Sample records for nanoparticles decrease photobleaching

  1. Decreasing photobleaching by silver island films: application to muscle⋆

    PubMed Central

    Muthu, P.; Gryczynski, I.; Gryczynski, Z.; Talent, J.; Akopova, I.; Jain, K.; Borejdo, J.

    2007-01-01

    Recently it has become possible to study interactions between proteins at the level of single molecules. This requires collecting data from an extremely small volume, small enough to contain one molecule—typically of the order of attoliters (10−18 L). Collection of data from such a small volume with sufficiently high signal-to-noise ratio requires that the rate of photon detection per molecule be high. This calls for a large illuminating light flux, which in turn leads to rapid photobleaching of the fluorophores that are labeling the proteins. To decrease photobleaching, we measured fluorescence from a sample placed on coverslips coated with silver island films (SIF). SIF reduce photobleaching because they enhance fluorescence brightness and significantly decrease fluorescence lifetime. Increase in the brightness effectively decreases photobleaching because illumination can be attenuated to obtain the same fluorescence intensity. Decrease of lifetime decreases photobleaching because short lifetime minimizes the probability of oxygen attack while the fluorophore is in the excited state. The decrease of photobleaching was demonstrated in skeletal muscle. Myofibrils were labeled lightly with rhodamine–phalloidin, placed on coverslips coated with SIF, illuminated by total internal reflection, and observed through a confocal aperture. We show that SIF causes the intensity of phalloidin fluorescence to increase 4- to 5- fold and its fluorescence lifetime to decrease on average 23-fold. As a consequence, the rate of photobleaching of four or five molecules of actin of a myofibril on Olympus coverslips coated with SIF decreased at least 30-fold in comparison with photobleaching on an uncoated coverslip. Significant decrease of photobleaching makes the measurement of signal from a single cross-bridge of contracting muscle feasible. PMID:17531183

  2. The photobleaching of the free and encapsulated metallic phthalocyanine and its effect on the photooxidation of simple molecules.

    PubMed

    Fanchiotti, Brenda Gomes; Machado, Marcella Piffer Zamprogno; de Paula, Letícia Camilato; Durmuş, Mahmut; Nyokong, Tebello; da Silva Gonçalves, Arlan; da Silva, André Romero

    2016-12-01

    The photobleaching of an unsubstituted phthalocyanine (gallium(III) phthalocyanine chloride (GaPc)) and a substituted phthalocyanine (1,4-(tetrakis[4-(benzyloxy)phenoxy]phthalocyaninato) indium(III) chloride (InTBPPc)) was monitored for the free photosensitizers and for the phthalocyanines encapsulated into nanoparticles of PEGylated poly(D,L-lactide-co-glycolide) (PLGA-PEG). Phosphate-buffered solutions (PBS) and organic solutions of the free GaPc or the free InTBPPc, and suspensions of each encapsulated photosensitizer (2-15μmol/L) were irradiated using a laser diode of 665nm with a power of 1-104mW and a light dose of 7.5J/cm 2 . The relative absorbance (RA) of the free GaPc dissolved in 1-methyl-2-pyrrolidone (MP) decreased 8.4 times when the laser power increased from 1mW to 104mW. However, the free or encapsulated GaPc did not suffer the photobleaching in PBS solution. The RA values decreased 2.4 times and 22.2 times for the free InTBPPc dissolved in PBS solution and in dimethylformamide (DMF), respectively, but the encapsulated InTBPPc was only photobleached when the laser power was 104mW at 8μmol/L. The increase of the free GaPc concentration favored the photobleaching in MP until 8μmol/L while the increase from 2μmol/L to 5μmol/L reduced the photodegradation in PBS solution. However, the photobleaching of the free InTBPPc in DMF or in PBS solution, and of each encapsulated photosensitizer was not influenced by increasing the concentration. The influence of the photobleaching on the capability of the free and encapsulated GaPc and InTBPPc to photooxidate the simple molecules was investigated monitoring the fluorescence of dimethylanthracene (DMA) and the tryptophan (Trp). Free InTBPPc was 2.0 and 1.8 times faster to photooxidate the DMA and Trp than it was the free GaPc, but the encapsulated GaPc was 3.4 times more efficient to photooxidize the Trp than it was the encapsulated InTBPPc due to the photodegradation suffered by the encapsulated In

  3. SU-D-16A-07: Photobleaching Predicts Necrosis in Interstitial PDT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Finlay, J; Liu, B

    Purpose: Dosimetry for PDT has proven to be a challenge thus far, and for prediction of PDT outcome, a singlet oxygen model based on fundamental photophysical parameters has been developed. Previously, the photobleaching effect of photosensitizers was taken into account in the singlet oxygen explicit dosimetry model; here we report of direct measurements of photobleaching in the same model to assess the conditions under which implicit dosimetry using photobleaching can serve as an intermediate surrogate for PDT damage. Methods: Fluorescence spectra were measured interstitially in sensitized mouse tumors prior to after irradiation via a cylindrical diffuser. Photobleaching was determined bymore » the relative decrease in fluorescence amplitude from the initial pre-treatment measurement. Spectra were analyzed by singular value decomposition to determine the photosensitizer concentration. Different photosensitizers were used to see the effect of photobleaching on PDT outcome and the impact of fluence on photobleaching. The drugs used were BPD (at two drug-light intervals), HPPH, and Photofrin. PDT outcome was determined by tumor necrosis radii measured upon sectioning and staining of treated tumors. Results: Post-PDT photosentizer concentrations were compared to initial pre-PDT photosensitizer concentrations, and the decrease was greater with a higher fluence measured during treatment. Furthermore, photobleaching and necrosis radius were found to be positively correlated. The relationship between photobleaching and necrosis radius is sensitizer-dependent, however the differences among sensitizers can be understood in terms of their respective photophysical parameters. Conclusions: Photobleaching is predictive of PDT outcome, but a comprehensive singlet oxygen model, has the potential to further improve the prediction of PDT outcome and the understanding of implicit dosimetry.« less

  4. Photobleaching correction in fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Vicente, Nathalie B.; Diaz Zamboni, Javier E.; Adur, Javier F.; Paravani, Enrique V.; Casco, Víctor H.

    2007-11-01

    Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique.

  5. Effects of Photobleaching on Microplastics

    NASA Astrophysics Data System (ADS)

    Ferrone, Salvatore; Sullivan, Kelley

    The presence of microplastics in our oceans and lakes is a contemporary environmental issue. A popular method for studying microplastics is fluorescence microscopy. We are studying the effects of fluorescence photo-bleaching on the imaging of microplastics. Our goal is to find out to what extent microplastics photo-bleach and if the photo-bleaching is recoverable. Photo-bleaching may entirely destroy the plastics' ability to fluoresce, hamper it for a short time, or have a minuscule effects. For this project, we consider the seven recyclable plastics. For each plastic type, we record a video of the micro-plastics for several hours under 405 nm light, then analyze and plot the image intensity as a function of time to see if the outputted light from the plastic decays over time. We then take single images at different time intervals to check if the intensity recovers. Our results will help set conditions under which fluorescence techniques can be used on microplastics. Undergraduate Student.

  6. The fluorescent photobleaching properties of GFP expressed in human lung cancer cells

    NASA Astrophysics Data System (ADS)

    Jin, Ying; Xing, Da

    2003-12-01

    The characteristic properties of GFP make this protein a good candidate for use as a molecular reporter to monitor patterns of protein localization, gene expression, and intracellular protein trafficking in living cells. In this study, the dicistronic expression vector (pEGFP-C1) was used to transfected into human lung cancer cell line (ASTC-a-1) and a positive clone which stably expressed GFP in high level was obtained. After more than three months' passengers, the cells were also remained the strong fluorescence under fluorescent microscope. The results showed that the green fluorescent protein expressed in tumor cells was also photobleached under intense irradiation (approximately 488 nm) and the degree of photobleaching varied with the difference of the intensity of the excitation. Using different interdiction parcel (None, ND4, ND8, ND16), there were significant differences in photobleaching among the different excitation. The photobleaching was also affected by the time length of excitation, and the intensity of fluorescence was obviously decreased along with the increasing of excitation time, especially to stronger excitation.

  7. Depth-dependent autofluorescence photobleaching using 325, 473, 633, and 785 nm of porcine ear skin ex vivo

    NASA Astrophysics Data System (ADS)

    Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E.

    2017-09-01

    Autofluorescence photobleaching describes the decrease of fluorescence intensity of endogenous fluorophores in biological tissue upon light irradiation. The origin of autofluorescence photobleaching is not fully understood. In the skin, the spatial distribution of various endogenous fluorophores varies within the skin layers. Most endogenous fluorophores are excited in the ultraviolet and short visible wavelength range, and only a few, such as porphyrins (red) and melanin (near-infrared), are excited at longer wavelengths. The excitation wavelength- and depth-dependent irradiation of skin will therefore excite different fluorophores, which will likely influence the photobleaching characteristics. The autofluorescence photobleaching of porcine ear skin has been measured ex vivo using 325, 473, 633, and 785 nm excitation at different skin depths from the surface to the dermis at 150 μm. Confocal Raman microscopes were used to achieve sufficient spatial resolution of the measurements. The autofluorescence area under the curve was measured for 21 consecutive acquisitions of 15 s. In all cases, the photobleaching follows a two-exponential decay function approximated by nonlinear regression. The results show that photobleaching can be applied to improve the signal-to-noise ratio in Raman spectroscopy for all of the applied excitation wavelengths and skin depths.

  8. Photobleaching of red fluorescence in oral biofilms.

    PubMed

    Hope, C K; de Josselin de Jong, E; Field, M R T; Valappil, S P; Higham, S M

    2011-04-01

    Many species of oral bacteria can be induced to fluoresce due to the presence of endogenous porphyrins, a phenomenon that can be utilized to visualize and quantify dental plaque in the laboratory or clinical setting. However, an inevitable consequence of fluorescence is photobleaching, and the effects of this on longitudinal, quantitative analysis of dental plaque have yet to be ascertained. Filter membrane biofilms were grown from salivary inocula or single species (Prevotella nigrescens and Prevotella intermedia). The mature biofilms were then examined in a custom-made lighting rig comprising 405 nm light-emitting diodes capable of delivering 220 W/m(2) at the sample, an appropriate filter and a digital camera; a set-up analogous to quantitative light-induced fluorescence digital. Longitudinal sets of images were captured and processed to assess the degradation in red fluorescence over time. Photobleaching was observed in all instances. The highest rates of photobleaching were observed immediately after initiation of illumination, specifically during the first minute. Relative rates of photobleaching during the first minute of exposure were 19.17, 13.72 and 3.43 arbitrary units/min for P. nigrescens biofilms, microcosm biofilm and P. intermedia biofilms, respectively. Photobleaching could be problematic when making quantitative measurements of porphyrin fluorescence in situ. Reducing both light levels and exposure time, in combination with increased camera sensitivity, should be the default approach when undertaking analyses by quantitative light-induced fluorescence digital. © 2010 John Wiley & Sons A/S.

  9. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra.

    PubMed

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN:TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN:TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0-9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%-5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  10. Photobleaching Response of Different Sources of Chromophoric Dissolved Organic Matter Exposed to Natural Solar Radiation Using Absorption and Excitation–Emission Matrix Spectra

    PubMed Central

    Zhang, Yunlin; Liu, Xiaohan; Osburn, Christopher L.; Wang, Mingzhu; Qin, Boqiang; Zhou, Yongqiang

    2013-01-01

    CDOM biogeochemical cycle is driven by several physical and biological processes such as river input, biogeneration and photobleaching that act as primary sinks and sources of CDOM. Watershed-derived allochthonous (WDA) and phytoplankton-derived autochthonous (PDA) CDOM were exposed to 9 days of natural solar radiation to assess the photobleaching response of different CDOM sources, using absorption and fluorescence (excitation-emission matrix) spectroscopy. Our results showed a marked decrease in total dissolved nitrogen (TDN) concentration under natural sunlight exposure for both WDA and PDA CDOM, indicating photoproduction of ammonium from TDN. In contrast, photobleaching caused a marked increase in total dissolved phosphorus (TDP) concentration for both WDA and PDA CDOM. Thus TDN∶TDP ratios decreased significantly both for WDA and PDA CDOM, which partially explained the seasonal dynamic of TDN∶TDP ratio in Lake Taihu. Photobleaching rate of CDOM absorption a(254), was 0.032 m/MJ for WDA CDOM and 0.051 m/MJ for PDA CDOM from days 0–9, indicating that phototransformations were initially more rapid for the newly produced CDOM from phytoplankton than for the river CDOM. Extrapolation of these values to the field indicated that 3.9%–5.1% CDOM at the water surface was photobleached and mineralized every day in summer in Lake Taihu. Photobleaching caused the increase of spectral slope, spectral slope ratio and molecular size, indicating the CDOM mean molecular weight decrease which was favorable to further microbial degradation of mineralization. Three fluorescent components were validated in parallel factor analysis models calculated separately for WDA and PDA CDOM. Our study suggests that the humic-like fluorescence materials could be rapidly and easily photobleached for WDA and PDA CDOM, but the protein-like fluorescence materials was not photobleached and even increased from the transformation of the humic-like fluorescence substance to the protein

  11. Raman background photobleaching as a possible method of cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolai N.; Brandt, Nikolai B.; Chikishev, Andrey Y.; Gangardt, Mihail G.; Karyakina, Nina F.

    2001-06-01

    Kinetics of photobleaching of background in Raman spectra of aqueous solutions of plant toxins ricin and ricin agglutinin, ricin binding subunit, and normal and malignant human blood serum were measured. For the excitation of the spectra cw and pulsed laser radiation were used. The spectra of Raman background change upon laser irradiation. Background intensity is lower for the samples with small molecular weight. The cyclization of amino acid residues in the toxin molecules as well as in human blood serum can be a reason of the Raman background. The model of the background photobleaching is proposed. The differences in photobleaching kinetics in the cases of cw and pulsed laser radiation are discussed. It is shown that Raman background photobleaching can be very informative for cancer diagnostics.

  12. Macroscopic singlet oxygen model incorporating photobleaching as an input parameter

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.

    2015-03-01

    A macroscopic singlet oxygen model for photodynamic therapy (PDT) has been used extensively to calculate the reacted singlet oxygen concentration for various photosensitizers. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]r,sh) can be found for various drugs and drug-light intervals using a fitting algorithm. The input parameters for this model include the fluence, photosensitizer concentration, optical properties, and necrosis radius. An additional input variable of photobleaching was implemented in this study to optimize the results. Photobleaching was measured by using the pre-PDT and post-PDT sensitizer concentrations. Using the RIF model of murine fibrosarcoma, mice were treated with a linear source with fluence rates from 12 - 150 mW/cm and total fluences from 24 - 135 J/cm. The two main drugs investigated were benzoporphyrin derivative monoacid ring A (BPD) and 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). Previously published photophysical parameters were fine-tuned and verified using photobleaching as the additional fitting parameter. Furthermore, photobleaching can be used as an indicator of the robustness of the model for the particular mouse experiment by comparing the experimental and model-calculated photobleaching ratio.

  13. A novel method to accurately locate and count large numbers of steps by photobleaching

    PubMed Central

    Tsekouras, Konstantinos; Custer, Thomas C.; Jashnsaz, Hossein; Walter, Nils G.; Pressé, Steve

    2016-01-01

    Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20–30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. PMID:27654946

  14. A novel method to accurately locate and count large numbers of steps by photobleaching.

    PubMed

    Tsekouras, Konstantinos; Custer, Thomas C; Jashnsaz, Hossein; Walter, Nils G; Pressé, Steve

    2016-11-07

    Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20-30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive. © 2016 Tsekouras et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary: kinetics and effects of temperature, pH, and salinity.

    PubMed

    Song, Guisheng; Li, Yijie; Hu, Suzheng; Li, Guiju; Zhao, Ruihua; Sun, Xin; Xie, Huixiang

    2017-06-21

    The kinetics and temperature-, pH- and salinity-dependences of photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary (YRE) were evaluated using laboratory solar-simulated irradiation and compared to those of Suwannee River humic substances (SRHSs). Nearly all CDOM in water at the head of the estuary (headwater herein) was photobleachable in both summer and winter, while significant fractions of CDOM (13-29%) were resistant to photobleaching in saltier waters. The photobleaching rate constant in the headwater was 25% higher in summer than that in winter. The absorbed photon-based photobleaching efficiency (PE) increased with temperature following the linear Arrhenius equation. For a 20 °C increase in temperature, PE increased by ∼45% in the headwater and by 70-81% in the saltier waters. PE for YRE samples exhibited minima at pH from 6 to 7 and increased with both lower and higher pH values, contrasting the consistent increase in PE with pH shown by SRHSs. No consistent effect of salinity on PE was observed for both SRHSs and YRE samples. Photobleaching increased the spectral slope coefficient between 275 nm and 295 nm in summer, consistent with the behavior of SRHSs, but decreased it in winter, implying a difference in the molecular composition of chromophores between the two seasons. Temperature, salinity, and pH modified the photoalteration of the spectral shape but their effects varied spatially and seasonally. This study demonstrates that CDOM quality, temperature, and pH should be incorporated into models involving quantification of photobleaching.

  16. Microfluidic flow cytometer for quantifying photobleaching of fluorescent proteins in cells

    PubMed Central

    Lubbeck, Jennifer L.; Dean, Kevin M.; Ma, Hairong; Palmer, Amy E.; Jimenez, Ralph

    2012-01-01

    Traditional flow cytometers are capable of rapid cellular assays on the basis of fluorescence intensity and light scatter. Microfluidic flow cytometers have largely followed the same path of technological development as their traditional counterparts, however the significantly smaller transport distance and resulting lower cell speeds in microchannels provides for the opportunity to detect novel spectroscopic signatures based on multiple, non-temporally-coincident excitation beams. Here, we characterize the design and operation of a cytometer with a 3-beam, probe/bleach/probe geometry, employing HeLa suspension cells expressing fluorescent proteins. The data collection rate exceeds 20 cells/s under a range of beam intensities (5 kW – 179 kW/cm2). The measured percent photobleaching (ratio of fluorescence intensities excited by the first and third beams: Sbeam3/Sbeam1) partially resolves a mixture of four red fluorescent proteins in mixed samples. Photokinetic simulations are presented and demonstrate that the percent photobleaching reflects a combination of the reversible and irreversible photobleaching kinetics. By introducing a photobleaching optical signature, which complements traditional fluorescence intensity-based detection, this method adds another dimension to multi-channel fluorescence cytometry, and provides a means for flow-cytometry-based screening of directed libraries of fluorescent protein photobleaching. PMID:22424298

  17. Time multiplexing super-resolution nanoscopy based on the Brownian motion of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Wagner, Omer; Zalevsky, Zeev

    2017-02-01

    Super-resolution localization microscopy can overcome the diffraction limit and achieve a tens of order improvement in resolution. It requires labeling the sample with fluorescent probes followed with their repeated cycles of activation and photobleaching. This work presents an alternative approach that is free from direct labeling and does not require the activation and photobleaching cycles. Fluorescently labeled gold nanoparticles in a solution are distributed on top of the sample. The nanoparticles move in a random Brownian motion, and interact with the sample. By obscuring different areas in the sample, the nanoparticles encode the sub-wavelength features. A sequence of images of the sample is captured and decoded by digital post processing to create the super-resolution image. The achievable resolution is limited by the additive noise and the size of the nanoparticles. Regular nanoparticles with diameter smaller than 100nm are barely seen in a conventional bright field microscope, thus fluorescently labeled gold nanoparticles were used, with proper

  18. Background photobleaching in raman spectra of aqueous solutions of plant toxins

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolai N.; Chikishev, Andrey Y.; Tonevitsky, Alexander G.

    2002-05-01

    Kinetics of background photobleaching in Raman spectra of aqueous solutions of ricin, ricin agglutinin and ricin binding subunit were measured. It was found that the spectrum of Raman background changes upon laser irradiation. Background intensity is lower for the samples with lower molecular weight. Photobleaching is characterized by oscillations in the multi exponentially decaying intensity.

  19. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy.

    PubMed

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  20. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity

    PubMed Central

    Boudreau, Colton; Wee, Tse-Luen (Erika); Duh, Yan-Rung (Silvia); Couto, Melissa P.; Ardakani, Kimya H.; Brown, Claire M.

    2016-01-01

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity. PMID:27485088

  1. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.

    PubMed

    Boudreau, Colton; Wee, Tse-Luen Erika; Duh, Yan-Rung Silvia; Couto, Melissa P; Ardakani, Kimya H; Brown, Claire M

    2016-08-03

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity.

  2. Measurement of the photobleaching kinetics of semiconducting polymer films by the pump - probe method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozimova, A E; Bruevich, V V; Parashchuk, D Yu

    2011-12-31

    A phenomenological model of the laser photobleaching dynamics of a semiconducting polymer in a dual-beam scheme for different wavelengths of the burning and probe beams is developed. An experimental method is implemented based on this model, which allows one to investigate materials with significantly different photodegradation rates. The photodegradation quantum yield in mixtures of a semiconducting polymer belonging to polyparaphenylene vinylenes (MEH-PPV) with a low-molecular electron acceptor 2,4,7-trinitrofluorenone (TNF) is measured at burning wavelengths of 488 and 514 nm for different component ratios of MEHPPV : TNF. It is found that adding the acceptor decreases the polymer photodegradation quantum yieldmore » by at least four orders of magnitude in the MEH-PPV : TNF = 1 : 0.4 mixture; the photodegradation quantum yields are the same at both wavelengths. It is shown that the photodegradation rates of the MEH-PPV : TNF films measured by laser photobleaching and IR spectroscopy are in good agreement.« less

  3. Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.

    PubMed

    Qin, Haiyan; Meng, Renyang; Wang, Na; Peng, Xiaogang

    2017-04-01

    Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Inferring subunit stoichiometry from single molecule photobleaching

    PubMed Central

    2013-01-01

    Single molecule photobleaching is a powerful tool for determining the stoichiometry of protein complexes. By attaching fluorophores to proteins of interest, the number of associated subunits in a complex can be deduced by imaging single molecules and counting fluorophore photobleaching steps. Because some bleaching steps might be unobserved, the ensemble of steps will be binomially distributed. In this work, it is shown that inferring the true composition of a complex from such data is nontrivial because binomially distributed observations present an ill-posed inference problem. That is, a unique and optimal estimate of the relevant parameters cannot be extracted from the observations. Because of this, a method has not been firmly established to quantify confidence when using this technique. This paper presents a general inference model for interpreting such data and provides methods for accurately estimating parameter confidence. The formalization and methods presented here provide a rigorous analytical basis for this pervasive experimental tool. PMID:23712552

  5. Staphyloxanthin photobleaching sensitizes methicillin-resistant Staphylococcus aureus to reactive oxygen species attack

    NASA Astrophysics Data System (ADS)

    Dong, Pu-Ting; Mohammad, Haroon; Hui, Jie; Wang, Xiaoyu; Li, Junjie; Liang, Lijia; Seleem, Mohamed N.; Cheng, Ji-Xin

    2018-02-01

    Given that the dearth of new antibiotic development loads an existential burden on successful infectious disease therapy, health organizations are calling for alternative approaches to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report a drug-free photonic approach to eliminate MRSA through photobleaching of staphyloxanthin, an indispensable membrane-bound antioxidant of S. aureus. The photobleaching process, uncovered through a transient absorption imaging study and quantitated by absorption spectroscopy and mass spectrometry, decomposes staphyloxanthin, and sensitizes MRSA to reactive oxygen species attack. Consequently, staphyloxanthin bleaching by low-level blue light eradicates MRSA synergistically with external or internal reactive oxygen species. The effectiveness of this synergistic therapy is validated in MRSA culture, MRSAinfected macrophage cells. Collectively, these findings highlight broad applications of staphyloxanthin photobleaching for treatment of MRSA infections.

  6. Raman Enhancement and Photo-Bleaching of Organic Dyes in the Presence of Chemical Vapor Deposition-Grown Graphene.

    PubMed

    Weng, Jiaxin; Zhao, Shichao; Li, Zhiting; Ricardo, Karen B; Zhou, Feng; Kim, Hyojeong; Liu, Haitao

    2017-10-19

    Fluorescent organic dyes photobleach under intense light. Graphene has been shown to improve the photo-stability of organic dyes. In this paper, we investigated the Raman spectroscopy and photo-bleaching kinetics of dyes in the absence/presence of chemical vapor deposition (CVD)-grown graphene. We show that graphene enhances the Raman signal of a wide range of dyes. The photo-bleaching of the dyes was reduced when the dyes were in contact with graphene. In contrast, monolayer hexagonal boron nitride (h-BN) was much less effective in reducing the photo-bleaching rate of the dyes. We attribute the suppression of photo-bleaching to the energy or electron transfer from dye to graphene. The results highlight the potential of CVD graphene as a substrate for protecting and enhancing Raman response of organic dyes.

  7. Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst

    EPA Science Inventory

    TiO2 doping with N-rich melamine produced a stable, active and visible light sentisized nanocatalyst that showed a remarkable efficiency towards the photobleaching of a model compound – methylene blue (MB) in aqueous solution. The photobleaching followed a mixed reaction order ki...

  8. Axial superresolution via multiangle TIRF microscopy with sequential imaging and photobleaching

    PubMed Central

    Fu, Yan; Winter, Peter W.; Rojas, Raul; Wang, Victor; McAuliffe, Matthew; Patterson, George H.

    2016-01-01

    We report superresolution optical sectioning using a multiangle total internal reflection fluorescence (TIRF) microscope. TIRF images were constructed from several layers within a normal TIRF excitation zone by sequentially imaging and photobleaching the fluorescent molecules. The depth of the evanescent wave at different layers was altered by tuning the excitation light incident angle. The angle was tuned from the highest (the smallest TIRF depth) toward the critical angle (the largest TIRF depth) to preferentially photobleach fluorescence from the lower layers and allow straightforward observation of deeper structures without masking by the brighter signals closer to the coverglass. Reconstruction of the TIRF images enabled 3D imaging of biological samples with 20-nm axial resolution. Two-color imaging of epidermal growth factor (EGF) ligand and clathrin revealed the dynamics of EGF-activated clathrin-mediated endocytosis during internalization. Furthermore, Bayesian analysis of images collected during the photobleaching step of each plane enabled lateral superresolution (<100 nm) within each of the sections. PMID:27044072

  9. Photoactive yellow protein from the purple phototrophic bacterium, Ectothiorhodospira halophila. Quantum yield of photobleaching and effects of temperature, alcohols, glycerol, and sucrose on kinetics of photobleaching and recovery.

    PubMed Central

    Meyer, T. E.; Tollin, G.; Hazzard, J. H.; Cusanovich, M. A.

    1989-01-01

    A water-soluble yellow protein from E. halophila was previously shown to be photoactive (Meyer, T. E., E. Yakali, M. A. Cusanovich, and G. Tollin. 1987. Biochemistry. 26:418-423). Pulsed laser excitation in the protein visible absorption band (maximum at 445 nm) causes a rapid bleach of color (k = 7.5 x 10(3) s-1) followed by a slower dark recovery (k = 2.6 s-1). This is analogous to the photocycle of sensory rhodopsin II from Halobacterium (which also has k = 2.6 s-1 for recovery). We have now determined the quantum yield of the photobleaching process to be 0.64, which is comparable with that of bacteriorhodopsin (0.25), and is thus large enough to be biologically significant. Although the photoreactions of yellow protein were previously shown to be relatively insensitive to pH, ionic strength and the osmoregulator betaine, the present experiments demonstrate that temperature, glycerol, sucrose, and various alcohol-water mixtures strongly influence the kinetics of photobleaching and recovery. The effect of temperature follows normal Arrhenius behavior for the bleach reaction (Ea = 15.5 kcal/mol). The rate constant for the recovery reaction increases with temperature between 5 degrees C and 35 degrees C, but decreases above 35 degrees C indicating alternate conformations with differing kinetics. There is an order of magnitude decrease in the rate constant for photobleaching in both glycerol and sucrose solutions that can be correlated with the changes in viscosity. We conclude from this that the protein undergoes a conformational change as a consequence of the photoinduced bleach. Recovery kinetics are affected by glycerol and sucrose to a much smaller extent and in a more complicated manner. Aliphatic, monofunctional alcohol-water solutions increase the rate constant for the bleach reaction and decrease the rate constant for the recovery reaction, each by an order of magnitude. These effects do not correlate with dielectric constant, indicating that the photocycle

  10. Correction for photobleaching in dynamic fluorescence microscopy: application in the assessment of pharmacokinetic parameters in ultrasound-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Derieppe, M.; Bos, C.; de Greef, M.; Moonen, C.; de Senneville, B. Denis

    2016-01-01

    We have previously demonstrated the feasibility of monitoring ultrasound-mediated uptake of a hydrophilic model drug in real time with dynamic confocal fluorescence microscopy. In this study, we evaluate and correct the impact of photobleaching to improve the accuracy of pharmacokinetic parameter estimates. To model photobleaching of the fluorescent model drug SYTOX Green, a photobleaching process was added to the current two-compartment model describing cell uptake. After collection of the uptake profile, a second acquisition was performed when SYTOX Green was equilibrated, to evaluate the photobleaching rate experimentally. Photobleaching rates up to 5.0 10-3 s-1 were measured when applying power densities up to 0.2 W.cm-2. By applying the three-compartment model, the model drug uptake rate of 6.0 10-3 s-1 was measured independent of the applied laser power. The impact of photobleaching on uptake rate estimates measured by dynamic fluorescence microscopy was evaluated. Subsequent compensation improved the accuracy of pharmacokinetic parameter estimates in the cell population subjected to sonopermeabilization.

  11. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.

    PubMed

    Zhang, Hui; Guo, Peixuan

    2014-05-15

    Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Skin autofluorescence photo-bleaching and photo-memory

    NASA Astrophysics Data System (ADS)

    Lesins, Janis; Lihachev, Alexey; Rudys, Romualdas; Bagdonas, Saulius; Spigulis, Janis

    2011-07-01

    Photo-bleaching of in-vivo skin autofluorescence intensity under continuous low power laser irradiation has been studied. Temporal behavior of single-spot fluorescence and spectral fluorescent images have been studied at continuous 405 nm, 473 nm and 532 nm laser excitation and/or pre-irradiation, with power densities well below the laser-skin safety limits. Skin autofluorescence photo-memory effects (laser signatures) have been observed and analyzed, as well.

  13. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants

    PubMed Central

    Maiz-Gregores, Helena; Nesslany, Fabrice; Betbeder, Didier

    2017-01-01

    Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants’ toxicity. PMID:28813539

  14. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants.

    PubMed

    Carpentier, Rodolphe; Platel, Anne; Maiz-Gregores, Helena; Nesslany, Fabrice; Betbeder, Didier

    2017-01-01

    Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants' toxicity.

  15. Blueberry effects on dark vision and recovery after photobleaching: placebo-controlled crossover studies.

    PubMed

    Kalt, Wilhelmina; McDonald, Jane E; Fillmore, Sherry A E; Tremblay, Francois

    2014-11-19

    Clinical evidence for anthocyanin benefits in night vision is controversial. This paper presents two human trials investigating blueberry anthocyanin effects on dark adaptation, functional night vision, and vision recovery after retinal photobleaching. One trial, S2 (n = 72), employed a 3 week intervention and a 3 week washout, two anthocyanin doses (271 and 7.11 mg cyanidin 3-glucoside equivalents (C3g eq)), and placebo. The other trial, L1 (n = 59), employed a 12 week intervention and an 8 week washout and tested one dose (346 mg C3g eq) and placebo. In both S2 and L1 neither dark adaptation nor night vision was improved by anthocyanin intake. However, in both trials anthocyanin consumption hastened the recovery of visual acuity after photobleaching. In S2 both anthocyanin doses were effective (P = 0.014), and in L1 recovery was improved at 8 weeks (P = 0.027) and 12 weeks (P = 0.030). Although photobleaching recovery was hastened by anthocyanins, it is not known whether this improvement would have an impact on everyday vision.

  16. Application of fluorescent Eu:Gd2O3 nanoparticles to the visualization of protein micropatterns

    NASA Astrophysics Data System (ADS)

    Dosev, Dosi; Nichkova, Mikaela; Liu, Maozi; Guo, Bing; Liu, Gang-yu; Xia, Younan; Hammock, Bruce D.; Kennedy, Ian M.

    2005-03-01

    Nanoparticles made of lanthanide oxides are promising fluorophores as a new class of tags in biochemistry because of their large Stokes shift, sharp emission spectra, long lifetime and lack of photobleaching. We demonstrate for first time the application of these nanoparticles to the visualization of protein micropatterns. Europium-doped gadolinium oxide (Eu:Gd2O3) nanoparticles were synthesized by spray pyrolysis and were characterized by means of laser-induced fluorescent spectroscopy and TEM. Their main emission peak is at 612 nm. And their size distribution is from 5 nm to 500 nm. The nanoparticles were coated with avidin through physical adsorption. Biotinylated Bovine Serum Albumin (BSA-b) was patterned on a silicon wafer using a micro-contact printing technique. The BSA-b - patterned wafer was incubated in a solution containing the avidin-coated nanoparticles. The specific interaction between biotin and avidin was studied by means of fluorescent microscopy and atomic-force microscopy (AFM). The fluorescent microscopic images revealed that the nanoparticles were organized into designated structures as defined by the microcontact printing process - non-specific binding of the avidin-coated nanoparticles to bare substrate was negligible. The fluorescent pattern did not suffer any photobleaching during the observation process which demonstrates the suitability of Eu:Gd2O3 nanoparticles as fluorescent labels with extended excitation periods - organic dyes, including chelates, suffer bleaching over the same period. More detailed studies were preformed using AFM at a single nanoparticle level. The specific and the non-specific binding densities of the particles were qualitatively evaluated.

  17. Plasmonic extinction in gold nanoparticle-polymer films as film thickness and nanoparticle separation decrease below resonant wavelength

    NASA Astrophysics Data System (ADS)

    Dunklin, Jeremy R.; Bodinger, Carter; Forcherio, Gregory T.; Keith Roper, D.

    2017-01-01

    Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ˜70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ˜130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ˜1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ˜514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.

  18. In Vivo Delivery of Nanoparticles into Plant Leaves.

    PubMed

    Wu, Honghong; Santana, Israel; Dansie, Joshua; Giraldo, Juan P

    2017-12-14

    Plant nanobiotechnology is an interdisciplinary field at the interface of nanotechnology and plant biology that aims to utilize nanomaterials as tools to study, augment or impart novel plant functions. The delivery of nanoparticles to plants in vivo is a key initial step to investigate plant nanoparticle interactions and the impact of nanoparticles on plant function. Quantum dots are smaller than plant cell wall pores, have versatile surface chemistry, bright fluorescence and do not photobleach, making them ideal for the study of nanoparticle uptake, transport, and distribution in plants by widely available confocal microscopy tools. Herein, we describe three different methods for quantum dot delivery into leaves of living plants: leaf lamina infiltration, whole shoot vacuum infiltration, and root to leaf translocation. These methods can be potentially extended to other nanoparticles, including nanosensors and drug delivery nanoparticles. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. Combined electromagnetic and photoreaction modeling of CLD-1 photobleaching in polymer microring resonators

    NASA Astrophysics Data System (ADS)

    Huang, Yanyi; Poon, Joyce K. S.; Liang, Wei; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.

    2005-08-01

    By combining a solid-state photoreaction model with the modal solutions of an optical waveguide, we simulate the refractive index change due to the photobleaching of CLD-1 chromophores in an amorphous polycarbonate microring resonator. The simulation agrees well with experimental results. The photobleaching quantum efficiency of the CLD-1 chromophores is determined to be 0.65%. The combined modeling of the electromagnetic wave propagation and photoreaction precisely illustrates the spatial and temporal evolution of the optical properties of the polymer material as manifested in the refractive index and their effects on the modal and physical properties of the optical devices.

  20. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics.

    PubMed Central

    Axelrod, D; Koppel, D E; Schlessinger, J; Elson, E; Webb, W W

    1976-01-01

    Fluorescence photobleaching recovery (FPR) denotes a method for measuring two-dimensional lateral mobility of fluorescent particles, for example, the motion of fluorescently labeled molecules in approximately 10 mum2 regions of a single cell surface. A small spot on the fluorescent surface is photobleached by a brief exposure to an intense focused laser beam, and the subsequent recovery of the fluorescence is monitored by the same, but attenuated, laser beam. Recovery occurs by replenishment of intact fluorophore in the bleached spot by lateral transport from the surrounding surface. We present the theoretical basis and some practical guidelines for simple, rigorous analysis of FPR experiments. Information obtainable from FPR experiments includes: (a) identification of transport process type, i.e. the admixture of random diffusion and uniform directed flow; (b) determination of the absolute mobility coefficient, i.e. the diffusion constant and/or flow velocity; and (c) the fraction of total fluorophore which is mobile. To illustrate the experimental method and to verify the theory for diffusion, we describe some model experiments on aqueous solutions of rhodamine 6G. PMID:786399

  1. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.

    PubMed

    Gou, Jingxin; Chao, Yanhui; Liang, Yuheng; Zhang, Ning; He, Haibing; Yin, Tian; Zhang, Yu; Xu, Hui; Tang, Xing

    2016-09-01

    Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.

  2. Photobleaching dynamics in small molecule vs.  polymer organic photovoltaic blends with 1,7-bis-trifluoromethylfullerene

    DOE PAGES

    Garner, Logan E.; Nellissery Viswanathan, Vinila; Arias, Dylan H.; ...

    2018-02-27

    Two organic photovoltaic (OPV) donor materials (one polymer and one small molecule) are synthesized from the same constituent building blocks, namely thiophene units, cyclopentathiophene dione (CTD), and cyclopentadithiophene (CPDT). Photobleaching dynamics of these donor materials are then studied under white light illumination in air with blends of PC 70BM and the bistrifluoromethylfullerene 1,7-C 60(CF 3) 2. For both the polymer and small molecule blends, C 60(CF 3) 2 stabilizes the initial rate of photobleaching by a factor of 15 relative to PC70BM. However, once the small molecule:C 60(CF 3) 2 blend bleaches to ~80% of its initial optical density, themore » rate of photobleaching dramatically accelerates, which is not observed in the analagous polymer blend. We probe that phenomenon using time-resovled photoluminescence (TRPL) to measure PL quenching efficiencies at defined intervals during the photobleaching experiments. The data indicates the small molecule donor and C 60(CF 3) 2 acceptor significantly de-mix with time, after which the blend begins to bleach at approximately the same rate as the neat donor sample. The work suggests that perfluoroalkylfullerenes have great potential to stabilize certain OPV active layers toward photodegradation, provided their morphology is stable.« less

  3. Photobleaching dynamics in small molecule vs.  polymer organic photovoltaic blends with 1,7-bis-trifluoromethylfullerene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Nellissery Viswanathan, Vinila; Arias, Dylan H.

    Two organic photovoltaic (OPV) donor materials (one polymer and one small molecule) are synthesized from the same constituent building blocks, namely thiophene units, cyclopentathiophene dione (CTD), and cyclopentadithiophene (CPDT). Photobleaching dynamics of these donor materials are then studied under white light illumination in air with blends of PC 70BM and the bistrifluoromethylfullerene 1,7-C 60(CF 3) 2. For both the polymer and small molecule blends, C 60(CF 3) 2 stabilizes the initial rate of photobleaching by a factor of 15 relative to PC70BM. However, once the small molecule:C 60(CF 3) 2 blend bleaches to ~80% of its initial optical density, themore » rate of photobleaching dramatically accelerates, which is not observed in the analagous polymer blend. We probe that phenomenon using time-resovled photoluminescence (TRPL) to measure PL quenching efficiencies at defined intervals during the photobleaching experiments. The data indicates the small molecule donor and C 60(CF 3) 2 acceptor significantly de-mix with time, after which the blend begins to bleach at approximately the same rate as the neat donor sample. The work suggests that perfluoroalkylfullerenes have great potential to stabilize certain OPV active layers toward photodegradation, provided their morphology is stable.« less

  4. Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules.

    PubMed

    Hoogenboom, Jacob P; van Dijk, Erik M H P; Hernando, Jordi; van Hulst, Niek F; García-Parajó, María F

    2005-08-26

    We exploit the strong excitonic coupling in a superradiant trimer molecule to distinguish between long-lived collective dark states and photobleaching events. The population and depopulation kinetics of the dark states in a single molecule follow power-law statistics over 5 orders of magnitude in time. This result is consistent with the formation of a radical unit via electron tunneling to a time-varying distribution of trapping sites in the surrounding polymer matrix. We furthermore demonstrate that this radicalization process forms the dominant pathway for molecular photobleaching.

  5. Monitoring blood flow and photobleaching during topical ALA PDT treatment

    NASA Astrophysics Data System (ADS)

    Sands, Theresa L.; Sunar, Ulas; Foster, Thomas H.; Oseroff, Allan R.

    2009-02-01

    Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular shutdown early in treatment must be identified and prevented. This is especially important for topical ALA PDT where vascular shutdown is only temporary and is not a primary method of cell death. Shutdown in vasculature would limit the delivery of oxygen which is necessary for effective PDT treatment. Diffuse correlation spectroscopy (DCS) was used to monitor relative blood flow changes in Balb/C mice undergoing PDT at fluence rates of 10mW/cm2 and 75mW/cm2 for colon-26 tumors implanted intradermally. DCS is a preferable method to monitor the blood flow during PDT of lesions due to its ability to be used noninvasively throughout treatment, returning data from differing depths of tissue. Photobleaching of the photosensitizer was also monitored during treatment as an indirect manner of monitoring singlet oxygen production. In this paper, we show the conditions that cause vascular shutdown in our tumor model and its effects on the photobleaching rate.

  6. Segmented frequency-domain fluorescence lifetime measurements: minimizing the effects of photobleaching within a multi-component system.

    PubMed

    Marwani, Hadi M; Lowry, Mark; Keating, Patrick; Warner, Isiah M; Cook, Robert L

    2007-11-01

    This study introduces a newly developed frequency segmentation and recombination method for frequency-domain fluorescence lifetime measurements to address the effects of changing fractional contributions over time and minimize the effects of photobleaching within multi-component systems. Frequency segmentation and recombination experiments were evaluated using a two component system consisting of fluorescein and rhodamine B. Comparison of experimental data collected in traditional and segmented fashion with simulated data, generated using different changing fractional contributions, demonstrated the validity of the technique. Frequency segmentation and recombination was also applied to a more complex system consisting of pyrene with Suwannee River fulvic acid reference and was shown to improve recovered lifetimes and fractional intensity contributions. It was observed that photobleaching in both systems led to errors in recovered lifetimes which can complicate the interpretation of lifetime results. Results showed clear evidence that the frequency segmentation and recombination method reduced errors resulting from a changing fractional contribution in a multi-component system, and allowed photobleaching issues to be addressed by commercially available instrumentation.

  7. Kinetics of photobleaching of aqueous solutions of ricin agglutinin in the presence of guanidine chloride

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolai N.; Chikishev, Andrey Y.

    2002-05-01

    Kinetics of background decay in Raman spectra of aqueous solutions of ricin agglutinin in the presence of guanidine chloride were measured. The differences in the kinetics of photobleaching are discussed.

  8. Defining the Subcellular Interface of Nanoparticles by Live-Cell Imaging

    PubMed Central

    Hemmerich, Peter H.; von Mikecz, Anna H.

    2013-01-01

    Understanding of nanoparticle-bio-interactions within living cells requires knowledge about the dynamic behavior of nanomaterials during their cellular uptake, intracellular traffic and mutual reactions with cell organelles. Here, we introduce a protocol of combined kinetic imaging techniques that enables investigation of exemplary fluorochrome-labelled nanoparticles concerning their intracellular fate. By time-lapse confocal microscopy we observe fast, dynamin-dependent uptake of polystyrene and silica nanoparticles via the cell membrane within seconds. Fluorescence recovery after photobleaching (FRAP) experiments reveal fast and complete exchange of the investigated nanoparticles at mitochondria, cytoplasmic vesicles or the nuclear envelope. Nuclear translocation is observed within minutes by free diffusion and active transport. Fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS) indicate diffusion coefficients of polystyrene and silica nanoparticles in the nucleus and the cytoplasm that are consistent with particle motion in living cells based on diffusion. Determination of the apparent hydrodynamic radii by FCS and RICS shows that nanoparticles exert their cytoplasmic and nuclear effects mainly as mobile, monodisperse entities. Thus, a complete toolkit of fluorescence fluctuation microscopy is presented for the investigation of nanomaterial biophysics in subcellular microenvironments that contributes to develop a framework of intracellular nanoparticle delivery routes. PMID:23637951

  9. Spatio-seasonal variability of chromophoric dissolved organic matter absorption and responses to photobleaching in a large shallow temperate lake

    NASA Astrophysics Data System (ADS)

    Encina Aulló-Maestro, María; Hunter, Peter; Spyrakos, Evangelos; Mercatoris, Pierre; Kovács, Attila; Horváth, Hajnalka; Preston, Tom; Présing, Mátyás; Torres Palenzuela, Jesús; Tyler, Andrew

    2017-03-01

    The development and validation of remote-sensing-based approaches for the retrieval of chromophoric dissolved organic matter (CDOM) concentrations requires a comprehensive understanding of the sources and magnitude of variability in the optical properties of dissolved material within lakes. In this study, spatial and seasonal variability in concentration and composition of CDOM and the origin of its variation was studied in Lake Balaton (Hungary), a large temperate shallow lake in central Europe. In addition, we investigated the effect of photobleaching on the optical properties of CDOM through in-lake incubation experiments. There was marked variability throughout the year in CDOM absorption in Lake Balaton (aCDOM(440) = 0. 06-9.01 m-1). The highest values were consistently observed at the mouth of the main inflow (Zala River), which drains humic-rich material from the adjoining Kis-Balaton wetland, but CDOM absorption decreased rapidly towards the east where it was consistently lower and less variable than in the westernmost lake basins. The spectral slope parameter for the interval of 350-500 nm (SCDOM(350-500)) was more variable with increasing distance from the inflow (observed range 0.0161-0.0181 nm-1 for the mouth of the main inflow and 0.0158-0.0300 nm-1 for waters closer to the outflow). However, spatial variation in SCDOM was more constant exhibiting a negative correlation with aCDOM(440). Dissolved organic carbon (DOC) was strongly positively correlated with aCDOM(440) and followed a similar seasonal trend but it demonstrated more variability than either aCDOM or SCDOM with distance through the system. Photobleaching resulting from a 7-day exposure to natural solar UV radiation resulted in a marked decrease in allochthonous CDOM absorption (7.04 to 3.36 m-1, 42 % decrease). Photodegradation also resulted in an increase in the spectral slope coefficient of dissolved material.

  10. Enzyme-dependent fluorescence recovery of NADH after photobleaching to assess dehydrogenase activity of isolated perfused hearts

    NASA Astrophysics Data System (ADS)

    Moreno, Angel; Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Kay, Matthew W.

    2017-03-01

    Reduction of NAD+ by dehydrogenase enzymes to form NADH is a key component of cellular metabolism. In cellular preparations and isolated mitochondria suspensions, enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH has been shown to be an effective approach for measuring the rate of NADH production to assess dehydrogenase enzyme activity. Our objective was to demonstrate how dehydrogenase activity could be assessed within the myocardium of perfused hearts using NADH ED-FRAP. This was accomplished using a combination of high intensity UV pulses to photobleach epicardial NADH. Replenishment of epicardial NADH fluorescence was then imaged using low intensity UV illumination. NADH ED-FRAP parameters were optimized to deliver 23.8 mJ of photobleaching light energy at a pulse width of 6 msec and a duty cycle of 50%. These parameters provided repeatable measurements of NADH production rate during multiple metabolic perturbations, including changes in perfusate temperature, electromechanical uncoupling, and acute ischemia/reperfusion injury. NADH production rate was significantly higher in every perturbation where the energy demand was either higher or uncompromised. We also found that NADH production rate remained significantly impaired after 10 min of reperfusion after global ischemia. Overall, our results indicate that myocardial NADH ED-FRAP is a useful optical non-destructive approach for assessing dehydrogenase activity.

  11. Protoporphyrin IX Content Correlates with Activity of Photobleaching Herbicides

    PubMed Central

    Becerril, Jose M.; Duke, Stephen O.

    1989-01-01

    Several laboratories have demonstrated recently that photobleaching herbicides such as acifluorfen and oxadiazon cause accumulation of protoporphyrin IX (PPIX), a photodynamic pigment capable of herbicidal activity. We investigated, in acifluorfen-treated tissues, the in vivo stability of PPIX, the kinetics of accumulation, and the correlation between concentration of PPIX and herbicidal damage. During a 20 hour dark period, PPIX levels rose from barely detectable concentrations to 1 to 2 nanomoles per 50 cucumber (Cucumis sativus L.) cotyledon discs treated with 10 micromolar acifluorfen. When placed in 500 micromoles per square meter per second PAR, PPIX levels decayed logarithmically, with an initial half-life of about 2.5 hours. PPIX levels at each time after exposure to light correlated positively with the cellular damage that occurred during the following 1 hour in both green and yellow (tentoxin-treated) cucumber cotyledon tissues. PPIX levels in discs incubated for 20 hours in darkness correlated positively with the acifluorfen concentration in which they were incubated. In cucumber, the level of herbicidal damage caused by several p-nitrodiphenyl other herbicides, a p-chlorodiphenylether herbicide, and oxadiazon correlated positively with the amount of PPIX induced to accumulate by each of the herbicide treatments. Similar results were obtained with acifluorfen-treated pigweed and velvetleaf primary leaf tissues. In cucumber, PPIX levels increased within 15 and 30 minutes after exposure of discs to 10 micromolar acifluorfen in the dark and light, respectively. These data strengthen the view that PPIX is responsible for all or a major part of the photobleaching activity of acifluorfen and related herbicides. PMID:16666869

  12. Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation.

    PubMed

    Li, Zhiquan; Zou, Xiucheng; Zhu, Guigang; Liu, Xiaoya; Liu, Ren

    2018-05-09

    Developing efficient unimolecular visible light-emitting diode (LED) light photoinitiators (PIs) with photobleaching capability, which are essential for various biomedical applications and photopolymerization of thick materials, remains a great challenge. Herein, we demonstrate the synthesis of a series of novel PIs, containing coumarin moieties as chromophores and oxime ester groups as initiation functionalities and explore their structure-activity relationship. The investigated oxime esters can effectively induce acrylates and thiol-based click photopolymerization under 450 nm visible LED light irradiation. The initiator O-3 exhibited excellent photobleaching capability and enabled photopolymerization of thick materials (∼4.8 mm). The efficient unimolecular photobleachable initiators show great potential in dental materials and 3D printings.

  13. Improved murine glioma detection following modified diet and photobleaching of skin PpIX fluorescence

    NASA Astrophysics Data System (ADS)

    Gibbs, Summer L.; O'Hara, Julia A.; Hoopes, P. Jack; Pogue, Brian W.

    2007-02-01

    The Aminolevulinic Acid (ALA) - Protoporphyrin IX (PpIX) system is unique in the world of photosensitizers in that the prodrug ALA is enzymatically transformed via the tissue of interest into fluorescently detectable levels of PpIX. This system can be used to monitor cellular metabolism of tumor tissue for applications such as therapy monitoring. Detecting PpIX fluorescence noninvasively has proven difficult due to the high levels of PpIX produced in the skin compared to other tissue both with and without ALA administration. In the current study, methods to decrease skin PpIX autofluorescence and skin PpIX fluorescence following ALA administration have been examined. Use of a purified diet is found to decrease both skin PpIX autofluorescence and skin PpIX fluorescence following ALA administration, while addition of a broad spectrum antibiotic to the water shows little effect. Following ALA administration, improved brain tumor detection is seen when skin PpIX fluorescence is photobleached via blue light prior to transmission spectroscopic measurements of tumor bearing and control animals. Both of these methods to decrease skin PpIX autofluorescence and skin PpIX fluorescence following ALA administration are shown to have a large effect on the ability to detect tumor tissue PpIX fluorescence noninvasively in vivo.

  14. Fluorescence recovery after photo-bleaching as a method to determine local diffusion coefficient in the stratum corneum.

    PubMed

    Anissimov, Yuri G; Zhao, Xin; Roberts, Michael S; Zvyagin, Andrei V

    2012-10-01

    Fluorescence recovery after photo-bleaching experiments were performed in human stratum corneum in vitro. Fluorescence multiphoton tomography was used, which allowed the dimensions of the photobleached volume to be at the micron scale and located fully within the lipid phase of the stratum corneum. Analysis of the fluorescence recovery data with simplified mathematical models yielded the diffusion coefficient of small molecular weight organic fluorescent dye Rhodamine B in the stratum corneum lipid phase of about (3-6) × 10(-9)cm(2) s(-1). It was concluded that the presented method can be used for detailed analysis of localised diffusion coefficients in the stratum corneum phases for various fluorescent probes. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Photocatalysis and self-catalyzed photobleaching with covalently-linked chromophore-quencher conjugates built around BOPHY.

    PubMed

    Sirbu, Dumitru; Woodford, Owen J; Benniston, Andrew C; Harriman, Anthony

    2018-06-13

    Two Chromophore-Quencher Conjugates (CQCs) have been synthesized by covalent attachment of the anti-oxidant dibutylated-hydroxytoluene (BHT) to a pyrrole-BF2 chromophore (BOPHY) in an effort to protect the latter against photofading. In fluid solution, light-induced intramolecular charge transfer is favoured in polar solvents and helps to inhibit photo-bleaching of the chromophore. The rate of photo-fading, which scales with the number of BHT residues, is zero-order in polar solvents but shows a linear dependence on the number of absorbed photons. The zero-order rate constant shows an inverse correlation with the fluorescence quantum yield measured in the same solvent. Photo-bleaching in benzonitrile involves autocatalysis while reaction in cyclohexane shows an unexpected stoichiometry. NMR spectroscopy indicates initial damage takes place at the BHT unit and allows identification of a reactive hydroperoxide as being the primary product. In the presence of an adventitious substrate, this hydroperoxide is a photocatalyst for amide formation under mild conditions.

  16. A Generalization of Theory for Two-Dimensional Fluorescence Recovery after Photobleaching Applicable to Confocal Laser Scanning Microscopes

    PubMed Central

    Kang, Minchul; Day, Charles A.; Drake, Kimberly; Kenworthy, Anne K.; DiBenedetto, Emmanuele

    2009-01-01

    Abstract Fluorescence recovery after photobleaching (FRAP) using confocal laser scanning microscopes (confocal FRAP) has become a valuable technique for studying the diffusion of biomolecules in cells. However, two-dimensional confocal FRAP sometimes yields results that vary with experimental setups, such as different bleaching protocols and bleaching spot sizes. In addition, when confocal FRAP is used to measure diffusion coefficients (D) for fast diffusing molecules, it often yields D-values that are one or two orders-of-magnitude smaller than that predicted theoretically or measured by alternative methods such as fluorescence correlation spectroscopy. Recently, it was demonstrated that this underestimation of D can be corrected by taking diffusion during photobleaching into consideration. However, there is currently no consensus on confocal FRAP theory, and no efforts have been made to unify theories on conventional and confocal FRAP. To this end, we generalized conventional FRAP theory to incorporate diffusion during photobleaching so that analysis by conventional FRAP theory for a circular region of interest is easily applicable to confocal FRAP. Finally, we demonstrate the accuracy of these new (to our knowledge) formulae by measuring D for soluble enhanced green fluorescent protein in aqueous glycerol solution and in the cytoplasm and nucleus of COS7 cells. PMID:19720039

  17. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.

    PubMed Central

    Saxton, M J

    2001-01-01

    Anomalous subdiffusion is hindered diffusion in which the mean-square displacement of a diffusing particle is proportional to some power of time less than one. Anomalous subdiffusion has been observed for a variety of lipids and proteins in the plasma membranes of a variety of cells. Fluorescence photobleaching recovery experiments with anomalous subdiffusion are simulated to see how to analyze the data. It is useful to fit the recovery curve with both the usual recovery equation and the anomalous one, and to judge the goodness of fit on log-log plots. The simulations show that the simplest approximate treatment of anomalous subdiffusion usually gives good results. Three models of anomalous subdiffusion are considered: obstruction, fractional Brownian motion, and the continuous-time random walk. The models differ significantly in their behavior at short times and in their noise level. For obstructed diffusion the approach to the percolation threshold is marked by a large increase in noise, a broadening of the distribution of diffusion coefficients and anomalous subdiffusion exponents, and the expected abrupt decrease in the mobile fraction. The extreme fluctuations in the recovery curves at and near the percolation threshold result from extreme fluctuations in the geometry of the percolation cluster. PMID:11566793

  18. THE IMPACT OF CDOM PHOTOBLEACHING ON UV ATTENUATION NEAR CORAL REEFS IN THE FLORIDA KEYS

    EPA Science Inventory

    We have investigated how the loss of chromophoric dissolved organic matter (CDOM) in the water column due to photobleaching allows for increased penetration of UV radiation near coral reefs in the Florida Keys. Extended exposure to UV may contribute to coral bleaching episodes. C...

  19. Functional assessment of gap junctions in monolayer and three-dimensional cultures of human tendon cells using fluorescence recovery after photobleaching

    PubMed Central

    Kuzma-Kuzniarska, Maria; Yapp, Clarence; Pearson-Jones, Thomas W.; Jones, Andrew K.; Hulley, Philippa A.

    2014-01-01

    Abstract. Gap junction-mediated intercellular communication influences a variety of cellular activities. In tendons, gap junctions modulate collagen production, are involved in strain-induced cell death, and are involved in the response to mechanical stimulation. The aim of the present study was to investigate gap junction-mediated intercellular communication in healthy human tendon-derived cells using fluorescence recovery after photobleaching (FRAP). The FRAP is a noninvasive technique that allows quantitative measurement of gap junction function in living cells. It is based on diffusion-dependent redistribution of a gap junction-permeable fluorescent dye. Using FRAP, we showed that human tenocytes form functional gap junctions in monolayer and three-dimensional (3-D) collagen I culture. Fluorescently labeled tenocytes following photobleaching rapidly reacquired the fluorescent dye from neighboring cells, while HeLa cells, which do not communicate by gap junctions, remained bleached. Furthermore, both 18 β-glycyrrhetinic acid and carbenoxolone, standard inhibitors of gap junction activity, impaired fluorescence recovery in tendon cells. In both monolayer and 3-D cultures, intercellular communication in isolated cells was significantly decreased when compared with cells forming many cell-to-cell contacts. In this study, we used FRAP as a tool to quantify and experimentally manipulate the function of gap junctions in human tenocytes in both two-dimensional (2-D) and 3-D cultures. PMID:24390370

  20. Rapid and simple method of photobleaching to reduce background autofluorescence in lung tissue sections.

    PubMed

    Kumar, B Santhosh; Sandhyamani, S; Nazeer, Shaiju S; Jayasree, R S

    2015-02-01

    Autofluorescence exhibited by tissues often interferes with immunofluorescence. Using imaging and spectral analysis, we observed remarkable reduction of autofluorescence of formalin fixed paraffin embedded tissues irradiated with light prior to incubation with immunofluorescent dyes. The technique of photobleaching offers significant improvement in the quality and specificity of immunofluorescence. This has the potential for better techniques for disease diagnosis.

  1. Nanoparticle-assisted-multiphoton microscopy for in vivo brain imaging of mice

    NASA Astrophysics Data System (ADS)

    Qian, Jun

    2015-03-01

    Neuro/brain study has attracted much attention during past few years, and many optical methods have been utilized in order to obtain accurate and complete neural information inside the brain. Relying on simultaneous absorption of two or more near-infrared photons by a fluorophore, multiphoton microscopy can achieve deep tissue penetration and efficient light detection noninvasively, which makes it very suitable for thick-tissue and in vivo bioimaging. Nanoparticles possess many unique optical and chemical properties, such as anti-photobleaching, large multiphoton absorption cross-section, and high stability in biological environment, which facilitates their applications in long-term multiphoton microscopy as contrast agents. In this paper, we will introduce several typical nanoparticles (e.g. organic dye doped polymer nanoparticles and gold nanorods) with high multiphoton fluorescence efficiency. We further applied them in two- and three-photon in vivo functional brain imaging of mice, such as brain-microglia imaging, 3D architecture reconstruction of brain blood vessel, and blood velocity measurement.

  2. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  3. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo.

    PubMed

    Clark, Andrea J; Coury, Emma L; Meilhac, Alexandra M; Petty, Howard R

    2016-02-12

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte's functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye's anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  4. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  5. Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis

    PubMed Central

    Kim, Woon-Ki; Kim, Jin-Chun; Park, Hyun-Jung; Sul, Ok-Joo; Lee, Mi-Hyun; Kim, Ji-Soon

    2012-01-01

    Platinum nanoparticles (PtNP) exhibit remarkable antioxidant activity. There is growing evidence concerning a positive relationship between oxidative stress and bone loss, suggesting that PtNP could protect against bone loss by modulating oxidative stress. Intragastric administration of PtNP reduced ovariectomy (OVX)-induced bone loss with a decreased level of activity and number of osteoclast (OC) in vivo. PtNP inhibited OC formation by impairing the receptor activator of nuclear factor-κB ligand (RANKL) signaling. This impairment was due to a decreased activation of nuclear factor-κB and a reduced level of nuclear factor in activated T-cells, cytoplasmic 1 (NFAT2). PtNP lowered RANKL-induced long lasting reactive oxygen species as well as intracellular concentrations of Ca2+ oscillation. Our data clearly highlight the potential of PtNP for the amelioration of bone loss after estrogen deficiency by attenuated OC formation. PMID:22525805

  6. Accelerated Photobleaching of a Cyanine Dye in the Presence of a Ternary Target DNA, PNA Probe, Dye Catalytic Complex: A Molecular Diagnostic

    PubMed Central

    Wang, M.; Holmes-Davis, R.; Rafinski, Z.; Jedrzejewska, B.; Choi, K. Y.; Zwick, M.; Bupp, C.; Izmailov, A.; Paczkowski, J.; Warner, B.; Koshinsky, H.

    2009-01-01

    In many settings, molecular testing is needed but unavailable due to complexity and cost. Simple, rapid, and specific DNA detection technologies would provide important alternatives to existing detection methods. Here we report a novel, rapid nucleic acid detection method based on the accelerated photobleaching of the light-sensitive cyanine dye, 3,3′-diethylthiacarbocyanine iodide (DiSC2(3) I−), in the presence of a target genomic DNA and a complementary peptide nucleic acid (PNA) probe. On the basis of the UV–vis, circular dichroism, and fluorescence spectra of DiSC2(3) with PNA–DNA oligomer duplexes and on characterization of a product of photolysis of DiSC2(3) I−, a possible reaction mechanism is proposed. We propose that (1) a novel complex forms between dye, PNA, and DNA, (2) this complex functions as a photosensitizer producing 1O2, and (3) the 1O2 produced promotes photobleaching of dye molecules in the mixture. Similar cyanine dyes (DiSC3(3), DiSC4(3), DiSC5(3), and DiSCpy(3)) interact with preformed PNA–DNA oligomer duplexes but do not demonstrate an equivalent accelerated photobleaching effect in the presence of PNA and target genomic DNA. The feasibility of developing molecular diagnostic assays based on the accelerated photobleaching (the smartDNA assay) that results from the novel complex formed between DiSC2(3) and PNA–DNA is under way. PMID:19231844

  7. Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Lemelle, A.; Veksler, B.; Kozhevnikov, I. S.; Akchurin, G. G.; Piletsky, S. A.; Meglinski, I.

    2009-01-01

    Confocal laser scanning microscopy (CLSM) is a modern high-resolution optical technique providing detailed image of tissue structure with high (down to microns) spatial resolution. Aiming at a concurrent improvement of imaging depth and image quality the CLSM requires the use of contrast agents. Commonly employed fluorescent contrast agents, such as fluorescent dyes and proteins, suffer from toxicity, photo-bleaching and overlapping with the tissues autofluorescence. Gold nanoparticles are potentially highly attractive to be applied as a contrast agent since they are not subject to photo-bleaching and can target biochemical cells markers associated with the specific diseases. In current report we consider the applicability of gold nano-spheres as a contrast agent to enhance quality of CLSM images of skin tissues in vitro versus the application of optical clearing agent, such as glycerol. The enhancement of CLSM image contrast was observed with an application of gold nano-spheres diffused within the skin tissues. We show that optical clearing agents such as a glycerol provide better CLSM image contrast than gold nano-spheres.

  8. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature.

    PubMed

    Chen, Lei; Yokel, Robert A; Hennig, Bernhard; Toborek, Michal

    2008-12-01

    Manufactured nanoparticles of aluminum oxide (nano-alumina) have been widely used in the environment; however, their potential toxicity provides a growing concern for human health. The present study focuses on the hypothesis that nano-alumina can affect the blood-brain barrier and induce endothelial toxicity. In the first series of experiments, human brain microvascular endothelial cells (HBMEC) were exposed to alumina and control nanoparticles in dose- and time-responsive manners. Treatment with nano-alumina markedly reduced HBMEC viability, altered mitochondrial potential, increased cellular oxidation, and decreased tight junction protein expression as compared to control nanoparticles. Alterations of tight junction protein levels were prevented by cellular enrichment with glutathione. In the second series of experiments, rats were infused with nano-alumina at the dose of 29 mg/kg and the brains were stained for expression of tight junction proteins. Treatment with nano-alumina resulted in a marked fragmentation and disruption of integrity of claudin-5 and occludin. These results indicate that cerebral vasculature can be affected by nano-alumina. In addition, our data indicate that alterations of mitochondrial functions may be the underlying mechanism of nano-alumina toxicity.

  9. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.

    PubMed

    Fölling, Jonas; Polyakova, Svetlana; Belov, Vladimir; van Blaaderen, Alfons; Bossi, Mariano L; Hell, Stefan W

    2008-01-01

    We have designed and synthesized a new functional (amino reactive) highly efficient fluorescent molecular switch (FMS) with a photochromic diarylethene and a rhodamine fluorescent dye. The reactive group in this FMS -N-hydroxysuccinimide ester- allows selective labeling of amino containing molecules or other materials. In ethanolic solutions, the compound displays a large fluorescent quantum yield of 52 % and a large fluorescence modulation ratio (94 %) between two states that may be interconverted with red and near-UV light. Silica nanoparticles incorporating the new FMS were prepared and characterized, and their spectroscopic and switching properties were also studied. The dye retained its properties after the incorporation into the silica, thereby allowing light-induced reversible high modulation of the fluorescence signal of a single particle for up to 60 cycles, before undergoing irreversible photobleaching. Some applications of these particles in fluorescence microscopy are also demonstrated. In particular, subdiffraction images of nanoparticles were obtained, in the focal plane of a confocal microscope.

  10. Strong plasmonic enhancement of single molecule photostability in silver dimer optical antennas

    NASA Astrophysics Data System (ADS)

    Kaminska, Izabela; Vietz, Carolin; Cuartero-González, Álvaro; Tinnefeld, Philip; Fernández-Domínguez, Antonio I.; Acuna, Guillermo P.

    2018-02-01

    Photobleaching is an effect terminating the photon output of fluorophores, limiting the duration of fluorescence-based experiments. Plasmonic nanoparticles (NPs) can increase the overall fluorophore photostability through an enhancement of the radiative rate. In this work, we use the DNA origami technique to arrange a single fluorophore in the 12-nm gap of a silver NP dimer and study the number of emitted photons at the single molecule level. Our findings yielded a 30× enhancement in the average number of photons emitted before photobleaching. Numerical simulations are employed to rationalize our results. They reveal the effect of silver oxidation on decreasing the radiative rate enhancement.

  11. Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors.

    PubMed

    Drummond, D R; Carter, N; Cross, R A

    2002-05-01

    Multiphoton excitation was originally projected to improve live cell fluorescence imaging by minimizing photobleaching effects outside the focal plane, yet reports suggest that photobleaching within the focal plane is actually worse than with one photon excitation. We confirm that when imaging enhanced green fluorescent protein, photobleaching is indeed more acute within the multiphoton excitation volume, so that whilst fluorescence increases as predicted with the square of the excitation power, photobleaching rates increase with a higher order relationship. Crucially however, multiphoton excitation also affords unique opportunities for substantial improvements to fluorescence detection. By using a Pockels cell to minimize exposure of the specimen together with multiple nondescanned detectors we show quantitatively that for any particular bleach rate multiphoton excitation produces significantly more signal than one photon excitation confocal microscopy in high resolution Z-axis sectioning of thin samples. Both modifications are readily implemented on a commercial multiphoton microscope system.

  12. Clean Photothermal Heating and Controlled Release from Near-Infrared Dye Doped Nanoparticles without Oxygen Photosensitization.

    PubMed

    Guha, Samit; Shaw, Scott K; Spence, Graeme T; Roland, Felicia M; Smith, Bradley D

    2015-07-21

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of (1)O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive (1)O2, leading to bleaching of the dye and also decomposition of coencapsulated payload such as the drug doxorubicin. Croc dye was especially useful as a photothermal agent for laser-controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water-soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications.

  13. Clean Photothermal Heating and Controlled Release From Near Infrared Dye Doped Nanoparticles Without Oxygen Photosensitization

    PubMed Central

    Guha, Samit; Shaw, Scott K.; Spence, Graeme T.; Roland, Felicia M.; Smith, Bradley D.

    2015-01-01

    The photothermal heating and release properties of biocompatible organic nanoparticles, doped with a near-infrared croconaine (Croc) dye, were compared with analogous nanoparticles doped with the common near-infrared dyes ICG and IR780. Separate formulations of lipid-polymer-hybrid nanoparticles and liposomes, each containing Croc dye, absorbed strongly at 808 nm and generated clean laser-induced heating (no production of 1O2 and no photobleaching of the dye). In contrast, laser-induced heating of nanoparticles containing ICG or IR780 produced reactive 1O2 leading to bleaching of the dye and also decomposition of co-encapsulated payload such as the drug Doxorubicin. Croc dye was especially useful as a photothermal agent for laser controlled release of chemically sensitive payload from nanoparticles. Solution state experiments demonstrated repetitive fractional release of water soluble fluorescent dye from the interior of thermosensitive liposomes. Additional experiments used a focused laser beam to control leakage from immobilized liposomes with very high spatial and temporal precision. The results indicate that fractional photothermal leakage from nanoparticles doped with Croc dye is a promising method for a range of controlled release applications. PMID:26149326

  14. Recent Applications of Fluorescence Recovery after Photobleaching (FRAP) to Membrane Bio-Macromolecules

    PubMed Central

    Rayan, Gamal; Guet, Jean-Erik; Taulier, Nicolas; Pincet, Frederic; Urbach, Wladimir

    2010-01-01

    This review examines some recent applications of fluorescence recovery after photobleaching (FRAP) to biopolymers, while mainly focusing on membrane protein studies. Initially, we discuss the lateral diffusion of membrane proteins, as measured by FRAP. Then, we talk about the use of FRAP to probe interactions between membrane proteins by obtaining fundamental information such as geometry and stoichiometry of the interacting complex. Afterwards, we discuss some applications of FRAP at the cellular level as well as the level of organisms. We conclude by comparing diffusion coefficients obtained by FRAP and several other alternative methods. PMID:22219695

  15. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro

    NASA Astrophysics Data System (ADS)

    Dysart, Jonathan S.; Patterson, Michael S.

    2005-06-01

    A singlet oxygen dose model is developed for PDT with Photofrin. The model is based on photosensitizer photobleaching kinetics, and incorporates both singlet oxygen and non-singlet oxygen mediated bleaching mechanisms. To test our model, in vitro experiments were performed in which MatLyLu (MLL) cells were incubated in Photofrin and then irradiated with 532 nm light. Photofrin fluorescence was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony formation assay. Cell survival correlated well to calculated singlet oxygen dose, independent of initial Photofrin concentration or oxygenation. About 2 × 108 molecules of singlet oxygen per cell were required to reduce the surviving fraction by 1/e. Analysis of the photobleaching kinetics suggests that the lifetime of singlet oxygen in cells is 0.048 ± 0.005 µs. The generation of fluorescent photoproducts was not a result of singlet oxygen reactions exclusively, and therefore did not yield additional information to aid in quantifying singlet oxygen dose.

  16. A Fluorescence Recovery After Photobleaching (FRAP) Technique for the Measurement of Solute Transport Across Surfactant-Laden Interfaces

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Hatton, T. Alan

    1996-01-01

    The technique of Fluorescence Recovery After Photobleaching (FRAP) has been applied to the measurement of interfacial transport in two-phase systems. FRAP exploits the loss of fluorescence exhibited by certain fluorophores when over-stimulated (photobleached), so that a two-phase system, originally at equilibrium, can be perturbed without disturbing the interface by strong light from an argon-ion laser and its recovery monitored by a microscope-mounted CCD camera as it relaxes to a new equilibrium. During this relaxation, the concentration profiles of the probe solute are measured on both sides of the interface as a function of time, yielding information about the transport characteristics of the system. To minimize the size of the meniscus between the two phases, a photolithography technique is used to selectively treat the glass walls of the cell in which the phases are contained. This allows concentration measurements to be made very close to the interface and increases the sensitivity of the FRAP technique.

  17. Strategies to overcome photobleaching in algorithm-based adaptive optics for nonlinear in-vivo imaging.

    PubMed

    Caroline Müllenbroich, M; McGhee, Ewan J; Wright, Amanda J; Anderson, Kurt I; Mathieson, Keith

    2014-01-01

    We have developed a nonlinear adaptive optics microscope utilizing a deformable membrane mirror (DMM) and demonstrated its use in compensating for system- and sample-induced aberrations. The optimum shape of the DMM was determined with a random search algorithm optimizing on either two photon fluorescence or second harmonic signals as merit factors. We present here several strategies to overcome photobleaching issues associated with lengthy optimization routines by adapting the search algorithm and the experimental methodology. Optimizations were performed on extrinsic fluorescent dyes, fluorescent beads loaded into organotypic tissue cultures and the intrinsic second harmonic signal of these cultures. We validate the approach of using these preoptimized mirror shapes to compile a robust look-up table that can be applied for imaging over several days and through a variety of tissues. In this way, the photon exposure to the fluorescent cells under investigation is limited to imaging. Using our look-up table approach, we show signal intensity improvement factors ranging from 1.7 to 4.1 in organotypic tissue cultures and freshly excised mouse tissue. Imaging zebrafish in vivo, we demonstrate signal improvement by a factor of 2. This methodology is easily reproducible and could be applied to many photon starved experiments, for example fluorescent life time imaging, or when photobleaching is a concern.

  18. A modified GFP facilitates counting membrane protein subunits by step-wise photobleaching in Arabidopsis.

    PubMed

    Song, Kai; Xue, Yiqun; Wang, Xiaohua; Wan, Yinglang; Deng, Xin; Lin, Jinxing

    2017-06-01

    Membrane proteins exert functions by forming oligomers or molecular complexes. Currently, step-wise photobleaching has been applied to count the fluorescently labelled subunits in plant cells, for which an accurate and reliable control is required to distinguish individual subunits and define the basal fluorescence. However, the common procedure using immobilized GFP molecules is obviously not applicable for analysis in living plant cells. Using the spatial intensity distribution analysis (SpIDA), we found that the A206K mutation reduced the dimerization of GFP molecules. Further ectopic expression of Myristoyl-GFP A206K driven by the endogenous AtCLC2 promoter allowed imaging of individual molecules at a low expression level. As a result, the percentage of dimers in the transgenic pCLC2::Myristoyl-mGFP A206K line was significantly reduced in comparison to that of the pCLC2::Myristoyl-GFP line, confirming its application in defining the basal fluorescence intensity of GFP. Taken together, our results demonstrated that pCLC2::Myristoyl-mGFP A206K can be used as a standard control for monomer GFP, facilitating the analysis of the step-wise photobleaching of membrane proteins in Arabidopsis thaliana. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Red emissive cross-linked chitosan and their nanoparticles for imaging the nucleoli of living cells.

    PubMed

    Wang, Ke; Yuan, Xun; Guo, Zhenpeng; Xu, Jiying; Chen, Yi

    2014-02-15

    Biocompatible glutaraldehyde-cross-linked chitosan with new red fluorescence were prepared for the first time and were shaped into nanoparticles via inverse-microemulsion method. They could luminesce at ca. 670 nm either as powders and nanoparticles or in real and gelling solutions or suspensions, having a lifetime of 1.353 ns and a quantum yield of 0.08 in solution or 0.01 in solid state. The new-formed pyridinium structures and the intramolecular charge transfer effect are considered to be responsible for the new red emission, which have been proved by FTIR, (13)C NMR, and some calculation using Gaussian 09, respectively. Strikingly, they are quite inert and anti-photobleaching, with only <3% loss of fluorescent intensity per minute in average under a continuous laser illumination at 633 nm and 50 μW. Especially, their nanoparticles (5.6 nm) could enter into the negative nucleoli of living HeLa cells with low cytotoxicity for high contrast imaging inspections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. FITC labeled silica nanoparticles as efficient cell tags: uptake and photostability study in endothelial cells.

    PubMed

    Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, Sheikh; Aravind, Athulya; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-03-01

    The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.

  2. Novel core-shell (TiO2@Silica) nanoparticles for scattering medium in a random laser: higher efficiency, lower laser threshold and lower photodegradation.

    PubMed

    Jimenez-Villar, Ernesto; Mestre, Valdeci; de Oliveira, Paulo C; de Sá, Gilberto F

    2013-12-21

    There has been growing interest in scattering media in recent years, due to their potential applications as solar collectors, photocatalyzers, random lasers and other novel optical devices. Here, we have introduced a novel core-shell scattering medium for a random laser composed of TiO2@Silica nanoparticles. Higher efficiency, lower laser threshold and long photobleaching lifetime in random lasers were demonstrated. This has introduced a new method or parameter (fraction of absorbed pumping), which opens a new avenue to characterize and study the scattering media. Optical chemical and colloidal stabilities were combined by coating a suitable silica shell onto TiO2 nanoparticles.

  3. Enhancing the Sensitivity of DNA Microarray Using Dye-Doped Silica Nanoparticles: Detection of Human Papilloma Virus

    NASA Astrophysics Data System (ADS)

    Enrichi, F.; Riccò, R.; Meneghello, A.; Pierobon, R.; Canton, G.; Cretaio, E.

    2010-10-01

    DNA microarray is a high-throughput technology used for detection and quantification of nucleic acid molecules and others of biological interest. The analysis is based on the specific hybridization between probe sequences deposited in array and a target ss-DNA amplified by PCR and functionalized by a fluorescent dye. Organic labels have well known disadvantages like photobleaching and low signal intensities, which put a limitation to the lower amount of DNA material that can be detected. Therefore for trace analysis the development of more efficient biomarkers is required. With this aim we present in this paper the synthesis and application of alternative hybrid nanosystems obtained by incorporating standard fluorescent molecules into monodisperse silica nanoparticles. Efficient application to the detection of Human Papilloma Virus is demonstrated. This virus is associated to the formation of cervical cancer, a leading cause of death by cancer for women worldwide. It is shown that the use of the novel biomarkers increases the optical signal of about one order of magnitude with respect to the free dyes or quantum dots in conventional instruments. This is due to the high number of molecules that can be accommodated into each nanoparticle, to the reduced photobleaching and to the improved environmental protection of the dyes when encapsulated in the silica matrix. The cheap and easy synthesis of these luminescent particles, the stability in water, the surface functionalizability and bio-compatibility make them very promising for present and future bio-labeling and bio-imaging applications.

  4. Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study.

    PubMed

    Dojčilović, Radovan; Pajović, Jelena D; Božanić, Dušan K; Bogdanović, Una; Vodnik, Vesna V; Dimitrijević-Branković, Suzana; Miljković, Miona G; Kaščaková, Slavka; Réfrégiers, Matthieu; Djoković, Vladimir

    2017-07-01

    The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353nm] and [370-410nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells' surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion

    PubMed Central

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Grodzik, Marta; Strojny, Barbara; Kurantowicz, Natalia; Zdunek, Krzysztof; Chodun, Rafał; Chwalibog, André; Sawosz, Ewa

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug delivery. The objective of this research was to assess changes in the adhesion, migration, and invasiveness of two glioblastoma cell lines, U87 and U118, after ND, NG, and nGO treatment. All treatments affected the cell surface structure, adhesion-dependent EGFR/AKT/mTOR, and β-catenin signaling pathways, decreasing the migration and invasiveness of both glioblastoma cell lines. The examined nanoparticles did not show strong toxicity but effectively deregulated cell migration. ND was effectively taken up by cells, whereas nGO and NG strongly interacted with the cell surface. These results indicate that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment. PMID:29042773

  6. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion.

    PubMed

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Grodzik, Marta; Strojny, Barbara; Kurantowicz, Natalia; Zdunek, Krzysztof; Chodun, Rafał; Chwalibog, André; Sawosz, Ewa

    2017-01-01

    The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug delivery. The objective of this research was to assess changes in the adhesion, migration, and invasiveness of two glioblastoma cell lines, U87 and U118, after ND, NG, and nGO treatment. All treatments affected the cell surface structure, adhesion-dependent EGFR/AKT/mTOR, and β-catenin signaling pathways, decreasing the migration and invasiveness of both glioblastoma cell lines. The examined nanoparticles did not show strong toxicity but effectively deregulated cell migration. ND was effectively taken up by cells, whereas nGO and NG strongly interacted with the cell surface. These results indicate that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment.

  7. Study on the fluorescence characteristics of carbon dots

    NASA Astrophysics Data System (ADS)

    Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo

    2010-02-01

    Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG 1500N). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change.

  8. Measurement of resistance to solute transport across surfactant-laden interfaces using a Fluorescence Recovery After Photobleaching (FRAP) technique

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Nivaggioli, Thierry; Hatton, T. Alan

    1994-01-01

    A noninvasive fluorescence recovery after photobleaching (FRAP) technique is under development to measure interfacial transport in two phase systems without disturbing the interface. The concentration profiles of a probe solute are measured in both sides of the interface by argon-ion laser, and the system relaxation is then monitored by a microscope-mounted CCD camera.

  9. Synthesis of photobleachable deep UV resists based on single component nonchemically amplified resist system

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Seon; Kim, Su-Min; Park, Ji-Young; Kim, Jin-Baek

    2006-03-01

    In a general way, non-CARs consist of the matrix resins and photoactive compounds (PACs), and the dissolution properties of the resists are dependent on the amount of PACs. In common, I-line and G-line resists based on novolac and diazonaphthoquinone (DNQ) are typical non-CARs. But most PACs absorb much light in the deep UV, and they are poorly photobleached by deep UV exposure. This strong absorption of PACs prevents the deep UV light from reaching the bottom of the resist film, leading to scum and sloped pattern profiles. Several PACs which contain diazoketo groups have been reported for deep UV lithography. Our goal in this investigation is to find a proper resist that is processable without photoacid generator and induces both photobleaching in the deep UV regions and polarity change upon exposure. We thought diazoketo groups attached to the polymer side chains could give such effects. There is no necessity for the post-exposure bake step that is the cause of acid-diffusion. The diazoketo groups undergo the Wolff rearrangement upon irradiation in the deep UV, affording ketenes that react with water to provide base soluble photoproducts. The polymers were synthesized by radical copolymerization of 2-(2-diazo-3-oxo-butyryloxy)-ethyl methacrylate, 2-hydroxyethyl methacrylate, and γ-butyrolacton-2-yl methacrylate. The single component resist showed 0.7μm line and space patterns using a mercury-xenon lamp in a contact printing mode.

  10. Dynamic behavior of pump light radiation induced photo-bleaching effect on BAC-Si in bismuth/erbium co-doped optical fibers

    NASA Astrophysics Data System (ADS)

    Ding, Mingjie; Luo, Yanhua; Wen, Jianxiang; Peng, Gang-Ding

    2018-02-01

    Ultra-wide emission in bismuth doped optical fiber has been extremely studied for the development of the laser and amplifier working at near infrared band. In our homemade bismuth/erbium co-doped optical fiber, bismuth active center associated with silica (BAC-Si) has been found that when pumping at its resonant wavelength at 830 nm the NIR emission could be partially bleached. In addition, a self-recovery process has been observed at room temperature. However, the exact mechanism is still unclear. In this work, we have investigated the photo-bleaching effect on the BAC-Si via the pump power, pump wavelength and temperature dependence. Based on analyzing the result using stretched exponential function, it shows that the bleaching effect on BAC-Si has a strong link with the excitation process of Bi ion in BAC-Si. A potential energy curve model is used to illustrate the BAC-Si photo-bleaching process.

  11. Analytic solutions to modelling exponential and harmonic functions using Chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching.

    PubMed

    Malachowski, George C; Clegg, Robert M; Redford, Glen I

    2007-12-01

    A novel approach is introduced for modelling linear dynamic systems composed of exponentials and harmonics. The method improves the speed of current numerical techniques up to 1000-fold for problems that have solutions of multiple exponentials plus harmonics and decaying components. Such signals are common in fluorescence microscopy experiments. Selective constraints of the parameters being fitted are allowed. This method, using discrete Chebyshev transforms, will correctly fit large volumes of data using a noniterative, single-pass routine that is fast enough to analyse images in real time. The method is applied to fluorescence lifetime imaging data in the frequency domain with varying degrees of photobleaching over the time of total data acquisition. The accuracy of the Chebyshev method is compared to a simple rapid discrete Fourier transform (equivalent to least-squares fitting) that does not take the photobleaching into account. The method can be extended to other linear systems composed of different functions. Simulations are performed and applications are described showing the utility of the method, in particular in the area of fluorescence microscopy.

  12. Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores

    NASA Astrophysics Data System (ADS)

    Poon, Joyce K. S.; Huang, Yanyi; Paloczi, George T.; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.

    2004-11-01

    We present a simple and effective method for the postfabrication trimming of optical microresonators. We photobleach CLD-1 chromophores to tune the resonance wavelengths of polymer microring resonator optical notch filters. A maximum wavelength shift of -8.73 nm is observed. The resonators are fabricated with a soft-lithography molding technique and have an intrinsic Q value of 2.6×10^4 and a finesse of 9.3. The maximum extinction ratio of the resonator filters is -34 dB, indicating that the critical coupling condition has been satisfied.

  13. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.

    PubMed

    Townley, Helen E; Rapa, Elizabeth; Wakefield, Gareth; Dobson, Peter J

    2012-05-01

    We report significant and controlled cell death using novel x-ray-activatable titania nanoparticles (NPs) doped with lanthanides. Preferential incorporation of such materials into tumor tissue can enhance the effect of radiation therapy. Herein, the incorporation of gadolinium into the NPs is designed to optimize localized energy absorption from a conventional medical x-ray. This result is further optimized by the addition of other rare earth elements. Upon irradiation, energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species (ROS). The authors report significant and controlled cell death using x-ray-activated titania nanoparticles doped with lanthanides as enhancers. Upon irradiation X-ray energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Instantaneous velocity measurement of AC electroosmotic flows by laser induced fluorescence photobleaching anemometer with high temporal resolution

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Qiao, Rui; Wang, Guiren; Rui Qiao Collaboration

    2015-11-01

    Understanding the instantaneous response of flows to applied AC electric fields may help understand some unsolved issues in induced-charge electrokinetics and enhance performance of microfluidic devices. Since currently available velocimeters have difficulty in measuring velocity fluctuations with frequency higher than 1 kHz, most experimental studies so far focus only on the average velocity measurement in AC electrokinetic flows. Here, we present measurements of AC electroosmotic flow (AC-EOF) response time in microchannels by a novel velocimeter with submicrometer spatial resolution and microsecond temporal resolution, i.e. laser-induced fluorescence photobleaching anemometer (LIFPA). Several parameters affecting the AC-EOF response time to the applied electric signal were investigated, i.e. channel length, transverse position and solution conductivity. The experimental results show that the EOF response time under a pulsed electric field decreases with the reduction of the microchannel length, distance between the detection position to the wall and the conductivity of the solution. This work could provide a new powerful tool to measure AC electrokinetics and enhance our understanding of AC electrokinetic flows.

  15. Study on the fluorescence characteristics of carbon dots.

    PubMed

    Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo

    2010-02-01

    Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG(1500 N)). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Validation of photodynamic action via photobleaching of a new curcumin-based composite with enhanced water solubility.

    PubMed

    Rego-Filho, Francisco G; de Araujo, Maria T; de Oliveira, Kleber T; Bagnato, Vanderlei S

    2014-09-01

    Motivated by the photochemical and photophysical properties of curcumin-based composites, the characteristics of a new curcumin-based water-soluble salt were investigated via absorption and fluorescence spectroscopy. Photobleaching was investigated using a set of LEDs in three different wavelengths (405 nm, 450 nm and 470 nm) to illuminate an aqueous solution of curcumin, evaluating its degradation for five different exposure times (0, 5, 15, 45 and 105 minutes). The results were compared with equivalent measurements of dark degradation and illumination in the presence of a singlet-oxygen quencher. Three solution concentrations (50, 100 and 150 μg/ml) were studied. To measure the fluorescence, it was used low power 405 nm excitation laser source. Time dependent photodegradation of curcumin was observed, as compared to the natural degradation of samples maintained on a dark environment. Two main absorption peaks were detected and their relation responded to both concentration and wavelength of the illumination source. A spectral correlation between absorption of curcumin and the emission bands of the sources showed an optimal spectral overlap for the 450 nm LED. For this source, photobleaching showed a less intense degradation on the presence of singlet oxygen quencher. This last result confirmed singlet oxygen production in vitro, indicating a strong potential of this composite to be used as a blue-light-activated photosensitizer.

  17. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2

  18. Random Walk of Single Gold Nanoparticles in Zebrafish Embryos Leading to Stochastic Toxic Effects on Embryonic Developments

    PubMed Central

    Browning, Lauren M.; Lee, Kerry J.; Huang, Tao; Nallathamby, Prakash D.; Lowman, Jill E.; Xu, Xiao-Hong Nancy

    2010-01-01

    We have synthesized and characterized stable (non-aggregation, non-photobleaching and non-blinking), nearly monodisperse and highly-purified Au nanoparticles, and used them to probe transport of cleavage-stage zebrafish embryos and to study their effects on embryonic development in real time. We found that single Au nanoparticles (11.6 ± 0.9 nm in diameter) passively diffused into chorionic space of the embryos via their chorionic-pore-canals and continued their random-walk through chorionic space and into inner mass of embryos. Diffusion coefficients of single nanoparticles vary dramatically (2.8×10-11 to 1.3×10-8 cm2/s) as nanoparticles diffuse through various parts of embryos, suggesting highly diverse transport barriers and viscosity gradients of embryos. The amount of Au nanoparticles accumulated in embryos increase with its concentration. Interestingly, their effects on embryonic development are not proportionally related to the concentration. Majority of embryos (74% on average) incubated chronically with 0.025-1.2 nM Au nanoparticles for 120 h developed to normal zebrafish, with some (24%) being dead and few (2%) deformed. We developed a new approach to image and characterize individual Au nanoparticles embedded in tissues using histology sample preparation methods and LSRP spectra of single nanoparticles. We found that Au nanoparticles in various parts of normally developed and deformed zebrafish, suggesting that random-walk of nanoparticles in embryos during their development might have led to stochastic effects on embryonic development. These results show that Au nanoparticles are much more biocompatible (less toxic) to the embryos than Ag nanoparticles that we reported previously, suggesting that they are better suited as biocompatible probes for imaging embryos in vivo. The results provide powerful evidences that biocompatibility and toxicity of nanoparticles highly depend on their chemical properties, and the embryos can serve as effective in

  19. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer.

    PubMed

    Cohen, Sarit; Margel, Shlomo

    2012-08-14

    The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to use them for both detection as well as therapy of colon

  20. Engineering of near IR fluorescent albumin nanoparticles for in vivo detection of colon cancer

    PubMed Central

    2012-01-01

    Background The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer because water and other intrinsic biomolecules display negligible absorption or autofluorescence in this region. Novel fluorescent nanoparticles with potential to improve neoplasm detection sensitivity may prove to be a valuable tool in early detection of colon tumors. Methods The present study describes the synthesis and use of NIR fluorescent albumin nanoparticles as a diagnostic tool for detection of colon cancer. These fluorescent nanoparticles were prepared by a precipitation process of human serum albumin (HSA) in aqueous solution in the presence of a carboxylic acid derivative of the NIR dye IR-783 (CANIR). Tumor-targeting ligands such as peanut agglutinin (PNA), anti-carcinoembryonic antigen antibodies (anti-CEA) and tumor associated glycoprotein-72 monoclonal antibodies (anti-TAG-72) were covalently conjugated to the albumin nanoparticles via the surface carboxylate groups by using the carbodiimide activation method. Results and discussion Leakage of the encapsulated dye into PBS containing 4% HSA or human bowel juice was not detected. This study also demonstrates that the encapsulation of the NIR fluorescent dye within the HSA nanoparticles reduces the photobleaching of the dye significantly. Specific colon tumor detection in a mouse model was demonstrated for PNA, anti-CEA and anti-TAG-72 conjugated NIR fluorescent HSA nanoparticles. These bioactive NIR fluorescent albumin nanoparticles also detected invisible tumors that were revealed as pathological only subsequent to histological analysis. Conclusions These results may suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent nanoparticles over regular colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs, such as paclitaxel and doxorubicin, within these biodegradable NIR fluorescent HSA nanoparticles, in order to

  1. Volume Labeling with Alexa-Fluor Dyes and Surface Functionalization of Highly Sensitive Fluorescent SiO2 Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Foster, Carmen M; Morrell-Falvey, Jennifer L

    2013-01-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and amore » polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or free surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.« less

  2. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP)

    PubMed Central

    Day, Charles A.; Kraft, Lewis J.; Kang, Minchul; Kenworthy, Anne K.

    2012-01-01

    Fluorescence recovery after photobleaching (FRAP) is a powerful, versatile and widely accessible tool to monitor molecular dynamics in living cells that can be performed using modern confocal microscopes. Although the basic principles of FRAP are simple, quantitative FRAP analysis requires careful experimental design, data collection and analysis. In this review we discuss the theoretical basis for confocal FRAP, followed by step-by-step protocols for FRAP data acquisition using a laser scanning confocal microscope for (1) measuring the diffusion of a membrane protein, (2) measuring the diffusion of a soluble protein, and (3) analysis of intracellular trafficking. Finally, data analysis procedures are discussed and an equation for determining the diffusion coefficient of a molecular species undergoing pure diffusion is presented. PMID:23042527

  3. Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).

    PubMed

    Giakoumakis, Nickolaos Nikiforos; Rapsomaniki, Maria Anna; Lygerou, Zoi

    2017-01-01

    Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.

  4. Measuring Solvent Content of Macromolecular Crystals Using Fluorescence Recovery after Photobleaching

    NASA Astrophysics Data System (ADS)

    Siewny, Matthew; Kmetko, Jan

    2010-10-01

    We work out a novel protocol for measuring the solvent content (the fraction of crystal volume occupied by solvent) in biological crystals by the technique of fluorescence recovery after photobleaching (FRAP). Crystals of proteins with widely varying known solvent content (lysozyme, thaumatin, catalase, and ferritin) were grown in their native solution doped with sodium fluorescein dye and hydroxylamine (to prevent dye from binding to amine groups of the proteins.) The crystals were irradiated by a broadband, high intensity light through knife slits, leaving a rectangular area of bleached dye within the crystals. Measuring the flow of dye out of the bleached area allowed us to construct a curve relating the diffusion coefficient of dye to the channel size within the crystals, by solving the diffusion equation analytically. This curve may be used to measure the solvent content of any biological crystal in its native solution and help determine the number of proteins in the crystallographic asymmetric unit cell in x-ray structure solving procedures.

  5. NIR to NIR upconversion in KYb2F7: RE3+ (RE = Tm, Er) nanoparticles for biological imaging

    NASA Astrophysics Data System (ADS)

    Pedraza, F.; Yust, B.; Tsin, A.; Sardar, D.

    2014-03-01

    Until recently, many contrast agents widely used in biological imaging have absorbed and emitted in the visible region, limiting their usefulness for deeper tissue imaging. In order to push the boundaries of deep tissue imaging with non-ionizing radiation, contrast agents in the near infrared (NIR) regime, which is not strongly absorbed or scattered by most tissues, are being sought after. Upconverting nanoparticles (UCNPs) are attractive candidates since their upconversion emission is tunable with a very narrow bandwidth and they do not photobleach or blink. The upconversion produced by the nanoparticles can be tailored for NIR to NIR by carefully choosing the lanthanide dopants and dopant ratios such as KYb2F7: RE3+ (RE = Tm, Er). Spectroscopic characterization was done by analyzing absorption, fluorescence, and quantum yield data. In order to study the toxicity of the nanoparticles Monkey Retinal Endothelial Cells (MREC) were cultivated in 24 well plates and then treated with nanoparticles at different concentrations in triplicate to obtain the optimal concentration for in vivo experiments. It will be shown that these UCNPs do not elicit a strong toxic response such as quantum dots and some noble metal nanoparticles. 3-D optical slices of nanoparticle treated fibroblast cells were imaged using a confocal microscope where the nucleus and cytoplasm were stained with DAPI and Alexa Fluor respectively. These results presented support the initial assumption, which suggests that KYb2F7: RE3+ would be excellent candidates for NIR contrast agents.

  6. Singlet oxygen generation of photosensitizers effectively activated by Nd3+-doped upconversion nanoparticles of luminescence intensity enhancing with shell thickness decreasing

    NASA Astrophysics Data System (ADS)

    Zou, Haixia; Jin, Fengmin; Song, Xiaoyan; Xing, Jinfeng

    2017-04-01

    The introduction of a thick shell structure has been widely used to enhance the emission intensity of upconversion nanoparticles (UCNPs). However, a thick shell could increase the distance between UCNPs and photosensitizers, which is not favourable to the generation of singlet oxygen (1O2) in photodynamic therapy (PDT) due to the low fluorescence resonance energy transfer (FRET) efficiency. In this study, we used a facile method to prepare UCNPs that the emission intensity could increase with the shell thickness decreasing, which facilitated the efficient FRET between UCNPs and photosensitizers. In detail, the Nd3+-doped UCNPs with different dopant concentration of Yb3+ were prepared and characterized firstly. The Ir/g (intensity of red luminescence to green luminescence) was tuned to increase largely by precisely controlling Yb3+ concentration in core-shell, which could make UCNPs effectively activate methylene blue (MB). Then, a unique procedure was used to prepare NaYF4:Yb/Er/Nd@NaYF4:Nd (Yb3+:30%) core-shell nanoparticles with different shell thickness by tuning the amount of the core. The upconversion luminescence (UCL) intensity of those UCNPs enhanced dramatically with the shell thickness decreasing. Furthermore, UCNPs and MB were encapsulated into SiO2 nanoparticles. FRET efficiency between UCNPs and MB largely increased with the shell thickness of UCNPs decreasing. Correspondingly, the efficiency of 1O2 generation obviously increased. We provided a new method to optimize the UCL intensity and FRET efficiency at the same time to produce 1O2 efficiently.

  7. Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex

    PubMed Central

    Chen, Yalei; Deffenbaugh, Nathan C.; Anderson, Charles T.; Hancock, William O.

    2014-01-01

    The constituents of large, multisubunit protein complexes dictate their functions in cells, but determining their precise molecular makeup in vivo is challenging. One example of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellulose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-containing particles in living Arabidopsis thaliana cells using variable-angle epifluorescence microscopy and developed a set of information-based step detection procedures to estimate the number of GFP molecules in each particle. The step detection algorithms account for changes in signal variance due to changing numbers of fluorophores, and the subsequent analysis avoids common problems associated with fitting multiple Gaussian functions to binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can exist in each particle. These procedures can be applied to photobleaching data for any protein complex with large numbers of fluorescently tagged subunits, providing a new analytical tool with which to probe complex composition and stoichiometry. PMID:25232006

  8. The Temporal Resolution of Laser Induced Fluorescence Photobleaching Anemometer

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Yang, Fang; Wang, Guiren

    2014-11-01

    Recently, in microfluidics, electrokinetic flows are widely used on micromixer designing. However, there is unfortunately no valid velocimeter today that can measure the random velocity fluctuation at high temporal and spatial resolution simultaneously in the complicated flow circumstance. We recently introduced laser induced fluorescence photobleaching anemometer (LIFPA), which has been successfully used in the measurement of velocity field in AC electrically driven microflow. Here, we theoretically study the temporal resolution (TR) of and experimentally verify, LIFPA can have simultaneously ultrahigh temporal (~4 μs) and spatial (~203 nm) resolution and can measure velocity fluctuation up to at least 2 kHz, whose corresponding wave number is about 6 × 106 1/m in an electrokinetically forced unsteady flow in microfluidics. The measurement of LIFPA is also compared with the widely used micro Particle Imaging Velocimetry (μPIV). We found, at the inlet, due to multiple uncertainties, the velocity fluctuations by μPIV exhibits apparently smaller values than that by LIFPA. But at downstreams, where velocity fluctuation is much lower than at the inlet and the uncertainties of complicated electric field on particles becomes smaller, LIFPA and μPIV indicate similar measurement. The work was supported by NSF under grant no. CAREER CBET-0954977 and MRI CBET-1040227, respectively.

  9. Modelling the competition between photo-darkening and photo-bleaching effects in high-power ytterbium-doped fibre amplifiers

    NASA Astrophysics Data System (ADS)

    Jolly, A.; Vinçont, C.; Pierre, Ch.; Boullet, J.

    2017-08-01

    We propose an innovative, fully space-time model to take into account the seed-dependent nature of ageing penalties in high-power ytterbium-doped fibre amplifiers. Ageing is shown to be based on the on-going competition between photo-darkening and photo-bleaching phenomena. Our approach is based on the natural interplay between the excited states of co-existing ytterbium pairs and colour centres in highly doped fibres, in the presence of thermal coupling between the closely spaced excited states. As initiated from IR photons, the excitation of colour centres up to the UV band is supposed to be governed by multi-photon absorption. The interactions of interest in the kinetics of photo-bleaching then take the form of highly efficient charge transfers, which imply the reduction of some fraction of the basically trivalent ions to their divalent state. Due to the activation of ytterbium pairs by means of energy transfer up-conversion, these interactions get more and more effective at elevated operating powers. Computational results using these principles actually help to fit our experimental data regarding seeding effects, as well as fully generic trends already evidenced in the literature. This gives a fine demonstration for the need to discriminate co-active pump and signal contributions. Our self-consistent, still simplified model then consists of a valuable tool to help for a deeper understanding of the ageing issues. Furthermore, considering higher-order ytterbium aggregates, this should open new routes towards more comprehensive models.

  10. Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Rui; Zhu, Zelin; Adachi, Chihaya; Zhang, Xiaohong; Lee, Chun-Sing

    2015-12-02

    Fluorescent organic nanoparticles based on small molecules have been regarded as promising candidates for bioimaging in recent years. In this study, we report a highly stable near-infrared (NIR) fluorescent organic nanoprobes based on nanoparticles of an anthraquinone derivate with strong aggregation-induced emission (AIE) characteristics and a large Stokes shift (>175 nm). These endow the nanoprobe with high fluorescent brightness and high signal-to-noise ratio. On the other hand, the nanoprobe also shows low cytotoxicity, good stability over a wide pH range, superior resistance against photodegradation and photobleaching comparing to typical commercial fluorescent organic dyes such as fluorescein sodium. Endowed with such merits in term of optical performance, biocompatibility, and stability, the nanoprobe is demonstrated to be an ideal fluorescent probe for noninvasive long-term cellular tracing and imaging applications. As an example, it is shown that strong red fluorescence from the nanoprobe can still be clearly observed in A549 human lung cancer cells after incubation for six generations over 15 days.

  11. Nonactivated titanium-dioxide nanoparticles promote the growth of Chlamydia trachomatis and decrease the antimicrobial activity of silver nanoparticles.

    PubMed

    Bogdanov, A; Janovák, L; Lantos, I; Endrész, V; Sebők, D; Szabó, T; Dékány, I; Deák, J; Rázga, Z; Burián, K; Virok, D P

    2017-11-01

    Chlamydia trachomatis and herpes simplex virus (HSV) are the most prevalent bacterial and viral sexually transmitted infections. Due to the chronic nature of their infections, they are able to interact with titanium-dioxide (TiO 2 ) nanoparticles (NPs) applied as food additives or drug delivery vehicles. The aim of this study was to describe the interactions of these two prevalent pathogens with the TiO 2 NPs. Chlamydia trachomatis and HSV-2 were treated with nonactivated TiO 2 NPs, silver NPs and silver decorated TiO 2 NPs before infection of HeLa and Vero cells. Their intracellular growth was monitored by quantitative PCR. Unexpectedly, the TiO 2 NPs (100 μg ml -1 ) increased the growth of C. trachomatis by approximately fourfold, while the HSV-2 replication was not affected. Addition of TiO 2 to silver NPs decreased their antimicrobial activity against C. trachomatis up to 27·92-fold. In summary, nonactivated TiO 2 NPs could increase the replication of C. trachomatis and decrease the antimicrobial activity of silver NPs. The food industry or drug delivery use of TiO 2 NPs could enhance the growth of certain intracellular pathogens and potentially worsen disease symptoms, a feature that should be further investigated. © 2017 The Society for Applied Microbiology.

  12. Electrosprayed Cerium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Azar, Pedram Bagherzadeh; Tavanai, Hossein; Allafchian, Ali Reza

    2018-04-01

    Cerium oxide nanoparticles were fabricated via the calcination of electrosprayed polyvinyl alcohol (PVA)/cerium nitrate nanoparticles. The effect of material variables of PVA/cerium nitrate electrospraying solution, i.e. viscosity, surface tension and electrical conductivity, as well as important process variables like voltage, nozzle-collector distance and feed rate on cerium oxide nanoparticle size, are investigated. Scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analysis have also been carried out. The results showed that electrospraying of PVA/cerium nitrate (25% w/v) was only possible with PVA concentrations in the range of 5-8% w/v. With other conditions constant, decreasing PVA concentration, decreasing feed rate, increasing nozzle-collector distance and increasing voltage decreased the size of the final cerium oxide nanoparticles. The gross average size of all cerium oxide nanoparticles obtained in this work was about 80 nm. FTIR analysis proved the formation of cerium oxide after the calcination process.

  13. Observation of photobleaching and intensity dependent kinetics in Ge22As22Se56 thin films under sub-bandgap light illumination

    NASA Astrophysics Data System (ADS)

    Khan, Pritam; Barik, A. R.; Vinod, E. M.; Sangunni, K. S.; Adarsh, K. V.

    2015-02-01

    We experimentally demonstrate photobleaching (PB) in Ge22As22Se56 thin films, when illuminated with a diode pumped solid state laser (DPSSL) of wavelength 671 nm, which is far below the optical bandgap of the sample. Interestingly, we found that PB is a slow process and occurs even at moderate pump beam intensity of 0.2 W/cm2, however the kinetics remain rather different.

  14. Molecular counting by photobleaching in protein complexes with many subunits: best practices and application to the cellulose synthesis complex

    DOE PAGES

    Chen, Yalei; Deffenbaugh, Nathan C.; Anderson, Charles T.; ...

    2014-09-17

    The constituents of large, multisubunit protein complexes dictate their functions in cells, but determining their precise molecular makeup in vivo is challenging. One example of such a complex is the cellulose synthesis complex (CSC), which in plants synthesizes cellulose, the most abundant biopolymer on Earth. In growing plant cells, CSCs exist in the plasma membrane as six-lobed rosettes that contain at least three different cellulose synthase (CESA) isoforms, but the number and stoichiometry of CESAs in each CSC are unknown. To begin to address this question, we performed quantitative photobleaching of GFP-tagged AtCESA3-containing particles in living Arabidopsis thaliana cells usingmore » variable-angle epifluorescence microscopy and developed a set of information-based step detection procedures to estimate the number of GFP molecules in each particle. The step detection algorithms account for changes in signal variance due to changing numbers of fluorophores, and the subsequent analysis avoids common problems associated with fitting multiple Gaussian functions to binned histogram data. The analysis indicates that at least 10 GFP-AtCESA3 molecules can exist in each particle. In conclusion, these procedures can be applied to photobleaching data for any protein complex with large numbers of fluorescently tagged subunits, providing a new analytical tool with which to probe complex composition and stoichiometry.« less

  15. Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching

    PubMed Central

    Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W.; Knoch, Tobias A.; Waldeck, Waldemar; Langowski, Jörg

    2003-01-01

    Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of ∼13 s. PMID:12719264

  16. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.

    PubMed

    Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W; Knoch, Tobias A; Waldeck, Waldemar; Langowski, Jörg

    2003-05-01

    Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.

  17. Widefield Two-Photon Excitation without Scanning: Live Cell Microscopy with High Time Resolution and Low Photo-Bleaching

    PubMed Central

    Amor, Rumelo; McDonald, Alison; Trägårdh, Johanna; Robb, Gillian; Wilson, Louise; Abdul Rahman, Nor Zaihana; Dempster, John; Amos, William Bradshaw; Bushell, Trevor J.; McConnell, Gail

    2016-01-01

    We demonstrate fluorescence imaging by two-photon excitation without scanning in biological specimens as previously described by Hwang and co-workers, but with an increased field size and with framing rates of up to 100 Hz. During recordings of synaptically-driven Ca2+ events in primary rat hippocampal neurone cultures loaded with the fluorescent Ca2+ indicator Fluo-4 AM, we have observed greatly reduced photo-bleaching in comparison with single-photon excitation. This method, which requires no costly additions to the microscope, promises to be useful for work where high time-resolution is required. PMID:26824845

  18. Photobleaching effect in azo-dye containing epoxy resin films: the potentiality of carbon nanotubes as azo-dye dispensers

    NASA Astrophysics Data System (ADS)

    Díaz Costanzo, Guadalupe; Goyanes, Silvia; Ledesma, Silvia

    2015-04-01

    Azo-dye molecules may suffer from bleaching under certain illumination conditions. When this photoinduced process occurs, it generates an irreversible effect that is characterized by the loss of absorption of the dye molecule. Moreover, the well-known isomerization of azodye molecules does not occur anymore. In this work it is shown how the addition of a small amount of multi-walled carbon nanotubes (MWCNTs) helps to decrease the bleaching effect in a photosensitive guest-host azo-polymer film. Two different systems were fabricated using an epoxy resin as polymer matrix. An azo-dye, Disperse Orange 3, was used as photosensitive material in both systems and MWCNTs were added into one of them. The optical response of the polymeric systems was studied considering the degree of photoinduced birefringence. Photobleaching of the azo-dye was observed in all cases however, the effect is lower for the composite material containing 0.2 wt % MWCNTs. The weak interaction between MWCNTs and dye molecules is less favorable when the material is heated. The optical behavior of the heated composite material suggests that carbon nanotubes can be potentially used as azo dye dispensers. The results are interpreted in terms of the non-covalent interaction between azo-dye molecules and MWCNTs.

  19. Sequential photo-bleaching to delineate single Schwann cells at the neuromuscular junction.

    PubMed

    Brill, Monika S; Marinković, Petar; Misgeld, Thomas

    2013-01-11

    Sequential photo-bleaching provides a non-invasive way to label individual SCs at the NMJ. The NMJ is the largest synapse of the mammalian nervous system and has served as guiding model to study synaptic structure and function. In mouse NMJs motor axon terminals form pretzel-like contact sites with muscle fibers. The motor axon and its terminal are sheathed by SCs. Over the past decades, several transgenic mice have been generated to visualize motor neurons and SCs, for example Thy1-XFP and Plp-GFP mice, respectively. Along motor axons, myelinating axonal SCs are arranged in non-overlapping internodes, separated by nodes of Ranvier, to enable saltatory action potential propagation. In contrast, terminal SCs at the synapse are specialized glial cells, which monitor and promote neurotransmission, digest debris and guide regenerating axons. NMJs are tightly covered by up to half a dozen non-myelinating terminal SCs - these, however, cannot be individually resolved by light microscopy, as they are in direct membrane contact. Several approaches exist to individually visualize terminal SCs. None of these are flawless, though. For instance, dye filling, where single cells are impaled with a dye-filled microelectrode, requires destroying a labelled cell before filling a second one. This is not compatible with subsequent time-lapse recordings. Multi-spectral "Brainbow" labeling of SCs has been achieved by using combinatorial expression of fluorescent proteins. However, this technique requires combining several transgenes and is limited by the expression pattern of the promoters used. In the future, expression of "photo-switchable" proteins in SCs might be yet another alternative. Here we present sequential photo-bleaching, where single cells are bleached, and their image obtained by subtraction. We believe that this approach - due to its ease and versatility - represents a lasting addition to the neuroscientist's technology palette, especially as it can be used in vivo and

  20. Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins.

    PubMed

    Matsuda, Tomoki; Nagai, Takeharu

    2014-12-01

    Unlike in vitro protein dynamics, intracellular protein dynamics are intricately regulated by protein-protein interactions or interactions between proteins and other cellular components, including nucleic acids, the plasma membrane and the cytoskeleton. Alteration of these dynamics plays a crucial role in physiological phenomena such as gene expression and cell division. Live-cell imaging via microscopy with the inherent properties of fluorescent proteins, i.e. photobleaching and photoconversion, or fluorescence correlation spectroscopy, provides insight into the movement of proteins and their interactions with cellular components. This article reviews techniques based on photo-induced changes in the physicochemical properties of fluorescent proteins to measure protein dynamics inside living cells, and it also discusses the strengths and weaknesses of these techniques. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status.

    PubMed

    Qian, Yi; Zhang, Jie; Hu, Qinglin; Xu, Ming; Chen, Yue; Hu, Guoqing; Zhao, Meirong; Liu, Sijin

    2015-11-01

    Silver nanoparticles (nanosilver, AgNPs) have been shown to induce toxicity in vitro and in vivo; however, the molecular bases underlying the detrimental effects have not been thoroughly understood. Although there are numerous studies on its genotoxicity, only a few studies have investigated the epigenetic changes, even less on the changes of histone modifications by AgNPs. In the current study, we probed the AgNP-induced alterations to histone methylation that could be responsible for globin reduction in erythroid cells. AgNP treatment caused a significant reduction of global methylation level for histone 3 (H3) in erythroid MEL cells at sublethal concentrations, devoid of oxidative stress. The ChIP-PCR analyses demonstrated that methylation of H3 at lysine (Lys) 4 (H3K4) and Lys 79 (H3K79) on the β-globin locus was greatly reduced. The reduction in methylation could be attributed to decreased histone methyltransferase DOT-1L and MLL levels as well as the direct binding between AgNPs to H3/H4 that provide steric hindrance to prevent methylation as predicted by the all-atom molecular dynamics simulations. This direct interaction was further proved by AgNP-mediated pull-down assay and immunoprecipitation assay. These changes, together with decreased RNA polymerase II activity and chromatin binding at this locus, resulted in decreased hemoglobin production. By contrast, Ag ion-treated cells showed no alterations in histone methylation level. Taken together, these results showed a novel finding in which AgNPs could alter the methylation status of histone. Our study therefore opens a new avenue to study the biological effects of AgNPs at sublethal concentrations from the perspective of epigenetic mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake

    PubMed Central

    Tee, Nicolin; Zhu, Yingdong; Mortimer, Gysell M; Martin, Darren J; Minchin, Rodney F

    2015-01-01

    Polyurethanes are widely used in biomedical devices such as heart valves, pacemaker leads, catheters, vascular devices, and surgical dressings because of their excellent mechanical properties and good biocompatibility. Layered silicate nanoparticles can significantly increase tensile strength and breaking strain of polyurethanes potentially increasing the life span of biomedical devices that suffer from wear in vivo. However, very little is known about how these nanoparticles interact with proteins and cells and how they might exert unwanted effects. A series of fluoromica nanoparticles ranging in platelet size from 90 to over 600 nm in diameter were generated from the same base material ME100 by high energy milling and differential centrifugation. The cytotoxicity of the resulting particles was dependent on platelet size but in a manner that is opposite to many other types of nanomaterials. For the fluoromicas, the smaller the platelet size, the less toxicity was observed. The small fluoromica nanoparticles (<200 nm) were internalized by macrophages via scavenger receptors, which was dependent on the protein corona formed in serum. This internalization was associated with apoptosis in RAW cells but not in dTHP-1 cells. The larger particles were not internalized efficiently but mostly decorated the surface of the cells, causing membrane disruption, even in the presence of 80% serum. This work suggests the smaller fluoromica platelets may be safer for use in humans but their propensity to recognize macrophage scavenger receptors also suggests that they will target the reticulo-endoplasmic system in vivo. PMID:25848256

  3. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature.

    PubMed

    Zhou, Jiadong; Gao, Yanfeng; Liu, Xinling; Chen, Zhang; Dai, Lei; Cao, Chuanxiang; Luo, Hongjie; Kanahira, Minoru; Sun, Chao; Yan, Liuming

    2013-05-28

    This paper reports the successful preparation of Mg-doped VO2 nanoparticles via hydrothermal synthesis. The metal-insulator transition temperature (T(c)) decreased by approximately 2 K per at% Mg. The Tc decreased to 54 °C with 7.0 at% dopant. The composite foils made from Mg-doped VO2 particles displayed excellent visible transmittance (up to 54.2%) and solar modulation ability (up to 10.6%). In addition, the absorption edge blue-shifted from 490 nm to 440 nm at a Mg content of 3.8 at%, representing a widened optical band gap from 2.0 eV for pure VO2 to 2.4 eV at 3.8 at% doping. As a result, the colour of the Mg-doped films was modified to increase their brightness and lighten the yellow colour over that of the undoped-VO2 film. A first principle calculation was conducted to understand how dopants affect the optical, Mott phase transition and structural properties of VO2.

  4. Composite fluorescent nanoparticles for biomedical imaging.

    PubMed

    Pansare, Vikram J; Bruzek, Matthew J; Adamson, Douglas H; Anthony, John; Prud'homme, Robert K

    2014-04-01

    In the rapidly expanding field of biomedical imaging, there is a need for nontoxic, photostable, and nonquenching fluorophores for fluorescent imaging. We have successfully encapsulated a new, extremely hydrophobic, pentacene-based fluorescent dye within polymeric nanoparticles (NPs) or nanocarriers (NCs) via the Flash NanoPrecipitation (FNP) process. Nanoparticles and dye-loaded micelles were formulated by FNP and characterized by dynamic light scattering, fluorescence spectroscopy, UV-VIS absorbance spectroscopy, and confocal microscopy. These fluorescent particles were loaded from less than 1% to 78% by weight core loading and the fluorescence maximum was found to be at 2.3 wt.%. The particles were also stably formed at 2.3% core loading from 20 up to 250 nm in diameter with per-particle fluorescence scaling linearly with the NC core volume. The major absorption peaks are at 458, 575, and 625 nm, and the major emission peaks at 635 and 695 nm. In solution, the Et-TP5 dye displays a strong concentration-dependent ratio of the emission intensities of the first two emission peaks, whereas in the nanoparticle core the spectrum is independent of concentration over the entire concentration range. A model of the fluorescence quenching was consistent with Förster resonant energy transfer as the cause of the quenching observed for Et-TP5. The Förster radius calculated from the absorption and emission spectra of Et-TP5 is 4.1 nm, whereas the average dye spacing in the particles at the maximum fluorescence is 3.9 nm. We have successfully encapsulated Et-TP5, a pentacene derivative dye previously only used in light-emitting diode applications, within NCs via the FNP process. The extreme hydrophobicity of the dye keeps it encapsulated in the NC core, its extended pentacene structure gives it relatively long wavelength emission at 695 nm, and the pentacene structure, without oxygen or nitrogen atoms in its core, makes it highly resistant to photobleaching. Its bulky side

  5. Effect of nanoparticle size on sessile droplet contact angle

    NASA Astrophysics Data System (ADS)

    Munshi, A. M.; Singh, V. N.; Kumar, Mukesh; Singh, J. P.

    2008-04-01

    We report a significant variation in the static contact angle measured on indium oxide (IO) nanoparticle coated Si substrates that have different nanoparticle sizes. These IO nanoparticles, which have well defined shape and sizes, were synthesized by chemical vapor deposition in a horizontal alumina tube furnace. The size of the IO nanoparticles was varied by changing the source material, substrate temperature, and the deposition time. A sessile droplet method was used to determine the macroscopic contact angle on these IO nanoparticle covered Si substrate using two different liquids: de-ionized water and diethylene glycol (DEG). It was observed that contact angle depends strongly on the nanoparticle size. The contact angle was found to vary from 24° to 67° for de-ionized water droplet and from 15° to 60° for DEG droplet, for the nanoparticle sizes varying from 14 to 620 nm. The contact angle decreases with a decrease in the particles size. We have performed a theoretical analysis to determine the dependence of contact angle on the nanoparticle size. This formulation qualitatively shows a similar trend of decrease in the contact angle with a decrease in nanoparticle size. Providing a rough estimate of nanoparticle size by sessile droplet contact angle measurement is the novelty in this work.

  6. Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.

    PubMed

    Sarkar, Mitul; Koland, John G

    2016-01-01

    The fluorescence recovery after photobleaching (FRAP) method is a straightforward means of assessing the diffusional mobility of membrane-associated proteins that is readily performed with current confocal microscopy instrumentation. We describe here the specific application of the FRAP method in characterizing the lateral diffusion of genetically encoded green fluorescence protein (GFP)-tagged plasma membrane receptor proteins. The method is exemplified in an examination of whether the previously observed segregation of the mammalian HER3 receptor protein in discrete plasma membrane microdomains results from its physical interaction with cellular entities that restrict its mobility. Our FRAP measurements of the diffusional mobility of GFP-tagged HER3 reporters expressed in MCF7 cultured breast cancer cells showed that despite the observed segregation of HER3 receptors within plasma membrane microdomains their diffusion on the macroscopic scale is not spatially restricted. Thus, in FRAP analyses of various HER3 reporters a near-complete recovery of fluorescence after photobleaching was observed, indicating that HER3 receptors are not immobilized by long-lived physical interactions with intracellular species. An examination of HER3 proteins with varying intracellular domain sequence truncations also indicated that a proposed formation of oligomeric HER3 networks, mediated by physical interactions involving specific HER3 intracellular domain sequences, either does not occur or does not significantly reduce HER3 mobility on the macroscopic scale.

  7. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis.

    PubMed

    Galí, Martí; Kieber, David J; Romera-Castillo, Cristina; Kinsey, Joanna D; Devred, Emmanuel; Pérez, Gonzalo L; Westby, George R; Marrasé, Cèlia; Babin, Marcel; Levasseur, Maurice; Duarte, Carlos M; Agustí, Susana; Simó, Rafel

    2016-12-20

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m 3 (mol quanta) -1 ). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m 3 (mol quanta) -1 . The largest AQY(330), up to 34 m 3 (mol quanta) -1 ), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d -1 ), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  8. Nanoparticle mediated micromotor motion

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  9. Room temperature ferromagnetism in Mg-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaspal, E-mail: jaspal0314@gmail.com; Vashihth, A.; Gill, Pritampal Singh

    Zn{sub 1-x}Mg{sub x}O (x = 0, 0,10) nanoparticles were successfully synthesized using sol-gel method. X-ray diffraction (XRD) confirms that the synthesized nanoparticles possess wurtzite phase having hexagonal structure. Morphological analysis was carried out using transmission electron microscopy (TEM) which depicts the spherical morphology of ZnO nanoparticles. Energy dispersive spectroscopy (EDS) showed the presence of Mg in ZnO nanoparticles. Electron spin resonance (ESR) signal was found to be decreasing with increasing of Mg-doping concentration. The room temperature ferromagnetism was observed in undoped and Mg-doped ZnO nanoparticles. The increase of Mg-doping concentration resulted in decrease of saturation magnetization value which could bemore » attributed to decrease of oxygen vacancies present in host nanoparticles.« less

  10. Upconverting fluorescent nanoparticles for biodetection and photoactivation

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2013-03-01

    Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.

  11. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles.

    PubMed

    Nazıroğlu, Mustafa; Muhamad, Salina; Pecze, Laszlo

    2017-07-01

    In etiology of Alzheimer's disease (AD), involvement of amyloid β (Aβ) plaque accumulation and oxidative stress in the brain have important roles. Several nanoparticles such as titanium dioxide, silica dioxide, silver and zinc oxide have been experimentally using for treatment of neurological disease. In the last decade, there has been a great interest on combination of antioxidant bioactive compounds such as selenium (Se) and flavonoids with the oxidant nanoparticles in AD. We evaluated the most current data available on the physiological effects of oxidant and antioxidant nanoparticles. Areas covered: Oxidative nanoparticles decreased the activities of reactive oxygen species (ROS) scavenging enzymes such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase in the brain of rats and mice. However, Se-rich nanoparticles in small size (5-15 nm) depleted Aβ formation through decreasing ROS production. Reports on low levels of Se in blood and tissue samples and the low activities of GSH-Px, catalase and SOD enzymes in AD patients and animal models support the proposed crucial role of oxidative stress in the pathogenesis of AD. Expert commentary: In conclusion, present literature suggests that Se-rich nanoparticles appeared to be a potential therapeutic compound for the treatment of AD.

  12. Fullerenol C60(OH)24 nanoparticles decrease relaxing effects of dimethyl sulfoxide on rat uterus spontaneous contraction

    NASA Astrophysics Data System (ADS)

    Slavic, Marija; Djordjevic, Aleksandar; Radojicic, Ratko; Milovanovic, Slobodan; Orescanin-Dusic, Zorana; Rakocevic, Zlatko; Spasic, Mihajlo B.; Blagojevic, Dusko

    2013-05-01

    Dimethyl sulfoxide (DMSO) is a widely used solvent and cryoprotectant that can cause impaired blood flow, reduction in intracranial pressure, tissue edema, inflammatory reactions, inhibition of vascular smooth muscle cell migration and proliferation, processes which can lead to atherosclerosis of the coronary, peripheral and cerebral circulation. Although the adverse effects are rare when DMSO is administered in clinically established concentrations, there is no safe antagonist for an overdose. In this work, we treated isolated spontaneous and calcium-induced contractile active rat uteri (Wistar, virgo intacta), with DMSO and fullerenol C60(OH)24 nanoparticle (FNP) in DMSO. FNP is a water-soluble derivative of fullerene C60. Its size is a 1.1 nm in diameter and is a very promising candidate for a drug carrier in nanomedicine. FNP also displays free radical scavenging activity. DMSO decreased both spontaneous and calcium-induced contractions. In contrast, FNP only decreased spontaneous contraction. FNP decreased copper-zinc superoxide dismutase activity and prevented the DMSO-induced increase in glutathione reductase activity. Atomic force microscopy detected that FNP aggregated with calcium ions. Our results indicate that FNP has properties that make it a good candidate to be a modulator of DMSO activity which could minimize side effects of the latter.

  13. Memory effect versus exchange bias for maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, K.; Krenn, H.; Szabó, D. V.

    2015-11-01

    We studied the temperature dependence of memory and exchange bias effects and their dependence on each other in maghemite (γ-Fe2O3) nanoparticles by using magnetization studies. Memory effect in zero field cooled process in nanoparticles is a fingerprint of spin-glass behavior which can be due to i) surface disordered spins (surface spin-glass) and/or ii) randomly frozen and interacting nanoparticles core spins (super spin-glass). Temperature region (25-70 K) for measurements has been chosen just below the average blocking temperature (TB=75 K) of the nanoparticles. Memory effect (ME) shows a non-monotonous behavior with temperature. It shows a decreasing trend with decreasing temperature and nearly vanishes below 30 K. However it also decreased again near the blocking temperature of the nanoparticles e.g., 70 K. Exchange bias (EB) in these nanoparticles arises due to core/shell interface interactions. The EB increases sharply below 30 K due to increase in core/shell interactions, while ME starts vanishing below 30 K. We conclude that the core/shell interface interactions or EB have not enhanced the ME but may reduce it in these nanoparticles.

  14. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions.

    PubMed

    Love, Sara A; Haynes, Christy L

    2010-09-01

    Using two of the most commonly synthesized noble metal nanoparticle preparations, citrate-reduced Au and Ag, the impacts of short-term accidental nanoparticle exposure are examined in primary culture murine adrenal medullary chromaffin cells. Transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Alamar Blue viability studies revealed that nanoparticles are taken up by cells but do not decrease cell viability within 48 hours of exposure. Carbon-fiber microelectrode amperometry (CFMA) examination of exocytosis in nanoparticle-exposed cells revealed that nanoparticle exposure does lead to decreased secretion of chemical messenger molecules, of up to 32.5% at 48 hours of Au exposure. The kinetics of intravesicular species liberation also slows after nanoparticle exposure, between 30 and 50% for Au and Ag, respectively. Repeated stimulation of exocytosis demonstrated that these effects persisted during subsequent stimulations, meaning that nanoparticles do not interfere directly with the vesicle recycling machinery but also that cellular function is unable to recover following vesicle content expulsion. By comparing these trends with parallel studies done using mast cells, it is clear that similar exocytosis perturbations occur across cell types following noble metal nanoparticle exposure, supporting a generalizable effect of nanoparticle-vesicle interactions.

  15. Nanoparticle mediated micromotor motion.

    PubMed

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-03-21

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ∼200 μm s(-1). By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ∼10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.

  16. Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating.

    PubMed

    Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita

    2017-05-01

    Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.

  17. Poling-assisted bleaching of soda-lime float glasses containing silver nanoparticles with a decreasing filling factor across the depth

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Kazansky, Peter G.; Podlipensky, Alexander; Abdolvand, Amin; Seifert, Gerhard; Graener, Heinrich

    2006-08-01

    The recently discovered poling-assisted bleaching of glass with embedded silver nanoparticles has renewed the interest in thermal poling as a simple, reliable, and low-cost technique for controlling locally the surface-plasmon-resonant optical properties of metal-doped nanocomposite glasses. In the present study, the emphasis is put on the influence of the volume filling factor of metallic clusters on poling-assisted bleaching. Soda-lime silicate glass samples containing spherical silver nanoparticles with a decreasing filling factor across the depth were subject to thermal poling experiments with various poling temperatures, voltages, and times. Optical extinction spectra were measured from ultraviolet to near-infrared ranges and the surface-plasmon-resonant extinction due to silver nanoparticles (around 410nm) was modeled by the Maxwell Garnett [Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904); 205, 237 (1906)] effective medium theory which was adapted in order to take into account the filling factor depth profile. A method was proposed for the retrieval of the filling factor depth profile from optical extinction spectra recorded in fresh and chemically etched samples. A stretched exponential depth profile turned out to be necessary in order to model samples having a high filling factor near the surface. Based on the fact that the electric-field-assisted dissolution of embedded metallic nanoparticles proceeded progressively from the top surface, a bleaching front was defined that moved forward in depth as time elapsed. The position of the bleaching front was determined after each poling experiment by fitting the measured extinction spectrum to the theoretical one. In samples with higher peak value and steeper gradient of the filling factor, the bleaching front reached more rapidly a steady-state depth as poling time increased. Also it increased less strongly with increasing poling voltage. These results were in agreement with the physics of the dissolution

  18. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    PubMed Central

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  19. Role of SiO2 coating in multiferroic CoCr2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamran, M.; Ullah, Asmat; Mehmood, Y.; Nadeem, K.; Krenn, H.

    2017-02-01

    Effect of silica (SiO2) coating concentration on structural and magnetic properties of multiferroic cobalt chromite (CoCr2O4) nanoparticles have been studied. The nanoparticles with average crystallite size in the range 19 to 28 nm were synthesised by sol-gel method. X-ray diffraction (XRD) analysis has verified the composition of single-phase cubic normal spinel structure of CoCr2O4 nanoparticles. The average crystallite size and cell parameter decreased with increasing SiO2 concentration. TEM image revealed that the shape of nanoparticles was non-spherical. Zero field cooled/field cooled (ZFC/FC) curves revealed that nanoparticles underwent a transition from paramagnetic (PM) state to collinear short-range ferrimagnetic (FiM) state, and this PM-FiM transition temperature decreased from 101 to 95 K with increasing SiO2 concentration or decreasing crystallite size. A conical spin state at Ts = 27 K was also observed for all the samples which decreased with decreasing average crystallite size. Low temperature lock-in transition was also observed in these nanoparticles at 12 K for uncoated nanoparticles which slightly shifted towards low temperature with decreasing average crystallite size. Saturation magnetization (Ms) showed decreasing trend with increasing SiO2 concentration, which was due to decrease in average crystallite size of nanoparticles and enhanced surface disorder in smaller nanoparticles. The temperature dependent AC-susceptibility also showed the decrease in the transition temperature (Tc), broadening of the Tc peak and decrease in magnetization with increasing SiO2 concentration or decreasing average crystallite size. In summary, the concentration of SiO2 has significantly affected the structural and magnetic properties of CoCr2O4 nanoparticles.

  20. Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching

    PubMed Central

    2014-01-01

    Background Acetylation of lysine residues in histone tails plays an important role in the regulation of gene transcription. Bromdomains are the readers of acetylated histone marks, and, consequently, bromodomain-containing proteins have a variety of chromatin-related functions. Moreover, they are increasingly being recognised as important mediators of a wide range of diseases. The first potent and selective bromodomain inhibitors are beginning to be described, but the diverse or unknown functions of bromodomain-containing proteins present challenges to systematically demonstrating cellular efficacy and selectivity for these inhibitors. Here we assess the viability of fluorescence recovery after photobleaching (FRAP) assays as a target agnostic method for the direct visualisation of an on-target effect of bromodomain inhibitors in living cells. Results Mutation of a conserved asparagine crucial for binding to acetylated lysines in the bromodomains of BRD3, BRD4 and TRIM24 all resulted in reduction of FRAP recovery times, indicating loss of or significantly reduced binding to acetylated chromatin, as did the addition of known inhibitors. Significant differences between wild type and bromodomain mutants for ATAD2, BAZ2A, BRD1, BRD7, GCN5L2, SMARCA2 and ZMYND11 required the addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) to amplify the binding contribution of the bromodomain. Under these conditions, known inhibitors decreased FRAP recovery times back to mutant control levels. Mutation of the bromodomain did not alter FRAP recovery times for full-length CREBBP, even in the presence of SAHA, indicating that other domains are primarily responsible for anchoring CREBBP to chromatin. However, FRAP assays with multimerised CREBBP bromodomains resulted in a good assay to assess the efficacy of bromodomain inhibitors to this target. The bromodomain and extraterminal protein inhibitor PFI-1 was inactive against other bromodomain targets

  1. Unusual enhancement of effective magnetic anisotropy with decreasing particle size in maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pisane, K. L.; Singh, Sobhit; Seehra, M. S.

    2017-05-01

    In magnetic nanoparticles (NPs), the observed increase in the effective magnetic anisotropy Keff with the decrease in particle size D is often interpreted, sometimes unsuccessfully, using the equation Keff = Kb + (6KS/D), where Kb is the bulk-like anisotropy of the core spins and KS is the anisotropy of spins in the surface layer. Here, we test the validity of this relation in γ-Fe2O3 NPs for sizes D from 15 nm to 2.5 nm. The samples include oleic acid-coated NPs with D = 2.5, 3.4, 6.3, and 7.0 nm investigated here, with results on 14 other sizes taken from literature. Keff is determined from the analysis of the frequency dependence of the blocking temperature TB after considering the effects of interparticle interactions on TB. For the γ-Fe2O3 NPs with D < 5 nm, an unusual enhancement of Keff with decreasing D, well above the magnitudes predicted by the above equation, is observed. Instead the variation of Keff vs. D is best described by an extension of the above equation by including Ksh term from spins in a shell of thickness d. Based on this core-shell-surface layer model, the data are fit to the equation Keff = Kb + (6KS/D) + Ksh{[1-(2d/D)]-3-1} with Kb = 1.9 × 105 ergs/cm3, KS = 0.035 ergs/cm2, and Ksh = 1.057 × 104 ergs/cm3 as the contribution of spins in the shell of thickness d = 1.1 nm. Significance of this result is discussed.

  2. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  3. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.

    2017-04-01

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  4. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying.

    PubMed

    Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G

    2017-04-18

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  5. Decreased Phototoxic Effects of TiO₂ Nanoparticles in Consortium of Bacterial Isolates from Domestic Waste Water

    PubMed Central

    Mathur, Ankita; Kumari, Jyoti; Parashar, Abhinav; T., Lavanya; Chandrasekaran, N.; Mukherjee, Amitava

    2015-01-01

    This study is aimed to explore the toxicity of TiO2 nanoparticles at low concentrations (0.25, 0.50 & 1.00 μg/ml); on five bacterial isolates and their consortium in waste water medium both in dark and UVA conditions. To critically examine the toxic effects of nanoparticles and the response mechanism(s) offered by microbes, several aspects were monitored viz. cell viability, ROS generation, SOD activity, membrane permeability, EPS release and biofilm formation. A dose and time dependent loss in viability was observed for treated isolates and the consortium. At the highest dose, after 24h, oxidative stress was examined which conclusively showed more ROS generation & cell permeability and less SOD activity in single isolates as compared to the consortium. As a defense mechanism, EPS release was enhanced in case of the consortium against the single isolates, and was observed to be dose dependent. Similar results were noticed for biofilm formation, which substantially increased at highest dose of nanoparticle exposure. Concluding, the consortium showed more resistance against the toxic effects of the TiO2 nanoparticles compared to the individual isolates. PMID:26496250

  6. Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells

    PubMed Central

    2013-01-01

    Background The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases. PMID:23731667

  7. A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins.

    PubMed

    Grigorenko, Bella L; Nemukhin, Alexander V; Polyakov, Igor V; Khrenova, Maria G; Krylov, Anna I

    2015-04-30

    Photobleaching and photostability of proteins of the green fluorescent protein (GFP) family are crucially important for practical applications of these widely used biomarkers. On the basis of simulations, we propose a mechanism for irreversible bleaching in GFP-type proteins under intense light illumination. The key feature of the mechanism is a photoinduced reaction of the chromophore with molecular oxygen (O2) inside the protein barrel leading to the chromophore's decomposition. Using quantum mechanics/molecular mechanics (QM/MM) modeling we show that a model system comprising the protein-bound Chro(-) and O2 can be excited to an electronic state of the intermolecular charge-transfer (CT) character (Chro(•)···O2(-•)). Once in the CT state, the system undergoes a series of chemical reactions with low activation barriers resulting in the cleavage of the bridging bond between the phenolic and imidazolinone rings and disintegration of the chromophore.

  8. Background-Free 3D Nanometric Localization and Sub-nm Asymmetry Detection of Single Plasmonic Nanoparticles by Four-Wave Mixing Interferometry with Optical Vortices

    NASA Astrophysics Data System (ADS)

    Zoriniants, George; Masia, Francesco; Giannakopoulou, Naya; Langbein, Wolfgang; Borri, Paola

    2017-10-01

    Single nanoparticle tracking using optical microscopy is a powerful technique with many applications in biology, chemistry, and material sciences. Despite significant advances, localizing objects with nanometric position precision in a scattering environment remains challenging. Applied methods to achieve contrast are dominantly fluorescence based, with fundamental limits in the emitted photon fluxes arising from the excited-state lifetime as well as photobleaching. Here, we show a new four-wave-mixing interferometry technique, whereby the position of a single nonfluorescing gold nanoparticle of 25-nm radius is determined with 16 nm precision in plane and 3 nm axially from rapid single-point measurements at 1-ms acquisition time by exploiting optical vortices. The precision in plane is consistent with the photon shot-noise, while axially it is limited by the nano-positioning sample stage, with an estimated photon shot-noise limit of 0.5 nm. The detection is background-free even inside biological cells. The technique is also uniquely sensitive to particle asymmetries of only 0.5% ellipticity, corresponding to a single atomic layer of gold, as well as particle orientation. This method opens new ways of unraveling single-particle trafficking within complex 3D architectures.

  9. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Callow, P

    2014-02-18

    Small-angle neutron scattering (SANS) and UV-visible spectroscopy studies have been carried out to examine pH-dependent interactions and resultant structures of oppositely charged silica nanoparticles and lysozyme protein in aqueous solution. The measurements were carried out at fixed concentration (1 wt %) of three differently sized silica nanoparticles (8, 16, and 26 nm) over a wide concentration range of protein (0-10 wt %) at three different pH values (5, 7, and 9). The adsorption curve as obtained by UV-visible spectroscopy shows exponential behavior of protein adsorption on nanoparticles. The electrostatic interaction enhanced by the decrease in the pH between the nanoparticle and protein (isoelectric point ∼11.4) increases the adsorption coefficient on nanoparticles but decreases the overall amount protein adsorbed whereas the opposite behavior is observed with increasing nanoparticle size. The adsorption of protein leads to the protein-mediated aggregation of nanoparticles. These aggregates are found to be surface fractals at pH 5 and change to mass fractals with increasing pH and/or decreasing nanoparticle size. Two different concentration regimes of interaction of nanoparticles with protein have been observed: (i) unaggregated nanoparticles coexisting with aggregated nanoparticles at low protein concentrations and (ii) free protein coexisting with aggregated nanoparticles at higher protein concentrations. These concentration regimes are found to be strongly dependent on both the pH and nanoparticle size.

  10. Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)?

    PubMed

    Zhao, Mingwei; Zhang, Yue; Zou, Chenwei; Dai, Caili; Gao, Mingwei; Li, Yuyang; Lv, Wenjiao; Jiang, Jianfeng; Wu, Yining

    2017-09-18

    There have been many reports about the thickening ability of nanoparticles on the wormlike micelles in the recent years. Through the addition of nanoparticles, the viscosity of wormlike micelles can be increased. There still exists a doubt: can viscosity be increased further by adding more nanoparticles? To answer this issue, in this work, the effects of silica nanoparticles and temperature on the nanoparticles-enhanced wormlike micellar system (NEWMS) were studied. The typical wormlike micelles (wormlike micelles) are prepared by 50 mM cetyltrimethyl ammonium bromide (CTAB) and 60 mM sodium salicylate (NaSal). The rheological results show the increase of viscoelasticity in NEWMS by adding nanoparticles, with the increase of zero-shear viscosity and relaxation time. However, with the further increase of nanoparticles, an interesting phenomenon appears. The zero-shear viscosity and relaxation time reach the maximum and begin to decrease. The results show a slight increasing trend for the contour length of wormlike micelles by adding nanoparticles, while no obvious effect on the entanglement and mesh size. In addition, with the increase of temperature, remarkable reduction of contour length and relaxation time can be observed from the calculation. NEWMS constantly retain better viscoelasticity compared with conventional wormlike micelles without silica nanoparticles. According to the Arrhenius equation, the activation energy E a shows the same increase trend of NEWMS. Finally, a mechanism is proposed to explain this interesting phenomenon.

  11. Determining Concentration of Nanoparticles from Ellipsometry

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa; Kempen, Lothar U.; Chipman, Russell

    2008-01-01

    A method of using ellipsometry or polarization analysis of light in total internal reflection of a surface to determine the number density of gold nanoparticles on a smooth substrate has been developed. The method can be modified to enable determination of densities of sparse distributions of nanoparticles in general, and is expected to be especially useful for measuring gold-nanoparticle-labeled biomolecules on microarrays. The method is based on theoretical calculations of the ellipsometric responses of gold nanoparticles. Elements of the calculations include the following: For simplicity, the gold nanoparticles are assumed to be spherical and to have the same radius. The distribution of gold nanoparticles is assumed to be a sub-monolayer (that is, sparser than a monolayer). The optical response of the sub-monolayer is modeled by use of a thin-island-film theory, according to which the polarizabilities parallel and perpendicular to the substrate are functions of the wavelength of light, the dielectric functions (permittivities expressed as complex functions of frequency or wavelength) of the gold and the suspending medium (in this case, the suspending medium is air), the fraction of the substrate area covered by the nanoparticles, and the radius of the nanoparticles. For the purpose of the thin-island-film theory, the dielectric function of the gold nanoparticles is modeled as the known dielectric function of bulk gold plus a correction term that is necessitated by the fact that the mean free path length for electrons in gold decreases with decreasing radius, in such a manner as to cause the imaginary part of the dielectric function to increase with decreasing radius (see figure). The correction term is a function of the nanoparticle radius, the wavelength of light, the mean free path and the Fermi speed of electrons in bulk gold, the plasma frequency of gold, and the speed of light in a vacuum. These models are used to calculate ellipsometric responses for

  12. Polystyrene nanoparticle trafficking across MDCK-II

    PubMed Central

    Fazlollahi, Farnoosh; Angelow, Susanne; Yacobi, Nazanin R.; Marchelletta, Ronald; Yu, Alan S.L.; Hamm-Alvarez, Sarah F.; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.

    2011-01-01

    Polystyrene nanoparticles (PNP) cross rat alveolar epithelial cell monolayers via non-endocytic transcellular pathways. To evaluate epithelial cell type-specificity of PNP trafficking, we studied PNP flux across Madin Darby canine kidney cell II monolayers (MDCK-II). Effects of calcium chelation (EGTA), energy depletion (sodium azide (NaN3) or decreased temperature), and endocytosis inhibitors methyl-β-cyclodextrin (MBC), monodansylcadaverine and dynasore were determined. Amidine-modified PNP cross MDCK-II 500 times faster than carboxylate-modified PNP. PNP flux did not increase in the presence of EGTA. PNP flux at 4°C and after treatment with NaN3 decreased 75% and 80%, respectively. MBC exposure did not decrease PNP flux, whereas dansylcadaverine- or dynasore-treated MDCK-II exhibited ~80% decreases in PNP flux. Confocal laser scanning microscopy revealed intracellular colocalization of PNP with clathrin heavy chain. These data indicate that PNP translocation across MDCK-II (1) occurs via clathrin-mediated endocytosis and (2) is dependent upon PNP physicochemical properties. We conclude that uptake/trafficking of nanoparticles into/across epithelia is dependent both on properties of the nanoparticles and the specific epithelial cell type. PMID:21310266

  13. Diffusive dynamics of nanoparticles in ultra-confined media

    DOE PAGES

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; ...

    2015-08-10

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less

  14. Nanoparticle assembled microcapsules for application as pH and ammonia sensor.

    PubMed

    Amali, Arlin Jose; Awwad, Nour H; Rana, Rohit Kumar; Patra, Digambara

    2011-12-05

    The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8-8.0, and can be successfully applied for the determination of ammonia in the concentration range 0-1.2 mM, which is important for aquatic life and the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    NASA Astrophysics Data System (ADS)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  16. Fluorescence analysis of 6-mercaptopurine with the use of a nano-composite consisting of BSA-capped Au nano-clusters and core-shell Fe3O4-SiO2 nanoparticles.

    PubMed

    Li, Zhuo; Wang, Yong; Ni, Yongnian; Kokot, Serge

    2015-08-15

    A magnetic and fluorescent nano-composite was prepared. It comprised of a core of Fe3O4 nanoparticles (NPs), a silica shell and satellitic Au nano-clusters (AuNCs) capped with bovine serum albumin (BSA). This nano-composite has many desirable properties, e.g. magnetism, red emission, high water solubility, and high resistance to photo-bleaching. On addition of the analyte, 6-mercaptopurine (6-MP) or indeed other similar thiols, AuNCs formed aggregates because the existing cross-links within the Fe3O4 NPs@SiO2 and AuNC structure were broken in favor of the gold-thiol bonds. On suitable irradiation of such aggregates, red fluorescence was emitted at 613 nm. It decreased significantly as a function of the added 6-MP concentration, and the quenching ratio (F0 - F) / F0 was related linearly to the concentration of 6-MP in the range of 0.01 to 0.5 μmol L(-1). The detection limit was 0.004 μmol L(-1) (S/N=3). The method was strongly selective for 6-MP in the presence of oxidants, phenols, heavy-metal ions, and especially bio-thiols. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Preparation of Chitosan Nanoparticles: A Study of Influencing Factors

    NASA Astrophysics Data System (ADS)

    Thakur, Anupama; Taranjit

    2011-12-01

    Chitosan (CS), a cationic polysaccharide, offers great advantages for ionic interactions with negatively charged species such as sodium tripolyphosphate (STPP) leading to the formation of biocompatible crosslinked chitosan nanoparticles In the present work, an attempt has been made to systematically study the following factors influencing the ionotropic gelation of chitosan with STPP to produce CS nanoparticles: effect of pH of solution, CS concentration, STPP concentration and CS/STPP ratio. The results show that with the increase in CS concentration, the yield of the nanoparticle decreases whereas size increases. The mean size of the prepared nanoparticles varied between 120 to 720 nm and zeta potential between +14 mV to +53 mV . Nanoparticle size and yield was found to be strongly dependent on solution pH. Nanoparticle size decreased with increase in solution pH from 4 to 5 and yield was found to be maximum at pH = 5. With increase in STPP concentration, the size and yield of the nanoparticle increased. The potential of CS nanoparticles to trap amoxicillin trihydrate, taken as the model drug, was also studied. The maximum drug loading capacity was found to be 35% at a solution pH = 5 for 0.2% CS and 0.086% STPP.

  18. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst.

    PubMed

    Wu, Chien-Chen; Chen, Dong-Hwang

    2012-06-19

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles.

  19. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst

    PubMed Central

    2012-01-01

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles. PMID:22713480

  20. Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil

    NASA Astrophysics Data System (ADS)

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Imran, Muhammad; Dhavamani, Jeyakumar; Ismail, Iqbal M. I.; Basahi, Jalal M.; Almeelbi, Talal

    2017-02-01

    We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg-1 soil on Cynodon dactylon litter (3 g kg-1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.

  1. Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor

    We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al{sub 2}O{sub 3} nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al{sub 2}O{sub 3} nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seenmore » to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.« less

  2. Minimizing photodecomposition of flavin adenine dinucleotide fluorescence by the use of pulsed LEDs.

    PubMed

    Rösner, J; Liotta, A; Angamo, E A; Spies, C; Heinemann, U; Kovács, R

    2016-11-01

    Dynamic alterations in flavin adenine dinucleotide (FAD) fluorescence permit insight into energy metabolism-dependent changes of intramitochondrial redox potential. Monitoring FAD fluorescence in living tissue is impeded by photobleaching, restricting the length of microfluorimetric recordings. In addition, photodecomposition of these essential electron carriers negatively interferes with energy metabolism and viability of the biological specimen. Taking advantage of pulsed LED illumination, here we determined the optimal excitation settings giving the largest fluorescence yield with the lowest photobleaching and interference with metabolism in hippocampal brain slices. The effects of FAD bleaching on energy metabolism and viability were studied by monitoring tissue pO 2 , field potentials and changes in extracellular potassium concentration ([K + ] o ). Photobleaching with continuous illumination consisted of an initial exponential decrease followed by a nearly linear decay. The exponential decay was significantly decelerated with pulsed illumination. Pulse length of 5 ms was sufficient to reach a fluorescence output comparable to continuous illumination, whereas further increasing duration increased photobleaching. Similarly, photobleaching increased with shortening of the interpulse interval. Photobleaching was partially reversible indicating the existence of a transient nonfluorescent flavin derivative. Pulsed illumination decreased FAD photodecomposition, improved slice viability and reproducibility of stimulus-induced FAD, field potential, [K + ] o and pO 2 changes as compared to continuous illumination. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  3. Assessment of carbon nanoparticle exposure on murine macrophage function

    NASA Astrophysics Data System (ADS)

    Suro-Maldonado, Raquel M.

    There is growing concern about the potential cytotoxicity of nanoparticles. Exposure to respirable ultrafine particles (2.5uM) can adversely affect human health and have been implicated with episodes of increased respiratory diseases such as asthma and allergies. Nanoparticles are of particular interest because of their ability to penetrate into the lung and potentially elicit health effects triggering immune responses. Nanoparticles are structures and devises with length scales in the 1 to 100-nanometer range. Black carbon (BC) nanoparticles have been observed to be products of combustion, especially flame combustion and multi-walled carbon nanotubes (MWCNT) have been shown to be found in both indoor and outdoor air. Furthermore, asbestos, which have been known to cause mesothelioma as well as lung cancer, have been shown to be structurally identical to MWCNTs. The aims of these studies were to examine the effects of carbon nanoparticles on murine macrophage function and clearance mechanisms. Macrophages are immune cells that function as the first line of defense against invading pathogens and are likely to be amongst the first cells affected by nanoparticles. Our research focused on two manufactured nanoparticles, MWCNT and BC. The two were tested against murine-derived macrophages in a chronic contact model. We hypothesized that long-term chronic exposure to carbon nanoparticles would decrease macrophages ability to effectively respond to immunological challenge. Production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), cell surface macrophage; activation markers, reactive oxygen species formation (ROS), and antigen processing and presentation were examined in response to lipopolysaccharide (LPS) following a 144hr exposure to the particulates. Data demonstrated an increase in TNF-alpha, and NO production; a decrease in phagocytosis and antigen processing and presentation; and a decrease in the expression levels of cell surface macrophage

  4. Thermal stability of supported gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Turba, Timothy Fredrick

    Nanoparticle gold is of interest for a wide array of applications including catalysis, gas sensing, and light absorption for color filters and optical switches. Many of these applications are dependent upon the particles having sizes <5nm. In this paper, the thermal stability of nanoparticle gold is evaluated. Unsupported gold nanoparticles can grow (and in some cases double their size) even at room temperature. An important approach to stabilizing gold nanoparticles is through an interaction with a suitable substrate support material. Semiconductor substrates such as GaN are important supports for gold nanoparticles for applications such as sensors, but GaN does not provide a significant stabilizing effect at high temperatures. This paper covers a number of different substrate materials and in particular shows that for some substrates, such as SiO2, gold nanoparticles can be stable at temperatures up to 500°C, which is significantly above the Tammann temperature for bulk gold (395°C). In this dissertation, gold nanoparticles are shown to have complete stability on aluminum-supported silica nanosprings at 550°C in air. This stability window is one of the highest reported for nanoparticle gold and potentially enables a number of applications for this highly active catalyst. X-ray photoelectron spectroscopy measurements were performed before and after heating to 550°C to determine the nature of the interaction between gold and SiO2. A 1.2 eV drop in gold 4f binding energy after heating signified a shift to anionic gold particles (i.e., Au delta-) indicative of strong bonds to oxygen vacancies with neighboring Sidelta+ atoms. Heating in hydrogen at 550°C resulted in a binding energy decrease of 0.4 eV due to an increased fraction of particles with decreased coordination numbers (i.e., more atoms at edges and corners). Lastly, heating gold nanoparticles in an atmosphere of 10% relative humidity at 550°C resulted in apparent encapsulation of the gold.

  5. Experimental investigation of the influence of nanoparticles on water-based mud

    NASA Astrophysics Data System (ADS)

    Dhiman, Paritosh; Cheng, Yaoze; Zhang, Yin; Patil, Shirish

    2018-03-01

    This study has investigated the influence of nanoparticles including nanoparticle concentration, size, and type on water-based mud (WBM) properties including rheology, filtration, and lubricity through experimental tests, while the influence of temperature and aging on these properties have been investigated. It has been found that adding SiO2 nanoparticles increase the plastic viscosity and decrease the yield points and gel strengths with the increase of nanoparticle concentration. At fixed 0.5 wt%, the plastic viscosity decreases with the increase of TiO2 nanoparticle size, but the influence of TiO2 nanoparticle size on yield points and gel strengths is not monotonous. In general, adding negative charged SiO2 nanoparticles reduce the yield points and gel strengths, while adding positively charged TiO2, Al2O3, and Fe3O4 nanoparticles increase yield points and gel strengths. Adding lower concentrations (< 0.05 wt%) of SiO2 nanoparticles improved mud filtration and lubricity properties, but higher concentrations are adverse to these properties and adding 0.5 wt% TiO2, Al2O3 and Fe3O4 nanoparticles impaired these properties. Besides, it is found that there is no consistent influence of aging on mud properties and adding nanoparticles cannot improve aging resistance of mud. Although adding nanoparticles can significantly affect WBM properties, their influences are not consistency, depending on the integrated impact of the nanoparticle properties, such as surface electrical property, specific surface area, concentration, and size.

  6. Chemical synthesis of L10 Fe-Pt-Ni alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Deepchand, Vimal; Abel, Frank M.; Tzitzios, Vasileios; Hadjipanayis, George C.

    2018-05-01

    This work focuses on the study of the magnetic and structural properties of chemically synthesized FePt1-xNix nanoparticles, with Ni content x in the range 0.2-0.4. We report the effect of Ni substitution on the L10 structure, on both the as-synthesized and annealed nanoparticles. A decrease in nanoparticle size as well as in chemical order is observed with an increase in Ni content, for both the as-made and annealed nanoparticles. The results also show that the post annealing procedure at 700oC significantly enhanced the L10 ordering of the nanoparticles. Substitution of nickel leads to a decrease in coercivity from 14.9 kOe in FePt to 0.8 kOe for FePt0.6Ni0.4 alloy, while the magnetization at 3 T is increased from 48 emu/g to 88 emu/g.

  7. Low Loss Polymer Nanoparticle Composites for RF Applications

    DTIC Science & Technology

    2014-09-17

    size of nanoparticles below a critical dimension ( skin depth).6 It is possible to increase the skin depth of the hybrid material by decreasing the...filled with elastomers,[10-12] polymer-nanoparticle composites,[13, 14] liquid metal filled microfluidic channels,[4, 15] conductive networks on pre

  8. Size effect on thermoelectric properties of Bi2Te3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhary, K. K.; Sharma, Uttam; Lodhi, Pavitra Devi; Kaurav, Netram

    2018-05-01

    Bi2Te3 nanoparticles exhibit size dependent thermoelectric properties which gives an opportunity to tune the size for optimization of the thermoelectric figure of merit (ZT). We have quantitatively analyzed the thermoelectric properties of Bi2Te3 using phonon scattering mechanism by incorporating the scattering of phonons with defects, grain boundaries, electrons and Umklapp phonon scatterings. The maximum value of ZT = 0.92 is obtained at T = 400 K for 30 nm Bi2Te3 nanoparticles in comparison to ZT = 0.45 for 150 nm nanoparticles at the same temperature. With decrease in size of nanoparticles interface volume ratio increases which increase the phonon scatterings with grain boundaries and point defects, results in decrease in thermal conductivity due to reduction in mean free path of phonons. As a result of decrease in thermal conductivity (κ), Seeback coefficient (S) and ZT increases.

  9. Unusual multiscale mechanics of biomimetic nanoparticle hydrogels

    DOE PAGES

    Zhou, Yunlong; Damasceno, Pablo F.; Somashekar, Bagganahalli S.; ...

    2018-01-12

    Viscoelastic properties are central for gels and other materials. Simultaneously, high storage and loss moduli are difficult to attain due to their contrarian requirements to chemical structure. Biomimetic inorganic nanoparticles offer a promising toolbox for multiscale engineering of gel mechanics, but a conceptual framework for their molecular, nanoscale, mesoscale, and microscale engineering as viscoelastic materials is absent. Here we show nanoparticle gels with simultaneously high storage and loss moduli from CdTe nanoparticles. Viscoelastic figure of merit reaches 1.83 MPa exceeding that of comparable gels by 100–1000 times for glutathione-stabilized nanoparticles. The gels made from the smallest nanoparticles display the highestmore » stiffness, which was attributed to the drastic change of GSH configurations when nanoparticles decrease in size. A computational model accounting for the difference in nanoparticle interactions for variable GSH configurations describes the unusual trends of nanoparticle gel viscoelasticity. These observations are generalizable to other NP gels interconnected by supramolecular interactions and lead to materials with high-load bearing abilities and energy dissipation needed for multiple technologies.« less

  10. Unusual multiscale mechanics of biomimetic nanoparticle hydrogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yunlong; Damasceno, Pablo F.; Somashekar, Bagganahalli S.

    Viscoelastic properties are central for gels and other materials. Simultaneously, high storage and loss moduli are difficult to attain due to their contrarian requirements to chemical structure. Biomimetic inorganic nanoparticles offer a promising toolbox for multiscale engineering of gel mechanics, but a conceptual framework for their molecular, nanoscale, mesoscale, and microscale engineering as viscoelastic materials is absent. Here we show nanoparticle gels with simultaneously high storage and loss moduli from CdTe nanoparticles. Viscoelastic figure of merit reaches 1.83 MPa exceeding that of comparable gels by 100–1000 times for glutathione-stabilized nanoparticles. The gels made from the smallest nanoparticles display the highestmore » stiffness, which was attributed to the drastic change of GSH configurations when nanoparticles decrease in size. A computational model accounting for the difference in nanoparticle interactions for variable GSH configurations describes the unusual trends of nanoparticle gel viscoelasticity. These observations are generalizable to other NP gels interconnected by supramolecular interactions and lead to materials with high-load bearing abilities and energy dissipation needed for multiple technologies.« less

  11. Nanoparticle-mediated RNA interference of angiotensinogen decreases blood pressure and improves myocardial remodeling in spontaneously hypertensive rats.

    PubMed

    Yuan, Li-Fen; Sheng, Jing; Lu, Ping; Wang, Yu-Qiang; Jin, Tuo; Du, Qin

    2015-09-01

    Angiotensinogen (AGT) has been shown to have a role in cardiac hypertrophy, while depletion of the AGT gene in spontaneously hypertensive rats (SHR) has not been investigated. The present study investigated the effect of AGT knockdown on cardiac hypertrophy in SHR. For this, small hairpin (sh)RNAs were intravenously injected into SHRs, using a nanoparticle‑mediated transfection system. The experimental rats were divided into the following groups: a) Blank control with water treatment only, b) negative control with biscarbamate‑crosslinked Gal‑polyethylene glycol polyethylenimine nanoparticles (GPE)/negative shRNA, c) AGT‑RNA interference (RNAi) group with GPE/AGT‑shRNA, and 4) normotensive control using Wistar‑Kyoto rats (WKY) with water treatment. Three and five days following the first injection, the levels of hepatic AGT mRNA and AGT protein as well as plasma levels of AGT were markedly decreased in the AGT‑RNAi group (P<0.05). Furthermore, a significant decrease in systolic blood pressure (SBP), left ventricular weight to body weight ratio and heart weight to body weight ratio were observed in the AGT‑RNAi group compared with those in the control groups. The depletion of AGT in SHR led to a reduction in SBP by 30±4 mmHg, which was retained for >10 days. Cardiac hypertrophy was also significantly improved in AGT‑knockdown rats. In conclusion, the present study showed that AGT‑silencing had a significant inhibitory effect on hypertension and hypertensive‑induced cardiac hypertrophy in SHRs.

  12. Analysis of caspase-3 in ASTC-a-1 cells treated with mitomycin C using acceptor photobleaching techniques

    NASA Astrophysics Data System (ADS)

    Wang, Huiying; Chen, Tongsheng; Sun, Lei

    2008-02-01

    Caspase-3 is a key activated death protease, which catalyzes the specific cleavage of many cellular proteins and induces DNA cleavage eventually. In this report, cells were treated with mitomycin C (MMC) at different concentration and its activity was detected by cell counting kit (CCK-8). Based on results of CCK-8, cells were treated with 10μg/mL MMC and Hoechst 33258 has been used to observe cell apoptosis. Fluorescence resonance energy transfer (FRET) and confocal microscopy have been used to the effect of MMC on the caspase3 activation in living cells. Human lung adenocarcinoma cells (ASTC-a-1) was transfected with plasmid SCAT3 (pSCAT3)/CKAR FRET receptor. Acceptor photobleaching techniques of FRET plasmid has been used to destruct fluorophore of cells stably expressing SCAT3 reporter on a fluorescence confocal microscope. The activity of caspase3 can be analyzed by FRET dynamics of SCAT3 in living cells. Our results show that MM C can induce ASTC-a-1 cell apoptosis through activation of caspase3.

  13. Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain.

    PubMed

    Zador, Zsolt; Magzoub, Mazin; Jin, Songwan; Manley, Geoffrey T; Papadopoulos, Marios C; Verkman, A S

    2008-03-01

    Diffusion in brain extracellular space (ECS) is important for nonsynaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. We measured macromolecular diffusion in normally light-inaccessible regions of mouse brain by microfiberoptic epifluorescence photobleaching, in which a fiberoptic with a micron-size tip is introduced deep in brain tissue. In brain cortex, the diffusion of a noninteracting molecule [fluorescein isothiocyanate (FITC)-dextran, 70 kDa] was slowed 4.5 +/- 0.5-fold compared with its diffusion in water (D(o)/D), and was depth-independent down to 800 microm from the brain surface. Diffusion was significantly accelerated (D(o)/D of 2.9+/-0.3) in mice lacking the glial water channel aquaporin-4. FITC-dextran diffusion varied greatly in different regions of brain, with D(o)/D of 3.5 +/- 0.3 in hippocampus and 7.4 +/- 0.3 in thalamus. Remarkably, D(o)/D in deep brain was strongly dependent on solute size, whereas diffusion in cortex changed little with solute size. Mathematical modeling of ECS diffusion required nonuniform ECS dimensions in deep brain, which we call "heterometricity," to account for the size-dependent diffusion. Our results provide the first data on molecular diffusion in ECS deep in brain in vivo and demonstrate previously unrecognized hindrance and heterometricity for diffusion of large macromolecules in deep brain.

  14. Analysis of the diffusion of Ras2 in Saccharomyces cerevisiae using fluorescence recovery after photobleaching

    NASA Astrophysics Data System (ADS)

    Vinnakota, Kalyan C.; Mitchell, David A.; Deschenes, Robert J.; Wakatsuki, Tetsuro; Beard, Daniel A.

    2010-06-01

    Binding, lateral diffusion and exchange are fundamental dynamic processes involved in protein association with cellular membranes. In this study, we developed numerical simulations of lateral diffusion and exchange of fluorophores in membranes with arbitrary bleach geometry and exchange of the membrane-localized fluorophore with the cytosol during fluorescence recovery after photobleaching (FRAP) experiments. The model simulations were used to design FRAP experiments with varying bleach region sizes on plasma membrane-localized wild-type GFP-Ras2 with a dual lipid anchor and mutant GFP-Ras2C318S with a single lipid anchor in live yeast cells to investigate diffusional mobility and the presence of any exchange processes operating in the time scale of our experiments. Model parameters estimated using data from FRAP experiments with a 1 µm × 1 µm bleach region-of-interest (ROI) and a 0.5 µm × 0.5 µm bleach ROI showed that GFP-Ras2, single or dual lipid modified, diffuses as single species with no evidence of exchange with a cytoplasmic pool. This is the first report of Ras2 mobility in the yeast plasma membrane. The methods developed in this study are generally applicable for studying diffusion and exchange of membrane-associated fluorophores using FRAP on commercial confocal laser scanning microscopes.

  15. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles.

    PubMed

    Zhang, Lianbing; Laug, Linda; Münchgesang, Wolfram; Pippel, Eckhard; Gösele, Ulrich; Brandsch, Matthias; Knez, Mato

    2010-01-01

    The great potential for medical applications of inorganic nanoparticles in living organisms is severely restricted by the concern that nanoparticles can harmfully interact with biological systems, such as lipid membranes or cell proteins. To enable an uptake of such nanoparticles by cells without harming their membranes, platinum nanoparticles were synthesized within cavities of hollow protein nanospheres (apoferritin). In vitro, the protein-platinum nanoparticles show good catalytic efficiency and long-term stability. Subsequently the particles were tested after ferritin-receptor-mediated incorporation in human intestinal Caco-2 cells. Upon externally induced stress, for example, with hydrogen peroxide, the oxygen species in the cells decreased and the viability of the cells increased.

  16. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery.

    PubMed

    Zhao, Jingjing; Zhang, Bo; Shen, Shun; Chen, Jun; Zhang, Qizhi; Jiang, Xinguo; Pang, Zhiqing

    2015-07-15

    Glioblastoma multiforme (GBM) is the most aggressive central nervous system (CNS) tumor because of its fast development, poor prognosis, difficult control and terrible mortality. Poor penetration and retention in the glioblastoma parenchyma were crucial challenges in GBM nanomedicine therapy. Nanoparticle diameter can significantly influence the delivery efficiency in tumor tissue. Decreasing nanoparticle size can improve the nanoparticle penetration in tumor tissue but decrease the nanoparticle retention effect. Therefore, small nanoparticles with high retention effect in tumor are urgently needed for effective GBM drug delivery. In present study, a small nanoparticle drug delivery system was developed by conjugating fibrin-binding peptide CREKA to Polyamidoamine (PAMAM) dendrimer, where PEGylated PAMAM is used as drug carrier due to its small size and good penetration in tumor and CREKA is used to target the abundant fibrin in GBM for enhanced retention in tumor. In vitro binding ability tests demonstrated that CREKA can significantly enhanced nanoparticle binding with fibrin. In vivo fluorescence imaging of GBM bearing nude mice, ex vivo brain imaging and frozen slices fluorescence imaging further revealed that the CREKA-modified PAMAM achieved higher accumulation and deeper penetration in GBM tissue than unmodified one. These results indicated that the CREKA-modified PAMAM could penetrate the GBM tissue deeply and enhance the retention effect, which was a promising strategy for brain tumor therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nanoparticle-encapsulated emodin decreases diabetic neuropathic pain probably via a mechanism involving P2X3 receptor in the dorsal root ganglia.

    PubMed

    Li, Lin; Sheng, Xuan; Zhao, Shanhong; Zou, Lifang; Han, Xinyao; Gong, Yingxin; Yuan, Huilong; Shi, Liran; Guo, Lili; Jia, Tianyu; Liu, Shuangmei; Wu, Bing; Yi, Zhihua; Liu, Hui; Gao, Yun; Li, Guilin; Li, Guodong; Zhang, Chunping; Xu, Hong; Liang, Shangdong

    2017-12-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.

  18. Engineered Gold Nanoparticles and Plant Adaptation Potential

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  19. Selenium nanoparticles inhibit Staphylococcus aureus growth

    PubMed Central

    Tran, Phong A; Webster, Thomas J

    2011-01-01

    Staphylococcus aureus is a key bacterium commonly found in numerous infections. S. aureus infections are difficult to treat due to their biofilm formation and documented antibiotic resistance. While selenium has been used for a wide range of applications including anticancer applications, the effects of selenium nanoparticles on microorganisms remain largely unknown to date. The objective of this in vitro study was thus to examine the growth of S. aureus in the presence of selenium nanoparticles. Results of this study provided the first evidence of strongly inhibited growth of S. aureus in the presence of selenium nanoparticles after 3, 4, and 5 hours at 7.8, 15.5, and 31 μg/mL. The percentage of live bacteria also decreased in the presence of selenium nanoparticles. Therefore, this study suggests that selenium nanoparticles may be used to effectively prevent and treat S. aureus infections and thus should be further studied for such applications. PMID:21845045

  20. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core.

    PubMed

    Clark, Andrew J; Davis, Mark E

    2015-10-06

    Most therapeutic agents are excluded from entering the central nervous system by the blood-brain barrier (BBB). Receptor mediated transcytosis (RMT) is a common mechanism used by proteins, including transferrin (Tf), to traverse the BBB. Here, we prepared Tf-containing, 80-nm gold nanoparticles with an acid-cleavable linkage between the Tf and the nanoparticle core to facilitate nanoparticle RMT across the BBB. These nanoparticles are designed to bind to Tf receptors (TfRs) with high avidity on the blood side of the BBB, but separate from their multidentate Tf-TfR interactions upon acidification during the transcytosis process to allow release of the nanoparticle into the brain. These targeted nanoparticles show increased ability to cross an in vitro model of the BBB and, most important, enter the brain parenchyma of mice in greater amounts in vivo after systemic administration compared with similar high-avidity nanoparticles containing noncleavable Tf. In addition, we investigated this design with nanoparticles containing high-affinity antibodies (Abs) to TfR. With the Abs, the addition of the acid-cleavable linkage provided no improvement to in vivo brain uptake for Ab-containing nanoparticles, and overall brain uptake was decreased for all Ab-containing nanoparticles compared with Tf-containing ones. These results are consistent with recent reports of high-affinity anti-TfR Abs trafficking to the lysosome within BBB endothelium. In contrast, high-avidity, Tf-containing nanoparticles with the acid-cleavable linkage avoid major endothelium retention by shedding surface Tf during their transcytosis.

  1. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding

    NASA Astrophysics Data System (ADS)

    Jia, Dongzhou; Li, Changhe; Zhang, Dongkun; Zhang, Yanbin; Zhang, Xiaowei

    2014-12-01

    In our experiment, K-P36 precision numerical control surface grinder was used for dry grinding, minimum quantity lubrication (MQL) grinding, nanoparticle jet MQL grinding, and traditional flood grinding of hardened 45 steel. A three-dimensional dynamometer was used to measure grinding force in the experiment. In this research, experiments were conducted to measure and calculate specific tangential grinding force, frictional coefficient, and specific grinding energy, thus verifying the lubrication performance of nanoparticles in surface grinding. Findings present that compared with dry grinding, the specific tangential grinding force of MQL grinding, nanoparticle jet MQL grinding, and flood grinding decreased by 45.88, 62.34, and 69.33 %, respectively. Their frictional coefficient was reduced by 11.22, 29.21, and 32.18 %, and the specific grinding energy declined by 45.89, 62.34, and 69.45 %, respectively. Nanoparticle jet MQL presented ideal lubrication effectiveness, which was attributed to the friction oil film with strong antifriction and anti-wear features formed by nanoparticles on the grinding wheel/workpiece interface. Moreover, lubricating properties of nanoparticles of the same size (50 nm) but different types were verified through experimentation. In our experiment, ZrO2 nanoparticles, polycrystal diamond (PCD) nanoparticles, and MoS2 nanoparticles were used in the comparison of nanoparticle jet MQL grinding. The experimental results manifest that MoS2 nanoparticles exhibited the optimal lubricating effectiveness, followed by PCD nanoparticles. Our research also integrated the properties of different nanoparticles to analyze the lubrication mechanisms of different nanoparticles. The experiment further verified the impact of nanoparticle concentration on the effectiveness of nanoparticle jet MQL in grinding. The experimental results demonstrate that when the nanoparticle mass fraction was 6 %, the minimum specific tangential grinding force, frictional

  3. Subsurface femtosecond tissue alteration: selectively photobleaching macular degeneration pigments in near retinal contact.

    PubMed

    Manevitch, Zakhariya; Lewis, Aaron; Levy, Carol; Zeira, Evelyne; Banin, Eyal; Manevitch, Alexandra; Khatchatouriants, Artium; Pe'er, Jacob; Galun, Eithan; Hemo, Itzhak

    2012-06-14

    This paper uses advances in the ultrafast manipulation of light to address a general need in medicine for a clinical approach that can provide a solution to a variety of disorders requiring subsurface tissue manipulation with ultralow collateral damage. Examples are age-related macular degeneration (AMD), fungal infections, tumors surrounded by overlying tissue, cataracts, etc. Although lasers have revolutionized the use of light in clinical settings, most lasers employed in medicine cannot address such problems of depth-selective tissue manipulation. This arises from the fact that they are mostly based on one photon based laser tissue interactions that provide a cone of excitation where the energy density is sufficiently high to excite heat or fluorescence in the entire cone. Thus, it is difficult to excite a specific depth of a tissue without affecting the overlying surface. However, the advent of femtosecond (fs) lasers has caused a revolution in multiphoton microscopy (Zipfel et al. Nat. Biotechnol. 2003, 21, 1369-1377; Denk et al. Science 1990, 248, 73-76) and fabrication (Kawata et al. Nature 2001, 412, 697-698). With such lasers, the photon energy density is only high enough for multiphoton processes in the focal volume, and this opens a new direction to address subsurface tissue manipulation. Here we show in an AMD animal model, Ccr2 KO knockout mutant mice, noninvasive, selective fs two-photon photobleaching of pigments associated with AMD that accumulate under and in ultraclose proximity to the overlying retina. Pathological evidence is presented that indicates the lack of collateral damage to the overlying retina or other surrounding tissue.

  4. Physicochemical properties of protein-modified silver nanoparticles in seawater

    NASA Astrophysics Data System (ADS)

    Zhong, Hangyue

    2013-10-01

    This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.

  5. Supercooling of Water Controlled by Nanoparticles and Ultrasound

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Jia, Lisi; Chen, Ying; Li, Yi'ang; Li, Jun; Mo, Songping

    2018-05-01

    Nanoparticles, including Al2O3 and SiO2, and ultrasound were adopted to improve the solidification properties of water. The effects of nanoparticle concentration, contact angle, and ultrasonic intensity on the supercooling degree of water were investigated, as well as the dispersion stability of nanoparticles in water during solidification. Experimental results show that the supercooling degree of water is reduced under the combined effect of ultrasound and nanoparticles. Consequently, the reduction of supercooling degree increases with the increase of ultrasonic intensity and nanoparticle concentration and decrease of contact angle of nanoparticles. Moreover, the reduction of supercooling degree caused by ultrasound and nanoparticles together do not exceed the sum of the supercooling degree reductions caused by ultrasound and nanoparticles separately; the reduction is even smaller than that caused by ultrasound individually under certain conditions of controlled nanoparticle concentration and contact angle and ultrasonic intensity. The dispersion stability of nanoparticles during solidification can be maintained only when the nanoparticles and ultrasound together show a superior effect on reducing the supercooling degree of water to the single operation of ultrasound. Otherwise, the aggregation of nanoparticles appears in water solidification, which results in failure. The relationships among the meaningful nanoparticle concentration, contact angle, and ultrasonic intensity, at which the requirements of low supercooling and high stability could be satisfied, were obtained. The control mechanisms for these phenomena were analyzed.

  6. Nanoparticles from renewable polymers

    PubMed Central

    Wurm, Frederik R.; Weiss, Clemens K.

    2014-01-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications. PMID:25101259

  7. Influence of dose on particle size and optical properties of colloidal platinum nanoparticles.

    PubMed

    Gharibshahi, Elham; Saion, Elias

    2012-11-12

    Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size.

  8. Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles

    PubMed Central

    Gharibshahi, Elham; Saion, Elias

    2012-01-01

    Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size. PMID:23203091

  9. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Thu Ha, Phuong; Sao Nguyen, Anh; Nguyen, Dac Tu; Doan Do, Hai; Nguyen Thi, Quy; Nhung Hoang Thi, My

    2016-06-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics.

  10. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration.

    PubMed

    Pawar, Harish; Wankhade, Shrikant Rameshrao; Yadav, Dharmendra K; Suresh, Sarasija

    2016-09-01

    Technology for development of biodegradable nanoparticles encapsulating combinations for enhanced efficacy. To develop docetaxel (DTX) and curcumin (CRM) co-encapsulated biodegradable nanoparticles for parenteral administration with potential for prolonged release and decreased toxicity. Modified emulsion solvent-evaporation technique was employed in the preparation of the nanoparticles optimized by the face centered-central composite design (FC-CCD). The uptake potential was studied in MCF-7 cells, while the toxicity was evaluated by in vitro hemolysis test. In vivo pharmacokinetic was evaluated in male Wistar rats. Co-encapsulated nanoparticles were developed of 219 nm size, 0.154 PDI, -13.74 mV zeta potential and 67.02% entrapment efficiency. Efficient uptake was observed by the nanoparticles in MCF-7 cells with decreased toxicity in comparison with the commercial DTX intravenous injection, Taxotere®. The nanoparticles exhibited biphasic release with initial burst release followed by sustained release for 5 days. The nanoparticles displayed a 4.3-fold increase in AUC (391.10 ± 32.94 versus 89.77 ± 10.58 μg/ml min) in comparison to Taxotere® with a 6.2-fold increase in MRT (24.78 ± 2.36 versus 3.58 ± 0.21 h). The nanoparticles exhibited increased uptake, prolonged in vitro and in vivo release, with decreased toxicity thus exhibiting potential for enhanced efficacy.

  11. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.

    PubMed

    Treuel, Lennart; Brandholt, Stefan; Maffre, Pauline; Wiegele, Sarah; Shang, Li; Nienhaus, G Ulrich

    2014-01-28

    Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses.

  12. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles.

    PubMed

    Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Yao, Yongchao; Luo, Jianbin

    2017-04-01

    In order to improve the antibacterial activities while decrease the cytotoxity of silver nanoparticles, we prepared a novel nanocomposites composed of silver nanoparticles decorated lipase-sensitive polyurethane micelles (PUM-Ag) with MPEG brush on the surface. The nanocomposite was characterized by UV-vis, TEM and DLS. UV-vis and TEM demonstrated the formation of silver nanoparticles on PU micelles and the nanoassembly remained intact without the presence of lipase. The silver nanoparticles were protected by the polymer matrix and PEG brush which show good cytocompatibility to HUVEC cells and low hemolysis. Moreover, at the presence of lipase, the polymer matrix of nanocomposites is subject to degradation and the small silver nanoparticles were released as is shown by DLS and TEM. The MIC and MBC studies showed an enhanced toxicity of the nanocomposites to both gram negative and gram positive bacteria, i.e. E. coli and S. aureus, as the result of the degradation of polymer matrix by bacterial lipase. Therefore, the nanocomposites are biocompatible to mammalian cells cells which can also lead to activated smaller silver nanoparticles release at the presence of bacteria and subsequently enhanced inhibition of bacteria growth. The satisfactory selectivity for bacteria compared to HUVEC and RBCs make PUM-Ag a promising antibacterial nanomedicine in biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Monochrome Multiplexing in Polymerase Chain Reaction by Photobleaching of Fluorogenic Hydrolysis Probes.

    PubMed

    Schuler, Friedrich; Trotter, Martin; Zengerle, Roland; von Stetten, Felix

    2016-03-01

    Multiplexing in polymerase chain reaction (PCR) is a technique widely used to save cost and sample material and to increase sensitivity compared to distributing a sample to several singleplex reactions. One of the most common methods to detect the different amplification products is the use of fluorogenic probes that emit at different wavelengths (colors). To reduce the number of detection channels, several methods for monochrome multiplexing have been suggested. However, they pose restrictions to the amplifiable target length, the sequence, or the melting temperature. To circumvent these limitations, we suggest a novel approach that uses different fluorophores with the same emission maximum. Discrimination is achieved by their different fluorescence stability during photobleaching. Atto488 (emitting at the same wavelength as 6-carboxyfluorescein, FAM) and Atto467N (emitting at the same wavelength as cyanine 5, Cy5) were found to bleach significantly less than FAM and Cy5; i.e., the final fluorescence of Atto dyes was more than tripled compared to FAM and Cy5. We successfully applied this method by performing a 4-plex PCR targeting antibiotic resistance genes in S. aureus using only 2 color channels. Confidence of discrimination between the targets was >99.9% at high copy initial copy numbers of 100 000 copies. Cases where both targets were present could be discriminated with equal confidence for Cy5 channel and reduced levels of confidence (>68%) for FAM channel. Moreover, a 2-plex digital PCR reaction in 1 color channel was shown. In the future, the degree of multiplexing may be increased by adding fluorogenic probe pairs with other emission wavelengths. The method may also be applied to other probe and assay formats, such as Förster resonance energy transfer (FRET) probes and immunoassays.

  14. Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.

    PubMed

    Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S

    2016-02-02

    Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis.

  15. Reducing the photo-bleaching effect of a new europium complex embedded in styrene butadiene copolymer

    NASA Astrophysics Data System (ADS)

    Jiménez, G. Lesly; Reyes-Rodríguez, J. L.; Padilla, Isela; Alarcón-Flores, G.; Falcony, C.

    2018-02-01

    A highly luminescent europium complex obtained with two different ligands, succinimide (SI) and 2-thenoyltrifluoroacetone (TTA) , was synthetized with different TTA concentrations. The photoluminescence (PL) emission from these materials corresponds to the characteristic inter-electronic energy level transitions of the Eu3+ ions. However, the excitation spectrum is strongly dependent on the presence of TTA, having an optimum response when 0.75 mmol of this compound is added to the EuL3(H2O)3 complex. The quantum yield obtained by these powders were around 72 % ± 1.7 % indicating an optimum sensitization of these complex. The EuL3 TTA complex with the best PL properties was embedded in a styrene butadiene copolymer (SBC) film, produced by the drop casting method, obtaining similar PL behavior at different concentrations, the highest intensity was observed at 1.2% (w/v) of EuL3 TTA complex and the quantum yield of these composite films was 60.5 % ± 2 % . These films were exposed to continuous UV irradiation and after 141 h no photo-bleaching effect was observed in contrast with the EuL3 TTA complex that exhibited a noticeable photoluminescence intensity degradation at much shorter exposure times. Both the Eu-complexes and the composite films were characterized by FT-IR, XRD, SEM and fluorescence spectroscopy.

  16. Quantification of Lacunar-Canalicular Interstitial Fluid Flow Through Computational Modeling of Fluorescence Recovery After Photobleaching.

    PubMed

    Kwon, Ronald Y; Frangos, John A

    2010-09-01

    Skeletal adaptation to mechanical loading has been widely hypothesized to involve the stimulation of osteocytes by interstitial fluid flow (IFF). However, direct investigation of this hypothesis has been difficult due in large part to the inability to directly measure IFF velocities within the lacunar-canalicular system. Measurements of fluorescence recovery after photobleaching (FRAP) within individual lacunae could be used to quantify lacunar-canalicular IFF when combined with mathematical modeling. In this study, we used a computational transport model to characterize the relationship between flow frequency (0.5-10 Hz), peak flow velocity (0-300 μm/s), tracer diffusion coefficient (100-300 μm(2)/s), and transport enhancement (i.e., (k/k(0)) - 1, where k and k(0) are the transport rates in the presence/absence of flow) during lacunar FRAP investigations. We show that this relationship is well described by a simple power law with frequency-dependent coefficients, and is relatively insensitive to variations in lacunar geometry. Using this power law relationship, we estimated peak IFF velocities in hindlimb mice subjected to intramedullary pressurization using values of k and k(0) previously obtained from ex vivo lacunar FRAP investigations. Together, our findings suggest that skeletal adaptation in hindlimb suspended mice subjected to dynamic intramedullary pressure occurred in the presence of IFF at levels associated with physiological loading.

  17. Quantification of Lacunar–Canalicular Interstitial Fluid Flow Through Computational Modeling of Fluorescence Recovery After Photobleaching

    PubMed Central

    Kwon, Ronald Y.; Frangos, John A.

    2010-01-01

    Skeletal adaptation to mechanical loading has been widely hypothesized to involve the stimulation of osteocytes by interstitial fluid flow (IFF). However, direct investigation of this hypothesis has been difficult due in large part to the inability to directly measure IFF velocities within the lacunar–canalicular system. Measurements of fluorescence recovery after photobleaching (FRAP) within individual lacunae could be used to quantify lacunar–canalicular IFF when combined with mathematical modeling. In this study, we used a computational transport model to characterize the relationship between flow frequency (0.5–10 Hz), peak flow velocity (0–300 μm/s), tracer diffusion coefficient (100–300 μm2/s), and transport enhancement (i.e., (k/k0) − 1, where k and k0 are the transport rates in the presence/absence of flow) during lacunar FRAP investigations. We show that this relationship is well described by a simple power law with frequency-dependent coefficients, and is relatively insensitive to variations in lacunar geometry. Using this power law relationship, we estimated peak IFF velocities in hindlimb mice subjected to intramedullary pressurization using values of k and k0 previously obtained from ex vivo lacunar FRAP investigations. Together, our findings suggest that skeletal adaptation in hindlimb suspended mice subjected to dynamic intramedullary pressure occurred in the presence of IFF at levels associated with physiological loading. PMID:21076644

  18. An improved strip FRAP method for estimating diffusion coefficients: correcting for the degree of photobleaching.

    PubMed

    Yang, J; Köhler, K; Davis, D M; Burroughs, N J

    2010-06-01

    Fluorescence recovery after photobleaching is a widely established method for the estimation of diffusion coefficients, strip bleaching with an associated recovery curve analysis being one of the simplest techniques. However, its implementation requires near 100% bleaching in the region of interest with negligible fluorescence loss outside, both constraints being hard to achieve concomitantly for fast diffusing molecules. We demonstrate that when these requirements are not met there is an error in the estimation of the diffusion coefficient D, either an under- or overestimation depending on which assumption is violated the most. We propose a simple modification to the recovery curve analysis incorporating the concept of the relative bleached mass m giving a revised recovery time parametrization tau=m(2)w(2)/4piD for a strip of width w. This modified model removes the requirement of 100% bleaching in the region of interest and allows for limited diffusion of the fluorophore during bleaching. We validate our method by estimating the (volume) diffusion coefficient of FITC-labelled IgG in 60% glycerol solution, D= 4.09 +/- 0.21 microm(2) s(-1), and the (surface) diffusion coefficient of a green-fluorescent protein-tagged class I MHC protein expressed at the surface of a human B cell line, D= 0.32 +/- 0.03 microm(2) s(-1) for a population of cells.

  19. Ballistic-diffusive approximation for the thermal dynamics of metallic nanoparticles in nanocomposite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirdel-Havar, A. H., E-mail: Amir.hushang.shirdel@gmail.com; Masoudian Saadabad, R.

    2015-03-21

    Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shownmore » that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.« less

  20. Directional rolling of positively charged nanoparticles along a flexibility gradient on long DNA molecules.

    PubMed

    Park, Suehyun; Joo, Heesun; Kim, Jun Soo

    2018-01-31

    Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.

  1. Nanoparticle-blood interactions: the implications on solid tumour targeting.

    PubMed

    Lazarovits, James; Chen, Yih Yang; Sykes, Edward A; Chan, Warren C W

    2015-02-18

    Nanoparticles are suitable platforms for cancer targeting and diagnostic applications. Typically, less than 10% of all systemically administered nanoparticles accumulate in the tumour. Here we explore the interactions of blood components with nanoparticles and describe how these interactions influence solid tumour targeting. In the blood, serum proteins adsorb onto nanoparticles to form a protein corona in a manner dependent on nanoparticle physicochemical properties. These serum proteins can block nanoparticle tumour targeting ligands from binding to tumour cell receptors. Additionally, serum proteins can also encourage nanoparticle uptake by macrophages, which decreases nanoparticle availability in the blood and limits tumour accumulation. The formation of this protein corona will also increase the nanoparticle hydrodynamic size or induce aggregation, which makes nanoparticles too large to enter into the tumour through pores of the leaky vessels, and prevents their deep penetration into tumours for cell targeting. Recent studies have focused on developing new chemical strategies to reduce or eliminate serum protein adsorption, and rescue the targeting potential of nanoparticles to tumour cells. An in-depth and complete understanding of nanoparticle-blood interactions is key to designing nanoparticles with optimal physicochemical properties with high tumour accumulation. The purpose of this review article is to describe how the protein corona alters the targeting of nanoparticles to solid tumours and explains current solutions to solve this problem.

  2. Synchrotron x-ray modification of nanoparticle superlattice formation

    NASA Astrophysics Data System (ADS)

    Lu, Chenguang; Akey, Austin J.; Herman, Irving P.

    2012-09-01

    The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.

  3. Surface spins disorder in uncoated and SiO2 coated maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeb, F.; Nadeem, K.; Shah, S. Kamran Ali; Kamran, M.; Gul, I. Hussain; Ali, L.

    2017-05-01

    We studied the surface spins disorder in uncoated and silica (SiO2) coated maghemite (γ-Fe2O3) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO2 coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (TB) for SiO2 coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (Ms) of SiO2 coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO2 coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1- BTb)) was fitted well for both uncoated and SiO2 coated nanoparticles and yields: B =3×10-7 K-b, b=2.22 and B=0.0127 K-b, b=0.57 for uncoated and SiO2 coated nanoparticles, respectively. Higher value of B for SiO2 coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO2 coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO2 coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO2 coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface spins disorder in SiO2 coated nanoparticles than in uncoated γ-Fe2O3 nanoparticles.

  4. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.

    PubMed

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2017-02-07

    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of

  5. Blood clot detection using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Friedman, Bruce; Berwin, Brent; Shi, Yipeng; Ness, Dylan B.; Weaver, John B.

    2017-05-01

    Deep vein thrombosis, the development of blood clots in the peripheral veins, is a very serious, life threatening condition that is prevalent in the elderly. To deliver proper treatment that enhances the survival rate, it is very important to detect thrombi early and at the point of care. We explored the ability of magnetic particle spectroscopy (MSB) to detect thrombus via specific binding of aptamer functionalized magnetic nanoparticles with the blood clot. MSB uses the harmonics produced by nanoparticles in an alternating magnetic field to measure the rotational freedom and, therefore, the bound state of the nanoparticles. The nanoparticles' relaxation time for Brownian rotation increases when bound [A.M. Rauwerdink and J. B. Weaver, Appl. Phys. Lett. 96, 1 (2010)]. The relaxation time can therefore be used to characterize the nanoparticle binding to thrombin in the blood clot. For longer relaxation times, the approach to saturation is more gradual reducing the higher harmonics and the harmonic ratio. The harmonic ratios of nanoparticles conjugated with anti-thrombin aptamers (ATP) decrease significantly over time with blood clot present in the sample medium, compared with nanoparticles without ATP. Moreover, the blood clot removed from the sample medium produced a significant MSB signal, indicating the nanoparticles are immobilized on the clot. Our results show that MSB could be a very useful non-invasive, quick tool to detect blood clots at the point of care so proper treatment can be used to reduce the risks inherent in deep vein thrombosis.

  6. Photophysics of Thermally-Assisted Photobleaching in "Giant" Quantum Dots Revealed in Single Nanocrystals.

    PubMed

    Orfield, Noah J; Majumder, Somak; McBride, James R; Yik-Ching Koh, Faith; Singh, Ajay; Bouquin, Sarah J; Casson, Joanna L; Johnson, Alex D; Sun, Liuyang; Li, Xiaoqin; Shih, Chih-Kang; Rosenthal, Sandra J; Hollingsworth, Jennifer A; Htoon, Han

    2018-05-07

    Quantum dots (QDs) are steadily being implemented as down-conversion phosphors in market-ready display products to enhance color rendering, brightness, and energy efficiency. However, for adequate longevity, QDs must be encased in a protective barrier that separates them from ambient oxygen and humidity, and device architectures are designed to avoid significant heating of the QDs as well as direct contact between the QDs and the excitation source. In order to increase the utility of QDs in display technologies and to extend their usefulness to more demanding applications as, for example, alternative phosphors for solid-state lighting (SSL), QDs must retain their photoluminescence emission properties over extended periods of time under conditions of high temperature and high light flux. Doing so would simplify the fabrication costs for QD display technologies and enable QDs to be used as down-conversion materials in light-emitting diodes for SSL, where direct-on-chip configurations expose the emitters to temperatures approaching 100 °C and to photon fluxes from 0.1 W/mm 2 to potentially 10 W/mm 2 . Here, we investigate the photobleaching processes of single QDs exposed to controlled temperature and photon flux. In particular, we investigate two types of room-temperature-stable core/thick-shell QDs, known as "giant" QDs for which shell growth is conducted using either a standard layer-by-layer technique or by a continuous injection method. We determine the mechanistic pathways responsible for thermally-assisted photodegradation, distinguishing effects of hot-carrier trapping and QD charging. The findings presented here will assist in the further development of advanced QD heterostructures for maximum device lifetime stability.

  7. Mobility of adsorbed Cry1Aa insecticidal toxin from Bacillus thuringiensis (Bt) on montmorillonite measured by fluorescence recovery after photobleaching (FRAP)

    NASA Astrophysics Data System (ADS)

    Helassa, Nordine; Daudin, Gabrielle; Noinville, Sylvie; Janot, Jean-Marc; Déjardin, Philippe; Staunton, Siobhán; Quiquampoix, Hervé

    2010-06-01

    The insecticidal toxins produced by genetically modified Bt crops are introduced into soil through root exudates and tissue decomposition and adsorb readily on soil components, especially on clays. This immobilisation and the consequent concentration of the toxins in "hot spots" could increase the exposure of soil organisms. Whereas the effects on non-target organisms are well documented, few studies consider the migration of the toxin in soil. In this study, the residual mobility of Bt Cry1Aa insecticidal toxin adsorbed on montmorillonite was assessed using fluorescence recovery after photobleaching (FRAP). This technique, which is usually used to study dynamics of cytoplasmic and membrane molecules in live cells, was applied for the first time to a protein adsorbed on a finely divided swelling clay mineral, montmorillonite. No mobility of adsorbed toxin was observed at any pH and at different degrees of surface saturation.

  8. Pulmonary Nanoparticle Exposure Disrupts Systemic Microvascular Nitric Oxide Signaling

    PubMed Central

    Nurkiewicz, Timothy R.; Porter, Dale W.; Hubbs, Ann F.; Stone, Samuel; Chen, Bean T.; Frazer, David G.; Boegehold, Matthew A.; Castranova, Vincent

    2009-01-01

    We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs is/are unclear. The purpose of this study was to identify alterations in the production of reactive species and endogenous nitric oxide (NO) after nanoparticle exposure, and determine the relative contribution of hemoproteins and oxidative enzymes in this process. Sprague-Dawley rats were exposed to fine TiO2 (primary particle diameter ∼1 μm) and TiO2 nanoparticles (primary particle diameter ∼21 nm) via aerosol inhalation at depositions of 4–90 μg per rat. As in previous intravital experiments in the spinotrapezius muscle, dose-dependent arteriolar dilations were produced by intraluminal infusions of the calcium ionophore A23187. Nanoparticle exposure robustly attenuated these endothelium-dependent responses. However, this attenuation was not due to altered microvascular smooth muscle NO sensitivity because nanoparticle exposure did not alter arteriolar dilations in response to local sodium nitroprusside iontophoresis. Nanoparticle exposure significantly increased microvascular oxidative stress by ∼60%, and also elevated nitrosative stress fourfold. These reactive stresses coincided with a decreased NO production in a particle deposition dose-dependent manner. Radical scavenging, or inhibition of either myeloperoxidase or nicotinamide adenine dinucleotide phosphate oxidase (reduced) oxidase partially restored NO production as well as normal microvascular function. These results indicate that in conjunction with microvascular dysfunction, nanoparticle exposure also decreases NO bioavailability through at least two functionally distinct mechanisms that may mutually increase local reactive species. PMID:19270016

  9. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    dos Santos, Margarida Moreira; Queiroz, Margarida João; Baptista, Pedro V.

    2012-05-01

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  10. Synthesis of NiAu alloy and core-shell nanoparticles in water-in-oil microemulsions

    NASA Astrophysics Data System (ADS)

    Chiu, Hsin-Kai; Chiang, I.-Chen; Chen, Dong-Hwang

    2009-07-01

    NiAu alloy nanoparticles with various Ni/Au molar ratios were synthesized by the hydrazine reduction of nickel chloride and hydrogen tetrachloroaurate in the microemulsion system. They had a face-centered cubic structure and a mean diameter of 6-13 nm, decreasing with increasing Au content. As Au nanoparticles did, they showed a characteristic absorption peak at about 520 nm but the intensity decreased with increasing Ni content. Also, they were nearly superparamagnetic, although the magnetization decreased significantly with increasing Au content. Under an external magnetic field, they could be self-organized into the parallel lines. In addition, the core-shell nanoparticles, Ni3Au1@Au, were prepared by the Au coating on the surface of Ni3Au1 alloy nanoparticles. By increasing the hydrogen tetrachloroaurate concentration for Au coating, the thickness of Au shells could be raised and led to an enhanced and red-shifted surface plasmon absorption.

  11. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.

    2015-05-01

    Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi), and the disease remains a major health problem in many Latin American countries. Several papers report that the killing of the parasite is dependent on the production of nitric oxide (NO). The endogenous free radical NO is an important cellular signalling molecule that plays a key role in the defense against pathogens, including T. cruzi. As T. cruzi is able to compromise host macrophages decreasing endogenous NO production, the administration of exogenous NO donors represents an interesting strategy to combat Chagas disease. Thus, the aims of this study were to prepare and evaluate the antimicrobial activity of NO-releasing polymeric nanoparticles against T. cruzi. Biocompatible polymeric nanoparticles composed of chitosan/sodium tripolyphosphate(TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of free thiols (SH) groups of MSA were performed by the addition of equimolar amount of sodium nitrite (NaNO2), leading to the formation of S-nitroso-MSA-containing nanoparticles. These polymeric nanoparticles act as spontaneous NO donors, with free NO release. The results show the formation of nanoparticles with average hydrodynamic diameter ranging from 270 to 500 nm, average of polydispersity index of 0.35, and encapsulation efficiency in the range of 99%. The NO release kinetics from the S-nitroso-MSA-containing nanoparticles showed sustained and controlled NO release over several hours. The microbicidal activity of S-nitroso-MSA-containing nanoparticles was evaluated by incubating NO-releasing nanoparticles (200 - 600 μg/mL) with replicative and non-infective epimastigote, and non-replicative and infective trypomastigote forms of T. cruzi. In addition, a significant decrease in the percentage of macrophage-infected (with amastigotes) and

  12. Development and characterization of acrylated palm oil nanoparticles using ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajau, Rida; Yunus, Wan Md Zin Wan; Dahlan, Khairul Zaman Mohd

    2012-11-27

    In this study, the utilization of radiation crosslinking methods which are known as intermolecular and intramolecular crosslinking for the formation of nanoparticles of Acrylated Palm Oil (APO) in the microemulsion system that also consists of Pluronic F-127 (PF-127) surfactant was demonstrated. This microemulsion system was subjected to the ionizing radiation i.e. gamma irradiation at different doses to form the crosslinked APO nanoparticles. The effects of radiation doses on the size of APO nanoparticles were investigated using the Dynamic Light Scattering (DLS) method and their images were viewed using the Transmission Electron Microcrospy (TEM). The Fourier Transform Infra-Red (FTIR) spectroscopy wasmore » used to characterize the chemical structure and the crosslinking conversion of carbon-carbon double bond (-C = C-) of the APO nanoparticles after irradiation. As a result, the size of the APO nanoparticle decreased when the irradiation dose increased. Reduce in size might be due to the effect of intramolecular crosslinking reaction of the APO nanoparticles during irradiation process. Meanwhile, the intramolecular -C C- crosslinking conversion percentage was increased at doses below 1kGy before decreasing at the higher dose that might due to the intermolecular crosslinking of the macromolecules. This study showed that radiation crosslinking methods of polymerization and crosslinking in the microemulsion were found to be promising for the synthesis of nanoparticles.« less

  13. Characterization of endogenous nanoparticles from roasted chicken breasts.

    PubMed

    Song, Xunyu; Cao, Lin; Cong, Shuang; Song, Yukun; Tan, Mingqian

    2018-06-22

    Emergence of endogenous nanoparticles in thermally processed food has aroused much attention due to their unique properties and potential biological impact. The aim of this study was to investigate the presence of fluorescence nanoparticles in roasted chicken breasts, elemental composition, physico-chemical properties and their molecular interaction with human serum albumin (HSA). Transmission electron microscopy analysis revealed that the foodborne nanoparticles from roasted chicken were nearly spherical with an average particle size of 1.7 ± 0.4 nm. The elemental analysis of X-ray photoelectron spectroscopy showed the composition of nanoparticles as 47.4% C, 25.8% O and 26.1% N. The fluorescence of HSA was quenched by the nanoparticles following a static mode, and the molecular interaction of nanoparticles with HSA was spontaneous (ΔG°<0), where hydrogen bonding and van der Waals forces played an important role during HSA-nanoparticles complex stabilization through thermodynamic analysis by isothermal titration calorimetry. The principal location of the nanoparticles binding site on HSA was primarily in site I as determined by site-specific marker competition. The conformational of HSA was also changed and ɑ-helical structure decreased in the presence of nanoparticles. Our studies revealed that fluorescent nanoparticles were produced after roasting of chicken breast at 230 °C for 30 min for the first time. The obtained nanoparticles can interact with HSA in a spontaneous manner, thus providing valuable insight into foodborne NPs as well as their effects to human albumin protein.

  14. Theranostic nanoparticles for the treatment of cancer

    NASA Astrophysics Data System (ADS)

    Moore, Thomas Lee

    The main focus of this research was to evaluate the ability of a novel multifunctional nanoparticle to mediate drug delivery and enable a non-invasive approach to measure drug release kinetics in situ for the treatment of cancer. These goals were approached by developing a nanoparticle consisting of an inorganic core (i.e. gadolinium sulfoxide doped with europium ions or carbon nanotubes). This was coated with an external amphiphilic polymer shell comprised of a biodegradable polyester (i.e. poly(lactide) or poly(glycolide)), and poly(ethylene glycol) block copolymer. In this system, the inorganic core mediates the imaging aspect, the relatively hydrophobic polyester encapsulates hydrophobic anti-cancer drugs, and poly(ethylene glycol) stabilizes the nanoparticle in an aqueous environment. The synthesis of this nanoparticle drug delivery system utilized a simple one-pot room temperature ring-opening polymerization that neglected the use of potentially toxic catalysts and reduced the number of washing steps. This functionalization approach could be applied across a number of inorganic nanoparticle platforms. Coating inorganic nanoparticles with biodegradable polymer was shown to decrease in vitro and in vivo toxicity. Nanoparticles could be further coated with multiple polymer layers to better control drug release characteristics. Finally, loading polymer coated radioluminescent nanoparticles with photoactive drugs enabled a mechanism for measuring drug concentration in situ. The work presented here represents a step forward to developing theranostic nanoparticles that can improve the treatment of cancer.

  15. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching.

    PubMed Central

    Sund, S E; Axelrod, D

    2000-01-01

    Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics. PMID:10969025

  16. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.; Abad, E.; Baumgaertner, A.

    2016-07-01

    We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ ,P (ℓ ) ˜ℓ-(1 +α ) (α >0 ). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.

  17. Hyaluronan/Tannic Acid Nanoparticles Via Catechol/Boronate Complexation as a Smart Antibacterial System.

    PubMed

    Montanari, Elita; Gennari, Arianna; Pelliccia, Maria; Gourmel, Charlotte; Lallana, Enrique; Matricardi, Pietro; McBain, Andrew J; Tirelli, Nicola

    2016-12-01

    Nanoparticles based on hyaluronic acid (HA) are designed to deliver tannic acid (TA) as an antimicrobial agent. The presence of HA makes these particles potentially useful to target bacteria that colonize cells presenting HA membrane receptors (e.g. CD44), such as macrophages. HA bearing 3-aminophenyl boronic acid groups (HA-APBA) is reacted with TA, yielding nanoparticles with a size that decreases with decreasing HA molecular weight (e.g. 200 nm for 44 kDa, 400 nm for 737 kDa). The boronate esters make the nanoparticles stable at physiological pH, but their hydrolysis in an acidic environment (pH = 5) leads to swelling/solubilization, therefore potentially allowing TA release in endosomal compartments. We have assessed the nanoparticle toxicity profile (on RAW 264.7 macrophages) and their antimicrobial activity (on E. coli and on both methicillin-sensitive and -resistant S. aureus). The antibacterial effect of HA-APBA/TA nanoparticles was significantly higher than that of TA alone, and has very similar activity to TA coformulated with a reducing agent (ascorbic acid), which indicates both the nanoparticles to protect TA catechols from oxidation, and the effective release of TA after nanoparticle internalization. Therefore, there is potential for these nanoparticles to be used in stable, effective, and potentially targetable nanoparticle-based antimicrobial formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In vitro toxicity of zinc oxide nanoparticles: a review

    NASA Astrophysics Data System (ADS)

    Pandurangan, Muthuraman; Kim, Doo Hwan

    2015-03-01

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn2+] level. The mechanism for increased intracellular [Zn2+] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca2+] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10-100 nm) on various cell lines.

  19. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro.

  20. Statistical inference in single molecule measurements of protein adsorption

    NASA Astrophysics Data System (ADS)

    Armstrong, Megan J.; Tsitkov, Stanislav; Hess, Henry

    2018-02-01

    Significant effort has been invested into understanding the dynamics of protein adsorption on surfaces, in particular to predict protein behavior at the specialized surfaces of biomedical technologies like hydrogels, nanoparticles, and biosensors. Recently, the application of fluorescent single molecule imaging to this field has permitted the tracking of individual proteins and their stochastic contribution to the aggregate dynamics of adsorption. However, the interpretation of these results is complicated by (1) the finite time available to observe effectively infinite adsorption timescales and (2) the contribution of photobleaching kinetics to adsorption kinetics. Here, we perform a protein adsorption simulation to introduce specific survival analysis methods that overcome the first complication. Additionally, we collect single molecule residence time data from the adsorption of fibrinogen to glass and use survival analysis to distinguish photobleaching kinetics from protein adsorption kinetics.

  1. Metal-enhanced fluorescence of single green fluorescent protein (GFP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu Yi; Zhang Jian; Lakowicz, Joseph R.

    2008-11-28

    The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer durationmore » time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.« less

  2. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues

    NASA Astrophysics Data System (ADS)

    Fan, Kelong; Cao, Changqian; Pan, Yongxin; Lu, Di; Yang, Dongling; Feng, Jing; Song, Lina; Liang, Minmin; Yan, Xiyun

    2012-07-01

    Engineered nanoparticles have been used to provide diagnostic, therapeutic and prognostic information about the status of disease. Nanoparticles developed for these purposes are typically modified with targeting ligands (such as antibodies, peptides or small molecules) or contrast agents using complicated processes and expensive reagents. Moreover, this approach can lead to an excess of ligands on the nanoparticle surface, and this causes non-specific binding and aggregation of nanoparticles, which decreases detection sensitivity. Here, we show that magnetoferritin nanoparticles (M-HFn) can be used to target and visualize tumour tissues without the use of any targeting ligands or contrast agents. Iron oxide nanoparticles are encapsulated inside a recombinant human heavy-chain ferritin (HFn) protein shell, which binds to tumour cells that overexpress transferrin receptor 1 (TfR1). The iron oxide core catalyses the oxidation of peroxidase substrates in the presence of hydrogen peroxide to produce a colour reaction that is used to visualize tumour tissues. We examined 474 clinical specimens from patients with nine types of cancer and verified that these nanoparticles can distinguish cancerous cells from normal cells with a sensitivity of 98% and specificity of 95%.

  3. Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design

    PubMed Central

    Meyer, Randall A.; Green, Jordan J.

    2015-01-01

    Nanofabrication and biomedical applications of polymeric nanoparticles have become important areas of research. Biocompatible polymeric nanoparticles have been investigated for their use as delivery vehicles for therapeutic and diagnostic agents. Although polymeric nanoconstructs have traditionally been fabricated as isotropic spheres, anisotropic, non-spherical nanoparticles have gained interest in the biomaterials community due to their unique interactions with biological systems. Polymeric nanoparticles with different forms of anisotropy have been manufactured utilizing a variety of novel methods in recent years. In addition, they have enhanced physical, chemical, and biological properties compared to spherical nanoparticles, including increased targeting avidity and decreased non-specific in vivo clearance. With these desirable properties, anisotropic nanoparticles have been successfully utilized in many biomedical settings and have performed superiorly to analogous spherical nanoparticles. We summarize the current state-of-the-art fabrication methods for anisotropic polymeric nanoparticles including top-down, bottom-up, and microfluidic design approaches. We also summarize the current and potential future applications of these nanoparticles, including drug delivery, biological targeting, immunoengineering, and tissue engineering. Ongoing research into the properties and utility of anisotropic polymeric nanoparticles will prove critical to realizing their potential in nanomedicine. PMID:25981390

  4. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  5. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  6. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI.

    PubMed

    Clavijo Jordan, M Veronica; Beeman, Scott C; Baldelomar, Edwin J; Bennett, Kevin M

    2014-01-01

    Inorganic doping was used to create flexible, paramagnetic nanoparticle contrast agents for in vivo molecular magnetic resonance imaging (MRI) with low transverse relaxivity (r2). Most nanoparticle contrast agents formed from superparamagnetic metal oxides are developed with high r2. While sensitive, they can have limited in vivo detection due to a number of constraints with T2 or T2*-weighted imaging. T1-weighted imaging is often preferred for molecular MRI, but most T1-shortening agents are small chelates with low metal payload or are nanoparticles that also shorten T2 and limit the range of concentrations detectable with T1-weighting. Here we used tungsten and iron deposition to form doped iron oxide crystals inside the apoferritin cavity to form a WFe nanoparticle with a disordered crystal and un-coupled atomic magnetic moments. The atomic magnetic moments were thus localized, resulting in a principally paramagnetic nanoparticle. The WFe nanoparticles had no coercivity or saturation magnetization at 5 K and sweeping up to ± 20,000 Oe, while native ferritin had a coercivity of 3000 Oe and saturation at ± 20,000 Oe. This tungsten-iron crystal paramagnetism resulted in an increased WFe particle longitudinal relaxivity (r1) of 4870 mm(-1) s(-1) and a reduced transverse relaxivity (r2) of 9076 mm(-1) s(-1) compared with native ferritin. The accumulation of the particles was detected with T1-weighted MRI in concentrations from 20 to 400 nm in vivo, both injected in the rat brain and targeted to the rat kidney glomerulus. The WFe apoferritin nanoparticles were not cytotoxic up to 700 nm particle concentrations, making them potentially important for targeted molecular MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials

    DTIC Science & Technology

    2014-07-28

    particle size of magnetite nanoparticles. The PI will continue to develop composites that could be utilized for developing high- bandwidth radio frequency...to improve the efficiency and decrease the size of the device. High performance stretchable magneto-dielectric materials can be accomplished using...nanoparticles oxidize at dimensions smaller than the critical size for superparamagnetic to ferromagnetic transition, which is essential for minimal

  8. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data.

    PubMed

    Koulouras, Grigorios; Panagopoulos, Andreas; Rapsomaniki, Maria A; Giakoumakis, Nickolaos N; Taraviras, Stavros; Lygerou, Zoi

    2018-06-13

    Understanding protein dynamics is crucial in order to elucidate protein function and interactions. Advances in modern microscopy facilitate the exploration of the mobility of fluorescently tagged proteins within living cells. Fluorescence recovery after photobleaching (FRAP) is an increasingly popular functional live-cell imaging technique which enables the study of the dynamic properties of proteins at a single-cell level. As an increasing number of labs generate FRAP datasets, there is a need for fast, interactive and user-friendly applications that analyze the resulting data. Here we present easyFRAP-web, a web application that simplifies the qualitative and quantitative analysis of FRAP datasets. EasyFRAP-web permits quick analysis of FRAP datasets through an intuitive web interface with interconnected analysis steps (experimental data assessment, different types of normalization and estimation of curve-derived quantitative parameters). In addition, easyFRAP-web provides dynamic and interactive data visualization and data and figure export for further analysis after every step. We test easyFRAP-web by analyzing FRAP datasets capturing the mobility of the cell cycle regulator Cdt2 in the presence and absence of DNA damage in cultured cells. We show that easyFRAP-web yields results consistent with previous studies and highlights cell-to-cell heterogeneity in the estimated kinetic parameters. EasyFRAP-web is platform-independent and is freely accessible at: https://easyfrap.vmnet.upatras.gr/.

  9. The molecular basis of the solution properties of hyaluronan investigated by confocal fluorescence recovery after photobleaching.

    PubMed Central

    Gribbon, P; Heng, B C; Hardingham, T E

    1999-01-01

    Hyaluronan (HA) is a highly hydrated polyanion, which is a network-forming and space-filling component in the extracellular matrix of animal tissues. Confocal fluorescence recovery after photobleaching (confocal-FRAP) was used to investigate intramolecular hydrogen bonding and electrostatic interactions in hyaluronan solutions. Self and tracer lateral diffusion coefficients within hyaluronan solutions were measured over a wide range of concentrations (c), with varying electrolyte and at neutral and alkaline pH. The free diffusion coefficient of fluoresceinamine-labeled HA of 500 kDa in PBS was 7.9 x 10(-8) cm(2) s(-1) and of 830 kDa HA was 5.6 x 10(-8) cm(2) s(-1). Reductions in self- and tracer-diffusion with c followed a stretched exponential model. Electrolyte-induced polyanion coil contraction and destiffening resulted in a 2.8-fold increase in self-diffusion between 0 and 100 mM NaCl. Disruption of hydrogen bonds by strong alkali (0.5 M NaOH) resulted in further larger increases in self- and tracer-diffusion coefficients, consistent with a more dynamic and permeable network. Concentrated hyaluronan solution properties were attributed to hydrodynamic and entanglement interactions between domains. There was no evidence of chain-chain associations. At physiological electrolyte concentration and pH, the greatest contribution to the intrinsic stiffness of hyaluronan appeared to be due to hydrogen bonds between adjacent saccharides. PMID:10512840

  10. Binding of the immunomodulatory drug Bz-423 to mitochondrial FoF1-ATP synthase in living cells by FRET acceptor photobleaching

    NASA Astrophysics Data System (ADS)

    Starke, Ilka; Johnson, Kathryn M.; Petersen, Jan; Gräber, Peter; Opipari, Anthony W.; Glick, Gary D.; Börsch, Michael

    2016-03-01

    Bz-423 is a promising new drug for treatment of autoimmune diseases. This small molecule binds to subunit OSCP of the mitochondrial enzyme FoF1-ATP synthase and modulates its catalytic activities. We investigate the binding of Bz-423 to mitochondria in living cells and how subunit rotation in FoF1-ATP synthase, i.e. the mechanochemical mechanism of this enzyme, is affected by Bz-423. Therefore, the enzyme was marked selectively by genetic fusion with the fluorescent protein EGFP to the C terminus of subunit γ. Imaging the threedimensional arrangement of mitochondria in living yeast cells was possible at superresolution using structured illumination microscopy, SIM. We measured uptake and binding of a Cy5-labeled Bz-423 derivative to mitochondrial FoF1-ATP synthase in living yeast cells using FRET acceptor photobleaching microscopy. Our data confirmed the binding of Cy5-labeled Bz-423 to the top of the F1 domain of the enzyme in mitochondria of living Saccharomyces cerevisiae cells.

  11. Nanoparticles doped film sensing based on terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Weimin; Fan, Fei; Chang, Shengjiang; Hou, Jiaqing; Chen, Meng; Wang, Xianghui; Bai, Jinjun

    2017-12-01

    A nanoparticles concentration sensor based on doped film and terahertz (THz) metamaterial has been proposed. By coating the nanoparticles doped polyvinyl alcohol (PVA) film on the surface of THz metamaterial, the effects of nanoparticle concentration on the metamaterial resonances are investigated through experiments and numerical simulations. Results show that resonant frequency of the metamaterial linearly decreases with the increment of doping concentration. Furthermore, numerical simulations illustrate that the redshift of resonance results from the changes of refractive index of the doped film. The concentration sensitivity of this sensor is 3.12 GHz/0.1%, and the refractive index sensitivity reaches 53.33 GHz/RIU. This work provides a non-contact, nondestructive and sensitive method for the detection of nanoparticles concentration and brings out a new application on THz film metamaterial sensing.

  12. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    PubMed Central

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2014-01-01

    To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease. PMID:24791147

  13. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2013-12-01

    To develop new nanoparticle materials possessing antioxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had mode diameters in the range of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance-enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.

  14. Effects of Fe nanoparticles on bacterial growth and biosurfactant production

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Vipulanandan, Cumaraswamy; Cooper, Tim F.; Vipulanandan, Geethanjali

    2013-01-01

    Environmental conditions can have a major impact on bacterial growth and production of secondary products. In this study, the effect of different concentrations of Fe nanoparticles on the growth of Serratia sp. and on its production of a specific biosurfactant was investigated. The Fe nanoparticles were produced using the foam method, and the needle-shaped nanoparticles were about 30 nm in diameter. It was found that Fe nanoparticles can have either a positive or a negative impact on the bacterial growth and biosurfactant production, depending on their concentration. At 1 mg/L of Fe nanoparticle concentration the bacterial growth increased by 57 % and biosurfactant production increased by 63 %. When the Fe nanoparticle concentration was increased to 1 g/L, the bacterial growth decreased by 77 % and biosurfactant activity was undetectable. The biosurfactant itself was not directly affected by Fe nanoparticles over the range of concentrations studied, indicating that the observed changes in biosurfactant activity resulted indirectly from the effect of nanoparticles on the bacteria. These negative effects with nanoparticle exposures were temporary, demonstrated by the restoration of biosurfactant activity when the bacteria initially exposed to Fe nanoparticles were allowed to regrow in the absence of nanoparticles. Finally, the kinetics of bacterial growth and biosurfactant production were modeled. The model's predictions agreed with the experimental results.

  15. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  16. Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules

    DOE PAGES

    Lee, Somin Eunice; Chen, Qian; Bhat, Ramray; ...

    2015-06-03

    Plasmon rulers, consisting of pairs of gold nanoparticles, allow single-molecule analysis without photobleaching or blinking; however, current plasmon rulers are irreversible, restricting detection to only single events. Here, we present a reversible plasmon ruler, comprised of coupled gold nanoparticles linked by a single aptamer, capable of binding individual secreted molecules with high specificity. We show that the binding of target secreted molecules to the reversible plasmon ruler is characterized by single-molecule sensitivity, high specificity, and reversibility. Lastly, such reversible plasmon rulers should enable dynamic and adaptive live-cell measurement of secreted single molecules in their local microenvironment.

  17. Drug-induced amplification of nanoparticle targeting to tumors

    PubMed Central

    Lin, Kevin Y.; Kwon, Ester J.; Lo, Justin H.; Bhatia, Sangeeta N.

    2018-01-01

    Summary Nanomedicines have the potential to significantly impact cancer therapy by improving drug efficacy and decreasing off-target effects, yet our ability to efficiently home nanoparticles to disease sites remains limited. One frequently overlooked constraint of current active targeting schemes is the relative dearth of targetable antigens within tumors, which restricts the amount of cargo that can be delivered in a tumor-specific manner. To address this limitation, we exploit tumor-specific responses to drugs to construct a cooperative targeting system where a small molecule therapeutic modulates the disease microenvironment to amplify nanoparticle recruitment in vivo. We first administer a vascular disrupting agent, ombrabulin, which selectively affects tumors and leads to locally elevated presentation of the stress-related protein, p32. This increase in p32 levels provides more binding sites for circulating p32-targeted nanoparticles, enhancing their delivery of diagnostic or therapeutic cargos to tumors. We show that this cooperative targeting system recruits over five times higher doses of nanoparticles to tumors and decreases tumor burden when compared with non-cooperative controls. These results suggest that using nanomedicine in conjunction with drugs that enhance the presentation of target antigens in the tumor environment may be an effective strategy for improving the diagnosis and treatment of cancer. PMID:29731806

  18. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.

    PubMed

    Kandori, Kazuhiko; Kuroda, Tomohiko; Togashi, Shigenori; Katayama, Erika

    2011-02-03

    The calcium hydroxyapatite Ca(10)(PO(4))(6)(OH)(2) (Hap) nanoparticles were prepared by using microreactor and employed these Hap nanoparticles to clarify the adsorption behavior of proteins. The size of Hap particles produced by the microreactor reduced in the order of a hardness of the reaction conditions for mixing Ca(OH)(2) and H(3)PO(4) aqueous solutions, such as flow rates of both solutions and temperature. Finally, the size of the smallest Hap nanoparticle became 2 × 15 nm(2), similar to that of BSA molecule (4 × 14 nm(2)). It is noteworthy that the smallest Hap nanoparticles still possesses rodlike shape, suggesting that particles are grown along c-axis even though the reactants mixed very rapidly in narrow channels of the microreactors. The X-ray diffraction patterns of the Hap nanoparticles revealed that the crystallinity of the materials produced by the microreactor is low. The FTIR measurement indicated that the Hap nanoparticles produced by microreactor were carbonate-substituted type B Hap, where the carbonate ions replace the phosphate ions in the crystal lattice. All the adsorption isotherms of acidic bovine serum albumin (BSA), neutral myoglobin (MGB), and basic lysozyme (LSZ) onto Hap nanoparticles from 1 × 10(-4) mol/dm(3) KCl solution were the Langmuirian type. The saturated amounts of adsorbed BSA (n(S)(BSA)) for the Hap nanoparticles produced by microreactor were decreased with decrease in the mean particle length, and finally it reduced to zero for the smallest Hap nanoparticles. Similar results were observed for the adsorption of LSZ; the saturated amounts of adsorbed LSZ (n(S)(LSZ)) also reduced to zero for the smallest Hap nanoparticles. However, in the case of MGB, the saturated mounts of adsorbed MGB (n(S)(MGB)) are also depressed with decreased in their particle size, but about half of MGB molecules still adsorbed onto the smallest Hap nanoparticles. This difference in the protein adsorption behavior was explained by the difference

  19. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  20. Synthesis, stabilization, and characterization of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  1. Magnetocapacitance effect in core/shell NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Subir; Kambhala, Nagaiah; Angappane, S.

    2018-04-01

    The exchange bias and magnetocapacitance properties of nickel oxide nanoparticles of average particle size 50 nm have been studied. NiO nanoparticles of uniform size distribution were synthesized by a sol-gel method using nickel acetate and polyvinyl acetate. The magnetic measurements show the ferromagnetic like behavior exhibiting exchange bias effect indicative of the formation of core/shell structure of NiO with a antiferromagnetic core and ferromagnetic shell. An electrical double layer capacitance behavior was observed for NiO nanoparticles in the cyclic voltammetry measurement, and it was found that the value of capacitance decreased by about 26 % under the application of magnetic field of 0.1 T.

  2. Formation of positively charged gold nanoparticle monolayers on silica sensors.

    PubMed

    Oćwieja, Magdalena; Maciejewska-Prończuk, Julia; Adamczyk, Zbigniew; Roman, Maciej

    2017-09-01

    Formation of positively charged gold nanoparticle monolayers on the Si/SiO 2 was studied under in situ conditions using quartz microbalance (QCM). The gold nanoparticles were synthesized in a chemical reduction method using sodium borohydride as reducing agent. Cysteamine hydrochloride was applied to generate a positive surface charge of nanoparticles. The micrographs obtained from transmission electron microscopy (TEM) revealed that the average size of nanoparticles was equal to 12±3nm. The stability of nanoparticle suspensions under controlled pH and ionic strength was determined by dynamic light scattering (DLS). The electrophoretic mobility measurements showed that the zeta potential of nanoparticles was positive, decreasing with ionic strength and pH from 56mV at pH 4.2 and I=10 -4 M to 22mV at pH 8.3 and I=3×10 -3 M. The surface enhanced Raman spectroscopy (SERS) confirmed chemisorption of cysteamine on nanoparticles and the contribution of amine moieties in the generation of nanoparticle charge. The influence of suspension concentration, ionic strength and flow rate on the kinetics of nanoparticle deposition on the sensors was quantitatively determined. It was confirmed that the deposition for the low coverage regime is governed by the bulk mass transfer that results in a linear increase of the coverage with time. The significant increase in the maximum coverage of gold monolayers with ionic strength was interpreted as due to the decreasing range of the electrostatic interactions among deposited particles. Moreover, the hydratation of formed monolayers, their structure and the stability were determined by the comparison of the QCM results with those obtained by AFM and SEM. The experimental data were adequately interpreted in terms of the extended random sequential adsorption (eRSA) model that considers the bulk and surface transfer steps in a rigorous way. The obtained results are useful for a facile fabrication of gold nanoparticle-based biosensors

  3. Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku

    2017-08-01

    In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.

  4. GEANT 4 simulation of (99)Mo photonuclear production in nanoparticles.

    PubMed

    Dikiy, N P; Dovbnya, A N; Fedorchenko, D V; Khazhmuradov, M A

    2016-08-01

    GEANT 4 Monte-Carlo simulation toolkit is used to study the kinematic recoil method of (99)Mo photonuclear production. Simulation for bremsstrahlung photon spectrum with maximum photon energy 30MeV showed that for MoO3 nanoparticle escape fraction decreases from 0.24 to 0.08 when nanoparticle size increases from 20nm to 80nm. For the natural molybdenum and pure (100)Mo we obtained the lower values: from 0.17 to 0.05. The generation of accompanying molybdenum nuclei is significantly lower for pure (100)Mo and is about 3.6 nuclei per single (99)Mo nucleus, while natural molybdenum nanoparticle produce about 48 accompanying nuclei. Also, we have shown that for high-energy photons escape fraction of (99)Mo decreases, while production of unwanted molybdenum isotopes is significantly higher. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    PubMed

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    PubMed Central

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  7. Synthesis and properties MFe2O4 (M = Fe, Co) nanoparticles and core-shell structures

    NASA Astrophysics Data System (ADS)

    Yelenich, O. V.; Solopan, S. O.; Greneche, J. M.; Belous, A. G.

    2015-08-01

    Individual Fe3-xO4 and CoFe2O4 nanoparticles, as well as Fe3-xO4/CoFe2O4 core/shell structures were synthesized by the method of co-precipitation from diethylene glycol solutions. Core/shell structure were synthesized with CoFe2O4-shell thickness of 1.0, 2.5 and 3.5 nm. X-ray diffraction patterns of individual nanoparticles and core/shell are similar and indicate that all synthesized samples have a cubic spinel structure. Compares Mössbauer studies of CoFe2O4, Fe3-xO4 nanoparticles indicate superparamagnetic properties at 300 K. It was shown that individual magnetite nanoparticles are transformed into maghemite through oxidation during the synthesis procedure, wherein the smallest nanoparticles are completely oxidized while a magnetite core does occur in the case of the largest nanoparticles. The Mössbauer spectra of core/shell nanoparticles with increasing CoFe2O4-shell thickness show a gradual decrease in the relative intensity of the quadrupole doublet and significant decrease of the mean isomer shift value at both RT and 77 K indicating a decrease of the superparamagnetic relaxation phenomena. Specific loss power for the prepared ferrofluids was experimentally calculated and it was determined that under influence of ac-magnetic field magnetic fluid based on individual CoFe2O4 and Fe3-xO4 particles are characterized by very low heating temperature, when magnetic fluids based on core/shell nanoparticles demonstrate higher heating effect.

  8. The impacts of surface polarity on the solubility of nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jianzhuo; Su, Jiguo, E-mail: jiguosu@ysu.edu.cn; Ou, Xinwen

    In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (q{sub M}), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such q{sub M} is comparable with atomic partial charge of a variety of functional groups. The hydrationmore » behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.« less

  9. Nylon-sputtered nanoparticles: fabrication and basic properties

    NASA Astrophysics Data System (ADS)

    Polonskyi, O.; Kylián, O.; Solař, P.; Artemenko, A.; Kousal, J.; Slavínská, D.; Choukourov, A.; Biederman, H.

    2012-12-01

    Nylon-sputtered nanoparticles were prepared using a simple gas aggregation cluster source based on a planar magnetron (Haberland type) and equipped with a nylon target. Plasma polymer particles originated in an aggregation chamber and travelled to a main (deposition) chamber with a gas flow through an orifice. The deposited nanoparticles were observed to have a cauliflower-like structure. The nanoparticles were found to be nitrogen-rich with N/C ratio close to 0.5. An increase in rf power from 60 to 100 W resulted in a decrease in mean particle size from 210 to 168 nm whereas an increase in their residence time in the cluster source from 0.7 to 4.6 s resulted in an increase in the size from 73 to 231 nm.

  10. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method.

    PubMed

    Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-04-12

    The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles.

  11. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method

    PubMed Central

    Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-01-01

    The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles. PMID:28772762

  12. Chronic impacts of TiO2 nanoparticles on Populus nigra L. leaf decomposition in freshwater ecosystem.

    PubMed

    Du, Jingjing; Zhang, Yuyan; Guo, Wei; Li, Ningyun; Gao, Chaoshuai; Cui, Minghui; Lin, Zhongdian; Wei, Mingbao; Zhang, Hongzhong

    2018-05-15

    Titanium dioxide (TiO 2 ) nanoparticles have been applied in diverse commercial products, which could lead to toxic effects on aquatic microbes and would inhibit some important ecosystem processes. The study aimed to investigate the chronic impacts of TiO 2 nanoparticles with different concentrations (5, 50, and 500 mg L -1 ) on Populus nigra L. leaf decomposition in the freshwater ecosystem. After 50 d of decomposing, a significant decrease in decomposition rates was observed with higher concentrations of TiO 2 nanoparticles. During the period of litter decomposition, exposure of TiO 2 nanoparticles led to decreases in extracellular enzyme activities, which was caused by the reduction of microbial especially fungal biomass. In addition, the diversity and composition of the fungal community associated with litter decomposition were strongly affected by the concentrations of TiO 2 nanoparticles. The diversity and composition of the fungal community associated with litter decomposition was strongly affected. The abundance of Tricladium chaetocladium decreased with the increasing concentrations of TiO 2 nanoparticles, indicating the little contribution of the species to the litter decomposition. In conclusion, this study provided the evidence for the chronic exposure effects of TiO 2 nanoparticles on the litter decomposition and further the functions of freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    PubMed

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  14. Kinetics of formation of nanoparticles from first group metal carboxylates

    NASA Astrophysics Data System (ADS)

    Solov'ev, M. E.; Irzhak, T. F.; Irzhak, V. I.

    2015-09-01

    A kinetic model of the formation of metal nanoparticles via reduction of their carboxylates under conditions of clustering is proposed. It is found that the kinetics of the process is characterized by an induction period in carboxylate consumption and by almost linear growth of the average size of nanoparticles with conversion. It is shown that the maximum rate of nanoparticle formation grows along with the rate of ternary associate formation, the induction period becomes longer, and the particle size decreases. At the same time, it is characterized by a narrow size distribution.

  15. Adsorption of amphipathic dendrons on polystyrene nanoparticles.

    PubMed

    Sakthivel, T; Florence, A T

    2003-03-18

    Adsorption of dendrons onto nanoparticles may provide new model structures which may be useful in drug and gene delivery. Tritiated amphipathic dendrons having three lipidic (C(14)) chains coupled to branched (dendritic) lysine head groups with 8, 16 or 32 free terminal amino groups have been synthesised by solid phase peptide techniques. The interaction between these tritiated dendrons and 200 nm polystyrene latex nanoparticles was investigated in phosphate buffered saline. The amount of dendron adsorbed increased with increasing concentration of dendrons and then decreased. Maximum adsorption of dendrons per gram of nanoparticles was found to be between 8.2 and 84 x 10(-6)M, the amounts adsorbed being inversely proportional to the number of amino groups present in the molecule. The number of dendron molecules adsorbed per nanoparticle was found to be between 430 and 4421. The degree of adsorption was found to be slightly altered by the temperature. Copyright 2002 Elsevier Science B.V.

  16. Fe3O4 nanoparticles: protein-mediated crystalline magnetic superstructures

    NASA Astrophysics Data System (ADS)

    Okuda, Mitsuhiro; Eloi, Jean-Charles; Jones, Sarah E. Ward; Sarua, Andrei; Richardson, Robert M.; Schwarzacher, Walther

    2012-10-01

    The synthesis of magnetic, monodisperse nanoparticles has attracted great interest in nanoelectronics and nanomedicine. Here we report the fabrication of pure magnetite nanoparticles, less than ten nanometers in size, using the cage-shaped protein apoferritin (Fe3O4-ferritin). Crystallizable proteins were obtained through careful successive separation methods, including a magnetic chromatography that enabled the effective separation of proteins, including a Fe3O4 nanoparticle (7.9 ± 0.8 nm), from empty ones. Macroscopic protein crystals allowed the fabrication of three-dimensional arrays of Fe3O4 nanoparticles with interparticle gaps controlled by dehydration, decreasing their magnetic susceptibilities and increasing their blocking temperatures through enhanced dipole-dipole interactions.

  17. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Ping; Li, Juan; Wu, Changzhu; Wu, Qingsheng; Li, Jian

    2005-09-01

    The bactericidal action of silver (0) nanoparticles and amoxicillin on Escherichia coli is studied, respectively. Increasing concentration of both amoxicillin (0-0.525 mg ml-1) and silver nanoparticles (0-40 µg ml-1) showed a higher antibacterial effect in Luria-Bertani (LB) medium. Escherichia coli cells have different bactericidal sensitivity to them. When amoxicillin and silver nanoparticles are combined, it results in greater bactericidal efficiency on Escherichia coli cells than when they were applied separately. Dynamic tests on bacterial growth indicated that exponential and stationary phases are greatly decreased and delayed in the synergistic effect of amoxicillin and silver nanoparticles. In addition, the effect induced by a preincubation with silver nanoparticles is examined. The results show that solutions with more silver nanoparticles have better antimicrobial effects. One hypothesized mechanism is proposed to explain this phenomenon.

  18. Shape Evolution of Metal Nanoparticles in Water Vapor Environment.

    PubMed

    Zhu, Beien; Xu, Zhen; Wang, Chunlei; Gao, Yi

    2016-04-13

    The structures of the metal nanoparticles are crucial for their catalytic activities. How to understand and even control the shape evolution of nanoparticles under reaction condition is a big challenge in heterogeneous catalysis. It has been proved that many reactive gases hold the capability of changing the structures and properties of metal nanoparticles. One interesting question is whether water vapor, such a ubiquitous environment, could induce the shape evolution of metal nanoparticles. So far this question has not received enough attention yet. In this work, we developed a model based on the density functional theory, the Wulff construction, and the Langmuir adsorption isotherm to explore the shape of metal nanoparticle at given temperature and water vapor pressure. By this model, we show clearly that water vapor could notably increase the fraction of (110) facets and decrease that of (111) facets for 3-8 nm Cu nanoparticles, which is perfectly consistent with the experimental observations. Further investigations indicate the water vapor has different effects on the different metal species (Cu, Au, Pt, and Pd). This work not only helps to understand the water vapor effect on the structures of metal nanoparticles but also proposes a simple but effective model to predict the shape of nanoparticles in certain environment.

  19. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  20. Wrinkling instability in nanoparticle-supported graphene: implications for strain engineering

    NASA Astrophysics Data System (ADS)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael; Einstein, Theodore

    2013-03-01

    We have carried out a systematic study of the wrinkling instability of graphene membranes supported on SiO2 substrates with randomly placed silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate and is highly conformal over the nanoparticles. With increasing nanoparticle density, and decreasing nanoparticle separation to ~100 nm, graphene's elastic response dominates substrate adhesion, and elastic stretching energy is reduced by the formation of wrinkles which connect protrusions. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, delamination from the substrate is observed. Since the wrinkling instability acts to remove inhomogeneous in-plane elastic strains through out-of-plane buckling, our results can be used to place limits on the possible in-plane strain magnitudes that may be created in graphene to realized strain-engineered electronic structures.[2] Supported by the UMD NSF-MRSEC under Grant No. DMR 05-20471, the US ONR MURI and UMD CNAM.

  1. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Valizade-Shahmirzadi, N.; Pakizeh, T.

    2018-04-01

    In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.

  2. Kinetics of Spontaneous Bimetallization between Silver and Noble Metal Nanoparticles.

    PubMed

    Hirakawa, Kazutaka; Kaneko, Tetsuya; Toshima, Naoki

    2018-06-05

    A physical mixture of polymer-protected Ag nanoparticles and Rh, Pd, or Pt nanoparticles spontaneously forms Ag-core bimetallic nanoparticles. The formed nanoparticles were smaller than the parent Ag nanoparticles. In the initial process of this reaction, the surface plasmon absorption of Ag nanoparticles diminished and then almost ceased within one hour. Within several minutes, the decrease in Ag surface plasmon absorption could be analyzed by second-order reaction. This reaction was accelerated with an increase of temperature and the energy gap in the Fermi level between Ag and the other metals. The activation energy (E a ) of this reaction could be determined. An electron transfer reaction from Ag to other metal nanoparticles was proposed as the initial interaction between these metal nanoparticles because the Fermi level of Ag is relatively high, and the electron transfer is possible in terms of energy. The Marcus plot between the rate constant and the driving force, roughly estimated from the work function of metals, and the observed E a values reasonably explained the proposed electron transfer mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbough, Philip P.; Chan, Siu-Wai

    We have carefully measured the hydrostatic compressibility and thermal expansion for a series of magnesia nanoparticles. We found a strong variance in these mechanical properties as crystallite size changed. For decreasing crystallite sizes, bulk modulus first increased, then reached a modest maximum of 165 GPa at an intermediate crystallite size of 14 nm, and then decreased thereafter to 77 GPa at 9 nm. Thermal expansion, meanwhile, decreased continuously to 70% of bulk value at 9 nm. These results are consistent to nano-ceria and together provide important insights into the thermal-mechanical structural properties of oxide nanoparticles.

  4. Antifungal activity of gold nanoparticles prepared by solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in; Wani, Irshad A.; Lone, Irfan H.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract:more » Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.« less

  5. Can visible light impact litter decomposition under pollution of ZnO nanoparticles?

    PubMed

    Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong

    2017-11-01

    ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m -1 vs 0.45 m -1 ), and visible light would increase the inhibitory effect (0.24 m -1 ), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Titanium Dioxide Nanoparticle Ingestion Alters Nutrient Absorption in an In Vitro Model of the Small Intestine

    PubMed Central

    Guo, Zhongyuan; Martucci, Nicole J.; Moreno-Olivas, Fabiola; Tako, Elad; Mahler, Gretchen J.

    2017-01-01

    Ingestion of titanium dioxide (TiO2) nanoparticles from products such as agricultural chemicals, processed food, and nutritional supplements is nearly unavoidable. The gastrointestinal tract serves as a critical interface between the body and the external environment, and is the site of essential nutrient absorption. The goal of this study was to examine the effects of ingesting the 30 nm TiO2 nanoparticles with an in vitro cell culture model of the small intestinal epithelium, and to determine how acute or chronic exposure to nano-TiO2 influences intestinal barrier function, reactive oxygen species generation, proinflammatory signaling, nutrient absorption (iron, zinc, fatty acids), and brush border membrane enzyme function (intestinal alkaline phosphatase). A Caco-2/HT29-MTX cell culture model was exposed to physiologically relevant doses of TiO2 nanoparticles for acute (four hours) or chronic (five days) time periods. Exposure to TiO2 nanoparticles significantly decreased intestinal barrier function following chronic exposure. Reactive oxygen species (ROS) generation, proinflammatory signaling, and intestinal alkaline phosphatase activity all showed increases in response to nano-TiO2. Iron, zinc, and fatty acid transport were significantly decreased following exposure to TiO2 nanoparticles. This is because nanoparticle exposure induced a decrease in absorptive microvilli in the intestinal epithelial cells. Nutrient transporter protein gene expression was also altered, suggesting that cells are working to regulate the transport mechanisms disturbed by nanoparticle ingestion. Overall, these results show that intestinal epithelial cells are affected at a functional level by physiologically relevant exposure to nanoparticles commonly ingested from food. PMID:28944308

  7. Effect of annealing on magnetic properties of Ni80Fe20 permalloy nanoparticles prepared by polyol method.

    PubMed

    Qin, G W; Pei, W L; Ren, Y P; Shimada, Y; Endo, Y; Yamaguchi, M; Okamoto, S; Kitakami, O

    2011-12-01

    Ni80Fe20 permalloy nanoparticles with narrow size distribution and homogeneous composition have been prepared by the polyol processing at 180 degrees C for 2 h and their particle sizes can be tunable in the size range of 20-440 nm by proper addition of K2PtCI4 agent. X-ray diffraction results show that the NiFe nanoparticles are of face centered cubic structure. The addition of K2PtCl4 does not affect the composition of NiFe NPs but decreases the particle size remarkably. Both saturation magnetization and coercivity of the as-prepared NiFe nanoparticles decrease with decreasing particle size. Annealed at 280 degrees C, however, the saturation magnetization of various sized NiFe nanoparticles increases drastically and approaches to the bulk for the -440 nm NiFe particles, and a maximum coercivity (-270 Oe) happens at a critical size of -50 nm. The magnetic property dependency of these NiFe nanoparticles on annealing has been discussed by considering the surface chemistry.

  8. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  9. The poly-gamma-glutamate of Bacillus subtilis interacts specifically with silver nanoparticles

    PubMed Central

    Eymard-Vernain, Elise; Coute, Yohann; Adrait, Annie; Rabilloud, Thierry; Sarret, Géraldine

    2018-01-01

    For many years, silver nanoparticles, as with other antibacterial nanoparticles, have been extensively used in manufactured products. However, their fate in the environment is unclear and raises questions. We studied the fate of silver nanoparticles in the presence of bacteria under growth conditions that are similar to those found naturally in the environment (that is, bacteria in a stationary phase with low nutrient concentrations). We demonstrated that the viability and the metabolism of a gram-positive bacteria, Bacillus subtilis, exposed during the stationary phase is unaffected by 1 mg/L of silver nanoparticles. These results can be partly explained by a physical interaction of the poly-gamma-glutamate (PGA) secreted by Bacillus subtilis with the silver nanoparticles. The coating of the silver nanoparticles by the secreted PGA likely results in a loss of the bioavailability of nanoparticles and, consequently, a decrease of their biocidal effect. PMID:29813090

  10. Spatiotemporal Distribution, Sources, and Photobleaching Imprint of Dissolved Organic Matter in the Yangtze Estuary and Its Adjacent Sea Using Fluorescence and Parallel Factor Analysis

    PubMed Central

    Li, Penghui; Chen, Ling; Zhang, Wen; Huang, Qinghui

    2015-01-01

    To investigate the seasonal and interannual dynamics of dissolved organic matter (DOM) in the Yangtze Estuary, surface and bottom water samples in the Yangtze Estuary and its adjacent sea were collected and characterized using fluorescence excitation-emission matrices (EEMs) and parallel factor analysis (PARAFAC) in both dry and wet seasons in 2012 and 2013. Two protein-like components and three humic-like components were identified. Three humic-like components decreased linearly with increasing salinity (r>0.90, p<0.001), suggesting their distribution could primarily be controlled by physical mixing. By contrast, two protein-like components fell below the theoretical mixing line, largely due to microbial degradation and removal during mixing. Higher concentrations of humic-like components found in 2012 could be attributed to higher freshwater discharge relative to 2013. There was a lack of systematic patterns for three humic-like components between seasons and years, probably due to variations of other factors such as sources and characteristics. Highest concentrations of fluorescent components, observed in estuarine turbidity maximum (ETM) region, could be attributed to sediment resuspension and subsequent release of DOM, supported by higher concentrations of fluorescent components in bottom water than in surface water at two stations where sediments probably resuspended. Meanwhile, photobleaching could be reflected from the changes in the ratios between fluorescence intensity (Fmax) of humic-like components and chromophoric DOM (CDOM) absorption coefficient (a355) along the salinity gradient. This study demonstrates the abundance and composition of DOM in estuaries are controlled not only by hydrological conditions, but also by its sources, characteristics and related estuarine biogeochemical processes. PMID:26107640

  11. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vinod; Sonia,; Suman,

    La doped ZnO (Zn{sub 1-x}La{sub x}O, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV–Visible spectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  12. Progesterone lipid nanoparticles: Scaling up and in vivo human study.

    PubMed

    Esposito, Elisabetta; Sguizzato, Maddalena; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Nastruzzi, Claudio; Cortesi, Rita

    2017-10-01

    This investigation describes a scaling up study aimed at producing progesterone containing nanoparticles in a pilot scale. Particularly hot homogenization techniques based on ultrasound homogenization or high pressure homogenization have been employed to produce lipid nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride. It was found that the high pressure homogenization method enabled to obtain nanoparticles without agglomerates and smaller mean diameters with respect to ultrasound homogenization method. X-ray characterization suggested a lamellar structural organization of both type of nanoparticles. Progesterone encapsulation efficiency was almost 100% in the case of high pressure homogenization method. Shelf life study indicated a double fold stability of progesterone when encapsulated in nanoparticles produced by the high pressure homogenization method. Dialysis and Franz cell methods were performed to mimic subcutaneous and skin administration. Nanoparticles constituted of tristearin in mixture with caprylic/capric triglyceride display a slower release of progesterone with respect to nanoparticles constituted of pure tristearin. Franz cell evidenced a higher progesterone skin uptake in the case of pure tristearin nanoparticles. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripping results indicated a decrease of progesterone concentration in stratum corneum within six hours, suggesting an interaction between nanoparticle material and skin lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CHARACTERISTICS OF RAT LIVER EXPOSED TO NANOPARTICLES OF LEAD COMPOUNDS.

    PubMed

    Omelchuk, S; Aleksijchuk, V; Sokurenko, L; Blagaia, A; Prudchenko, S

    2016-12-01

    In recent times, the lead becomes great importance in environmental pollution, including its nanoparticles. In the literature, there is little data on the changes in the liver after the exposure with lead nanoparticles. The purpose of this study was the identification and determination of macroscopic, microscopic, and biochemical changes of the structural elements of the rat's liver exposed to the action of lead compounds. The study was carried out on 60 male Wistar rats. The first and second groups of animals were intraperitoneally injected with colloidal solution of nanoparticles of Lead Sulfide size of 10 nm and 30 nm, and the third group was intraperitoneally injected with a solution of nitrate lead. Macroscopic, histological, histochemical, biochemical methods and gas chromatography were used to identify the changes of fatty acids metabolism. The experiment has found that body weights of animals in all tested groups were decreased after 6 weeks of lead nanoparticles injection, while relative liver weight was increased. Levels of total lipids and cholesterol, total protein and albumin in the blood serum in study groups have decreased, and the level of triglycerides and glucose have increased. Moderate dystrophic changes were observed in the histological examinations of the liver, and this was confirmed by morphometric and densitometric parameters. Changes of fatty acid composition of lipids of the liver exposed to nanoparticles were the result of increasing arachidonic fatty acid content and reduction of the stearic fatty acid content. Thus, it has been proven by the experiment that the effect of lead nanoparticles depends on their size.

  14. Size effects on the magnetic properties of LaCoO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wei, Q.; Zhang, T.; Wang, X. P.; Fang, Q. F.

    2012-02-01

    Magnetic properties of LaCoO3 nanoparticles prepared by a sol-gel method with average particle size (D) ranging from 20 to 500 nm are investigated. All samples exhibit obvious ferromagnetic transition. With decreasing particle size from 500 to 120 nm, the transition temperature Tc decreases slightly from 85 K, however Tc decreases dramatically when D ≤ 85 nm. Low-field magnetic moment at 10 K decreases with reduction of particle size, while the high-field magnetization exhibits a converse behavior, which is different with previous reports. The coercivity Hc decreases as the particle size is reduced. It is different with other nanosystems that no exchange bias effect is observed in nanosized LaCoO3 particles. These interesting results arise from the surface effect induced by sized effect and the structure change in LaCoO3 nanoparticles.

  15. Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles.

    PubMed

    Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E

    2010-04-14

    The thermodynamic properties of magnesium hydride nanoparticles have been investigated by hydrogen decomposition pressure measurements using the Sieverts technique. A mechanochemical method was used to synthesize MgH(2) nanoparticles (down to approximately 7 nm in size) embedded in a LiCl salt matrix. In comparison to bulk MgH(2), the mechanochemically produced MgH(2) with the smallest particle size showed a small but measurable decrease in the decomposition reaction enthalpy (DeltaH decrease of 2.84 kJ/mol H(2) from DeltaH(bulk) = 74.06 +/- 0.42 kJ/mol H(2) to DeltaH(nano) = 71.22 +/- 0.49 kJ/mol H(2)). The reduction in DeltaH matches theoretical predictions and was also coupled with a similar reduction in reaction entropy (DeltaS decrease of 3.8 J/mol H(2)/K from DeltaS(bulk) = 133.4 +/- 0.7 J/mol H(2)/K to DeltaS(nano) = 129.6 +/- 0.8 J/mol H(2)/K). The thermodynamic changes in the MgH(2) nanoparticle system correspond to a drop in the 1 bar hydrogen equilibrium temperature (T(1 bar)) by approximately 6 degrees C to 276.2 +/- 2.4 degrees C in contrast to the bulk MgH(2) system at 281.8 +/- 2.2 degrees C. The reduction in the desorption temperature is less than that expected from theoretical studies due to the decrease in DeltaS that acts to partially counteract the effect from the change in DeltaH.

  16. Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Micham, Logan; Copa, Christine C.; Criss, James M., Jr.; Mintz, Eric A.

    2011-01-01

    Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).

  17. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  18. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    PubMed

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe 3 O 4 ) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Polymer brushes on nanoparticles: their positioning in and influence on block copolymer morphology.

    NASA Astrophysics Data System (ADS)

    Kim, Bumjoon

    2007-03-01

    Polymers brushes grafted to the nanoparticle surface enable the precise positioning of particles within a block copolymer matrix by determining the compatibility of nanoparticles within a polymeric matrix and modifying the interfacial properties between polymers and inorganic nanoparticle. Short thiol terminated polystyrene (PS-SH), poly(2-vinylpyridine) (P2VP-SH) and PS-r-P2VP with the molecular weight (Mn) of 3 kg/mol were used to control the location of Au nanoparticles over PS-b-P2VP diblock copolymer template. We will discuss further the approach of varying the areal chain density (σ) of PS-SH brushes on the PS coated particles, which utilizes the preferential wetting of one block of a copolymer (P2VP) on the Au substrate. Such favorable interaction provides the strong binding of Au particles to the PS/P2VP interface as σ of PS chains on the Au particle decreases. We find that at σ above a certain value, the nanoparticles are segregated to the center of the PS domains while below this value they are segregated to the interface. The transition σ for PS-SH chains (Mn = 3.4 kg/mol) is 1.3 chains/nm^2 but unexpectedly scales as Mn-0.55 as Mn is varied from 1.5 to 13 kg/mol. In addition, we will discuss changes in block copolymer morphology that occur as the nanoparticle volume fraction (φ) is increased for nanoparticles that segregate to the domain center as well as those that segregate to the interface, the latter behaving as nanoparticle surfactants. Small φ of such surfactants added to lamellar diblock copolymers lead initially to a decrease in lamellar thickness, a consequence of decreasing interfacial tension, up to a critical value of φ beyond which the block copolymer adopts a bicontinuous morphology. I thank my collaborators G. H. Fredrickson, J. Bang, C. J. Hawker, and E. J. Kramer as well as funding by the MRL as UCSB from the NSF-MRSEC-Program Award DMR05-20418.

  20. Allosteric effects of gold nanoparticles on human serum albumin.

    PubMed

    Shao, Qing; Hall, Carol K

    2017-01-07

    The ability of nanoparticles to alter protein structure and dynamics plays an important role in their medical and biological applications. We investigate allosteric effects of gold nanoparticles on human serum albumin protein using molecular simulations. The extent to which bound nanoparticles influence the structure and dynamics of residues distant from the binding site is analyzed. The root mean square deviation, root mean square fluctuation and variation in the secondary structure of individual residues on a human serum albumin protein are calculated for four protein-gold nanoparticle binding complexes. The complexes are identified in a brute-force search process using an implicit-solvent coarse-grained model for proteins and nanoparticles. They are then converted to atomic resolution and their structural and dynamic properties are investigated using explicit-solvent atomistic molecular dynamics simulations. The results show that even though the albumin protein remains in a folded structure, the presence of a gold nanoparticle can cause more than 50% of the residues to decrease their flexibility significantly, and approximately 10% of the residues to change their secondary structure. These affected residues are distributed on the whole protein, even on regions that are distant from the nanoparticle. We analyze the changes in structure and flexibility of amino acid residues on a variety of binding sites on albumin and confirm that nanoparticles could allosterically affect the ability of albumin to bind fatty acids, thyroxin and metals. Our simulations suggest that allosteric effects must be considered when designing and deploying nanoparticles in medical and biological applications that depend on protein-nanoparticle interactions.

  1. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M.; Chen, Jian-Feng

    2018-07-01

    Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

  2. Synthesis of transparent dispersions of aluminium hydroxide nanoparticles.

    PubMed

    Chen, Bo; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Clarke, Stuart M; Chen, Jian-Feng

    2018-07-27

    Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

  3. Formation of Ge nanoparticles in SiO xN y by ion implantation and thermal annealing

    DOE PAGES

    Mirzaei, Sahar; Kremer, F.; Sprouster, D. J.; ...

    2015-10-20

    Germanium nanoparticles embedded within dielectric matrices hold much promise for applications in optoelectronic and electronic devices. Here we investigate the formation of Ge nanoparticles in amorphous SiO 1.67N 0.14 as a function of implanted atom concentration and thermal annealing temperature. Using x-ray absorption spectroscopy and other complementary techniques, we show Ge nanoparticles exhibit significant finite-size effects such that the coordination number decreases and structural disorder increases as the nanoparticle size decreases. While the composition of SiO 1.67N 0.14 is close to that of SiO 2, we demonstrate that the addition of this small fraction of N yields a much reducedmore » nanoparticle size relative to those formed in SiO 2 under comparable implantation and annealing conditions. We attribute this difference to an increase in an atomic density and a much reduced diffusivity of Ge in the oxynitride matrix. Finally, these results demonstrate the potential for tailoring Ge nanoparticle sizes and structural properties in the SiO xN y matrices by controlling the oxynitride stoichiometry.« less

  4. Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.

    PubMed

    Dunn, Stuart S; Beckford Vera, Denis R; Benhabbour, S Rahima; Parrott, Matthew C

    2017-02-15

    Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent. Published by Elsevier Inc.

  5. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  6. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats

    PubMed Central

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics. PMID:26248340

  7. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats.

    PubMed

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics.

  8. Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging.

    PubMed

    Montalti, M; Cantelli, A; Battistelli, G

    2015-07-21

    Fluorescence bioimaging is a powerful, versatile, method for investigating, both in vivo and in vitro, the complex structures and functions of living organisms in real time and space, also using super-resolution techniques. Being poorly invasive, fluorescence bioimaging is suitable for long-term observation of biological processes. Long-term detection is partially prevented by photobleaching of organic fluorescent probes. Semiconductor quantum dots, in contrast, are ultrastable, fluorescent contrast agents detectable even at the single nanoparticle level. Emission color of quantum dots is size dependent and nanoprobes emitting in the near infrared (NIR) region are ideal for low back-ground in vivo imaging. Biocompatibility of nanoparticles, containing toxic elements, is debated. Recent safety concerns enforced the search for alternative ultrastable luminescent nanoprobes. Most recent results demonstrated that optimized silicon quantum dots (Si QDs) and fluorescent nanodiamonds (FNDs) show almost no photobleaching in a physiological environment. Moreover in vitro and in vivo toxicity studies demonstrated their unique biocompatibility. Si QDs and FNDs are hence ideal diagnostic tools and promising non-toxic vectors for the delivery of therapeutic cargos. Most relevant examples of applications of Si QDs and FNDs to long-term bioimaging are discussed in this review comparing the toxicity and the stability of different nanoprobes.

  9. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation

    PubMed Central

    2012-01-01

    Background Fluorescence loss in photobleaching (FLIP) is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs) for further analysis which is subjective and does not allow for comparing different cells and experimental settings. Results We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp) function is fitted to fluorescence loss (FL) inside and outside the bleached region. We show by reaction–diffusion simulations, that the StrExp function can describe both, binding/barrier–limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP), we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ) disease proteins like mutant huntingtin (mtHtt) can form large aggregates called inclusion bodies (IB’s). The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB’s to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt) between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and experiments. Conclusions We

  10. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells

    PubMed Central

    Hinzmann, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Jagiełło, Joanna; Koziński, Rafał; Wierzbicki, Mateusz; Grodzik, Marta; Lipińska, Ludwika; Sawosz, Ewa; Chwalibog, Andrè

    2014-01-01

    The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 μg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not. PMID:24876774

  11. Numerical simulation of the nanoparticle diameter effect on the thermal performance of a nanofluid in a cooling chamber

    NASA Astrophysics Data System (ADS)

    Ghafouri, A.; Pourmahmoud, N.; Jozaei, A. F.

    2017-03-01

    The thermal performance of a nanofluid in a cooling chamber with variations of the nanoparticle diameter is numerically investigated. The chamber is filled with water and nanoparticles of alumina (Al2O3). Appropriate nanofluid models are used to approximate the nanofluid thermal conductivity and dynamic viscosity by incorporating the effects of the nanoparticle concentration, Brownian motion, temperature, nanoparticles diameter, and interfacial layer thickness. The horizontal boundaries of the square domain are assumed to be insulated, and the vertical boundaries are considered to be isothermal. The governing stream-vorticity equations are solved by using a secondorder central finite difference scheme coupled with the mass and energy conservation equations. The results of the present work are found to be in good agreement with the previously published data for special cases. This study is conducted for the Reynolds number being fixed at Re = 100 and different values of the nanoparticle volume fraction, Richardson number, nanofluid temperature, and nanoparticle diameter. The results show that the heat transfer rate and the Nusselt number are enhanced by increasing the nanoparticle volume fraction and decreasing the Richardson number. The Nusselt number also increases as the nanoparticle diameter decreases.

  12. Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement.

    PubMed

    Strekalova, Elena G; Mazza, Marco G; Stanley, H Eugene; Franzese, Giancarlo

    2011-04-08

    Using Monte Carlo simulations, we study a coarse-grained model of a water layer confined in a fixed disordered matrix of hydrophobic nanoparticles at different particle concentrations c. For c=0, we find a first-order liquid-liquid phase transition (LLPT) ending in one critical point at low pressure P. For c>0, our simulations are consistent with a LLPT line ending in two critical points at low and high P. For c=25%, at high P and low temperature, we find a dramatic decrease of compressibility, thermal expansion coefficient, and specific heat. Surprisingly, the effect is present also for c as low as 2.4%. We conclude that even a small presence of hydrophobic nanoparticles can drastically suppress thermodynamic fluctuations, making the detection of the LLPT more difficult.

  13. Metallic nanoparticles reduce the migration of human fibroblasts in vitro.

    PubMed

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; Dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma Dos Santos

    2017-12-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α 2 β 1 integrin (VLA-2) and the laminin receptor very late antigen 6, α 6 β 1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  14. Metallic nanoparticles reduce the migration of human fibroblasts in vitro

    NASA Astrophysics Data System (ADS)

    Vieira, Larissa Fernanda de Araújo; Lins, Marvin Paulo; Viana, Iana Mayane Mendes Nicácio; dos Santos, Jeniffer Estevão; Smaniotto, Salete; Reis, Maria Danielma dos Santos

    2017-03-01

    Nanoparticles have extremely wide applications in the medical and biological fields. They are being used in biosensors, local drug delivery, diagnostics, and medical therapy. However, the potential effects of nanoparticles on target cell and tissue function, apart from cytotoxicity, are not completely understood. Thus, the aim of this study was to investigate the in vitro effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on human fibroblasts with respect to their interaction with the extracellular matrix and in cell migration. Immunofluorescence analysis revealed that treatment with AgNPs or AuNPs decreased collagen and laminin production at all the concentrations tested (0.1, 1, and 10 μg/mL). Furthermore, cytofluorometric analysis showed that treatment with AgNPs reduced the percentage of cells expressing the collagen receptor very late antigen 2, α2β1 integrin (VLA-2) and the laminin receptor very late antigen 6, α6β1 integrin (VLA-6). In contrast, AuNP treatment increased and decreased the percentages of VLA-2-positive and VLA-6-positive cells, respectively, as compared to the findings for the controls. Analysis of cytoskeletal reorganization showed that treatment with both types of nanoparticles increased the formation of stress fibres and number of cell protrusions and impaired cell polarity. Fibroblasts exposed to different concentrations of AuNPs and AgNPs showed reduced migration through transwell chambers in the functional chemotaxis assay. These results demonstrated that metal nanoparticles may influence fibroblast function by negatively modulating the deposition of extracellular matrix molecules (ECM) and altering the expression of ECM receptors, cytoskeletal reorganization, and cell migration.

  15. Design of graphene nanoparticle undergoing axial compression: quantum study

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Kirillova, I. V.; Saliy, I. N.; Kolesnikova, A. S.; Slepchenkov, M. M.

    2011-03-01

    We report the results of quantum mechanical investigations of the atomic structure and deformations of graphene nanoparticle undergoing axial compression. We applied the tight-binding (TB) method. Our transferable tightbinding potential correctly reproduced tight-binding changes in the electronic configuration as a function of the local bonding geometry around each carbon atom. The tight-binding method applied provided the consideration and calculation of the rehybridization between σ- and π-orbitals. To research nanoribbons using tight-binding potential our own program was used. We adapted TB method to be able to run the algorithm on a parallel computing machine (computer cluster). To simulate axial compression of graphene nanoparticles the atoms on the ends were fixed on the plates. The plates were moved towards each other to decrease the length at some percent. Plane atomic network undergoing axial compression became wave-like. The amplitude of wave and its period were not constant and changed along axis. This is a phase transition. The strain energy collapse occurs at the value of axial compression 0.03-0.04. The strain energy increased up to the quantity compression 0.03, then collapsed sharply and decreased. So according to our theoretical investigation, the elasticity of graphene nanoparticles is more than the elasticity of nanotubes the same width and length. The curvature of the atomic network because of compression will decrease the reactivity of graphene nanoparticles. We have calculated the atomic structure and electronic structure of the compression graphene nanopaticle at each step of strain of axial compression. We have come to the conclusion that the wave-like graphenes adsorbing protein and nucleic acid are the effective nanosensors and bionanosensors.

  16. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    PubMed

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications.

  17. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  18. Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections

    NASA Astrophysics Data System (ADS)

    Zhang, Fuwu; Smolen, Justin A.; Zhang, Shiyi; Li, Richen; Shah, Parth N.; Cho, Sangho; Wang, Hai; Raymond, Jeffery E.; Cannon, Carolyn L.; Wooley, Karen L.

    2015-01-01

    In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate.In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate. Electronic supplementary information (ESI) available: Materials, experimental details, and characterization. See DOI: 10.1039/c4nr07103d

  19. TiO2 nanoparticle-induced ROS correlates with modulated immune cell function

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.

    2012-12-01

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  20. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  1. Zinc oxide nanoparticles induce rat retinal ganglion cell damage through bcl-2, caspase-9 and caspase-12 pathways.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wu, Qiuxin; Wang, Daoguang; Cui, Yan

    2013-06-01

    Nanomaterials, including zinc oxide (ZnO) nanoparticles, are being developed for a variety of commercial products. Recent reports showed that cells exposed to ZnO nanoparticles produced severe cytotoxicity accompanied by oxidative stress and genotoxicity. To understand the possible mechanism underlying oxidative stress of ZnO nanoparticles, the present investigation focused on the direct bioactivity of ZnO nanoparticles using a rat retinal ganglion cell (RGC-5) culture. At concentrations relevant to those used in vitro exposure of RGC-5 cells to ZnO nanoparticles, it was found that ZnO nanoparticles could inhibit cell proliferation in time- and concentration-dependent manners. Meanwhile, cell cycle arrest of S and G2/M phases occurred in RGC-5 cells induced by ZnO nanoparticles. Moreover, our results also demonstrated that the overproduction of reactive oxygen species (ROS) and elevated level of caspase-12 as well as decreased levels of bcl-2 and caspase-9 occurred after treatment with different concentrations of ZnO nanoparticles when compared to those in untreated cells. In summary, our findings suggest that ZnO nanoparticles could lead to the over generations of ROS and caspase-12 as well as decreased levels of bcl-2 and caspase-9. These results indicate that bcl-2, caspase-9 and caspase-12 may play significant roles in ZnO nanoparticle-induced RGC-5 cell damage.

  2. Effects of temperature, pH, and ionic strength on the adsorption of nanoparticles at liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Ferdous, Sultana; Ioannidis, Marios A.; Henneke, Dale E.

    2012-05-01

    The effects of temperature, pH and sodium chloride (NaCl) concentration on the equilibrium and dynamic interfacial tension (IFT) of 4.4-nm gold nanoparticles capped with n-dodecanethiol at hydrocarbon-water interfaces was studied. The pendant drop technique was used to study the adsorption properties of these nanoparticles at the hexane-water and nonane-water interfaces. The physical size of the gold nanoparticles was determined by TEM image analysis. The interfacial properties of mixtures of these nanoparticles, having different sizes and capping agents, were then studied. The addition of NaCl was found to cause a decrease of the equilibrium and dynamic IFT greater than that which accompanies the adsorption of nanoparticles at the interface in the absence of NaCl. Although IFT values for acidic and neutral conditions were found to be similar, a noticeable decrease in the IFT was found for more basic conditions. Increasing the temperature of the system was found to cause an increase in both dynamic and equilibrium IFT values. These findings have implications for the self-assembly of functionalized gold nanoparticles at liquid-liquid interfaces.

  3. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo.

    PubMed

    Su, Le; Han, Lei; Ge, Fei; Zhang, Shang Li; Zhang, Yun; Zhao, Bao Xiang; Zhao, Jing; Miao, Jun Ying

    2012-10-15

    Manufactured nanoparticles are currently used for many fields. However, their potential toxicity provides a growing concern for human health. In our previous study, we prepared novel magnetic nanoparticles (MNPs), which could effectively remove heavy metal ions and cationic dyes from aqueous solution. To understand its biocompatibility, we investigated the effect of the nanoparticles on the function of vascular endothelial cells. The results showed that the nanoparticles were taken up by human umbilical vein endothelial cells (HUVECs) and could inhibit cell proliferation at 400 μg/ml. An increase in nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity were induced, which companied with the decrease in caveolin-1 level. The endothelium in the aortic root was damaged and the NO level in serum was elevated after treated mice with 20mg/kg nanoparticles for 3 days, but it was integrated after treated with 5mg/kg nanoparticles. Meanwhile, an increase in eNOS activity and decrease in caveolin-1 level were induced in the endothelium. The data suggested that the low concentration of nanoparticles could not affect the function and viability of VECs. The high concentration of nanoparticles could inhibit VEC proliferation through elevation of the eNOS activity and NO production and thus present toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.

    PubMed

    Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U

    2008-12-01

    When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.

  5. Preparation and Properties of Electrospun Poly (Vinyl Pyrrolidone)/Cellulose Nanocrystal/Silver Nanoparticle Composite Fibers

    PubMed Central

    Huang, Siwei; Zhou, Ling; Li, Mei-Chun; Wu, Qinglin; Kojima, Yoichi; Zhou, Dingguo

    2016-01-01

    Poly (vinyl pyrrolidone) (PVP)/cellulose nanocrystal (CNC)/silver nanoparticle composite fibers were prepared via electrospinning using N,N′-dimethylformamide (DMF) as a solvent. Rheology, morphology, thermal properties, mechanical properties, and antimicrobial activity of nanocomposites were characterized as a function of material composition. The PVP/CNC/Ag electrospun suspensions exhibited higher conductivity and better rheological properties compared with those of the pure PVP solution. The average diameter of the PVP electrospun fibers decreased with the increase in the amount of CNCs and Ag nanoparticles. Thermal stability of electrospun composite fibers was decreased with the addition of CNCs. The CNCs help increase the composite tensile strength, while the elongation at break decreased. The composite fibers included Ag nanoparticles showed improved antimicrobial activity against both the Gram-negative bacterium Escherichia coli (E. coli) and the Gram-positive bacterium Staphylococcus aureus (S. aureus). The enhanced strength and antimicrobial performances of PVP/CNC/Ag electrospun composite fibers make the mat material an attractive candidate for application in the biomedical field. PMID:28773644

  6. Biomimetic synthesis of hybrid hydroxyapatite nanoparticles using nanogel template for controlled release of bovine serum albumin.

    PubMed

    Qin, Jinli; Zhong, Zhenyu; Ma, Jun

    2016-05-01

    A biomimetic method was used to prepare hybrid hydroxyapatite (HAP) nanoparticles with chitosan/polyacrylic acid (CS-PAA) nanogel. The morphology, structure, crystallinity, thermal properties and biocompatibility of the obtained hybrid nanogel-HAP nanoparticles have been characterized. In addition, bovine serum albumin (BSA) was used as a model protein to study the loading and release behaviors of the hybrid nanogel-HAP nanoparticles. The results indicated that the obtained HAP nanoparticles were agglomerated and the nanogel could regulate the formation of HAP. When the nanogel concentration decreased, different HAP crystal shapes and agglomerate structures were obtained. The loading amount of BSA reached 67.6 mg/g for the hybrid nanoparticles when the mineral content was 90.4%, which decreased when the nanogel concentration increased. The release profile of BSA was sustained in neutral buffer. Meanwhile, an initial burst release was found at pH 4.5 due to the desorption of BSA from the surface, followed by a slow release. The hemolysis percentage of the hybrid nanoparticles was close to the negative control, and these particles were non-toxic to bone marrow stromal stem cells. The results suggest that these hybrid nanogel-HAP nanoparticles are promising candidate materials for biocompatible drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging

    NASA Astrophysics Data System (ADS)

    Haseeb, A. S. M. A.; Arafat, M. M.; Tay, S. L.; Leong, Y. M.

    2017-10-01

    Tin (Sn)-based solders have established themselves as the main alternative to the traditional lead (Pb)-based solders in many applications. However, the reliability of the Sn-based solders continues to be a concern. In order to make Sn-based solders microstructurally more stable and hence more reliable, researchers are showing great interest in investigating the effects of the incorporation of different nanoparticles into them. This paper gives an overview of the influence of metallic nanoparticles on the characteristics of interfacial intermetallic compounds (IMCs) in Sn-based solder joints on copper substrates during reflow and thermal aging. Nanocomposite solders were prepared by mechanically blending nanoparticles of nickel (Ni), cobalt (Co), zinc (Zn), molybdenum (Mo), manganese (Mn) and titanium (Ti) with Sn-3.8Ag-0.7Cu and Sn-3.5Ag solder pastes. The composite solders were then reflowed and their wetting characteristics and interfacial microstructural evolution were investigated. Through the paste mixing route, Ni, Co, Zn and Mo nanoparticles alter the morphology and thickness of the IMCs in beneficial ways for the performance of solder joints. The thickness of Cu3Sn IMC is decreased with the addition of Ni, Co and Zn nanoparticles. The thickness of total IMC layer is decreased with the addition of Zn and Mo nanoparticles in the solder. The metallic nanoparticles can be divided into two groups. Ni, Co, and Zn nanoparticles undergo reactive dissolution during solder reflow, causing in situ alloying and therefore offering an alternative route of alloy additions to solders. Mo nanoparticles remain intact during reflow and impart their influence as discrete particles. Mechanisms of interactions between different types of metallic nanoparticles and solder are discussed.

  8. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.

    PubMed

    Jin, Cheng-Yu; Zhu, Bang-Shang; Wang, Xue-Feng; Lu, Qing-Hua

    2008-09-01

    Nanotitanium dioxide (TiO2) is an important industrial material that is widely used as an additive in cosmetics, pharmaceuticals, and food colorants. Although the small size of the TiO2 nanoparticle is useful in various applications, the biosafety of this material needs to be evaluated. In this study, mouse fibroblast (L929) cells were used to evaluate the cytotoxicity of different concentrations (3-600 microg/mL) of homogeneous and weakly aggregated TiO2 nanoparticles in aqueous solution. The L929 cells became round and even shrank as the concentration of TiO2 nanoparticles increased. Moreover, TiO2 nanoparticle-treated cells had condensed fragmented chromatin or were directly necrosed, as observed by acridine orange (AO) staining. The transmission electron microscopy (TEM) analysis showed that in cells cultured in a medium containing 300 microg/mL TiO2, the number of lysosomes increased, and some cytoplasmic organelles were damaged. In addition, there was a significant increase in oxidative stress at higher TiO2 nanoparticle concentrations (>60 microg/mL). As the concentration of TiO2 nanoparticles increased in the culture medium, the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) increased, while those of methyl tetrazolium cytotoxicity (MTT), glutathione (GSH), and superoxide dismutase (SOD) decreased. A possible mechanism for the cytotoxicity of TiO2 nanoparticles is also discussed.

  9. Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.

    PubMed

    Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung

    2018-02-01

    The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnetic Fluids Have Ability to Decrease Amyloid Aggregation Associated with Amyloid-Related Diseases

    NASA Astrophysics Data System (ADS)

    Antosova, Andrea; Koneracka, Martina; Siposova, Katarina; Zavisova, Vlasta; Daxnerova, Zuzana; Vavra, Ivo; Fabian, Martin; Kopcansky, Peter; Gazova, Zuzana

    2010-12-01

    At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several amyloid-related diseases. We have investigated the effect of four magnetic fluids (MFs)—electrostatically stabilized Fe3O4 magnetic nanoparticles (MF1) and sterically stabilized Fe3O4 magnetic nanoparticles by sodium oleate (MF2, MF3 and MF4) with adsorbed BSA (MF2) or dextran (MF4)—on amyloid aggregation of two proteins, human insulin and chicken egg lysozyme. The morphology, particle size and size distribution of the prepared magnetic fluids were characterized. We have found that MFs are able to decrease amyloid aggregation of both studied proteins and the extent of depolymerization depended on the MF properties. The most effective reduction was observed for MF4 as 90% decrease of amyloids was detected for insulin and lysozyme amyloid aggregates. Our findings indicate that MFs have potential to be used for treatment of amyloid diseases.

  11. Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation

    NASA Astrophysics Data System (ADS)

    Abyadeh, Morteza; Sadroddiny, Esmaeil; Ebrahimi, Ammar; Esmaeili, Fariba; Landi, Farzaneh Saeedi; Amani, Amir

    2017-12-01

    A rapid and efficient procedure for DNA transformation is a key prerequisite for successful cloning and genomic studies. While there are efforts to develop a facile method, so far obtained efficiencies for alternative methods have been unsatisfactory (i.e. 105-106 CFU/μg plasmid) compared with conventional method (up to 108 CFU/μg plasmid). In this work, for the first time, we prepared chitosan/pDNA nanoparticles by electrospraying methods to improve transformation process. Electrospray method was used for chitosan/pDNA nanoparticles production to investigate the non-competent bacterial transformation efficiency; besides, the effect of chitosan molecular weight, N/P ratio and nanoparticle size on non-competent bacterial transformation efficiency was evaluated too. The results showed that transformation efficiency increased with decreasing the molecular weight, N/P ratio and nanoparticles size. In addition, transformation efficiency of 1.7 × 108 CFU/μg plasmid was obtained with chitosan molecular weight, N/P ratio and nanoparticles size values of 30 kDa, 1 and 125 nm. Chitosan/pDNA electrosprayed nanoparticles were produced and the effect of molecular weight, N/P and size of nanoparticles on transformation efficiency was evaluated. In total, we present a facile and rapid method for bacterial transformation, which has comparable efficiency with the common method.

  12. Lanthanide sorbent based on magnetite nanoparticles functionalized with organophosphorus extractants

    PubMed Central

    Basualto, Carlos; Gaete, José; Molina, Lorena; Valenzuela, Fernando; Yañez, Claudia; Marco, Jose F

    2015-01-01

    In this work, an adsorbent was prepared based on the attachment of organophosphorus acid extractants, namely, D2EHPA, CYANEX 272, and CYANEX 301, to the surface of superparamagnetic magnetite (Fe3O4) nanoparticles. The synthesized nanoparticles were coated with oleic acid, first by a chemisorption mechanism and later by the respective extractant via physical adsorption. The obtained core–shell functionalized magnetite nanoparticle composites were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy, thermogravimetry, infrared absorption and vibrating sample magnetometry. All the prepared nanoparticles exhibited a high saturation magnetization capacity that varied between 72 and 46 emu g−1 and decreased as the magnetite nanoparticle was coated with oleic acid and functionalized. The scope of this study also included adsorption tests for lanthanum, cerium, praseodymium, and neodymium and the corresponding analysis of their results. Sorption tests indicated that the functionalized nanoparticles were able to extract the four studied lanthanide metal ions, although the best extraction performance was observed when the sorbent was functionalized with CYANEX 272, which resulted in a loading capacity of approximately 12–14 mgLa/gMNP. The magnetization of the synthesized nanoparticles was verified during the separation of the lanthanide-loaded sorbent from the raffinate by using a conventional magnet. PMID:27877811

  13. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells.

    PubMed

    Radziun, E; Dudkiewicz Wilczyńska, J; Książek, I; Nowak, K; Anuszewska, E L; Kunicki, A; Olszyna, A; Ząbkowski, T

    2011-12-01

    The rapid development of nanotechnology raises both enthusiasm and anxiety among researchers, which is related to the safety use of the manufactured materials. Thus, the aim of this study was to investigate the effect of aluminium oxide nanoparticles on the viability of selected mammalian cells in vitro. The aluminium oxide nanoparticles were characterised using SEM and BET analyses. Based on Zeta (ζ) potential measurements and particle size distribution, the tested suspensions of aluminium oxide nanoparticles in water and nutrient solutions with or without FBS were classified as unstable. Cell viability, the degree of apoptosis induction and nanoparticles internalization into the cells were assessed after 24 h of cell exposure to Al2O3 nanoparticles. Our results confirm the ability of aluminium oxide nanoparticles to penetrate through the membranes of L929 and BJ cells. Despite this, there was no significant increase in apoptosis or decrease in cell viability observed, suggesting that aluminium oxide nanoparticles in the tested range of concentrations has no cytotoxic effects on the selected mammalian cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Antitumor activity of sorafenib-incorporated nanoparticles of dextran/poly(dl-lactide- co-glycolide) block copolymer

    NASA Astrophysics Data System (ADS)

    Kim, Do Hyung; Kim, Min-Dae; Choi, Cheol-Woong; Chung, Chung-Wook; Ha, Seung Hee; Kim, Cy Hyun; Shim, Yong-Ho; Jeong, Young-Il; Kang, Dae Hwan

    2012-01-01

    Sorafenib-incoporated nanoparticles were prepared using a block copolymer that is composed of dextran and poly( DL-lactide- co-glycolide) [Dex bLG] for antitumor drug delivery. Sorafenib-incorporated nanoparticles were prepared by a nanoprecipitation-dialysis method. Sorafenib-incorporated Dex bLG nanoparticles were uniformly distributed in an aqueous solution regardless of the content of sorafenib. Transmission electron microscopy of the sorafenib-incorporated Dex bLG nanoparticles revealed a spherical shape with a diameter < 300 nm. Sorafenib-incorporated Dex bLG nanoparticles at a polymer/drug weight ratio of 40:5 showed a relatively uniform size and morphology. Higher initial drug feeding was associated with increased drug content in nanoparticles and in nanoparticle size. A drug release study revealed a decreased drug release rate with increasing drug content. In an in vitro anti-proliferation assay using human cholangiocarcinoma cells, sorafenib-incorporated Dex bLG nanoparticles showed a similar antitumor activity as sorafenib. Sorafenib-incorporated Dex bLG nanoparticles are promising candidates as vehicles for antitumor drug targeting.

  15. Polymeric nanoparticles - Influence of the glass transition temperature on drug release.

    PubMed

    Lappe, Svenja; Mulac, Dennis; Langer, Klaus

    2017-01-30

    The physico-chemical characterisation of nanoparticles is often lacking the determination of the glass transition temperature, a well-known parameter for the pure polymer carrier. In the present study the influence of water on the glass transition temperature of poly (DL-lactic-co-glycolic acid) nanoparticles was assessed. In addition, flurbiprofen and mTHPP as model drugs were incorporated in poly (DL-lactic-co-glycolic acid), poly (DL-lactic acid), and poly (L-lactic acid) nanoparticles. For flurbiprofen-loaded nanoparticles a decrease in the glass transition temperature was observed while mTHPP exerted no influence on this parameter. Based on this observation, the release behaviour of the drug-loaded nanoparticles was investigated at different temperatures. For all preparations an initial burst release was measured that could be attributed to the drug adsorbed to the large nanoparticle surface. At temperatures above the glass transition temperature an instant drug release of the nanoparticles was observed, while at lower temperatures less drug was released. It could be shown that the glass transition temperature of drug loaded nanoparticles in suspension more than the corresponding temperature of the pure polymer is the pivotal parameter when characterising a nanostructured drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Synthesis and Thermoluminescence of ZnS:Mn2+ Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zahedifar, M.; Taghavinia, N.; Aminpour, M.

    2007-08-01

    The controlled chemical method has been used for synthesis of Mn doped ZnS nanoparticles. Optical absorption studies showed that increasing of surfactant density, from 0.0001 to 0.5 mol/lit., causes the size of nanoparticles to decrease from 4.8 nm to about 3 nm and the band gap width to increase from 4.15 to 4.50 eV. Also increasing the temperature during the synthesis process caused the nanoparticle size to be increased. As a new result we observed a thermoluminescence (TL) glow peak at about 475 K, with its intensity depending on concentration of the Mn dopant. Activation energy of this glow peak was obtained to be about 0.6eV. A discussion of the obtained results is also presented.

  17. Silver nanoparticles with tunable work functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pangpang, E-mail: pangpang@molecular-device.kyushu-u.ac.jp; Tanaka, Daisuke; Ryuzaki, Sou

    To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probemore » force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.« less

  18. Nanoparticles Based on Chitosan as Carriers for the Combined Herbicides Imazapic and Imazapyr

    PubMed Central

    Maruyama, Cintia Rodrigues; Guilger, Mariana; Pascoli, Mônica; Bileshy-José, Natalia; Abhilash, P.C.; Fraceto, Leonardo Fernandes; de Lima, Renata

    2016-01-01

    The use of lower concentrations and fewer applications of herbicides is one of the prime objectives of the sustainable agriculture as it decreases the toxicity to non-targeted organisms and the risk of wider environmental contamination. In the present work, nanoparticles were developed for encapsulation of the herbicides imazapic and imazapyr. Alginate/chitosan and chitosan/tripolyphosphate nanoparticles were manufactured, and their physicochemical stability was evaluated. Determinations were made of the encapsulation efficiency and release kinetics, and the toxicity of the nanoparticles was evaluated using cytotoxicity and genotoxicity assays. The effects of herbicides and herbicide-loaded nanoparticles on soil microorganisms were studied in detail using real-time polymerase chain reactions. The nanoparticles showed an average size of 400 nm and remained stable during 30 days of storage at ambient temperature. Satisfactory encapsulation efficiencies of between 50 and 70% were achieved for both types of particles. Cytotoxicity assays showed that the encapsulated herbicides were less toxic, compared to the free compounds, and genotoxicity was decreased. Analyses of soil microbiota revealed changes in the bacteria of the soils exposed to the different treatments. Our study proves that encapsulation of the herbicides improved their mode of action and reduced their toxicity, indicating their suitability for use in future practical applications. PMID:26813942

  19. Hair dye-incorporated poly-γ-glutamic acid/glycol chitosan nanoparticles based on ion-complex formation.

    PubMed

    Lee, Hye-Young; Jeong, Young-Il; Choi, Ki-Choon

    2011-01-01

    p-Phenylenediamine (PDA) or its related chemicals are used more extensively than oxidative hair dyes. However, permanent hair dyes such as PDA are known to have potent contact allergy reactions in humans, and severe allergic reactions are problematic. PDA-incorporated nanoparticles were prepared based on ion-complex formation between the cationic groups of PDA and the anionic groups of poly(γ-glutamic acid) (PGA). To reinforce PDA/PGA ion complexes, glycol chitosan (GC) was added. PDA-incorporated nanoparticles were characterized using field-emission scanning electron microscopy, Fourier- transform infrared (FT-IR) spectroscopy, dynamic light scattering, and powder X-ray diffractometry (XRD). Nanoparticles were formed by ion-complex formation between the amine groups of PDA and the carboxyl groups of PGA. PDA-incorporated nanoparticles are small in size (<100 nm), and morphological observations showed spherical shapes. FT-IR spectra results showed that the carboxylic acid peak of PGA decreased with increasing PDA content, indicating that the ion complexes were formed between the carboxyl groups of PGA and the amine groups of PDA. Furthermore, the intrinsic peak of the carboxyl groups of PGA was also decreased by the addition of GC. Intrinsic crystalline peaks of PDA were observed by XRD. This crystalline peak of PDA was completely nonexistent when nanoparticles were formed by ion complex between PDA, PGA, and GC, indicating that PDA was complexed with PGA and no free drug existed in the formulation. During the drug-release experiment, an initial burst release of PDA was observed, and then PDA was continuously released over 1 week. Cytotoxicity testing against HaCaT human skin keratinocyte cells showed PDA-incorporated nanoparticles had lower toxicity than PDA itself. Furthermore, PDA-incorporated nanoparticles showed reduced apoptosis and necrosis reaction at HaCaT cells. The authors suggest that these microparticles are ideal candidates for a vehicle for

  20. Development and characterisation of a brain tumour mimicking protoporphyrin IX fluorescence phantom (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Yijing; Tisca, Cristiana; Peveler, William; Noimark, Sacha; Desjardins, Adrien E.; Parkin, Ivan P.; Ourselin, Sebastien; Vercauteren, Tom

    2017-02-01

    5-ALA-PpIX fluorescence-guided brain tumour resection can increase the accuracy at which cancerous tissue is removed and thereby improve patient outcomes, as compared with standard white light imaging. Novel optical devices that aim to increase the specificity and sensitivity of PpIX detection are typically assessed by measurements in tissue-mimicking optical phantoms of which all optical properties are defined. Current existing optical phantoms specified for PpIX lack consistency in their optical properties, and stability with respect to photobleaching, thus yielding an unstable correspondence between PpIX concentration and the fluorescence intensity. In this study, we developed a set of aqueous-based phantoms with different compositions, using deionised water or PBS buffer as background medium, intralipid as scattering material, bovine haemoglobin as background absorber, and either PpIX dissolved in DMSO or a novel nanoparticle with similar absorption and emission spectrum to PpIX as the fluorophore. We investigated the phantom stability in terms of aggregation and photobleaching by comparing with different background medium and fluorophores, respectively. We characterised the fluorescence intensity of the fluorescent nanoparticle in different concentration of intralipid and haemoglobin and its time-dependent stability, as compared to the PpIX-induced fluorescence. We corroborated that the background medium was essential to prepare a stable aqueous phantom. The novel fluorescent nanoparticle used as surrogate fluorophore of PpIX presented an improved temporal stability and a reliable correspondence between concentration and emission intensity. We proposed an optimised phantom composition and recipe to produce reliable and repeatable phantom for validation of imaging device.

  1. Label-free immunosensor based on gold nanoparticle silver enhancement.

    PubMed

    Yang, Minghui; Wang, Cunchang

    2009-02-01

    A label-free immunosensor for the sensitive detection of human immunoglobulin G (IgG) was prepared based on gold nanoparticle-silver enhancement detection with a simple charge-coupled device (CCD) detector. The gold nanoparticles, which were used as nuclei for the deposit of metallic silver and also for the adsorption of antibodies, were immobilized into wells of a 9-well chip. With the addition of silver enhancement buffer, metallic silver will deposit onto gold nanoparticles, causing darkness that can be optically measured by the CCD camera and quantified using ImageJ software. When antibody was immobilized onto the gold nanoparticles and antigen was captured, the formed immunocomplex resulted in a decrease of the darkness and the intensity of the darkness was in line with IgG concentrations from 0.05 to 10 ng/ml. The CCD detector is simple and portable, and the reported method has many desirable merits such as sensitivity and accuracy, making it a promising technique for protein detection.

  2. Nanoparticle-induced unusual melting and solidification behaviours of metals

    PubMed Central

    Ma, Chao; Chen, Lianyi; Cao, Chezheng; Li, Xiaochun

    2017-01-01

    Effective control of melting and solidification behaviours of materials is significant for numerous applications. It has been a long-standing challenge to increase the melted zone (MZ) depth while shrinking the heat-affected zone (HAZ) size during local melting and solidification of materials. In this paper, nanoparticle-induced unusual melting and solidification behaviours of metals are reported that effectively solve this long-time dilemma. By introduction of Al2O3 nanoparticles, the MZ depth of Ni is increased by 68%, while the corresponding HAZ size is decreased by 67% in laser melting at a pulse energy of 0.18 mJ. The addition of SiC nanoparticles shows similar results. The discovery of the unusual melting and solidification of materials that contain nanoparticles will not only have impacts on existing melting and solidification manufacturing processes, such as laser welding and additive manufacturing, but also on other applications such as pharmaceutical processing and energy storage. PMID:28098147

  3. Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature

    NASA Astrophysics Data System (ADS)

    Parishani, Marziye; Nadafan, Marzieh; Dehghani, Zahra; Malekfar, Rasoul; Khorrami, G. H. H.

    In this research, NiFe2O4 nanoparticles was prepared via the simple sol-gel route, using different sintering temperature. This nanoparticle was characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), and FTIR spectra. The XRD patterns show by increasing the synthesized temperature, the intensity, and broadening of peaks are decreased so the results are more crystallization and raising the size of nanoparticles. The size distribution in the histogram of the NiFe2O4 nanoparticles is 42, 96, and 315 nm at 750 °C, 850 °C, and 950 °C, respectively. The FTIR spectra were evaluated using Kramers-Kronig method. Results approved the existing of certain relations between sintering temperatures and grain size of nanoparticles. By raising the temperature from 750 °C to 950 °C, the grain size was increased from 70 nm to 300 nm and the optical constants of nanoparticles were strongly related to synthesizing temperature as well. Since by increasing temperature, both real/imaginary parts of the refractive index and dielectric function were decreased. Consequently, the transversal (TO) and longitudinal (LO) phonon frequencies are detected. The TO and LO frequencies have shifted to red frequencies by increasing reaction temperature.

  4. Structural and optical properties of pure and copper doped zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef

    2018-06-01

    Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.

  5. Catalase coupled gold nanoparticles: Comparison between carbodiimide and biotin-streptavidin methods

    PubMed Central

    Chirra, Hariharasudhan D.; Sexton, Travis; Biswal, Dipti; Hersh, Louis B.; Hilt, J. Zach

    2011-01-01

    The use of proteins for therapeutic applications requires the protein to maintain sufficient activity for the period of in vivo treatment. Many proteins exhibit a short half-life in vivo and, thus, require delivery systems for them to be applied as therapeutics. The relative biocompatibility and the ability to form functionalized bioconjugates via simple chemistry make gold nanoparticles excellent candidates as protein delivery systems. Herein, two protocols for coupling proteins to gold nanoparticles were compared. In the first, the strong biomolecular binding between biotin and streptavidin was used to couple catalase to the surface of gold nanoparticles. In the second protocol, the formation of an amide bond between carboxylic acid coated gold nanoparticles and free surface amines of catalase using carbodiimide chemistry was performed. The stability and kinetics of the different steps involved in these protocols were studied using UV-Visible spectroscopy, dynamic light scattering, and transmission electron microscopy. The addition of mercaptoundecanoic acid in conjugation with (N-(6-(biotinamido)hexyl)-3′-(2′-pyridyldithio)-propionamide increased the stability of biotinylated gold nanoparticles. Although the carbodiimide chemistry based bioconjugation approach exhibited a decrease in catalase activity, the carbodiimide chemistry based bioconjugation approach resulted in more active catalase per gold nanoparticle compared to that of mercaptoundecanoic acid stabilized biotinylated gold nanoparticles. Both coupling protocols resulted in gold nanoparticles loaded with active catalase. Thus, these gold nanoparticle systems and coupling protocols represent promising methods for the application of gold nanoparticles for protein delivery. PMID:21232642

  6. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  7. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  8. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  9. Synthesis and characterization of Gd-doped magnetite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu; Iowa State Univ., Ames, IA; Malik, Vikash

    There has been rising interest in the synthesis of magnetite nanoparticles due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. We investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizesmore » under the conditions tested (0–10 at% Gd 3+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. These results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd 3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe (3-x)Gd xO 4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method.« less

  10. Synthesis and characterization of Gd-doped magnetite nanoparticles

    DOE PAGES

    Zhang, Honghu; Iowa State Univ., Ames, IA; Malik, Vikash; ...

    2016-10-04

    There has been rising interest in the synthesis of magnetite nanoparticles due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. We investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizesmore » under the conditions tested (0–10 at% Gd 3+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. These results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd 3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe (3-x)Gd xO 4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity (~65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method.« less

  11. Magnetism as indirect tool for carbon content assessment in nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Oumellal, Y.; Magnin, Y.; Martínez de Yuso, A.; Aguiar Hualde, J. M.; Amara, H.; Paul-Boncour, V.; Matei Ghimbeu, C.; Malouche, A.; Bichara, C.; Pellenq, R.; Zlotea, C.

    2017-12-01

    We report a combined experimental and theoretical study to ascertain carbon solubility in nickel nanoparticles embedded into a carbon matrix via the one-pot method. This original approach is based on the experimental characterization of the magnetic properties of Ni at room temperature and Monte Carlo simulations used to calculate the magnetization as a function of C content in Ni nanoparticles. Other commonly used experimental methods fail to accurately determine the chemical analysis of these types of nanoparticles. Thus, we could assess the C content within Ni nanoparticles and it decreases from 8 to around 4 at. % with increasing temperature during the synthesis. This behavior could be related to the catalytic transformation of dissolved C in the Ni particles into graphite layers surrounding the particles at high temperature. The proposed approach is original and easy to implement experimentally since only magnetization measurements at room temperature are needed. Moreover, it can be extended to other types of magnetic nanoparticles dissolving carbon.

  12. Optical phonon modes of III-V nanoparticles and indium phosphide/II-VI core-shell nanoparticles: A Raman and infrared study

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia Speranta

    The prospects for realizing efficient nanoparticle light emitters in the visible/near IR for communications and bio-medical applications have benefited from progress in chemical fabrication of nanoparticles. III-V semiconductor nanopaticles such as GaP and InP are promising materials for the development of "blue" and "green" emitters, respectively, due to their large effective bandgaps. Enhanced emission efficiency has been achieved for core-shell nanoparticles, since inorganic shell materials increase electronic tunability and may decrease surface defects that often occur for nanoparticles capped with organic molecules. Also, the emission wavelength of InP nanoparticle cores can be tuned from green to red by changing the shell material in InP/II-VI core-shell nanoparticles. Investigations of phonon modes in nanocrystals are of both fundamental and applied interest. In the former case the optical phonon modes, such as surface/interface modes, are dependent on the nanoparticle dimensions, and also can provide information about dynamical properties of the nanoparticles and test the validity of various theoretical approaches. In the latter case the vibronic properties of nanoparticle emitters are controlled by confined phonons and modifications of the electron-phonon interaction by the confinement. Thus, the objective of the present thesis is the detailed study of the phonon modes of III-V nanoparticles (GaP and InP) and InP/II-VI core-shell nanoparticles by IR absorption and Raman scattering spectroscopies, and an elucidation of their complex vibrational properties. With the exception of three samples (two GaP and one InP), all samples were synthesized by a novel colloidal chemistry method, which does not requires added surfactant, but rather treatment of the corresponding precursors in octadecene noncoordinative solvent. Sample quality was characterized by ED, TEM and X-ray diffraction. Based on a comparison with a dielectric continuum model, the observed features

  13. Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.

    PubMed

    Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong

    2018-05-18

    Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  15. The controlled release of tilmicosin from silica nanoparticles.

    PubMed

    Song, Meirong; Li, Yanyan; Fai, Cailing; Cui, Shumin; Cui, Baoan

    2011-06-01

    The aim of this study was to use silica nanoparticles as the carrier for controlled release of tilmicosin. Tilmicosin was selected as a drug model molecule because it has a lengthy elimination half-life and a high concentration in milk after subcutaneous administration. Three samples of tilmicosin-loaded silica nanoparticles were prepared with different drug-loading weight. The drug-loading weight in three samples, as measured by thermal gravimetric analysis, was 29%, 42%, and 64%, respectively. With increased drug-loading weight, the average diameter of the drug-loaded silica nanoparticles was increased from 13.4 to 25.7 nm, and the zeta potential changed from-30.62 to-6.78 mV, indicating that the stability of the drug-loaded particles in the aqueous solution decreases as drug-loading weight increases. In vitro release studies in phosphate-buffered saline showed the sample with 29% drug loading had a slow and sustained drug release, reaching 44% after 72 h. The release rate rose with increased drug-loading weight; therefore, the release of tilmicosin from silica nanoparticles was well-controlled by adjusting the drug loading. Finally, kinetics analysis suggested that drug released from silica nanoparticles was mainly a diffusion-controlled process.

  16. An Electrochemiluminescence Immunosensor Based on Gold-Magnetic Nanoparticles and Phage Displayed Antibodies

    PubMed Central

    Mu, Xihui; Tong, Zhaoyang; Huang, Qibin; Liu, Bing; Liu, Zhiwei; Hao, Lanqun; Dong, Hua; Zhang, Jinping; Gao, Chuan

    2016-01-01

    Using the multiple advantages of the ultra-highly sensitive electrochemiluminescence (ECL) technique, Staphylococcus protein A (SPA) functionalized gold-magnetic nanoparticles and phage displayed antibodies, and using gold-magnetic nanoparticles coated with SPA and coupled with a polyclonal antibody (pcAb) as magnetic capturing probes, and Ru(bpy)32+-labeled phage displayed antibody as a specific luminescence probe, this study reports a new way to detect ricin with a highly sensitive and specific ECL immunosensor and amplify specific detection signals. The linear detection range of the sensor was 0.0001~200 µg/L, and the limit of detection (LOD) was 0.0001 µg/L, which is 2500-fold lower than that of the conventional ELISA technique. The gold-magnetic nanoparticles, SPA and Ru(bpy)32+-labeled phage displayed antibody displayed different amplifying effects in the ECL immunosensor and can decrease LOD 3-fold, 3-fold and 20-fold, respectively, compared with the ECL immunosensors without one of the three effects. The integrated amplifying effect can decrease the LOD 180-fold. The immunosensor integrates the unique advantages of SPA-coated gold-magnetic nanoparticles that improve the activity of the functionalized capturing probe, and the amplifying effect of the Ru(bpy)32+-labeled phage displayed antibodies, so it increases specificity, interference-resistance and decreases LOD. It is proven to be well suited for the analysis of trace amounts of ricin in various environmental samples with high recovery ratios and reproducibility. PMID:26927130

  17. High-energy ball milling technique for ZnO nanoparticles as antibacterial material

    PubMed Central

    Salah, Numan; Habib, Sami S; Khan, Zishan H; Memic, Adnan; Azam, Ameer; Alarfaj, Esam; Zahed, Nabeel; Al-Hamedi, Salim

    2011-01-01

    Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in biological applications. In this study, the high-energy ball milling (HEBM) technique was used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications induced in the ‘as synthesized’ nanomaterials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and photoluminescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller particles along with a relaxation in the lattice constant c. The value of c was found to increase from 5.204 to 5.217 Å with a decrease in particle size (600 to ∼30 nm). PL result showed a new band at around 365 nm, whose intensity is found to increase as the particles size decreases. These remarkable structural and optical modifications induced in ZnO nanoparticles might prove useful for various applications. The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose. PMID:21720499

  18. Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract

    PubMed Central

    Von White, Gregory; Kerscher, Petra; Brown, Ryan M.; Morella, Jacob D.; McAllister, William; Dean, Delphine; Kitchens, Christopher L.

    2012-01-01

    This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post-synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive x-ray chemical analysis, and high performance liquid chromatography indicated that the carbohydrates present in the garlic extract are the most likely nanoparticle stabilizing chemistry. The synthesized silver nanoparticles also demonstrate potential for biomeical applications, owing to the 1) enhanced stability in biological media, 2) resistance to oxidation by the addition of H2O2, 3) ease and scalability of synthesis, and 4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/ml, confirming that garlic extract prepared silver nanoparticles are ideal candidates for future experimentation and implementation into biomedical applications. PMID:24683414

  19. Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract.

    PubMed

    Von White, Gregory; Kerscher, Petra; Brown, Ryan M; Morella, Jacob D; McAllister, William; Dean, Delphine; Kitchens, Christopher L

    2012-01-01

    This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post-synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive x-ray chemical analysis, and high performance liquid chromatography indicated that the carbohydrates present in the garlic extract are the most likely nanoparticle stabilizing chemistry. The synthesized silver nanoparticles also demonstrate potential for biomeical applications, owing to the 1) enhanced stability in biological media, 2) resistance to oxidation by the addition of H 2 O 2 , 3) ease and scalability of synthesis, and 4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/ml, confirming that garlic extract prepared silver nanoparticles are ideal candidates for future experimentation and implementation into biomedical applications.

  20. Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach

    NASA Astrophysics Data System (ADS)

    Selvakumari, J. Celina; Ahila, M.; Malligavathy, M.; Padiyan, D. Pathinettam

    2017-09-01

    Tin oxide (SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea ( Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles' band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.

  1. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles

    PubMed Central

    Jain, Navin; Bhargava, Arpit; Rathi, Mohit; Dilip, R. Venkataramana; Panwar, Jitendra

    2015-01-01

    The present study demonstrates an economical and environmental affable approach for the synthesis of “protein-capped” silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties. PMID:26226385

  2. Controlled cobalt doping in biogenic magnetite nanoparticles

    PubMed Central

    Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.

    2013-01-01

    Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814

  3. Controlled cobalt doping in biogenic magnetite nanoparticles.

    PubMed

    Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D

    2013-06-06

    Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.

  4. Researchers Examine Nanoparticles' Impact on Fuel Emissions and Air Pollution

    EPA Pesticide Factsheets

    Nanoparticle catalysts offer an opportunity to increase fuel efficiency. While overall particle emissions may decrease, the emissions of some species may increase and changes to the particle size distribution can impact health.

  5. Effects of oleic acid surface coating on the properties of nickel ferrite nanoparticles/PLA composites.

    PubMed

    Yin, Hong; Chow, Gan-Moog

    2009-11-01

    Nickel ferrite nanoparticles with or without oleic acid surface coating were mixed with poly(D,L-lactide) (PLA) by double emulsion method. If the nanoparticles were prepared without oleic acid coating, they adsorbed on the PLA surface. If the nanoparticles were coated with oleic acid, they could be readily encapsulated within the PLA microspheres. A slight depression in glass transition temperature was found in all composites and it could be related to the interfacial energies between nanoparticles and PLA. Optimum mixed composite was achieved by reducing interfacial energy. However, loading capacity was limited in this composite. Increasing the amount of nickel ferrite nanoparticles was not useful to increase loading capacity. Cytotoxicity of the composite decreased significantly when nickel ferrite nanoparticles were effectively encapsulated in PLA microspheres. (c) 2008 Wiley Periodicals, Inc.

  6. Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Campos, Estefânia Vangelie Ramos; Oliveira, Jhones Luiz De; da Silva, Camila Morais Gonçalves; Pascoli, Mônica; Pasquoto, Tatiane; Lima, Renata; Abhilash, P. C.; Fernandes Fraceto, Leonardo

    2015-09-01

    Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.

  7. Photoinduced Disaggregation of TiO2 Nanoparticles Enables Transdermal Penetration

    PubMed Central

    Bennett, Samuel W.; Zhou, Dongxu; Mielke, Randall; Keller, Arturo A.

    2012-01-01

    Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to be a function of aggregate size, and generally increase as size decreases, photo-induced disaggregation may have significant effects. We show that ambient light and other light sources can partially disaggregate nanoparticles from the aggregates and increase the dermal transport of nanoparticles, such that small nanoparticle clusters can readily diffuse into and through the dermal profile, likely via the interstitial spaces. The discovery of photoinduced disaggregation presents a new phenomenon that has not been previously reported or considered in coagulation theory or transdermal toxicological paradigms. Our results show that after just a few minutes of light, the hydrodynamic diameter of TiO2 aggregates is reduced from ∼280 nm to ∼230 nm. We exposed pigskin to the nanoparticle suspension and found 200 mg kg−1 of TiO2 for skin that was exposed to nanoparticles in the presence of natural sunlight and only 75 mg kg−1 for skin exposed to dark conditions, indicating the influence of light on NP penetration. These results suggest that photoinduced disaggregation may have important health implications. PMID:23155401

  8. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  9. Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts

    PubMed Central

    Ramos, Joseph F; Webster, Thomas J

    2012-01-01

    Background: Ventilator-associated pneumonia is a deadly nosocomial infection caused by contaminated endotracheal tubes. It has been shown that polyvinyl chloride (PVC, the endotracheal tube substrate) coated with elemental selenium nanoparticles reduces bacterial adherence and proliferation on PVC by over 99%. However, it is not known if selenium nanoparticles elicit a cytotoxic effect in vitro. The purpose of this study was to investigate the cytotoxic effects of PVC coated with selenium nanoparticles on fibroblasts, which are mammalian cells central to endotracheal tube intubation. Methods: Different concentrations of selenium nanoparticles were precipitated onto the PVC surface by reduction of selenium salts using glutathione. Characterization of PVC coated with selenium nanoparticles was done by scanning electron microscopy, energy dispersive x-ray, and contact angle measurements. For the cytotoxicity experiments, fibroblasts were seeded at a density of 5000 cm2 onto PVC coated with three different concentrations of selenium nanoparticles (high, medium, low) and incubated for 4 hours (adhesion) as well as for 24 hours and 72 hours (proliferation). The half-maximal inhibitory concentration (IC50) value was determined after 72 hours using an ultrahigh concentration. MTT assays were used to assess cell viability at the indicated time points. Results: The three concentrations of selenium nanoparticles did not elicit a cytotoxic effect after 72 hours (P < 0.01, n = 3). It was found that the IC50value was at the ultrahigh concentration of selenium nanoparticles. The nanoparticulate elemental selenium concentration previously shown to decrease the function of bacteria was shown not to cause a cytotoxic effect on fibroblasts in vitro. Conclusion: These findings demonstrate great selectivity between bacteria and healthy cells, and are a viable option for coating endotracheal tubes in order to prevent ventilator-associated pneumonia. PMID:22915842

  10. Ultrastructural and some functional changes in tumor cells treated with stabilized iron oxide nanoparticles.

    PubMed

    Yurchenko, O V; Todor, I N; Khayetsky, I K; Tregubova, N A; Lukianova, N Yu; Chekhun, V F

    2010-12-01

    To study the ultrastructure and some functional indexes of tumor cells treated with stabilized iron nanoparticles in vitro. 3-[4,5dimethylthiazol-2-1]-2,5-diphenyltetrazolium bromide (MTT)-test, electron microscopy, polarography with applying of closed Clark's electrode. It was shown that cultivation of cells with stabilized Fe(3)O(4) leads to intracellular accumulation of ferromagnetic nanoparticles. The most active ferromagnetic uptake by cells has been observed after 24 and 48 h of incubation. The presence of ferromagnetic in cells led to altered mitochondrial structure that caused the decrease of oxygen uptake rate in the cells of all studied lines. Ferromagnetic released from the majority of cells via exocytosis or clasmacytosis after a certain period of time. The number of dead cells or cells with severe damage was moderate, so cytotoxic action of stabilized iron oxide nanoparticles was minimal toward the studied cell lines. the presence of ferromagnetic nanoparticles in culture medium led to alterations in mitochondria ultrastructural organization and decrease of oxygen uptake by mitochondria in sensitive and anticancer-drugs resistant cells.

  11. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats

    PubMed Central

    2013-01-01

    Silver nanoparticles are known to be distributed in many tissues after oral or inhalation exposure. Thus, understanding the tissue clearance of such distributed nanoparticles is very important to understand the behavior of silver nanoparticles in vivo. For risk assessment purposes, easy clearance indicates a lower overall cumulative toxicity. Accordingly, to investigate the clearance of tissue silver concentrations following oral silver nanoparticle exposure, Sprague–Dawley rats were assigned to 3 groups: control, low dose (100 mg/kg body weight), and high dose (500 mg/kg body weight), and exposed to two different sizes of silver nanoparticles (average diameter 10 and 25 nm) over 28 days. Thereafter, the rats were allowed to recover for 4 months. Regardless of the silver nanoparticle size, the silver content in most tissues gradually decreased during the 4-month recovery period, indicating tissue clearance of the accumulated silver. The exceptions were the silver concentrations in the brain and testes, which did not clear well, even after the 4-month recovery period, indicating an obstruction in transporting the accumulated silver out of these tissues. Therefore, the results showed that the size of the silver nanoparticles did not affect their tissue distribution. Furthermore, biological barriers, such as the blood–brain barrier and blood-testis barrier, seemed to play an important role in the silver clearance from these tissues. PMID:24059869

  12. DNA-length-dependent quenching of fluorescently labeled iron oxide nanoparticles with gold, graphene oxide and MoS2 nanostructures.

    PubMed

    Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V

    2014-08-13

    We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be

  13. Noncrystalline structure of Ni-P nanoparticles prepared by liquid pulse discharge.

    PubMed

    Tan, Yuanyuan; Yu, Hongying; Wu, Zhonghua; Yang, Bin; Gong, Yu; Yan, Shi; Du, Rong; Chen, Zhongjun; Sun, Dongbai

    2015-03-01

    Noncrystalline nickel phosphide (Ni-P) nanoparticles have drawn great attention due to their high potential as catalysts. However, the structure of noncrystalline Ni-P nanoparticles is still unknown, which may shed light on explaining the catalysis mechanism of the Ni-P nanoparticles. In this paper, noncrystalline Ni-P nanoparticles were synthesized. Their morphology, particle size, element contents, local atomic structures, as well as the catalysis in the thermal decomposition of ammonium perchlorate were studied. The results demonstrate that the as-prepared Ni-P nanoparticles are spherical with an average diameter of about 13.5 nm. The Ni and P contents are, respectively, 78.15% and 21.85%. The noncrystalline nature of the as-prepared Ni-P nanoparticles can be attributed to cross-linkage between P-doping f.c.c.-like Ni centers and Ni3P-like P centers. The locally ordered Ni centers and P centers are the nuclei sites, which can explain well the origin of initial nuclei to form the crystalline phases after high-temperature annealing. The starting temperature of high-temperature decomposition of ammonium perchlorate was found having a significant decrease in the presence of the noncrystalline Ni-P nanoparticles. Therefore, the as-prepared noncrystalline Ni-P nanoparticles can be used as a potential catalyst in the thermal decomposition of ammonium perchlorate.

  14. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    PubMed Central

    2011-01-01

    Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed. PMID:21917152

  15. Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil

    NASA Astrophysics Data System (ADS)

    Brandl, Ferdinand; Bertrand, Nicolas; Lima, Eliana Martins; Langer, Robert

    2015-07-01

    Nanotechnology may offer fast and effective solutions for environmental clean-up. Herein, amphiphilic diblock copolymers are used to develop a platform of photosensitive core-shell nanoparticles. Irradiation with ultraviolet light removes the protective layer responsible for colloidal stability; as a result, the nanoparticles are rapidly and irreversibly converted to macroscopic aggregates. The associated phase separation allows measuring the partitioning of small molecules between the aqueous phase and nanoparticles; data suggests that interactions are enhanced by decreasing the particle size. Adsorption onto nanoparticles can be exploited to efficiently remove hydrophobic pollutants from water and contaminated soil. Preliminary in vivo experiments suggest that treatment with photocleavable nanoparticles can significantly reduce the teratogenicity of bisphenol A, triclosan and 17α-ethinyl estradiol without generating obviously toxic byproducts. Small-scale pilot experiments on wastewater, thermal printing paper and contaminated soil demonstrate the applicability of the approach.

  16. Thermal treatment to enhance saturation magnetization of superparamagnetic Ni nanoparticles while maintaining low coercive force

    NASA Astrophysics Data System (ADS)

    Ishizaki, Toshitaka; Yatsugi, Kenichi; Akedo, Kunio

    2018-05-01

    Superparamagnetic nanoparticles capped by insulators have the potential to decrease eddy current and hysteresis losses. However, the saturation magnetization ( M s) decreases significantly with decreasing the particle size. In this study, superparamagnetic Ni nanoparticles having the mean size of 11.6 ± 1.8 nm were synthesized from the reduction of Ni(II) acetylacetonate in oleylamine with the addition of trioctylphosphine, indicating the coercive force ( H c) less than 1 Oe. Thermal treatments of the Ni nanoparticles were investigated as a method to enhance the M s. The results indicated that the M s was enhanced by an increase of the Ni mass ratio with increasing thermal treatment temperature. However, the decomposition behavior of the capping layers indicated that their alkyl chains actively decomposed at temperatures above 523 K to form Ni3P via reaction between Ni and P, resulting in particle growth with a significant increase in the H c. Therefore, the optimal temperature was determined to be 473 K, which increased the Ni ratio without formation of Ni3P while maintaining particle sizes with superparamagnetic properties. Further, the M s could be improved by 22% (relative to the as-synthesized Ni nanoparticles) after thermal treatment at 473 K while maintaining the H c to be less than 1 Oe.

  17. Local Dielectric Property Detection of the Interface between Nanoparticle and Polymer in Nanocomposite Dielectrics

    NASA Astrophysics Data System (ADS)

    Peng, Simin; Zeng, Qibin; Yang, Xiao; Hu, Jun; Qiu, Xiaohui; He, Jinliang

    2016-12-01

    The interface between nanoparticles and polymer matrix is considered to have an important effect on the properties of nanocomposites. In this experimental study, electrostatic force microscopy (EFM) is used to study the local dielectric property of the interface of low density polyethylene (LDPE)/TiO2 nanocomposites at nanometer scale. The results show that the addition of TiO2 nanoparticles leads to a decrease in local permittivity. We then carry out the finite element simulation and confirm that the decrease of local permittivity is related to the effect of interface. According to the results, we propose several models and validate the dielectric effect and range effect of interface. Through the analysis of DSC and solid-state NMR results, we find TiO2 nanoparticles can suppress the mobility of local chain segments in the interface, which influences the dipolar polarization of chain segments in the interface and eventually results in a decrease in local permittivity. It is believed the results would provide important hint to the research of the interface in future research.

  18. Local Dielectric Property Detection of the Interface between Nanoparticle and Polymer in Nanocomposite Dielectrics

    PubMed Central

    Peng, Simin; Zeng, Qibin; Yang, Xiao; Hu, Jun; Qiu, Xiaohui; He, Jinliang

    2016-01-01

    The interface between nanoparticles and polymer matrix is considered to have an important effect on the properties of nanocomposites. In this experimental study, electrostatic force microscopy (EFM) is used to study the local dielectric property of the interface of low density polyethylene (LDPE)/TiO2 nanocomposites at nanometer scale. The results show that the addition of TiO2 nanoparticles leads to a decrease in local permittivity. We then carry out the finite element simulation and confirm that the decrease of local permittivity is related to the effect of interface. According to the results, we propose several models and validate the dielectric effect and range effect of interface. Through the analysis of DSC and solid-state NMR results, we find TiO2 nanoparticles can suppress the mobility of local chain segments in the interface, which influences the dipolar polarization of chain segments in the interface and eventually results in a decrease in local permittivity. It is believed the results would provide important hint to the research of the interface in future research. PMID:27958347

  19. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    NASA Astrophysics Data System (ADS)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  20. Subchronic inhalation toxicity of gold nanoparticles

    PubMed Central

    2011-01-01

    Background Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME) of gold nanoparticles remain unclear. Results The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males) and 145 g (females), were divided into 4 groups (10 rats in each group): fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 μg/m3), middle-dose (2.36 × 105 particle/cm3, 0.38 μg/m3), and high-dose (1.85 × 106 particle/cm3, 20.02 μg/m3). The animals were exposed to gold nanoparticles (average diameter 4-5 nm) for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH), and total protein were also monitored in a cellular bronchoalveolar lavage (BAL) fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue distribution of gold

  1. Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum.

    PubMed

    Kumari, Madhuree; Pandey, Shipra; Bhattacharya, Arpita; Mishra, Aradhana; Nautiyal, C S

    2017-12-01

    Tomato suffers a huge loss every year because of early blight disease. This study focuses on efficient inhibition of Alternaria solani, the causative agent of early blight disease in tomato in vitro and in vivo. Foliar spray of 5 μg/mL of biosynthesized silver nanoparticles in A. solani infected plants resulted in significant increase of 32.58% in fresh weight and 23.52% in total chlorophyll content of tomato as compared to A. solani infected plants. A decrease of 48.57, 30, 39.59 and 28.57% was observed in fungal spore count, lipid peroxidation, proline content and superoxide dismutase respectively in infected tomato plants after treatment with synthesized silver nanoparticles as compared to A. solani infected plants. No significant variation in terms of soil pH, cultured population, carbon source utilization pattern and soil enzymes including dehydrogenase, urease, protenase and β-glucosidase was observed after foliar spray of nanoparticles. It was revealed that direct killing of pathogens, increased photosynthetic efficiencies, increased plant resistance and decrease in stress parameters and stress enzymes are the mechanisms employed by plants and nanoparticles simultaneously to combat the biotic stress. Biosynthesized silver nanoparticles bear the potential to revolutionize plant disease management, though the molecular aspects of increased resistance must be looked upon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Radiotherapy Improvements by Using Au Nanoparticles.

    PubMed

    Torrisi, Lorenzo

    2015-01-01

    Au nanoparticles can be prepared inside biological solutions and incorporated in special molecules for their transport through blood, drugs and proteins up to the tumour sites or directly injected in their volume when it is possible. The Au nanoparticles are biocompatible and can be accepted locally in the organism also at relatively high concentrations. The use of Au nanoparticles injected in the tumour site enhances significantly the effective atomic number of the medium, depending on the used concentration, and consequently the proton and electron energy loss and the X-ray absorption coefficient determining an increment of the local absorbed dose during radiotherapy. Traditional radiotherapy using electrons, X-rays and gamma rays, and innovative protontherapy can benefit the increment of the effective atomic number of the tissue in the presence of Au-nanoparticles embedded in the tumour volume with an adaptive up-take procedure. This method decreases the dose released to the healthy tissues permitting a better cantering of the irradiated targets and shielding the healthy tissue placed behind the tumour. The presented theoretical study approach permits to evaluate an enhancement of the radiotherapy dose of the order of 1 % using 60 MeV protons, of the order of 10% using 6 MeV electrons and of the order of 100 % using 100 keV X-ray photons. Here, we also disccused for patents relaed to the topic.

  3. Nonlinear optical behavior of DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kulyk, B.; Krupka, O.; Smokal, V.; Figà, V.; Czaplicki, R.; Sahraoui, B.

    2018-03-01

    The third-order nonlinear optical properties of gold nanoparticles embedded in the DNA-based composites were investigated by means of the third harmonic generation. With this purpose, the thin films comprising DNA-based complexes and Au nanoparticles were spin-deposited on glass substrate and their optical and nonlinear optical features were studied using the Maker-fringe technique at a laser fundamental wavelength of 1064 nm. The values of the third-order susceptibility χ (3)(- 3ω; ω, ω, ω) of the composite films based on DNA complex doped with 5 wt% of N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo)aniline were found to be significantly higher than those for pure composite films. Meanwhile, the presence of Au nanoparticles noticeable decreases the third-order nonlinear response of DNA-based composite mainly due to the enhanced absorption and scattering of laser and generated beam, respectively.

  4. Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes.

    PubMed

    Salas, Gorka; Podgoršek, Ajda; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Philippot, Karine; Chaudret, Bruno; Turmine, Mireille

    2011-08-14

    Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.

  5. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2

    PubMed Central

    Zhao, Zheng; Xie, Maobin; Li, Yi; Chen, Aizheng; Li, Gang; Zhang, Jing; Hu, Huawen; Wang, Xinyu; Li, Shipu

    2015-01-01

    In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2) (SEDS) was employed to prepare curcumin nanoparticles for the first time. A 24 full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P =20 MPa, T =35°C, flow rate of solution =0.5 mL·min−1, concentration of solution =0.5%. Fourier transform infrared (FTIR) spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD) and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The solubility and dissolution rate of the curcumin nanoparticles were found to be higher than that of the original curcumin powder (approximately 1.4 μg/mL vs 0.2 μg/mL in 180 minutes). This study revealed that supercritical CO2 technologies had a great potential in fabricating nanoparticles and improving the bioavailability of poorly water-soluble drugs. PMID:25995627

  6. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2.

    PubMed

    Zhao, Zheng; Xie, Maobin; Li, Yi; Chen, Aizheng; Li, Gang; Zhang, Jing; Hu, Huawen; Wang, Xinyu; Li, Shipu

    2015-01-01

    In order to enhance the bioavailability of poorly water-soluble curcumin, solution-enhanced dispersion by supercritical carbon dioxide (CO2) (SEDS) was employed to prepare curcumin nanoparticles for the first time. A 2(4) full factorial experiment was designed to determine optimal processing parameters and their influence on the size of the curcumin nanoparticles. Particle size was demonstrated to increase with increased temperature or flow rate of the solution, or with decreased precipitation pressure, under processing conditions with different parameters considered. The single effect of the concentration of the solution on particle size was not significant. Curcumin nanoparticles with a spherical shape and the smallest mean particle size of 325 nm were obtained when the following optimal processing conditions were adopted: P = 20 MPa, T = 35°C, flow rate of solution = 0.5 mL·min(-1), concentration of solution = 0.5%. Fourier transform infrared (FTIR) spectroscopy measurement revealed that the chemical composition of curcumin basically remained unchanged. Nevertheless, X-ray powder diffraction (XRPD) and thermal analysis indicated that the crystalline state of the original curcumin decreased after the SEDS process. The solubility and dissolution rate of the curcumin nanoparticles were found to be higher than that of the original curcumin powder (approximately 1.4 μg/mL vs 0.2 μg/mL in 180 minutes). This study revealed that supercritical CO2 technologies had a great potential in fabricating nanoparticles and improving the bioavailability of poorly water-soluble drugs.

  7. Immunogenicity and ecotoxicity of engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa Ann

    The growing use of nanoscale materials in commercially available products and therapeutics has created an urgent need to determine the toxicity of these materials so that they may be designed and employed safely. As nanoparticles have unique physical and chemical properties, the challenges in determining their physiological and environmental impact have been numerous. It is, therefore, the goal of my thesis work to employ sensitive analytical tools to fundamentally understand the how nanoparticles interact with immunologically and ecologically relevant models. My project approaches nanotoxicity studies starting with a relevant model system exposed to well-characterized nanoparticles to (1) determine if cells/organisms survive exposure using traditional toxicological assays and, if the majority survives exposure, (2) use sensitive analytical tools to determine if there are changes to critical cell/organism function. If perturbation of function is detected, (3) the mechanism or cause of changes in cell function should be determined, including assessment of nanoparticle uptake and localization. Once a mechanism of interaction is determined, this process could begin again with a modified particle that may address the toxic response. Chapter Two describes the impact of metal oxide (TiO2 and SiO2) nanoparticles on mast cells, critical immune system cells, and utilizes the sensitive technique of carbon-fiber microelectrode amperometry (CFMA) to monitor changes in the important mast cell function of exocytosis. Chapter Three expands upon Chapter Two and examines in more detail the mechanism by which TiO2 nanoparticles impact exocytotic cell function, completing the process nanotoxicity described above. From these studies, it was determined that, while nanoparticles do not decrease the viability of mast cells, there are significant changes to exocytosis upon nanoparticle exposure, and in the case of TiO2, these changes in exocytosis are correlated to nanoparticle

  8. Synthesis of berberine loaded polymeric nanoparticles by central composite design

    NASA Astrophysics Data System (ADS)

    Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh

    2016-04-01

    Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.

  9. The design and application of fluorophore–gold nanoparticle activatable probes

    PubMed Central

    Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan

    2013-01-01

    Fluorescence-based assays and detection techniques are among the most highly sensitive and popular biological tests for researchers. To match the needs of research and the clinic, detection limits and specificities need to improve, however. One mechanism is to decrease non-specific background signals, which is most efficiently done by increasing fluorescence quenching abilities. Reports in the literature of theoretical and experimental work have shown that metallic gold surfaces and nanoparticles are ultra-efficient fluorescence quenchers. Based on these findings, subsequent reports have described gold nanoparticle fluorescence-based activatable probes that were designed to increase fluorescence intensity based on a range of stimuli. In this way, these probes can detect and signify assorted biomarkers and changes in environmental conditions. In this review, we explore the various factors and theoretical models that affect gold nanoparticle fluorescence quenching, explore current uses of activatable probes, and propose an engineering approach for future development of fluorescence based gold nanoparticle activatable probes. PMID:21380462

  10. Lanthanum ion substituted cobalt ferrite nanoparticles and their hyperthermia efficiency

    NASA Astrophysics Data System (ADS)

    Demirci, Ç. E.; Manna, P. K.; Wroczynskyj, Y.; Aktürk, S.; van Lierop, J.

    2018-07-01

    We investigated the structural, compositional, and magnetic properties as well as the AC magnetic hyperthermic response of CoFe2-xLaxO4 (x = 0.0, 0.2, 0.5) nanoparticles. We found that the La3+ ions substituted into the Fe3+ ion sites, and resulted in an increased magnetocrystalline anisotropy with x, and altered the time-dependent magnetism. To provide a better understanding of the AC magnetic hyperthermia response, a series of temperature versus time measurements were done by varying the magnetic field amplitude, the carrier medium viscosity and the concentration of the nanoparticles as parameters that governed the heating efficiency. A decrease of specific loss power was observed with an increase of the viscosity of the carrier medium for x = 0 and x = 0.25 substituted Co-ferrite nanoparticles, while a small increase was observed with the x = 0.1 La3+ substituted Co-ferrite nanoparticles (due to their higher intrinsic magnetocrystalline anisotropy).

  11. Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles.

    PubMed

    Itoh, Naoki; Yamamoto, Eiichi; Santa, Tomofumi; Funatsu, Takashi; Kato, Masaru

    2016-06-01

    Nanoparticles have been used in diverse areas, and even broader applications are expected in the future. Since surface modification can influence the configuration and toxicity of nanoparticles, a rapid screening method is important to ensure nanoparticle quality. We examined the effect of the nanoparticle surface morphology on the HPLC elution profile using two types of 100-nm liposomal nanoparticles (AmBisome(Ⓡ) and DOXIL(Ⓡ)). These 100-nm-sized nanoparticles eluted before the holdup time (about 4 min), even when a column packed with particles with a relatively large pore size (30 nm) was used. The elution time of the nanoparticles increased with pegylation of the nanoparticles and protein adsorption to the nanoparticles; however, the nanoparticles still eluted before the holdup time. The results of this study indicate that HPLC is a suitable tool for rapid evaluation of the surface of liposomal nanoparticles.

  12. Toxicity of food-relevant nanoparticles in intestinal epithelial models

    NASA Astrophysics Data System (ADS)

    McCracken, Christie

    of the silica particles showed that the surface properties resembled pure silica. These particles were able to be detected in vitro as well as in vivo after oral administration of nanoparticles to mice by gavage. After four daily administrations, nanoparticles were detected by fluorescence confocal microscopy in intestines as well as liver, kidney, spleen, lung, and brain. Thus, silica nanoparticles were able to traverse the intestinal epithelium. Further investigation is needed to determine nanoparticle accumulation and potential functional consequences throughout the body. Silver nanoparticles were particularly toxic to proliferating (subconfluent) C2BBe1 cells plated at low density, inducing 15% necrosis and a 76% decrease in mitochondrial activity. Silver nanoparticle treatment induced oxidative stress in cells based on increased GSH/GSSG ratios. In addition, silver nanoparticles induced G2/M phase cell cycle arrest and inhibited cell proliferation at doses forty times lower than those at which silica, titanium dioxide, and zinc oxide nanoparticles had inhibitory effects. Silver nanoparticles subjected to in vitro digestion before cell exposure required higher doses to induce toxicity, likely due to slower dissolution because of greater surface species adsorption. Silver nanoparticles did not cause toxicity or oxidative stress in confluent (stationary) cells. Thus, upon ingestion, silver nanoparticles may be especially toxic to proliferating stem cells in intestinal crypts, particularly in disease states with a compromised epithelium.

  13. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Roman, Maciej

    2017-08-01

    The toxicity of three types of silver nanoparticles towards histiocytic lymphoma (U-937) and human promyelocytic cells (HL-60) was studied. The nanoparticles were synthesized in a chemical reduction method using sodium borohydride. Trisodium citrate and cysteamine hydrochloride were used to generate a negative and positive nanoparticle surface charge. The evaluation of cell viability, membrane integrity, antioxidant activity and the induction of inflammation were used to evaluate the difference in cellular response to the nanoparticle treatment. The results revealed that the cysteamine-stabilized (positively charged) nanoparticles (SBATE) were the least toxic although they exhibited a similar ion release profile as the unmodified (negatively charged) nanoparticles obtained using sodium borohydride (SBNM). Citrate-stabilized nanoparticles (SBTC) induced superoxide dismutase (SOD) activity in the HL-60 cells and total antioxidant activity in the U-937 cells despite their resistance to oxidative dissolution. The toxicity of SBNM nanoparticles was manifested in the disruption of membrane integrity, decrease in the mitochondrial functions of cells and the induction of inflammation. These findings allowed to conclude that mechanism of silver nanoparticle cytotoxicity is the combination of effects coming from the surface charge of nanoparticles, released silver ions and biological activity of stabilizing agent molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra

    2018-05-01

    Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.

  15. Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, Arnaud, E-mail: arnaud.courtois@u-bordeaux2.f; Inserm, U885, Bordeaux, F-33076; Andujar, Pascal

    2010-06-01

    Pulmonary circulation could be one of the primary vascular targets of finest particles that can deeply penetrate into the lungs after inhalation. We investigated the effects of engineered nanoparticles on vasomotor responses of small intrapulmonary arteries using isometric tension measurements. Acute in vitro exposure to carbon nanoparticles (CNP) decreased, and in some case abolished, the vasomotor responses induced by several vasoactive agents, whereas acute exposure to titanium dioxide nanoparticles (TiO{sub 2}NP) did not. This could be attributed to a decrease in the activity of those vasoactive agents (including PGF{sub 2{alpha}}, serotonin, endothelin-1 and acetylcholine), as suggested when they were exposedmore » to CNP before being applied to arteries. Also, CNP decreased the contraction induced by 30 mM KCl, without decreasing its activity. After endoplasmic reticulum calcium stores depletion (by caffeine and thapsigargin), CaCl{sub 2} addition induced a contraction, dependent on Store-Operated Calcium Channels that was not modified by acute CNP exposure. Further addition of 30 mM KCl elicited a contraction, originating from activation of Voltage-Operated Calcium Channels that was diminished by CNP. Contractile responses to PGF{sub 2{alpha}} or KCl, and relaxation to acetylcholine were modified neither in pulmonary arteries exposed in vitro for prolonged time to CNP or TiO{sub 2}NP, nor in those removed from rats intratracheally instilled with CNP or TiO{sub 2}NP. In conclusion, prolonged in vitro or in vivo exposure to CNP or TiO{sub 2}NP does not affect vasomotor responses of pulmonary arteries. However, acute exposure to CNP decreases contraction mediated by activation of Voltage-Operated, but not Store-Operated, Calcium Channels. Moreover, interaction of some vasoactive agents with CNP decreases their biological activity that might lead to misinterpretation of experimental data.« less

  16. Size-dependent reactivity of magnetite nanoparticles: a field-laboratory comparison

    USGS Publications Warehouse

    Swindle, Andrew L.; Elwood Madden, Andrew S.; Cozzarelli, Isabelle M.; Benamara, Mourad

    2014-01-01

    Logistic challenges make direct comparisons between laboratory- and field-based investigations into the size-dependent reactivity of nanomaterials difficult. This investigation sought to compare the size-dependent reactivity of nanoparticles in a field setting to a laboratory analog using the specific example of magnetite dissolution. Synthetic magnetite nanoparticles of three size intervals, ∼6 nm, ∼44 nm, and ∼90 nm were emplaced in the subsurface of the USGS research site at the Norman Landfill for up to 30 days using custom-made subsurface nanoparticle holders. Laboratory analog dissolution experiments were conducted using synthetic groundwater. Reaction products were analyzed via TEM and SEM and compared to initial particle characterizations. Field results indicated that an organic coating developed on the particle surfaces largely inhibiting reactivity. Limited dissolution occurred, with the amount of dissolution decreasing as particle size decreased. Conversely, the laboratory analogs without organics revealed greater dissolution of the smaller particles. These results showed that the presence of dissolved organics led to a nearly complete reversal in the size-dependent reactivity trends displayed between the field and laboratory experiments indicating that size-dependent trends observed in laboratory investigations may not be relevant in organic-rich natural systems.

  17. Dirhenium decacarbonyl-loaded PLLA nanoparticles: influence of neutron irradiation and preliminary in vivo administration by the TMT technique.

    PubMed

    Hamoudeh, Misara; Fessi, Hatem; Mehier, Henri; Faraj, Achraf Al; Canet-Soulas, Emmanuelle

    2008-02-04

    In a previous study, we have described the elaboration of PLLA-based nanoparticles loaded with non radioactive dirhenium decacarbonyl [Re(2)(CO)(10)], a novel neutron-activatable radiopharmaceutical dosage form for intra-tumoral radiotherapy. These nanoparticles are designed for a neutron irradiation which can be carried out in a nuclear reactor facility. This new paper describes the neutron irradiation influence on these Re(2)(CO)(10)-loaded PLLA nanoparticles. The loaded nanoparticles with 23% (w/w) of metallic rhenium have shown to remain stable and separated and to keep out their sphericity at the lower neutron flux (1x10(11)n/cm(2)/s for 0.5h) which was used for rhenium content determination (neutron activation analysis, NAA). However, when loaded nanoparticles were irradiated at the higher neutron flux (1.45x10(13)n/cm(2)/s, 1h), they have shown to be partially coagglomerated and some pores appeared at their surface. Furthermore, DSC results showed a decrease in the PLLA melting point and melting enthalpy in both blank and loaded nanoparticles indicating a decrease in polymer crystallinity. In addition, the polymer molecular weights (M(n), M(w)) decreased after irradiation but without largely affecting the polymer polydispersity index (P.I.) which indicated that an irradiation-induced PLLA chain scission had occurred in a random way. The XRD patterns of irradiated PLLA provided another proof of polymer loss of crystallinity. FTIR spectra results have shown that irradiated nanoparticles retained the chemical identity of the used Re(2)(CO)(10) and PLLA despite the reduction in polymer crystallinity and molecular weight. Nanoparticles suspending after irradiation became also more difficult, but it was properly achievable by adding PVA (1%) and ethanol (10%) into the dispersing medium. Moreover, after 24h incubation of different irradiated nanoparticles in two different culture mediums, visual examination did not show bacterial growth indicating that applied

  18. Cellular interactions with tissue-engineered microenvironments and nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Zhi

    Tissue-engineered hydrogels composed of intermolecularlly crosslinked hyaluronan (HA-DTPH) and fibronectin functional domains (FNfds) were applied as a physiological relevant ECM mimic with controlled mechanical and biochemical properties. Cellular interactions with this tissue-engineered environment, especially physical interactions (cellular traction forces), were quantitatively measured by using the digital image speckle correlation (DISC) technique and finite element method (FEM). By correlating with other cell functions such as cell morphology and migration, a comprehensive structure-function relationship between cells and their environments was identified. Furthermore, spatiotemporal redistribution of cellular traction stresses was time-lapse measured during cell migration to better understand the dynamics of cell mobility. The results suggest that the reinforcement of the traction stresses around the nucleus, as well as the relaxation of nuclear deformation, are critical steps during cell migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. Besides single cell migration, en masse cell migration was studied by using agarose droplet migration assay. Cell density was demonstrated to be another important parameter to influence cell behaviors besides substrate properties. Findings from these studies will provide fundamental design criteria to develop novel and effective tissue-engineered constructs. Cellular interactions with rutile and anatase TiO2 nanoparticles were also studied. These particles can penetrate easily through the cell membrane and impair cell function, with the latter being more damaging. The exposure to nanoparticles was found to decrease cell area, cell proliferation, motility, and contractility. To prevent this, a dense grafted polymer brush coating was applied onto the nanoparticle surface. These modified nanoparticles failed to adhere to and penetrate

  19. Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: a biomaterial system.

    PubMed

    Sunkara, B K; Misra, R D K

    2008-03-01

    The study demonstrates a distinct enhancement of antimicrobial activity of W4+-doped titania that is coated on nickel ferrite nanoparticles in comparison to undoped titania. The composite nanoparticles were synthesized by uniquely combining reverse micelle and chemical hydrolysis synthesis methods [Rana S, Rawat J, Misra RDK, Acta Biomater 2005;1:691]. The superior antimicrobial activity of W4+-doped titania is related to the inhibition of electron-hole recombination and decrease in the band gap energy of titania. The function of the ferrite is to facilitate the removal of nanoparticles from the sprayed surface using a small magnetic field. The coating of ferrite nanoparticles with titania retains superparamagnetic character and magnetic strength of composite nanoparticles signifying non-deterioration of magnetic properties and promoting their use as removable antimicrobial photocatalyst nanoparticles.

  20. Dynamics of lipid saccharide nanoparticles by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Di Bari, M. T.; Gerelli, Y.; Sonvico, F.; Deriu, A.; Cavatorta, F.; Albanese, G.; Colombo, P.; Fernandez-Alonso, F.

    2008-04-01

    Nano- and microparticles composed of saccharide and lipid systems are extensively investigated for applications as highly biocompatible drug carriers. A detailed understanding of particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of a quasielastic neutron scattering (QENS) investigation on lecithin/chitosan nanoparticles prepared by autoassembling the two components in an aqueous solution. The measurements were performed at room temperature on lyophilized and H 2O hydrated nanoparticles ( h = 0.47 w H 2O/w hydrated sample). In the latter, hydration water is mostly enclosed inside the nanoparticles; its dynamics is similar to that of bulk water but with a significant decrease in diffusivity. The scattering from the nanoparticles can be described by a simple model of confined diffusion. In the lyophilized state only hydrogens belonging to the polar heads are seen as mobile within the experimental time-window. In the hydrated sample the diffusive dynamics involves also a significant part of the hydrogens in the lipid tails.

  1. Synthesis of FeCoNi nanoparticles by galvanostatic technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budi, Setia, E-mail: setiabudi@unj.ac.id; Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Negeri Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta 13220; Hafizah, Masayu Elita

    Soft magnetic nanoparticles of FeCoNi have been becoming interesting objects for many researchers due to its potential application in electronic devices. One of the most promising methods for material preparation is the electrodeposition which capable of growing nanoparticles alloy directly onto the substrate. In this paper, we report our electrodeposition studies on nanoparticles synthesis using galvanostatic electrodeposition technique. Chemical composition of the synthesized FeCoNi was successfully controlled through the adjustment of the applied currents. It is revealed that the content of each element, obtained from quantitative analysis using atomic absorption spectrometer (AAS), could be modified by the adjustment of currentmore » in which Fe and Co content decreased at larger applied currents, while Ni content increased. The nanoparticles of Co-rich FeCoNi and Ni-rich FeCoNi were obtained from sulphate electrolyte at the range of applied current investigated in this work. Broad diffracted peaks in the X-ray diffractograms indicated typical nanostructures of the solid solution of FeCoNi.« less

  2. A molecular dynamics study of cooling rate during solidification of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Suzuki, Toshio

    2011-01-01

    The effect of the cooling rate on the solidification behavior of metal nanoparticles is investigated by molecular dynamics simulation. The structure of molybdenum nanoparticles varies with the cooling rate. That is, single-crystalline, polycrystalline then glassy nanoparticles are obtained as the cooling rate is increased from 2.0 × 10 10 to 1.0 × 10 13 K/s. The solidification point decreases with increasing cooling rate then drops rapidly at a cooling rate on the order of 10 12 K/s. These results are summarized in a continuous cooling transformation (CCT) diagram, in which regions corresponding the liquid, single-crystalline, polycrystalline and glassy structures appear.

  3. Cargo and Carrier Effects of Rapamycin-Loaded Perfluorocarbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Bibee, Kristin Page

    Nanoparticle-based drug delivery has been championed as a means to increase local delivery of therapeutics while decreasing systemic drug exposure. By targeting the particles, and therefore the drugs, to diseased cells of interest, healthy cells will be spared and side effects avoided. This delivery mechanism would be particularly useful for drugs that interfere with cell growth and proliferation pathways, as blocking proliferation in normal cells leads to significant patient morbidity. Rapamycin is a macrolide and a known inhibitor of mTORC1, a protein complex that plays a crucial role in protein translation and cell growth. This work demonstrates the effects of rapamycin complexed with a nanoparticle carrier on two distinct pathologies: a new triple negative breast cancer cell line and a conventional mouse model of muscular dystrophy (mdx). Rapamycin is able to alter mitochondrial function and thus metabolism in both free and nanoparticle-delivered form without killing the cells. Although nanoparticles are considered to be a benign carrier, this work shows that perfluorocarbon nanoparticles are able to induce autophagy in vitro. The benefits of autophagy induction in cancer cells is cell and stage specific, but has been reported to be useful for radiosensitization of triple negative breast cancers. Additionally, the particles are shown to induce autophagy in the mdx model of Duchenne Muscular Dystrophy and, when loaded with rapamycin, dramatically improve strength even in older animals with muscular dystrophy. Overall, this work enhances our understanding of the cellular effects of perfluorocarbon nanoparticles in two different disease models and enhances prospects for clinical translation of nanoparticle-based drug delivery.

  4. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Emergent Electronic and Dielectric Properties of Interacting Nanoparticles at Finite Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Arin R.; Voros, Marton; Giberti, Federico

    Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilitiesmore » substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Lastly, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.« less

  6. Emergent Electronic and Dielectric Properties of Interacting Nanoparticles at Finite Temperature

    DOE PAGES

    Greenwood, Arin R.; Voros, Marton; Giberti, Federico; ...

    2017-12-11

    Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilitiesmore » substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Lastly, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.« less

  7. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery

    NASA Astrophysics Data System (ADS)

    Wu, Zhi Min; Ling, Li; Zhou, Li Ying; Guo, Xin Dong; Jiang, Wei; Qian, Yu; Luo, Kathy Qian; Zhang, Li Juan

    2012-06-01

    The aim of the present study was to develop the PLGA/HP55 nanoparticles with improved hypoglycemic effect for oral insulin delivery. The insulin-loaded PLGA/HP55 nanoparticles were produced by a modified multiple emulsion solvent evaporation method. The physicochemical characteristics, in vitro release of insulin, and in vivo efficacy in diabetic rats of the nanoparticles were evaluated. The insulin encapsulation efficiency was up to 94%, and insulin was released in a pH-dependent manner under simulated gastrointestinal conditions. When administered orally (50 IU/kg) to diabetic rats, the nanoparticles can decrease rapidly the blood glucose level with a maximal effect between 1 and 8 h. The relative bioavailability compared with subcutaneous injection (5 IU/kg) in diabetic rats was 11.3% ± 1.05%. This effect may be explained by the fast release of insulin in the upper intestine, where it is better absorbed by the high gradient concentration of insulin than other regions. These results show that the PLGA/HP55 nanoparticles developed in the study might be employed as a potential method for oral insulin delivery.

  8. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles.

    PubMed

    Bhakta, Snehasis; Dixit, Chandra K; Bist, Itti; Jalil, Karim Abdel; Suib, Steven L; Rusling, James F

    2016-07-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications.

  9. Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil

    PubMed Central

    Brandl, Ferdinand; Bertrand, Nicolas; Lima, Eliana Martins; Langer, Robert

    2015-01-01

    Nanotechnology may offer fast and effective solutions for environmental clean-up. Herein, amphiphilic diblock copolymers are used to develop a platform of photosensitive core-shell nanoparticles. Irradiation with ultraviolet light removes the protective layer responsible for colloidal stability; as a result, the nanoparticles are rapidly and irreversibly converted to macroscopic aggregates. The associated phase separation allows measuring the partitioning of small molecules between the aqueous phase and nanoparticles; data suggests that interactions are enhanced by decreasing the particle size. Adsorption onto nanoparticles can be exploited to efficiently remove hydrophobic pollutants from water and contaminated soil. Preliminary in vivo experiments suggest that treatment with photocleavable nanoparticles can significantly reduce the teratogenicity of bisphenol A, triclosan and 17α-ethinyl estradiol without generating obviously toxic byproducts. Small-scale pilot experiments on wastewater, thermal printing paper and contaminated soil demonstrate the applicability of the approach. PMID:26196119

  10. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro

    NASA Astrophysics Data System (ADS)

    Miclăuş, Teodora; Beer, Christiane; Chevallier, Jacques; Scavenius, Carsten; Bochenkov, Vladimir E.; Enghild, Jan J.; Sutherland, Duncan S.

    2016-06-01

    Proteins adsorbing at nanoparticles have been proposed as critical toxicity mediators and are included in ongoing efforts to develop predictive tools for safety assessment. Strongly attached proteins can be isolated, identified and correlated to changes in nanoparticle state, cellular association or toxicity. Weakly attached, rapidly exchanging proteins are also present at nanoparticles, but are difficult to isolate and have hardly been examined. Here we study rapidly exchanging proteins and show for the first time that they have a strong modulatory effect on the biotransformation of silver nanoparticles. Released silver ions, known for their role in particle toxicity, are found to be trapped as silver sulphide nanocrystals within the protein corona at silver nanoparticles in serum-containing cell culture media. The strongly attached corona acts as a site for sulphidation, while the weakly attached proteins reduce nanocrystal formation in a serum-concentration-dependent manner. Sulphidation results in decreased toxicity of Ag NPs.

  11. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    NASA Astrophysics Data System (ADS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-07-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum ( 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate- or

  12. Laser heating of gold nanoparticles: photothermal cancer cell therapy

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Karashanova, D.

    2012-06-01

    In this work an application of gold nanoparticles in in-vitro photothermal cancer cell therapy is demonstrated. Gold nanoparticles with different diameters - 40, 100 and 200 nm are mixed with HeLa cancer cells. After incubation, the nanoparticles are found to be deposited on the cell's membrane or enter into the cells. Pulsed laser radiation at wavelength of 532 nm delivered by Nd:YAG system is used to irradiate the samples. The experiments are performed at fluences in the range from 50 mJ/cm2 up to the established safety standard for medical lasers of 100 mJ/cm2. The cell viability as a function of the particle dimensions and laser fluence is estimated. The nanoparticles heating and cooling dynamics is traced by a numerical model based on heat diffusion equation combined with Mie theory for calculation of the optical properties of nanoparticles. The particle response to the nanosecond laser heating is investigated experimentally as gold colloids are irradiated at different fluences. The threshold fluences for particle's melting and boiling are defined. We show that at the presented fluence range the particles are decomposed into smaller fragments and even short irradiation time leads to decrease of cell viability.

  13. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity.

    PubMed

    Fan, Yuting; Yi, Jiang; Zhang, Yuzhu; Yokoyama, Wallace

    2018-01-15

    Bovine serum albumin (BSA)-dextran conjugate was prepared with glycation. Self-assembly nanoparticles were synthesized with a green, and facile approach. The effects of dry-heating time on the fabrication and characteristics of BSA-dextran conjugate nanoparticles were examined. Stable nanoparticles (<200nm) were formed after only 6h dry-heating because enough dextran was grafted onto the BSA to provide significant steric hindrance. Particle size decreased with the increase of dry-heating time and the lowest particle size (51.2nm) was obtained after 24h dry-heating. The nanoparticles were stable in a wide pH range (pH 2.0-7.0). The particle size of nanoparticles increased to 115nm after curcumin incorporation and was stable even after one-month storage. TEM results demonstrated that curcumin-loaded nanoparticles displayed a spherical structure and were homogeneously dispersed. Curcumin in BSA-dextran nanoparticle showed better stability, compared to free curcumin. In addition, BSA-dextran nanoparticles can improve the cellular antioxidant activity of curcumin in Caco-2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of gold nanoparticles on structure and dynamics of binary Lennard-Jones liquid: Wave-vector space analysis

    NASA Astrophysics Data System (ADS)

    Separdar, L.; Davatolhagh, S.

    2016-12-01

    Molecular dynamics simulations at constant (N , V , T) are used to study the mutual effects of gold nanoparticles on the structure and dynamics of Kob-Andersen binary Lennard-Jones (BLJ) liquid within the framework of mode coupling theory of dynamic glass transition in the reciprocal space. The results show the 'softening' effect of the gold nanoparticles on the liquid dynamics in terms of (i) reducing the mode coupling crossover temperature Tc with respect to that of the bulk BLJ (i.e. BLJ without nanoparticles), (ii) decreasing the time interval of β-relaxation, and (iii) decreasing the exponent γ characterizing the power-law behavior of the α-relaxation time. This softening effect is explained in terms of the van der Waals attraction between the gold atoms comprising the nanoparticle and the BLJ host atoms, such that adsorption of host atoms onto the nanoparticle surface creates more space or free-volume for the other atoms to diffuse. By the same token interactions of purely excluded-volume-type are expected to result in the opposite effect. It is also noted that, much unlike BLJ host particles, the dynamics of gold nanoparticles is much less dependent on the wave-vector and that it exhibits a nearly exponential behavior in the α-relaxation regime.

  15. Molecular simulations of assembly of functionalized spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Seifpour, Arezou

    bidispersity in DNA strand lengths on the thermodynamics and structure of assembly of functionalized nanoparticles. We find that higher G/C content increases cluster dissociation temperature for smaller particles. Placement of G/C block inward along the strand decreases number of neighbors within the assembled cluster. Finally, increased bidispersity in DNA strand lengths leads a distribution of inter-particle distances in the assembled cluster.

  16. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis

    PubMed Central

    Chung, Eun Ji; Tirrell, Matthew

    2016-01-01

    Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows for easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this review, we first describe the pathogenesis of atherosclerosis and the damage caused to vascular tissue, as well as the current diagnostic and treatment options. Then we provide an overview of targeted strategies using self-assembling nanoparticles and include liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, we elaborate on and provide an overview of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles. PMID:26085109

  17. Morphological structure and characteristics of hydroxyapatite/β-cyclodextrin composite nanoparticles synthesized at different conditions.

    PubMed

    Son, Kyoung Dan; Kim, Young-Jin

    2013-01-01

    Hydroxyapatite (HA) nanoparticles were prepared simply in the presence of β-cyclodextrin (β-CD). Mixing sequence of ion precursors during the synthesis of HA greatly affected the morphological structure of nanoparticles. Ca-P showed only the sphere-like structure, however P-Ca exhibited the mixture of spherical and rod-like nanoparticles. The size of nanoparticles slightly decreased with increasing the content of β-CD. The HAs synthesized in the presence of β-CD agglomerated, leading to the formation of aggregates with a size of hundreds nanometer and narrow size distribution. FT-IR, XRD and XRF analyses confirmed that the HA nanoparticles could be synthesized with using β-CD, in which the Ca/P molar ratio was ranged from 1.72 to 1.70. The crystalline phase of these HA nanoparticles was similar to that of the stoichiometric HA. In addition, the content of β-CD contained in the products could influence the initial deposition rate of bone-like apatite on the surface of HA nanoparticles in simulated body fluid (SBF). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.

  19. Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles.

    PubMed

    Naeem, Muhammad; Cao, Jiafu; Choi, Moonjeong; Kim, Woo Seong; Moon, Hyung Ryong; Lee, Bok Luel; Kim, Min-Soo; Jung, Yunjin; Yoo, Jin-Wook

    2015-01-01

    Current colon-targeted drug-delivery approaches for colitis therapy often utilize single pH-triggered systems, which are less reliable due to the variation of gut pH in individuals and in disease conditions. Herein, we prepared budesonide-loaded dual-sensitive nanoparticles using enzyme-sensitive azo-polyurethane and pH-sensitive methacrylate copolymer for the treatment of colitis. The therapeutic potential of the enzyme/pH dual-sensitive nanoparticles was evaluated using a rat colitis model and compared to single pH-triggered nanoparticles. Clinical activity scores, colon/body weight ratios, myeloperoxidase activity, and proinflammatory cytokine levels were markedly decreased by dual-sensitive nanoparticles compared to single pH-triggered nanoparticles and budesonide solution. Moreover, dual-sensitive nanoparticles accumulated selectively in inflamed segments of the colon. In addition, dual-sensitive nanoparticle plasma concentrations were lower than single pH-triggered nanoparticles, and no noticeable in vitro or in vivo toxicity was observed. Our results demonstrate that enzyme/pH dual-sensitive nanoparticles are an effective and safe colon-targeted delivery system for colitis therapy.

  20. Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles

    PubMed Central

    Naeem, Muhammad; Cao, Jiafu; Choi, Moonjeong; Kim, Woo Seong; Moon, Hyung Ryong; Lee, Bok Luel; Kim, Min-Soo; Jung, Yunjin; Yoo, Jin-Wook

    2015-01-01

    Current colon-targeted drug-delivery approaches for colitis therapy often utilize single pH-triggered systems, which are less reliable due to the variation of gut pH in individuals and in disease conditions. Herein, we prepared budesonide-loaded dual-sensitive nanoparticles using enzyme-sensitive azo-polyurethane and pH-sensitive methacrylate copolymer for the treatment of colitis. The therapeutic potential of the enzyme/pH dual-sensitive nanoparticles was evaluated using a rat colitis model and compared to single pH-triggered nanoparticles. Clinical activity scores, colon/body weight ratios, myeloperoxidase activity, and proinflammatory cytokine levels were markedly decreased by dual-sensitive nanoparticles compared to single pH-triggered nanoparticles and budesonide solution. Moreover, dual-sensitive nanoparticles accumulated selectively in inflamed segments of the colon. In addition, dual-sensitive nanoparticle plasma concentrations were lower than single pH-triggered nanoparticles, and no noticeable in vitro or in vivo toxicity was observed. Our results demonstrate that enzyme/pH dual-sensitive nanoparticles are an effective and safe colon-targeted delivery system for colitis therapy. PMID:26213469

  1. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy.

    PubMed

    Montalbán, Mercedes G; Coburn, Jeannine M; Lozano-Pérez, A Abel; Cenis, José L; Víllora, Gloria; Kaplan, David L

    2018-02-24

    Curcumin, extracted from the rhizome of Curcuma longa , has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately -45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery.

  2. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy

    PubMed Central

    Coburn, Jeannine M.; Cenis, José L.; Víllora, Gloria; Kaplan, David L.

    2018-01-01

    Curcumin, extracted from the rhizome of Curcuma longa, has been widely used in medicine for centuries due to its anti-inflammatory, anti-cancer, anti-oxidant and anti-microbial effects. However, its bioavailability during treatments is poor because of its low solubility in water, slow dissolution rate and rapid intestinal metabolism. For these reasons, improving the therapeutic efficiency of curcumin using nanocarriers (e.g., biopolymer nanoparticles) has been a research focus, to foster delivery of the curcumin inside cells due to their small size and large surface area. Silk fibroin from the Bombyx mori silkworm is a biopolymer characterized by its biocompatibility, biodegradability, amphiphilic chemistry, and excellent mechanical properties in various material formats. These features make silk fibroin nanoparticles useful vehicles for delivering therapeutic drugs, such as curcumin. Curcumin-loaded silk fibroin nanoparticles were synthesized using two procedures (physical adsorption and coprecipitation) more scalable than methods previously described using ionic liquids. The results showed that nanoparticle formulations were 155 to 170 nm in diameter with a zeta potential of approximately −45 mV. The curcumin-loaded silk fibroin nanoparticles obtained by both processing methods were cytotoxic to carcinogenic cells, while not decreasing viability of healthy cells. In the case of tumor cells, curcumin-loaded silk fibroin nanoparticles presented higher efficacy in cytotoxicity against neuroblastoma cells than hepatocarcinoma cells. In conclusion, curcumin-loaded silk fibroin nanoparticles constitute a biodegradable and biocompatible delivery system with the potential to treat tumors by local, long-term sustained drug delivery. PMID:29495296

  3. Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites

    NASA Astrophysics Data System (ADS)

    S, Abdul Khalil H. P.; Masri, M.; Saurabh, Chaturbhuj K.; Fazita, M. R. N.; Azniwati, A. A.; Sri Aprilia, N. A.; Rosamah, E.; Dungani, Rudi

    2017-03-01

    In the present study, a successful attempt has been made on enhancing the properties of hybrid kenaf/coconut fibers reinforced vinyl ester composites by incorporating nanofillers obtained from coconut shell. Coconut shells were grinded followed by 30 h of high energy ball milling for the production of nanoparticles. Particle size analyzer demonstrated that the size of 90% of obtained nanoparticles ranged between 15-140 nm. Furthermore, it was observed that the incorporation of coconut shell nanofillers into hybrid composite increased water absorption capacity. Moreover, tensile, flexural, and impact strength increased with the filler loading up to 3 wt.% and thereafter decrease was observed at higher filler concentration. However, elongation at break decreased and thermal stability increased in nanoparticles concentration dependent manner. Morphological analysis of composite with 3% of filler loading showed minimum voids and fiber pull outs and this indicated that the stress was successfully absorbed by the fiber.

  4. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    PubMed Central

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  5. Developmental toxicity and DNA damaging properties of silver nanoparticles in the catfish (Clarias gariepinus).

    PubMed

    Sayed, Alaa El-Din H; Soliman, Hamdy A M

    2017-10-01

    Although, silver nanoparticles (AgNPs) are used in many different products, little information is known about their toxicity in tropical fish embryos. Therefore, this study evaluated the developmental toxicity of waterborne silver nanoparticles in embryos of Clarias gariepinus. Embryos were treated with (0, 25, 50, 75ng/L silver nanoparticles) in water up to 144h postfertilization stage (PFS). Results revealed various morphological malformations including notochord curvature and edema. The mortality rate, malformations, and DNA fragmentation in embryos exposed to silver nanoparticles increased in a dose- and embryonic stage-dependent manner. The total antioxidant capacity and the activity of catalase in embryos exposed to 25ng/L silver nanoparticles were decreased significantly while the total antioxidant capacity and the activity of catalase were insignificantly increased with increasing concentrations in the embryos from 24 to 144 h-PFS exposed to 50 and 75ng/L silver nanoparticles. Lipid peroxidation values showed fluctuations with doses of silver nanoparticles. Histopathological lesions including severely distorted and wrinkled notochord were observed. The current data propose that the toxicity of silver nanoparticles in C. gariepinus embryos is caused by oxidative stress and genotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Morphological changes of the red blood cells treated with metal oxide nanoparticles.

    PubMed

    Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu

    2016-12-01

    The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Photoconductivity induced by nanoparticle segregated grain-boundary in spark plasma sintered BiFeO3

    NASA Astrophysics Data System (ADS)

    Nandy, Subhajit; Mocherla, Pavana S. V.; Sudakar, C.

    2017-05-01

    Photoconductivity studies on spark plasma sintered BiFeO3 samples with two contrasting morphologies, viz., nanoparticle-segregated grain boundary (BFO-AP) and clean grain boundary (BFO-AA), show that their photo-response is largely influenced by the grain boundary defects. Impedance analyses at 300 K and 573 K clearly demarcate the contributions from grain, grain-boundary, and the nanoparticle-segregated grain-boundary conductivities. I-V characteristics under 1 sun illumination show one order of higher conductivity for BFO-AP, whereas conductivity decreases for BFO-AA sample. Larger photocurrent in BFO-AP is attributed to the extra conduction path provided by oxygen vacancies on the nanoparticle surfaces residing at the grain boundaries. Creation of photo-induced traps under illumination and the absence of surface conduction channels in BFO-AA are surmised to result in a decreased conductivity on illumination.

  8. pH-Dependent Antimicrobial Properties of Copper Oxide Nanoparticles in Staphylococcus aureus

    PubMed Central

    Hsueh, Yi-Huang; Tsai, Ping-Han; Lin, Kuen-Song

    2017-01-01

    The antimicrobial properties of CuO nanoparticles have been investigated, but the underlying mechanisms of toxicity remain the subject of debate. Here, we show that CuO nanoparticles exhibit significant toxicity at pH 5 against four different Staphylococcus aureus (S. aureus) strains, including Newman, SA113, USA300, and ATCC6538. At this pH, but not at pH 6 and 7, 5 mM CuO nanoparticles effectively caused reduction of SA113 and Newman cells and caused at least 2 log reduction, whereas 20 mM killed most strains but not USA300. At 5 mM, the nanoparticles were also found to dramatically decrease reductase activity in SA113, Newman, and ATCC6538 cells, but not USA300 cells. In addition, analysis of X-ray absorption near-edge structure and extended X-ray absorption fine structure confirmed that S. aureus cells exposed to CuO nanoparticles contain CuO, indicating that Cu2+ ions released from nanoparticles penetrate bacterial cells and are subsequently oxidized intracellularly to CuO at mildly acidic pH. The CuO nanoparticles were more soluble at pH 5 than at pH 6 and 7. Taken together, the data conclusively show that the toxicity of CuO nanoparticles in mildly acidic pH is caused by Cu2+ release, and that USA300 is more resistant to CuO nanoparticles (NPs) than the other three strains. PMID:28397766

  9. Influence of Poly(vinylpyrrolidone) concentration on properties of silver nanoparticles manufactured by modified thermal treatment method

    PubMed Central

    Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-01-01

    Very narrow and pure silver nanoparticles were synthesized by modified thermal treatment method via oxygen and nitrogen flow in succession. The structural and optical properties of the calcined silver nanoparticles at 600°C with diverse Poly(vinylpyrrolidone) concentrations varied from 2% to 4% were studied by means of different techniques. Fourier transform infrared spectroscopy was used to monitor the production of pure Ag nanoparticles at a given Poly(vinylpyrrolidone) concentration. The X-ray powder diffraction spectra are evidence for the transformation of the amorphous sample at 30°C to the cubic crystalline nanostructures at the calcination temperatures for all Poly(vinylpyrrolidone) concentrations. The transmission electron microscopy images showed the creation of spherical silver nanoparticles with the average particle size decreased by increasing Poly(vinylpyrrolidone) concentrations from 4.61 nm at 2% to 2.49 nm at 4% Poly(vinylpyrrolidone). The optical properties were investigated by means of UV–vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing Poly(vinylpyrrolidone) concentrations from 2.83 eV at 2% Poly(vinylpyrrolidone) to 2.94 eV at 4% Poly(vinylpyrrolidone) due to decreasing particle size. This was due to less attraction between conduction electrons and metal ions for smaller particle size corresponding to fewer atoms that made up the metal nanoparticles. PMID:29045414

  10. Synthesis, characterization and antibacterial property of ZnO:Mg nanoparticles

    NASA Astrophysics Data System (ADS)

    Kompany, A.; Madahi, P.; Shahtahmasbi, N.; Mashreghi, M.

    2012-09-01

    Sol-gel method was successfully used for the synthesis of ZnO nanoparticles (NPs) doped with different concentrations of Mg and the structural, optical and antibacterial properties of the nanoparticles were studied. The synthesized ZnO:Mg powders were characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformation Infrared (FTIR) and UV-Vis spectroscopy. It was revealed that the samples have hexagonal Wurtzite structure, and the phase segregation takes place for 15% Mg content. TEM images show that the average size of the particles is about 50 nm. Also, the antibacterial activities of the nanoparticles were tested against Escherichia coli (Gram negative) cultures. ZnO:Mg nanofluid showed good antibacterial activity which increases with the increase of NPs concentration, and decreases slightly with the amount of Mg.

  11. Effect of gold nanoparticle size on acoustic cavitation using chemical dosimetry method.

    PubMed

    Shanei, Ahmad; Shanei, Mohammad Mahdi

    2017-01-01

    When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. Cavitation can be fatal to cells and is utilized to destroy cancer tumors. The existence of particles in liquid provides nucleation sites for cavitation bubbles and leads to decrease the ultrasonic intensity threshold needed for cavitation onset. In the present investigation, the effect of gold nanoparticles with appropriate amount and size on the acoustic cavitation activity has been shown by determining hydroxyl radicals in terephthalic acid solutions containing 15, 20, 28 and 35nm gold nanoparticles sizes by using 1MHz low level ultrasound. The effect of sonication intensity in hydroxyl radical production was considered. The recorded fluorescence signal in terephthalic acid solutions containing gold nanoparticles was considerably higher than the terephthalic acid solutions without gold nanoparticles at different intensities of ultrasound irradiation. Also, the results showed that the recorded fluorescence signal intensity in terephthalic acid solution containing finer size of gold nanoparticles was lower than the terephthalic acid solutions containing larger size of gold nanoparticles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water)

    NASA Astrophysics Data System (ADS)

    Hoseinzadeh, S.; Sahebi, S. A. R.; Ghasemiasl, R.; Majidian, A. R.

    2017-05-01

    In the present study an experimental set-up is used to investigate the effect of a nanofluid as a working fluid to increase thermosyphon efficiency. Nanofluids are a new form of heat transfer media prepared by suspending metallic and nonmetallic nanoparticles in a base fluid. The nanoparticles added to the fluid enhance the thermal characteristics of the base fluid. The nanofluid used in this experiment was a mixture of water and nanoparticles prepared with 0.5%, 1%, 1.5%, or 2% (v) concentration of silicon carbide (SiC) nanoparticles and 1%, 2% and 3% (v) concentration of aluminum oxide (Al2O3) in an ultrasonic homogenizer. The results indicate that the SiC/water and Al2O3/water nanofluids increase the thermosyphon performance. The efficiency of the thermosyphon using the 2% (v) (SiC) nanoparticles nanofluid was 1.11 times that of pure water and the highest efficiency occurs for the 3% (Al2O3) nanoparticle concentration with input power of 300 W. The decrease in the temperature difference between the condenser and evaporator confirms these enhancements.

  13. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.

    PubMed

    Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.

    PubMed

    Esfandiari, Nadia; Ghoreishi, Seyyed M

    2015-12-01

    The micronization of ampicillin via supercritical gas antisolvent (GAS) process was studied. The particle size distribution was significantly controlled with effective GAS variables such as initial solute concentration, temperature, pressure, and antisolvent addition rate. The effect of each variable in three levels was investigated. The precipitated particles were analyzed with scanning electron microscopy (SEM) and Zetasizer Nano ZS. The results indicated that decreasing the temperature and initial solute concentration while increasing the antisolvent rate and pressure led to a decrease in ampicillin particle size. The mean particle size of ampicillin was obtained in the range of 220-430 nm by varying the GAS effective variables. The purity of GAS-synthesized ampicillin nanoparticles was analyzed in contrast to unprocessed ampicillin by FTIR and HPLC. The results indicated that the structure of the ampicillin nanoparticles remained unchanged during the GAS process.

  15. The Interaction between Zein and Lecithin in Ethanol-Water Solution and Characterization of Zein-Lecithin Composite Colloidal Nanoparticles.

    PubMed

    Dai, Lei; Sun, Cuixia; Wang, Di; Gao, Yanxiang

    2016-01-01

    Lecithin, a naturally small molecular surfactant, which is widely used in the food industry, can delay aging, enhance memory, prevent and treat diabetes. The interaction between zein and soy lecithin with different mass ratios (20:1, 10:1, 5:1, 3:1, 2:1, 1:1 and 1:2) in ethanol-water solution and characterisation of zein and lecithin composite colloidal nanoparticles prepared by antisolvent co-precipitation method were investigated. The mean size of zein-lecithin composite colloidal nanoparticles was firstly increased with the rise of lecithin concentration and then siginificantly decreased. The nanoparticles at the zein to lecithin mass ratio of 5:1 had the largest particle size (263 nm), indicating that zein and lecithin formed composite colloidal nanoparticles, which might aggregate due to the enhanced interaction at a higher proportion of lecithin. Continuing to increase lecithin concentration, the zein-lecithin nanoparticles possibly formed a reverse micelle-like or a vesicle-like structure with zein in the core, which prevented the formation of nanoparticle aggregates and decreased the size of composite nanoparticles. The presence of lecithin significantly reduced the ζ-potential of zein-lecithin composite colloidal nanoparticles. The interaction between zein and lecithin enhanced the intensity of the fluorescence emission of zein in ethanol-water solution. The secondary structure of zein was also changed by the addition of lecithin. Differential scanning calorimetry thermograms revealed that the thermal stability of zein-lecithin nanoparticles was enhanced with the rise of lecithin level. The composite nanoparticles were relatively stable to elevated ionic strengths. Possible interaction mechanism between zein and lecithin was proposed. These findings would help further understand the theory of the interaction between the alcohol soluble protein and the natural small molecular surfactant. The composite colloidal nanoparticles formed in this study can

  16. Anticancer redox activity of gallium nanoparticles accompanied with low dose of gamma radiation in female mice.

    PubMed

    Kandil, Eman I; El-Sonbaty, Sawsan M; Moawed, Fatma Sm; Khedr, Ola Ms

    2018-03-01

    Guided treatments with nanoparticles and radiotherapy are a new approach in cancer therapy. This study evaluated the beneficial antitumor effects of γ-radiation together with gallium nanoparticles against solid Ehrlich carcinoma in female mice. Gallium nanoparticles were biologically synthesized using Lactobacillus helveticus cells. Transmission electron microscopy showed gallium nanoparticles with size range of 8-20 nm. In vitro study of gallium nanoparticles on MCF-7 revealed IC 50 of 8.0 μg. Gallium nanoparticles (0.1 mg/kg body weight) were injected intraperitoneally daily on the seventh day of Ehrlich carcinoma cells inoculation. Whole-body γ-radiation was carried out at a single dose of 0.25 Gy on eighth day after tumor inoculation. Biochemical analysis showed that solid Ehrlich carcinoma induced a significant increase in alanine aminotransferase activity and creatinine level in serum, calcium, and iron concentrations in liver tissue compared to normal control. Treatment of Ehrlich carcinoma-bearing mice with gallium nanoparticles and/or low dose of γ-radiation exposure significantly reduced tumor volume, decreased alanine aminotransferase and creatinine levels in serum, increased lipid peroxidation, and decreased glutathione content as well as calcium and iron concentrations in liver and tumor tissues with intense DNA fragmentation accompanied compared to untreated tumor cells. Moreover, mitochondria in the treated groups displayed a significant increase in Na+/K+-ATPase, complexes II and III with significant reduction in CYP450 gene expression, which may indicate a synergistic effect of gallium nanoparticles and/or low dose of γ-radiation combination against Ehrlich carcinoma injury, and this results were well appreciated with the histopathological findings in the tumor tissue. We conclude that combined treatment of gallium nanoparticles and low dose of gamma-radiation resulted in suppressive induction of cytotoxic effects on cancer cells.

  17. Research into the rationality and the application scopes of different melting models of nanoparticles

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang; Duan, Huijuan

    2017-07-01

    A rational melting model is indispensable to address the fundamental issue regarding the melting of nanoparticles. To ascertain the rationality and the application scopes of the three classical thermodynamic models, namely Pawlow, Rie, and Reiss melting models, corresponding accurate equations for size-dependent melting temperature of nanoparticles were derived. Comparison of the melting temperatures of Au, Al, and Sn nanoparticles calculated by the accurate equations with available experimental results demonstrates that both Reiss and Rie melting models are rational and capable of accurately describing the melting behaviors of nanoparticles at different melting stages. The former (surface pre-melting) is applicable to the stage from initial melting to critical thickness of liquid shell, while the latter (solid particles surrounded by a great deal of liquid) from the critical thickness to complete melting. The melting temperatures calculated by the accurate equation based on Reiss melting model are in good agreement with experimental results within the whole size range of calculation compared with those by other theoretical models. In addition, the critical thickness of liquid shell is found to decrease with particle size decreasing and presents a linear variation with particle size. The accurate thermodynamic equations based on Reiss and Rie melting models enable us to quantitatively and conveniently predict and explain the melting behaviors of nanoparticles at all size range in the whole melting process. [Figure not available: see fulltext.

  18. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-06-01

    This paper is dedicated to investigate the effect of Co2+ ions in magnetite Fe3O4 nano-particles with stoichiometric formula CoxFe3-xO4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV-Vis Spectrometer (UV-Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of CoxFe3-xO4 nanoparticles with the major band at 887 cm-1, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co2+ content. The decrease in enthalpy with increase in Co2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co2+ content in B-site of Fe3O4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of CoxFe3-xO4 nanoparticles are significantly increased. From UV-Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  19. Sorption, Solubility, Bond Strength and Hardness of Denture Soft Lining Incorporated with Silver Nanoparticles

    PubMed Central

    Chladek, Grzegorz; Kasperski, Jacek; Barszczewska-Rybarek, Izabela; Żmudzki, Jarosław

    2013-01-01

    The colonization of denture soft lining material by oral fungi can result in infections and stomatitis of oral tissues. In this study, 0 ppm to 200 ppm of silver nanoparticles was incorporated as an antimicrobial agent into composites to reduce the microbial colonization of lining materials. The effect of silver nanoparticle incorporation into a soft lining material on the sorption, solubility, hardness (on the Shore A scale) and tensile bond strength of the composites was investigated. The data were statistically analyzed using two-way ANOVA and Newman-Keuls post hoc tests or the chi-square Pearson test at the p < 0.05 level. An increase in the nanosilver concentration resulted in a decrease in hardness, an increase in sorption and solubility, a decrease in bond strength and a change in the failure type of the samples. The best combination of bond strength, sorption, solubility and hardness with antifungal efficacy was achieved for silver nanoparticle concentrations ranging from 20 ppm to 40 ppm. These composites did not show properties worse than those of the material without silver nanoparticles and exhibited enhanced in vitro antifungal efficiency. PMID:23271371

  20. Polyaspartic acid functionalized gold nanoparticles for tumor targeted doxorubicin delivery.

    PubMed

    Khandekar, Sameera V; Kulkarni, M G; Devarajan, Padma V

    2014-01-01

    decrease of body weight of 35% indicating severe toxicity with doxorubicin solution as compared to only 20% with gradual recovery after day 30 in case of doxorubicin loaded polyaspartic acid gold nanoparticles confirmed their lower toxicity and enhanced efficacy.

  1. PEG-Stabilized Core–Shell Surface-Imprinted Nanoparticles

    PubMed Central

    Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey

    2016-01-01

    Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging. PMID:23855734

  2. PEG-stabilized core-shell surface-imprinted nanoparticles.

    PubMed

    Moczko, Ewa; Guerreiro, Antonio; Piletska, Elena; Piletsky, Sergey

    2013-08-06

    Here we present a simple technique to produce target-specific molecularly imprinted polymeric nanoparticles (MIP NPs) and their surface modification in order to prevent the aggregation process that is ever-present in most nanomaterial suspensions/dispersions. Specifically, we studied the influence of surface modification of MIP NPs with polymerizable poly(ethylene glycol) on their degree of stability in water, in phosphate buffer, and in the presence of serum proteins. Grafting a polymer shell on the surface of nanoparticles decreases the surface energy, enhances the polarity, and as a result improves the dispersibility, storage, and colloidal stability as compared to those of core (unmodified) particles. Because of the unique solid-phase approach used for synthesis, the binding sites of MIP NPs are protected during grafting, and the recognition properties of nanoparticles are not affected. These results are significant for developing nanomaterials with selective molecular recognition, increased biocompatibility, and stability in solution. Materials synthesized this way have the potential to be used in a variety of technological fields, including in vivo applications such as drug delivery and imaging.

  3. Formation of polymeric and organic nanoparticles by RESS and RESOLV

    NASA Astrophysics Data System (ADS)

    Sane, Amporn

    The goal of this work was to obtain an improved fundamental understanding of the formation of organic and polymeric particles by the rapid expansion of supercritical solutions into either air (RESS) or liquid solvents (RESOLV). Rapid expansion of a fluorinated tetraphenylporphyrin, 5,10,15,20-tetrakis(3,5-bis(trifluoromethyl)phenyl)porphyrin (TBTPP), from supercritical solutions of carbon dioxide was investigated. Surprisingly, true nanoparticles (38 +/- 9 nm) were produced by RESS, independent of porphyrin concentration, degree of saturation, and pre-expansion pressure. Particle size increased in a well-behaved manner with pre-expansion temperature (Tpre). RESOLV of TBTPP-CO2 solutions was investigated both for minimizing particle growth in the free jet and for preventing particle agglomeration. Rapid expansion into an aqueous solution of 0.025 wt % Pluronic F68 produced stable nanoparticle (28 +/- 9 nm) suspensions, independent of the processing conditions selected. The fact that nanoparticles were produced by RESS of TBTPP, vs. the microparticles reported with other organics, can be explained in terms of Friedlander's collision-coalescence theory and the solid-state diffusion coefficient D, which is low for this system because of the high melting point (Tm = 388°C) of TBTPP. The effect of D (which is ∝ exp(-Tm/Tpre)) on RESS was further investigated by using a polymer as the solute, as T m can be varied via the molecular weight without changes in chemical properties. RESS experiments on poly(L-lactide) (PLLA) with two different melting points (Tm = 121°C and Mw = 1340; T m = 162°C and Mw = 6050) in CO2-THF mixtures were performed. Typical PLLA products consisted of both nanoparticles (30--100 nm) and larger (submicron- and micron-sized) particles. The presence of individual nanoparticles suggests that the initially formed precipitates are nano-sized, and that larger particles are obtained because of coalescence effects in the free jet. As with TBTPP

  4. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans

    NASA Astrophysics Data System (ADS)

    Astuti, S. D.; Kharisma, D. H.; Kholimatussa'diah, S.; Zaidan, A. H.

    2017-09-01

    Microbial infectious diseases and increased resistance to antibiotics become urgent problems requiring immediate solutions. One promising alternative is the using of silver nanoparticles. The combination of the microbial inhibition characteristic of silver nanotechnology enhances the activity of antimicrobial effect. This study aims to determine effectiveness of antifungal silver nanoparticles with the activation of the diode laser on Candida albicans. The samples were culture of Candida albicans. Candida albicans cultures were incubated with silver nanoparticles (concentration 10-4 M) and treated with various exposure time of diode laser (15, 30, 45, 60, 75, 90)s. The suspension was planted on Sabouraud Dextrone Agar sterile media and incubated for 24 hours at temperature of 37oC. The number of colony-forming units per milliliter (CFU/ml) was determined after incubation. The results were log-transformed and analyzed by analysis of variance (ANOVA). In this analysis, P value ≤0.05 was considered to indicate a statistically significant difference. The result of this study showed the quantum yield of silver nanoparticles with diode laser 450 nm was 63,61%. Irradiating with diode laser 450 nm for 75 s resulted in the highest decreasing percentage of Candida albicans viability 65,03%. Irradiating with diode laser 450 nm 75 s with silver nanoparticles resulted in the higest decreasing percentage of Candida albicans viability 84,63%. Therefore, silver nanoparticles activated with diode laser irradiation of 450 nm resulted antifungal effect to Candida albicans viability.

  5. Altering Iron Oxide Nanoparticle Surface Properties Induce Cortical Neuron Cytotoxicity

    PubMed Central

    Rivet, Christopher J.; Yuan, Yuan; Borca-Tasciuc, Diana-Andra; Gilbert, Ryan J.

    2014-01-01

    Superparamagnetic iron oxide nanoparticles, with diameters in the range of a few tens of nanometers, display the ability to cross the blood-brain barrier and are envisioned as diagnostic and therapeutic tools in neuro-medicine. However, despite the numerous applications being explored, insufficient information is available on their potential toxic effect on neurons. While iron oxide has been shown to pose a decreased risk of toxicity, surface functionalization, often employed for targeted delivery, can significantly alter the biological response. This aspect is addressed in the present study, which investigates the response of primary cortical neurons to iron oxide nanoparticles with coatings frequently used in biomedical applications: aminosilane, dextran, and polydimethylamine. Prior to administering the particles to neuronal cultures, each particle type was thoroughly characterized to assess the (1) size of individual nanoparticles, (2) concentration of the particles in solution and (3) agglomeration size and morphology. Culture results show that polydimethylamine functionalized nanoparticles induce cell death at all concentrations tested by swift and complete removal of the plasma membrane. Aminosilane coated particles affected metabolic activity only at higher concentrations while leaving the membrane intact and dextran-coated nanoparticles partially altered viability at higher concentrations. These findings suggest that nanoparticle characterization and primary cell-based cytotoxicity evaluation should be completed prior to applying nanomaterials to the nervous system. PMID:22111864

  6. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  7. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  8. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  9. Acceleration of Wound Healing by α-gal Nanoparticles Interacting with the Natural Anti-Gal Antibody

    PubMed Central

    Galili, Uri

    2015-01-01

    Application of α-gal nanoparticles to wounds and burns induces accelerated healing by harnessing the natural anti-Gal antibody which constitutes ~1% of human immunoglobulins. α-gal nanoparticles present multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R), the carbohydrate ligand of anti-Gal. Studied α-gal nanoparticles were comprised of glycolipids with α-gal epitopes, phospholipids, and cholesterol. Binding of anti-Gal to α-gal nanoparticles in wounds activates the complement cascade, resulting in formation of chemotactic complement cleavage peptides that induce rapid recruitment of many macrophages. The Fc/Fcγ receptors interaction between anti-Gal coating α-gal nanoparticles and the recruited macrophages activates macrophages to produce cytokines/growth factors that promote wound healing and recruit stem cells. Studies of wound healing by α-gal nanoparticles were feasible in α1,3galactosyltransferase knockout mice and pigs. In contrast to other nonprimate mammals, these mice and pigs lack the α-gal epitope, and thus they are not immunotolerant to it and produce anti-Gal. Treatment of skin wounds and burns with α-gal nanoparticles resulted in 40–60% decrease in healing time in comparison with control wounds treated with saline. This accelerated healing is associated with increased recruitment of macrophages and extensive angiogenesis in wounds, faster regrowth of epidermis, and regeneration of the dermis. The accelerated healing further decreases and may completely eliminate fibrosis and scar formation in wounds. Since healing of internal injuries is mediated by mechanisms similar to those in external wound healing, it is suggested that α-gal nanoparticles treatment may also improve regeneration and restoration of biological function following internal injuries such as surgical incisions, myocardial ischemia following infarction, and nerve injuries. PMID:25922849

  10. Aqueous Assembly of Oxide and Fluoride Nanoparticles into 3D Microassemblies.

    PubMed

    Cui, Shanying; Guan, Xin N; Ghantous, Eliana; Vajo, John J; Lucas, Matthew; Hsiao, Ming-Siao; Drummy, Lawrence F; Collins, Joshua; Juhl, Abigail; Roper, Christopher S; Gross, Adam F

    2018-06-28

    We demonstrate rapid [∼mm 3 /(h·L)] organic ligand-free self-assembly of three-dimensional, >50 μm single-domain microassemblies containing up to 10 7 individual aligned nanoparticles through a scalable aqueous process. Organization and alignment of aqueous solution-dispersed nanoparticles are induced by decreasing their pH-dependent surface charge without organic ligands, which could be temperature-sensitive or infrared light absorbing. This process is exhibited by transforming both dispersed iron oxide hydroxide nanorods and lithium yttrium fluoride nanoparticles into high packing density microassemblies. The approach is generalizable to nanomaterials with pH-dependent surface charge (e.g., oxides, fluorides, and sulfides) for applications requiring long-range alignment of nanostructures as well as high packing density.

  11. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  12. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity

    DOE PAGES

    Suchomel, Petr; Kvitek, Libor; Prucek, Robert; ...

    2018-03-15

    The controlled preparation of Au nanoparticles (NPs) in the size range of 6 to 22 nm is explored in this study. The Au NPs were prepared by the reduction of tetrachloroauric acid using maltose in the presence of nonionic surfactant Tween 80 at various concentrations to control the size of the resulting Au NPs. With increasing concentration of Tween 80 a decrease in the size of produced Au NPs was observed, along with a significant decrease in their size distribution. The size-dependent catalytic activity of the synthesized Au NPs was tested in the reduction of 4-nitrophenol with sodium borohydride, resultingmore » in increasing catalytic activity with decreasing size of the prepared nanoparticles. Eley-Rideal catalytic mechanism emerges as the more probable, in contrary to the Langmuir-Hinshelwood mechanism reported for other noble metal nanocatalysts.« less

  13. Facile synthesis of size-tunable gold nanoparticles by pomegranate (Punica granatum) leaf extract: Applications in arsenate sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok

    Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl{sub 4}), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphousmore » layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed.« less

  14. The effect of zinc oxide nanoparticles deposition for friction reduction on orthodontic wires

    PubMed Central

    Kachoei, Mojghan; Eskandarinejad, Faranak; Divband, Baharak; Khatamian, Masumeh

    2013-01-01

    Background: In the sliding technique, the reduced frictional forces are associated with rapid tooth movements and better control of the anchorage. Recently, wire coating with different nanoparticles has been proposed to decrease frictional forces. This in vitro study was carried out to coat stainless steel (SS) wires with zinc oxide (ZnO) nanoparticles in order to determine the effect of this coating on friction between wires and orthodontic brackets. Materials and Methods: Eighty 0.016 inch and 0.019 inch × 0.025 inch SS wires with and without ZnO nanoparticles were used in 80 orthodontic brackets (0.018 and 0.022 systems). The coated wires were analyzed by SEM and X-Ray diffraction (XRD) observations. Kinetic friction between the wires and orthodontic brackets were calculated using a universal testing machine. Frictional forces were statistically analyzed using three-way ANOVA, one-way ANOVA, Student's t-test and Tukey multiple comparison tests. Results: Coating with ZnO nanoparticles significantly influenced frictional force values (P < 0.0001). In 0.019 inch × 0.025 inch wires, the frictional forces were 1.6912 ± 0.18868 and 3.4485 ± 0.32389 N in the coated and uncoated wires respectively, (51% reductions). In the 0.016 inch wires, the friction values were estimated to be 1.5668 ± 0.10703 and 2.56 ± 0.34008 N in the coated and uncoated conditions, respectively, (39% reductions). Conclusion: Due to the positive effects of ZnO nanoparticle coating on decreasing frictional forces, these nanoparticles might offer a novel opportunity to significantly reduce friction during tooth movement. PMID:24130586

  15. Biosynthesis of Cr(III) nanoparticles from electroplating wastewater using chromium-resistant Bacillus subtilis and its cytotoxicity and antibacterial activity.

    PubMed

    Kanakalakshmi, A; Janaki, V; Shanthi, K; Kamala-Kannan, S

    2017-11-01

    The aim of this study was to synthesize and characterize Cr(III) nanoparticles using wastewater from electroplating industries and chromium-resistant Bacillus subtilis. Formation of Cr(III) nanoparticles was confirmed by UV-visible (UV-Vis) spectroscopy at 300 nm. The size of the nanoparticles varied from 4 to 50 nm and energy dispersive spectroscopy profile shows strong Cr peak approximately at 4.45 and 5.2 keV. The nanoparticles inhibited the growth of pathogenic bacteria Staphylococcus aureus and Escherichia coli. The cytotoxic effect of the synthesized Cr(III) nanoparticle was studied using HEK 293 cells, and the cell viability was found to decrease with increasing concentration of Cr(III) nanoparticles.

  16. Strong coupling-like phenomenon in single metallic nanoparticle embedded in molecular J-aggregates

    NASA Astrophysics Data System (ADS)

    Feng, Xin; Wang, Chen; Ma, Hongjing; Chen, Yuanyuan; Duan, Gaoyan; Zhang, Pengfei; Song, Gang

    2018-02-01

    Strong coupling-like phenomenon between plasmonic cavities and emitters provides a new way to realize the quantum-like effect controlling at microscale/nanoscale. We investigate the strong coupling-like phenomenon in the structure of single metallic nanoparticle embedded in molecular J-aggregates by the classical simulation method and show that the size of the metallic nanoparticle and the oscillator strength of molecular J-aggregates impact the strong coupling-like phenomenon. The strong coupling-like phenomenon is induced by the interactions between two dipoles formed by the metallic nanoparticle and molecular J-aggregates or the interactions between the dipole generated from molecular J-aggregates and the quadrupole generated from the metallic nanoparticle. The strong coupling-like phenomenon appears evidently with the increase in oscillator strength of molecular J-aggregates. The detuning energy linearly decreases with the increase in radius of the metallic nanoparticle. Our structure has potential applications in quantum networks, quantum key distributions and so on.

  17. Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide Releasing Silica Nanoparticles

    PubMed Central

    Carpenter, Alexis W.; Slomberg, Danielle L.; Rao, Kavitha S.; Schoenfisch, Mark H.

    2011-01-01

    A reverse microemulsion synthesis was used to prepare amine functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with identical amine concentrations. The resulting hybrid nanoparticles, consisting of N-(6 aminohexyl) aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of nitric oxide (NO) released constant for each particle size. The bactericidal efficacy of the NO releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO releasing particles exhibited toxicity towards L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size. PMID:21842899

  18. Effect of cobalt doping on structural and optical properties of ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, J.; Chanda, A., E-mail: anupamamatsc@gmail.com; Gupta, S.

    Cobalt doped ZnO nanoparticles of uniform sizes were prepared by a chemical method using ZnCl{sub 2} and NaOH as the source materials. The formation of Co-doped ZnO nanoparticles was confirmed by transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) studies. The optical properties of obtained products were examined using room temperature UV-visible and FTIR spectroscopy. SAED of cobalt doped ZnO nanoparticles shows homogeneous distribution of nanoparticles with hexagonal structure. The HRTEM image of the Co-doped ZnO nanoparticles reveals a clear lattice spacing of 0.52 nm corresponding to the interplanar spacing of wurtzite ZnO (002) plane.more » The absorption band at 857 cm{sup −1} in FTIR spectra confirmed the tetrahedral coordination of Zn and a shift of absorption peak to shorter wavelength region and decrease in absorbance with Co doping.is observed in UV-Visible spectra.« less

  19. Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis.

    PubMed

    Erdel, Fabian; Rippe, Karsten

    2012-11-20

    Interactions between nuclear proteins and chromatin frequently occur on the time scale of seconds and below. These transient binding events are important for the fast identification of target sites as concluded from our previous analysis of the human chromatin remodelers Snf2H and Snf2L from the imitation switch (ISWI) family. Both ATP-driven molecular motor proteins are able to translocate nucleosomes along the DNA and appear to exert this activity only on a small number of nucleosomes to which they bind more tightly. For mechanistic studies, one needs to distinguish such translocation reactions or other long-lived interactions associated with conformational changes and/or ATP hydrolysis from nonproductive chromatin sampling during target search. These processes can be separated by measuring the duration of nucleosome binding with subsecond time resolution. To reach this goal, we have developed a fluorescence bleaching technique termed pixel-wise photobleaching profile evolution analysis (3PEA). It exploits the inherent time structure of confocal microscopy images and yields millisecond resolution. 3PEA represents a generally applicable approach to quantitate transient chromatin interactions in the 2- to 500-ms time regime within only ∼1 s needed for a measurement. The green autofluorescent protein (GFP)-tagged Snf2H and Snf2L and the inactive Snf2L+13 splice variant were studied by 3PEA in comparison to the isolated GFP or red autofluorescent protein and a GFP pentamer. Our results reveal that the residence time for transient chromatin binding of Snf2H and Snf2L is <2 ms, and strongly support the view that ISWI-type remodelers are only rarely active in unperturbed cells during G1 phase.

  20. Random-Walk Model of Diffusion in Three Dimensions in Brain Extracellular Space: Comparison with Microfiberoptic Photobleaching Measurements

    PubMed Central

    Jin, Songwan; Zador, Zsolt; Verkman, A. S.

    2008-01-01

    Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises ∼20% of brain parenchymal volume and contains cell-cell gaps ∼50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (α), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (Do/D). Experimental Do/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. Do/D for the small solute calcein in different regions of brain was in the range 3.0–4.1, and increased with brain cell swelling after water intoxication. Do/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured Do/D using realistic α, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted Do/D for different solute sizes. Also, the modeling showed unanticipated effects on Do/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS. PMID:18469079

  1. Random-walk model of diffusion in three dimensions in brain extracellular space: comparison with microfiberoptic photobleaching measurements.

    PubMed

    Jin, Songwan; Zador, Zsolt; Verkman, A S

    2008-08-01

    Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises approximately 20% of brain parenchymal volume and contains cell-cell gaps approximately 50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (alpha), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (D(o)/D). Experimental D(o)/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. D(o)/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. D(o)/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured D(o)/D using realistic alpha, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted D(o)/D for different solute sizes. Also, the modeling showed unanticipated effects on D(o)/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.

  2. Effects of para-substituents of styrene derivatives on their chemical reactivity on platinum nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Peiguang; Chen, Limei; Deming, Christopher P.; Lu, Jia-En; Bonny, Lewis W.; Chen, Shaowei

    2016-06-01

    Stable platinum nanoparticles were successfully prepared by the self-assembly of para-substituted styrene derivatives onto the platinum surfaces as a result of platinum-catalyzed dehydrogenation and transformation of the vinyl groups to the acetylene ones, forming platinum-vinylidene/-acetylide interfacial bonds. Transmission electron microscopic measurements showed that the nanoparticles were well dispersed without apparent aggregation, suggesting sufficient protection of the nanoparticles by the organic capping ligands, and the average core diameter was estimated to be 2.0 +/- 0.3 nm, 1.3 +/- 0.2 nm, and 1.1 +/- 0.2 nm for the nanoparticles capped with 4-tert-butylstyrene, 4-methoxystyrene, and 4-(trifluoromethyl)styrene, respectively, as a result of the decreasing rate of dehydrogenation with the increasing Taft (polar) constant of the para-substituents. Importantly, the resulting nanoparticles exhibited unique photoluminescence, where an increase of the Hammett constant of the para-substituents corresponded to a blue-shift of the photoluminescence emission, suggesting an enlargement of the HOMO-LUMO band gap of the nanoparticle-bound acetylene moieties. Furthermore, the resulting nanoparticles exhibited apparent electrocatalytic activity towards oxygen reduction in acidic media, with the best performance among the series of samples observed with the 4-tert-butylstyrene-capped nanoparticles due to an optimal combination of the nanoparticle core size and ligand effects on the bonding interactions between platinum and oxygen species.Stable platinum nanoparticles were successfully prepared by the self-assembly of para-substituted styrene derivatives onto the platinum surfaces as a result of platinum-catalyzed dehydrogenation and transformation of the vinyl groups to the acetylene ones, forming platinum-vinylidene/-acetylide interfacial bonds. Transmission electron microscopic measurements showed that the nanoparticles were well dispersed without apparent

  3. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    PubMed

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  4. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    NASA Astrophysics Data System (ADS)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  5. Effect of the size of silver nanoparticles on SERS signal enhancement

    NASA Astrophysics Data System (ADS)

    He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.

    2017-08-01

    The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.

  6. Effect of Zinc and Copper Nanoparticles on Drought Resistance of Wheat Seedlings

    NASA Astrophysics Data System (ADS)

    Taran, Nataliya; Storozhenko, Volodymyr; Svietlova, Nataliia; Batsmanova, Ludmila; Shvartau, Viktor; Kovalenko, Mariia

    2017-01-01

    The effect of a colloidal solution of Cu,Zn-nanoparticles on pro-oxidative/antioxidative balance and content of photosynthetic pigments and leaf area of winter wheat plants of steppe (Acveduc) and forest-steppe (Stolichna) ecotypes was investigated in drought conditions. It has been shown that Cu,Zn-nanoparticles decreased the negative effect of drought action upon plants of steppe ecotype Acveduc. In particular, increased activity of antioxidative enzymes reduced the level of accumulation of thiobarbituric acid reactive substances (TBARS) and stabilized the content of photosynthetic pigments and increased relative water content in leaves. Colloidal solution of Cu,Zn-nanoparticles had less significant influence on these indexes in seedlings of the Stolichna variety under drought.

  7. Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  8. Ligands Exchange Process on Gold Nanoparticles in Acetone Solution

    NASA Astrophysics Data System (ADS)

    Hu, C. L.; Mu, Y. Y.; Bian, Z. C.; Luo, Z. H.; Luo, K.; Huang, A. Z.

    2018-05-01

    The ligands exchange process on gold nanoparticles (GNPs) was proceeded by using hydrophobic group (PPh3) and hydrophilic group (THPO) in acetone solution. The FTIR and XPS results demonstrated that part of THPO was replaced by PPh3 which was dissolved in polar solution (acetone); the results were in accordance with the electrochemical analysis where the differential capacity decreased with increasing exchange time. After 12 h, the exchange process terminated and the final ratio of PPh3 and THPO was about 1.4: 1. This ratio remained unchanged although the PPh3 and THPO modified GNPs re-dispersed in the PPh3 acetone solution demonstrating the stable adsorption of both ligands after exchanging for 12 h. The TEM images showed that the gold nanoparticles were self-assembled from scattered to arranged morphology due to the existence of hydrophilic and hydrophobic ligands and led to Janus gold nanoparticles.

  9. Study of changes induced in thermal properties of starch by incorporating Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena, Sharma, Annu

    2018-05-01

    This report presents the study of thermal properties of starch and Ag-starch nanocomposite films fabricated via chemical reduction method followed by solution casting. Thermo gravimetric analysis was utilized to investigate the effect of varying concentration of Ag nanoparticles on thermal stability and activation energy of starch. Activation energy that is the energy required for initialization of degradation process of starch comes out to be 238.9 kJ/mol which decreases to a value of 174.6 kJ/mol for Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Moreover the thermal stability of starch increases with the increasing concentration of Ag nanoparticles.

  10. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles.

    PubMed

    Chong, Eui-Seok; Hwang, Gi Byoung; Nho, Chu Won; Kwon, Bo Mi; Lee, Jung Eun; Seo, Sungchul; Bae, Gwi-Nam; Jung, Jae Hee

    2013-02-01

    Airborne biological particles containing viruses, bacteria, and/or fungi can be toxic and cause infections and allergy symptoms. Recently, natural materials such as tea tree oil and Sophora flavescens have shown promising antimicrobial activity when applied as air filter media. Although many of these studies demonstrated excellent antimicrobial efficacy, only a few of them considered external environmental effects such as the surrounding humidity, temperature, and natural degradation of chemicals, all of which can affect the antimicrobial performance of these natural materials. In this study, we investigated the antimicrobial durability of air filters containing airborne nanoparticles from S. flavescens for 5 months. Antimicrobial tests and quantitative chemical analyses were performed every 30 days. Morphological changes in the nanoparticles were also evaluated by scanning electron microscopy. The major antimicrobial compounds remained stable and active for ~90 days at room temperature. After about 90 days, the quantities of major antimicrobial compounds decreased noticeably with a consequent decrease in antimicrobial activity. These results are promising for the implementation of new technologies using natural antimicrobial products and provide useful information regarding the average life expectancy of antimicrobial filters using nanoparticles of S. flavescens. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle.

    PubMed

    Saptarshi, Shruti R; Duschl, Albert; Lopata, Andreas L

    2013-07-19

    Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.

  12. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.

    PubMed

    Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan

    2017-01-18

    Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.

  13. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  14. Effect of blending and nanoparticles on the ionic conductivity of solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2018-05-01

    In the present work, a polymer electrolyte blend containing polymers Poly ethylene oxide (PEO) and Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared. The polymer blend was complexed with potassium trifluoromethanesulfonate (KCF3SO3), and titanium oxide nanoparticles (TiO2) (10nm size) were dispersed in to the complex at different weight percentages. The conductivity due to ions in the blend is determined by Ac impedance measurements in the frequency range of 10Hz-1MHz. The nano composite polymer blend containing 5wt% of TiO2 shows a conductivity of 7.95×10-5Scm-1, which is almost 1.5 orders more than polymer electrolyte with PEO as a polymer. XRD studies show a decrease in the coherence length of XRD peaks on addition of nanoparticles, which is due to increase the amorphous phase in the systems. Temperature dependence conductivity studies of the systems shows that, activation energy decreases with increase in the percentage of nanoparticles in the blend.

  15. Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.

    PubMed

    Wall, Matthew A; Harmsen, Stefan; Pal, Soumik; Zhang, Lihua; Arianna, Gianluca; Lombardi, John R; Drain, Charles Michael; Kircher, Moritz F

    2017-06-01

    Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape-directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface-enhanced Raman scattering. Here, a surfactant- and polymer-free approach to achieving high-performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant-free media is developed and it is applied to identify strategies for shape-controlled syntheses. Using the results of the analyses, a simple, green-chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface-enhanced Raman scattering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monitoring the Environmental Impact of TiO2 Nanoparticles Using a Plant-Based Sensor Network

    PubMed Central

    Lenaghan, Scott C.; Li, Yuanyuan; Zhang, Hao; Burris, Jason N.; Stewart, C. Neal; Parker, Lynne E.; Zhang, Mingjun

    2016-01-01

    The increased manufacturing of nanoparticles for use in cosmetics, foods, and clothing necessitates the need for an effective system to monitor and evaluate the potential environmental impact of these nanoparticles. The goal of this research was to develop a plant-based sensor network for characterizing, monitoring, and understanding the environmental impact of TiO2 nanoparticles. The network consisted of potted Arabidopsis thaliana with a surrounding water supply, which was monitored by cameras attached to a laptop computer running a machine learning algorithm. Using the proposed plant sensor network, we were able to examine the toxicity of TiO2 nanoparticles in two systems: algae and terrestrial plants. Increased terrestrial plant growth was observed upon introduction of the nanoparticles, whereas algal growth decreased significantly. The proposed system can be further automated for high-throughput screening of nanoparticle toxicity in the environment at multiple trophic levels. The proposed plant-based sensor network could be used for more accurate characterization of the environmental impact of nanomaterials. PMID:28458617

  17. The effect of green synthesized gold nanoparticles on rice germination and roots

    NASA Astrophysics Data System (ADS)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  18. Adsorption of collagen to indium oxide nanoparticles and infrared emissivity study thereon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Yuming; Shan Yun; Sun Yanqing

    Adsorption of collagen to indium oxide nanoparticles was carried out in water-acetone solution at volumetric ratio of 1:1 with pH value varying from 3.2 to 9.3. As indicated by TGA, maximum collagen adsorption to indium oxide nanoparticles occurred at pH of 3.2. It was proposed that noncovalent interactions such as hydrogen bonding, hydrophilic and electrostatic interactions made main contributions to collagen adsorption. The IR emissivity values (8-14 {mu}m) of collagen-adsorbed indium oxide nanoparticles decreased significantly compared to either pure collagen or indium oxide nanoparticles possibly due to the interfacial interactions between collagen and indium oxide nanoparticles. And the lowest infraredmore » emissivity value of 0.587 was obtained at collagen adsorption of 1.94 g/100 g In{sub 2}O{sub 3}. On the chance of improved compatibility with organic adhesives, the chemical activity of adsorbed collagen was further confirmed by grafting copolymerization with methyl methacrylate by formation of polymer shell outside, as evidenced by IR spectrum and transmission electron microscopy.« less

  19. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.

    PubMed

    Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter

    2008-05-01

    The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.

  20. Real-time cellular and molecular dynamics of bi-metallic self-therapeutic nanoparticle in cancer cells

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-02-01

    Since last decades various kinds of nanoparticles have been functionalized to improve their biomedical applications. However, the biological effect of un-modified/non-functionalized bi-metallic magnetic nanoparticles remains under investigated. Herein we demonstrate a multifaceted non-functionalized bi-metallic inorganic Gd-SPIO nanoparticle which passes dual high MRI contrast and can kill the cancer cells through several mechanisms. The results of the present study demonstrate that Gd-SPIO nanoparticles have potential to induce cancer cell death by production of reactive oxygen species and apoptotic events. Furthermore, Gd-SPIO nanoparticles also enhance the expression levels of miRNA-199a and miRNA-181a-7p which results in decreased levels of cancer markers such as C-met, TGF-β and hURP. One very interesting finding of this study reveals side scatter-based real-time analysis of nanoparticle uptake in cancer cells using flow cytometry analysis. In conclusion, this study paves a way for future investigation of un-modified inorganic nanoparticles to purport enhanced therapeutic effect in combination with potential anti-tumor drugs/molecules in cancer cells.

  1. Effect of surfactant on temperature stability of solid lipid nanoparticles studied by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sacheen; Kaur, Jaspreet

    2013-06-01

    Solid lipid nanoparticles are new paradigm of drug delivery system of water insoluble active pharmaceutical ingredient. Paliperidone, an antipsychotic used in treatment of schizophrenia is a water insoluble molecule with low bioavailability was studied. Macrogol glyceride surfactant, bile salt based surfactant and sodium dodecyl sulphate were used to stabilize the solid lipid as dispersed nanoparticles form by adsorbing on the surface of the nanoparticles. Anionic surfactants bile salt and sodium dodecyl sulphate were found to stabilize forming a monomolecular layer of surfactants on the surface of nanoparticles; whereas macrogol glyceride based surfactant have intrusion in the matrix of lipid nanoparticles. So intrusion of macrogol glyceride in matrix was observed by studying the change in size of nanoparticles with respect to temperature with the help of dynamic light scattering. In case of macrogol glyceride size decrease start form 50°C, for bile salt and sodium dodecyl sulphate size deacrease start at 60°C. So that structural disturbance of nanoparticles by the macrogol glyceride on the surface was found maximum as compared to anionic surfactant.

  2. Molecular dynamics study of oil adsorption on the rock surface in presence of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Jamal; Tohidi, Zahra; Jafari, Arezou

    2018-01-01

    Despite the increasing applications of nanoparticles in enhanced oil recovery (EOR), there is not enough information about the mechanisms and microscopic aspects of nanoparticles' effects. Therefore, in this research, molecular dynamics simulation is used to provide the molecular-scale insight for investigation of the silica nanoparticles effects on the oil adsorption on calcite surface for the first time. The surface interacts with the mixture of heptane and decane as the oil phase with mole ratio of 1/2 and silica nanoparticles are dispersed in distilled water with concentration of 7000 ppm. Based on the simulation results, by using nanoparticles surface adsorption behavior have been changed to hydrophilic and the oil molecules departed from the calcite. This result is based on the oil-calcite binding energy calculation which is decreased from 5224 kcal/mol to 3278 kcal/mol by using silica nanoparticles. In addition, calculation of radial distribution functions showed that after adding silica nanoparticles, the picks fall which means increasing in average distance between oil and calcite surface.

  3. Surface functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Wydra, Robert John

    Despite recent advances, cancer remains the second leading cause of deaths in the United States. Magnetic nanoparticles have found various applications in cancer research as drug delivery platforms, enhanced contrast agents for improved diagnostic imaging, and the delivery of thermal energy as standalone therapy. Iron oxide nanoparticles absorb the energy from an alternating magnetic field and convert it into heat through Brownian and Neel relaxations. To better utilize magnetic nanoparticles for cancer therapy, surface functionalization is essential for such factors as decreasing cytotoxicity of healthy tissue, extending circulation time, specific targeting of cancer cells, and manage the controlled delivery of therapeutics. In the first study, iron oxide nanoparticles were coated with a poly(ethylene glycol) (PEG) based polymer shell. The PEG coating was selected to prevent protein adsorption and thus improve circulation time and minimize host response to the nanoparticles. Thermal therapy application feasibility was demonstrated in vitro with a thermoablation study on lung carcinoma cells. Building on the thermal therapy demonstration with iron oxide nanoparticles, the second area of work focused on intracellular delivery. Nanoparticles can be appropriately tailored to enter the cell and deliver energy on the nanoscale eliminating individual cancer cells. The underlying mechanism of action is still under study, and we were interested in determining the role of reactive oxygen species (ROS) catalytically generated from the surface of iron oxide nanoparticles in this measured cytotoxicity. When exposed to an AMF, the nanoscale heating effects are capable of enhancing the Fenton-like generation of ROS determined through a methylene blue degradation assay. To deliver this enhanced ROS effect to cells, monosaccharide coated nanoparticles were developed and successfully internalized by colon cancer cell lines. Upon AMF exposure, there was a measured increase in

  4. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose.

    PubMed

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol-gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The molecular dynamic simulation on impact and friction characters of nanofluids with many nanoparticles system

    PubMed Central

    2011-01-01

    Impact and friction model of nanofluid for molecular dynamics simulation was built which consists of two Cu plates and Cu-Ar nanofluid. The Cu-Ar nanofluid model consisted of eight spherical copper nanoparticles with each particle diameter of 4 nm and argon atoms as base liquid. The Lennard-Jones potential function was adopted to deal with the interactions between atoms. Thus motion states and interaction of nanoparticles at different time through impact and friction process could be obtained and friction mechanism of nanofluids could be analyzed. In the friction process, nanoparticles showed motions of rotation and translation, but effected by the interactions of nanoparticles, the rotation of nanoparticles was trapped during the compression process. In this process, agglomeration of nanoparticles was very apparent, with the pressure increasing, the phenomenon became more prominent. The reunited nanoparticles would provide supporting efforts for the whole channel, and in the meantime reduced the contact between two friction surfaces, therefore, strengthened lubrication and decreased friction. In the condition of overlarge positive pressure, the nanoparticles would be crashed and formed particles on atomic level and strayed in base liquid. PMID:21711753

  6. Nanoparticle-wetted surfaces for relays and energy transmission contacts.

    PubMed

    Voevodin, Andrey A; Vaia, Richard A; Patton, Steven T; Diamanti, Steven; Pender, Mark; Yoonessi, Mitra; Brubaker, Jennifer; Hu, Jian-Jun; Sanders, Jeffrey H; Phillips, Benjamin S; MacCuspie, Robert I

    2007-11-01

    Submonolayer coatings of noble-metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single-component materials consisting of a metal nanoparticle core (5-20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic-liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact-retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy.

  7. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    PubMed

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  8. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  9. Biochemical changes in cyanobacteria during the synthesis of silver nanoparticles.

    PubMed

    Cepoi, L; Rudi, L; Chiriac, T; Valuta, A; Zinicovscaia, I; Duca, Gh; Kirkesali, E; Frontasyeva, M; Culicov, O; Pavlov, S; Bobrikov, I

    2015-01-01

    The methods of synthesis of silver (Ag) nanoparticles by the cyanobacteria Spirulina platensis and Nostoc linckia were studied. A complex of biochemical, spectral, and analytical methods was used to characterize biomass and to assess changes in the main components of biomass (proteins, lipids, carbohydrates, and phycobilin) during nanoparticle formation. The size and shape of Ag nanoparticles in the biomass of both types of cyanobacteria were determined. Neutron activation analysis was used to study the accumulation dynamics of the Ag quantity. The analytical results suggest that the major reduction of Ag concentration in solutions and the increase in biomass occur within the first 24 h of experiments. While in this time interval minor changes in the N. linckia and S. platensis biomass took place, a significant reduction of the levels of proteins, carbohydrates, and phycobiliproteins in both cultures and of lipids in S. platensis was observed after 48 h. At the same time, the antiradical activity of the biomass decreased. The obtained results show the necessity of determining the optimal conditions of the interaction between the biomass and the solution containing Ag ions that would allow nanoparticle formation without biomass degradation at the time of Ag nanoparticle formation by the studied cyanobacteria.

  10. Uncaria gambir Roxb. mediated green synthesis of silver nanoparticles using diethanolamine as capping agent

    NASA Astrophysics Data System (ADS)

    Labanni, A.; Zulhadjri; Handayani, D.; Arief, S.

    2018-01-01

    Studies of silver nanoparticles preparation has been developed increasingly due to the wide application in various areas and field, such as medicine, energy, catalysis, and electronic. An environmental-friendly method is needed to fabricate biocompatible silver nanoparticles without producing hazardous materials to the environment. In this study, we synthesized silver nanoparticles by green synthesis method, using leaf extract of gambir (Uncaria gambir Roxb.) as bioreducing agent and aqueous diethanolamine (DEA) solution as capping agents. The AgNO3/DEA molar ratio was varied to investigate the effect of DEA concentration to the properties of silver nanoparticles. The formation of silver nanoparticles was indicated by colour changes to yellowish brown and confirmed by result of UV-Vis spectrophotometer analysis which shown absorption band at 400 to 410 nm. The absorbance was increased to the reaction time of 24 hours, and was decrease by the increasing of DEA concentration in reaction. TEM analysis showed that prepared silver nanoparticles were spherical in shape with diameter of 3,5 - 45,5 nm. The diameter of DEA capped silver nanoparticles was 13 nm, smaller than uncapped silver nanoparticles which was 26 nm It exhibited good stability to time reaction of one month which was potential to be developed in some fields.

  11. An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity

    PubMed Central

    Curtis, Louis T; England, Christopher G; Wu, Min; Lowengrub, John; Frieboes, Hermann B

    2016-01-01

    Aim: Clinical translation of cancer nanotherapy has largely failed due to the infeasibility of optimizing the complex interaction of nano/drug/tumor/patient parameters. We develop an interdisciplinary approach modeling diffusive transport of drug-loaded gold nanoparticles in heterogeneously-vascularized tumors. Materials & methods: Evaluated lung cancer cytotoxicity to paclitaxel/cisplatin using novel two-layer (hexadecanethiol/phosphatidylcholine) and three-layer (with high-density-lipoprotein) nanoparticles. Computer simulations calibrated to in-vitro data simulated nanotherapy of heterogeneously-vascularized tumors. Results: Evaluation of free-drug cytotoxicity between monolayer/spheroid cultures demonstrates a substantial differential, with increased resistance conferred by diffusive transport. Nanoparticles had significantly higher efficacy than free-drug. Simulations of nanotherapy demonstrate 9.5% (cisplatin) and 41.3% (paclitaxel) tumor radius decrease. Conclusion: Interdisciplinary approach evaluating gold nanoparticle cytotoxicity and diffusive transport may provide insight into cancer nanotherapy. PMID:26829163

  12. Analysis of high gradient magnetic field effects on distribution of nanoparticles injected into pulsatile blood stream

    NASA Astrophysics Data System (ADS)

    Reza Habibi, Mohammad; Ghassemi, Majid; Hossien Hamedi, Mohammad

    2012-04-01

    Magnetic nanoparticles are widely used in a wide range of applications including data storage materials, pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro valve applications. The purpose of the current study is to investigate the effect of a non-uniform magnetic field on bio-fluid (blood) with magnetic nanoparticles. The effect of particles as well as mass fraction on flow field and volume concentration is investigated. The governing non-linear differential equations, concentration and Navier-stokes are coupled with the magnetic field. To solve these equations, a finite volume based code is developed and utilized. A real pulsatile velocity is utilized as inlet boundary condition. This velocity is extracted from an actual experimental data. Three percent nanoparticles volume concentration, as drug carrier, is steadily injected in an unsteady, pulsatile and non-Newtonian flow. A power law model is considered for the blood viscosity. The results show that during the systole section of the heartbeat when the blood velocity increases, the magnetic nanoparticles near the magnetic source are washed away. This is due to the sudden increase of the hydrodynamic force, which overcomes the magnetic force. The probability of vein blockage increases when the blood velocity reduces during the diastole time. As nanoparticles velocity injection decreases (longer injection time) the wall shear stress (especially near the injection area) decreases and the retention time of the magnetic nanoparticles in the blood flow increases.

  13. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    PubMed

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microfluidic separation of magnetic nanoparticles on an ordered array of magnetized micropillars

    NASA Astrophysics Data System (ADS)

    Orlandi, G.; Kuzhir, P.; Izmaylov, Y.; Alves Marins, J.; Ezzaier, H.; Robert, L.; Doutre, F.; Noblin, X.; Lomenech, C.; Bossis, G.; Meunier, A.; Sandoz, G.; Zubarev, A.

    2016-06-01

    Microfluidic separation of magnetic particles is based on their capture by magnetized microcollectors while the suspending fluid flows past the microcollectors inside a microchannel. Separation of nanoparticles is often challenging because of strong Brownian motion. Low capture efficiency of nanoparticles limits their applications in bioanalysis. However, at some conditions, magnetic nanoparticles may undergo field-induced aggregation that amplifies the magnetic attractive force proportionally to the aggregate volume and considerably increases nanoparticle capture efficiency. In this paper, we have demonstrated the role of such aggregation on an efficient capture of magnetic nanoparticles (about 80 nm in diameter) in a microfluidic channel equipped with a nickel micropillar array. This array was magnetized by an external uniform magnetic field, of intensity as low as 6-10 kA/m, and experiments were carried out at flow rates ranging between 0.3 and 30 μ L /min . Nanoparticle capture is shown to be mostly governed by the Mason number Ma, while the dipolar coupling parameter α does not exhibit a clear effect in the studied range, 1.4 < α < 4.5. The capture efficiency Λ shows a strongly decreasing Mason number behavior, Λ ∝M a-1.78 within the range 32 ≤ Ma ≤ 3250. We have proposed a simple theoretical model which considers destructible nanoparticle chains and gives the scaling behavior, Λ ∝M a-1.7 , close to the experimental findings.

  15. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging.

    PubMed

    Lu, Jian; Ma, Shuli; Sun, Jiayu; Xia, Chunchao; Liu, Chen; Wang, Zhiyong; Zhao, Xuna; Gao, Fabao; Gong, Qiyong; Song, Bin; Shuai, Xintao; Ai, Hua; Gu, Zhongwei

    2009-05-01

    Iron oxide nanoparticles are effective contrast agents for enhancement of magnetic resonance imaging at tissue, cellular or even molecular levels. In this study, manganese doped superparamagnetic iron oxide (Mn-SPIO) nanoparticles were used to form ultrasensitive MRI contrast agents for liver imaging. Hydrophobic Mn-SPIO nanoparticles are synthesized in organic phase and then transferred into water with the help of block copolymer mPEG-b-PCL. These Mn-SPIO nanoparticles are self-assembled into small clusters (mean diameter approximately 80nm) inside micelles as revealed by transmission electron microscopy. Mn-SPIO nanoparticles inside micelles decrease PCL crystallization temperatures, as verified from differential scanning calorimetry and Fourier transform infrared spectroscopy. The Mn-SPIO based nanocomposites are superparamagnetic at room temperature. At the magnetic field of 1.5T, Mn-SPIO nanoparticle clustering micelles have a T(2) relaxivity of 270 (Mn+Fe)mM(-1)s(-1), which is much higher than single Mn-SPIO nanoparticle containing lipid-PEG micelles. This clustered nanocomposite has brought significant liver contrast with signal intensity changes of -80% at 5min after intravenous administration. The time window for enhanced-MRI can last about 36h with obvious contrast on liver images. This sensitive MRI contrast agent may find applications in identification of small liver lesions, evaluation of the degree of liver cirrhosis, and differential diagnosis of other liver diseases.

  16. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  17. Magnetic resonance of the NiFe2O4 nanoparticles in the gigahertz range

    PubMed Central

    2013-01-01

    We report an adjustable magnetic resonance frequency from 1.45 to 2.54 GHz for NiFe2O4 nanoparticles which were prepared by a sol–gel process. X-ray diffraction and scanning electron microscopy results indicate that the samples are polycrystalline nanoparticles, and the size of the particles increases obviously with the thermal treatment temperature. The consequence of the surface composition suggests that the oxygen defects are present in the nanoparticle surface, and this surface magnetic state can show a strong surface anisotropy. With decreasing size of the particle, the surface magnetic effect is predominant, resulting in an increase of resonance frequency for NiFe2O4 nanoparticles. This finding provides a new route for NiFe2O4 materials that can be used in the gigahertz range. PMID:24083340

  18. Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice.

    PubMed

    Prasannaraj, Govindaraj; Venkatachalam, Perumal

    2017-02-01

    Nanoparticle based drug delivery can rapidly improves the therapeutic potential of anti-cancer agents. The present study focused to evaluate the hepatoprotective activity of silver nanoparticles (AgNPs) synthesized using aqueous extracts of Andrographis paniculata leaves (ApAgNPs) and Semecarpus anacardium nuts (SaAgNPs) against diethylnitrosamine (DEN) induced liver cancer in mice model. The physico-chemical properties of synthesized AgNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectrum, Zeta potential and Dynamic Light Scattering (DLS) analysis. The surface plasmon resonance (SPR) absorption spectrum revealed a strong peak at 420nm for both SaAgNPs and ApAgNPs. FTIR results exhibited the presence of possible functional groups in the synthesized AgNPs. TEM analysis determined the hexagonal, and spherical shape of the synthesized silver nanoparticles. The XRD and SAED pattern confirmed the crystalline nature and crystalline size of the AgNPs. EDX result clearly showed strong silver signals in the range between 2 and 4keV. Zeta potential measurements indicated a sharp peak at -3.93 and -13.8mV for ApAgNPs and SaAgNPs, respectively. DLS measurement expressed the particle size distribution was 70 and 60nm for ApAgNPs and SaAgNPs, respectively. DEN (20mg/kg b.wt.) was subjected to induce liver cancer in mice for 8weeks and treated with biosynthesized silver nanoparticles. Interestingly, ApAgNPs and SaAgNPs treated DEN induced animal groups show a decreased level of aspartate amino transferase (AST), alanine amino transferase (ALT), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) activity and elevated level of catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and superoxide dismutase (SOD) activity over untreated DEN control

  19. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    PubMed Central

    Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto

    2017-01-01

    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging. PMID:28091590

  20. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    NASA Astrophysics Data System (ADS)

    Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto

    2017-01-01

    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging.

  1. Optical Properties and Microstructure of Silver-Copper Nanoparticles Synthesized by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Hirai, Makoto; Kumar, Ashok

    2007-12-01

    Utilizing a pulsed laser deposition (PLD) method, silver-copper (Ag-Cu) nanoparticles have been synthesized by changing the surface area ratio of the target ( S R = S Cu/( S Ag + S Cu)) from 0 to 30%. The peak absorption attributed to surface plasmon resonance (SPR) increased when increasing S R up to 15%, above which it decreased. The peak shifts seem to be induced by the changes in the conductivity and morphology of the Ag-Cu nanoparticles. Additionally, the interplanar spacings of the Ag-Cu nanoparticles prepared at S R = 15% corresponded to the Ag {111}, {200}, {220}, and Cu {111} planes. However, since the interplanar spacings attributed to the Cu {200} and {220} planes were not detected, the Ag-Cu nanoparticles were believed to possess a lattice constant ( a) close not to the Cu phase ( a = 3.615 Å) but to the Ag phase ( a = 4.086 Å). Moreover, confirming the presence of Cu atoms in the nanoparticles using energy dispersive X-ray (EDX) spectra, Ag-Cu nanoparticles may be a solid solution in which Cu atoms partially replace Ag atoms in the fcc structure.

  2. Experimental and theoretical investigation of intratumoral nanoparticle distribution to enhance magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Attaluri, Anilchandra

    Magnetic nanoparticles have gained prominence in recent years for use in clinical applications such as imaging, drug delivery, and hyperthermia. Magnetic nanoparticle hyperthermia is a minimally invasive and effective approach for confined heating in tumors with little collateral damage. One of the major problems in the field of magnetic nanoparticle hyperthermia is irregular heat distribution in tumors which caused repeatable heat distribution quite impossible. This causes under dosage in tumor area and overheating in normal tissue. In this study, we develop a unified approach to understand magnetic nanoparticle distribution and temperature elevations in gel and tumors. A microCT imaging system is first used to visualize and quantify nanoparticle distribution in both tumors and tissue equivalent phantom gels. The microCT based nanoparticle concentration is related to specific absorption rate (SAR) of the nanoparticles and is confirmed by heat distribution experiments in tissue equivalent phantom gels. An optimal infusion protocol is identified to generate controllable and repeatable nanoparticle distribution in tumors. In vivo animal experiments are performed to measure intratumoral temperature elevations in PC3 xenograft tumors implanted in mice during magnetic nanoparticle hyperthermia. The effect of nanofluid injection parameters on the resulted temperature distribution is studied. It shows that the tumor temperatures can be elevated above 50°C using very small amounts of ferrofluid with a relatively low magnetic field. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumors, however, it gives the much required controllability and repeatability when compared to the higher infusion rates. More nanoparticles occupy a smaller volume in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumors. Based on the microCT imaging analyses of nanoparticles in tumors, a mass

  3. Fracturing fluid cleanup by controlled release of enzymes from polyelectrolyte complex nanoparticles

    NASA Astrophysics Data System (ADS)

    Barati Ghahfarokhi, Reza

    activity of enzymes by entrapping them. It was also observed that control PEC nanoparticles decreased both viscoelastic moduli, but with a slower rate compared to the PEC nanoparticles loaded with enzyme. Preparation shear and applied shear showed no significant effect on activity of enzyme-loaded PEC nanoparticles mixed with HPG solutions. However, fast addition of chemicals during the preparations showed smaller particle size compared to the drop-wise method. PEC nanoparticles (PECNPs) also protected both enzymes from denaturation at elevated temperature and pH. Following preparation, enzyme-loaded PEC nanoparticles were mixed with borate crosslinked HPG and the mixture was injected through a shear loop. Pectinase-loaded nanoparticles mixed with gelled HPG showed no sensitivity to shear applied along the shear loop at 25 °C. However, EL2X-loaded PEC nanoparticles showed sensitivity to shear applied along the shear loop at 40 °C. Filter cake was formed and degraded in a fluid loss cell for borate crosslinked HPG solutions mixed with either enzymes or enzyme-loaded PEC nanoparticles. Cleanup slopes of filter cake degraded using enzyme-loaded PEC nanoparticles and systems with enzymes mixed with HPG gel were significantly higher than for the filter cake formed with HPG gel mixed with no enzyme. In a different application, enzyme-loaded PEC nanoparticles showed significantly slower reduction in viscosity of HPG solution over time compared to the HPG systems mixed with enzyme. Increasing the viscosity of low concentration HPG, used as slick-water, decreases the proppant settling velocity. This is of specific interest in fracturing fluids used for unconventional reservoirs.

  4. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  5. Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles

    NASA Astrophysics Data System (ADS)

    Mokhtari, Samaneh; Rahimpour, Ahmad; Shamsabadi, Ahmad Arabi; Habibzadeh, Setareh; Soroush, Masoud

    2017-01-01

    To improve the hydrophilicity and antifouling properties of polysulfone (PS) ultrafiltration membranes, we studied the use of salicylate-alumoxane (SA) nanoparticles as a novel hydrophilic additive. The effects of SA nanoparticles on the membrane characteristics and performance were investigated in terms of membrane structure, permeation flux, solute rejection, hydrophilicity, and antifouling ability. The new mixed-matrix membranes (MMMs) possess asymmetric structures. They have smaller finger-like pores and smoother surfaces than the neat PS membranes. The embedment of SA nanoparticles in the polymer matrix and the improvement of surface hydrophilicity were investigated. Ultrafiltration experiments indicated that the pure-water flux of the new MMMs initially increases with SA nanoparticles loading followed by a decrease at high loadings. Higher BSA solution flux was achieved for the MMMs compared to the neat PS membranes. Membranes with 1 wt.% SA nanoparticles exhibit the highest flux recovery ratio of 87% and the lowest irreversible fouling of 13%.

  6. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes

    NASA Astrophysics Data System (ADS)

    Qie, Yaqing; Yuan, Hengfeng; von Roemeling, Christina A.; Chen, Yuanxin; Liu, Xiujie; Shih, Kevin D.; Knight, Joshua A.; Tun, Han W.; Wharen, Robert E.; Jiang, Wen; Kim, Betty Y. S.

    2016-05-01

    Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.

  7. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    NASA Astrophysics Data System (ADS)

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  8. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition.

    PubMed

    Fleischer, Candace C; Kumar, Umesh; Payne, Christine K

    2013-09-01

    Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.

  9. Bioselective synthesis of gold nanoparticles from diluted mixed Au, Ir, and Rh ion solution by Anabaena cylindrica

    NASA Astrophysics Data System (ADS)

    Rochert, Anna S.; Rösken, Liz M.; Fischer, Christian B.; Schönleber, Andreas; Ecker, Dennis; van Smaalen, Sander; Geimer, Stefan; Wehner, Stefan

    2017-11-01

    Over the last years, an environmentally friendly and economically efficient way of nanoparticle production has been found in the biosynthesis of metal nanoparticles by bacteria and cyanobacteria. In this study, Anabaena cylindrica, a non-toxic cyanobacterium, is deployed in a diluted ionic aqueous mixture of equal concentrations of gold, iridium, and rhodium, of 0.1 mM each, for the selective biosynthesis of metal nanoparticles (NPs). To analyze the cyanobacterial metal uptake, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometry (ICP-MS) were applied. Only gold can be found in crystalline and nanoparticle form inside the cells of A. cylindrica, and it is the only metal for which ICP-MS analyses show a rapid decrease of the concentration in the culture medium. A slight decrease of rhodium and none of iridium was observed in the evaluated timeline of 51 h. The average diameter size of the emerging gold nanoparticles increased over the first few days, but is found to be below 10 nm even after more than 2 days. A new evaluation method was used to determine the spatially resolved distribution of the nanoparticles inside the cyanobacterial cells. This new method was also used to analyze TEM images from earlier studies of A. cylindrica and Anabaena sp., both incubated with an overall concentration of 0.8 mM Au3+ to compare the metal uptake. A. cylindrica was found to be highly selective towards the formation of gold nanoparticles in the presence of rhodium and iridium.

  10. Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon

    PubMed Central

    2013-01-01

    We present an investigation on a coupled system consists of gold nanoparticles and silicon nanocrystals. Gold nanoparticles (AuNPs) embedded into porous silicon (PSi) were prepared using the electrochemical deposition method. Scanning electron microscope images and energy-dispersive X-ray results indicated that the growth of AuNPs on PSi varies with current density. X-ray diffraction analysis showed the presence of cubic gold phases with crystallite sizes around 40 to 58 nm. Size dependence on the plasmon absorption was studied from nanoparticles with various sizes. Comparison with the reference sample, PSi without AuNP deposition, showed a significant blueshift with decreasing AuNP size which was explained in terms of optical coupling between PSi and AuNPs within the pores featuring localized plasmon resonances. PMID:23331761

  11. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  12. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  13. Influence of film thickness on topology and related magnetic interactions in Fe nanoparticle films

    NASA Astrophysics Data System (ADS)

    Ausanio, G.; Iannotti, V.; Amoruso, S.; Bruzzese, R.; Wang, X.; Aruta, C.; Arzeo, M.; Lanotte, L.

    2013-08-01

    Fe nanoparticle (NP)-assembled thin films with different thickness were prepared by femtosecond-pulsed laser deposition using different deposition times. The proper selection of the deposition time allows to control, to a certain degree, the morphology and topology of the deposited Fe nanoparticles (NPs) assembly, fostering non-uniform dense assemblies of NPs, with the consequent reduction of the influence of the exchange interactions on the macroscopic magnetic properties with decreasing thickness. The magnetic behavior of the Fe NP-assembled films with decreasing thickness is characterized by higher coercive field ( H c) values (a factor ≈4.5) and a good compromise between the hysteresis loops squareness and moderate exchange interactions, strongly correlated with the NPs topology.

  14. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging

    NASA Astrophysics Data System (ADS)

    Ma, Baojin; Zhang, Shan; Qiu, Jichuan; Li, Jianhua; Sang, Yuanhua; Xia, Haibing; Jiang, Huaidong; Claverie, Jerome; Liu, Hong

    2016-06-01

    Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the red region (580-720 nm), thus reaching a balanced dual color emission. Using MC3T3-E1 cells co-cultured with Eu/Tb codoped FAp nanoparticles, it is observed that the nanoparticles are cytocompatible even at a concentration as high as 800 μg ml-1. The Eu/Tb codoped FAp nanoparticles are located in the cytoplasm and can be monitored by dual color--green and red imaging with a single excitation light at 488 nm. At a concentration of 200 μg ml-1, the cytoplasm is saturated in 8 hours, and Eu/Tb codoped FAp nanoparticles retain their fluorescence for at least 3 days. The cytocompatible Eu/Tb codoped FAp nanoparticles with unique dual color emission will be of great use for cell and tissue imaging.Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the

  15. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue.

    PubMed

    Arjunan, Naresh Kumar; Murugan, Kadarkarai; Rejeeth, Chandrababu; Madhiyazhagan, Pari; Barnard, Donald R

    2012-03-01

    A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO₃ to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC₅₀) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by ~30% (p<0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% (p<0.05).

  16. Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug.

    PubMed

    Qiu, Yeyan; Zhu, Jun; Wang, Jianting; Gong, Renmin; Zheng, Mingming; Huang, Fenghong

    2013-08-01

    Self-assembled nanoparticles were synthesized from water-soluble fructose-chitosan, substituted by succinyl linkages with phytosterols as hydrophobic moieties for self-assembly. The physicochemical properties of the prepared self-assembled nanoparticles were characterized by Fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. Doxorubicin (DOX), as a model anticancer drug, was physically entrapped inside prepared self-assembled nanoparticles by the dialysis method. With increasing initial levels of the drug, the drug loading content increased, but the encapsulation efficiency decreased. The release profiles in vitro demonstrated that the DOX showed slow sustained released over 48 h, and the release rate in phosphate buffered saline (PBS) solution (pH 7.4) was much slower than in PBS solution (pH 5.5 and pH 6.5), indicating the prepared self-assembled nanoparticles had the potential to be used as a carrier for targeted delivery of hydrophobic anticancer drugs with declined cytotoxicity to normal tissues.

  17. Influence of ball milling on the particle size and antimicrobial properties of Tridax procumbens leaf nanoparticles.

    PubMed

    Karthik, Subramani; Suriyaprabha, Rangaraj; Balu, Kolathupalayam Shanmugam; Manivasakan, Palanisamy; Rajendran, Venkatachalam

    2017-02-01

    The herbal nanoparticles were prepared from shade dried Tridax procumbens plant leaves employing ball milling technique using different process parameters, like ball ratio/size and milling time. The obtained nanoparticles were comprehensively characterised using X-ray diffraction, Fourier transform infrared spectroscopy, UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy and antimicrobial analysis techniques. The crystallinity of the nanoparticles was retained without altering even though the particle size changes due to milling periods. The antibacterial activities of the prepared herbal nanoparticles against Staphylococcus aureus and Escherichia coli were explored to understand the influence of particle size on antimicrobial activities and their functional properties. The increase in ball ratio and milling time periods leads to a decrease in nanoparticle size from 114 to 45 nm which in turn increases the antimicrobial activities. The above study confirms that antimicrobial activity relies on nanoparticle size. The observed knowledge on influence of particle size on antimicrobial activities will help to optimise the production of potential herbal nanoparticles for different biomedical applications.

  18. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    PubMed

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-05-15

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  20. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors.

    PubMed

    Abdelsayed, Victor; El-Shall, M Samy

    2014-08-07

    This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong