composite power factor at room temperature is 29.4 ± 1.0 µW m -1 K -2 . The work presents a way to achieve flexible films of p-type small organic molecule/inorganic composites with clear surface coating morphology for TE application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Graphene Oxide-Polymer Composite Langmuir Films Constructed by Interfacial Thiol-Ene Photopolymerization

    NASA Astrophysics Data System (ADS)

    Luo, Xiaona; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Zhang, Lexin; Zhou, Jingxin; Li, Bingbing

    2017-02-01

    The effective synthesis and self-assembly of graphene oxide (GO) nanocomposites are of key importance for a broad range of nanomaterial applications. In this work, a one-step chemical strategy is presented to synthesize stable GO-polymer Langmuir composite films by interfacial thiol-ene photopolymerization at room temperature, without use of any crosslinking agents and stabilizing agents. It is discovered that photopolymerization reaction between thiol groups modified GO sheets and ene in polymer molecules is critically responsible for the formation of the composite Langmuir films. The film formed by Langmuir assembly of such GO-polymer composite films shows potential to improve the mechanical and chemical properties and promotes the design of various GO-based nanocomposites. Thus, the GO-polymer composite Langmuir films synthesized by interfacial thiol-ene photopolymerization with such a straightforward and clean manner, provide new alternatives for developing chemically modified GO-based hybrid self-assembled films and nanomaterials towards a range of soft matter and graphene applications.

  12. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    PubMed Central

    2013-01-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction. PMID:23601907

  13. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites

    NASA Astrophysics Data System (ADS)

    Wen, John Z.; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F.; Zhou, Y. Norman

    2013-04-01

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.

  14. Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites.

    PubMed

    Wen, John Z; Ringuette, Sophie; Bohlouli-Zanjani, Golnaz; Hu, Anming; Nguyen, Ngoc Ha; Persic, John; Petre, Catalin F; Zhou, Y Norman

    2013-04-20

    Thermochemical properties and microstructures of the composite of Al nanoparticles and NiO nanowires were characterized. The nanowires were synthesized using a hydrothermal method and were mixed with these nanoparticles by sonication. Electron microscopic images of these composites showed dispersed NiO nanowires decorated with Al nanoparticles. Thermal analysis suggests the influence of NiO mass ratio was insignificant with regard to the onset temperature of the observed thermite reaction, although energy release values changed dramatically with varying NiO ratios. Reaction products from the fuel-rich composites were found to include elemental Al and Ni, Al2O3, and AlNi. The production of the AlNi phase, confirmed by an ab initio molecular dynamics simulation, was associated with the formation of some metallic liquid spheres from the thermite reaction.

  15. Fluorine and oxygen plasma influence on nanoparticle formation and aggregation in metal oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2017-03-01

    Despite recent advances in metal oxide thin-film transistor technology, there are no foundry processes available yet for large-scale deployment of metal oxide electronics and photonics, in a similar way as found for silicon based electronics and photonics. One of the biggest challenges of the metal oxide platform is the stability of the fabricated devices. Also, there is wide dispersion on the measured specifications of fabricated TFT, from lot-to-lot and from different research groups. This can be partially explained by the importance of the deposition method and its parameters, which determine thin film microstructure and thus its electrical properties. Furthermore, substrate pretreatment is an important factor, as it may act as a template for material growth. Not so often mentioned, plasma processes can also affect the morphology of deposited films on further deposition steps, such as inducing nanoparticle formation, which strongly impact the conduction mechanism in the channel layer of the TFT. In this study, molybdenum doped indium oxide is sputtered onto ALD deposited HfO2 with or without pattering, and etched by RIE chlorine based processing. Nanoparticle formation is observed when photoresist is removed by oxygen plasma ashing. HfO2 etching in CF4/Ar plasma prior to resist stripping in oxygen plasma promotes the aggregation of nanoparticles into nanosized branched structures. Such nanostructuring is absent when oxygen plasma steps are replaced by chemical wet processing with acetone. Finally, in order to understand the electronic transport effect of the nanoparticles on metal oxide thin film transistors, TFT have been fabricated and electrically characterized.

  16. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.

    PubMed

    Roiter, Yuri; Minko, Iryna; Nykypanchuk, Dmytro; Tokarev, Ihor; Minko, Sergiy

    2012-01-07

    The mechanism of nanoparticle actuation by stimuli-responsive polymer brushes triggered by changes in the solution pH was discovered and investigated in detail in this study. The finding explains the high spectral sensitivity of the composite ultrathin film composed of a poly(2-vinylpyridine) (P2VP) brush that tunes the spacing between two kinds of nanoparticles-gold nanoislands immobilized on a transparent support and gold colloidal particles adsorbed on the brush. The optical response of the film relies on the phenomenon of localized surface plasmon resonances in the noble metal nanoparticles, giving rise to an extinction band in visible spectra, and a plasmon coupling between the particles and the islands that has a strong effect on the band position and intensity. Since the coupling is controlled by the interparticle spacing, the pH-triggered swelling-shrinking transition in the P2VP brush leads to pronounced changes in the transmission spectra of the hybrid film. It was not established in the previous publications how the actuation of gold nanoparticles within a 10-15 nm interparticle distance could result in the 50-60 nm shift in the absorbance maximum in contrast to the model experiments and theoretical estimations of several nanometer shifts. In this work, the extinction band was deconvoluted into four spectrally separated and overlapping contributions that were attributed to different modes of interactions between the particles and the islands. These modes came into existence due to variations in the thickness of the grafted polymeric layer on the profiled surface of the islands. In situ atomic force microscopy measurements allowed us to explore the behavior of the Au particles as the P2VP brush switched between the swollen and collapsed states. In particular, we identified an interesting, previously unanticipated regime when a particle position in a polymer brush was switched between two distinct states: the particle exposed to the surface of the

  17. Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene.

    PubMed

    Chen, Hsiang-Yu; Lo, Michael K F; Yang, Guanwen; Monbouquette, Harold G; Yang, Yang

    2008-09-01

    Polymer-inorganic nanocrystal composites offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility and distribution of the nanocrystals in the polymer matrices. Here we show that blending CdTe nanoparticles into a polymer-fullerene matrix followed by solvent annealing can achieve high photoconductive gain under low applied voltages. The surface capping ligand renders the nanoparticles highly soluble in the polymer blend, thereby enabling high CdTe loadings. An external quantum efficiency as high as approximately 8,000% at 350 nm was achieved at -4.5 V. Hole-dominant devices coupled with atomic force microscopy images show a higher concentration of nanoparticles near the cathode-polymer interface. The nanoparticles and trapped electrons assist hole injection into the polymer under reverse bias, contributing to efficiency values in excess of 100%.

  18. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    NASA Astrophysics Data System (ADS)

    Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.

    2014-05-01

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  19. Reflectometric measurement of n-hexane adsorption on ZnO2 nanohybrid film modified by hydrophobic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sebők, Dániel; Csapó, Edit; Ábrahám, Nóra; Dékány, Imre

    2015-04-01

    Zinc-peroxide/poly(styrenesulfonate) nanohybrid thin films (containing 20 bilayers: [ZnO2/PSS]20, d ∼ 500 nm) were prepared using layer-by-layer (LbL) method. The thin film surface was functionalized by different surface modifying agents (silanes, alkylthiols and hydrophobized nanoparticles). Based on the experimental results of quartz crystal microbalance (QCM) and contact angle measurements (as prequalifications) the octanethiol covered gold nanoparticles (OT-AuNPs) were selected for further vapour adsorption studies. Reflectometric interference spectroscopy (RIfS) was used to measure n-hexane vapour adsorption on the original and modified nanohybrid films in a gas flow platform. The thin film provides only the principle of the measurement (by interference phenomenon), the selectivity and hydrophobicity is controlled and enhanced by surface functionalization (by dispersion interaction between the alkyl chains). The interference pattern shift (Δλ) caused by the increase of the optical thickness of the thin film due to vapour adsorption was investigated. It was found that due to the surface functionalization by hydrophobic nanoparticles the effect of water vapour adsorption decreased significantly, while for n-hexane opposite tendency was observed (the effective refractive index and thus the interference pattern shift increased drastically). The correlation between QCM technique and optical method (RIfS) was specified: linear specific adsorbed amount vs. wavelength shift calibration curves were determined in the pr = 0-0.4 relative vapour pressure range. The thin film is suitable for sensorial application (e.g. volatile organic compound/VOC sensor).

  20. Ultrastable Quantum Dot Composite Films under Severe Environments.

    PubMed

    Yang, Zunxian; Zhang, Yuxiang; Liu, Jiahui; Ai, Jingwei; Lai, Shouqiang; Zhao, Zhiwei; Ye, Bingqing; Ruan, Yushuai; Guo, Tailiang; Yu, Xuebin; Chen, Gengxu; Lin, Yuanyuan; Xu, Sheng

    2018-05-09

    Semiconductor quantum dots (QDs) have attracted extensive attention because of their remarkable optical and electrical characteristics. However, the practical application of QDs and further the QD composite films have greatly been hindered mainly owing to their essential drawbacks of extreme unstability under oxygen and water environments. Herein, one simple method has been employed to enhance enormously the stability of Cd x Zn 1- x Se y S 1- y QD composite films by a combination of Cd x Zn 1- x Se y S 1- y QDs and poly(vinylidene) fluoride (PVDF), which is characteristic of closely arranged molecular chains and strong hydrogen bonds. There are many particular advantages in using QD/PVDF composite films such as easy processing, low cost, large-area fabrication, and especially extreme stability even in the boiling water for more than 240 min. By employing K 2 SiF 6 :Mn 4+ as a red phosphor, a prototype white light-emitting diode (WLED) with color coordinates of (0.3307, 0.3387), T c of 5568 K, and color gamut 112.1NTSC(1931)% at 20 mA has been fabricated, and there is little variation under different excitation currents, indicating that the QD/PVDF composite films fabricated by this simple blade-coating process make them ideal candidates for liquid-crystal display backlight utilization via assembling a WLED on a large scale owing to its ultrahigh stability under severe environments.

  1. Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.

    PubMed

    Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C

    2014-01-21

    Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.

  2. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    NASA Astrophysics Data System (ADS)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  3. Effect of pH on film structure and electrical property of PMMA-Au composite particles prepared by redox transmetalation

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Mao; Lin, Kuan-Ju; Yu, Yi-Hsiuan; Ho, Chan-Yuan; Wei, Ming-Hsiung; Lu, Fu-Hsing; Tseng, Wenjea J.

    2014-01-01

    Surface-selective deposition of gold (Au) on electroless plated poly(methyl methacrylate)-nickel (PMMA-Ni) beads was prepared chemically by a facile redox-transmetalation route in which the Ni atoms on the PMMA surface were reacted with Au precursors, i.e., chloroauric acid (HAuCl4), in water to form predominately core-shell PMMA-Au composite particles without the need of reducing agent. The Ni layer acted as a sacrificial template to facilitate the selective transmetalation deposition of a metallic Au film. When pH of the precursor solution was adjusted from 6 to 9, morphology of the Au film changed from a uniform particulate film consisting of assemblies of Au nanoparticles, to densely packed, continuous film with platelet Au crystals, and finally to isolated Au islands on the PMMA surface with a raspberry-like core-shell morphology. Uniformly dense Au coating with a thickness of about 200 nm was formed on the PMMA beads at pH of 7 to 8, which gave rise to an electrical resistivity as low as 3 × 10-2 Ω cm.

  4. Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites

    NASA Astrophysics Data System (ADS)

    Lee, Min Ho; Rhyee, Jong-Soo; Vaseem, Mohammad; Hahn, Yoon-Bong; Park, Su-Dong; Jin Kim, Hee; Kim, Sung-Jin; Lee, Hyeung Jin; Kim, Chilsung

    2013-06-01

    We investigated the thermoelectric properties of the InSe, InSe/In4Se3 composite, and SrTiO3 (STO) nano-particles dispersed InSe/In4Se3 bulk composites. The electrical conductivity of the InSe/In4Se3 composite with self-assembled phase separation is significantly increased compared with those of InSe and In4Se3-δ implying the enhancement of surface conductivity between grain boundaries. The thermal conductivity of InSe/In4Se3 composite is decreased compared to those of InSe. When the STO nano-particle dispersion was employed in the InSe/In4Se3 composite, a coherent interface was observed between nano-particle precipitates and the InSe bulk matrix with a reduction of the thermal conductivity.

  5. Magnetic core/shell nanoparticle thin films deposited by MAPLE: Investigation by chemical, morphological and in vitro biological assays

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I. N.; Mihaiescu, D. E.; Grumezescu, A. M.; Balan, A.; Stamatin, I.; Chifiriuc, C.; Bleotu, C.; Saviuc, C.; Popa, M.; Chrisey, D. B.

    2012-09-01

    We report on thin film deposition of nanostructured Fe3O4/oleic acid/ceftriaxone and Fe3O4/oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.

  6. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin

    PubMed Central

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin–sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit® FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery. PMID:25999713

  7. pH-sensitive poly(lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin.

    PubMed

    Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei

    2015-01-01

    This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin-sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit(®) FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery.

  8. Preparation of Polyurethane/Graphite Composite Films with Stable Mechanical Property and Wear Resistance Underwater.

    PubMed

    Wang, Miaomiao; Wang, Zubin; Chen, Qirong; Meng, Xiangfu; Heng, Liping

    2018-06-01

    The wear resistance and stable mechanical properties affect the service life of the underwater functional materials to a certain extent. Unfortunately, the current study of underwater functional materials is rarely related to these aspects. Herein, we successfully designed and prepared polyurethane/graphite nanosheet (PU/GN) composite materials, which exhibited excellent wear resistance and stable mechanical properties underwater. The PU/GN composite films were prepared by evaporating a mixed solution of PU and GN on concave hexagonal honeycomb silicon templates. The mechanical properties of the composite films were determined by tensile test, and the wear resistance was evaluated by comparing the surface morphology before and after grind. By adjusting the content of graphite in the composite films, we found that the composite films containing 23 wt% GN had higher tensile strength and superior wear resistance. Moreover, this composite film showed an outstanding stability when expose to water. The impressive results along with simple preparation process made PU/GN composite films had potential applications in robust underwater functional materials.

  9. Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Y.M.; Lim, S.H.; Tay, B.Y.

    Highlights: • Chitosan-based grapefruit seed extract (GFSE) films were solution casted. • GFSE was uniformly dispersed within all chitosan film matrices. • All chitosan-based composite films showed remarkable transparency. • Increasing amounts of GFSE incorporated increased the elongation at break of films. • Chitosan-based GFSE composite films inhibited the proliferation of fungal growth. - Abstract: Chitosan-based composite films with different amounts of grapefruit seed extract (GFSE) (0.5, 1.0 and 1.5% v/v) were fabricated via solution casting technique. Experimental results showed that GFSE was uniformly dispersed within all chitosan film matrices. The presence of GFSE made the films more amorphous andmore » tensile strength decreased, while elongation at break values increased as GFSE content increased. Results from the measurement of light transmission revealed that increasing amounts of GFSE (from 0.5 to 1.5% v/v) did not affect transparency of the films. Furthermore, packaging of bread samples with chitosan-based GFSE composite films inhibited the proliferation of fungal growth as compared to control samples. Hence, chitosan-based GFSE composite films have the potential to be a useful material in the area of food technology.« less

  10. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  11. Prolonged and continuous antibacterial and anti-biofilm activities of thin films embedded with gentamicin-loaded mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamanna, Tasnuva; Landersdorfer, Cornelia B.; Ng, Hooi Jun; Bulitta, Jürgen B.; Wood, Peter; Yu, Aimin

    2018-05-01

    The application of mesoporous silica nanoparticles (MSNs) in drug delivery systems has become highly attractive since the early 2000s. In this study, thin-film coatings embedded with gentamicin-loaded mesoporous silica nanoparticles (MSN-G) were prepared to provide antibacterial and anti-biofilm activity over a prolonged period of time. The prolonged and continuous activity of MSN-G films against Staphylococcus aureus throughout the release period was studied via two methods, namely, (1) disc diffusion of released gentamicin and (2) by shifting the MSN-G thin film to a new agar plate at certain time intervals. The expansion of the inhibition zone from 4.6 ± 0.5 to 9.7 ± 0.5 mm as caused by the released fraction of gentamicin from the first week to the eighth week indicated the controlled and slow release behaviour of loaded antibiotic and prolonged antibacterial efficacy of these films. In addition, the appearance of an inhibition zone after each shifting of the film to a new agar plate was persistent up to 103 days which confirmed that thin films successively prevented bacterial growth over a long period of time. In addition, the anti-biofilm activity of MSN-G films was evaluated by imaging bacterial cells attachment via confocal laser scanning microscopy and scanning electron microscopy. Remarkably, the anti-biofilm performance remained active for more than 2 months. To the best of our knowledge, such a slow and controlled release of antibiotic from nanoparticle embedded thin films with uninterrupted, continuous, and prolonged antibacterial effect for more than 2 months has not been reported yet.

  12. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  13. Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles

    DOE PAGES

    Veith, Gabriel M.; Lupini, Andrew R.; Baggetto, Loïc; ...

    2013-12-03

    Here, we report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N 2 plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt 7.3N and Pd 2.5N. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. This paper describes the synthesismore » of these materials along with experimental evidence of the composition, oxidation state, and growth modes. Moreover, the catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol and gas phase CO oxidation and support the experimental evidence for the materials composition.« less

  14. PHOTONICS AND NANOTECHNOLOGY Laser synthesis and modification of composite nanoparticles in liquids

    NASA Astrophysics Data System (ADS)

    Tarasenko, N. V.; Butsen, A. V.

    2010-12-01

    The works devoted to the formation and modification of nanoparticles using laser ablation of solid targets in liquids are reviewed. Several approaches to implement laser ablation in liquids, aimed at synthesising nanoparticles of complex composition, are considered: direct laser ablation of a target of corresponding composition, laser ablation of a combined target composed of two different metals, laser irradiation of a mixture of two or more colloidal solutions, and laser ablation in reactive liquids. The properties of two-component bimetallic systems (Ag — Cu, Ag — Au), semiconductor nanocrystals (ZnO, CdSe), chalcopyrite nanoparticles, and doped oxide nanoparticles (ZnO:Ag, Gd2O2:Tb3+) formed as a result of single- and double-pulse laser ablation in different liquids (water, ethanol, acetone, solutions of polysaccharides) are discussed.

  15. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    PubMed Central

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  16. Opto-electronic devices with nanoparticles and their assemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (< 100nm) particles provide tremendous possibilities due to their unique electrical, optical, and mechanical properties. Plethora of NPs with various chemical composition, size and shape has been synthesized. Clever designs of sub-wavelength structures enable observation of unusual properties of materials, and have led to new areas of research such as metamaterials. This dissertation describes two self-assemblies of gold nanoparticles, leading to an ultra-soft thin film and multi-functional single electron device at room temperature. First, the layer-by-layer self-assembly of 10nm Au nanoparticles and polyelectrolytes is shown to behave like a cellular-foam with modulus below 100 kPa. As a result, the composite thin film (˜ 100nm) is 5 orders of magnitude softer than an equally thin typical polymer film. The thin film can be compressed reversibly to 60% strain. The extraordinarily low modulus and high compressibility are advantageous in pressure sensing applications. The unique mechanical properties of the composite film lead to development of an ultra-sensitive tactile imaging device capable of screening for breast cancer. On par with human finger sensitivity, the tactile device can detect a 5mm imbedded object up to 20mm below the surface with low background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au

  17. Physical and mechanical properties of modified bacterial cellulose composite films

    NASA Astrophysics Data System (ADS)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  18. Synthesis of Core-Shell Nanoparticle Composites

    DTIC Science & Technology

    2010-08-17

    Mawson Institute, University of South Australia 1 Final Report Contract Number FA2386-09-1-4043 Synthesis of Core-Shell Nanoparticle Composites...CI: Peter Majewski, School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, peter.majewski...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of South Australia, Mawson Lakes Blvd., Mawson Lakes SA, Australia

  19. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    NASA Astrophysics Data System (ADS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-03-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe3+/Fe2+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe3+ ions in a nitrate complex with urea ([Fe((CO(NH2)2)6](NO3)3) and by using solid Mg(OH)2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe3+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe3+ ions prior to the addition of Mg(OH)2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)2, the pH increases and at pH 5.7 the Fe2+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.

  20. Thin Film Coating with Highly Dispersible Barium Titanate-Polyvinylpyrrolidone Nanoparticles.

    PubMed

    Li, Jinhui; Inukai, Koji; Takahashi, Yosuke; Tsuruta, Akihiro; Shin, Woosuck

    2018-05-01

    Thin BaTiO₃ (BT) coating layers are required in various multilayer ceramic technologies, and fine nanosized BT particles with good dispersion in solution are essential for this coating process. In this work, cubic and tetragonal phase monodispersed BT nanoparticles—which were referred to as LBT and HBT-PVP coated on their surface by polyvinylpyrrolidone (PVP) polymer—were prepared by low temperature synthesis (LTS) and hydrothermal method (HT) at 80 and 230 °C, respectively. They were applied for the thin film coating on polyethylene terephthalate (PET) and Si wafer substrates by a simple bar coating. The thickness of BT, LBT-PVP, and HBT-PVP films prepared by their 5 wt % coating agent on Si are around 268, 308, and 263 nm, and their surface roughness are 104.6, 91.6, and 56.1 nm, respectively. The optical transmittance of BT, LBT-PVP, and HBT-PVP films on PET are 55, 66, and 73% at 550 nm wavelength and the haze values are 34.89, 24.70, and 20.53% respectively. The mechanism of dispersant adsorbed on the BT surface for densification of thin film during the drying process of the film was discussed.

  1. Synthesis of oxide-free aluminum nanoparticles for application to conductive film

    NASA Astrophysics Data System (ADS)

    Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo

    2018-02-01

    Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

  2. Correlation of film morphology and defect content with the charge-carrier transport in thin-film transistors based on ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polster, S.; Jank, M. P. M.; Frey, L.

    2016-01-14

    The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussedmore » with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.« less

  3. Sombrero-shaped plasmonic nanoparticles with molecular-level sensitivity and multifunctionality.

    PubMed

    Wi, Jung-Sub; Barnard, Edward S; Wilson, Robert J; Zhang, Mingliang; Tang, Mary; Brongersma, Mark L; Wang, Shan X

    2011-08-23

    We demonstrate top-down synthesis of monodisperse plasmonic nanoparticles designed to contain internal Raman hot spots. Our Raman-active nanoparticles are fabricated using nanoimprint lithography and thin-film deposition and are composed of novel internal structures with sublithographic dimensions: a disk-shaped Ag core, a Petri-dish-shaped SiO(2) base whose inner surface is coated with Ag film, and a sub-10 nm scale circular gap between the core and the base. Confocal Raman measurements and electromagnetic simulations show that Raman hot spots appear at the inside perimeter of individual nanoparticles and serve as the source of a 1000-fold improvement of minimum molecular detection level that enables detection of signals from a few molecules near hot spots. A multimodality version of these nanoparticles, which includes the functionality offered by magnetic multilayers, is also demonstrated. These results illustrate the potential of direct fabrication for creating exotic monodisperse nanoparticles, which combine engineered internal nanostructures and multilayer composite materials, for use in nanoparticle-based molecular imaging and detection. © 2011 American Chemical Society

  4. Synthesis and characterization of silver nanoparticle composite with poly(p-Br-phenylsilane).

    PubMed

    Kim, Myoung-Hee; Lee, Jun; Mo, Soo-Yong; Woo, Hee-Gweon; Yang, Kap Seung; Kim, Bo-Hye; Lee, Byeong-Gweon; Sohn, Honglae

    2012-05-01

    The one-pot synthesis and characterization of silver nanoparticle-poly(p-Br-phenylsilane) composites have been carried out. The conversion of silver(+1) salt to stable silver(0) nanoparticles is promoted by poly(p-Br-phenylsilane), Br-PPS possessing both possible reactive Si-H bonds in the polymer backbone and C-Br bonds in the substituents. The composites were characterized using XRD, TEM, FE-SEM, and solid-state UV-vis analytical techniques. TEM and FE-SEM data show the formation of the composites where large number of silver nanoparticles (less than 30 nm of size) are well dispersed throughout the Br-PPS matrix. XRD patterns are consistent with that for fcc-typed silver. The elemental analysis for Br atom and the polymer solubility confirm that the cleavage of C-Br bond and the Si-Br dative bonding were not occurred appreciably at ambient temperature. Nonetheless, TGA data suggest that some sort of cross-linking was occurred at high temperature. The size and processability of such nanoparticles depend on the ratio of metal to Br-PPS. In the absence of Br-PPS, most of the silver particles undergo macroscopic aggregation, which indicates that the polysilane is necessary for stabilizing the silver nanoparticles.

  5. Wearable near-field communication antennas with magnetic composite films

    NASA Astrophysics Data System (ADS)

    Zhan, Bihong; Su, Dan; Liu, Sheng; Liu, Feng

    2017-06-01

    The flexible near-field communication (NFC) antennas integrated with Fe3O4/ethylene-vinyl acetate copolymer (EVA) magnetic films were presented, and the influence of the magnetic composite films on the performance and miniaturization capability of the NFC antennas was investigated. Theoretical analysis and experimental results show that the integration of the magnetic composite films is conducive to the miniaturization of the NFC antennas. However, the pattern design of the integrated magnetic film is very important to improve the communication performance of NFC antenna. When magnetic film covers whole antenna, the inductance (L) and quality factor (Q) of the NFC antenna at 13MHz are increased by 60% and 5% respectively, but the communication distance of NFC system is decreased by 70%. When the magnetic film is located at the center of the antenna, the L value, Q value and communication distance of the NFC antenna are increased by 16.5%, 15.5% and 20% respectively. It can be seen that the application of the integrated magnetic film with optimized pattern to the NFC antenna can not only reduce the size of the antenna, but also improve the overall performance of the antenna.

  6. Polymer compositions, polymer films and methods and precursors for forming same

    DOEpatents

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  7. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    PubMed Central

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-01-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment. PMID:26183266

  8. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    PubMed

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  9. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    PubMed Central

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  10. Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-01-01

    We have fabricated PMMA/SiO2 nanocomposite flexible thin films of 60 μm thicknesses by using solution casting method in the presence of transverse electric field. In this paper, we have investigated the effect of SiO2 nanoparticle (NP) loading on optical and mechanical properties of the composite thin film. The SEM images show that nanocomposite thin films have a smoother and uniform morphology. The transmittance peak near 1103 cm-1 in FT-IR spectrum confirms the presence of SiO2 NPs in the composite thin film. It is observed that optical bandgap decreases with an increase in the SiO2 NP concentration. Dynamic mechanical analysis shows that presence of SiO2 NP enhances the mechanical strength of the composite thin film.

  11. Application of nano-TiO2/LDPE composite film on photocatalytic oxidation degradation of dichloromethane.

    PubMed

    Suwannahong, Kowit; Liengcharernsit, Winai; Sanongraj, Wipada; Kruenate, Jittiporn

    2012-09-01

    This study focused on the photocatalytic destruction of dichloromethane (DCM) in indoor air using the nano-TiO2/LDPE composite film as an economical photocatalyst. The nano-TiO2 was dispersed in a polyethylene matrix to form composite film. The photocatalytic activity of the nano-TiO2/LDPE composite films was evaluated through the degradation of dichloromethane(DCM) under UV-C irradiance at specific wavelength of 254 nm. The percentage of nano-TiO2 contents varied from 0, 5, and 10% (wt cat./wt LDPE composite film). The results derived from the kinetic model revealed that the photocatalytic rates of 5 and 10 wt.% nano-TiO2/ LDPE composite films follow the first order reaction while the rate of the film without TiO2 followed the zero order reaction. At low concentration of DCM, the rate of photocatalytic degradation of the DCM was slower than that at high DCM concentration. The 10 wt.% of TiO2 content of the nano-TiO2/LDPE composite film yielded the highest degradation efficiency of 78%, followed by the removal efficiency of 55% for the 5 wt.% of TiO2 content of the nano-TiO2/LDPE composite film. In contrast with the composite film containing nano-TiO2, the LDPE film without adding nano-TiO2 expressed the degradation efficiency of 28%.

  12. Evaluation of the antibacterial activity of a conventional orthodontic composite containing silver/hydroxyapatite nanoparticles.

    PubMed

    Sodagar, Ahmad; Akhavan, Azam; Hashemi, Ehsan; Arab, Sepideh; Pourhajibagher, Maryam; Sodagar, Kosar; Kharrazifard, Mohammad Javad; Bahador, Abbas

    2016-12-01

    One of the most important complications of fixed orthodontic treatment is the formation of white spots which are initial carious lesions. Addition of antimicrobial agents into orthodontic adhesives might be a wise solution for prevention of white spot formation. The aim of this study was to evaluate the antibacterial properties of a conventional orthodontic adhesive containing three different concentrations of silver/hydroxyapatite nanoparticles. One hundred and sixty-two Transbond XT composite discs containing 0, 1, 5, and 10 % silver/hydroxyapatite nanoparticles were prepared and sterilized. Antibacterial properties of these composite groups against Streptococcus mutans, Lactobacillus acidophilus, and Streptococcus sanguinis were investigated using three different antimicrobial tests. Disk agar diffusion test was performed to assess the diffusion of antibacterial agent on brain heart infusion agar plate by measuring bacterial growth inhibition zones. Biofilm inhibition test showed the antibacterial capacity of composite discs against resistant bacterial biofilms. Antimicrobial activity of eluted components from composite discs was investigated by comparing the viable counts of bacteria after 3, 15, and 30 days. Composite discs containing 5 and 10 % silver/hydroxyapatite nanoparticles were capable of producing growth inhibition zones for all bacterial types. Results of biofilm inhibition test showed that all of the study groups reduced viable bacterial count in comparison to the control group. Antimicrobial activity of eluted components from composite discs was immensely diverse based on the bacterial type and the concentration of nanoparticles. Transbond XT composite discs containing 5 and 10 % silver/hydroxyapatite nanoparticles produce bacterial growth inhibition zones and show antibacterial properties against biofilms.

  13. Conductance oscillations in molecularly linked Au nanoparticle film-superconductor systems.

    PubMed

    Dunford, Jeffrey L; Dhirani, Al-Amin

    2008-01-16

    Charge transport across a disordered normal-superconductor (DN-S) interface was studied using a macroscopic, molecularly linked Au nanoparticle film as the DN component. Low-temperature conductance versus voltage and magnetic field exhibit zero-bias and zero-field peaks, respectively. Importantly, the latter typically exhibit superimposed oscillations. Such oscillations are rarely seen in other DN-S systems and are remarkable given their robustness in these macroscopic films and interfaces. A number of observations indicate that conductance peaks and oscillations arise due to a 'reflectionless tunnelling' process. Scattering length scales extracted from the data using a reflectionless tunnelling picture are consistent with literature values. Factors resulting in the observation of oscillations in this system are discussed.

  14. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, A.; Gosztola, D.; Schiller, T.

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules thatmore » lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.« less

  15. Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2010-01-01

    A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.

  16. Synthesis, characterization and application of noble-metal nanoparticles and their Langmuir films

    NASA Astrophysics Data System (ADS)

    Sun, Yuan

    Noble-metal nanoparticles and their Langmuir films have attracted remarkable research interest due to their unique properties and potential applications in catalysis, hydrogen storage materials, and optical, magnetic and electronic devices. The properties of nanoparticles are affected not only by the size, but also by the shape. In this dissertation, highly crystalline rectangular palladium nanoparticles have been successfully synthesized via the reduction of K2PdCl 4 by ascorbic acid in the presence of a surfactant cetyltrimethylammonium bromide under room temperature. Trisodium citrate is a key factor for high yield of nanocubes and nanorods. The average length and aspect ratio of the nanorods can be tuned by varying the concentration of trisodium citrate. These rectangular nanoparticles were stable for months as colloids. However, after being exposed to air for about 100 days, the dry nanoparticles on TEM grids were oxidized to form shells of 1.6--3.8 nm thick covering the nanoparticle surfaces. This procedure is conducted under room temperature and requires no seed-mediated growth or nanoporous rigid template so that it is easier and more practical for large-scale synthesis. Alkanethiolate palladium nanoparticles can be synthesized by two routes: a one-phase method and a two-phase method. In order to understand the electronic and chemical properties of dodecanethiolate palladium nanoparticles, a systematic comparison between the particles obtained by these two synthetic techniques was conducted. From transmission electron microscopy (TEM) we determined that the particle sizes were 46 +/- 10 A and 20 +/- 5 A for the 1- and 2-phase particles, respectively. Electron diffraction confirmed that their structure was face-centered cubic (FCC). High-resolution TEM (HRTEM) showed that the 1-phase particles had an ordered core surrounded by a disordered shell structure while the 2-phase particles appeared to be crystalline throughout. The particles were also analyzed with

  17. Plasmon-enhanced photocurrent generation from self-assembled monolayers of phthalocyanine by using gold nanoparticle films.

    PubMed

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Kawazumi, Hirofumi; Yamada, Sunao

    2009-04-09

    The effect of localized electric fields on the photocurrent responses of phthalocyanine that was self-assembled on a gold nanoparticle film was investigated by comparing the conventional and the total internal reflection (TIR) experimental systems. In the case of photocurrent measurements, self-assembled monolayers (SAMs) of a thiol derivative of palladium phthalocyanine (PdPc) were prepared on the surface of gold-nanoparticle film that was fixed on the surface of indium-tin-oxide (ITO) substrate via a polyion (PdPc/AuP/polyion/ITO) or on the ITO surface (PdPc/ITO). Photocurrent action spectra from the two samples were compared by using the conventional spectrometer, and were found that PdPc/AuP/polyion/ITO gave considerably larger photocurrent signals than PdPc/ITO under the identical concentration of PdPc. In the case of the TIR experiments for the PdPc/AuP/polyion/ITO and the PdPc/AuP/Glass systems, incident-angle profiles of photocurrent and emission signals were correlated with each other, and they were different from that of the PdPc/ITO system. Accordingly, it was demonstrated that the photocurrent signals were certainly enhanced by the localized electric fields of the gold-nanoparticle film.

  18. Aligned Carbon Nanotubes for High-Performance Films and Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  19. Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers

    PubMed Central

    Huang, Siwei; Zhou, Ling; Li, Mei-Chun; Wu, Qinglin; Kojima, Yoichi; Zhou, Dingguo

    2016-01-01

    Poly (vinyl pyrrolidone) (PVP)/cellulose nanocrystal (CNC)/silver nanoparticle composite fibers were prepared via electrospinning using N,N′-dimethylformamide (DMF) as a solvent. Rheology, morphology, thermal properties, mechanical properties, and antimicrobial activity of nanocomposites were characterized as a function of material composition. The PVP/CNC/Ag electrospun suspensions exhibited higher conductivity and better rheological properties compared with those of the pure PVP solution. The average diameter of the PVP electrospun fibers decreased with the increase in the amount of CNCs and Ag nanoparticles. Thermal stability of electrospun composite fibers was decreased with the addition of CNCs. The CNCs help increase the composite tensile strength, while the elongation at break decreased. The composite fibers included Ag nanoparticles showed improved antimicrobial activity against both the Gram-negative bacterium Escherichia coli (E. coli) and the Gram-positive bacterium Staphylococcus aureus (S. aureus). The enhanced strength and antimicrobial performances of PVP/CNC/Ag electrospun composite fibers make the mat material an attractive candidate for application in the biomedical field. PMID:28773644

  20. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  1. Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.

    PubMed

    Cho, Hyunjin; Rho, Hokyun; Kim, Jun Hee; Chae, Su-Hyeong; Pham, Thang Viet; Seo, Tae Hoon; Kim, Hak Yong; Ha, Jun-Seok; Kim, Hwan Chul; Lee, Sang Hyun; Kim, Myung Jong

    2017-11-22

    The heat generated from electronic devices such as light emitting diodes (LEDs), batteries, and highly integrated transistors is one of the major causes obstructing the improvement of their performance and reliability. Herein, we report a comprehensive method to dissipate the generated heat to a vast area by using the new type of graphene-carbon-metal composite film as a heat sink. The unique porous graphene-carbon-metal composite film that consists of an electrospun carbon nanofiber with arc-graphene (Arc-G) fillers and an electrochemically deposited copper (Cu) layer showed not only high electrical and thermal conductivity but also high mechanical stability. Accordingly, superior thermal management of LED devices to that of conventional Cu plates and excellent resistance stability during the repeated 10 000 bending cycles has been achieved. The heat dissipation of LEDs has been enhanced by the high heat conduction in the composite film, heat convection in the air flow, and thermal radiation at low temperature in the porous carbon structure. This result reveals that the graphene-carbon-metal composite film is one of the most promising materials for a heat sink of electronic devices in modern electronics.

  2. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications.

    PubMed

    Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng

    2018-04-18

    The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.

  3. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein-Lecithin Composite Colloidal Nanoparticles.

    PubMed

    Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang

    2016-01-01

    Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparticles was firstly increased with the rise of lecithin concentration and then siginificantly decreased. The nanoparticles at the zein to lecithin mass ratio of 5:1 had the largest particle size (263 nm), indicating that zein and lecithin formed composite colloidal nanoparticles, which might aggregate due to the enhanced interaction at a higher proportion of lecithin. Continuing to increase lecithin concentration, the zein-lecithin nanoparticles possibly formed a reverse micelle-like or a vesicle-like structure with zein in the core, which prevented the formation of nanoparticle aggregates and decreased the size of composite nanoparticles. The presence of lecithin significantly reduced the ζ-potential of zein-lecithin composite colloidal nanoparticles. The interaction between zein and lecithin enhanced the intensity of the fluorescence emission of zein in ethanol-water solution. The secondary structure of zein was also changed by the addition of lecithin. Differential scanning calorimetry thermograms revealed that the thermal stability of zein-lecithin nanoparticles was enhanced with the rise of lecithin level. The composite nanoparticles were relatively stable to elevated ionic strengths. Possible interaction mechanism between zein and lecithin was proposed. These findings would help further understand the theory of the interaction between the alcohol soluble protein and the natural small molecular surfactant. The composite colloidal nanoparticles formed in this study can

  4. Interfacially Optimized, High Energy Density Nanoparticle-Polymer Composites for Capacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Shipman, Joshua; Riggs, Brian; Luo, Sijun; Adireddy, Shiva; Chrisey, Douglas

    Energy storage is a green energy technology, however it must be cost effective and scalable to meet future energy demands. Polymer-nanoparticle composites are low cost and potentially offer high energy storage. This is based on the high breakdown strength of polymers and the high dielectric constant of ceramic nanoparticles, but the incoherent nature of the interface between the two components prevents the realization of their combined full potential. We have created inkjet printable nanoparticle-polymer composites that have mitigated many of these interface effects, guided by first principle modelling of the interface. We detail density functional theory modelling of the interface and how it has guided our use in in specific surface functionalizations and other inorganic layers. We have validated our approach by using finite element analysis of the interface. By choosing the correct surface functionalization we are able to create dipole traps which further increase the breakdown strength of our composites. Our nano-scale understanding has allowed us to create the highest energy density composites currently available (>40 J/cm3).

  5. PHOTONICS AND NANOTECHNOLOGY Microscopic theory of optical properties of composite media with chaotically distributed nanoparticles

    NASA Astrophysics Data System (ADS)

    Shalin, A. S.

    2010-12-01

    The boundary problem of light reflection and transmission by a film with chaotically distributed nanoinclusions is considered. Based on the proposed microscopic approach, analytic expressions are derived for distributions inside and outside the nanocomposite medium. Good agreement of the results with exact calculations and (at low concentrations of nanoparticles) with the integral Maxwell-Garnett effective-medium theory is demonstrated. It is shown that at high nanoparticle concentrations, averaging the dielectric constant in volume as is done within the framework of the effective-medium theory yields overestimated values of the optical film density compared to the values yielded by the proposed microscopic approach. We also studied the dependence of the reflectivity of a system of gold nanoparticles on their size, the size dependence of the plasmon resonance position along the wavelength scale, and demonstrated a good agreement with experimental data.

  6. Microstructures and thermochromic characteristics of VO2/AZO composite films

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Li, Yi; Yuan, Wenrui; Fang, Baoying; Wang, Xiaohua; Hao, Rulong; Wu, Zhengyi; Xu, Tingting; Jiang, Wei; Chen, Peizu

    2016-05-01

    A vanadium dioxide (VO2) thin film was fabricated on a ZnO doped with Al (AZO) conductive glass by magnetron sputtering at room temperature followed by annealing under air atmosphere. The microstructures and optical properties of the thin film were studied. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. Compared to the VO2 film fabricated on soda-lime glass substrate through the same process and condition, the phase transition temperature of the VO2/AZO composite film was decreased by about 25 °C, thermal hysteresis width narrowed to 6 °C, the visible light transmittance was over 50%, the infrared transmittances before and after phase transition were 21% and 55%, respectively at 1500 nm.

  7. Fiber optic humidity sensor based on the graphene oxide/PVA composite film

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-08-01

    Fiber optic humidity sensor based on an in-fiber Mach-Zehnder interferometer (MZI) coated with graphene oxide (GO)/PVA composite film was investigated. The MZI is constructed of two waist-enlarged tapers. The length between two waist-enlarged tapers is 20 mm. By comparing the experiment results of MZI coated with different GO/PVA composite films, composite film formed by the ratio of 0.3 g PVA mixed with 10 ml GO dispersion shows a better performance of relative humidity sensing. By using the molecular structure model of the composited GO/PVA, the operation mechanism between GO/PVA composite film and water molecules was illustrated. The sensitivity of 0.193 dB/%RH with a linear correlation coefficient of 99.1% and good stability under the relative humidity range of 25-80% was obtained. Temperature effect on the proposed fiber optic humidity sensor was also considered and analyzed. According to the repetitive experimental results, the proposed humidity sensor shows a good repeatability.

  8. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    PubMed Central

    Lertngim, Anantaya; Phiriyawirut, Manisara; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-01-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure–properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film. PMID:29134083

  9. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    NASA Astrophysics Data System (ADS)

    Lertngim, Anantaya; Phiriyawirut, Manisara; Wootthikanokkhan, Jatuphorn; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-10-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure-properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film.

  10. Formation of mono-layered gold nanoparticles in shallow depth of SiO 2 thin film by low-energy negative-ion implantation

    NASA Astrophysics Data System (ADS)

    Tsuji, H.; Arai, N.; Ueno, K.; Matsumoto, T.; Gotoh, N.; Adachi, K.; Kotaki, H.; Gotoh, Y.; Ishikawa, J.

    2006-01-01

    Mono-layered gold nanoparticles just below the surface of silicon oxide film have been formed by a gold negative-ion implantation at a very low-energy, where the deviation of implanted atoms was sufficiently narrow comparing to the size of nanoparticles. Gold negative ions were implanted into SiO2 thin films on Si substrate at energies of 35, 15 and 1 keV. The samples were annealed in Ar flow for 1 h at 900 or 1000 °C. Cross-sectional TEM observation for the implantation at 1 keV showed existence of Au nanoparticles aligned in the same depth of 5 nm from the surface. The nanoparticles had almost same diameter of 7 nm. The nanoparticles were found to be gold single crystal from a high-resolution TEM image.

  11. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation.

    PubMed

    Dai, Lei; Sun, Cuixia; Li, Ruirui; Mao, Like; Liu, Fuguo; Gao, Yanxiang

    2017-12-15

    Curcumin (Cur) exhibits a range of bioactive properties, but its application is restrained due to its poor water solubility and sensitivity to environmental stresses. In this study, zein-lecithin composite nanoparticles were fabricated by antisolvent co-precipitation technique for delivery of Cur. The result showed that the encapsulation efficiency of Cur was significantly enhanced from 42.03% in zein nanoparticles to 99.83% in zein-lecithin composite nanoparticles. The Cur entrapped in the nanoparticles was in an amorphous state confirmed by differential scanning calorimetry and X-ray diffraction. Fourier transform infrared analysis revealed that hydrogen bonding, electrostatic interaction and hydrophobic attraction were the main interactions among zein, lecithin, and Cur. Compared with single zein and lecithin nanoparticles, zein-lecithin composite nanoparticles significantly improved the stability of Cur against thermal treatment, UV irradiation and high ionic strength. Therefore, zein-lecithin composite nanoparticles could be a potential delivery system for water-insoluble bioactive compounds with enhanced encapsulation efficiency and chemical stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Composition gradient optimization and electrical characterization of (Pb, Ca)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Bao, Dinghua; Mizutani, Nobuyasu; Zhang, Liangying; Yao, Xi

    2001-01-01

    Compositionally graded (Pb, Ca)TiO3 thin films were prepared by a monoethanolamine-modified sol-gel technique on platinum-coated silicon substrates at the annealing temperature of 600 °C. The composition gradient of the films was greatly improved by a modified annealing method. The dielectric constants, for up-graded and down-graded films annealed at 600 °C for 60 min, were found to be 469 and 355, respectively. Both were larger than those reported for conventional (Pb, Ca)TiO3 thin films. The compositionally graded films had large polarization offsets in hysteresis loops when excited by an alternating electric field. The more smooth the composition gradient of the graded film, the larger the polarization offset. This was consistent with a theoretical model reported previously by Mantese and coworkers [Appl. Phys. Lett. 71, 2047 (1997)]. The magnitude of polarization offset displayed a power-law dependence on the electric field, and the direction of the offset depended on the direction of the composition gradient with respect to the substrate. Both up-graded and down-graded films had good leakage current characteristics.

  13. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    PubMed Central

    Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee

    2016-01-01

    To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties. PMID:28335310

  14. Controlling the ferroelectric and resistive switching properties of a BiFeO3 thin film prepared using sub-5 nm dimension nanoparticles.

    PubMed

    Shirolkar, Mandar M; Li, Jieni; Dong, Xiaolei; Li, Ming; Wang, Haiqian

    2017-10-04

    In recent years, BiFeO 3 has attracted significant attention as an interesting multiferroic material in the exploration of fundamental science and development of novel applications. Our previous study (Phys. Chem. Chem. Phys.18, 2016, 25409) highlighted the interesting physicochemical features of BiFeO 3 of sub-5 nm dimension. The study also accentuated the existence of weak ferroelectricity at sub-5 nm dimensions in BiFeO 3 . Based on this feature, we have prepared thin films using sub-5 nm BiFeO 3 nanoparticles and explored various physicochemical properties of the thin film. We report that during the formation of the thin film, the nanoparticles aggregated; particularly, annihilation of their nanotwinning nature was observed. Qualitatively, the Gibbs free energy change ΔG governed the abovementioned processes. The thin film exhibited an R3c phase and enhanced Bi-O-Fe coordination as compared to the sub-5 nm nanoparticles. Raman spectroscopy under the influence of a magnetic field shows a magnetoelectric effect, spin phonon coupling, and magnetic anisotropy. We report room-temperature ferroelectric behavior in the thin film, which enhances with the application of a magnetic field; this confirms the multiferroic nature of the thin film. The thin film shows polarization switching ability at multiple voltages and read-write operation at low bias (±0.5 V). Furthermore, the thin film shows negative differential-complementary resistive switching behavior in the nano-microampere current range. We report nearly stable 1-bit operation for 10 2 cycles, 10 5 voltage pulses, and 10 5 s, demonstrating the paradigm device applications. The observed results thus show that the thin films prepared using sub-5 nm BiFeO 3 nanoparticles are a promising candidate for future spintronics and memory applications. The reported approach can also be pertinent to explore the physicochemical properties and develop potential applications of several other nanoparticles.

  15. Structure deformation of indium oxide from nanoparticles into nanostructured polycrystalline films by in situ thermal radiation treatment

    PubMed Central

    2013-01-01

    A microstructure deformation of indium oxide (In2O3) nanoparticles by an in situ thermal radiation treatment in nitrous oxide plasma was investigated. The In2O3 nanoparticles were completely transformed into nanostructured In2O3 films upon 10 min of treatment time. The treated In2O3 nanoparticle sample showed improvement in crystallinity while maintaining a large surface area of nanostructure morphology. The direct transition optical absorption at higher photon energy and the electrical conductivity of the In2O3 nanoparticles were significantly enhanced by the treatment. PMID:24134646

  16. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films

    Treesearch

    Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar

    2017-01-01

    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...

  17. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode.

    PubMed

    Batra, Bhawna; Pundir, C S

    2013-09-15

    A method is described for the construction of a novel amperometric glutamate biosensor based on covalent immobilization of glutamate oxidase (GluOx) onto, carboxylated multi walled carbon nanotubes (cMWCNT), gold nanoparticles (AuNPs) and chitosan (CHIT) composite film electrodeposited on the surface of a Au electrode. The GluOx/cMWCNT/AuNP/CHIT modified Au electrode was characterized by scanning electron microscopy (SEM), fourier transform infra-red (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The biosensor measured current due to electrons generated at 0.135V against Ag/AgCl from H2O2, which is produced from glutamate by immobilized GluOx. The biosensor showed optimum response within 2s at pH 7.5 and 35°C. A linear relationship was obtained between a wide glutamate concentration range (5-500μM) and current (μA) under optimum conditions. The biosensor showed high sensitivity (155nA/μM/cm(2)), low detection limit (1.6μM) and good storage stability. The biosensor was unaffected by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of glutamate in sera from apparently healthy subjects and persons suffering from epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films.

    PubMed

    Azzaoui, K; Mejdoubi, E; Lamhamdi, A; Zaoui, S; Berrabah, M; Elidrissi, A; Hammouti, B; Fouda, Moustafa M G; Al-Deyab, Salem S

    2015-01-22

    The main aim of this research work was to develop a new inorganic-organic film. Hydroxyapaptite (HAp) particles that represent the inorganic phase was mixed well with hydroxyethyl cellulose acetate (HECA), which representing the organic phase and then the inorganic-organic films were fabricated by evaporating of the solvent. The structure as well as the properties of the formed films were characterized using different analytical tools such as field emission scanning electron microscopy (FEG-SEM), thermo-gravimetric analysis (TGA), Fourier transform infra-red (FT-IR) spectroscopy. The obtained results revealed that, the HAp nanoparticles was well dispersed and well immobilized throughout the formed films. This can be attributed to the role of the nano- and micropores in the HECA substrate. In addition, a strong interaction occurred between HAp and HECA matrix. The results showed also good thermal stability and miscibility as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Fundamental aspects of polyimide dry film and composite lubrication: A review

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of polyimide dry films and composites are reviewed. Friction coefficients, wear rates, transfer film characteristics, wear surface morphology, and possible wear mechanisms of several different polyimide films, polyimide-bonded solid lubricants, polyimide solid bodies, and polyimide composites are discussed. Such parameters as temperature, type of atmosphere, load, contact stress, and specimen configuration are investigated. Data from an accelerated test device (Pin-on-Disk) are compared to similar data obtained from an end use application test device (plain spherical bearing).

  20. Electrical properties of films of zinc oxide nanoparticles and its hybrid with reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhuri, K. Priya; Bramhaiah, K.; John, Neena S., E-mail: jsneena@cnsms.res.in

    Free-standing films of ZnO nanoparticles (NPs) and reduced graphene oxide (rGO)-ZnO NPs hybrid are prepared at a liquid/liquid interface. The films are characterized by UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy. ZnO film consists of spherical aggregated NPs while the hybrid film contains folded sheets of rGO with embedded ZnO NPs. Electrical properties of the films and its photoresponse in presence of UV radiation are investigated using current sensing atomic force microscopy (CSAFM) at nanoscale and bulk measurements using two probe methods. Enhancement in photocurrent is observed in both cases and the current imaging reveals anmore » inhomogeneous contribution by different ZnO grains in the film.« less

  1. Selective Catalysis in Nanoparticle Metal-Organic Framework Composites

    NASA Astrophysics Data System (ADS)

    Stephenson, Casey Justin

    The design of highly selective catalysts are becoming increasingly important, especially as chemical and pharmaceutical industries seek to improve atom economy and minimize energy intensive separations that are often required to separate side products from the desired product. Enzymes are among the most selective of all catalysts, generally operating through molecular recognition whereby an active site analogous to a lock and the substrate is analogous to a key. The assembly of a porous, crystalline material around a catalytically active metal particle could serve as an artificial enzyme. In this vein, we first synthesized the polyvinylpyrrolidone (PVP) coated nanoparticles of interest and then encapsulated them within zeolitic imidazolate framework 8 or ZIF-8. 2.8 nm Pt-PVP nanoparticles, which were encapsulated within ZIF-8 to form Pt ZIF-8 composite. Pt ZIF-8 was inactive for the hydrogenation of cyclic olefins such as cis-cyclooctene and cis-cyclohexene while the composite proved to be a highly selective catalyst for the hydrogenation of terminal olefins, hydrogenating trans-1,3-hexadiene to 3-hexene in 95% selectivity after 24 hours under 1 bar H2. We extended our encapsulation method to sub-2 nm Au nanoparticles to form Au ZIF-8. Au ZIF-8 served as a highly chemoselective catalyst for the hydrogenation of crotonaldehyde an alpha,beta-unsaturated aldehyde, to crotyl alcohol an alpha,beta-unsaturated alcohol, in 90-95% selectivity. In order to investigate nanoparticle size effects on selectivity, 6-10 nm Au nanoparticles were encapsulated within ZIF-8 to form Au6 ZIF-8. Control catalysts with nanoparticles supported on the surface of ZIF-8 were synthesized as well, Au/ZIF-8 and Au6/ZIF-8. Au6 ZIF-8 hydrogenated crotonaldehyde in 85% selectivity towards the unsaturated alcohol. Catalysts with nanoparticles supported on the exterior of ZIF-8 were far less selective towards the unsaturated alcohol. Post-catalysis transmission electron microscopy analysis of Au ZIF

  2. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  3. Polymer-encapsulated metal nanoparticles: optical, structural, micro-analytical and hydrogenation studies of a composite material.

    PubMed

    Scalzullo, Stefania; Mondal, Kartick; Witcomb, Mike; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik

    2008-02-20

    A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures.

  4. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with themore » proposed models.« less

  5. Magnetic glass-film based on single-nanosize 𝜺 -Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Yoshikiyo, Marie; Namai, Asuka; Nakagawa, Kosuke; Ohkoshi, Shin-ichi

    2017-05-01

    We report a magnetic thin film of single-nanosize ɛ-Fe2O3 in SiO2 matrix. The glass-film was prepared by sintering a silica coated iron oxide hydroxide on a quartz substrate in air. The glass-film consists of ɛ-Fe2O3 of 8.8 nm size, and its thickness was 570 nm (0.57 μm) with a roughness of 10 nm (0.01 μm). UV-vis spectrum showed that the glass-film has small absorbance of 0.043 at 500 nm. The magneto-optical effect was investigated, and Faraday ellipticity showed a magnetic hysteresis loop with a coercive field of 3.0 ± 0.2 kOe. Furthermore, single-nanosize ɛ-Fe2O3 without silica was prepared as a reference sample, and ferroelectricity was observed. Therefore, the present thin glass-film consists of single-nanosize ferroelectric-ferromagnetic nanoparticles.

  6. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  7. Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors.

    PubMed

    Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan

    2016-05-11

    Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite.

  8. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.

    PubMed

    Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo

    2016-02-05

    We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

  9. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  10. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties.

    PubMed

    Akyuz, Lalehan; Kaya, Murat; Koc, Behlul; Mujtaba, Muhammad; Ilk, Sedef; Labidi, Jalel; Salaberria, Asier M; Cakmak, Yavuz Selim; Yildiz, Aysegul

    2017-12-01

    Practical applications of biopolymers in different industries are gaining considerable increase day by day. But still, these biopolymers lack important properties in order to meet the industrial demands. In the same regard, in the current study, chitosan composite films are produced by incorporating diatomite soil at two different concentrations. In order to obtain a homogeneous film, glutaraldehyde was supplemented to chitosan solution as a cross-linker. Compositing diatomaceous earth to chitosan film resulted in improvement of various important physicochemical properties compared to control such as; enhanced film wettability, increase elongation at break and improved thermal stability (264-277°C). The microstructure of the film was observed to haveconsisted of homogeneously distributed blister-shaped structures arised due to the incorporation of diatomite. The incorporation of diatomite did not influence the overall antioxidant activity of the composite films, which can be ascribe to the difficulty radicals formation. Chitosan film incorporated with increasing fraction of diatomite revealed a notable enhancement in the antimicrobial activity. Additionally with the present study, for the first time possible interactions between chitosan/diatomite were determined via quantum chemical calculations. Current study will be helpful in giving a new biotechnological perspective to diatom in terms of its successful application in hydrophobic composite film production. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.

    PubMed

    Bharali, P; Saikia, J P; Paul, S; Konwar, B K

    2013-10-01

    The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Optical and dielectric properties of poly(vinyl-alcohol) - Cobalt oxide nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, Amit Kumar; Tripathi, Himadri Sekhar; Meikap, Ajit Kumar

    2018-04-01

    Highly crystalline cobalt oxide (Co3O4) have been synthesized via calcination method. The crystallite size of the nanoparticles is 28.5 nm. Two direct band gap of Co3O4 is observed. The temperature dependent dielectric spectroscopy of PVA-Co3O4 composite film shows ferroelectric behavior. The dielectric constant of the composite film is almost 2.5 times compare to pure PVA at a 1kHz frequency and room temperature. From the Nyquist plot grain and grain boundary effects are identified.

  13. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein–Lecithin Composite Colloidal Nanoparticles

    PubMed Central

    Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang

    2016-01-01

    Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparticles was firstly increased with the rise of lecithin concentration and then siginificantly decreased. The nanoparticles at the zein to lecithin mass ratio of 5:1 had the largest particle size (263 nm), indicating that zein and lecithin formed composite colloidal nanoparticles, which might aggregate due to the enhanced interaction at a higher proportion of lecithin. Continuing to increase lecithin concentration, the zein-lecithin nanoparticles possibly formed a reverse micelle-like or a vesicle-like structure with zein in the core, which prevented the formation of nanoparticle aggregates and decreased the size of composite nanoparticles. The presence of lecithin significantly reduced the ζ-potential of zein-lecithin composite colloidal nanoparticles. The interaction between zein and lecithin enhanced the intensity of the fluorescence emission of zein in ethanol-water solution. The secondary structure of zein was also changed by the addition of lecithin. Differential scanning calorimetry thermograms revealed that the thermal stability of zein-lecithin nanoparticles was enhanced with the rise of lecithin level. The composite nanoparticles were relatively stable to elevated ionic strengths. Possible interaction mechanism between zein and lecithin was proposed. These findings would help further understand the theory of the interaction between the alcohol soluble protein and the natural small molecular surfactant. The composite colloidal nanoparticles formed in this study can

  14. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  15. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenchao; Wang, Zhipeng; School of Chemical Engineering, Tianjin University, Tianjin

    2012-09-15

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffractionmore » (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.« less

  16. Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: a biomaterial system.

    PubMed

    Rana, S; Rawat, J; Sorensson, M M; Misra, R D K

    2006-07-01

    The present study describes and makes a relative comparison of the antimicrobial function of undoped and neodymium-doped titania coated-nickel ferrite composite nanoparticles processed by uniquely combining the reverse micelle and chemical hydrolysis approaches. This methodology facilitates the formation of undoped and doped photocatalytic titania shells and a magnetic ferrite core. The ferrite core is needed to help in the removal of particles from the sprayed surface using a small magnetic field. Doping of the titania shell with neodymium significantly enhances the photocatalytic and anti-microbial function of the core-shell composite nanoparticles without influencing the magnetic characteristics of the nickel ferrite core. The increased performance is believed to be related to the inhibition of electron-hole recombination and a decrease in the band gap energy of titania. The retention of magnetic strength ensures controlled movement of the composite nanoparticles by the magnetic field, facilitating their application as removable anti-microbial photocatalyst nanoparticles. The consistent behavior of the composite nanoparticles points to the viability of the synthesis process adopted.

  17. Modification of natural matrix lac-bagasse for matrix composite films

    NASA Astrophysics Data System (ADS)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  18. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  19. Electromagnetic properties of Fe-Co granular composite materials containing acicular nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasagi, Teruhiro; Massango, Herieta; Tsutaoka, Takanori; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2018-03-01

    Electromagnetic properties of acicular (needle-like) Fe76Co24 nanoparticle composite materials have been studied in microwave frequency range up to 20 GHz. The Fe76Co24 particles are commercially available acicular Fe76Co24 nanoparticles with an approximate length and diameter of 100 and 25 nm, respectively. The Fe76Co24 nanocomposites were prepared by embedding the Fe76Co24 nanoparticle in an appropriate resin. Since the metallic Fe76Co24 nanoparticles have an oxidized surface, even high particle content composites at 78 vol.%, which is in the percolated state, does not show metallic conduction; a low frequency plasmonic state with the negative permittivity spectrum was not observed. Meanwhile, the negative permeability spectrum caused by the magnetic resonance in Fe76Co24 alloy was obtained in the high particle content composites. From the measurement of the complex permeability spectra under the external dc magnetic field, it was clarified that the gyromagnetic spin rotation mainly contributes to the permeability spectrum of nanocomposites due to extremely small quantity of domain walls in the acicular nanoparticles. This result suggests that the negative permeability spectrum was caused by the gyromagnetic spin resonance. By the comparison of the complex permeability spectrum between the acicular Fe76Co24 nanocomposite and the spherical Fe50Co50 microcomposite, the gyromagnetic spin resonance frequency of the acicular nanocomposite tends to locate higher than that of the spherical microcomposite owing to the demagnetizing field effect. Therefore, it can be concluded that the negative permeability frequency band of the acicular nanocomposite is higher than that of the spherical microcomposite at the same particle content.

  20. Synthesis and characterization of Au-MWCNT/PEDOT: PSS composite film for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Jasna, M.; Anjana, R.; Jayaraj, M. K.

    2017-08-01

    Recently, flexible organic optoelectronics have got great attention because of their light weight, mechanical flexibility and cost effective fabrication process. Conjugated polymers like PEDOT: PSS are widely used for the transparent electrode applications due to its chemical stability, high conductivity, flexibility and optical transparency in the visible region. Conductivity of the PEDOT: PSS polymer can be enhanced by adding organic solvents or conducting nano fillers like CNT, graphene, etc. Carbon nanotubes are good nano fillers to enhance the conductivity and mechanical strength of PEDOT: PSS composite film. Inthe present work, the effect of gold nano particles in PEDOT: PSS/CNT composite is studied. The conductivity enhancement in PEDOT: PSS/CNT thin films can be attributed to the formation of CNT network in the polymer matrix and conformational change of the PEDOT from benzoid to quinoid structure. Even though the conductivity was enhanced, the transparency of the composite thin films decreased with increase in CNT concentration. To overcome this problem, gold nano particles were attached to CNT walls via chemical route. AuMWCNT/PEDOT: PSS composite films were prepared by spin coating method. TEM images confirmed the decoration of gold nano particles on CNT walls. Electrical and optical properties of the composite films were studied. This simple solution processed conducting films are suitable for optoelectronic applications