Sample records for nanoparticles exhibits cell

  1. Metallic Nickel Nanoparticles May Exhibit Higher Carcinogenic Potential than Fine Particles in JB6 Cells

    PubMed Central

    Bowman, Linda; Zou, Baobo; Mao, Guochuan; Xu, Jin; Castranova, Vincent; Zhao, Jinshun; Ding, Min

    2014-01-01

    While numerous studies have described the pathogenic and carcinogenic effects of nickel compounds, little has been done on the biological effects of metallic nickel. Moreover, the carcinogenetic potential of metallic nickel nanoparticles is unknown. Activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) have been shown to play pivotal roles in tumor initiation, promotion, and progression. Mutation of the p53 tumor suppressor gene is considered to be one of the steps leading to the neoplastic state. The present study examines effects of metallic nickel fine and nanoparticles on tumor promoter or suppressor gene expressions as well as on cell transformation in JB6 cells. Our results demonstrate that metallic nickel nanoparticles caused higher activation of AP-1 and NF-κB, and a greater decrease of p53 transcription activity than fine particles. Western blot indicates that metallic nickel nanoparticles induced a higher level of protein expressions for R-Ras, c-myc, C-Jun, p65, and p50 in a time-dependent manner. In addition, both metallic nickel nano- and fine particles increased anchorage-independent colony formation in JB6 P+ cells in the soft agar assay. These results imply that metallic nickel fine and nanoparticles are both carcinogenetic in vitro in JB6 cells. Moreover, metallic nickel nanoparticles may exhibit higher carcinogenic potential, which suggests that precautionary measures should be taken in the use of nickel nanoparticles or its compounds in nanomedicine. PMID:24691273

  2. Magnolol Nanoparticles Exhibit Improved Water Solubility and Suppress TNF-α-Induced VCAM-1 Expression in Endothelial Cells.

    PubMed

    Lee, Chiang-Wen; Hu, Stephen Chu-Sung; Yen, Feng-Lin; Hsu, Lee-Fen; Lee, I-Ta; Lin, Zih-Chan; Tsai, Ming-Horng; Huang, Chieh-Liang; Liang, Chan-Jung; Chiang, Yao-Chang

    2017-03-01

    The expression of the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells enables the attachment of leukocytes to the endothelium, which may lead to inflammation and the development of atherosclerosis. Magnolol is a major bioactive compound derived from the plant species Magnolia officinalis. In this study, we synthesized a novel nanoparticle formulation of magnolol to improve its water solubility and physicochemical properties, evaluated its effects on TNF-α-induced VCAM-1 expression in endothelial cells, and determined the signal transduction pathways involved. Our findings demonstrated that the magnolol nanoparticle system showed great improvements in physicochemical properties and water solubility owing to a reduction in particle size, transformation from a crystalline to amorphous structure, and the formation of hydrogen bonds with the nanoparticle carriers. In terms of its biological actions, magnolol nanoparticles attenuated TNF-α-induced VCAM-1 protein expression, promoter activity, and mRNA expression in endothelial cells in vitro. This was found to be mediated by the ERK, AKT, and NF-κB signaling pathways. In addition, magnolol nanoparticles inhibited TNF-α-induced leukocyte adhesion to endothelial cells, and suppressed TNF-α-induced VCAM-1 expression in the aortic endothelium of mice. In summary, since magnolol nanoparticles inhibit endothelial VCAM-1 expression and leukocyte adhesion to endothelial cells, this novel drug formulation may be a potentially useful therapeutic formulation to prevent the development of atherosclerosis and inflammatory diseases.

  3. Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells.

    PubMed

    Gärtner, Stefan; Clulow, Andrew J; Howard, Ian A; Gilbert, Elliot P; Burn, Paul L; Gentle, Ian R; Colsmann, Alexander

    2017-12-13

    Nanoparticle dispersions open up an ecofriendly route toward printable organic solar cells. They can be formed from a variety of organic semiconductors by using miniemulsions that employ surfactants to stabilize the nanoparticles in dispersion and to prevent aggregation. However, whenever surfactant-based nanoparticle dispersions have been used to fabricate solar cells, the reported performances remain moderate. In contrast, solar cells from nanoparticle dispersions formed by precipitation (without surfactants) can exhibit power conversion efficiencies close to those of state-of-the-art solar cells processed from blend solutions using chlorinated solvents. In this work, we use small-angle neutron scattering measurements and transient absorption spectroscopy to investigate why surfactant-free nanoparticles give rise to efficient organic solar cells. We show that surfactant-free nanoparticles comprise a uniform distribution of small semiconductor domains, similar to that of bulk-heterojunction films formed using traditional solvent processing. This observation differs from surfactant-based miniemulsion nanoparticles that typically exhibit core-shell structures. Hence, the surfactant-free nanoparticles already possess the optimum morphology for efficient energy conversion before they are assembled into the photoactive layer of a solar cell. This structural property underpins the superior performance of the solar cells containing surfactant-free nanoparticles and is an important design criterion for future nanoparticle inks.

  4. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad.

    PubMed

    Satyavani, K; Gurudeeban, S; Ramanathan, T; Balasubramanian, T

    2011-09-26

    An increasingly common application is the use of silver nanoparticles for antimicrobial coatings, wound dressings, and biomedical devices. In this present investigation, we report, biomedical potential of silver nanopaticles synthesized from calli extract of Citrullus colocynthis on Human epidermoid larynx carcinoma (HEp -2) cell line. The callus extract react with silver nitrate solution confirmed silver nanoparticles synthesis through the steady change of greenish colour to reddish brown and characterized by using FT-IR, AFM. Toxicity on HEp 2 cell line assessed using MTT assay, caspase -3 assay, Lactate dehydrogenase leakage assay and DNA fragmentation assay. The synthesized silver nanoparticles were generally found to be spherical in shape with size 31 nm by AFM. The molar concentration of the silver nanoparticles solution in our present study is 1100 nM/10 mL. The results exhibit that silver nanoparticles mediate a dose-dependent toxicity for the cell tested, and the silver nanoparticles at 500 nM decreased the viability of HEp 2 cells to 50% of the initial level. LDH activities found to be significantly elevated after 48 h of exposure in the medium containing silver nanoparticles when compared to the control and Caspase 3 activation suggested that silver nanoparticles caused cell death through apoptosis, which was further supported by cellular DNA fragmentation, showed that the silver nanoparticles treated HEp2 cells exhibited extensive double strand breaks, thereby yielding a ladder appearance (Lane 2), while the DNA of control HEp2 cells supplemented with 10% serum exhibited minimum breakage (Lane 1). This study revealed completely would eliminate the use of expensive drug for cancer treatment.

  5. Zinc oxide nanoparticles as selective killers of proliferating cells.

    PubMed

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant.

  6. Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties.

    PubMed

    Jha, Diksha; Thiruveedula, Prasanna Kumar; Pathak, Rajiv; Kumar, Bipul; Gautam, Hemant K; Agnihotri, Shrish; Sharma, Ashwani Kumar; Kumar, Pradeep

    2017-11-01

    This study demonstrates the therapeutic potential of silver nanoparticles (AgNPs), which were biosynthesized using the extracts of Citrus maxima plant. Characterization through UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) confirmed the formation of AgNps in nano-size range. These nanoparticles exhibited enhanced antioxidative activity and showed commendable antimicrobial activity against wide range of microbes including multi-drug resistant bacteria that were later confirmed by TEM. These particles exhibited minimal toxicity when cytotoxicity study was performed on normal human lung fibroblast cell line as well as human red blood cells. It was quite noteworthy that these particles showed remarkable cytotoxicity on human fibrosarcoma and mouse melanoma cell line (B16-F10). Additionally, the apoptotic topographies of B16-F10 cells treated with AgNps were confirmed by using acridine orange and ethidium bromide dual dye staining, caspase-3 assay, DNA fragmentation assay followed by cell cycle analysis using fluorescence-activated cell sorting. Taken together, these results advocate promising potential of the biosynthesized AgNps for their use in therapeutic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Zinc oxide nanoparticles as selective killers of proliferating cells

    PubMed Central

    Taccola, Liuba; Raffa, Vittoria; Riggio, Cristina; Vittorio, Orazio; Iorio, Maria Carla; Vanacore, Renato; Pietrabissa, Andrea; Cuschieri, Alfred

    2011-01-01

    Background: It has recently been demonstrated that zinc oxide nanoparticles (ZnO NPs) induce death of cancerous cells whilst having no cytotoxic effect on normal cells. However, there are several issues which need to be resolved before translation of zinc oxide nanoparticles into medical use, including lack of suitable biocompatible dispersion protocols and a better understanding being needed of the mechanism of their selective cytotoxic action. Methods: Nanoparticle dose affecting cell viability was evaluated in a model of proliferating cells both experimentally and mathematically. The key issue of selective toxicity of ZnO NPs toward proliferating cells was addressed by experiments using a biological model of noncancerous cells, ie, mesenchymal stem cells before and after cell differentiation to the osteogenic lineage. Results: In this paper, we report a biocompatible protocol for preparation of stable aqueous solutions of monodispersed zinc oxide nanoparticles. We found that the threshold of intracellular ZnO NP concentration required to induce cell death in proliferating cells is 0.4 ± 0.02 mM. Finally, flow cytometry analysis revealed that the threshold dose of zinc oxide nanoparticles was lethal to proliferating pluripotent mesenchymal stem cells but exhibited negligible cytotoxic effects to osteogenically differentiated mesenchymal stem cells. Conclusion: Results confirm the ZnO NP selective cytotoxic action on rapidly proliferating cells, whether benign or malignant. PMID:21698081

  8. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells.

    PubMed

    Hwang, Pai-An; Lin, Xiao-Zhen; Kuo, Ko-Liang; Hsu, Fu-Yin

    2017-03-14

    Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs) were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and -67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.

  9. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.

    PubMed

    Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel

    2010-09-28

    Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.

  10. Citrate- and Succinate-Modified Carbonate Apatite Nanoparticles with Loaded Doxorubicin Exhibit Potent Anticancer Activity against Breast Cancer Cells

    PubMed Central

    Mehbuba Hossain, Sultana; Chowdhury, Ezharul Hoque

    2018-01-01

    Biodegradable inorganic apatite-based particle complex is popular for its pH-sensitivity at the endosomal acidic environment to facilitate drug release following cellular uptake. Despite being a powerful anticancer drug, doxorubicin shows severe off-target effects and therefore would need a carrier for the highest effectiveness. We aimed to chemically modify carbonate apatite (CA) with Krebs cycle intermediates, such as citrate and succinate in order to control the growth of the resultant particles to more efficiently carry and transport the anticancer drug into the cancer cells. Citrate- or succinate-modified CA particles were synthesized with different concentrations of sodium citrate or sodium succinate, respectively, in the absence or presence of doxorubicin. The drug loading efficiency of the particles and their cellular uptake were observed by quantifying fluorescence intensity. The average diameter and surface charge of the particles were determined using Zetasizer. Cell viability was assessed by MTT assay. Citrate-modified carbonate apatite (CMCA) exhibited the highest (31.38%) binding affinity for doxorubicin and promoted rapid cellular uptake of the drug, leading to the half-maximal inhibitory concentration 1000 times less than that of the free drug in MCF-7 cells. Hence, CMCA nanoparticles with greater surface area enhance cytotoxicity in different breast cancer cells by enabling higher loading and more efficient cellular uptake of the drug. PMID:29534497

  11. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri

  12. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    PubMed Central

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  13. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers.

    PubMed

    Zha, L-Y; Xu, Z-R; Wang, M-Q; Gu, L-Y

    2008-04-01

    This study was conducted to determine whether chromium nanoparticle (CrNano) exhibited higher absorption efficiency and possessed unique absorption mechanism in comparison to chromium picolinate (CrPic) and chromium chloride (CrCl(3)), as was postulated by previous reports. Twenty-one-day-old Caco-2 cell monolayers grown on semipermeable membranes in Snapwell tissue culture bichambers were incubated with CrNano, CrPic or CrCl(3) to examine their transport and uptake respectively. In the concentration range of 0.2-20 micromol/l, transport of CrNano, CrPic and CrCl(3) across Caco-2 monolayers both in apical-to-basolateral and basolateral-to-apical direction was concentration-, and time-dependent, and temperature independent. The apparent permeability coefficient (P(app)) of CrNano was between 5.89 and 7.92 x 10(-6) cm/s and that of CrPic and CrCl(3) was between 3.52 and 5.31 x 10(-6) cm/s and between 0.97 and 1.37 x 10(-6) cm/s respectively. Uptake of CrNano, CrPic and CrCl(3) by both apical and basolateral membranes was concentration- and time-dependent. Uptake of CrNano by apical membrane was significantly (p < 0.05) decreased when the incubation temperature was reduced from 37 degrees C to 4 degrees C. The transport efficiency of CrNano, CrPic and CrCl(3) after incubation for 120 min at 37 degrees C was 15.83% +/- 0.76%, 9.08% +/- 0.25% and 2.11% +/- 0.53% respectively. The uptake efficiency of CrNano, CrPic and CrCl(3) was 10.08% +/- 0.76%, 4.73% +/- 0.60% and 0.88% +/- 0.08% respectively. It was concluded that the epithelial transport of CrNano, CrPic and CrCl(3) across the Caco-2 cell monolayers was mainly via passive transport pathways. In addition, CrNano exhibited considerably higher absorption efficiency than both CrPic and CrCl(3) in Caco-2 cell monolayers.

  14. Functionalized magnetic-fluorescent hybrid nanoparticles for cell labelling.

    PubMed

    Lou, Lei; Yu, Ke; Zhang, Zhengli; Li, Bo; Zhu, Jianzhong; Wang, Yiting; Huang, Rong; Zhu, Ziqiang

    2011-05-01

    A facile method of synthesizing 60 nm magnetic-fluorescent core-shell bifunctional nanocomposites with the ability to label cells is presented. Hydrophobic trioctylphosphine oxide (TOPO)-capped CdSe@ZnS quantum dots (QDs) were assembled on polyethyleneimine (PEI)-coated Fe(3)O(4) nanoparticles (MNP). Polyethyleneimine was utilized for the realization of multifunction, including attaching 4 nm TOPO capped CdSe@ZnS quantum dots onto magnetite particles, altering the surface properties of quantum dots from hydrophobic to hydrophilic as well as preventing the formation of large aggregates. Results show that these water-soluble hybrid nanocomposites exhibit good colloidal stability and retain good magnetic and fluorescent properties. Because TOPO-capped QDs are assembled instead of their water-soluble equivalents, the nanocomposites are still highly luminescent with no shift in the PL peak position and present long-term fluorescence stability. Moreover, TAT peptide (GRKKRRQRRRPQ) functionalized hybrid nanoparticles were also studied due to their combined magnetic enrichment and optical detection for cell separation and rapid cell labelling. A cell viability assay revealed good biocompatibility of these hybrid nanoparticles. The potential application of the new magnetic-fluorescent nanocomposites in biological and medicine is demonstrated. © The Royal Society of Chemistry 2011

  15. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    NASA Astrophysics Data System (ADS)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained

  16. Toxicity of silver nanoparticles towards tumoral human cell lines U-937 and HL-60.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Roman, Maciej

    2017-08-01

    The toxicity of three types of silver nanoparticles towards histiocytic lymphoma (U-937) and human promyelocytic cells (HL-60) was studied. The nanoparticles were synthesized in a chemical reduction method using sodium borohydride. Trisodium citrate and cysteamine hydrochloride were used to generate a negative and positive nanoparticle surface charge. The evaluation of cell viability, membrane integrity, antioxidant activity and the induction of inflammation were used to evaluate the difference in cellular response to the nanoparticle treatment. The results revealed that the cysteamine-stabilized (positively charged) nanoparticles (SBATE) were the least toxic although they exhibited a similar ion release profile as the unmodified (negatively charged) nanoparticles obtained using sodium borohydride (SBNM). Citrate-stabilized nanoparticles (SBTC) induced superoxide dismutase (SOD) activity in the HL-60 cells and total antioxidant activity in the U-937 cells despite their resistance to oxidative dissolution. The toxicity of SBNM nanoparticles was manifested in the disruption of membrane integrity, decrease in the mitochondrial functions of cells and the induction of inflammation. These findings allowed to conclude that mechanism of silver nanoparticle cytotoxicity is the combination of effects coming from the surface charge of nanoparticles, released silver ions and biological activity of stabilizing agent molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.

    PubMed

    Jin, Cheng; Bai, Ling; Wu, Hong; Tian, Furong; Guo, Guozhen

    2007-09-01

    Paclitaxel and etanidazole are hypoxic radiosensitizers that exhibit cytotoxic action at different mechanisms. The poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel, etanidazole and paclitaxel+etanidazole were prepared by o/w and w/o/w emulsification-solvent evaporation method. The morphology of the nanoparticles was investigated by scanning electron microscope (SEM). The drug encapsulation efficiency (EE) and release profile in vitro were measured by high-performance liquid chromatography (HPLC). The cellular uptake of nanoparticles for the human breast carcinoma cells (MCF-7) and the human carcinoma cervicis cells (HeLa) was evaluated by transmission electronic microscopy and fluorescence microscopy. Cell viability was determined by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical shape with size between 80 and 150 nm. The EE was higher for paclitaxel and lower for etanidazole. The drug release was controlled over time. The cellular uptake of nanoparticles was observed. Co-culture of the two tumor cell lines with drug-loaded nanoparticles demonstrated that released drug effectively sensitized hypoxic tumor cells to radiation. The radiosensitization of paclitaxel+etanidazole nanoparticles was more significant than that of single drug-loaded nanoparticles.

  18. Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass.

    PubMed

    Jarvis, Maria; Arnold, Michael; Ott, Jenna; Pant, Kapil; Prabhakarpandian, Balabhaskar; Mitragotri, Samir

    2017-09-01

    In vitro and in vivo assessment of safety and efficacy are the essential first steps in developing nanoparticle-based therapeutic systems. However, it is often challenging to use the knowledge gained from in vitro studies to predict the outcome of in vivo studies since the complexity of the in vivo environment, including the existence of flow and a multicellular environment, is often lacking in traditional in vitro models. Here, we describe a microfluidic co-culture model comprising 4T1 breast cancer cells and EA.hy926 endothelial cells under physiological flow conditions and its utilization to assess the penetration of therapeutic nanoparticles from the vascular compartment into a cancerous cell mass. Camptothecin nanocrystals (∼310 nm in length), surface-functionalized with PEG or folic acid, were used as a test nanocarrier. Camptothecin nanocrystals exhibited only superficial penetration into the cancerous cell mass under fluidic conditions, but exhibited cytotoxicity throughout the cancerous cell mass. This likely suggests that superficially penetrated nanocrystals dissolve at the periphery and lead to diffusion of molecular camptothecin deep into the cancerous cell mass. The results indicate the potential of microfluidic co-culture devices to assess nanoparticle-cancerous cell interactions, which are otherwise difficult to study using standard in vitro cultures.

  19. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.

  20. Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity Against Cancer Cells

    PubMed Central

    Xiao, Ling; Gu, Luo; Howell, Stephen B.; Sailor, Michael J.

    2011-01-01

    Porous Si nanoparticles, prepared from electrochemically etched single crystal Si wafers, function as photosensitizers to generate 1O2 in ethanol and in aqueous media. The preparation conditions for the porous Si nanoparticles were optimized to maximize (1) the yield of material; (2) its quantum yield of 1O2 production; and (3) its in vitro degradation properties. The optimal formulation was determined to consist of nanoparticles 146 ± 7 nm in diameter, with nominal pore sizes of 12 ± 4 nm. The quantum yield for 1O2 production is 0.10 ± 0.02 in ethanol and 0.17 ± 0.01 in H2O. HeLa or NIH-3T3 cells treated with 100 µg/mL porous Si nanoparticles and exposed to 60 J/cm2 white light (infrared filtered, 100 mW/cm2 for 10 min) exhibit ~ 45% cell death, while controls containing no nanoparticles show 10% or 25% cell death, respectively. The dark control experiment yields < 10% cytotoxicity for either cell type. PMID:21452822

  1. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective.

    PubMed

    Septiadi, Dedy; Crippa, Federica; Moore, Thomas Lee; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2018-05-01

    Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines

    PubMed Central

    Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  3. Light-Trapping Characteristics of Ag Nanoparticles for Enhancing the Energy Conversion Efficiency of Hybrid Solar Cells.

    PubMed

    Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Yan, Lanqin; Xu, Lihua; Fu, Yaolong

    2017-10-18

    In this paper, we investigated the optical and electrical characteristics of hybrid solar cells using silicon pyramid/Ag nanoparticle and nanowire/Ag nanoparticle nanocomposite structures, which are obtained by the Ag-assisted electroless etching method. We introduced the application of the physical and chemical properties of Ag nanoparticles on four kinds of solar cells: silicon pyramid, silicon pyramid/PEDOT:PSS, silicon nanowire, and silicon nanowire/PEDOT:PSS. We simulated the absorption of these structures for different parameters. Furthermore, we also show the result of the current density-voltage (J-V) characterization of the sample with Ag nanoparticles, which exhibits an improvement of the power conversion efficiency (PCE) in contrast to the samples without Ag nanoparticles. It was found that the properties of light-trapping of Ag nanoparticles have a prominent impact on improving the PCE of hybrid solar cells.

  4. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  5. Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology

    NASA Astrophysics Data System (ADS)

    Guarnieri, Daniela; Sabella, Stefania; Muscetti, Ornella; Belli, Valentina; Malvindi, Maria Ada; Fusco, Sabato; de Luca, Elisa; Pompa, Pier Paolo; Netti, Paolo A.

    2014-08-01

    The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions.The toxicity of metallic nanoparticles (MNPs) has been fully ascertained, but the mechanisms underlying their cytotoxicity remain still largely unclear. Here we demonstrate that the cytotoxicity of MNPs is strictly reliant on the pathway of cellular internalization. In particular, if otherwise toxic gold, silver, and iron oxide NPs are forced through the cell membrane bypassing any form of active mechanism (e.g., endocytosis), no significant cytotoxic effect is registered. Pneumatically driven NPs across the cell membrane show a different distribution within the cytosol compared to NPs entering the cell by active endocytosis. Specifically, they exhibit free random Brownian motions within the cytosol and do not accumulate in lysosomes. Results suggest that intracellular accumulation of metallic nanoparticles into endo-lysosomal compartments is the leading cause of nanotoxicity, due to consequent nanoparticle degradation and in situ release of metal ions. Electronic supplementary information (ESI) available. See DOI

  6. Characterization of hydrothermally synthesized SnS nanoparticles for solar cell application

    NASA Astrophysics Data System (ADS)

    Rajwar, Birendra Kumar; Sharma, Shailendra Kumar

    2018-05-01

    In the present study, SnS nanoparticles were synthesized by simple hydrothermal method using stannous chloride and thiourea as tin (Sn) and sulfur (S) precursor respectively. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy and UV-Vis Spectroscopy techniques. XRD pattern reveals that as-prepared nanoparticles exhibit orthorhombic structure. Average particles size was calculated using Scherrer's formula and found to be 23 nm. FESEM image shows that the as-prepared nanoparticles are in plate like structure. Direct optical band gap (Eg) of as-synthesized nanoparticles was calculated through UV-Vis Spectroscopy measurement and found to be 1.34 eV, which is near to optimum need for photovoltaic solar energy conversion (1.5 eV). Thus this SnS, narrowband gap semiconductor material can be applied as an alternative absorber material for solar cell application.

  7. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging

    NASA Astrophysics Data System (ADS)

    Ma, Baojin; Zhang, Shan; Qiu, Jichuan; Li, Jianhua; Sang, Yuanhua; Xia, Haibing; Jiang, Huaidong; Claverie, Jerome; Liu, Hong

    2016-06-01

    Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the red region (580-720 nm), thus reaching a balanced dual color emission. Using MC3T3-E1 cells co-cultured with Eu/Tb codoped FAp nanoparticles, it is observed that the nanoparticles are cytocompatible even at a concentration as high as 800 μg ml-1. The Eu/Tb codoped FAp nanoparticles are located in the cytoplasm and can be monitored by dual color--green and red imaging with a single excitation light at 488 nm. At a concentration of 200 μg ml-1, the cytoplasm is saturated in 8 hours, and Eu/Tb codoped FAp nanoparticles retain their fluorescence for at least 3 days. The cytocompatible Eu/Tb codoped FAp nanoparticles with unique dual color emission will be of great use for cell and tissue imaging.Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the

  8. Characterization of nanoparticle uptake by endothelial cells.

    PubMed

    Davda, Jasmine; Labhasetwar, Vinod

    2002-02-21

    Endothelium is an important target for drug or gene therapy because of its important role in the biological system. In this paper, we have characterized nanoparticle uptake by endothelial cells in cell culture. Nanoparticles were formulated using poly DL-lactide-co-glycolide polymer containing bovine serum albumin as a model protein and 6-coumarin as a fluorescent marker. It was observed that the cellular uptake of nanoparticles depends on the time of incubation and the concentration of nanoparticles in the medium. The uptake of nanoparticles was rapid with confocal microscopy demonstrating their localization mostly in the cytoplasm. The mitogenic study demonstrated biocompatability of nanoparticles with the cells. The study thus demonstrates that nanoparticles could be used for localizing therapeutic agents or gene into endothelial cells. Nanoparticles localized in the endothelium could provide prolonged drug effects because of their sustained release characterics, and also could protect the encapsulated agent from enzymatic degradation.

  9. Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au-Pt nanoparticles suspended in ethanol

    NASA Astrophysics Data System (ADS)

    Fernández-Valdés, D.; Torres-Torres, C.; Martínez-González, C. L.; Trejo-Valdez, M.; Hernández-Gómez, L. H.; Torres-Martínez, R.

    2016-07-01

    The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au-Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol-gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV-Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

  10. Nanoparticle-Cell Interactions: Relevance for Public Health.

    PubMed

    Runa, Sabiha; Hussey, Michael; Payne, Christine K

    2018-01-25

    Nanoparticles, especially metal oxide nanoparticles, are used in a wide range of commercial and industrial applications that result in direct human contact, such as titanium dioxide nanoparticles in paints, food colorings, and cosmetics, or indirectly through release of nanoparticle-containing materials into the environment. Workers who process nanoparticles for downstream applications are exposed to especially high concentrations of nanoparticles. For physical chemists, nanoparticles present an interesting area of study as the small size of nanoparticles changes the properties from that of the bulk material, leading to novel properties and reactivity. For the public health community, this reduction in particle size means that exposure limits and outcomes that were determined from bulk material properties are not necessarily valid. Informed determination of exposure limits requires a fundamental understanding of how nanoparticles interact with cells. This Feature Article highlights the areas of intersection between physical chemistry and public health in understanding nanoparticle-cell interactions, with a focus on titanium dioxide nanoparticles. It provides an overview of recent research examining the interaction of titanium dioxide nanoparticles with cells in the absence of UV light and provides recommendations for additional nanoparticle-cell research in which physical chemistry expertise could help to inform the public health community.

  11. Fabricating solar cells with silicon nanoparticles

    DOEpatents

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  12. Nanoparticle engineered TRAIL-overexpressing adipose-derived stem cells target and eradicate glioblastoma via intracranial delivery

    PubMed Central

    Jiang, Xinyi; Fitch, Sergio; Wang, Christine; Wilson, Christy; Li, Jianfeng; Grant, Gerald A.; Yang, Fan

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the most intractable of human cancers, principally because of the highly infiltrative nature of these neoplasms. Tracking and eradicating infiltrating GBM cells and tumor microsatellites is of utmost importance for the treatment of this devastating disease, yet effective strategies remain elusive. Here we report polymeric nanoparticle-engineered human adipose-derived stem cells (hADSCs) overexpressing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as drug-delivery vehicles for targeting and eradicating GBM cells in vivo. Our results showed that polymeric nanoparticle-mediated transfection led to robust up-regulation of TRAIL in hADSCs, and that TRAIL-expressing hADSCs induced tumor-specific apoptosis. When transplanted in a mouse intracranial xenograft model of patient-derived glioblastoma cells, hADSCs exhibited long-range directional migration and infiltration toward GBM tumor. Importantly, TRAIL-overexpressing hADSCs inhibited GBM growth, extended survival, and reduced the occurrence of microsatellites. Repetitive injection of TRAIL-overexpressing hADSCs significantly prolonged animal survival compared with single injection of these cells. Taken together, our data suggest that nanoparticle-engineered TRAIL-expressing hADSCs exhibit the therapeutically relevant behavior of “seek-and-destroy” tumortropic migration and could be a promising therapeutic approach to improve the treatment outcomes of patients with malignant brain tumors. PMID:27849590

  13. Silver nanoparticle induced cytotoxicity, oxidative stress, and DNA damage in CHO cells

    NASA Astrophysics Data System (ADS)

    Awasthi, Kumud Kant; Awasthi, Anjali; Kumar, Narender; Roy, Partha; Awasthi, Kamlendra; John, P. J.

    2013-09-01

    Silver nanoparticles (Ag NPs) are being used increasingly in wound dressings, catheters, and in various household products due to their antimicrobial activity. The present study reports the toxicity evaluation of synthesized and well characterized Ag NPs using Chinese hamster ovary (CHO) cells. The UV-Vis spectroscopy reveals the formation of silver nanoparticles by exhibiting the typical surface plasmon absorption maxima at 408-410 nm. Transmission electron microscopy (TEM) reveals that the average diameter of silver nanoparticles is about 5.0 ± 1.0 nm and that they have spherical shape. Cell visibility and cell viability percentage show dose-dependent cellular toxicity of Ag NPs. The half maximal inhibitory concentration (IC50) for CHO cells is 68.0 ± 2.65 μg/ml after 24 h Ag NPs exposure. Toxicity evaluations, including cellular morphology, mitochondrial function (MTT assay), reactive oxygen species (ROS), and DNA fragmentation assay (Ladder pattern) were assessed in unexposed CHO cells (control) and the cells exposed to Ag NPs concentrations of 15, 30, and 60 μg/ml for 24 h. The findings may assist in the designing of Ag NPs for various applications and provide insights into their toxicity.

  14. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth

    NASA Astrophysics Data System (ADS)

    Kim, Sung Eun; Zhang, Li; Ma, Kai; Riegman, Michelle; Chen, Feng; Ingold, Irina; Conrad, Marcus; Turker, Melik Ziya; Gao, Minghui; Jiang, Xuejun; Monette, Sebastien; Pauliah, Mohan; Gonen, Mithat; Zanzonico, Pat; Quinn, Thomas; Wiesner, Ulrich; Bradbury, Michelle S.; Overholtzer, Michael

    2016-11-01

    The design of cancer-targeting particles with precisely tuned physicochemical properties may enhance the delivery of therapeutics and access to pharmacological targets. However, a molecular-level understanding of the interactions driving the fate of nanomedicine in biological systems remains elusive. Here, we show that ultrasmall (<10 nm in diameter) poly(ethylene glycol)-coated silica nanoparticles, functionalized with melanoma-targeting peptides, can induce a form of programmed cell death known as ferroptosis in starved cancer cells and cancer-bearing mice. Tumour xenografts in mice intravenously injected with nanoparticles using a high-dose multiple injection scheme exhibit reduced growth or regression, in a manner that is reversed by the pharmacological inhibitor of ferroptosis, liproxstatin-1. These data demonstrate that ferroptosis can be targeted by ultrasmall silica nanoparticles and may have therapeutic potential.

  15. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines.

    PubMed

    Wang, Li; Chen, Siyuan; Ding, Yiming; Zhu, Qiang; Zhang, Nijia; Yu, Shuqing

    2018-01-01

    The present work determines the anticancer activity of bio-mediated synthesized cadmium sulfide nanoparticles using the ionic liquid and bacterial cells (Shewanella oneidensis). Bacterial cells have been exposed to be important resources that hold huge potential as ecofriendly, cost-effective, evading toxic of dangerous chemicals and the alternative of conventional physiochemical synthesis. The Shewanella oneidensis is an important kind of metal reducing bacterium, known as its special anaerobic respiratory and sulfate reducing capacity. The crystalline nature, phase purity and surface morphology of biosynthesized cadmium sulfide nanoparticles were analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive spectroscopy and Transmission electron microscopy. The use of imidazolium based ionic liquids as soft templating agent for controlling self-assembly and crystal growth direction of metal sulfide nanoparticles has also advanced as an important method. The microscopic techniques showed that the nanoparticles are designed on the nano form and have an excellent spherical morphology, due to the self-assembled mechanism of ionic liquid assistance. The antitumor efficiency of the cadmium sulfide nanoparticles was investigated against brain cancer cell lines using rat glioma cell lines. The effectively improved nano-crystalline and morphological structure of CdS nanoparticles in the presence of IL exhibit excellent cytotoxicity and dispersion ability on the cell shape is completely spread out showing a nice toxic environment against cancer cells. The cytotoxicity effect of cadmium sulfide nanoparticles was discussed with a diagrammatic representation. Copyright © 2017. Published by Elsevier B.V.

  16. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.

  17. Ion mediated targeting of cells with nanoparticles

    NASA Astrophysics Data System (ADS)

    Maheshwari, Vivek; Fu, Jinlong

    2010-03-01

    In eukaryotic cells, Ca^2+ ions are necessary for intracellular signaling, in activity of mitochondria and a variety of other cellular process that have been linked to cell apoptosis, proteins synthesis and cell-cycle regulation. Here we show that Ca^2+ ions, serving as the bio-compatible interface can be used to target Saccharomyces cerevisiae (SaC, baker's yeast), a model eukaryotic cell, with Au nanoparticles (10 nm). The Ca^2+ ions bind to the carboxylic acid groups in the citrate functionalized Au nanoparticles. This transforms the nanoparticles into micron long 1-D branched chain assemblies due to inter-particle dipole-dipole interaction and inter-particle bonding due to the divalent nature of the Ca^2+ ion. A similar transformation is observed with the use of divalent ions Mg^2+, Cd^2+ and Fe^2+. The 1-D assembly aids the interfacing of ion-nanoparticles on the cell by providing multiple contact points. Further monovalent ions such as Na^+ are also effective for the targeting of the cell with nanoparticles. However Na-Au nanoparticles are limited in their deposition as they exist in solution as single particles. The cells remain alive after the deposition process and their vitality is unaffected by the interfacing with ion-nanoparticles.

  18. Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context

    NASA Astrophysics Data System (ADS)

    de Angelis, F.; Pujia, A.; Falcone, C.; Iaccino, E.; Palmieri, C.; Liberale, C.; Mecarini, F.; Candeloro, P.; Luberto, L.; de Laurentiis, A.; Das, G.; Scala, G.; di Fabrizio, E.

    2010-10-01

    Multitasking nanoparticles are gaining great attention for smart drug delivery systems. The exploration of the nano-scale opens new concrete opportunities for revealing new properties and undiscovered cell-particle interactions. Here we present a biodegradable nanoporous silicon nanoparticle that can be successfully employed for in vivo targeted drug delivery and sustained release. The bare nanoporous nanocarriers can be accurately designed and fabricated with an effective control of porosity, surface chemistry and particle size, up to a few nm. The proposed nanoparticles exhibit several remarkable features including high payload, biodegradability, no toxicity, and multiple loading in water without the need of additional chemical reagents at room temperature. The targeting strategy is based on phage display technology that was successfully used to discover cell surface binding peptide for murine B lymphoma A20 cell line. The peptide used in combination with the nanoporous nanoparticles allows an efficient in vivo targeting, a sustained release and a sensible therapeutic effect.Multitasking nanoparticles are gaining great attention for smart drug delivery systems. The exploration of the nano-scale opens new concrete opportunities for revealing new properties and undiscovered cell-particle interactions. Here we present a biodegradable nanoporous silicon nanoparticle that can be successfully employed for in vivo targeted drug delivery and sustained release. The bare nanoporous nanocarriers can be accurately designed and fabricated with an effective control of porosity, surface chemistry and particle size, up to a few nm. The proposed nanoparticles exhibit several remarkable features including high payload, biodegradability, no toxicity, and multiple loading in water without the need of additional chemical reagents at room temperature. The targeting strategy is based on phage display technology that was successfully used to discover cell surface binding peptide for

  19. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  20. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  1. Inorganic nanoparticles for transfection of mammalian cells and removal of viruses from aqueous solutions.

    PubMed

    Link, Nils; Brunner, Tobias J; Dreesen, Imke A J; Stark, Wendelin J; Fussenegger, Martin

    2007-12-01

    Owing to their small size, synthetic nanoparticles show unprecedented biophysical and biochemical properties which may foster novel advances in life-science research. Using flame-spray synthesis technology we have produced non-coated aluminum-, calcium-, cerium-, and zirconium-derived inorganic metal oxide nanoparticles which not only exhibit high affinity for nucleic acids, but can sequester such compounds from aqueous solution. This non-covalent DNA-binding capacity was successfully used to transiently transfect a variety of mammalian cells including human, reaching transfection efficiencies which compared favorably with classic calcium phosphate precipitation (CaP) procedures and lipofection. In this straightforward protocol, transfection was enabled by simply mixing nanoparticles with DNA in solution prior to addition to the target cell population. Transiently transfected cells showed higher production levels of the human secreted glycoprotein SEAP compared to isogenic populations transfected with established technologies. Inorganic metal oxide nanoparticles also showed a high binding capacity to human-pathogenic viruses including adenovirus, adeno-associated virus and human immunodeficiency virus type 1 and were able to clear these pathogens from aqueous solutions. The DNA transfection and viral clearance capacities of inorganic metal oxide nanoparticles may provide cost-effective biopharmaceutical manufacturing and water treatment in developing countries.

  2. Hsp70 as an indicator of stress in the cells after contact with nanoparticles

    NASA Astrophysics Data System (ADS)

    Hardilová, Šárka; Havrdová, Markéta; Panáček, Aleš; Kvítek, Libor; Zbořil, Radek

    2015-05-01

    conditions. The study was done on two types of mouse fibroblasts NIH-3T3 and L929. While NIH-3T3 cells exhibit stress response proportional to the concentration of silver nanoparticles, for L929 cells this was not observed.

  3. Detection of squamous carcinoma cells using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Wei-Yun; Lee, Sze-tsen; Hsu, Yih-Chih

    2015-03-01

    The goal of this study is to use gold nanoparticle as a diagnostic agent to detect human squamous carcinoma cells. Gold nanoparticles were synthesized and the gold nanoparticle size was 34.3 ± 6.2 nm. Based on the over-expression of epidermal growth factor receptor (EGFR) biomarkers in squamous carcinoma cells, we hypothesized that EGFR could be a feasible biomarker with a target moiety for detection. We further modified polyclonal antibodies of EGFR on the surface of gold nanoparticles. We found selected squamous carcinoma cells can be selectively detected using EGFR antibody-modified gold nanoparticles via receptor-mediated endocytosis. Cell death was also examined to determine the survival status of squamous carcinoma cells with respect to gold nanoparticle treatment and EGFR polyclonal antibody modification.

  4. Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner.

    PubMed

    Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui

    2015-09-23

    The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.

  5. Nanosecond pulsed laser ablated sub-10 nm silicon nanoparticles for improving photovoltaic conversion efficiency of commercial solar cells

    NASA Astrophysics Data System (ADS)

    Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.

    2017-10-01

    In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.

  6. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

    PubMed

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A

    2014-08-27

    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells.

    PubMed

    Yesil-Celiktas, Ozlem; Pala, Cansu; Cetin-Uyanikgil, E Oyku; Sevimli-Gur, Canan

    2017-02-15

    Mesoporous silica carriers are emerging as therapeutic drug delivery systems. The objective of this study was to develop a formulation for synthesizing silica-PAMAM dendrimer hybrid nanoparticles with sol-gel technique. Subsequently, black carrot anthocyanins were encapsulated and investigated for their capability in terms of inhibiting the proliferative effects of neuroblastoma (Neuro 2A). In this context, particle size distributions were ascertained followed by thermal analysis (DSC), scanning electron microscopy and encapsulation efficiency. Subsequently, in vitro release kinetics was determined along with cytotoxicity of empty and anthocyanin doped hybrid nanoparticles. The lowest particle size was 134.8 nm with a zeta potential of +19.78 mV which enhanced electrostatic interaction with the cell membrane in the cytotoxicity analyses. As the anthocyanin content was totally released at the end of 6 days, the cytotoxicity was observed for 134 h, reaching an inhibition of 87.9%. On the other hand, Neuro 2A cells incubated with empty nanoparticles exhibited a high proliferation indicating that hybrid nanoparticles were not toxic to the cells and the inhibitory effect was associated with the anthocyanins. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Protamine sulfate-nanodiamond hybrid nanoparticles as a vector for MiR-203 restoration in esophageal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Cao, Minjun; Deng, Xiongwei; Su, Shishuai; Zhang, Fang; Xiao, Xiangqian; Hu, Qin; Fu, Yongwei; Yang, Burton B.; Wu, Yan; Sheng, Wang; Zeng, Yi

    2013-11-01

    We report an innovative approach for miRNA-203 delivery in esophageal cancer cells using protamine sulphate (PS)-nanodiamond (ND) nanoparticles. The efficient delivery of miR-203 significantly suppressed the proliferation and migration of cancer cells through targeting Ran and ΔNp63, exhibiting a great potential for PS@ND nanoparticles in miRNA-based cancer therapy.We report an innovative approach for miRNA-203 delivery in esophageal cancer cells using protamine sulphate (PS)-nanodiamond (ND) nanoparticles. The efficient delivery of miR-203 significantly suppressed the proliferation and migration of cancer cells through targeting Ran and ΔNp63, exhibiting a great potential for PS@ND nanoparticles in miRNA-based cancer therapy. Electronic supplementary information (ESI) available: (1) Experimental section; (2) Results: serum stability of miR-203/PS@NDs and miR-203 release curve (Fig. S1). Cytotoxicity assay of PS@NDs to Ec-109 cells (Fig. S2); confocal image and FACS analysis of intracellular uptake of cy3-labeled miR-203 (Fig. S3 and S4); real-time PCR analysis of miR-203 restoration (Fig. S5); Ran and ΔNp63 expression (Fig. S6); the sizes and zeta potentials of miRNA/PS@NDs (Table S1); the sequences of the microRNA mimics and primers (Table S2, S3 and S4). See DOI: 10.1039/c3nr04056a

  9. Nanoparticle Imaging of Integrins on Tumor Cells1

    PubMed Central

    Montet, Xavier; Montet-Abou, Karin; Reynolds, Fred; Weissleder, Ralph; Josephson, Lee

    2006-01-01

    Abstract Nanoparticles 10 to 100 nm in size can deliver large payloads to molecular targets, but undergo slow diffusion and/or slow transport through delivery barriers. To examine the feasibility of nanoparticles targeting a marker expressed in tumor cells, we used the binding of cyclic arginine-glycine-aspartic acid (RGD) nanoparticle targeting integrins on BT-20 tumor as a model system. The goals of this study were: 1) to use nanoparticles to image αvβ3 integrins expressed in BT-20 tumor cells by fluorescence-based imaging and magnetic resonance imaging, and, 2) to identify factors associated with the ability of nanoparticles to target tumor cell integrins. Three factors were identified: 1) tumor cell integrin expression (the αvβ3 integrin was expressed in BT-20 cells, but not in 9L cells); 2) nanoparticle pharmacokinetics (the cyclic RGD peptide cross-linked iron oxide had a blood half-life of 180 minutes and was able to escape from the vasculature over its long circulation time); and 3) tumor vascularization (the tumor had a dense capillary bed, with distances of <100 µm between capillaries). These results suggest that nanoparticles could be targeted to the cell surface markers expressed in tumor cells, at least in the case wherein the nanoparticles and the tumor model have characteristics similar to those of the BT-20 tumor employed here. PMID:16611415

  10. The responses of immune cells to iron oxide nanoparticles.

    PubMed

    Xu, Yaolin; Sherwood, Jennifer A; Lackey, Kimberly H; Qin, Ying; Bao, Yuping

    2016-04-01

    Immune cells play an important role in recognizing and removing foreign objects, such as nanoparticles. Among various parameters, surface coatings of nanoparticles are the first contact with biological system, which critically affect nanoparticle interactions. Here, surface coating effects on nanoparticle cellular uptake, toxicity and ability to trigger immune response were evaluated on a human monocyte cell line using iron oxide nanoparticles. The cells were treated with nanoparticles of three types of coatings (negatively charged polyacrylic acid, positively charged polyethylenimine and neutral polyethylene glycol). The cells were treated at various nanoparticle concentrations (5, 10, 20, 30, 50 μg ml(-1) or 2, 4, 8, 12, 20 μg cm(-2)) with 6 h incubation or treated at a nanoparticle concentration of 50 μg ml(-1) (20 μg cm(-2)) at different incubation times (6, 12, 24, 48 or 72 h). Cell viability over 80% was observed for all nanoparticle treatment experiments, regardless of surface coatings, nanoparticle concentrations and incubation times. The much lower cell viability for cells treated with free ligands (e.g. ~10% for polyethylenimine) suggested that the surface coatings were tightly attached to the nanoparticle surfaces. The immune responses of cells to nanoparticles were evaluated by quantifying the expression of toll-like receptor 2 and tumor necrosis factor-α. The expression of tumor necrosis factor-α and toll-like receptor 2 were not significant in any case of the surface coatings, nanoparticle concentrations and incubation times. These results provide useful information to select nanoparticle surface coatings for biological and biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles.

    PubMed

    Ninomiya, Kazuaki; Fukuda, Aya; Ogino, Chiaki; Shimizu, Nobuaki

    2014-09-01

    In this study, we applied sonodynamic therapy to cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with avidin protein, which preferentially discriminated cancerous cells from healthy cells. Subsequently, hydroxyl radicals were generated from the TiO2 NPs after activation by external ultrasound irradiation (TiO2/US treatment). Although 30% of the normal breast cells (human mammary epithelial cells) exhibited the uptake of avidin-modified TiO2 NPs, over 80% of the breast cancer cells (MCF-7) exhibited the uptake of avidin-TiO2 NPs. Next the effect of the TiO2/US treatment on MCF-7 cell growth was examined for up to 96 h after 1-MHz ultrasound was applied (0.1 W/cm(2), 30 s) to cells that incorporated the TiO2 NPs. No apparent cell injury was observed until 24h after the treatment, but the viable cell concentration declined to 68% compared with the control at 96 h. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Air stable organic-inorganic nanoparticles hybrid solar cells

    DOEpatents

    Qian, Lei; Yang, Jihua; Xue, Jiangeng; Holloway, Paul H.

    2015-09-29

    A solar cell includes a low work function cathode, an active layer of an organic-inorganic nanoparticle composite, a ZnO nanoparticle layer situated between and physically contacting the cathode and active layers; and a transparent high work function anode that is a bilayer electrode. The inclusion of the ZnO nanoparticle layer results in a solar cell displaying a conversion efficiency increase and reduces the device degradation rate. Embodiments of the invention are directed to novel ZnO nanoparticles that are advantageous for use as the ZnO nanoparticle layers of the novel solar cells and a method to prepare the ZnO nanoparticles.

  13. Protein nanoparticles are nontoxic, tuneable cell stressors.

    PubMed

    de Pinho Favaro, Marianna Teixeira; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Roldán, Mónica; Unzueta, Ugutz; Serna, Naroa; Cano-Garrido, Olivia; Azzoni, Adriano Rodrigues; Ferrer-Miralles, Neus; Villaverde, Antonio; Vázquez, Esther

    2018-02-01

    Nanoparticle-cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.

  14. Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Andrée, Birgit; Cebotari, Serghei; Boyle, Erin C.; Haverich, Axel; Hilfiker, Andres

    2017-08-01

    In this paper, we report on the interaction of multifunctional nanoparticles with living endothelial cells. The nanoparticles were synthesized using direct growth of gallium nitride on zinc oxide nanoparticles alloyed with iron oxide followed by core decomposition in hydrogen flow at high temperature. Using transmission electron microscopy, we demonstrate that porcine aortic endothelial cells take up GaN-based nanoparticles suspended in the growth medium. The nanoparticles are deposited in vesicles and the endothelial cells show no sign of cellular damage. Intracellular inert nanoparticles are used as guiding elements for controlled transportation or designed spatial distribution of cells in external magnetic fields.

  15. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.

    PubMed

    Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo

    2016-02-05

    We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

  16. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  17. Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe.

    PubMed

    Ali, Haydar; Bhunia, Susanta Kumar; Dalal, Chumki; Jana, Nikhil R

    2016-04-13

    Fluorescent carbon nanoparticle-based probes with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. However, synthesis of red fluorescent carbon nanoparticles and their transformation into functional nanoparticles are very challenging. Here we report red fluorescent carbon nanoparticle-based nanobioconjugates of <25 nm hydrodynamic size and their application as fluorescent cell labels. Hydrophobic carbon nanoparticles are synthesized via high temperature colloid-chemical approach and transformed into water-soluble functional nanoparticles via coating with amphiphilic polymer followed by covalent linking with desired biomolecules. Following this approach, carbon nanoparticles are functionalized with polyethylene glycol, primary amine, glucose, arginine, histidine, biotin and folic acid. These functional nanoparticles can be excited with blue/green light (i.e., 400-550 nm) to capture their emission spanning from 550 to 750 nm. Arginine and folic acid functionalized nanoparticles have been demonstrated as fluorescent cell labels where blue and green excitation has been used for imaging of labeled cells. The presented method can be extended for the development of carbon nanoparticle-based other bioimaging probes.

  18. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans

    PubMed Central

    2017-01-01

    ABSTRACT The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of

  19. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans.

    PubMed

    Chen, Angela; Contreras, Lydia M; Keitz, Benjamin K

    2017-09-15

    The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms

  20. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles.

    PubMed

    Zhang, Lianbing; Laug, Linda; Münchgesang, Wolfram; Pippel, Eckhard; Gösele, Ulrich; Brandsch, Matthias; Knez, Mato

    2010-01-01

    The great potential for medical applications of inorganic nanoparticles in living organisms is severely restricted by the concern that nanoparticles can harmfully interact with biological systems, such as lipid membranes or cell proteins. To enable an uptake of such nanoparticles by cells without harming their membranes, platinum nanoparticles were synthesized within cavities of hollow protein nanospheres (apoferritin). In vitro, the protein-platinum nanoparticles show good catalytic efficiency and long-term stability. Subsequently the particles were tested after ferritin-receptor-mediated incorporation in human intestinal Caco-2 cells. Upon externally induced stress, for example, with hydrogen peroxide, the oxygen species in the cells decreased and the viability of the cells increased.

  1. Alginate Nanoparticles Containing Curcumin and Resveratrol: Preparation, Characterization, and In Vitro Evaluation Against DU145 Prostate Cancer Cell Line.

    PubMed

    Saralkar, Pushkar; Dash, Alekha K

    2017-10-01

    Curcumin and resveratrol are naturally occurring polyphenolic compounds having anti-cancer potential. However, their poor aqueous solubility and bioavailability limit their clinical use. Entrapment of hydrophobic drugs into hydrophilic nanoparticles such as calcium alginate presents a means to deliver these drugs to their target site. Curcumin and resveratrol-loaded calcium alginate nanoparticles were prepared by emulsification and cross-linking process. The nanoparticles were characterized for particle size, zeta potential, moisture content, physical state of the drugs, physical stability, and entrapment efficiency. An UPLC method was developed and validated for the simultaneous analysis of curcumin and resveratrol. Alginate nanoformulation was tested for in vitro efficacy on DU145 prostate cancer cells. The particle size of the nanosuspension and freeze-dried nanoparticles was found to be 12.53 ± 1.06 and 60.23 ± 15 nm, respectively. Both DSC and powder XRD studies indicated that curcumin as well as resveratrol were present in a non-crystalline state, in the nanoparticles. The entrapment efficiency for curcumin and resveratrol was found to be 49.3 ± 4.3 and 70.99 ± 6.1%, respectively. Resveratrol showed a higher percentage of release than curcumin (87.6 ± 7.9 versus 16.3 ± 3.1%) in 24 h. Curcumin was found to be taken up by the cells from solution as well as the nanoparticles. Resveratrol had a poor cellular uptake. The drug-loaded nanoparticles exhibit cytotoxic effects on DU145 cells. At high concentration, drug solution exhibited greater toxicity than nanoparticles. The alginate nanoformulation was found to be safe for intravenous administration.

  2. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    NASA Astrophysics Data System (ADS)

    Pelegrino, Milena T.; Silva, Letícia C.; Watashi, Carolina M.; Haddad, Paula S.; Rodrigues, Tiago; Seabra, Amedea B.

    2017-02-01

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL-1 for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  3. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy.

    PubMed

    Jiang, Qin; Luo, Zimiao; Men, Yongzhi; Yang, Peng; Peng, Haibao; Guo, Ranran; Tian, Ye; Pang, Zhiqing; Yang, Wuli

    2017-10-01

    Photothermal therapy (PTT) has represented a promising noninvasive approach for cancer treatment in recent years. However, there still remain challenges in developing non-toxic and biodegradable biomaterials with high photothermal efficiency in vivo. Herein, we explored natural melanin nanoparticles extracted from living cuttlefish as effective photothermal agents and developed red blood cell (RBC) membrane-camouflaged melanin (Melanin@RBC) nanoparticles as a platform for in vivo antitumor PTT. The as-obtained natural melanin nanoparticles demonstrated strong absorption at NIR region, higher photothermal conversion efficiency (∼40%) than synthesized melanin-like polydopamine nanoparticles (∼29%), as well as favorable biocompatibility and biodegradability. It was shown that RBC membrane coating on melanin nanoparticles retained their excellent photothermal property, enhanced their blood retention and effectively improved their accumulation at tumor sites. With the guidance of their inherited photoacoustic imaging capability, optimal accumulation of Melanin@RBC at tumors was achieved around 4 h post intravenous injection. Upon irradiation by an 808-nm laser, the developed Melanin@RBC nanoparticles exhibited significantly higher PTT efficacy than that of bare melanin nanoparticles in A549 tumor-bearing mice. Given that both melanin nanoparticles and RBC membrane are native biomaterials, the developed Melanin@RBC platform could have great potential in clinics for anticancer PTT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells

    PubMed Central

    Ohno, Masashi; Sugitani, Yoshihiko; Nishino, Kyohei; Inatomi, Osamu; Sugimoto, Mitsushige; Kawahara, Masahiro; Andoh, Akira

    2017-01-01

    Background and Aims Curcumin is a hydrophobic polyphenol derived from turmeric, a traditional Indian spice. Curcumin exhibits various biological functions, but its clinical application is limited due to its poor absorbability after oral administration. A newly developed nanoparticle curcumin shows improved absorbability in vivo. In this study, we examined the effects of nanoparticle curcumin (named Theracurmin) on experimental colitis in mice. Methods BALB/c mice were fed with 3% dextran sulfate sodium (DSS) in water. Mucosal cytokine expression and lymphocyte subpopulation were analyzed by real-time PCR and flow cytometry, respectively. The profile of the gut microbiota was analyzed by real-time PCR. Results Treatment with nanoparticle curcumin significantly attenuated body weight loss, disease activity index, histological colitis score and significantly improved mucosal permeability. Immunoblot analysis showed that NF-κB activation in colonic epithelial cells was significantly suppressed by treatment with nanoparticle curcumin. Mucosal mRNA expression of inflammatory mediators was significantly suppressed by treatment with nanoparticle curcumin. Treatment with nanoparticle curcumin increased the abundance of butyrate-producing bacteria and fecal butyrate level. This was accompanied by increased expansion of CD4+ Foxp3+ regulatory T cells and CD103+ CD8α− regulatory dendritic cells in the colonic mucosa. Conclusions Treatment with nanoparticle curcumin suppressed the development of DSS-induced colitis potentially via modulation of gut microbial structure. These responses were associated with induction of mucosal immune cells with regulatory properties. Nanoparticle curcumin is one of the promising candidates as a therapeutic option for the treatment of IBD. PMID:28985227

  5. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells.

    PubMed

    Abdelsalam, Nader R; Abdel-Megeed, Ahmed; Ali, Hayssam M; Salem, Mohamed Z M; Al-Hayali, Muwafaq F A; Elshikh, Mohamed S

    2018-07-15

    The distribution and use of nanoparticles have rapidly increased over recent years, but the available knowledge regarding their mode of action, ecological tolerance and biodegradability remains insufficient. Wheat (Triticum aestivum L.) is the most important crop worldwide. In the current study, the effects of silver nanoparticles (AgNPs) obtained from two different sources, namely, green and chemical syntheses, on chromosomal aberrations and cell division were investigated. Wheat root tips were treated with four different AgNP concentrations (10, 20, 40 and 50 ppm) for three different exposure durations (8, 16 and 24 h), and the different concentrations of the nanoparticles were added to the tested grains until the root lengths reached 1.5-2 cm. For each concentration, the mitotic indexes (%) were obtained from an analysis of ~ 2000 cells. The treated root-tip cells exhibited various types of chromosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage, metaphasic plate distortion, spindle dysfunction, stickiness, aberrant movement at metaphase, fragmentation, scattering, unequal separation, scattering, chromosomal gaps, multipolar anaphase, erosion, and distributed and lagging chromosomes. These results demonstrate that the root tip cells of wheat can readily internalize the AgNPs and that the internalized AgNPs can interfere with the cells' normal function. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties

    PubMed Central

    Cantu, Travis; Rodier, Bradley; Iszard, Zachary; Kilian, Alissa; Pattani, Varun; Walsh, Kyle; Weber, Katharina; Tunnell, James; Betancourt, Tania; Irvin, Jennifer

    2016-01-01

    A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated aromatic precursor to give the conjugated monomer. Polymer films can be prepared via electropolymerization of the monomer and characterized using cyclic voltammetry and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. Nanoparticles (NPs) are prepared via emulsion polymerization of the monomer using a two-surfactant system to yield an aqueous dispersion of the polymer NPs. The NPs are characterized using dynamic light scattering, electron microscopy, and UV-Vis-NIR-spectroscopy. Cytocompatibility of NPs is investigated using the cell viability assay. Finally, the NP suspensions are irradiated with a NIR laser to determine their effectiveness as potential materials for photothermal therapy (PTT). PMID:26780244

  7. A pretargeted nanoparticle system for tumor cell labeling

    PubMed Central

    Gunn, Jonathan; Park, Steven I.; Veiseh, Omid; Press, Oliver W.; Zhang, Miqin

    2011-01-01

    Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope. PMID:21107453

  8. A pretargeted nanoparticle system for tumor cell labeling.

    PubMed

    Gunn, Jonathan; Park, Steven I; Veiseh, Omid; Press, Oliver W; Zhang, Miqin

    2011-03-01

    Nanoparticle-based cancer diagnostics and therapeutics can be significantly enhanced by selective tissue localization, but the strategy can be complicated by the requirement of a targeting ligand conjugated on nanoparticles, that is specific to only one or a limited few types of neoplastic cells, necessitating the development of multiple nanoparticle systems for different diseases. Here, we present a new nanoparticle system that capitalizes on a targeting pretreatment strategy, where a circulating fusion protein (FP) selectively prelabels the targeted cellular epitope, and a biotinylated iron oxide nanoparticle serves as a secondary label that binds to the FP on the target cell. This approach enables a single nanoparticle formulation to be used with any one of existing fusion proteins to bind a variety of target cells. We demonstrated this approach with two fusion proteins against two model cancer cell lines: lymphoma (Ramos) and leukemia (Jurkat), which showed 72.2% and 91.1% positive labeling, respectively. Notably, TEM analysis showed that a large nanoparticle population was endocytosed via attachment to the non-internalizing CD20 epitope.

  9. Platinum folate nanoparticles toxicity: cancer vs. normal cells.

    PubMed

    Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam H; Rigas, Basil

    2013-03-01

    Almost for two decades metallic nanoparticles are successfully used for cancer detection, imaging and treatment. Due to their high electron density they can be easily observed by electron microscopy and used in laser and radiofrequency therapy as energy releasing agents. However, the limitation for this practice is an inability to generate tumor-specific heating in a minimally invasive manner to the healthy tissue. To overcome this restraint we proposed to use folic acid coated metallic nanoparticles and determine whether they preferentially penetrate cancer cells. We developed technique for synthesizing platinum nanoparticles using folic acid as stabilizing agent which produced particles of relatively narrow size distribution, having d=2.3 ± 0.5 nm. High resolution TEM and zeta potential analysis indicated that the particles produced by this method had a high degree of crystalline order with no amorphous outer shell and a high degree of colloidal stability. The keratinocytes and mammary breast cells (cancer and normal) were incubated with platinum folate nanoparticles, and the results showed that the IC50 was significantly higher for the normal cells than the cancer cells in both cases, indicating that these nanoparticles preferentially target the cancer cells. TEM images of thin sections taken from the two types of cells indicated that the number of vacuoles and morphology changes after incubation with nanoparticles was also larger for the cancer cells in both types of tissue studied. No preferential toxicity was observed when folic acid receptors were saturated with free folic acid prior to exposure to nanoparticles. These results confirm our hypothesis regarding the preferential penetration of folic acid coated nanoparticles to cancer cells due to receptor mediated endocytosis. Published by Elsevier Ltd.

  10. Preparation of poly-L-lysine functionalized magnetic nanoparticles and their influence on viability of cancer cells

    NASA Astrophysics Data System (ADS)

    Khmara, I.; Koneracka, M.; Kubovcikova, M.; Zavisova, V.; Antal, I.; Csach, K.; Kopcansky, P.; Vidlickova, I.; Csaderova, L.; Pastorekova, S.; Zatovicova, M.

    2017-04-01

    This study was aimed at development of biocompatible amino-functionalized magnetic nanoparticles as carriers of specific antibodies able to detect and/or target cancer cells. Poly-L-lysine (PLL)-modified magnetic nanoparticle samples with different PLL/Fe3O4 content were prepared and tested to define the optimal PLL/Fe3O4 weight ratio. The samples were characterized for particle size and morphology (SEM, TEM and DLS), and surface properties (zeta potential measurements). The optimal PLL/Fe3O4 weight ratio of 1.0 based on both zeta potential and DLS measurements was in agreement with the UV/VIS measurements. Magnetic nanoparticles with the optimal PLL content were conjugated with antibody specific for the cancer biomarker carbonic anhydrase IX (CA IX), which is induced by hypoxia, a physiologic stress present in solid tumors and linked with aggressive tumor behavior. CA IX is localized on the cell surface with the antibody-binding epitope facing the extracellular space and is therefore suitable for antibody-based targeting of tumor cells. Here we showed that PLL/Fe3O4 magnetic nanoparticles exhibit cytotoxic activities in a cell type-dependent manner and bind to cells expressing CA IX when conjugated with the CA IX-specific antibody. These data support further investigations of the CA IX antibody-conjugated, magnetic field-guided/activated nanoparticles as tools in anticancer strategies.

  11. Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells

    PubMed Central

    Gonzalez-Rodriguez, David; Barakat, Abdul I.

    2015-01-01

    Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process. PMID:25901833

  12. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells.

    PubMed

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2017-07-01

    This study aimed at development of poly (lactic-co-glycolic acid) (PLGA) nanoparticles embedded with paclitaxel and coated with hyaluronic acid (HA-PTX-PLGA) to actively target the drug to a triple negative breast cancer cells. Nanoparticles were successfully fabricated using a modified oil-in-water emulsion method. The effect of various formulations parameters on the physicochemical properties of the nanoparticles was investigated. SEM imaging confirmed the spherical shape and nano-scale size of the nanoparticles. A sustained drug release profile was obtained and enhanced PTX cytotoxicity was observed when MDA-MB-231 cells were incubated with the HA-PTX-PLGA formulation compared to cells incubated with the non-HA coated nanoparticles. Moreover, HA-PLGA nanoparticles exhibited improved cellular uptake, based on a possible receptor mediated endocytosis due to interaction of HA with CD44 receptors when compared to non-coated PLGA nanoparticles. The non-haemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  14. Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells.

    PubMed

    Kim, In-Sun; Baek, Miri; Choi, Soo-Jin

    2010-05-01

    The increased applications of nanoparticles in a wide range of industrial fields raise the concern about their potential toxicity to human. The aim of this study was to assess and compare the toxicity of four different oxide nanoparticles (Al2O3, CeO2, TiO2 and ZnO) to human lung epithelial cells, A549 carcinoma cells and L-132 normal cells, in vitro. We focused on the toxicological effects of the present nanoparticles on cell proliferation, cell viability, membrane integrity and oxidative stress. The long-term cytotoxicity of nanoparticles was also evaluated by employing the clonogenic assay. Among four nanoparticles tested, ZnO exhibited the highest cytotoxicity in terms of cell proliferation, cell viability, membrane integrity and colony formation in both cell lines. Al2O3, CeO2 and TiO2 showed little adverse effects on cell proliferation and cell viability. However, TiO2 induced oxidative stress in a concentration- and time-dependent manner. CeO2 caused membrane damage and inhibited colony formation in long-term, but with different degree depending on cell lines. Al2O3 seems to be less toxic than the other nanoparticles even after long time exposure. These results highlight the need for caution during manufacturing process of nanomaterials as well as further investigation on the toxicity mechanism.

  15. Kupffer Cell Isolation for Nanoparticle Toxicity Testing

    PubMed Central

    Bourgognon, Maxime; Klippstein, Rebecca; Al-Jamal, Khuloud T.

    2015-01-01

    The large majority of in vitro nanotoxicological studies have used immortalized cell lines for their practicality. However, results from nanoparticle toxicity testing in immortalized cell lines or primary cells have shown discrepancies, highlighting the need to extend the use of primary cells for in vitro assays. This protocol describes the isolation of mouse liver macrophages, named Kupffer cells, and their use to study nanoparticle toxicity. Kupffer cells are the most abundant macrophage population in the body and constitute part of the reticulo-endothelial system (RES), responsible for the capture of circulating nanoparticles. The Kupffer cell isolation method reported here is based on a 2-step perfusion method followed by purification on density gradient. The method, based on collagenase digestion and density centrifugation, is adapted from the original protocol developed by Smedsrød et al. designed for rat liver cell isolation and provides high yield (up to 14 x 106 cells per mouse) and high purity (>95%) of Kupffer cells. This isolation method does not require sophisticated or expensive equipment and therefore represents an ideal compromise between complexity and cell yield. The use of heavier mice (35-45 g) improves the yield of the isolation method but also facilitates remarkably the procedure of portal vein cannulation. The toxicity of functionalized carbon nanotubes f-CNTs was measured in this model by the modified LDH assay. This method assesses cell viability by measuring the lack of structural integrity of Kupffer cell membrane after incubation with f-CNTs. Toxicity induced by f-CNTs can be measured consistently using this assay, highlighting that isolated Kupffer cells are useful for nanoparticle toxicity testing. The overall understanding of nanotoxicology could benefit from such models, making the nanoparticle selection for clinical translation more efficient. PMID:26327223

  16. Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis.

    PubMed

    Sipos, Arnold; Kim, Kwang-Jin; Chow, Robert H; Flodby, Per; Borok, Zea; Crandall, Edward D

    2018-05-03

    Utilizing confocal microscopy, we quantitatively assessed uptake, processing and egress of near infrared (NIR)-labeled carboxylated polystyrene nanoparticles (PNP) in live alveolar epithelial cells (AEC) during interactions with primary rat AEC monolayers (RAECM). PNP fluorescence intensity (content) and colocalization with intracellular vesicles in a cell were determined over the entire cell volume via z-stacking. Isotropic cuvette-based microfluorimetry was used to determine PNP concentration ([PNP]) from anisotropic measurements of PNP content assessed by confocal microscopy. Results showed that PNP uptake kinetics and steady state intracellular content decreased as diameter increased from 20 to 200 nm. For 20 nm PNP, uptake rate and steady state intracellular content increased with increased apical [PNP], but were unaffected by inhibition of endocytic pathways. Intracellular PNP increasingly co-localized with autophagosomes and/or lysosomes over time. PNP egress exhibited fast [Ca2+]-dependent release and a slower diffusion-like process. Inhibition of microtubule polymerization curtailed rapid PNP egress, resulting in elevated vesicular and intracellular PNP content. Interference with autophagosome formation led to slower PNP uptake and markedly decreased steady state intracellular content. At steady state, cytosolic [PNP] was higher than apical [PNP] and vesicular [PNP] (~80% of intracellular PNP content) exceeded both cytosolic [PNP] and intracellular [PNP]. These data are consistent with the hypotheses that (1) autophagic processing of nanoparticles is essential for maintenance of AEC integrity, (2) altered autophagy and/or lysosomal exocytosis may lead to AEC injury and (3) intracellular [PNP] in AEC is regulable, suggesting strategies for enhancement of nanoparticle-driven AEC gene/drug delivery and/or amelioration of AEC nanoparticle-related cellular toxicity.

  17. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    PubMed

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Imaging of Biological Cells Using Luminescent Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kravets, Vira; Almemar, Zamavang; Jiang, Ke; Culhane, Kyle; Machado, Rosa; Hagen, Guy; Kotko, Andriy; Dmytruk, Igor; Spendier, Kathrin; Pinchuk, Anatoliy

    2016-01-01

    The application of luminescent silver nanoparticles as imaging agents for neural stem and rat basophilic leukemia cells was demonstrated. The experimental size dependence of the extinction and emission spectra for silver nanoparticles were also studied. The nanoparticles were functionalized with fluorescent glycine dimers. Spectral position of the resonance extinction and photoluminescence emission for particles with average diameters ranging from 9 to 32 nm were examined. As the particle size increased, the spectral peaks for both extinction and the intrinsic emission of silver nanoparticles shifted to the red end of the spectrum. The intrinsic photoluminescence of the particles was orders of magnitude weaker and was spectrally separated from the photoluminescence of the glycine dimer ligands. The spectral position of the ligand emission was independent of the particle size; however, the quantum yield of the nanoparticle-ligand system was size-dependent. This was attributed to the enhancement of the ligand's emission caused by the local electric field strength's dependence on the particle size. The maximum quantum yield determined for the nanoparticle-ligand complex was (5.2 ± 0.1) %. The nanoparticles were able to penetrate cell membranes of rat basophilic leukemia and neural stem cells fixed with paraformaldehyde. Additionally, toxicity studies were performed. It was found that towards rat basophilic leukemia cells, luminescent silver nanoparticles had a toxic effect in the silver atom concentration range of 10-100 μM.

  19. In vivo synthesis of selenium nanoparticles by Halococcus salifodinae BK18 and their anti-proliferative properties against HeLa cell line.

    PubMed

    Srivastava, Pallavee; Braganca, Judith M; Kowshik, Meenal

    2014-01-01

    Nanoparticles synthesis by bacteria and yeasts has been widely reported, however, synthesis using halophilic archaea is still in a nascent stage. This study aimed at the intracellular synthesis of selenium nanoparticles (SeNPs) by the haloarchaeon Halococcus salifodinae BK18 when grown in the presence of sodium selenite. Crystallographic characterization of SeNPs by X-ray diffraction, Selected area electron diffraction, and transmission electron microscopy exhibited rod shaped nanoparticles with hexagonal crystal lattice, a crystallite domain size of 28 nm and an aspect ratio (length:diameter) of 13:1. Energy disruptive analysis of X-ray analysis confirmed the presence of selenium in the nano-preparation. The nitrate reductase enzyme assay and the inhibitor studies indicated the involvement of NADH-dependent nitrate reductase in SeNPs synthesis and metal tolerance. The SeNPs exhibited good anti-proliferative properties against HeLa cell lines while being non-cytotoxic to normal cell line model HaCat, suggesting the use of these SeNPs as cancer chemotherapeutic agent. This is the first study on selenium nanoparticles synthesis by haloarchaea. © 2014 American Institute of Chemical Engineers.

  20. Inorganic nanoparticles as nucleic acid transporters into eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Amirkhanov, R. N.; Zarytova, V. F.; Zenkova, M. A.

    2017-02-01

    The review is concerned with inorganic nanoparticles (gold, titanium dioxide, silica, iron oxides, calcium phosphate) used as nucleic acid transporters into mammalian cells. Methods for the synthesis of nanoparticles and approaches to surface modification through covalent or noncovalent attachment of low- or high-molecular-weight compounds are considered. The data available from the literature on biological action of nucleic acids delivered into the cells by nanoparticles and on the effect of nanoparticles and their conjugates and complexes on the cell survival are summarized. Pathways of cellular internalization of nanoparticles and the mechanism of their excretion, as well as the ways of release of nucleic acids from their complexes with nanoparticles after the cellular uptake are described. The bibliography includes 161 references.

  1. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Gnana Selvi, B. Clara; Madhavan, J.; Santhanam, Amutha

    2016-09-01

    In recent years researchers were attracted towards marine sources due to the presence of active components in it. Seaweeds were widely used in pharmaceutical research for their known biological activities. The biological synthesis method of silver nanoparticles (AgNPs) using Padina tetrastromatica seaweed extract and their cytotoxicity against breast cancer MCF-7 cells was reported in this study. The synthesized AgNPs using seaweed extract were subjected to x-ray diffraction, UV-visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscope, energy dispersive x-ray, zeta potential to elucidate the structural, morphology, size as well as surface potential parameters. An absorption peak at 430 nm in UV-visible spectrum reveals the excitation and surface plasmon resonance of AgNPs. FE-SEM micrographs exhibits the biosynthesized AgNPs, which are pre-dominantly round shaped and the size ranges between 40-50 nm. The zeta potential value of -27.6 mV confirms the stable nature of biosynthesized silver nanoparticles. Furthermore, the biological synthesized Ag NPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and the inhibitory concentration (IC50) was found for AgNPs against MCF-7 at 24 h incubation. Biological method of synthesizing silver nanoparticles shows a environmental friendly property which helps in effective electrifying usage in many fields.

  2. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  3. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xiangsheng; Huang, Haoyuan; Liu, Gongyan; Zhou, Wenbo; Chen, Yangjun; Jin, Qiao; Ji, Jian

    2013-04-01

    Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications.Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt

  4. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection.

    PubMed

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  5. Targeted silver nanoparticles for ratiometric cell phenotyping

    NASA Astrophysics Data System (ADS)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  6. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  7. In vitro toxicity of nanoparticles in BRL 3A rat liver cells.

    PubMed

    Hussain, S M; Hess, K L; Gearhart, J M; Geiss, K T; Schlager, J J

    2005-10-01

    This study was undertaken to address the current deficient knowledge of cellular response to nanosized particle exposure. The study evaluated the acute toxic effects of metal/metal oxide nanoparticles proposed for future use in industrial production methods using the in vitro rat liver derived cell line (BRL 3A). Different sizes of nanoparticles such as silver (Ag; 15, 100 nm), molybdenum (MoO(3); 30, 150 nm), aluminum (Al; 30, 103 nm), iron oxide (Fe(3)O(4); 30, 47 nm), and titanium dioxide (TiO(2); 40 nm) were evaluated for their potential toxicity. We also assessed the toxicity of relatively larger particles of cadmium oxide (CdO; 1 microm), manganese oxide (MnO(2); 1-2 microm), and tungsten (W; 27 microm), to compare the cellular toxic responses with respect to the different sizes of nanoparticles with different core chemical compositions. For toxicity evaluations, cellular morphology, mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH) levels, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were assessed under control and exposed conditions (24h of exposure). Results showed that mitochondrial function decreased significantly in cells exposed to Ag nanoparticles at 5-50 microg/ml. However, Fe(3)O(4), Al, MoO(3) and TiO(2) had no measurable effect at lower doses (10-50 microg/ml), while there was a significant effect at higher levels (100-250 microg/ml). LDH leakage significantly increased in cells exposed to Ag nanoparticles (10-50 microg/ml), while the other nanoparticles tested displayed LDH leakage only at higher doses (100-250 microg/ml). In summary the Ag was highly toxic whereas, MoO(3) moderately toxic and Fe(3)O(4), Al, MnO(2) and W displayed less or no toxicity at the doses tested. The microscopic studies demonstrated that nanoparticle-exposed cells at higher doses became abnormal in size, displaying cellular shrinkage, and an acquisition of an irregular shape

  8. Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles.

    PubMed

    Cardoso Dos Santos, M; Goetz, J; Bartenlian, H; Wong, K-L; Charbonnière, L J; Hildebrandt, N

    2018-04-18

    Fluorescent nanoparticles (NPs) have become irreplaceable tools for advanced cellular and subcellular imaging. While very bright NPs require excitation with UV or visible light, which can create strong autofluorescence of biological components, NIR-excitable NPs without autofluorescence issues exhibit much lower brightness. Here, we show the application of a new type of surface-photosensitized terbium NPs (Tb-NPs) for autofluorescence-free intracellular imaging in live HeLa cells. The combination of exceptionally high brightness, high photostability, and long photoluminecence (PL) lifetimes for highly efficient suppression of the short-lived autofluorescence allowed for time-gated PL imaging of intracellular vesicles over 72 h without toxicity and at extremely low Tb-NP concentrations down to 12 pM. Detection of highly resolved long-lifetime (ms) PL decay curves from small (∼10 μm 2 ) areas within single cells within a few seconds emphasized the unprecedented photophysical properties of Tb-NPs for live-cell imaging that extend well beyond currently available nanometric imaging agents.

  9. Size-dependent Toxicity of Gold Nanoparticles on Human Embryonic Stem Cells and Their Neural Derivatives

    PubMed Central

    Senut, Marie-Claude; Zhang, Yanhua; Liu, Fangchao; Sen, Arko; Ruden, Douglas M.; Mao, Guangzhao

    2016-01-01

    This study explores the use of human embryonic stem cells (hESCs) for assessing nanotoxicology, specifically, the effect of gold nanoparticles (AuNPs) of different core sizes (1.5 nm, 4 nm, and 14 nm) on the viability, pluripotency, neuronal differentiation, and DNA methylation of hESCs. The hESCs exposed to 1.5 nm thiolate-capped AuNPs exhibited loss of cohesiveness and detachment suggesting ongoing cell death at concentrations as low as 0.1 µg/mL. The cells exposed to 1.5 nm AuNPs at this concentration did not form embryoid bodies but rather disintegrated into single cells within 48 hours. Cell death caused by 1.5 nm AuNPs also occurred in hESC-derived neural progenitor cells. None of the other nanoparticles exhibited toxic effects on the hESCs at concentrations as high as 10 µg/mL during a 19 day neural differentiation period. Thiolate-capped 4 nm AuNPs at 10 µg/mL caused a dramatic decrease in global DNA methylation (5mC) and a corresponding increase in global DNA hydroxymethylation (5hmC) of the hESC’s DNA in only 24 hours. This work identifies a type of AuNPs highly toxic to hESCs and demonstrates the potential of hESCs in predicting nanotoxicity and characterizing their ability to alter the DNA methylation and hydroxymethylation patterns in the cells. PMID:26676601

  10. Investigation of Biophysical Mechanisms in Gold Nanoparticle Mediated Laser Manipulation of Cells Using a Multimodal Holographic and Fluorescence Imaging Setup

    PubMed Central

    Rakoski, Mirko S.; Heinemann, Dag; Schomaker, Markus; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy. PMID:25909631

  11. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions.

    PubMed

    Love, Sara A; Haynes, Christy L

    2010-09-01

    Using two of the most commonly synthesized noble metal nanoparticle preparations, citrate-reduced Au and Ag, the impacts of short-term accidental nanoparticle exposure are examined in primary culture murine adrenal medullary chromaffin cells. Transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Alamar Blue viability studies revealed that nanoparticles are taken up by cells but do not decrease cell viability within 48 hours of exposure. Carbon-fiber microelectrode amperometry (CFMA) examination of exocytosis in nanoparticle-exposed cells revealed that nanoparticle exposure does lead to decreased secretion of chemical messenger molecules, of up to 32.5% at 48 hours of Au exposure. The kinetics of intravesicular species liberation also slows after nanoparticle exposure, between 30 and 50% for Au and Ag, respectively. Repeated stimulation of exocytosis demonstrated that these effects persisted during subsequent stimulations, meaning that nanoparticles do not interfere directly with the vesicle recycling machinery but also that cellular function is unable to recover following vesicle content expulsion. By comparing these trends with parallel studies done using mast cells, it is clear that similar exocytosis perturbations occur across cell types following noble metal nanoparticle exposure, supporting a generalizable effect of nanoparticle-vesicle interactions.

  12. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Soman, N. R.; Marsh, J. N.; Lanza, G. M.; Wickline, S. A.

    2008-05-01

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.

  13. Modeling of interactions between nanoparticles and cell membranes

    NASA Astrophysics Data System (ADS)

    Ban, Young-Min

    containing the nanoparticles exhibit localized perturbation around the nanoparticle. The nanoparticles are not likely to affect membrane protein function by the weak perturbation of the internal stress in the membrane. Due to the short-ranged interactions between the nanoparticles, the nanoparticles would not form aggregates inside membranes. The effect of lipid peroxidation on cell membrane deformation is assessed. The peroxidized lipids introduce a perturbation to the internal structure of the membrane leading to higher amplitude of the membrane fluctuations. Higher concentration of the peroxidized lipids induces more significant perturbation. Cumulative effects of lipid peroxidation caused by nanoparticles are examined for the first time. The considered amphiphilic particle appears to reduce the perturbation of the membrane structure at its equilibrium position inside the peroxidized membrane. This suggests a possibility of antioxidant effect of the nanoparticle.

  14. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line.

    PubMed

    Jacob, S Justin Packia; Finub, J S; Narayanan, Anand

    2012-03-01

    There is an increasing commercial demand for various nanoparticles due to their extensive applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Wet chemical techniques were used for the traditional synthesis of metallic nanoparticles, where the chemicals used are quite often toxic and flammable. In the present study, we describe a cost effective and eco-friendly technique for green synthesis of silver nanoparticles from 1 mM AgNO(3) solution using the extract of Piper longum leaf as reducing as well as capping agent. Nanoparticles were characterized using UV-vis absorption spectroscopy, FTIR, and SEM. SEM analysis showed the spherical nanoparticles with 17.6-41 nm in size. These biologically synthesized nanoparticles were also exhibiting excellent cytotoxic effect on HEp-2 cell lines. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Walas, Stanisław

    2017-01-01

    The growing popularity of nanomaterials requires a systematic study of their effects on the human body. Silver nanoparticles (AgNPs), due to their antiseptic properties, are used in almost every area of life. The purpose of the study was to examine whether the precursor used for the synthesis of nanoparticles affects their bio-influence and modifies their impact on cells of the human immune system. To compare the effects of precursor silver salts (AgNO 3 , CH 3 COOAg and AgClO 4 ) and corresponding nanoparticles (TAN TAA and TAC) cytotoxicity study was conducted on two cell lines U-937 and HL-60. For both cell lines, silver salts are more toxic than the corresponding nanoparticles. Cell viability after treatment with the two forms of silver (salt/particle) is dependent on silver dose and degree of cells differentiation. Addition of the silver salt of doses greater than 5 mg/L results in decreased cell viability by over 60%, whereas nanoparticles' addition reduces cell viability on average by 30%. On the basis of the determined LD 50 values it can be stated that for the tested cells the most toxic are AgClO 4 and TAC. Production of nitric oxide, which is a mediator of inflammation, is the greatest after treatment of the cells by TAC. Different interactions of studied nanoparticles with albumin has been found and it was shown that addition of albumin to the cells treated by nanoparticles reduces their toxic effects. Obtained by us highly purified, mono-disperse AgNPs exhibit diverse effects relative to the biological systems, depending on the precursor salt used.

  16. Human immune cell targeting of protein nanoparticles - caveospheres

    NASA Astrophysics Data System (ADS)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  17. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    NASA Astrophysics Data System (ADS)

    De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  18. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells.

    PubMed

    De Miguel, Diego; Gallego-Lleyda, Ana; Ayuso, José María; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; Fernández, Luis José; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-06

    Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  19. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    PubMed

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  20. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    PubMed

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  1. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells.

    PubMed

    Löw, Karin; Knobloch, Thomas; Wagner, Sylvia; Wiehe, Arno; Engel, Andrea; Langer, Klaus; von Briesen, Hagen

    2011-06-17

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  2. Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells

    PubMed Central

    Liu, Guomu; Li, Qiongshu; Ni, Weihua; Zhang, Nannan; Zheng, Xiao; Wang, Yingshuai; Shao, Dan; Tai, Guixiang

    2015-01-01

    Recently, gold nanoparticles (AuNPs) have shown promising biological applications due to their unique electronic and optical properties. However, the potential toxicity of AuNPs remains a major hurdle that impedes their use in clinical settings. Mesoporous silica is very suitable for the use as a coating material for AuNPs and might not only reduce the cytotoxicity of cetyltrimethylammonium bromide-coated AuNPs but might also facilitate the loading and delivery of drugs. Herein, three types of rod-like gold-mesoporous silica nanoparticles (termed bare AuNPs, core–shell Au@mSiO2NPs, and Janus Au@mSiO2NPs) were specially designed, and the effects of these AuNPs on cellular uptake, toxic behavior, and mechanism were then systematically studied. Our results indicate that bare AuNPs exerted higher toxicity than the Au@mSiO2NPs and that Janus Au@mSiO2NPs exhibited the lowest toxicity in human breast cancer MCF-7 cells, consistent with the endocytosis capacity of the nanoparticles, which followed the order, bare AuNPs > core–shell Au@mSiO2NPs > Janus Au@mSiO2NPs. More importantly, the AuNPs-induced apoptosis of MCF-7 cells exhibited features that were characteristic of intracellular reactive oxygen species (ROS) generation, activation of c-Jun-N-terminal kinase (JNK) phosphorylation, an enhanced Bax-to-Bcl-2 ratio, and loss of the mitochondrial membrane potential. Simultaneously, cytochrome c was released from mitochondria, and the caspase-3/9 cascade was activated. Moreover, both ROS scavenger (N-acetylcysteine) and JNK inhibitor (SP600125) partly blocked the induction of apoptosis in all AuNPs-treated cells. Taken together, these findings suggest that all AuNPs induce apoptosis through the ROS-/JNK-mediated mitochondrial pathway. Thus, Janus Au@mSiO2NPs exhibit the potential for applications in biomedicine, thus aiding the clinical translation of AuNPs. PMID:26491285

  3. Cell-targeted platinum nanoparticles and nanoparticle clusters.

    PubMed

    Papst, Stefanie; Brimble, Margaret A; Evans, Clive W; Verdon, Daniel J; Feisst, Vaughan; Dunbar, P Rod; Tilley, Richard D; Williams, David E

    2015-06-21

    Herein, we report the facile preparation of cell-targeted platinum nanoparticles (PtNPs), through the design of peptides that, as a single molecule added in small concentration during the synthesis, control the size of PtNP clusters during their growth, stabilise the PtNPs in aqueous suspension and enable the functionalisation of the PtNPs with a versatile range of cell-targeting ligands. Water-soluble PtNPs targeted respectively at blood group antigens and at integrin receptors are demonstrated.

  4. Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles

    PubMed Central

    Shan, GuoBin; Xing, JianMin; Zhang, HuaiYing; Liu, HuiZhou

    2005-01-01

    Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability. PMID:16085841

  5. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    PubMed

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  6. Nanoparticle accumulation and transcytosis in brain endothelial cell layers

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Raghnaill, Michelle Nic; Bramini, Mattia; Mahon, Eugene; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A.

    2013-10-01

    The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight junctions, which limit paracellular permeability. Several reports suggest that nanoparticles have a unique capacity to cross the BBB. However, direct evidence of nanoparticle transcytosis is difficult to obtain, and we found that typical transport studies present several limitations when applied to nanoparticles. In order to investigate the capacity of nanoparticles to access and transport across the BBB, several different nanomaterials, including silica, titania and albumin- or transferrin-conjugated gold nanoparticles of different sizes, were exposed to a human in vitro BBB model of endothelial hCMEC/D3 cells. Extensive transmission electron microscopy imaging was applied in order to describe nanoparticle endocytosis and typical intracellular localisation, as well as to look for evidence of eventual transcytosis. Our results show that all of the nanoparticles were internalised, to different extents, by the BBB model and accumulated along the endo-lysosomal pathway. Rare events suggestive of nanoparticle transcytosis were also observed for several of the tested materials.The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight junctions, which limit paracellular permeability. Several reports suggest that nanoparticles have a unique capacity to cross the BBB. However, direct evidence of nanoparticle transcytosis is difficult to obtain, and we found that typical transport studies present several limitations when applied to nanoparticles. In

  7. Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell-Nanoparticle Interaction.

    PubMed

    Zhang, Lu; Feng, Qiang; Wang, Jiuling; Zhang, Shuai; Ding, Baoquan; Wei, Yujie; Dong, Mingdong; Ryu, Ji-Young; Yoon, Tae-Young; Shi, Xinghua; Sun, Jiashu; Jiang, Xingyu

    2015-10-27

    The functionalized lipid shell of hybrid nanoparticles plays an important role for improving their biocompatibility and in vivo stability. Yet few efforts have been made to critically examine the shell structure of nanoparticles and its effect on cell-particle interaction. Here we develop a microfluidic chip allowing for the synthesis of structurally well-defined lipid-polymer nanoparticles of the same sizes, but covered with either lipid-monolayer-shell (MPs, monolayer nanoparticles) or lipid-bilayer-shell (BPs, bilayer nanoparticles). Atomic force microscope and atomistic simulations reveal that MPs have a lower flexibility than BPs, resulting in a more efficient cellular uptake and thus anticancer effect than BPs do. This flexibility-regulated cell-particle interaction may have important implications for designing drug nanocarriers.

  8. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    NASA Astrophysics Data System (ADS)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  9. Three dimensional spheroid cell culture for nanoparticle safety testing.

    PubMed

    Sambale, Franziska; Lavrentieva, Antonina; Stahl, Frank; Blume, Cornelia; Stiesch, Meike; Kasper, Cornelia; Bahnemann, Detlef; Scheper, Thomas

    2015-07-10

    Nanoparticles are widely employed for many applications and the number of consumer products, incorporating nanotechnology, is constantly increasing. A novel area of nanotechnology is the application in medical implants. The widespread use of nanoparticles leads to their higher prevalence in our environment. This, in turn, raises concerns regarding potential risks to humans. Previous studies have shown possible hazardous effects of some nanoparticles on mammalian cells grown in two-dimensional (2D) cultures. However, 2D in vitro cell cultures display several disadvantages such as changes in cell shape, cell function, cell responses and lack of cell-cell contacts. For this reason, the development of better models for mimicking in vivo conditions is essential. In the present work, we cultivated A549 cells and NIH-3T3 cells in three-dimensional (3D) spheroids and investigated the effects of zinc oxide (ZnO-NP) and titanium dioxide nanoparticles (TiO2-NP). The results were compared to cultivation in 2D monolayer culture. A549 cells in 3D cell culture formed loose aggregates which were more sensitive to the toxicity of ZnO-NP in comparison to cells grown in 2D monolayers. In contrast, NIH-3T3 cells showed a compact 3D spheroid structure and no differences in the sensitivity of the NIH-3T3 cells to ZnO-NP were observed between 2D and 3D cultures. TiO2-NP were non-toxic in 2D cultures but affected cell-cell interaction during 3D spheroid formation of A549 and NIH-3T3 cells. When TiO2-NP were directly added during spheroid formation in the cultures of the two cell lines tested, several smaller spheroids were formed instead of a single spheroid. This effect was not observed if the nanoparticles were added after spheroid formation. In this case, a slight decrease in cell viability was determined only for A549 3D spheroids. The obtained results demonstrate the importance of 3D cell culture studies for nanoparticle safety testing, since some effects cannot be revealed in 2D

  10. The toxic effects of silver nanoparticles on blood mononuclear cells.

    PubMed

    Barkhordari, A; Barzegar, S; Hekmatimoghaddam, H; Jebali, A; Rahimi Moghadam, S; Khanjani, N

    2014-07-01

    Nanoparticles have become one of the leading technologies over the past two years. The extensive use of nanoparticles has raised great concern about their occupational fate and biological effects. With an increase in the production and use of nanomaterial, it is more likely to get exposed to them occupationally and environmentally. To assess the toxicity of silver nanoparticles on human mononuclear cells. In this in vitro experimental study, suspensions of blood mononuclear cells from 10 young healthy men were incubated with 10-nm silver nanoparticles in different concentrations (range: 1-500 μg/mL) for 6 and 24 hours by MTT assay. Positive and negative controls were used for comparison. After 6 hours of exposure, 10.9% to 48.4% of the cells died. After 24 hours of exposure, the rate ranged from 56.8% to 86.3%. Regardless of the exposure time, the maximum cytotoxicity was observed at the concentration of 500 μg/mL of silver nanoparticles. By increasing the exposure time to 24 hours, the cytotoxicity of nanoparticles substantially increased at all concentrations. Cell death was significantly higher when compared to the controls (p<0.01). Silver nanoparticles possess both time- and dose-dependent cytotoxicity and can thus be considered as very toxic for mononuclear cells.

  11. Formulation of Stable and Homogeneous Cell-Penetrating Peptide NF55 Nanoparticles for Efficient Gene Delivery In Vivo.

    PubMed

    Freimann, Krista; Arukuusk, Piret; Kurrikoff, Kaido; Pärnaste, Ly; Raid, Raivo; Piirsoo, Andres; Pooga, Margus; Langel, Ülo

    2018-03-02

    Although advances in genomics and experimental gene therapy have opened new possibilities for treating otherwise incurable diseases, the transduction of nucleic acids into the cells and delivery in vivo remain challenging. The high molecular weight and anionic nature of nucleic acids require their packing into nanoparticles for the delivery. The efficacy of nanoparticle drugs necessitates the high bioactivity of constituents, but their distribution in organisms is mostly governed by the physical properties of nanoparticles, and therefore, generation of stable particles with strictly defined characteristics is highly essential. Using previously designed efficient cell-penetrating peptide NF55, we searched for strategies enabling control over the nanoparticle formation and properties to further improve transfection efficacy. The size of the NF55/pDNA nanoparticles correlates with the concentration of its constituents at the beginning of assembly, but characteristics of nanoparticles measured by DLS do not reliably predict the applicability of particles in in vivo studies. We introduce a new formulation approach called cryo-concentration, where we acquired stable and homogeneous nanoparticles for administration in vivo. The cryo-concentrated NF55/pDNA nanoparticles exhibit several advantages over standard formulation: They have long shelf-life and do not aggregate after reconstitution, have excellent stability against enzymatic degradation, and show significantly higher bioactivity in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Laser heating of gold nanoparticles: photothermal cancer cell therapy

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Karashanova, D.

    2012-06-01

    In this work an application of gold nanoparticles in in-vitro photothermal cancer cell therapy is demonstrated. Gold nanoparticles with different diameters - 40, 100 and 200 nm are mixed with HeLa cancer cells. After incubation, the nanoparticles are found to be deposited on the cell's membrane or enter into the cells. Pulsed laser radiation at wavelength of 532 nm delivered by Nd:YAG system is used to irradiate the samples. The experiments are performed at fluences in the range from 50 mJ/cm2 up to the established safety standard for medical lasers of 100 mJ/cm2. The cell viability as a function of the particle dimensions and laser fluence is estimated. The nanoparticles heating and cooling dynamics is traced by a numerical model based on heat diffusion equation combined with Mie theory for calculation of the optical properties of nanoparticles. The particle response to the nanosecond laser heating is investigated experimentally as gold colloids are irradiated at different fluences. The threshold fluences for particle's melting and boiling are defined. We show that at the presented fluence range the particles are decomposed into smaller fragments and even short irradiation time leads to decrease of cell viability.

  13. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.

    PubMed

    Jin, Cheng-Yu; Zhu, Bang-Shang; Wang, Xue-Feng; Lu, Qing-Hua

    2008-09-01

    Nanotitanium dioxide (TiO2) is an important industrial material that is widely used as an additive in cosmetics, pharmaceuticals, and food colorants. Although the small size of the TiO2 nanoparticle is useful in various applications, the biosafety of this material needs to be evaluated. In this study, mouse fibroblast (L929) cells were used to evaluate the cytotoxicity of different concentrations (3-600 microg/mL) of homogeneous and weakly aggregated TiO2 nanoparticles in aqueous solution. The L929 cells became round and even shrank as the concentration of TiO2 nanoparticles increased. Moreover, TiO2 nanoparticle-treated cells had condensed fragmented chromatin or were directly necrosed, as observed by acridine orange (AO) staining. The transmission electron microscopy (TEM) analysis showed that in cells cultured in a medium containing 300 microg/mL TiO2, the number of lysosomes increased, and some cytoplasmic organelles were damaged. In addition, there was a significant increase in oxidative stress at higher TiO2 nanoparticle concentrations (>60 microg/mL). As the concentration of TiO2 nanoparticles increased in the culture medium, the levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) increased, while those of methyl tetrazolium cytotoxicity (MTT), glutathione (GSH), and superoxide dismutase (SOD) decreased. A possible mechanism for the cytotoxicity of TiO2 nanoparticles is also discussed.

  14. Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line.

    PubMed

    Yu, Xinzhe; Song, Yunlong; Di, Yang; He, Hang; Fu, Deliang; Jin, Chen

    2016-08-12

    The emerging albumin nanoparticle brings new hope for the delivery of antitumor drugs. However, a lack of robust tumor targeting greatly limits its application. In this paper, cyclic arginine-glycine-aspartic-conjugated, gemcitabine-loaded human serum albumin nanoparticles (cRGD-Gem-HSA-NPs) were successfully prepared, characterized, and tested in vitro in the BxPC-3 cell line. Initially, 4-N-myristoyl-gemcitabine (Gem-C14) was formed by conjugating myristoyl to the 4-amino group of gemcitabine. Then, cRGD-HSA was synthesized using sulfosuccinimidyl-(4-N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) cross-linkers. Finally, cRGD-Gem-HSA-NPs were formulated based on the nanoparticle albumin-bound (nab) technology. The resulting NPs were characterized for particle size, zeta potential, morphology, encapsulation efficiency, and drug loading efficiency. In vitro cellular uptake and inhibition studies were conducted to compare Gem-HSA-NPs and cRGD-Gem-HSA-NPs in a human pancreatic cancer cell line (BxPC-3). The cRGD-Gem-HSA-NPs exhibited an average particle size of 160 ± 23 nm. The encapsulation rate and drug loading rate were approximately 83 ± 5.6% and 11 ± 4.2%, respectively. In vitro, the cRGD-anchored NPs exhibited a significantly greater affinity for the BxPC-3 cells compared to non-targeted NPs and free drug. The cRGD-Gem-HSA-NPs also showed the strongest inhibitory effect in the BxPC-3 cells among all the analyzed groups. The improved efficacy of cRGD-Gem-HSA-NPs in the BxPC-3 cell line warrants further in vivo investigations.

  15. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

    PubMed Central

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel

    2016-01-01

    Summary Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle–cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN. PMID:27826507

  16. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim H J; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb E M; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Mohd Isa, Norhaszalina; El Zowalaty, Mohamed Ezzat

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6-1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells.

  17. Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim HJ; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Eid, Eltayeb EM; Zainal, Zulkarnain; Saeed, Mohd; Ilowefah, Muna; Fakurazi, Sharida; Isa, Norhaszalina Mohd; Zowalaty, Mohamed Ezzat El

    2013-01-01

    In this study, in vitro cytotoxicity of nickel zinc (NiZn) ferrite nanoparticles against human colon cancer HT29, breast cancer MCF7, and liver cancer HepG2 cells was examined. The morphology, homogeneity, and elemental composition of NiZn ferrite nanoparticles were investigated by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The exposure of cancer cells to NiZn ferrite nanoparticles (15.6–1,000 μg/mL; 72 hours) has resulted in a dose-dependent inhibition of cell growth determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The quantification of caspase-3 and -9 activities and DNA fragmentation to assess the cell death pathway of the treated cells showed that both were stimulated when exposed to NiZn ferrite nanoparticles. Light microscopy examination of the cells exposed to NiZn ferrite nanoparticles demonstrated significant changes in cellular morphology. The HepG2 cells were most prone to apoptosis among the three cells lines examined, as the result of treatment with NiZn nanoparticles. In conclusion, NiZn ferrite nanoparticles are suggested to have potential cytotoxicity against cancer cells. PMID:23885175

  18. Defining the Subcellular Interface of Nanoparticles by Live-Cell Imaging

    PubMed Central

    Hemmerich, Peter H.; von Mikecz, Anna H.

    2013-01-01

    Understanding of nanoparticle-bio-interactions within living cells requires knowledge about the dynamic behavior of nanomaterials during their cellular uptake, intracellular traffic and mutual reactions with cell organelles. Here, we introduce a protocol of combined kinetic imaging techniques that enables investigation of exemplary fluorochrome-labelled nanoparticles concerning their intracellular fate. By time-lapse confocal microscopy we observe fast, dynamin-dependent uptake of polystyrene and silica nanoparticles via the cell membrane within seconds. Fluorescence recovery after photobleaching (FRAP) experiments reveal fast and complete exchange of the investigated nanoparticles at mitochondria, cytoplasmic vesicles or the nuclear envelope. Nuclear translocation is observed within minutes by free diffusion and active transport. Fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS) indicate diffusion coefficients of polystyrene and silica nanoparticles in the nucleus and the cytoplasm that are consistent with particle motion in living cells based on diffusion. Determination of the apparent hydrodynamic radii by FCS and RICS shows that nanoparticles exert their cytoplasmic and nuclear effects mainly as mobile, monodisperse entities. Thus, a complete toolkit of fluorescence fluctuation microscopy is presented for the investigation of nanomaterial biophysics in subcellular microenvironments that contributes to develop a framework of intracellular nanoparticle delivery routes. PMID:23637951

  19. Kinetics and pathogenesis of intracellular magnetic nanoparticle cytotoxicity

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Gottesman, Rachel E.; Petryk, A. A.; Rauwerdink, A. M.; Hoopes, P. Jack

    2011-03-01

    Magnetic nanoparticles excited by alternating magnetic fields (AMF) have demonstrated effective tumor-specific hyperthermia. This treatment is effective as a monotherapy as well as a therapeutic adjuvant to chemotherapy and radiation. Iron oxide nanoparticles have been shown, so far, to be non-toxic, as are the exciting AMF fields when used at moderate levels. Although higher levels of AMF can be more effective, depending on the type of iron oxide nanoparticles use, these higher field strengths and/or frequencies can induce normal tissue heating and toxicity. Thus, the use of nanoparticles exhibiting significant heating at low AMF strengths and frequencies is desirable. Our preliminary experiments have shown that the aggregation of magnetic nanoparticles within tumor cells improves their heating effect and cytotoxicity per nanoparticle. We have used transmission electron microscopy to track the endocytosis of nanoparticles into tumor cells (both breast adenocarcinoma (MTG-B) and acute monocytic leukemia (THP-1) cells). Our preliminary results suggest that nanoparticles internalized into tumor cells demonstrate greater cytotoxicity when excited with AMF than an equivalent heat dose from excited external nanoparticles or cells exposed to a hot water bath. We have also demonstrated that this increase in SAR caused by aggregation improves the cytotoxicity of nanoparticle hyperthermia therapy in vitro.

  20. Impact of diamond nanoparticles on neural cells.

    PubMed

    Vaitkuviene, Aida; Ratautaite, Vilma; Ramanaviciene, Almira; Sanen, Kathleen; Paesen, Rik; Ameloot, Marcel; Petrakova, Vladimira; McDonald, Matthew; Vahidpour, Farnoosh; Kaseta, Vytautas; Ramanauskaite, Giedre; Biziuleviciene, Gene; Nesladek, Milos; Ramanavicius, Arunas

    2015-02-01

    Diamond nanoparticles (DNPs) are very attractive for biomedical applications, particularly for bioimaging. The aim of this study was to evaluate the impact of DNPs on neural cancer cells and thus to assess the possible application of DNPs for these cells imaging. For this purpose, the neuroblastoma SH-SY5Y cell line was chosen. Cells were cultured in medium with different concentrations (15, 50, 100 and 150 μg/ml) of DNPs. After 48 h of incubation, cell metabolic activity was evaluated by the XTT assay. For assessment of cellular metabolic activity, cells were also cultured on differently terminated nanocrystalline diamond (NCD) coatings in medium with 150 μg/ml of DNPs. Cell adhesion and morphology were evaluated by brightfield microscopy. Diamond nanoparticle internalization was determined by confocal microscopy. The obtained results showed that low concentrations (15, 50 and 100 μg/ml) of nanoparticles did not significantly affect the SH-SY5Y cell metabolic activity. However, a higher concentration (150 μg/ml) of DNPs statistically significantly reduced SH-SY5Y cell metabolic activity. After 48 h incubation with 150 μg/ml DNPs, cell metabolic activity was 23% lower than in medium without DNPs on standard tissue culture polystyrene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    PubMed Central

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2014-01-01

    To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease. PMID:24791147

  2. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2013-12-01

    To develop new nanoparticle materials possessing antioxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had mode diameters in the range of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance-enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.

  3. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells.

    PubMed

    Radziun, E; Dudkiewicz Wilczyńska, J; Książek, I; Nowak, K; Anuszewska, E L; Kunicki, A; Olszyna, A; Ząbkowski, T

    2011-12-01

    The rapid development of nanotechnology raises both enthusiasm and anxiety among researchers, which is related to the safety use of the manufactured materials. Thus, the aim of this study was to investigate the effect of aluminium oxide nanoparticles on the viability of selected mammalian cells in vitro. The aluminium oxide nanoparticles were characterised using SEM and BET analyses. Based on Zeta (ζ) potential measurements and particle size distribution, the tested suspensions of aluminium oxide nanoparticles in water and nutrient solutions with or without FBS were classified as unstable. Cell viability, the degree of apoptosis induction and nanoparticles internalization into the cells were assessed after 24 h of cell exposure to Al2O3 nanoparticles. Our results confirm the ability of aluminium oxide nanoparticles to penetrate through the membranes of L929 and BJ cells. Despite this, there was no significant increase in apoptosis or decrease in cell viability observed, suggesting that aluminium oxide nanoparticles in the tested range of concentrations has no cytotoxic effects on the selected mammalian cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Single-walled carbon nanotube, multi-walled carbon nanotube and Fe2O3 nanoparticles induced mitochondria mediated apoptosis in melanoma cells.

    PubMed

    Naserzadeh, Parvaneh; Ansari Esfeh, Fatemeh; Kaviani, Mahboubeh; Ashtari, Khadijeh; Kheirbakhsh, Raheleh; Salimi, Ahmad; Pourahmad, Jalal

    2018-06-01

    Nanomaterials (NM) exhibit novel anticancer properties. The toxicity of three nanoparticles that are currently being produced in high tonnage including single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT) and Fe 2 O 3 nanoparticles, were compared with normal and melanoma cells. All tested nanoparticles induced selective toxicity and caspase 3 activation through mitochondria pathway in melanoma cells and mitochondria cause the generating of reactive oxygen species (ROS), mitochondrial membrane potential decline (MMP collapse), mitochondria swelling, and cytochrome c release. The pretreatment of butylated hydroxytoluene (BHT), a cell-permeable antioxidant and cyclosporine A (Cs. A), a mitochondrial permeability transition (MPT), pore sealing agent decreased cytotoxicity, caspase 3 activation, ROS generation, and mitochondrial damages induced by SWCNT, MWCNT, and IONPs. Our promising results provide a potential approach for the future therapeutic use of SWCNT, MWCNT, and IONPs in melanoma through mitochondrial targeting.

  5. Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources.

    PubMed

    Osman, O; Zanini, L F; Frénéa-Robin, M; Dumas-Bouchiat, F; Dempsey, N M; Reyne, G; Buret, F; Haddour, N

    2012-10-01

    Trapping of cells is essential to perform basic handling operations in cell-based microsystems, such as media exchange, concentration, cell isolation and cell sorting. Cell trapping by magnetophoresis typically requires cell labeling with magnetic nanoparticles. Here we report on endocytotic uptake of 100 nm magnetic nanoparticles by Human Embryonic Kidney 293 cells. The attraction of labeled cells by micro-magnet arrays characterised by very high magnetic field gradients (≤10⁶ T/m) was studied as a function of labeling conditions (nanoparticle concentration in the extracellular medium, incubation time). The threshold incubation conditions for effective magnetophoretic trapping were established. This simple technique may be exploited to minimise the quantity of magnetic nanoparticles needed for efficient cell trapping, thus reducing stress or nanoparticle-mediated toxicity. Nanoparticle internalization into cells was confirmed using both confocal and Transmission Electron Microscopy (TEM).

  6. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    The field of nanotechnology is rapidly expanding across disciplines as each new development is realized. New exciting technologies are being driven by advances in the application of nanotechnology; including biochemical, optical, and semiconductors research. This thesis will focus on the use of silver nanoparticles as optical labels on cells, methods of forming different small structures of silver nanoparticles, as well as the use of silver nanoparticles in the development of a photovoltaic cell. Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry and biotinylated antibodies targeting cell surface receptors were bound to the nanoparticle surface. The nanoparticle labels exhibited long-term stability under physiological conditions without aggregation or silver ion leaching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared to unlabeled cells. Dimers of silver nanoparticles have been fabricated by first immobilizing a monolayer of single silver nanoparticles onto poly(4-vinylpyridine) covered glass slides. The monolayer was then exposed to adenine, which has two amines which will bind to silver. The nanoparticle monolayer, now modified with adenine, is exposed to a second suspension of nanoparticles which will bind with the amine modified monolayer. Finally, a thin silica shell is formed about the structure via solgel chemistry to prevent dissolution or aggregation upon sonication/striping. Circular arrays of silver nanoparticels are developed using a

  7. Radionuclide therapy using ¹³¹I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression.

    PubMed

    Li, Wei; Liu, Zhongyun; Li, Chengxia; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian

    2016-03-01

    compared with those of the control BSA-PCL. The EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL exhibited favorable intracellular retention of (131)I. Radionuclide therapy using (131)I-EGFR-BSA-PCL, which showed excellent targeted cell killing, suppressed cancer cell growth caused by EGFR overexpression.

  8. Green Synthesized Silver Nanoparticles Exhibit Reduced Toxicity to Mammalian Cells and Retain Antimicrobial Activity

    EPA Science Inventory

    The interest in silver nanoparticles (AgNPs) and silver nanomaterial stems from their antimicrobial properties. AgNPs are being added to clothing, paint, refrigerators, washing machines and a variety of other commercially available items. Recent in vitro and in vivo studies, howe...

  9. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines

    NASA Astrophysics Data System (ADS)

    Panwar, Richa; Sharma, Asvene K.; Kaloti, Mandeep; Dutt, Dharm; Pruthi, Vikas

    2016-08-01

    Ferulic acid (FA) is a widely distributed hydroxycinnamic acid found in various cereals and fruits exhibiting potent antioxidant and anticancer activities. However, due to low solubility and permeability, its availability to biological systems is limited. Non-toxic chitosan-tripolyphosphate pentasodium (CS-TPP) nanoparticles (NPs) are used to load sparingly soluble molecules and drugs, increasing their bioavailability. In the present work, we have encapsulated FA into the CS-TPP NPs to increase its potential as a therapeutic agent. Different concentrations of FA were tested to obtain optimum sized FA-loaded CS-TPP nanoparticles (FA/CS-TPP NPs) by ionic gelation method. Nanoparticles were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy (FTIR), thermogravimetric analyses and evaluated for their anticancer activity against ME-180 human cervical cancer cell lines. The FTIR spectra confirmed the encapsulation of FA and thermal analysis depicted its degradation profile. A concentration-dependent relationship between FA encapsulation efficiency and FA/CS-TPP NPs diameter was observed. Smooth and spherical FA-loaded cytocompatible nanoparticles with an average diameter of 125 nm were obtained at 40 µM FA conc. The cytotoxicity of 40 µM FA/CS-TPP NPs against ME-180 cervical cancer cell lines was found to be higher as compared to 40 µM native FA. Apoptotic morphological changes as cytoplasmic remnants and damaged wrinkled cells in ME-180 cells were visualized using scanning electron microscopic and fluorescent microscopic techniques. Data concluded that chitosan enveloped FA nanoparticles could be exploited as an excellent therapeutic drug against cancer cells proliferation.

  10. Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy.

    PubMed

    Kolodziejczyk, Agnieszka; Jakubowska, Aleksandra; Kucinska, Magdalena; Wasiak, Tomasz; Komorowski, Piotr; Makowski, Krzysztof; Walkowiak, Bogdan

    2018-05-10

    Endothelial cells, due to their location, are interesting objects for atomic force spectroscopy study. They constitute a barrier between blood and vessel tissues located deeper, and therefore they are the first line of contact with various substances present in blood, eg, drugs or nanoparticles. This work intends to verify whether the mechanical response of immortalized human umbilical vein endothelial cells (EA.hy926), when exposed to silver nanoparticles, as measured using force spectroscopy, could be effectively used as a bio-indicator of the physiological state of the cells. Silver nanoparticles were characterized with transmission electron microscopy and dynamic light scattering techniques. Tetrazolium salt reduction test was used to determine cell viability after treatment with silver nanoparticles. An elasticity of native cells was examined in the Hanks' buffer whereas fixed cells were softly fixed with formaldehyde. Additional aspect of the work is the comparative force spectroscopy utilizing AFM probes of ball-shape and conical geometries, in order to understand what changes in cell elasticity, caused by SNPs, were detectable with each probe. As a supplement to elasticity studies, cell morphology observation by atomic force microscopy and detection of silver nanoparticles inside cells using transmission electron microscopy were also performed. Cells exposed to silver nanoparticles at the highest selected concentrations (3.6 μg/mL, 16 μg/mL) are less elastic. It may be associated with the reorganization of the cellular cytoskeleton and the "strengthening" of the cell cortex caused by presence of silver nanoparticles. This observation does not depend on cell fixation. Agglomerates of silver nanoparticles were observed on the cell membrane as well as inside the cells. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas

    2009-05-01

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  12. Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells.

    PubMed

    Verderio, Paolo; Pandolfi, Laura; Mazzucchelli, Serena; Marinozzi, Maria Rosaria; Vanna, Renzo; Gramatica, Furio; Corsi, Fabio; Colombo, Miriam; Morasso, Carlo; Prosperi, Davide

    2014-08-04

    Among polymeric nanoparticles designed for cancer therapy, PLGA nanoparticles have become one of the most popular polymeric devices for chemotherapeutic-based nanoformulations against several kinds of malignant diseases. Promising properties, including long-circulation time, enhanced tumor localization, interference with "multidrug" resistance effects, and environmental biodegradability, often result in an improvement of the drug bioavailability and effectiveness. In the present work, we have synthesized 1,7-bis(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one (ASC-J9) and developed uniform ASC-J9-loaded PLGA nanoparticles of about 120 nm, which have been prepared by a single-emulsion process. Structural and morphological features of the nanoformulation were analyzed, followed by an accurate evaluation of the in vitro drug release kinetics, which exhibited Fickian law diffusion over 10 days. The intracellular degradation of ASC-J9-bearing nanoparticles within estrogen-dependent MCF-7 breast cancer cells was correlated to a time- and dose-dependent activity of the released drug. A cellular growth inhibition associated with a specific cell cycle G2/M blocking effect caused by ASC-J9 release inside the cytosol allowed us to put forward a hypothesis on the action mechanism of this nanosystem, which led to the final cell apoptosis. Our study was accomplished using Annexin V-based cell death analysis, MTT assessment of proliferation, radical scavenging activity, and intracellular ROS evaluation. Moreover, the intracellular localization of nanoformulated ASC-J9 was confirmed by a Raman optical imaging experiment designed ad hoc. PLGA nanoparticles and ASC-J9 proved also to be safe for a healthy embryo fibroblast cell line (3T3-L1), suggesting a possible clinical translation of this potential nanochemotherapeutic to expand the inherently poor bioavailability of hydrophobic ASC-J9 that could be proposed for the treatment of malignant breast cancer.

  13. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles.

    PubMed

    Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee

    2015-10-08

    This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

  14. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    PubMed Central

    Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee

    2015-01-01

    This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients. PMID:28793599

  15. A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Rashidi, Ladan; Vasheghani-Farahani, Ebrahim; Soleimani, Masoud; Atashi, Amir; Rostami, Khosrow; Gangi, Fariba; Fallahpour, Masoud; Tahouri, Mohammad Taher

    2014-03-01

    In this study, the effects of intracellular delivery of various concentrations of gallic acid (GA) as a semistable antioxidant, gallic acid-loaded mesoporous silica nanoparticles (MSNs-GA), and cellular uptake of nanoparticles into Caco-2 cells were investigated. MSNs were synthesized and loaded with GA, then characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, N2 adsorption isotherms, X-ray diffraction, and thermal gravimetric analysis. The cytotoxicity of MSNs and MSNs-GA at low and high concentrations were studied by means of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test and flow cytometry. MSNs did not show significant toxicity in various concentrations (0-500 μg/ml) on Caco-2 cells. For MSNs-GA, cell viability was reduced as a function of incubation time and different concentrations of nanoparticles. The in vitro GA release from MSNs-GA exhibited the same antitumor properties as free GA on Caco-2 cells. Flow cytometry results confirmed those obtained using MTT assay. TEM and fluorescent microscopy confirmed the internalization of MSNs by Caco-2 cells through nonspecific cellular uptake. MSNs can easily internalize into Caco-2 cells without deleterious effects on cell viability. The cell viability of Caco-2 cells was affected during MSNs-GA uptake. MSNs could be designed as suitable nanocarriers for antioxidants delivery.

  16. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles.

    PubMed

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized via reduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml(-1) for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  17. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2

    NASA Astrophysics Data System (ADS)

    Averchenko, E. A.; Kavok, N. S.; Klochkov, V. K.; Malyukin, Yu. V.

    2014-11-01

    We have used luminol-dependent chemiluminescence with Fenton's reagent to study the effect of nanoparticles based on rare-earth elements of different sizes and shapes on free-radical processes in abiotic and biotic cell-free systems, and also in isolated cells in vitro. We have estimated the effects of rare-earth orthovanadate nanoparticles of spherical (GdYVO4:Eu3+, 1-2 nm), spindle-shaped (GdVO4:Eu3+, 25 ×8 nm), and rod-shaped (LaVO4:Eu3+, 57 × (6-8) nm) nanoparticles and spherical CeO2 nanoparticles (sizes 1-2 nm and 8-10 nm). We have shown that in contrast to the abiotic system, in which all types of nanoparticles exhibit antiradical activity, in the presence of biological material, extra-small spherical (1-2 nm) nanoparticles of both types exhibit pro-oxidant activity, and also enhance pro-oxidant induced oxidative stress (for the pro-oxidants hydrogen peroxide and tert-butyl hydroperoxide). The effect of rare-earth orthovanadate spindle and rod shaped nanoparticles in this system was neutral; a moderate antioxidant effect was exhibited by 8-10 nm CeO2 nanoparticles.

  18. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation.

    PubMed

    Ananta, Jeyarama S; Paulmurugan, Ramasamy; Massoud, Tarik F

    2016-01-01

    Current chemotherapies for brain glioblastoma do not achieve sufficient drug concentrations within tumors. Polymeric nanoparticles have useful physicochemical properties that make them promising as nanoparticle platforms for glioblastoma drug delivery. Poly[lactic-co-glycolic acid] (PLGA) nanoparticles encapsulating temozolomide (TMZ) could improve localized delivery and sustained drug release to glioblastomas. We investigated three different procedures to encapsulate TMZ within PLGA nanoparticles. We studied the biophysical features of optimized nanocarriers, including their size, shape, surface properties, and release characteristics of TMZ. We evaluated the antiproliferative and cytotoxic effects of TMZ-loaded PLGA nanoparticles on U87 MG glioblastoma cells. A single emulsion technique using a TMZ saturated aqueous phase produced nanoparticles ≤200 nm in size allowing a maximal drug loading of 4.4% w/w of polymer. There was a bi-phasic drug release pattern, with 80% of TMZ released within the first 6 h. Nanoparticles accumulated in the cytoplasm after effective endocytosis. There was no significant difference in cytotoxic effect of TMZ encapsulated within PLGA nanoparticles and free TMZ. PLGA nanoparticles are not suitable as carriers of TMZ for glioblastoma drug delivery on account of the overall high IC50 values of glioblastoma cells to TMZ and poor loading and encapsulation efficiencies. Further biotechnological developments aimed at improving the loading of TMZ in PLGA nanoparticles or co-delivery of small molecule sensitizers to improve the response of human glioblastoma cells to TMZ are required for this approach to be considered and optimized for future clinical translation.

  19. Evaluating mononuclear cells as nanoparticle delivery vehicles for the treatment of breast tumors

    NASA Astrophysics Data System (ADS)

    Murton, Jaclyn K.; Hu, Chelin; Ahmed, Mona M.; Hathaway, Helen J.; Nysus, Monique; Anderson Daniels, Tamara; Norenberg, Jeffrey P.; Adolphi, Natalie L.

    2015-08-01

    In breast cancer, certain types of circulating immune cells respond to long-range chemical signals from tumors by leaving the blood stream to actively infiltrate tumor tissue. The aim of this study was to evaluate whether immune cells could be used to deliver therapeutic nanoparticles into breast tumors in mice. Mononuclear splenocytes (MS) were harvested from donor mice, labeled with Indium-111, injected intravenously into immune-competent recipient mice (3 tumor-bearing and 3 control), and imaged longitudinally by SPECT/CT. For comparison, the biodistribution of bonemarrow derived macrophages (BMDM) in one pair of mice was also imaged. Quantitative analysis of the SPECT images demonstrates that, after 24 hours, the concentration of MS detected in mammary tumors is more than 3-fold higher than the concentration detected in normal mammary glands. The ratio of MS concentration in mammary tissue to MS concentration in non-target tissues (muscle, lung, heart, liver, spleen, and kidney) was enhanced in tumor-bearing mice (compared to controls), with statistical significance achieved for mammary/muscle (p<0.01), mammary/lung (p<0.05), and mammary/kidney (p<0.05). By contrast, BMDM did not show a different affinity for tumors relative to normal mammary tissue. MS were incubated with 100 nm red fluorescent nanoparticles, and flow cytometry demonstrated that ~35% of the MS population exhibited strong phagocytic uptake of the nanoparticles. After intravenous injection into tumor-bearing mice, fluorescence microscopy images of tumor sections show qualitatively that nanoparticle-loaded MS retain the ability to infiltrate mammary tumors. Taken together, these results suggest that MS carriers are capable of actively targeting therapeutic nanoparticles to breast tumors.

  20. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions

    NASA Astrophysics Data System (ADS)

    Shipunova, V. O.; Nikitin, M. P.; Nikitin, P. I.; Deyev, S. M.

    2016-06-01

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method

  1. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles.

    PubMed

    Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui

    2017-02-01

    Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10 5 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads ® ). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    PubMed Central

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi

    2016-01-01

    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  3. Endocytosis and exocytosis of nanoparticles in mammalian cells

    PubMed Central

    Oh, Nuri; Park, Ji-Ho

    2014-01-01

    Engineered nanoparticles that can be injected into the human body hold tremendous potential to detect and treat complex diseases. Understanding of the endocytosis and exocytosis mechanisms of nanoparticles is essential for safe and efficient therapeutic application. In particular, exocytosis is of significance in the removal of nanoparticles with drugs and contrast agents from the body, while endocytosis is of great importance for the targeting of nanoparticles in disease sites. Here, we review the recent research on the endocytosis and exocytosis of functionalized nanoparticles based on various sizes, shapes, and surface chemistries. We believe that this review contributes to the design of safe nanoparticles that can efficiently enter and leave human cells and tissues. PMID:24872703

  4. Multifunctional magnetic and fluorescent core-shell nanoparticles for bioimaging.

    PubMed

    Lu, Yanjiao; He, Bicheng; Shen, Jie; Li, Jie; Yang, Wantai; Yin, Meizhen

    2015-02-07

    Novel magnetic and fluorescent core-shell nanoparticles have been fabricated, which exhibit superparamagnetic behavior and emit strong near-infrared fluorescence. The nanoparticles are highly biocompatible and can be internalized into cells with nucleic accumulation via strong interaction with nucleic acids, implying potential applications in the biomedical field.

  5. Magnetic Nanoparticles as Mechanical Actuators of Inner Ear Hair Cells

    DTIC Science & Technology

    2016-01-13

    AFRL-AFOSR-VA-TR-2016-0039 Magnetic nanoparticles as mechanical actuators of inner ear hair cells Dolores Bozovic UNIVERSITY OF CALIFORNIA LOS...4. TITLE AND SUBTITLE Magnetic nanoparticles as mechanical actuators of inner ear hair cells 5a. CONTRACT NUMBER N.A. 5b. GRANT NUMBER FA9550-12...13. SUPPLEMENTARY NOTES 14. ABSTRACT The collaborative project was designed to edevelop the use of magnetic nanoparticles to manipulate auditory hair

  6. Ferritin nanoparticles for improved self-renewal and differentiation of human neural stem cells.

    PubMed

    Lee, Jung Seung; Yang, Kisuk; Cho, Ann-Na; Cho, Seung-Woo

    2018-01-01

    Biomaterials that promote the self-renewal ability and differentiation capacity of neural stem cells (NSCs) are desirable for improving stem cell therapy to treat neurodegenerative diseases. Incorporation of micro- and nanoparticles into stem cell culture has gained great attention for the control of stem cell behaviors, including proliferation and differentiation. In this study, ferritin, an iron-containing natural protein nanoparticle, was applied as a biomaterial to improve the self-renewal and differentiation of NSCs and neural progenitor cells (NPCs). Ferritin nanoparticles were added to NSC or NPC culture during cell growth, allowing for incorporation of ferritin nanoparticles during neurosphere formation. Compared to neurospheres without ferritin treatment, neurospheres with ferritin nanoparticles showed significantly promoted self-renewal and cell-cell interactions. When spontaneous differentiation of neurospheres was induced during culture without mitogenic factors, neuronal differentiation was enhanced in the ferritin-treated neurospheres. In conclusion, we found that natural nanoparticles can be used to improve the self-renewal ability and differentiation potential of NSCs and NPCs, which can be applied in neural tissue engineering and cell therapy for neurodegenerative diseases.

  7. Morphological changes of the red blood cells treated with metal oxide nanoparticles.

    PubMed

    Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu

    2016-12-01

    The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In vitro cell imaging using multifunctional small sized KGdF4:Yb3+,Er3+ upconverting nanoparticles synthesized by a one-pot solvothermal process

    NASA Astrophysics Data System (ADS)

    Wong, Hon-Tung; Tsang, Ming-Kiu; Chan, Chi-Fai; Wong, Ka-Leung; Fei, Bin; Hao, Jianhua

    2013-03-01

    Multifunctional KGdF4:18%Yb3+,2%Er3+ nanoparticles with upconversion fluorescence and paramagnetism are synthesized. The average sizes of the nanoparticles capped with branched polyethyleneimine (PEI) and 6-aminocaproic acid (6AA) are ~14 and ~13 nm, respectively. Our KGdF4 host does not exhibit any phase change with the decrease of particle size, which can prevent the detrimental significant decrease in upconversion luminescence caused by this effect observed in the well-known NaYF4 host. The branched PEI and 6AA capping ligands endow our nanoparticles with water-dispersibility and biocompatibility, which can favor internalization of our nanoparticles into the cytoplasm of HeLa cells and relatively high cell viability. The strong upconversion luminescence detected at the cytoplasm of HeLa cells incubated with the branched PEI-capped nanoparticles is probably attributed to the reported high efficiency of cellular uptake. The magnetic mass susceptibility of our nanoparticle is 8.62 × 10-5 emu g-1 Oe-1. This is the highest value ever reported in trivalent rare-earth ion-doped KGdF4 nanoparticles of small size (<=14 nm), and is very close to that of nanoparticles used as T1 contrast agents in magnetic resonance imaging. These suggest the potential of our KGdF4:Yb3+,Er3+ nanoparticles as small-sized multifunctional bioprobes.

  9. Aptamer-conjugated nanoparticles for cancer cell detection.

    PubMed

    Medley, Colin D; Bamrungsap, Suwussa; Tan, Weihong; Smith, Joshua E

    2011-02-01

    Aptamer-conjugated nanoparticles (ACNPs) have been used for a variety of applications, particularly dual nanoparticles for magnetic extraction and fluorescent labeling. In this type of assay, silica-coated magnetic and fluorophore-doped silica nanoparticles are conjugated to highly selective aptamers to detect and extract targeted cells in a variety of matrixes. However, considerable improvements are required in order to increase the selectivity and sensitivity of this two-particle assay to be useful in a clinical setting. To accomplish this, several parameters were investigated, including nanoparticle size, conjugation chemistry, use of multiple aptamer sequences on the nanoparticles, and use of multiple nanoparticles with different aptamer sequences. After identifying the best-performing elements, the improvements made to this assay's conditional parameters were combined to illustrate the overall enhanced sensitivity and selectivity of the two-particle assay using an innovative multiple aptamer approach, signifying a critical feature in the advancement of this technique.

  10. PPV-Based Conjugated Polymer Nanoparticles as a Versatile Bioimaging Probe: A Closer Look at the Inherent Optical Properties and Nanoparticle-Cell Interactions.

    PubMed

    Peters, Martijn; Zaquen, Neomy; D'Olieslaeger, Lien; Bové, Hannelore; Vanderzande, Dirk; Hellings, Niels; Junkers, Thomas; Ethirajan, Anitha

    2016-08-08

    Conjugated polymers have attracted significant interest in the bioimaging field due to their excellent optical properties and biocompatibility. Tailor-made poly(p-phenylenevinylene) (PPV) conjugated polymer nanoparticles (NPs) are in here described. Two different nanoparticle systems using poly[2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and a functional statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene (CPM-MDMO-PPV), containing ester groups on the alkoxy side chains, were synthesized by combining miniemulsion and solvent evaporation processes. The hydrolysis of ester groups into carboxylic acid groups on the CPM-MDMO-PPV NPs surface allows for biomolecule conjugation. The NPs exhibited excellent optical properties with a high fluorescent brightness and photostability. The NPs were in vitro tested as potential fluorescent nanoprobes for studying cell populations within the central nervous system. The cell studies demonstrated biocompatibility and surface charge dependent cellular uptake of the NPs. This study highlights that PPV-derivative based particles are a promising bioimaging probe and can cater potential applications in the field of nanomedicine.

  11. Development and characterization of multifunctional nanoparticles for drug delivery to cancer cells

    NASA Astrophysics Data System (ADS)

    Nahire, Rahul Rajaram

    Lipid and polymeric nanoparticles, although proven to be effective drug delivery systems compared to free drugs, have shown considerable limitations pertaining to their uptake and release at tumor sites. Spatial and temporal control over the delivery of anticancer drugs has always been challenge to drug delivery scientists. Here, we have developed and characterized multifunctional nanoparticles (liposomes and polymersomes) which are targeted specifically to cancer cells, and release their contents with tumor specific internal triggers. To enable these nanoparticles to be tracked in blood circulation, we have imparted them with echogenic characteristic. Echogenicity of nanoparticles is evaluated using ultrasound scattering and imaging experiments. Nanoparticles demonstrated effective release with internal triggers such as elevated levels of MMP-9 enzyme found in the extracellular matrix of tumor cells, decreased pH of lysosome, and differential concentration of reducing agents in cytosol of cancer cells. We have also successfully demonstrated the sensitivity of these particles towards ultrasound to further enhance the release with internal triggers. To ensure the selective uptake by folate receptor- overexpressing cancer cells, we decorated these nanoparticles with folic acid on their surface. Fluorescence microscopic images showed significantly higher uptake of folate-targeted nanoparticles by MCF-7 (breast cancer) and PANC-1 (pancreatic cancer) cells compared to particles without any targeting ligand on their surface. To demonstrate the effectiveness of these nanoparticles to carry the drugs inside and kill cancer cells, we encapsulated doxorubicin and/or gemcitabine employing the pH gradient method. Drug loaded nanoparticles showed significantly higher killing of the cancer cells compared to their non-targeted counterparts and free drugs. With further development, these nanoparticles certainly have potential to be used as a multifunctional nanocarriers for image

  12. Nanoparticles-cell association predicted by protein corona fingerprints

    NASA Astrophysics Data System (ADS)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  13. Superparamagnetic MFe2O 4 (M = Ni, Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications.

    PubMed

    Sabale, Sandip; Jadhav, Vidhya; Khot, Vishwajeet; Zhu, Xiaoli; Xin, Meiling; Chen, Hongxia

    2015-03-01

    Superparamagnetic nanoferrites are prepared by simple and one step refluxing in polyol synthesis. The ferrite nanoparticles prepared by this method exhibit particle sizes below 10 nm and high degree of crystallinity. These ferrite nanoparticles are compared by means of their magnetic properties, induction heating and cell viability studies for its application in magnetic fluid hyperthermia. Out of all studied nanoparticles in present work, only ZnFe2O4 and CoFe2O4 MNPs are able to produce threshold hyperthermia temperature. This rise in temperature is discussed in detail in view of their magneto-structural properties. Therefore ZnFe2O4 and CoFe2O4 MNPs with improved stability, magnetic induction heating and cell viability are suitable candidates for magnetic hyperthermia.

  14. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    PubMed Central

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  15. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively

  16. Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells.

    PubMed

    Shi, Xiangyang; Wang, Su He; Lee, Inhan; Shen, Mingwu; Baker, James R

    2009-11-01

    Dendrimer-based nanotechnology significantly advances the area of targeted cancer imaging and therapy. Herein, we compared the difference of surface acetylated fluorescein isocyanate (FI) and folic acid (FA) modified generation 5 (G5) poly(amidoamine) dendrimers (G5.NHAc-FI-FA), and dendrimer-entrapped gold nanoparticles with similar modifications ([(Au(0))(51.2)-G5.NHAc-FI-FA]) in terms of their specific internalization to FA receptor (FAR)-overexpressing cancer cells. Confocal microscopic studies show that both G5.NHAc-FI-FA and [(Au(0))(51.2-)G5.NHAc-FI-FA] exhibit similar internalization kinetics regardless of the existence of Au nanoparticles (NPs). Molecular dynamics simulation of the two different nanostructures reveals that the surface area and the FA moiety distribution from the center of the geometry are slightly different. This slight difference may not be recognized by the FARs on the cell membrane, consequently leading to similar internalization kinetics. This study underlines the fact that metal or inorganic NPs entrapped within dendrimers interact with cells in a similar way to that of dendrimers lacking host NPs. 2009 Wiley Periodicals, Inc.

  17. Gold nanoparticle-cell labeling methodology for tracking stem cells within the brain

    NASA Astrophysics Data System (ADS)

    Betzer, Oshra; Meir, Rinat; Motiei, Menachem; Yadid, Gal; Popovtzer, Rachela

    2017-02-01

    Cell therapy provides a promising approach for diseases and injuries that conventional therapies cannot cure effectively. Mesenchymal stem cells (MSCs) can be used as effective targeted therapy, as they exhibit homing capabilities to sites of injury and inflammation, exert anti-inflammatory effects, and can differentiate in order to regenerate damaged tissue. Despite the potential efficacy of cell therapy, applying cell-based therapy in clinical practice is very challenging; there is a need to uncover the mystery regarding the fate of the transplanted cells. Therefore, in this study, we developed a method for longitudinal and quantitative in vivo cell tracking, based on the superior visualization abilities of classical X-ray computed tomography (CT), and combined with gold nanoparticles as labeling agents. We applied this technique for non-invasive imaging of MSCs transplanted in a rat model for depression, a highly prevalent and disabling neuropsychiatric disorder lacking effective treatment. Our results, which demonstrate that cell migration could be detected as early as 24 hours and up to one month post-transplantation, revealed that MSCs specifically navigated and homed to distinct depression related brain regions. This research further reveals that cell therapy is a beneficial approach for treating neuropsychiatric disorders; Behavioral manifestations of core symptoms of depressive behavior, were significantly attenuated following treatment. We expect This CT-based technique to lead to a significant enhancement in cellular therapy both for basic research and clinical applications of brain pathologies.

  18. Intracellular drug release from curcumin-loaded PLGA nanoparticles induces G2/M block in breast cancer cells.

    PubMed

    Verderio, Paolo; Bonetti, Paolo; Colombo, Miriam; Pandolfi, Laura; Prosperi, Davide

    2013-03-11

    PLGA nanoparticles are among the most studied polymer nanoformulations for several drugs against different kinds of malignant diseases, thanks to their in vivo stability and tumor localization exploiting the well-documented "enhanced permeation and retention" (EPR) effect. In this paper, we have developed uniform curcumin-bearing PLGA nanoparticles by a single-emulsion process, which exhibited a curcumin release following a Fickian-law diffusion over 10 days in vitro. PLGA nanoparticles were about 120 nm in size, as determined by dynamic light scattering, with a surface negative charge of -30 mV. The loading ratio of encapsulated drug in our PLGA nanoformulation was 8 wt%. PLGA encapsulation provided efficient protection of curcumin from environment, as determined by fluorescence emission experiments. Next, we have investigated the possibility to study the intracellular degradation of nanoparticles associated with a specific G2/M blocking effect on MCF7 breast cancer cells caused by curcumin release in the cytoplasm, which provided direct evidence on the mechanism of action of our nanocomplex. This study was carried out using Annexin V-based cell death analysis, MTT assessment of proliferation, flow cytometry, and confocal laser scanning microscopy. PLGA nanoparticles proved to be completely safe, suggesting a potential utilization of this nanocomplex to improve the intrinsically poor bioavailability of curcumin for the treatment of severe malignant breast cancer.

  19. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    NASA Astrophysics Data System (ADS)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and

  20. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.

    PubMed

    Choi, Hyosung; Lee, Jung-Pil; Ko, Seo-Jin; Jung, Jae-Woo; Park, Hyungmin; Yoo, Seungmin; Park, Okji; Jeong, Jong-Ryul; Park, Soojin; Kim, Jin Young

    2013-05-08

    We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.

  1. Silver nanoparticles-coated glass frits for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Li, Biyuan

    2016-04-01

    Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.

  2. Vitis vinifera peel and seed gold nanoparticles exhibit chemopreventive potential, antioxidant activity and induce apoptosis through mutant p53, Bcl-2 and pan cytokeratin down-regulation in experimental animals.

    PubMed

    Nirmala, J Grace; Narendhirakannan, R T

    2017-05-01

    Several studies suggest surface modifications of gold nanoparticles (AuNPs) by capping agents or surface coatings could play an important role in biological systems, and site directed delivery. The present study was carried out to assess the antioxidant and apoptotic activities of the Vitis vinifera peel and seed gold nanoparticles in experimentally induced cancer in Swiss albino mice. 12-dimethylbenz [a] anthracene (DMBA) (single application) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (thrice a week) were applied on the dorsal area of the skin to induce skin papillomagenesis in Swiss albino mice for 16 weeks. Gold nanoparticles were synthesized using Vitis vinifera peel and seed aqueous extracts and characterized by Transmission electron microscopic (TEM) analyses. On topical application, peel and seed gold nanoparticles demonstrated chemopreventive potential by significantly (p<0.05) reducing the cumulative number of tumors while increasing the antioxidant enzyme activities in the gold nanoparticles treated mice. The down-regulated expression of mutant p53, Bcl-2 and the levels of pan-cytokeratins might have facilitated the process of apoptosis in the chemical carcinogenesis process. The results were supported by the histopathological evaluation which exhibited mild dysplasia and acanthosis in the skin tissues of Vitis vinifera peel and seed AuNPs treated mice. Based on the present study, the chemopreventive action of Vitis vinifera peel and seed AuNPs is probably due to its ability to stimulate the antioxidant enzymes within the cells and suppressed abnormal skin cell proliferation that occurred during DMBA-induced skin papillomagenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. The magnetic introduction of magnetite nanoparticles into live cells for radiosensibility enhancement

    NASA Astrophysics Data System (ADS)

    Yurenya, Anton Y.; Polikarpov, Mikhail A.; Chukalova, Aynur A.; Moskaleva, Elizaveta Y.; Taldenkov, Alexander N.; Panchenko, Vladislav Y.

    2017-04-01

    Earlier we proposed a new radiotherapy enhancement method that entails the administration of 57Fe iron-oxide nanoparticles into the cells [5]. Within this work we were prompt to investigate the capability of iron oxide nanoparticles with monolayer coating to penetrate into live cells. Magnetite particle samples were synthesized and stabilized with HCl or citric acid. The cells were incubated in the presence of nanoparticles for 1 h, washed and dried. To distinguish inside-cell particles from outside ones a set of experiments with low temperature incubation was carried out. Several cell samples were prepared in the presence of an external magnetic field in order to study the possibility of the nanoparticle uptake enhancement. To evaluate the amount of particles in each cell sample we used a SQUID-magnetometer. The nanoparticle suspension with HCl stabilization turned to be inadequate for intracellular introduction. Approximately 2·105 particles with citric acid covering conjugated with each cell after incubation at normal conditions. An application of an external magnetic field increased this amount up to 107 particles/cell. Most probably much of these particles penetrated into cells.

  4. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  5. Magneto-reactance based detection of MnO nanoparticle-embedded Lewis lung carcinoma cells

    NASA Astrophysics Data System (ADS)

    Devkota, J.; Howell, M.; Mukherjee, P.; Srikanth, H.; Mohapatra, S.; Phan, M. H.

    2015-05-01

    We demonstrate the capacity of detecting magnetically weak manganese oxide (MnO) nanoparticles and the Lewis lung carcinoma (LLC) cancer cells that have taken up these nanoparticles using a novel biosensor based on the magneto-reactance (MX) effect of a soft ferromagnetic amorphous ribbon with a microhole-patterned surface. While the magnetic moment of the MnO nanoparticles is relatively small, and a magneto-impedance based sensor fails to detect them in solution (0.05 mg/ml manganese oxide lipid micellar nanoparticles) and inside cells at low concentrations (8.25 × 104 cells/ml), the detection of these nanoparticles and the LLC cells containing them is achieved with the MX-based sensor, which, respectively, reaches the detection sensitivity of ˜3.6% and 2.8% as compared to the blank cells. Since the MnO nanoparticles are a promising contrast agent for magnetic resonance imaging (MRI) of lung cells, the MX-based biosensing technique can be developed as a pre-detection method for MRI of lung cancer cells.

  6. In Vitro Therapeutic Potential of Tio2 Nanoparticles Against Human Cervical Carcinoma Cells.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Young, Jung A; Hoon, Hur Ji; Lee, Hannah; Lee, SooBin; Kim, Doo Hwan

    2016-06-01

    Cellular and physiological responses to the degradation products of titanium implants are key indicators to determine the quality of biocompatibility of implant devices. The present study investigated titanium dioxide (TiO2) nanoparticle-induced cytotoxicity, apoptotic morphological modification, and apoptotic-related gene expressions in the human cervical carcinoma cells. TiO2 nanoparticle-induced cytotoxicity on cancer cells was determined by the sulphorhodamine-B assay. Apoptotic morphological modification such as nuclear fragmentation, rounding, cytoplasm shrinkage, loss of adhesion, and reduced cell volume were observed by an inverted, fluorescence, and confocal laser scanning microscope (CLSM). The DNA fragmentation study showed the occurrence of necrosis and apoptosis in nanoparticle-treated cells. The qPCR study showed the increased p53 and bax mRNA expression in the nanoparticle-treated cells compared to control. In addition, caspase 3 activity was increased in nanoparticle-treated cells, which indicates the increased auto-catalysis. Taking all these data together, it may suggest that TiO2 nanoparticle could inhibit the growth of HeLa cells.

  7. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    NASA Astrophysics Data System (ADS)

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-03-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  8. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    PubMed

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  9. Manganese Nanoparticle Activates Mitochondrial Dependent Apoptotic Signaling and Autophagy in Dopaminergic Neuronal Cells

    PubMed Central

    Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Gu, Yan; Fang, Ning; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2011-01-01

    The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles (~25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalized in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25–400 µg/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase Cδ (PKCδ), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. PMID:21856324

  10. TiO2 nanoparticle-induced ROS correlates with modulated immune cell function

    NASA Astrophysics Data System (ADS)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L.

    2012-12-01

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO2) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO2 exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO2 nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO2 nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  11. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles

    PubMed Central

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping

    2015-01-01

    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  12. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells

    PubMed Central

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J.; Hofmann, Marie-Claude

    2010-01-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots have received enormous national attention in the creation of new types of analytical tools for biotechnology and the life sciences. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health and the environment. Thus, there are limited studies available on toxicity of nanoparticles for risk assessment of nanomaterials. The purpose of this study was to assess the suitability of a mouse spermatogonial stem cell line as a model to assess nanotoxicity in the male germline in vitro. The effects of different types of nanoparticles on these cells were evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. Our results demonstrate a concentration-dependent toxicity for all types of particles tested, whereas the corresponding soluble salts had no significant effect. Silver nanoparticles were the most toxic while molybdenum trioxide (MoO3) nanoparticles were the least toxic. Our results suggest that this cell line provides a valuable model with which to assess the cytotoxicity of nanoparticles in the germ line in vitro. PMID:16014736

  13. Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy.

    PubMed

    Paris, Juan L; de la Torre, Paz; Victoria Cabañas, M; Manzano, Miguel; Grau, Montserrat; Flores, Ana I; Vallet-Regí, María

    2017-05-04

    A new platform constituted by engineered responsive nanoparticles transported by human mesenchymal stem cells is here presented as a proof of concept. Ultrasound-responsive mesoporous silica nanoparticles are coated with polyethylenimine to favor their effective uptake by decidua-derived mesenchymal stem cells. The responsive-release ability of the designed nanoparticles is confirmed, both in vial and in vivo. In addition, this capability is maintained inside the cells used as carriers. The migration capacity of the nanoparticle-cell platform towards mammary tumors is assessed in vitro. The efficacy of this platform for anticancer therapy is shown against mammary tumor cells by inducing the release of doxorubicin only when the cell vehicles are exposed to ultrasound.

  14. Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles.

    PubMed

    Reyes, Vincent C; Opot, Stephen O; Mahendra, Shaily

    2015-04-01

    Proper characterization of nanoparticle (NP) interactions with environmentally relevant bacteria under representative conditions is necessary to enable their sustainable manufacture, use, and disposal. Previous nanotoxicology research based on planktonic growth has not adequately explored biofilms, which serve as the predominant mode of bacterial growth in natural and engineered environments. Copper nanoparticle (Cu-NP) impacts on biofilms were compared with respective planktonic cultures of the ammonium-oxidizing Nitrosomonas europaea, nitrogen-fixing Azotobacter vinelandii, and denitrifying Paracoccus denitrificans using a suite of independent toxicity diagnostics. Median inhibitory concentration (IC50) values derived from adenosine triphosphate (ATP) for Cu-NPs were lower in N. europaea biofilms (19.6 ± 15.3 mg/L) than in planktonic cells (49.0 ± 8.0 mg/L). However, in absorbance-based growth assays, compared with unexposed controls, N. europaea growth rates in biofilms were twice as resilient to inhibition than those in planktonic cultures. Similarly, relative to unexposed controls, growth rates and yields of P. denitrificans in biofilms exposed to Cu-NPs were 40-fold to 50-fold less inhibited than those in planktonic cells. Physiological evaluation of ammonium oxidation and nitrate reduction suggested that biofilms were also less inhibited by Cu-NPs than planktonic cells. Furthermore, functional gene expression for ammonium oxidation (amoA) and nitrite reduction (nirK) showed lower inhibition by NPs in biofilms relative to planktonic-grown cells. These results suggest that biofilms mitigate NP impacts, and that nitrogen-cycling bacteria in wastewater, wetlands, and soils might be more resilient to NPs than planktonic-based assessments suggest. © 2014 SETAC.

  15. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    NASA Astrophysics Data System (ADS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  16. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity.

    PubMed

    Singh, Garvita; Babele, Piyoosh K; Shahi, Shailesh K; Sinha, Rajeshwar P; Tyagi, Madhu B; Kumar, Ashok

    2014-10-01

    In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEMselected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag- CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.

  17. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells

    PubMed Central

    Hinzmann, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Jagiełło, Joanna; Koziński, Rafał; Wierzbicki, Mateusz; Grodzik, Marta; Lipińska, Ludwika; Sawosz, Ewa; Chwalibog, Andrè

    2014-01-01

    The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 μg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not. PMID:24876774

  18. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

    PubMed

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Rehman, Aziz Ur; Khan, Arifullah; Ullah, Sadeeq; Yuan, Qipeng

    2017-01-01

    Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles

  19. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells.

    PubMed

    Ahire, Jayshree H; Chambrier, Isabelle; Mueller, Anja; Bao, Yongping; Chao, Yimin

    2013-08-14

    Silicon nanoparticles (SiNPs) hold prominent interest in various aspects of biomedical applications. For this purpose, surface functionalization of the NPs is essential to stabilize them, target them to specific disease area, and allow them to selectively bind to the cells or the bio-molecules present on the surface of the cells. However, no such functionalization has been explored with Si nanoparticles. Carbohydrates play a critical role in cell recognition. Here, we report the first synthesis of silicon nanoparticles functionalized with carbohydrates. In this study, stable and brightly luminescent d-Mannose (Man) capped SiNPs have been synthesized from amine terminated SiNPs and d-mannopyranoside acid. The surface functionalization is confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and energy dispersive X-ray spectroscopy (EDX) studies. The mean diameter of the crystal core is 5.5 nm, as measured by transmission electron microscopy (TEM), while the hydrodynamic diameter obtained by dynamic light scattering (DLS) is 16 nm. The quantum yield (QY) of photoluminescence emission is found to be 11.5%, and the nanoparticles exhibit an exceptional stability over two weeks. The Man-capped SiNPs may prove to be valuable tools for further investigating glycobiological, biomedical, and material science fields. Experiments are carried out using Concanavalin A (ConA) as a target protein in order to prove the hypothesis. When Man functionalized SiNPs are treated with ConA, cross-linked aggregates are formed, as shown in TEM images as well as monitored by photoluminescence spectroscopy (PL). Man functionalized SiNPs can target cancerous cells. Visualization imaging of SiNPs in MCF-7 human breast cancer cells shows the fluorescence is distributed throughout the cytoplasm of these cells.

  20. Hydroxyapatite Nanoparticles as a Novel Gene Carrier

    NASA Astrophysics Data System (ADS)

    Zhu, S. H.; Huang, B. Y.; Zhou, K. C.; Huang, S. P.; Liu, F.; Li, Y. M.; Xue, Z. G.; Long, Z. G.

    2004-06-01

    Hydroxyapatite crystalline nanoparticles were created by a precipitation hydrothermal technique and the majority of crystal particles were in the size range of 40-60nm and exhibited a colloidal feature when suspended in water. The gastric cancer SGC-7901 cell line cells were cultivated in the presence of10-100 μg ml-1 hydroxyapatite nanoparticle suspension and verified by MTT evaluation for their biocompatibility in vitro. The agarose gel electrophoresis analysis demonstrated that the HA nanoparticles potentially adsorb the green fluorescence protein EGFP-N1 plasmid DNA at pH 2 and 7, but not at pH 12. The DNA-nanoparticle complexes transfected EGFP-N1 pDNA into SGC-7901 cells in vitro with the efficiency about 80% as referenced with Lipofectmine TM 2000. In vivo animal experiment revealed no acute toxic adverse effect 2weeks after tail vein injection into mice, and TEM examination demonstrated their biodistribution and expression within the cytoplasm and also a little in the nuclei of the liver, kidney and brain tissue cells. These results suggest that the HA nanoparticle is a promising material that can be used as gene carrier, vectors.

  1. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    PubMed Central

    Chen, Liang; Mccrate, Joseph M.; Lee, James C-M.; Li, Hao

    2011-01-01

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles surface charge was varied by the surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FTIR) confirmed the adsorption and binding of the carboxylic acids on HAP nanoparticle surface; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate cell membrane due to the larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of the HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles shows strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP

  2. Low cytotoxicity of anisotropic gold nanoparticles coated with lysine on peripheral blood mononuclear cells "in vitro".

    PubMed

    Avila-Alejo, Jorge O; González-Palomo, Ana K; Plascencia-Villa, Germán; José-Yacamán, Miguel; Navarro-Contreras, Hugo R; Pérez-Maldonado, Iván N

    2017-12-01

    The aim of this study was to evaluate the cytotoxic effects of anisotropic (non spherical morphologies) gold nanoparticles coated with the amino acid Lysine (Lys) on peripheral blood mononuclear cells (PBMC) "in vitro". Gold (Au) nanoparticles tested in this study were synthesized by a seed-mediated growth using Lys as a structure and shape directing agent. Cytotoxic effects were evaluated by cell viability (resazurin assay), reactive oxygen species (ROS) induction (2',7'-dichlorofluorescein diacetate assay), DNA damage (comet assay) and apoptosis/necrosis (AnnexinV/propidium iodide assay) after PBMC were exposed to increasing concentrations (10, 25, 50, 100, and 250μM) of AuNPs coated with Lys (AuNPs-Lys) at different exposure times (3, 6, 12, and 24h). The results demonstrated that AuNPs-Lys exhibited low cytotoxicity towards PBMC, (high cell viability), with low levels of ROS, DNA damage and apoptosis/necrosis detected after treatment. These data suggest that AuNPs-Lys, might be viable for biomedical application subject to further investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Augmented cellular uptake of nanoparticles using tea catechins: effect of surface modification on nanoparticle-cell interaction

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Ching; Luo, Pei-Chun; Huang, Chun-Wan; Leu, Yann-Lii; Wang, Tzu-Hao; Wei, Kuo-Chen; Wang, Hsin-Ell; Ma, Yunn-Hwa

    2014-08-01

    Nanoparticles may serve as carriers in targeted therapeutics; interaction of the nanoparticles with a biological system may determine their targeting effects and therapeutic efficacy. Epigallocatechin-3-gallate (EGCG), a major component of tea catechins, has been conjugated with nanoparticles and tested as an anticancer agent. We investigated whether EGCG may enhance nanoparticle uptake by tumor cells. Cellular uptake of a dextran-coated magnetic nanoparticle (MNP) was determined by confocal microscopy, flow cytometry or a potassium thiocyanate colorimetric method. We demonstrated that EGCG greatly enhanced interaction and/or internalization of MNPs (with or without polyethylene glycol) by glioma cells, but not vascular endothelial cells. The enhancing effects are both time- and concentration-dependent. Such effects may be induced by a simple mix of MNPs with EGCG at a concentration as low as 1-3 μM, which increased MNP uptake 2- to 7-fold. In addition, application of magnetic force further potentiated MNP uptake, suggesting a synergetic effect of EGCG and magnetic force. Because the effects of EGCG were preserved at 4 °C, but not when EGCG was removed from the culture medium prior to addition of MNPs, a direct interaction of EGCG and MNPs was implicated. Use of an MNP-EGCG composite produced by adsorption of EGCG and magnetic separation also led to an enhanced uptake. The results reveal a novel interaction of a food component and nanocarrier system, which may be potentially amenable to magnetofection, cell labeling/tracing, and targeted therapeutics.

  4. Undecylprodigiosin conjugated monodisperse gold nanoparticles efficiently cause apoptosis in colon cancer cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikodinovic-Runic, Jasmina; Mojic, Marija; Kang, Yijin

    2014-01-01

    Bacterial pigment undecylprodigiosin (UP) was produced using Streptomyces sp. JS520 and conjugated to monodisperse gold nanoparticles (UP-Au). Both UP and UP-Au showed cytocidal activity towards melanoma (A375), lung carcinoma (A549), breast cancer (MCF-7) and colon cancer (HCT-116) cells, inducing apoptosis with IC50 values ranging from 0.4 to 4 mu g ml(-1). Unconjugated UP had a tendency to lose its activity over time and to change biophysical characteristics over pH. The loss of the pigment potency was overcome by conjugation with gold nanoparticles. UP-Au exhibited high stability over pH 3.8 to 7.4 and its activity remained unaffected in time. Nano-packing changedmore » the mechanism of UP toxicity by converting the intracellular signals from a mitochondrial dependent to a mitochondrial independent apoptotic process. The availability of nonpyrogenic UP in high amounts, together with specific anticancer activity and improved stability in the complex with gold nanoparticles, presents a novel platform for further development of UP-Au complexes as an anticancer drug suitable for clinical applications.« less

  5. Gold nanoparticles as physiological markers of urine internalization into urothelial cells in vivo

    PubMed Central

    Hudoklin, Samo; Zupančič, Daša; Makovec, Darko; Kreft, Mateja Erdani; Romih, Rok

    2013-01-01

    Background Urothelial bladder is the reservoir of urine and the urothelium minimizes the exchange of urine constituents with this tissue. Our aim was to test 1.9 nm biocompatible gold nanoparticles as a novel marker of internalization into the urothelial cells under physiological conditions in vivo. Methods We compared normal and neoplastic mice urothelium. Neoplastic lesions were induced by 0.05% N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water for 10 weeks. Nanoparticles, intravenously injected into normal and BBN-treated mice, were filtered through the kidneys and became constituents of the urine within 90 minutes after injection. Results Gold nanoparticles were densely accumulated in the urine, while their internalization into urothelial cells depended on the cell differentiation stage. In the terminally differentiated superficial urothelial cells of normal animals, nanoparticles were occasionally found in the endosomes, but not in the fusiform vesicles. Regions of exfoliated cells were occasionally found in the normal urothelium. Superficial urothelial cells located next to exfoliated regions contained gold nanoparticles in the endosomes and in the cytosol beneath the apical plasma membrane. The urothelium of BBN-treated animals developed fat hyperplasia with moderate dysplasia. The superficial cells of BBN-treated animals were partially differentiated as demonstrated by the lack of fusiform vesicles. These cells contained the gold nanoparticles distributed in the endosomes and throughout their cytosol. Conclusion Gold nanoparticles are a valuable marker to study urine internalization into urothelial cells in vivo. Moreover, they can be used as a sensitive marker of differentiation and functionality of urothelial cells. PMID:24143099

  6. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination.

    PubMed

    Garinot, Marie; Fiévez, Virginie; Pourcelle, Vincent; Stoffelbach, François; des Rieux, Anne; Plapied, Laurence; Theate, Ivan; Freichels, Hélène; Jérôme, Christine; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2007-07-31

    To improve the efficiency of orally delivered vaccines, PEGylated PLGA-based nanoparticles displaying RGD molecules at their surface were designed to target human M cells. RGD grafting was performed by an original method called "photografting" which covalently linked RGD peptides mainly on the PEG moiety of the PCL-PEG, included in the formulation. First, three non-targeted formulations with size and zeta potential adapted to M cell uptake and stable in gastro-intestinal fluids, were developed. Their transport by an in vitro model of the human Follicle associated epithelium (co-cultures) was largely increased as compared to mono-cultures (Caco-2 cells). RGD-labelling of nanoparticles significantly increased their transport by co-cultures, due to interactions between the RGD ligand and the beta(1) intregrins detected at the apical surface of co-cultures. In vivo studies demonstrated that RGD-labelled nanoparticles particularly concentrated in M cells. Finally, ovalbumin-loaded nanoparticles were orally administrated to mice and induced an IgG response, attesting antigen ability to elicit an immune response after oral delivery.

  7. The "sweet" side of the protein corona: effects of glycosylation on nanoparticle-cell interactions.

    PubMed

    Wan, Sha; Kelly, Philip M; Mahon, Eugene; Stöckmann, Henning; Rudd, Pauline M; Caruso, Frank; Dawson, Kenneth A; Yan, Yan; Monopoli, Marco P

    2015-02-24

    The significance of a protein corona on nanoparticles in modulating particle properties and their biological interactions has been widely acknowledged. The protein corona is derived from proteins in biological fluids, many of which are glycosylated. To date, the glycans on the proteins have been largely overlooked in studies of nanoparticle-cell interactions. In this study, we demonstrate that glycosylation of the protein corona plays an important role in maintaining the colloidal stability of nanoparticles and influences nanoparticle-cell interactions. The removal of glycans from the protein corona enhances cell membrane adhesion and cell uptake of nanoparticles in comparison with the fully glycosylated form, resulting in the generation of a pro-inflammatory milieu by macrophages. This study highlights that the post-translational modification of proteins can significantly impact nanoparticle-cell interactions by modulating the protein corona properties.

  8. Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration.

    PubMed

    Pawar, Harish; Wankhade, Shrikant Rameshrao; Yadav, Dharmendra K; Suresh, Sarasija

    2016-09-01

    Technology for development of biodegradable nanoparticles encapsulating combinations for enhanced efficacy. To develop docetaxel (DTX) and curcumin (CRM) co-encapsulated biodegradable nanoparticles for parenteral administration with potential for prolonged release and decreased toxicity. Modified emulsion solvent-evaporation technique was employed in the preparation of the nanoparticles optimized by the face centered-central composite design (FC-CCD). The uptake potential was studied in MCF-7 cells, while the toxicity was evaluated by in vitro hemolysis test. In vivo pharmacokinetic was evaluated in male Wistar rats. Co-encapsulated nanoparticles were developed of 219 nm size, 0.154 PDI, -13.74 mV zeta potential and 67.02% entrapment efficiency. Efficient uptake was observed by the nanoparticles in MCF-7 cells with decreased toxicity in comparison with the commercial DTX intravenous injection, Taxotere®. The nanoparticles exhibited biphasic release with initial burst release followed by sustained release for 5 days. The nanoparticles displayed a 4.3-fold increase in AUC (391.10 ± 32.94 versus 89.77 ± 10.58 μg/ml min) in comparison to Taxotere® with a 6.2-fold increase in MRT (24.78 ± 2.36 versus 3.58 ± 0.21 h). The nanoparticles exhibited increased uptake, prolonged in vitro and in vivo release, with decreased toxicity thus exhibiting potential for enhanced efficacy.

  9. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells.

    PubMed

    Liu, Ting; Zeng, Lilan; Jiang, Wenting; Fu, Yuanting; Zheng, Wenjie; Chen, Tianfeng

    2015-05-01

    Multidrug resistance is one of the greatest challenges in cancer therapy. Herein we described the synthesis of folate (FA)-conjugated selenium nanoparticles (SeNPs) as cancer-targeted nano-drug delivery system for ruthenium polypyridyl (RuPOP) exhibits strong fluorescence, which allows the direct imaging of the cellular trafficking of the nanosystem. This nanosystem could effectively antagonize against multidrug resistance in liver cancer. FA surface conjugation significantly enhanced the cellular uptake of SeNPs by FA receptor-mediated endocytosis through nystain-dependent lipid raft-mediated and clathrin-mediated pathways. The nanomaterials overcame the multidrug resistance in R-HepG2 cells through inhibition of ABC family proteins expression. Internalized nanoparticles triggered ROS overproduction and induced apoptosis by activating p53 and MAPKs pathways. Moreover, FA-SeNPs exhibited low in vivo acute toxicity, which verified the safety and application potential of FA-SeNPs as nanodrugs. This study provides an effective strategy for the design of cancer-targeted nanodrugs against multidrug resistant cancers. In the combat against hepatocellular carcinoma, multidrug resistance remains one of the obstacles to be overcome. The authors designed and synthesized folate (FA)-conjugated selenium nanoparticles (SeNPs) with enhanced cancer-targeting capability. This system carried ruthenium polypyridyl (RuPOP), an efficient metal-based anti-cancer drug with strong fluorescence. It was shown that this combination was effective in antagonizing against multidrug resistance in vitro. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Nanoparticles, [Gd@C82(OH)22]n, induces dendritic cell maturation and activates Th1 immune responses

    PubMed Central

    Yang, De; Zhao, Yuliang; Guo, Hua; Li, Yana; Tewary, Poonam; Xing, Gengmei; Hou, Wei; Oppenheim, Joost J.; Zhang, Ning

    2010-01-01

    Dendritic cells play a pivotal role in host immune defense, such as elimination of foreign pathogen and inhibition of tumorigenesis. In this paper, we report that [Gd@C82(OH)22]n could induce phenotypic maturation of dendritic cells by stimulating DC production of cytokines including IL-12p70, upregulating DC costimulatory (CD80, CD83, and CD86) and MHC (HLA-A,B,C and HLA-DR) molecules, and switching DCs from a CCL5-responsive to a CCL19-responsive phenotype. We found that [Gd@C82(OH)22]n can induce dendritic cells to become functionally mature as illustrated by their capacity to activate allogeneic T cells. Mice immunized with ovalbumin in the presence of [Gd@C82(OH)22]n exhibit enhanced ovalbumin-specific Th1-polarized immune response as evidenced by the predominantly increased production of IFNγ, IL-1β, and IL-2. The [Gd@C82(OH)22]n nanoparticle is a potent activator of dendritic cells and Th1 immune responses. These new findings also provide a rational understanding of the potent anticancer activities of [Gd@C82(OH)22]n nanoparticles reported previously. PMID:20121217

  11. Functionalized iron oxide nanoparticles for controlling the movement of immune cells

    NASA Astrophysics Data System (ADS)

    White, Ethan E.; Pai, Alex; Weng, Yiming; Suresh, Anil K.; van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M.

    2015-04-01

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed ``cell box'' was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain.Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were

  12. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface.

    PubMed

    Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-09-01

    It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela

    2015-09-01

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  14. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles.

    PubMed

    Kumar, C Ganesh; Poornachandra, Y

    2015-01-01

    The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Functionalized Iron Oxide Nanoparticles for Controlling the Movement of Immune Cells

    PubMed Central

    White, Ethan E; Pai, Alex; Weng, Yiming; Suresh, Anil K.; Van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M.

    2015-01-01

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed “cell box” was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain. PMID:25848983

  16. Functionalized iron oxide nanoparticles for controlling the movement of immune cells.

    PubMed

    White, Ethan E; Pai, Alex; Weng, Yiming; Suresh, Anil K; Van Haute, Desiree; Pailevanian, Torkom; Alizadeh, Darya; Hajimiri, Ali; Badie, Behnam; Berlin, Jacob M

    2015-05-07

    Immunotherapy is currently being investigated for the treatment of many diseases, including cancer. The ability to control the location of immune cells during or following activation would represent a powerful new technique for this field. Targeted magnetic delivery is emerging as a technique for controlling cell movement and localization. Here we show that this technique can be extended to microglia, the primary phagocytic immune cells in the central nervous system. The magnetized microglia were generated by loading the cells with iron oxide nanoparticles functionalized with CpG oligonucleotides, serving as a proof of principle that nanoparticles can be used to both deliver an immunostimulatory cargo to cells and to control the movement of the cells. The nanoparticle-oligonucleotide conjugates are efficiently internalized, non-toxic, and immunostimulatory. We demonstrate that the in vitro migration of the adherent, loaded microglia can be controlled by an external magnetic field and that magnetically-induced migration is non-cytotoxic. In order to capture video of this magnetically-induced migration of loaded cells, a novel 3D-printed "cell box" was designed to facilitate our imaging application. Analysis of cell movement velocities clearly demonstrate increased cell velocities toward the magnet. These studies represent the initial step towards our final goal of using nanoparticles to both activate immune cells and to control their trafficking within the diseased brain.

  17. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro.

    PubMed

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meissner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-04-01

    Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Chemical-physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect.

  18. High resolution SEM imaging of gold nanoparticles in cells and tissues.

    PubMed

    Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R

    2014-12-01

    The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high

  19. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.

    PubMed

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2009-09-01

    The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.

  20. Effect of gold nanoparticles on adipogenic differentiation of human mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Kohl, Yvonne; Gorjup, Erwin; Katsen-Globa, Alisa; Büchel, Claudia; von Briesen, Hagen; Thielecke, Hagen

    2011-12-01

    Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4-21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.

  1. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines.

    PubMed

    Aghapour, Fahimeh; Moghadamnia, Ali Akbar; Nicolini, Andrea; Kani, Seydeh Narges Mousavi; Barari, Ladan; Morakabati, Payam; Rezazadeh, Leyla; Kazemi, Sohrab

    2018-06-12

    Quercetin is a plant polyphenol from the flavonoid group that plays a fundamental role in controlling homeostasis due to its potent antioxidant properties. However, quercetin has extremely low water solubility, which is a major challenge in drug absorption. In this study, we described a simple method for the synthesis of quercetin nanoparticles. The quercetin nanoparticles had an average diameter of 82 nm and prominent yellow emission under UV irradiation. Therefore, we used an in vitro model treated with quercetin and quercetin nanoparticles to investigate the effects of quercetin nanoparticles on MCF-7 breast cancer cell line. MCF-7 cells were cultured with different concentrations (1-100 μM) of quercetin nanoparticles at the 24th, 48th and 72 nd hours, and cell cycle and apoptosis assays were detected by flow cytometry (FCM). In this study, we found that quercetin nanoparticles (1-100 μM) could significantly reduce cell vitality, growth rate and colony formation of MCF-7 cells. Quercetin nanoparticles can inhibit cell growth by blocking the cell cycle and promoting apoptosis in MCF-7 cells more than quercetin. As a result, quercetin nanoparticles may be useful therapy or prevention on breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Surface engineering of macrophages with nanoparticles to generate a cell-nanoparticle hybrid vehicle for hypoxia-targeted drug delivery.

    PubMed

    Holden, Christopher A; Yuan, Quan; Yeudall, W Andrew; Lebman, Deborah A; Yang, Hu

    2010-02-02

    Tumors frequently contain hypoxic regions that result from a shortage of oxygen due to poorly organized tumor vasculature. Cancer cells in these areas are resistant to radiation- and chemotherapy, limiting the treatment efficacy. Macrophages have inherent hypoxia-targeting ability and hold great advantages for targeted delivery of anticancer therapeutics to cancer cells in hypoxic areas. However, most anticancer drugs cannot be directly loaded into macrophages because of their toxicity. In this work, we designed a novel drug delivery vehicle by hybridizing macrophages with nanoparticles through cell surface modification. Nanoparticles immobilized on the cell surface provide numerous new sites for anticancer drug loading, hence potentially minimizing the toxic effect of anticancer drugs on the viability and hypoxia-targeting ability of the macrophage vehicles. In particular, quantum dots and 5-(aminoacetamido) fluorescein-labeled polyamidoamine dendrimer G4.5, both of which were coated with amine-derivatized polyethylene glycol, were immobilized to the sodium periodate-treated surface of RAW264.7 macrophages through a transient Schiff base linkage. Further, a reducing agent, sodium cyanoborohydride, was applied to reduce Schiff bases to stable secondary amine linkages. The distribution of nanoparticles on the cell surface was confirmed by fluorescence imaging, and it was found to be dependent on the stability of the linkages coupling nanoparticles to the cell surface.

  3. Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona.

    PubMed

    Forest, Valérie; Pourchez, Jérémie

    2017-01-01

    The internalization of nanoparticles by cells (and more broadly the nanoparticle/cell interaction) is a crucial issue both for biomedical applications (for the design of nanocarriers with enhanced cellular uptake to reach their intracellular therapeutic targets) and in a nanosafety context (as the internalized dose is one of the key factors in cytotoxicity). Many parameters can influence the nanoparticle/cell interaction, among them, the nanoparticle physico-chemical features, and especially the surface charge. It is generally admitted that positive nanoparticles are more uptaken by cells than neutral or negative nanoparticles. It is supposedly due to favorable electrostatic interactions with negatively charged cell membrane. However, this theory seems too simplistic as it does not consider a fundamental element: the nanoparticle protein corona. Indeed, once introduced in a biological medium nanoparticles adsorb proteins at their surface, forming a new interface defining the nanoparticle "biological identity". This adds a new level of complexity in the interactions with biological systems that cannot be any more limited to electrostatic binding. These interactions will then influence cell behavior. Based on a literature review and on an example of our own experience the parameters involved in the nanoparticle protein corona formation as well as in the nanoparticle/cell interactions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthesis and Cytotoxicity of Dendritic Platinum Nanoparticles with HEK-293 Cells.

    PubMed

    Shim, Kyubin; Kim, Jeonghun; Heo, Yoon-Uk; Jiang, Bo; Li, Cuiling; Shahabuddin, Mohammed; Wu, Kevin C-W; Hossain, Md Shahriar A; Yamauchi, Yusuke; Kim, Jung Ho

    2017-01-03

    Dendritic platinum nanoparticles (DPNs) have been synthesized from l-ascorbic acid and an amphiphilic non-ionic surfactant (Brij-58) via a sonochemical method. The particle size and shape of the DPNs could be tuned by changing the reduction temperature, resulting in a uniform DPN with a size of 23 nm or 60 nm. The facets of DPNs have been studied by high-resolution transmission electron microscopy. The cytotoxicity of DPNs has been investigated using human embryonic kidney cells (HEK-293), and the biological adaptability exhibited by DPNs has opened a pathway to biomedical applications such as drug-delivery systems, photothermal treatment, and biosensors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Carbon composites with metal nanoparticles for Alcohol fuel cells

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish

    2015-03-01

    Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.

  6. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    PubMed

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  7. Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles

    NASA Astrophysics Data System (ADS)

    Asimakopoulou, Akrivi; Daskalos, Emmanouil; Lewinski, Nastassja; Riediker, Michael; Papaioannou, Eleni; Konstandopoulos, Athanasios G.

    2013-04-01

    In order to study the various health influencing parameters related to engineered nanoparticles as well as to soot emitted by Diesel engines, there is an urgent need for appropriate sampling devices and methods for cell exposure studies that simulate the respiratory system and facilitate associated biological and toxicological tests. The objective of the present work was the further advancement of a Multiculture Exposure Chamber (MEC) into a dose-controlled system for efficient delivery of nanoparticles to cells. It was validated with various types of nanoparticles (Diesel engine soot aggregates, engineered nanoparticles for various applications) and with state-of-the-art nanoparticle measurement instrumentation to assess the local deposition of nanoparticles on the cell cultures. The dose of nanoparticles to which cell cultures are being exposed was evaluated in the normal operation of the in vitro cell culture exposure chamber based on measurements of the size specific nanoparticle collection efficiency of a cell free device. The average efficiency in delivering nanoparticles in the MEC was approximately 82%. The nanoparticle deposition was demonstrated by Transmission Electron Microscopy (TEM). Analysis and design of the MEC employs Computational Fluid Dynamics (CFD) and true to geometry representations of nanoparticles with the aim to assess the uniformity of nanoparticle deposition among the culture wells. Final testing of the dose-controlled cell exposure system was performed by exposing A549 lung cell cultures to fluorescently labeled nanoparticles. Delivery of aerosolized nanoparticles was demonstrated by visualization of the nanoparticle fluorescence in the cell cultures following exposure. Also monitored was the potential of the aerosolized nanoparticles to generate reactive oxygen species (ROS) (e.g. free radicals and peroxides generation), thus expressing the oxidative stress of the cells which can cause extensive cellular damage or damage on DNA.

  8. Modulating Gold Nanoparticle in vivo Delivery for Photothermal Therapy Applications Using a T Cell Delivery System

    NASA Astrophysics Data System (ADS)

    Kennedy, Laura Carpin

    This thesis reports new gold nanoparticle-based methods to treat chemotherapy-resistant and metastatic tumors that frequently evade conventional cancer therapies. Gold nanoparticles represent an innovative generation of diagnostic and treatment agents due to the ease with which they can be tuned to scatter or absorb a chosen wavelength of light. One area of intensive investigation in recent years is gold nanoparticle photothermal therapy (PTT), in which gold nanoparticles are used to heat and destroy cancer. This work demonstrates the utility of gold nanoparticle PTT against two categories of cancer that are currently a clinical challenge: trastuzumab-resistant breast cancer and metastatic cancer. In addition, this thesis presents a new method of gold nanoparticle delivery using T cells that increases gold nanoparticle tumor accumulation efficiency, a current challenge in the field of PTT. I ablated trastuzumab-resistant breast cancer in vitro for the first time using anti-HER2 labeled silica-gold nanoshells, demonstrating the potential utility of PTT against chemotherapy-resistant cancers. I next established for the first time the use of T cells as gold nanoparticle vehicles in vivo. When incubated with gold nanoparticles in culture, T cells can internalize up to 15000 nanoparticles per cell with no detrimental effects to T cell viability or function (e.g. migration and cytokine secretion). These AuNP-T cells can be systemically administered to tumor-bearing mice and deliver gold nanoparticles four times more efficiently than by injecting free nanoparticles. In addition, the biodistribution of AuNP-T cells correlates with the normal biodistribution of T cell carrier, suggesting the gold nanoparticle biodistribution can be modulated through the choice of nanoparticle vehicle. Finally, I apply gold nanoparticle PTT as an adjuvant treatment for T cell adoptive transfer immunotherapy (Hyperthermia-Enhanced Immunotherapy or HIT) of distant tumors in a melanoma mouse

  9. Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells in Vitro

    PubMed Central

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meißner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-01-01

    Background Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. Objective We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobaltdoped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. Methods We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendro cyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Results Chemical–physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Conclusions Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect. PMID:19440490

  10. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway.

    PubMed

    Faklaris, Orestis; Garrot, Damien; Joshi, Vandana; Druon, Frédéric; Boudou, Jean-Paul; Sauvage, Thierry; Georges, Patrick; Curmi, Patrick A; Treussart, François

    2008-12-01

    Diamond nanoparticles are promising photoluminescent probes for tracking intracellular processes, due to embedded, perfectly photostable color centers. In this work, the spontaneous internalization of such nanoparticles (diameter 25 nm) in HeLa cancer cells is investigated by confocal microscopy and time-resolved techniques. Nanoparticles are observed inside the cell cytoplasm at the single-particle and single-color-center level, assessed by time-correlation intensity measurements. Improvement of the nanoparticle signal-to-noise ratio inside the cell is achieved using a pulsed-excitation laser and time-resolved detection taking advantage of the long radiative lifetime of the color-center excited state as compared to cell autofluorescence. The internalization pathways are also investigated, with endosomal marking and colocalization analyses. The low colocalization ratio observed proves that nanodiamonds are not trapped in endosomes, a promising result in prospect of drug delivery by these nanoparticles. Low cytotoxicity of these nanoparticles in this cell line is also shown.

  11. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.

    PubMed

    Yan, Fei; Zhang, Chao; Zheng, Yi; Mei, Lin; Tang, Lina; Song, Cunxian; Sun, Hongfan; Huang, Laiqiang

    2010-02-01

    The aim of this work was to investigate the effect of triblock copolymer poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Docetaxel-loaded nanoparticles were prepared by oil-in-water emulsion/solvent evaporation technique using biodegradable poly(lactic-co-glycolic acid) (PLGA) with or without addition of poloxamer 188, respectively. The resulting nanoparticles were found to be spherical with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug-release profile of both nanoparticle formulations showed a biphasic release pattern. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in the docetaxel-resistant MCF-7 TAX30 human breast cancer cell line could be found in comparison with that of PLGA nanoparticles. In addition, the docetaxel-loaded PLGA/poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than that of docetaxel-loaded PLGA nanoparticles and Taxotere (P < .05). In conclusion, the results showed advantages of docetaxel-loaded PLGA nanoparticles incorporated with poloxamer 188 compared with the nanoparticles without incorporation of poloxamer 188 in terms of sustainable release and efficacy in breast cancer chemotherapy. The effects of poloxamer 188, a triblock copolymer were studied on nanoparticle morphology, size, cancer cell uptake and cytotoxicity. An increased level of uptake of PLGA/poloxamer 188 nanoparticles in resistant human breast cancer cell line was demonstrated, resulting in a significantly higher level of cytotoxicity. Copyright 2010 Elsevier Inc. All rights reserved.

  12. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    ERIC Educational Resources Information Center

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  13. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOEpatents

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  14. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOEpatents

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  15. Quercetin-Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin-Resistant Cancer Cells.

    PubMed

    Liu, Zehua; Balasubramanian, Vimalkumar; Bhat, Chinmay; Vahermo, Mikko; Mäkilä, Ermei; Kemell, Marianna; Fontana, Flavia; Janoniene, Agne; Petrikaite, Vilma; Salonen, Jarno; Yli-Kauhaluoma, Jari; Hirvonen, Jouni; Zhang, Hongbo; Santos, Hélder A

    2017-02-01

    One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. SiC nanoparticles cyto- and genotoxicity to Hep-G2 cells

    NASA Astrophysics Data System (ADS)

    Barillet, Sabrina; Jugan, Mary-Line; Simon-Deckers, Angélique; Leconte, Yann; Herlin-Boime, Nathalie; Mayne-l'Hermite, Martine; Reynaud, Cécile; Carrière, Marie

    2009-05-01

    While emerging nanotechnologies have seen significant development in recent years, knowledge on exposure levels as well as data on toxicity of nanoparticles are still quite limited. Indeed, there is a general agreement that development of nanotechnologies may lead to considerable dissemination of nanoparticles in the environment. Nevertheless, questions relative to toxicity versus innocuousness of such materials still remain. Our present study has thus been carried out with the purpose of assessing some aspects of toxicological capacities of three kinds of nano-sized particles: TiO2 and SiC nanoparticles, as well as multi-walled carbon nanotubes (CNT). In order to address the question of their potential toxicity toward living cells, we chose several cellular models. Assuming inhalation as the most probable exposure scenario, we used A549 alveolar epithelial cells as a model for mammalian primary target organ (lung). Furthermore, we considered that nanoparticles that would deposit into the pulmonary system may be translocated to the circulatory system. Thus, we decided to study the effect of nanoparticles on potentially secondary target organs: liver (WIF-B9, Can-10, HepG2) and kidneys (NRK-52E, LLC-PK1). Herein, we will focus our attention on results obtained on the HepG2 cell line exposed to SiC nanoparticles. Scarce literature exists on SiC nanotoxicology. According to the authors that have already carried out studies on this particular nanoparticle, it would seem that SiC nanoparticles do not induce cytotoxicity. That is one of the reasons of the potential use of these nanoparticles as biological labels [1]. We thus were interested in acquiring more data on biological effects induced by SiC nanoparticles. Furthermore, one of the particular aspects of the present study lies in the fact that we tried to specify the influence of physico-chemical characteristics of nanoparticles on toxicological endpoints (cytotoxicity and genotoxicity).

  17. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells.

    PubMed

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-07-01

    In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise.

  18. Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells

    PubMed Central

    Hauser, Anastasia K; Anderson, Kimberly W; Hilt, J Zach

    2016-01-01

    Aim: In the present study, we examine the effects of internalized peptide-conjugated iron oxide nanoparticles and their ability to locally convert alternating magnetic field (AMF) energy into other forms of energy (e.g., heat and rotational work). Materials & methods: Dextran-coated iron oxide nanoparticles were functionalized with a cell penetrating peptide and after internalization by A549 and H358 cells were activated by an AMF. Results: TAT-functionalized nanoparticles and AMF exposure increased reactive oxygen species generation compared with the nanoparticle system alone. The TAT-functionalized nanoparticles induced lysosomal membrane permeability and mitochondrial membrane depolarization, but these effects were not further enhanced by AMF treatment. Although not statistically significant, there are trends suggesting an increase in apoptosis via the Caspase 3/7 pathways when cells are exposed to TAT-functionalized nanoparticles combined with AMF. Conclusion: Our results indicate that internalized TAT-functionalized iron oxide nanoparticles activated by an AMF elicit cellular responses without a measurable temperature rise. PMID:27388639

  19. Pulsed magneto-motive ultrasound imaging to detect intracellular trafficking of magnetic nanoparticles

    PubMed Central

    Mehrmohamamdi, Mohammad; Qu, Min; Ma, Li L.; Romanovicz, Dwight K.; Johnston, Keith P.; Sokolov, Konstantin V.; Emelianov, Stanislav Y.

    2012-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular trafficking of nanoparticles – an important part of cell-nanoparticle interaction, has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique – pulsed magneto-motive ultrasound (pMMUS), to identify intracellular trafficking of endocytosed magnetic nanoparticles. In pulsed magneto-motive ultrasound imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular aggregation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular trafficking non-invasively and in real-time. PMID:21926454

  20. Biomolecule-loaded chitosan nanoparticles induce apoptosis and molecular changes in cancer cell line (SiHa).

    PubMed

    Sujima Anbu, Anbu; Velmurugan, Palanivel; Lee, Jeong-Ho; Oh, Byung-Taek; Venkatachalam, Perumal

    2016-07-01

    The present study reports on the synthesis of chitosan nanoparticles (CNPs) using methanol extracts of Gymnema sylvestre (GS) leaves and Cinnamomum zeylanicum (CZ) bark. Biomolecule-loaded nanoparticles induced apoptosis in a human cervical cancer (SiHa) cell line, and experiments were carried out to elucidate the underlying molecular mechanisms. FT-IR and XRD showed possible functional groups of the biomolecules and the crystalline nature of CNPs, respectively. Transmission electron microscopy images revealed that synthesized GSCNPs and CZCNPs had a smooth spherical shape with average sizes of about 58-80 and 60-120nm, respectively. Dynamic light scattering studies indicated that both GSCNPs and CZCNs were structurally stable with homogenous and heterogeneous natures, respectively. Furthermore, synthesized GSCNPs and CZCNPs exhibited dose-dependent cytotoxicity against the SiHa cancer cell line, with inhibitory concentration (IC50) values of 102.17μg/ml, 87.75μg/ml, 132.74μg/ml and 90.35μg/ml for GS leaf extract, GSCNPs, CZBE and CZCNPs, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Micro-Raman Spectroscopy of Silver Nanoparticle Induced Stress on Optically-Trapped Stem Cells

    PubMed Central

    Bankapur, Aseefhali; Krishnamurthy, R. Sagar; Zachariah, Elsa; Santhosh, Chidangil; Chougule, Basavaraj; Praveen, Bhavishna; Valiathan, Manna; Mathur, Deepak

    2012-01-01

    We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 µg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 µg/ml. PMID:22514708

  2. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells

    PubMed Central

    Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce

    2015-01-01

    The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO2) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO2 nanoparticles are not cytotoxic or clastogenic to human skin cells. PMID:26568896

  3. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells.

    PubMed

    Browning, Cynthia L; The, Therry; Mason, Michael D; Wise, John Pierce

    2014-11-01

    The application of nanoparticle technology is rapidly expanding. The reduced dimensionality of nanoparticles can give rise to changes in chemical and physical properties, often resulting in altered toxicity. People are exposed dermally to titanium dioxide (TiO 2 ) nanoparticles in industrial and residential settings. The general public is increasingly exposed to these nanoparticles as their use in cosmetics, sunscreens and lotions expands. The toxicity of TiO 2 nanoparticles towards human skin cells is unclear and understudied. We used a human skin fibroblast cell line to investigate the cytotoxicity and clastogenicity of TiO 2 nanoparticles after 24 h exposure. In a clonogenic survival assay, treatments of 10, 50 and 100 μg/cm 2 induced 97.8, 88.8 and 84.7% relative survival, respectively. Clastogenicity was assessed using a chromosomal aberration assay in order to determine whether TiO 2 nanoparticles induced serious forms of DNA damage such as chromatid breaks, isochromatid lesions or chromatid exchanges. Treatments of 0, 10, 50 and 100 μg/cm 2 induced 3.3, 3.0, 3.0 and 2.7% metaphases with damage, respectively. No isochromatid lesions or chromatid exchanges were detected. These data show that TiO 2 nanoparticles are not cytotoxic or clastogenic to human skin cells.

  4. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.

    PubMed

    Zhang, Hui-zhu; Li, Xue-min; Gao, Fu-ping; Liu, Ling-rong; Zhou, Zhi-min; Zhang, Qi-qing

    2010-01-01

    The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (¹H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.

  5. T cells enhance gold nanoparticle delivery to tumors in vivo.

    PubMed

    Kennedy, Laura C; Bear, Adham S; Young, Joseph K; Lewinski, Nastassja A; Kim, Jean; Foster, Aaron E; Drezek, Rebekah A

    2011-04-04

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  6. T cells enhance gold nanoparticle delivery to tumors in vivo

    NASA Astrophysics Data System (ADS)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  7. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  8. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  9. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure.

    PubMed

    Love, Sara A; Liu, Zhen; Haynes, Christy L

    2012-07-07

    As nanoparticles enjoy increasingly widespread use in commercial applications, the potential for unintentional exposure has become much more likely during any given day. Researchers in the field of nanotoxicity are working to determine the physicochemical nanoparticle properties that lead to toxicity in an effort to establish safe design rules. This work explores the effects of noble metal nanoparticle exposure in murine chromaffin cells, focusing on examining the effects of size and surface functionality (coating) in silver and gold, respectively. Carbon-fibre microelectrode amperometry was utilized to examine the effect of exposure on exocytosis function, at the single cell level, and provided new insights into the compromised functions of cells. Silver nanoparticles of varied size, between 15 and 60 nm diameter, were exposed to cells and found to alter the release kinetics of exocytosis for those cells exposed to the smallest examined size. Effects of gold were examined after modification with two commonly used 'bio-friendly' polymers, either heparin or poly (ethylene glycol), and gold nanoparticles were found to induce altered cellular adhesion or the number of chemical messenger molecules released, respectively. These results support the body of work suggesting that noble metal nanoparticles perturb exocytosis, typically altering the number of molecules and kinetics of release, and supports a direct disruption of the vesicle matrix by the nanoparticle. Overall, it is clear that various nanoparticle physicochemical properties, including size and surface coating, do modulate changes in cellular communication via exocytosis.

  10. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Siddiqui, Maqsood A; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; AlSalhi, Mohamad S; Alrokayan, Salman A

    2011-05-10

    Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    NASA Astrophysics Data System (ADS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  12. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization.

    PubMed

    Surassmo, Suvimol; Saengkrit, Nattika; Ruktanonchai, Uracha Rungsardthong; Suktham, Kunat; Woramongkolchai, Noppawan; Wutikhun, Tuksadon; Puttipipatkhachorn, Satit

    2015-06-01

    Mucoadhesive poly (lactic-co-glycolic acid) (PLGA) nanoparticles having a modified shell-matrix derived from polyvinyl alcohol (PVA) and Carbopol (CP), a biodegradable polymer coating, to improve the adhesion and cell transfection properties were developed. The optimum formulations utilized a CP concentration in the range of 0.05-0.2%w/v, and were formed using modified emulsion-solvent evaporation technique. The resulting CP-PLGA nanoparticles were characterized in terms of their physical and chemical properties. The absorbed CP on the PLGA shell-matrix was found to affect the particle size and surface charge, with 0.05% CP giving rise to smooth spherical particles (0.05CP-PLGA) with the smallest size (285.90 nm), and strong negative surface charge (-25.70 mV). The introduction of CP results in an enhancement of the mucoadhesion between CP-PLGA nanoparticles and mucin particles. In vitro cell internalization studies highlighted the potential of 0.05CP-PLGA nanoparticles for transfection into SiHa cells, with uptake being time dependent. Additionally, cytotoxicity studies of CP-PLGA nanoparticles against SiHa cancer cells indicated that low concentrations of the nanoparticles were non-toxic to cells (cell viability >80%). From the various formulations studied, 0.05CP-PLGA nanoparticles proved to be the optimum model carrier having the required mucoadhesive profile and could be an alternative therapeutic efficacy carrier for targeted mucosal drug delivery systems with biodegradable polymer. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Manganese-impregnated mesoporous silica nanoparticles for signal enhancement in MRI cell labelling studies

    NASA Astrophysics Data System (ADS)

    Guillet-Nicolas, Rémy; Laprise-Pelletier, Myriam; Nair, Mahesh M.; Chevallier, Pascale; Lagueux, Jean; Gossuin, Yves; Laurent, Sophie; Kleitz, Freddy; Fortin, Marc-André

    2013-11-01

    Mesoporous silica nanoparticles (MSNs) are used in drug delivery and cell tracking applications. As Mn2+ is already implemented as a ``positive'' cell contrast agent in preclinical imaging procedures (in the form of MnCl2 for neurological studies), the introduction of Mn in the porous network of MSNs would allow labelling cells and tracking them using MRI. These particles are in general internalized in endosomes, an acidic environment with high saline concentration. In addition, the available MSN porosity could also serve as a carrier to deliver medical/therapeutic substances through the labelled cells. In the present study, manganese oxide was introduced in the porous network of MCM-48 silica nanoparticles (Mn-M48SNs). The particles exhibit a narrow size distribution (~140 nm diam.) and high porosity (~60% vol.), which was validated after insertion of Mn. The resulting Mn-M48SNs were characterized by TEM, N2 physisorption, and XRD. Evidence was found with H2-TPR, and XPS characterization, that Mn(ii) is the main oxidation state of the paramagnetic species after suspension in water, most probably in the form of Mn-OOH. The colloidal stability as a function of time was confirmed by DLS in water, acetate buffer and cell culture medium. In NMR data, no significant evidence of Mn2+ leaching was found in Mn-M48SNs in acidic water (pH 6), up to 96 hours after suspension. High longitudinal relaxivity values of r1 = 8.4 mM-1 s-1 were measured at 60 MHz and 37 °C, with the lowest relaxometric ratios (r2/r1 = 2) reported to date for a Mn-MSN system. Leukaemia cells (P388) were labelled with Mn-M48SNs and nanoparticle cell internalization was confirmed by TEM. Finally, MRI contrast enhancement provided by cell labelling with escalated incubation concentrations of Mn-M48SNs was quantified at 1 T. This study confirmed the possibility of efficiently confining Mn into M48SNs using incipient wetness, while maintaining an open porosity and relatively high pore volume. Because

  14. Effect of Magnetic Nanoparticles on Tobacco BY-2 Cell Suspension Culture

    PubMed Central

    Krystofova, Olga; Sochor, Jiri; Zitka, Ondrej; Babula, Petr; Kudrle, Vit; Adam, Vojtech; Kizek, Rene

    2012-01-01

    Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles), electronics (high-resolution imaging, logical circuits on the molecular level) and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases) or imaging (contrast agents). Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs) and modified magnetic nanoparticles (MNPs) on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis—total protein content, thiols—reduced (GSH) and oxidized (GSSG) glutathione, phytochelatins PC2-5, glutathione S-transferase (GST) activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension culture. The

  15. Nanoparticle-based strategy for personalized B-cell lymphoma therapy

    PubMed Central

    Martucci, Nicola M; Migliaccio, Nunzia; Ruggiero, Immacolata; Albano, Francesco; Calì, Gaetano; Romano, Simona; Terracciano, Monica; Rea, Ilaria; Arcari, Paolo; Lamberti, Annalisa

    2016-01-01

    B-cell lymphoma is associated with incomplete response to treatment, and the development of effective strategies targeting this disease remains challenging. A new personalized B-cell lymphoma therapy, based on a site-specific receptor-mediated drug delivery system, was developed in this study. Specifically, natural silica-based nanoparticles (diatomite) were modified to actively target the antiapoptotic factor B-cell lymphoma/leukemia 2 (Bcl2) with small interfering RNA (siRNA). An idiotype-specific peptide (Id-peptide) specifically recognized by the hypervariable region of surface immunoglobulin B-cell receptor was exploited as a homing device to ensure specific targeting of lymphoma cells. Specific nanoparticle uptake, driven by the Id-peptide, was evaluated by flow cytometry and confocal microscopy and was increased by approximately threefold in target cells compared with nonspecific myeloma cells and when a random control peptide was used instead of Id-peptide. The specific internalization efficiency was increased by fourfold when siRNA was also added to the modified nanoparticles. The modified diatomite particles were not cytotoxic and their effectiveness in downregulation of gene expression was explored using siRNA targeting Bcl2 and evaluated by quantitative real-time polymerase chain reaction and Western blot analyses. The resulting gene silencing observed is of significant biological importance and opens new possibilities for the personalized treatment of lymphomas. PMID:27895482

  16. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

    PubMed

    Gahl, Trevor J; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.

  17. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    PubMed Central

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  18. Nanoparticle mediated ablation of breast cancer cells using a nanosecond pulsed electric field

    NASA Astrophysics Data System (ADS)

    Burford, Christopher

    In the past, both nanomaterials and various heating modalities have been researched as means for treating cancers. However, many of the current methodologies have the flaws of inconsistent tumor ablation and significant destruction of healthy cells. Based on research performed using constant radiofrequency electric fields and metallic nanoparticles (where cell necrosis is induced by the heating of these nanoparticles) we have developed a modality that simlarly uses functionalized metallic nanoparticles, specific for the T47D breast cancer cell line, and nanosecond pulsed electric fields as the hyperthermic inducer. Using both iron oxide and gold nanoparticles the results of our pilot studies indicated that up to 90% of the cancer cells were ablated given the optimal treatment parameters. These quantities of ablated cells were achieved using a cumulative exposure time 6 orders of magnitude less than most in vitro radiofrequency electric field studies.

  19. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  20. Human induced pluripotent stem cells labeled with fluorescent magnetic nanoparticles for targeted imaging and hyperthermia therapy for gastric cancer.

    PubMed

    Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang

    2015-09-01

    Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.

  1. Small molecule PZL318: forming fluorescent nanoparticles capable of tracing their interactions with cancer cells and activated platelets, slowing tumor growth and inhibiting thrombosis

    PubMed Central

    Li, Shan; Wang, Yuji; Wang, Feng; Wang, Yaonan; Zhang, Xiaoyi; Zhao, Ming; Feng, Qiqi; Wu, Jianhui; Zhao, Shurui; Wu, Wei; Peng, Shiqi

    2015-01-01

    Low selectivity of chemotherapy correlates with poor outcomes of cancer patients. To improve this issue, a novel agent, N-(1-[3-methoxycarbonyl-4-hydroxyphenyl]-β-carboline-3-carbonyl)-Trp-Lys-OBzl (PZL318), was reported here. The transmission electron microscopy, scanning electron microscopy, and atomic force microscopy images demonstrated that PZL318 can form nanoparticles. Fluorescent and confocal images visualized that PZL318 formed fluorescent nanoparticles capable of targeting cancer cells and tracing their interactions with cancer cells. In vitro, 40 μM of PZL318 inhibited the proliferation of tumorigenic cells, but not nontumorigenic cells. In vivo, 10 nmol/kg of PZL318 slowed the tumor growth of S180 mice and alleviated the thrombosis of ferric chloride-treated ICR mice, while 100 μmol/kg of PZL318 did not injure healthy mice and they exhibited no liver toxicity. By analyzing Fourier transform–mass spectrometry and rotating-frame Overhauser spectroscopy (ROESY) two-dimensional nuclear magnetic resonance spectra, the chemical mechanism of PZL318-forming trimers and nanoparticles was explored. By using mesoscale simulation, a nanoparticle of 3.01 nm in diameter was predicted containing 13 trimers. Scavenging free radicals, downregulating sP-selectin expression and intercalating toward DNA were correlated with the antitumor mechanism of PZL318. PMID:26345234

  2. Immune cell screening of a nanoparticle library improves atherosclerosis therapy

    PubMed Central

    Baxter, Samantha; Menon, Arjun; Alaarg, Amr; Sanchez-Gaytan, Brenda L.; Fay, Francois; Zhao, Yiming; Ouimet, Mireille; Braza, Mounia S.; Longo, Valerie A.; Abdel-Atti, Dalya; Duivenvoorden, Raphael; Calcagno, Claudia; Storm, Gert; Tsimikas, Sotirios; Moore, Kathryn J.; Swirski, Filip K.; Nahrendorf, Matthias; Fisher, Edward A.; Pérez-Medina, Carlos; Fayad, Zahi A.; Reiner, Thomas; Mulder, Willem J. M.

    2016-01-01

    Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library’s nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe−/−) mouse model of atherosclerosis, we quantitatively evaluated the library’s immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases. PMID:27791119

  3. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells

    PubMed Central

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-01-01

    The objective of the work was to develop a multifunctional nanomedicine based on a folate-conjugated lipid nanoparticles loaded with paclitaxel and curcumin. The novel system combines therapeutic advantageous of efficient targeted delivery via folate and timed-release of curcumin and paclitaxel via 2-hydroxypropyl-ß-cyclodextrin, thereby overcoming multidrug resistance in breast cancer cells (MCF-7/ADR). The faster release of curcumin from the folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables sufficient p-glycoprotein inhibition, which allows increased cellular uptake and cytotoxicity of paclitaxel. In western blot assay, curcumin can efficiently inhibit the expression of p-glycoprotein, conformed the enhancement of cytotoxicity by paclitaxel. Furthermore, folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles exhibited increased uptake of paclitaxel and curcumin into MCF-7/ADR cells through the folate receptor-mediated internalization. Taken together, these results indicate that folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables the enhanced, folate-targeted delivery of multiple anticancer drugs by inhibiting the multi-drug resistance efficiently, which may also serve as a useful nano-system for co-delivery of other anticancer drugs. PMID:28423731

  4. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-05-06

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.

  5. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  6. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    PubMed

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Using Gold Nanoparticles To Disrupt the Tumor Microenvironment: An Emerging Therapeutic Strategy.

    PubMed

    Melamed, Jilian R; Riley, Rachel S; Valcourt, Danielle M; Day, Emily S

    2016-12-27

    Gold nanoparticles have received much attention recently as carriers for anticancer drugs and therapeutic oligonucleotides, but little research has investigated their potential to act as stand-alone therapeutics. Previous studies interrogating their short- and long-term systemic toxicity have found that although gold nanoparticles accumulate within and clear slowly from the liver and spleen, they do not appear to exert toxic effects in these organs. Interestingly, gold nanoparticles innately exhibit the ability to modulate the tumor microenvironment specifically by interfering with crosstalk between tumor cells and stromal cells. In this issue of ACS Nano, Mukherjee and colleagues demonstrate that bare gold nanoparticles can disturb crosstalk between pancreatic stellate cells and pancreatic cancer cells by modulating the cellular secretome to reduce the growth of desmoplastic tissue and inhibit tumor growth. In this Perspective, we highlight opportunities for anticancer targeting within the tumor microenvironment and discuss gold nanoparticles as potential mediators of microenvironment-targeted therapy.

  8. Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells

    NASA Astrophysics Data System (ADS)

    Drescher, Daniela; Guttmann, Peter; Büchner, Tina; Werner, Stephan; Laube, Gregor; Hornemann, Andrea; Tarek, Basel; Schneider, Gerd; Kneipp, Janina

    2013-09-01

    We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the interactions between the nanoparticles and with the endosomal component are influenced by the molecular composition of the corona.We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the

  9. Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell

    NASA Astrophysics Data System (ADS)

    Aquino Neto, S.; Almeida, T. S.; Palma, L. M.; Minteer, S. D.; de Andrade, A. R.

    2014-08-01

    We report the preparation of hybrid nanostructured bioanodes containing the enzyme alcohol dehydrogenase (ADH) with either Au, Pt, or Pt0.75Sn0.25 nanoparticles for use in ethanol/O2 hybrid biofuel cells. We describe two different methodologies for the preparation of the bioanodes: in a first case, multi walled carbon nanotubes (MWCNTs) were employed as a support for the metallic nanoparticles and TBAB-modified Nafion® aided enzyme immobilization. In the second case, we immobilized the enzymes using dendrimers-encapsulated nanoparticles as the agent for enzyme anchoring. The biofuel cell tests showed that the addition of metallic nanoparticles to the bioanode structure enhanced the overall biofuel cell performance. The bioelectrode containing Au nanoparticles displaying the best performance, with an open circuit potential of 0.61 ± 0.05 V and a maximum power density of 155 ± 11 μW cm-2. NADH cyclic voltammetric experiments indicated that Au nanoparticles behaved as a catalyst toward NADH oxidation. Comparing the two protocols we used to synthetized nanoparticles, the sample containing the Au nanoparticles supported on MWCNTs furnished fourfold higher values. Therefore, from the satisfactory results obtained, it can be inferred that the combination of small amounts of metallic nanoparticles with enzymes improve bioanode performance.

  10. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    NASA Astrophysics Data System (ADS)

    Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo

    2011-07-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  11. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes.

    PubMed

    Wang, Fengjuan; Yu, Lu; Monopoli, Marco P; Sandin, Peter; Mahon, Eugene; Salvati, Anna; Dawson, Kenneth A

    2013-11-01

    Nanoparticles have unique capacities of interacting with the cellular machinery and entering cells. To be able to exploit this potential, it is essential to understand what controls the interactions at the interface between nanoparticles and cells: it is now established that nanoparticles in biological media are covered by proteins and other biomolecules forming a "corona" on the nanoparticle surface, which confers a new identity to the nanoparticles. By labelling the proteins of the serum, using positively-charged polystyrene, we now show that this adsorbed layer is strong enough to be retained on the nanoparticles as they enter cells and is trafficked to the lysosomes on the nanoparticles. There, the corona is degraded and this is followed by lysosomal damage, leading to cytosolic release of lysosomal content, and ultimately apoptosis. Thus the corona protects the cells from the damage induced by the bare nanoparticle surface until enzymatically cleared in the lysosomes. This study investigates the effects of protein corona that normally forms on the surface of nanoparticles during in vivo use, describing the steps of intracellular processing of such particles, to enhance our understanding of how these particles interact with the cellular machinery. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Nanoparticle PEBBLE sensors in live cells and in vivo

    PubMed Central

    Smith, Ron

    2009-01-01

    Nanoparticle sensors have been developed for imaging and dynamic monitoring, in live cells and in vivo, of the molecular or ionic components, constructs, forces and dynamics, all in real time, during biological/chemical/physical processes. With their biocompatible small size and inert matrix, nanoparticle sensors have been successfully applied for non-invasive real-time measurements of analytes and fields in cells and rodents, with spatial, temporal, physical and chemical resolution. This review describes the diverse designs of nanoparticle sensors for ions and small molecules, physical fields and biological features, as well as the characterization, properties, and applications of these nanosensors to in vitro and in vivo measurements. Their floating as well as localization ability in biological media is captured by the acronym PEBBLE: photonic explorer for bioanalysis with biologically localized embedding. PMID:20098636

  13. Novel ferrocene-anchored ZnO nanoparticle/carbon nanotube assembly for glucose oxidase wiring: application to a glucose/air fuel cell.

    PubMed

    Haddad, Raoudha; Mattei, Jean-Gabriel; Thery, Jessica; Auger, Aurélien

    2015-06-28

    Glucose oxidase (GOx) is immobilized on ZnO nanoparticle-modified electrodes. The immobilized glucose oxidase shows efficient mediated electron transfer with ZnO nanoparticles to which the ferrocenyl moiety is π-stacked into a supramolecular architecture. The constructed ZnO-Fc/CNT modified electrode exhibits high ferrocene surface coverage, preventing any leakage of the π-stacked ferrocene from the newly described ZnO hybrid nanoparticles. The use of the new architecture of ZnO supported electron mediators to shuttle electrons from the redox centre of the enzyme to the surface of the working electrode can effectively bring about successful glucose oxidation. These modified electrodes evaluated as a highly efficient architecture provide a catalytic current for glucose oxidation and are integrated in a specially designed glucose/air fuel cell prototype using a conventional platinum-carbon (Pt/C) cathode at physiological pH (7.0). The obtained architecture leads to a peak power density of 53 μW cm(-2) at 300 mV for the Nafion® based biofuel cell under "air breathing" conditions at room temperature.

  14. Visualization of interaction between inorganic nanoparticles and bacteria or fungi.

    PubMed

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna; Szeliga, Jacek; Mitura, Stanislaw; Mitura, Katarzyna; Grodzik, Marta; Orlowski, Piotr; Sokolowska, Aleksandra

    2010-12-06

    The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococcus aureus (bacteria) and Candida albicans (fungi), to determine the possibility of constructing microorganism-nanoparticle vehicles. Hydrocolloids of individual nanoparticles were added to suspensions of S. aureus and C. albicans. Immediately after mixing, the samples were inspected by transmission electron microscopy. Visualization of the morphologic interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells. All metal nanoparticles with negative zeta potential had cell damaging properties. Nano-Ag showed the properties of self-organization with the cells, disintegrating the cell walls and cytoplasmic membranes, and releasing a substance (probably cytoplasm) outside the cell. Arrangement of nano-Au with microorganisms did not create a system of self-organization, but instead a "noncontact" interaction between the nanoparticles and microorganisms was observed to cause damage to fungal cells. Nano-Pt caused both microorganisms to release a substance outside the cell and disintegrated the cytoplasmic membrane and cell wall. Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both microorganisms could be used as potential carriers for nano-D.

  15. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    PubMed

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  16. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells.

    PubMed

    Castro-Aceituno, Verónica; Ahn, Sungeun; Simu, Shakina Yesmin; Singh, Priyanka; Mathiyalagan, Ramya; Lee, Hyun A; Yang, Deok Chun

    2016-12-01

    The pharmaceutical role of silver nanoparticles has been increased over the last decades, especially those synthesized through herbal medicinal plants, due to their variety of pharmacological importance. Panax ginseng Meyer (P. ginseng) has been widely used as a therapeutic herbal medicine for a long time in cancer treatment. In this study, the cytotoxic and oxidative effect of a novel silver nanoparticles synthesized from P. ginseng fresh leaves (P.g AgNPs) were evaluated in different human cancer cell lines. In addition, the effect of P.g AgNPs on cell migration, apoptosis and the determination of the mechanism involve was determinate by the use of A549 lung cancer cell line. It was found that P.g AgNPs treatment inhibited cell viability and induced oxidative stress in A549, MCF7 and HepG2 cancer cell lines. Likewise, P.g AgNPs treatment inhibited the epidermal growth factor (EGF)-enhanced migration, as well as decreased the mRNA levels and phosphorylation of EGF receptors in A549 cells. Moreover, P.g AgNPs modified the morphology of the cell nucleus and increase apoptosis percentage; this effect was linked to the stimulation of p38 MAPK/p53 pathway. Taken together, our results showed that P.g AgNPs exhibited anti-cancer activity in A549 and the regulation of EGFR/p38 MAPK/p53 pathway might be the possible mechanism of its anti-activity. Further experiments are suggested to determinate the mechanism by which P.g AgNPs induce cytotoxicity and ROS generation in MCF-7 and HepG2 cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    PubMed

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  18. Selective killing of hepatocellular carcinoma HepG2 cells by three-dimensional nanographene nanoparticles based on triptycene

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang

    2015-03-01

    Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702

  19. Exposure to TiO2 nanoparticles increases Staphylococcusaureusinfection of HeLa cells

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wei, Ming-Tzo; Walker, Stephen. G.; Wang, Hong Zhan; Gondon, Chris; Brink, Peter; Guterman, Shoshana; Zawacki, Emma; Applebaum, Eliana; Rafailovich, Miriam; Ou-Yang, H. Daniel; Mironava, Tatsiana

    TiO2 is one of the most common nanoparticles in industry from food additives to energy generation. Even though TiO2 is also used as an anti-bacterial agent in combination with UV, we found that, in the absence of UV, exposure of HeLa cells to TiO2 nanoparticles largely increased their risk of bacterial invasion. HeLa cells cultured with low dosage rutile and anatase TiO2 nanoparticles (0.1 mg/ml) for 24 hrs prior to exposure to bacteria had 350% and 250% respectively more bacteria infected per cell. The increase was attributed to increased LDH leakage, and changes in the mechanical response of the cell membrane. On the other hand, macrophages exposed to TiO2 particles ingested 40% fewer bacteria, further increasing the risk of infection. In combination, these two factors raise serious concerns regarding the impact of exposure to TiO2 nanoparticles on the ability of organisms to resist bacterial infection.

  20. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function

    PubMed Central

    Gahl, Trevor J.; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315

  1. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia.

    PubMed

    Kim, Dong-Hyun; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Lee, Yong-Keun

    2009-01-01

    The delivery of hyperthermic thermoseeds to a specific target site with minimal side effects is an important challenge in targeted hyperthermia, which employs magnetic method and functional polymers. An external magnetic field is used to control the site-specific targeting of the magnetic nanoparticles. Polymer-coated magnetic nanoparticles can confer a higher affinity to the biological cell membranes. In this study, uncoated, chitosan-coated, and starch-coated magnetic nanoparticles were synthesized for use as a hyperthermic thermoseed. Each sample was examined with respect to their applications to hyperthermia using XRD, VSM, and FTIR. In addition, the temperature changes under an alternating magnetic field were observed. As in vitro tests, the magnetic responsiveness of chitosan- and starch-coated magnetite was determined by a simple blood vessel model under various intensities of magnetic field. L929 normal cells and KB carcinoma cells were used to examine the cytotoxicity and affinity of each sample using the MTT method. The chitosan-coated magnetic nanoparticles generated a higher DeltaT of 23 degrees C under an AC magnetic field than the starch-coated magnetite, and the capturing rate of the particles was 96% under an external magnetic field of 0.4 T. The highest viability of L929 cells was 93.7%. Comparing the rate of KB cells capture with the rate of L929 cells capture, the rate of KB cells capture relatively increased with 10.8% in chitosan-coated magnetic nanoparticles. Hence, chitosan-coated magnetic nanoparticles are biocompatible and have a selective affinity to KB cells. The targeting of magnetic nanoparticles in hyperthermia was improved using a controlled magnetic field and a chitosan-coating. Therefore, chitosan-coated magnetic nanoparticles are expected to be promising materials for use in magnetic targeted hyperthermia. 2008 Wiley Periodicals, Inc.

  2. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells.

    PubMed

    Ezhilarasi, A Angel; Vijaya, J Judith; Kaviyarasu, K; Maaza, M; Ayeshamariam, A; Kennedy, L John

    2016-11-01

    Green protocols for the synthesis of nickel oxide nanoparticles using Moringa oleifera plant extract has been reported in the present study as they are cost effective and ecofriendly, moreover this paper records that the nickel oxide (NiO) nanoparticles prepared from green method shows better cytotoxicity and antibacterial activity. The NiO nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Energy dispersive X-ray analysis (EDX), and Photoluminescence spectroscopy (PL). The formation of a pure nickel oxide phase was confirmed by XRD and FTIR. The synthesized NiO nanoparticles was single crystalline having face centered cubic phase and has two intense photoluminescence emissions at 305.46nm and 410nm. The formation of nano- and micro-structures was confirmed by HRTEM. The in-vitro cytotoxicity and cell viability of human cancer cell HT-29 (Colon Carcinoma cell lines) and antibacterial studies against various bacterial strains were studied with various concentrations of nickel oxide nanoparticles prepared from Moringa oleifera plant extract. MTT assay measurements on cell viability and morphological studies proved that the synthesized NiO nanoparticles posses cytotoxic activity against human cancer cells and the various zones of inhibition (mm), obtained revealed the effective antibacterial activity of NiO nanoparticles against various Gram positive and Gram negative bacterial pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Surface engineered magnetic nanoparticles for specific immunotargeting of cadherin expressing cells

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Delhaes, Flavien; Puertas, Sara; Saez, Berta; de la Fuente, Jesús M.; Grazú, Valeria; Feracci, Helene

    2016-02-01

    In spite of historic advances in cancer biology and recent development of sophisticated chemotherapeutics, the outlook for patients with advanced cancer is still grim. In this sense nanoparticles (NPs), through their unique physical properties, enable the development of new approaches for cancer diagnosis and treatment. Thus far the most used active targeting scheme involves NPs functionalization with antibodies specific to molecules overexpressed on cancer cell’s surface. Therefore, such active targeting relies on differences in NPs uptake kinetics rates between tumor and healthy cells. Many cancers of epithelial origin are associated with the inappropriate expression of non-epithelial cadherins (e.g. N-, P-, -11) with concomitant loss of E-cadherin. Such phenomenon named cadherin switching favors tumor development and metastasis via interactions of tumor cells with stromal components. That is why we optimized the oriented functionalization of fluorescently labelled magnetic NPs with a novel antibody specific for the extracellular domain of cadherin-11. The obtained Ab-NPs exhibited high specificity when incubated with two cell lines used as models of tumor and healthy cells. Thus, cadherin switching offers a great opportunity for the development of active targeting strategies aimed to improve the early detection and treatment of cancer.

  4. Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation.

    PubMed

    Yeo, David C; Wiraja, Christian; Zhou, Yingying; Tay, Hui Min; Xu, Chenjie; Hou, Han Wei

    2015-09-23

    Engineering cells with active-ingredient-loaded micro/nanoparticles is becoming increasingly popular for imaging and therapeutic applications. A critical yet inadequately addressed issue during its implementation concerns the significant number of particles that remain unbound following the engineering process, which inadvertently generate signals and impart transformative effects onto neighboring nontarget cells. Here we demonstrate that those unbound micro/nanoparticles remaining in solution can be efficiently separated from the particle-labeled cells by implementing a fast, continuous, and high-throughput Dean flow fractionation (DFF) microfluidic device. As proof-of-concept, we applied the DFF microfluidic device for buffer exchange to sort labeled suspension cells (THP-1) from unbound fluorescent dye and dye-loaded micro/nanoparticles. Compared to conventional centrifugation, the depletion efficiency of free dyes or particles was improved 20-fold and the mislabeling of nontarget bystander cells by free particles was minimized. The microfluidic device was adapted to further accommodate heterogeneous-sized mesenchymal stem cells (MSCs). Complete removal of unbound nanoparticles using DFF led to the usage of engineered MSCs without exerting off-target transformative effects on the functional properties of neighboring endothelial cells. Apart from its effectiveness in removing free particles, this strategy is also efficient and scalable. It could continuously process cell solutions with concentrations up to 10(7) cells·mL(-1) (cell densities commonly encountered during cell therapy) without observable loss of performance. Successful implementation of this technology is expected to pave the way for interference-free clinical application of micro/nanoparticle engineered cells.

  5. Nanoparticle scaffolds for syngas-fed solid oxide fuel cells

    DOE PAGES

    Boldrin, Paul; Ruiz-Trejo, Enrique; Yu, Jingwen; ...

    2014-12-17

    Incorporation of nanoparticles into devices such as solid oxide fuel cells (SOFCs) may provide benefits such as higher surface areas or finer control over microstructure. However, their use with traditional fabrication techniques such as screen-printing is problematic. Here, we show that mixing larger commercial particles with nanoparticles allows traditional ink formulation and screen-printing to be used while still providing benefits of nanoparticles such as increased porosity and lower sintering temperatures. SOFC anodes were produced by impregnating ceria–gadolinia (CGO) scaffolds with nickel nitrate solution. The scaffolds were produced from inks containing a mixture of hydrothermally-synthesised nanoparticle CGO, commercial CGO and polymericmore » pore formers. The scaffolds were heat-treated at either 1000 or 1300 °C, and were mechanically stable. In situ ultra-small X-ray scattering (USAXS) shows that the nanoparticles begin sintering around 900–1000 °C. Analysis by USAXS and scanning electron microscopy (SEM) revealed that the low temperature heat-treated scaffolds possessed higher porosity. Impregnated scaffolds were used to produce symmetrical cells, with the lower temperature heat-treated scaffolds showing improved gas diffusion, but poorer charge transfer. Using these scaffolds, lower temperature heat-treated cells of Ni–CGO/200 μm YSZ/CGO-LSCF performed better at 700 °C (and below) in hydrogen, and performed better at all temperatures using syngas, with power densities of up to 0.15 W cm -2 at 800 °C. This approach has the potential to allow the use of a wider range of materials and finer control over microstructure.« less

  6. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release.

    PubMed

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb E M; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; El Zowalaty, Mohamed Ezzat

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells.

  7. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy.

    PubMed

    Sivakumar, Balasubramanian; Aswathy, Ravindran Girija; Sreejith, Raveendran; Nagaoka, Yutaka; Iwai, Seiki; Suzuki, Masashi; Fukuda, Takahiro; Hasumura, Takashi; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, Dasappan Nair

    2014-06-01

    Microbial exopolysaccharides (EPSs) are highly heterogeneous polymers produced by fungi and bacteria that have garnered considerable attention and have remarkable potential in various fields, including biomedical research. The necessity of biocompatible materials to coat and stabilize nanoparticles is highly recommended for successful application of the same in biomedical regime. In our study we have coated magnetic nanoparticles (MNPs) with two bacterial EPS-mauran (MR) and gellan gum (GG). The biocompatibility of EPS coated MNPs was enhanced and we have made it multifunctional by attaching targeting moiety, folate and with encapsulation of a potent anticancerous drug, 5FU. We have conjugated an imaging moiety along with nanocomposite to study the effective uptake of nanoparticles. It was also observed that the dye labeled folate targeted nanoparticles could effectively enter into cancer cells and the fate of nanoparticles was tracked with Lysotracker. The biocompatibility of EPS coated MNPs and synergistic effect of magnetic hyperthermia and drug for enhanced antiproliferation of cancer cells was also evaluated. More than 80% of cancer cells was killed within a period of 60 min when magnetic hyperthermia (MHT) was applied along with drug loaded EPS coated MNPs, thus signifying the combined effect of drug loaded MNPs and MHT. Our results suggests that MR and GG coated MNPs exhibited excellent biocompatibility with low cell cytotoxicity, high therapeutic potential, and superparamagnetic behavior that can be employed as prospective candidates for bacterial EPS based targeted drug delivery, cancer cell imaging and for MHT for killing cancer cells within short period of time.

  8. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy

    PubMed Central

    Yallapu, Murali M.; Othman, Shadi F.; Curtis, Evan T.; Gupta, Brij K.; Jaggi, Meena; Chauhan, Subhash C.

    2010-01-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapuetic agent for cancer therapy. PMID:21167595

  9. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy.

    PubMed

    Yallapu, Murali M; Othman, Shadi F; Curtis, Evan T; Gupta, Brij K; Jaggi, Meena; Chauhan, Subhash C

    2011-03-01

    We have developed a multi-layer approach for the synthesis of water-dispersible superparamagnetic iron oxide nanoparticles for hyperthermia, magnetic resonance imaging (MRI) and drug delivery applications. In this approach, iron oxide core nanoparticles were obtained by precipitation of iron salts in the presence of ammonia and provided β-cyclodextrin and pluronic polymer (F127) coatings. This formulation (F127250) was highly water dispersible which allowed encapsulation of the anti-cancer drug(s) in β-cyclodextrin and pluronic polymer for sustained drug release. The F127250 formulation has exhibited superior hyperthermia effects over time under alternating magnetic field compared to pure magnetic nanoparticles (MNP) and β-cyclodextrin coated nanoparticles (CD200). Additionally, the improved MRI characteristics were also observed for the F127250 formulation in agar gel and in cisplatin resistant ovarian cancer cells (A12780CP) compared to MNP and CD200 formulations. Furthermore, the drug-loaded formulation of F127250 exhibited many folds of imaging contrast properties. Due to the internalization capacity of the F127250 formulation, its curcumin-loaded formulation (F127250-CUR) exhibited almost equivalent inhibition effects on A2780CP (ovarian), MDA-MB-231 (breast), and PC-3 (prostate) cancer cells even though curcumin release was only 40%. The improved therapeutic effects were verified by examining molecular effects using Western blotting and transmission electron microscopic (TEM) studies. F127250-CUR also exhibited haemocompatibility, suggesting a nanochemo-therapeutic agent for cancer therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  11. Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells

    NASA Astrophysics Data System (ADS)

    Gu, Bin; Zhou, Yi; Zhang, Xiao; Liu, Xiaowang; Zhang, Yuhai; Marks, Robert; Zhang, Hua; Liu, Xiaogang; Zhang, Qichun

    2015-12-01

    Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by confocal microscopy. Our results demonstrated that organic-dye-functionalized UCNPs should be a good strategy for detecting toxic metal ions when studying cellular biosystems.Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by

  12. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry.

    PubMed

    Wan, Leo Q; Ronaldson, Kacey; Park, Miri; Taylor, Grace; Zhang, Yue; Gimble, Jeffrey M; Vunjak-Novakovic, Gordana

    2011-07-26

    Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10(-185)) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.

  13. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    NASA Astrophysics Data System (ADS)

    Daniel, Jonathan; Godin, Antoine G.; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent; Blanchard-Desce, Mireille

    2016-03-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking.

  14. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less

  15. Ultrastructural and some functional changes in tumor cells treated with stabilized iron oxide nanoparticles.

    PubMed

    Yurchenko, O V; Todor, I N; Khayetsky, I K; Tregubova, N A; Lukianova, N Yu; Chekhun, V F

    2010-12-01

    To study the ultrastructure and some functional indexes of tumor cells treated with stabilized iron nanoparticles in vitro. 3-[4,5dimethylthiazol-2-1]-2,5-diphenyltetrazolium bromide (MTT)-test, electron microscopy, polarography with applying of closed Clark's electrode. It was shown that cultivation of cells with stabilized Fe(3)O(4) leads to intracellular accumulation of ferromagnetic nanoparticles. The most active ferromagnetic uptake by cells has been observed after 24 and 48 h of incubation. The presence of ferromagnetic in cells led to altered mitochondrial structure that caused the decrease of oxygen uptake rate in the cells of all studied lines. Ferromagnetic released from the majority of cells via exocytosis or clasmacytosis after a certain period of time. The number of dead cells or cells with severe damage was moderate, so cytotoxic action of stabilized iron oxide nanoparticles was minimal toward the studied cell lines. the presence of ferromagnetic nanoparticles in culture medium led to alterations in mitochondria ultrastructural organization and decrease of oxygen uptake by mitochondria in sensitive and anticancer-drugs resistant cells.

  16. Pretargeting with bispecific fusion proteins facilitates delivery of nanoparticles to tumor cells with distinct surface antigens.

    PubMed

    Yang, Qi; Parker, Christina L; Lin, Yukang; Press, Oliver W; Park, Steven I; Lai, Samuel K

    2017-06-10

    Tumor heterogeneity, which describes the genetically and phenotypically distinct subpopulations of tumor cells present within the same tumor or patient, presents a major challenge to targeted delivery of diagnostic and/or therapeutic agents. An ideal targeting strategy should deliver a given nanocarrier to the full diversity of cancer cells, which is difficult to achieve with conventional ligand-conjugated nanoparticles. We evaluated pretargeting (i.e., multistep targeting) as a strategy to facilitate nanoparticle delivery to multiple target cells by measuring the uptake of biotinylated nanoparticles by lymphoma cells with distinct surface antigens pretreated with different bispecific streptavidin-scFv fusion proteins. Fusion proteins targeting CD20 or tumor-associated glycoprotein 72 (TAG-72) mediated the specific in vitro uptake of 100nm biotin-functionalized nanoparticles by Raji and Jurkat lymphoma cells (CD20-positive and TAG-72-positive cells, respectively). Greater uptake was observed for pretargeted nanoparticles with increasing amounts of surface biotin, with 6- to 18-fold higher uptake vs. non-biotinylated nanoparticle and fusion protein controls. Fully biotin-modified particles remained resistant to cultured macrophage cell uptake, although they were still quickly cleared from systemic circulation in vivo (t 1/2 <1h). For single Raji tumor-bearing mice, pretargeting with CD20-specific FP significantly increased nanoparticle tumor targeting. In mice bearing both Raji and Jurkat tumors, pretargeting with both fusion proteins markedly increased nanoparticle targeting to both tumor types, compared to animals dosed with nanoparticles alone. These in vitro and in vivo observations support further evaluations of pretargeting fusion protein cocktails as a strategy to enhance nanoparticle delivery to a diverse array of molecularly distinct target cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles.

    PubMed

    Perteghella, Sara; Crivelli, Barbara; Catenacci, Laura; Sorrenti, Milena; Bruni, Giovanna; Necchi, Vittorio; Vigani, Barbara; Sorlini, Marzio; Torre, Maria Luisa; Chlapanidas, Theodora

    2017-03-30

    The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments

    NASA Astrophysics Data System (ADS)

    Jardon, Samantha; García, Carlos G.; Quintanar, David; Nieto, José L.; Juárez, María de Lourdes; Mendoza, Susana E.

    2018-04-01

    The development of technologies that combine the advantages of nanomedicine with natural medicine represents a versatile approach to improve the safety and efficacy of drugs. Glycyrrhizinic acid (GA) is a natural compound that has a wide range of biological activities for the treatment of diseases. To establish a safe nanotransport system for this drug, two different nanoparticles with glycyrrhizinic acid, solid lipid nanoparticles (SLN-GA) and polymeric nanoparticles (PNPS-GA) were elaborated to obtain nanostructure sizes between 200 and 300 nm. The nanoparticles were evaluated at concentrations of 1.25-100 μl/ml using the MARC-145 cell line to determine the effects on cell morphology, cellular structure (actin filaments) and cell viability (mitochondrial and lysosomal) at 24 and 72 h post-exposure. The safety range of the nanoparticles was 50 µl/ml, to determine that PNPs-GA had an optimal safety profile and no cytotoxic effects, as there was no evidence of changes in morphology, internal cellular structures (stress fibers and the cell cortex formed by actin filaments) or viability under the experimental concentrations and conditions employed.

  19. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    PubMed

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  20. Magnetic Nanoparticle-Based Imaging of RNA Transcripts in Breast Cancer Cells

    DTIC Science & Technology

    2008-06-30

    control (Months 33 – 36). These studies have not yet commenced. KEY RESEARCH ACCOMPLISHMENTS: - Synthesized dextran-coated iron oxide NPs with...Size, charge, and concentration dependent uptake of iron oxide nanoparticles by non-phagocytic cells: a comparative study of USPIO, SSPIO, and MPIO...A. (2008) Size, charge, and concentration dependent uptake of iron oxide nanoparticles by non-phagocytic cells: a comparative study of USPIO, SSPIO

  1. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue.

    PubMed

    Zhang, Xuemei; Li, Xuejuan; Hua, Hongchen; Wang, Aiping; Liu, Wanhui; Li, Youxin; Fu, Fenghua; Shi, Yanan; Sun, Kaoxiang

    2017-01-01

    Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas.

  2. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue

    PubMed Central

    Zhang, Xuemei; Li, Xuejuan; Hua, Hongchen; Wang, Aiping; Liu, Wanhui; Li, Youxin; Fu, Fenghua; Shi, Yanan; Sun, Kaoxiang

    2017-01-01

    Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas. PMID:28848349

  3. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles

    PubMed Central

    Hofmann, Andreas; Wenzel, Daniela; Becher, Ulrich M.; Freitag, Daniel F.; Klein, Alexandra M.; Eberbeck, Dietmar; Schulte, Maike; Zimmermann, Katrin; Bergemann, Christian; Gleich, Bernhard; Roell, Wilhelm; Weyh, Thomas; Trahms, Lutz; Nickenig, Georg; Fleischmann, Bernd K.; Pfeifer, Alexander

    2009-01-01

    Targeting of viral vectors is a major challenge for in vivo gene delivery, especially after intravascular application. In addition, targeting of the endothelium itself would be of importance for gene-based therapies of vascular disease. Here, we used magnetic nanoparticles (MNPs) to combine cell transduction and positioning in the vascular system under clinically relevant, nonpermissive conditions, including hydrodynamic forces and hypothermia. The use of MNPs enhanced transduction efficiency of endothelial cells and enabled direct endothelial targeting of lentiviral vectors (LVs) by magnetic force, even in perfused vessels. In addition, application of external magnetic fields to mice significantly changed LV/MNP biodistribution in vivo. LV/MNP-transduced cells exhibited superparamagnetic behavior as measured by magnetorelaxometry, and they were efficiently retained by magnetic fields. The magnetic interactions were strong enough to position MNP-containing endothelial cells at the intima of vessels under physiological flow conditions. Importantly, magnetic positioning of MNP-labeled cells was also achieved in vivo in an injury model of the mouse carotid artery. Intravascular gene targeting can be combined with positioning of the transduced cells via nanomagnetic particles, thereby combining gene- and cell-based therapies. PMID:19118196

  4. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles.

    PubMed

    Hofmann, Andreas; Wenzel, Daniela; Becher, Ulrich M; Freitag, Daniel F; Klein, Alexandra M; Eberbeck, Dietmar; Schulte, Maike; Zimmermann, Katrin; Bergemann, Christian; Gleich, Bernhard; Roell, Wilhelm; Weyh, Thomas; Trahms, Lutz; Nickenig, Georg; Fleischmann, Bernd K; Pfeifer, Alexander

    2009-01-06

    Targeting of viral vectors is a major challenge for in vivo gene delivery, especially after intravascular application. In addition, targeting of the endothelium itself would be of importance for gene-based therapies of vascular disease. Here, we used magnetic nanoparticles (MNPs) to combine cell transduction and positioning in the vascular system under clinically relevant, nonpermissive conditions, including hydrodynamic forces and hypothermia. The use of MNPs enhanced transduction efficiency of endothelial cells and enabled direct endothelial targeting of lentiviral vectors (LVs) by magnetic force, even in perfused vessels. In addition, application of external magnetic fields to mice significantly changed LV/MNP biodistribution in vivo. LV/MNP-transduced cells exhibited superparamagnetic behavior as measured by magnetorelaxometry, and they were efficiently retained by magnetic fields. The magnetic interactions were strong enough to position MNP-containing endothelial cells at the intima of vessels under physiological flow conditions. Importantly, magnetic positioning of MNP-labeled cells was also achieved in vivo in an injury model of the mouse carotid artery. Intravascular gene targeting can be combined with positioning of the transduced cells via nanomagnetic particles, thereby combining gene- and cell-based therapies.

  5. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  6. PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.

    PubMed

    Du, Jiang-bo; Song, Yan-feng; Ye, Wei-liang; Cheng, Ying; Cui, Han; Liu, Dao-zhou; Liu, Miao; Zhang, Bang-le; Zhou, Si-yuan

    2014-08-01

    The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.

  7. Optical micromanipulation of nanoparticles and cells inside living zebrafish.

    PubMed

    Johansen, Patrick Lie; Fenaroli, Federico; Evensen, Lasse; Griffiths, Gareth; Koster, Gerbrand

    2016-03-21

    Regulation of biological processes is often based on physical interactions between cells and their microenvironment. To unravel how and where interactions occur, micromanipulation methods can be used that offer high-precision control over the duration, position and magnitude of interactions. However, lacking an in vivo system, micromanipulation has generally been done with cells in vitro, which may not reflect the complex in vivo situation inside multicellular organisms. Here using optical tweezers we demonstrate micromanipulation throughout the transparent zebrafish embryo. We show that different cells, as well as injected nanoparticles and bacteria can be trapped and that adhesion properties and membrane deformation of endothelium and macrophages can be analysed. This non-invasive micromanipulation inside a whole-organism gives direct insights into cell interactions that are not accessible using existing approaches. Potential applications include screening of nanoparticle-cell interactions for cancer therapy or tissue invasion studies in cancer and infection biology.

  8. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  9. Real-time cellular and molecular dynamics of bi-metallic self-therapeutic nanoparticle in cancer cells

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-02-01

    Since last decades various kinds of nanoparticles have been functionalized to improve their biomedical applications. However, the biological effect of un-modified/non-functionalized bi-metallic magnetic nanoparticles remains under investigated. Herein we demonstrate a multifaceted non-functionalized bi-metallic inorganic Gd-SPIO nanoparticle which passes dual high MRI contrast and can kill the cancer cells through several mechanisms. The results of the present study demonstrate that Gd-SPIO nanoparticles have potential to induce cancer cell death by production of reactive oxygen species and apoptotic events. Furthermore, Gd-SPIO nanoparticles also enhance the expression levels of miRNA-199a and miRNA-181a-7p which results in decreased levels of cancer markers such as C-met, TGF-β and hURP. One very interesting finding of this study reveals side scatter-based real-time analysis of nanoparticle uptake in cancer cells using flow cytometry analysis. In conclusion, this study paves a way for future investigation of un-modified inorganic nanoparticles to purport enhanced therapeutic effect in combination with potential anti-tumor drugs/molecules in cancer cells.

  10. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Petty, Howard R.

    2016-02-01

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles’ catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  11. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    PubMed Central

    Al-Qubaisi, Mothanna Sadiq; Rasedee, Abdullah; Flaifel, Moayad Husein; Ahmad, Sahrim Hj; Hussein-Al-Ali, Samer; Hussein, Mohd Zobir; Zainal, Zulkarnain; Alhassan, Fatah H; Taufiq-Yap, Yun H; Eid, Eltayeb EM; Arbab, Ismail Adam; Al-Asbahi, Bandar A; Webster, Thomas J; Zowalaty, Mohamed Ezzat El

    2013-01-01

    The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and −60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells. PMID:24204141

  12. Visualization of interaction between inorganic nanoparticles and bacteria or fungi

    PubMed Central

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna; Szeliga, Jacek; Mitura, Stanislaw; Mitura, Katarzyna; Grodzik, Marta; Orlowski, Piotr; Sokolowska, Aleksandra

    2010-01-01

    Purpose The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococcus aureus (bacteria) and Candida albicans (fungi), to determine the possibility of constructing microorganism–nanoparticle vehicles. Methods Hydrocolloids of individual nanoparticles were added to suspensions of S. aureus and C. albicans. Immediately after mixing, the samples were inspected by transmission electron microscopy. Results Visualization of the morphologic interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells. All metal nanoparticles with negative zeta potential had cell damaging properties. Nano-Ag showed the properties of self-organization with the cells, disintegrating the cell walls and cytoplasmic membranes, and releasing a substance (probably cytoplasm) outside the cell. Arrangement of nano-Au with microorganisms did not create a system of self-organization, but instead a “noncontact” interaction between the nanoparticles and microorganisms was observed to cause damage to fungal cells. Nano-Pt caused both microorganisms to release a substance outside the cell and disintegrated the cytoplasmic membrane and cell wall. Conclusion Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both microorganisms could be used as potential carriers for nano-D. PMID:21270959

  13. Rationally engineered polymeric cisplatin nanoparticle for improved antitumor efficacy

    PubMed Central

    Paraskar, Abhimanyu; Soni, Shivani; Basu, Sudipta; Chitra, J; Amarasiriwardena; Lupoli, Nicola; Srivats, Shyam; Roy, Rituparna Sinha; Sengupta, Shiladitya

    2011-01-01

    The use of cisplatin, a first line chemotherapy for most cancers, is dose-limited due to nephrotoxicity. While, this toxicity can be addressed through nanotechnology, previous attempts at engineering cisplatin nanoparticles have been limited by the impact on the potency of cisplatin. Here we report the rational engineering of a novel cisplatin nanoparticle by harnessing a novel polyethylene glycol-functionalized poly-isobutylene-maleic acid (PEG-PIMA) co-polymer, which can complex with cis-platinum (II) through a monocarboxylato and a coordinate bond. We show that this complex self-assembles into a nanoparticle, and exhibit an IC50 = 0.77 ± 0.11μM comparable to that of free cisplatin (IC50 = 0.44 ± 0.09 μM). The nanoparticles are internalized into the endolysosomal compartment of cancer cells, and releases cisplatin in a pH-dependent manner. Furthermore, the nanoparticles exhibited significantly improved antitumor efficacy in a 4T1 breast cancer model in vivo with limited nephrotoxicity, which can be explained by preferential biodistribution in the tumor with reduced kidney concentrations. Our results suggest that the PEG-PIMA-cisplatin nanoparticle can emerge as an attractive solution to the challenges in cisplatin chemotherapy. PMID:21576779

  14. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    NASA Astrophysics Data System (ADS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-07-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum ( 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate- or

  15. Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis

    PubMed Central

    Cai, Aijun; Guo, Aiying; Ma, Zichuan

    2017-01-01

    TiO2 nanoparticles are immobilized on chlorella cells using the hydrothermal method. The morphology, structure, and the visible-light-driven photocatalytic activity of the prepared chlorella/TiO2 composite are investigated by various methods. The chlorella/TiO2 composite is found to exhibit larger average sizes and higher visible-light intensities. The sensitization of the photosynthesis pigment originating from chlorella cells provides the anatase TiO2 with higher photocatalytic activities under the visible-light irradiation. The latter is linked to the highly efficient charge separation of the electron/hole pairs. The results also suggest that the photocatalytic activity of the composite remains substantial after four cycles, suggesting a good stability. PMID:28772899

  16. Biomedical applications of green synthesized Nobel metal nanoparticles.

    PubMed

    Khan, Zia Ul Haq; Khan, Amjad; Chen, Yongmei; Shah, Noor S; Muhammad, Nawshad; Khan, Arif Ullah; Tahir, Kamran; Khan, Faheem Ullah; Murtaza, Behzad; Hassan, Sadaf Ul; Qaisrani, Saeed Ahmad; Wan, Pingyu

    2017-08-01

    Synthesis of Nobel metal nanoparticles, play a key role in the field of medicine. Plants contain a substantial number of organic constituents, like phenolic compounds and various types of glycosides that help in synthesis of metal nanoparticles. Synthesis of metal nanoparticles by green method is one of the best and environment friendly methods. The major significance of the green synthesis is lack of toxic by-products produced during metal nanoparticle synthesis. The nanoparticles, synthesized by green method show various significant biological activities. Most of the research articles report the synthesized nanoparticles to be active against gram positive and gram negative bacteria. Some of these bacteria include Escherichia coli, Bacillus subtilis, Klebsiella pneumonia and Pseudomonas fluorescens. The synthesized nanoparticles also show significant antifungal activity against Trichophyton simii, Trichophyton mentagrophytes and Trichophyton rubrum as well as different types of cancer cells such as breast cancer cell line. They also exhibit significant antioxidant activity. The activities of these Nobel metal nano-particles mainly depend on the size and shape. The particles of small size with large surface area show good activity in the field of medicine. The synthesized nanoparticles are also active against leishmanial diseases. This research article explores in detail the green synthesis of the nanoparticles and their uses thereof. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model.

    PubMed

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.

  18. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model

    PubMed Central

    Basel, Matthew T; Balivada, Sivasai; Wang, Hongwang; Shrestha, Tej B; Seo, Gwi Moon; Pyle, Marla; Abayaweera, Gayani; Dani, Raj; Koper, Olga B; Tamura, Masaaki; Chikan, Viktor; Bossmann, Stefan H; Troyer, Deryl L

    2012-01-01

    Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer. PMID:22287840

  19. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles

    PubMed Central

    2009-01-01

    Background Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. Results A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 μg/cm2. The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 μg/cm2) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 μg/cm2 ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. Conclusion The ALICE

  20. One pot electrochemical synthesis of polymer/CNT/metal nanoparticles for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Zhu, Jingyi; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Nanomaterials center Team

    Carbon nanotubes (CNTs) have become a key player in the design of materials for energy applications. They gained their popularity in industrial and scientific research due to their unique properties like excellent conductivity, high surface area, etc. Here we used chemical vapor deposition (CVD) to synthesize two types of CNTs namely, helically coiled CNTs and vertically aligned CNTs. These CNTs were subsequently used to make composites with conducting polymers and metal nanoparticles. One pot electrochemical synthesis was designed to electropolymerize aniline, pyrrole etc. on the surface of the electrode with simultaneous deposition of platinum and gold metal nanoparticles, and CNTs in the polymer matrix. The as synthesized composite materials were characterized with scanning electron microscope for surface morphology and spectroscopic techniques like Raman, UV-Vis for functionality. These were used to study electrocatalytic oxidation of methanol and ethanol for alkaline fuel cell applications. Electrodes fabricated from these composites not only showed good kinetics but also exhibited excellent stability. Uniqueness of this composite lies in its simple two step synthesis and it doesn't involve any surfactants unlike conventional chemical synthesis routes.

  1. Luminescent solar concentrators and all-inorganic nanoparticle solar cells for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Sholin, Veronica

    efficiency of LSCs based on small molecule laser dyes and on quantum dots. Factors affecting the optical efficiency of the system such as the luminescing properties of the fluorophors were examined. The experimental results were compared to Monte-Carlo simulations. Our results suggest that commercially available quantum dots cannot serve as viable LSC dyes because of large absorption/emission band overlap and relatively low quantum yield. Materials such as Red F demonstrate that semi-conducting polymers with high quantum yield and small absorption/emission band overlap are good candidates for LSCs. Recently, a solar cell system based purely on CdSe and Cite nanoparticles as the absorbing materials was proposed ans it was suggested that its operational mechanism was that of polymer donor/acceptor systems. Here we present solar cells consisting of a sintered active bilayer of CdSe and PbSe nanoparticles in the structure ITO/CdSe/interlayer/PbSe/Al, where an interlayer of LiF or Al2O3 was found necessary to prevent low shunt resistance from suppressing the photovoltaic behavior. We fabricated unoptimized solar cells with a short-circuit current of 6 mA/cm2, an open-circuit voltage of 0.18 V, and a fill factor of 41%. External quantum efficiency spectra revealed that photons from the infrared portion of the spectrum were not collected, suggesting that the low bandgap PbSe film did not contribute to the photocurrent of the structure despite exhibiting photoconductivity. Other measurements, however, showed that the PbSe film was indeed necessary to produce a photovoltage and transport electrons. Through sintering, the nanoparticle films acquired bandgaps similar to those of the corresponding bulk materials and became more conductive. Because the PbSe films were found to be considerably more conductive than the CdSe ones, we suggest that the PbSe layer is effectively behaving like a low conductivity electrical contact. Therefore, in contrast to the photovoltaics presented in the

  2. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

    NASA Astrophysics Data System (ADS)

    Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo

    2014-02-01

    Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

  3. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  4. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  5. Zinc oxide nanoparticles induce rat retinal ganglion cell damage through bcl-2, caspase-9 and caspase-12 pathways.

    PubMed

    Guo, Dadong; Bi, Hongsheng; Wu, Qiuxin; Wang, Daoguang; Cui, Yan

    2013-06-01

    Nanomaterials, including zinc oxide (ZnO) nanoparticles, are being developed for a variety of commercial products. Recent reports showed that cells exposed to ZnO nanoparticles produced severe cytotoxicity accompanied by oxidative stress and genotoxicity. To understand the possible mechanism underlying oxidative stress of ZnO nanoparticles, the present investigation focused on the direct bioactivity of ZnO nanoparticles using a rat retinal ganglion cell (RGC-5) culture. At concentrations relevant to those used in vitro exposure of RGC-5 cells to ZnO nanoparticles, it was found that ZnO nanoparticles could inhibit cell proliferation in time- and concentration-dependent manners. Meanwhile, cell cycle arrest of S and G2/M phases occurred in RGC-5 cells induced by ZnO nanoparticles. Moreover, our results also demonstrated that the overproduction of reactive oxygen species (ROS) and elevated level of caspase-12 as well as decreased levels of bcl-2 and caspase-9 occurred after treatment with different concentrations of ZnO nanoparticles when compared to those in untreated cells. In summary, our findings suggest that ZnO nanoparticles could lead to the over generations of ROS and caspase-12 as well as decreased levels of bcl-2 and caspase-9. These results indicate that bcl-2, caspase-9 and caspase-12 may play significant roles in ZnO nanoparticle-induced RGC-5 cell damage.

  6. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  7. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.

    PubMed

    Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping

    2013-01-09

    This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.

  8. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

    PubMed

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.

  9. Gene Expression Profiling of Immune-Competent Human Cells Exposed to Engineered Zinc Oxide or Titanium Dioxide Nanoparticles

    PubMed Central

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F.; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn2+ leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach. PMID:23894303

  10. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation

    PubMed Central

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857

  11. Peptide-Conjugated Nanoparticles Reduce Positive Co-stimulatory Expression and T Cell Activity to Induce Tolerance.

    PubMed

    Kuo, Robert; Saito, Eiji; Miller, Stephen D; Shea, Lonnie D

    2017-07-05

    Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP 139-151 ) were co-cultured with antigen-presenting cells administered PLP 139-151 -conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  12. The anticancer properties of iron core–gold shell nanoparticles in colorectal cancer cells

    PubMed Central

    Wu, Ya-Na; Wu, Ping-Ching; Yang, Li-Xing; Ratinac, Kyle R; Thordarson, Pall; Jahn, Kristina A; Chen, Dong-Hwang; Shieh, Dar-Bin; Braet, Filip

    2013-01-01

    Previously, iron core–gold shell nanoparticles (Fe@Au) have been shown to possess cancer-preferential cytotoxicity in oral and colorectal cancer (CRC) cells. However, CRC cell lines are less sensitive to Fe@Au treatment when compared with oral cancer cell lines. In this research, Fe@Au are found to decrease the cell viability of CRC cell lines, including Caco-2, HT-29, and SW480, through growth inhibition rather than the induction of cell death. The cytotoxicity induced by Fe@Au in CRC cells uses different subcellular pathways to the mitochondria-mediated autophagy found in Fe@Au-treated oral cancer cells, OECM1. Interestingly, the Caco-2 cell line shows a similar response to OECM1 cells and is thus more sensitive to Fe@Au treatment than the other CRC cell lines studied. We have investigated the underlying cell resistance mechanisms of Fe@Au-treated CRC cells. The resistance of CRC cells to Fe@Au does not result from the total amount of Fe@Au internalized. Instead, the different amounts of Fe and Au internalized appear to determine the different response to treatment with Fe-only nanoparticles in Fe@Au-resistant CRC cells compared with the Fe@Au-sensitive OECM1 cells. The only moderately cytotoxic effect of Fe@Au nanoparticles on CRC cells, when compared to the highly sensitive OECM1 cells, appears to arise from the CRC cells’ relative insensitivity to Fe, as is demonstrated by our Fe-only treatments. This is a surprising outcome, given that Fe has thus far been considered to be the “active” component of Fe@Au nanoparticles. Instead, we have found that the Au coatings, previously considered only as a passivating coating to protect the Fe cores from oxidation, significantly enhance the cytotoxicity of Fe@Au in certain CRC cells. Therefore, we conclude that both the Fe and Au in these core–shell nanoparticles are essential for the anticancer properties observed in CRC cells. PMID:24039416

  13. Polystyrene nanoparticle trafficking across MDCK-II

    PubMed Central

    Fazlollahi, Farnoosh; Angelow, Susanne; Yacobi, Nazanin R.; Marchelletta, Ronald; Yu, Alan S.L.; Hamm-Alvarez, Sarah F.; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.

    2011-01-01

    Polystyrene nanoparticles (PNP) cross rat alveolar epithelial cell monolayers via non-endocytic transcellular pathways. To evaluate epithelial cell type-specificity of PNP trafficking, we studied PNP flux across Madin Darby canine kidney cell II monolayers (MDCK-II). Effects of calcium chelation (EGTA), energy depletion (sodium azide (NaN3) or decreased temperature), and endocytosis inhibitors methyl-β-cyclodextrin (MBC), monodansylcadaverine and dynasore were determined. Amidine-modified PNP cross MDCK-II 500 times faster than carboxylate-modified PNP. PNP flux did not increase in the presence of EGTA. PNP flux at 4°C and after treatment with NaN3 decreased 75% and 80%, respectively. MBC exposure did not decrease PNP flux, whereas dansylcadaverine- or dynasore-treated MDCK-II exhibited ~80% decreases in PNP flux. Confocal laser scanning microscopy revealed intracellular colocalization of PNP with clathrin heavy chain. These data indicate that PNP translocation across MDCK-II (1) occurs via clathrin-mediated endocytosis and (2) is dependent upon PNP physicochemical properties. We conclude that uptake/trafficking of nanoparticles into/across epithelia is dependent both on properties of the nanoparticles and the specific epithelial cell type. PMID:21310266

  14. pH-Dependent Antimicrobial Properties of Copper Oxide Nanoparticles in Staphylococcus aureus

    PubMed Central

    Hsueh, Yi-Huang; Tsai, Ping-Han; Lin, Kuen-Song

    2017-01-01

    The antimicrobial properties of CuO nanoparticles have been investigated, but the underlying mechanisms of toxicity remain the subject of debate. Here, we show that CuO nanoparticles exhibit significant toxicity at pH 5 against four different Staphylococcus aureus (S. aureus) strains, including Newman, SA113, USA300, and ATCC6538. At this pH, but not at pH 6 and 7, 5 mM CuO nanoparticles effectively caused reduction of SA113 and Newman cells and caused at least 2 log reduction, whereas 20 mM killed most strains but not USA300. At 5 mM, the nanoparticles were also found to dramatically decrease reductase activity in SA113, Newman, and ATCC6538 cells, but not USA300 cells. In addition, analysis of X-ray absorption near-edge structure and extended X-ray absorption fine structure confirmed that S. aureus cells exposed to CuO nanoparticles contain CuO, indicating that Cu2+ ions released from nanoparticles penetrate bacterial cells and are subsequently oxidized intracellularly to CuO at mildly acidic pH. The CuO nanoparticles were more soluble at pH 5 than at pH 6 and 7. Taken together, the data conclusively show that the toxicity of CuO nanoparticles in mildly acidic pH is caused by Cu2+ release, and that USA300 is more resistant to CuO nanoparticles (NPs) than the other three strains. PMID:28397766

  15. Synthesis of Multifunctional Nanoparticles for Cancer Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Fang, Chen

    2011-12-01

    Magnetic nanoparticles (MNPs) have attracted enormous research attention due to their unique magnetic properties that enable the detection by the non-invasive medical imaging modality---magnetic resonance imaging (MRI). By incorporating advanced features, such as specific targeting, multimodality, therapeutic delivery, the detectability and applicability of MNPs have been dramatically expanded. Smart and rational design on structure, composition and surface chemistry is essential to achieving desired properties in MNP systems, such as high sensitivity and colloidal stability, target specificity and/or multimodality. The goal of this research is to develop MNP-based platforms for the detection, diagnosis and treatment of cancer. MNPs with high contrast enhancement were coated with poly(ethylene glycol) (PEG)-based polymers to render aqueous stability and confer therapeutic-loading capability. Tumor-specific MNPs were developed by functionalization of nanoparticles with chlorotoxin (CTX) or arginine-glycine-aspartic acid (RGD) that targets, respectively, MMP-2 receptor or alphavbeta3 integrin overexpressed on a variety of cancer cells. The effects of ligands' molecular targets on the temporal and spatial distribution of MNPs within tumors were also investigated both in vitro and in vivo. All MNPs exhibited excellent long-term stability in cell culture media. CTX-labeled MNP exhibited sustained accumulation, penetration and distribution in the tumor mass. These findings revealed the influence of the targeting ligands on the intratumoral distribution of the ligand-enabled nanoprobes. To demonstrate the ability of nanoparticles as drug carrier, anthracyline chemotherapeutic drugs doxorubicin and mitoxantrone were attached to iron oxide nanoparticles. The theragnostic nanoparticles showed sufficient contrast enhancement and comparable anti-neoplastic efficacy in vitro. With flexible surface chemistry, our nanoparticle platform can be used in a modular fashion to

  16. 3D Graphene Oxide-encapsulated Gold Nanoparticles to Detect Neural Stem Cell Differentiation

    PubMed Central

    Kim, Tae-Hyung; Lee, Ki-Bum; Choi, Jeong-Woo

    2013-01-01

    Monitoring of stem cell differentiation and pluripotency is an important step for the practical use of stem cells in the field of regenerative medicine. Hence, a new non-destructive detection tool capable of in situ monitoring of stem cell differentiation is highly needed. In this study, we report a 3D graphene oxide-encapsulated gold nanoparticle that is very effective for the detection of the differentiation potential of neural stem cells (NSCs) based on surface-enhanced Raman spectroscopy (SERS). A new material, 3D GO-encapsulated gold nanoparticle, is developed to induce the double enhancement effect of graphene oxide and gold nanoparticle on SERS signals which is only effective for undifferentiated NSCs. The Raman peaks achieved from undifferentiated NSCs on the graphene oxide (GO)-encapsulated gold nanoparticles were 3.5 times higher than peaks obtained from normal metal structures and were clearly distinguishable from those of differentiated cells. The number of C=C bonds and the raman instensity at 1656cm−1 was found to show a positive correlation, which matches the differentiation state of the NSCs. Moreover, the substrate composed of 3D GO-encapsulated gold nanoparticles was also effective at distinguishing the differentiation state of single NSC by using electrochemical and electrical techniques. Hence, the proposed technique can be used as a powerful non-destructive in situ monitoring tool for the identification of the differentiation potential of various kinds of stem cells (mesenchymal, hematopoietic, and neural stem cells). PMID:23937915

  17. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.

    PubMed

    Heng, Boon Chin; Zhao, Xinxin; Xiong, Sijing; Ng, Kee Woei; Boey, Freddy Yin-Chiang; Loo, Joachim Say-Chye

    2011-06-01

    A parameter that has often been overlooked in cytotoxicity assays is the density and confluency of mammalian cell monolayers utilized for toxicology screening. Hence, this study investigated how different cell seeding densities influenced their response to cytotoxic challenge with ZnO nanoparticles. Utilizing the same volume (1 ml per well) and concentration range (5-40 μg/ml) of ZnO nanoparticles, contradictory results were observed with higher-density cell monolayers (BEAS-2B cells) obtained either by increasing the number of seeded cells per well (50,000 vs. 200,000 cells per well of 12-well plate) or by seeding the same numbers of cells (50,000) within a smaller surface area (12-well vs. 48-well plate, 4.8 vs. 1.2 cm(2), respectively). Further experiments demonstrated that the data may be skewed by inconsistency in the mass/number of nanoparticles per unit area of culture surface, as well as by inconsistent nanoparticle to cell ratio. To keep these parameters constant, the same number of cells (50,000 per well) were seeded on 12-well plates, but with the cells being seeded at the edge of the well for the experimental group (by tilting the plate) to form a dense confluent monolayer, as opposed to a sparse monolayer for the control group seeded in the conventional manner. Utilizing such an experimental set-up for the comparative evaluation of four different cell lines (BEAS-2B, L-929, CRL-2922 and C2C12), it was observed that the high cell density monolayer was consistently more resistant to the cytotoxic effects of ZnO nanoparticles compared to the sparse monolayer for all four different cell types, with the greatest differences being observed above a ZnO concentration of 10 μg/ml. Hence, the results of this study demonstrate the need for the standardization of cell culture protocols utilized for toxicology screening of nanoparticles, with respect to cell density and mass/number of nanoparticles per unit area of culture surface.

  18. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    NASA Astrophysics Data System (ADS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  19. ICAM-1 Targeting of Doxorubicin-Loaded PLGA Nanoparticles to Lung Epithelial Cells

    PubMed Central

    Chuda, Chittasupho; Sheng-Xue, Xie; Abdulgader, Baoum; Tatyana, Yakovleva; Teruna, Siahaan J.; Cory, Berkland

    2009-01-01

    Interaction of leukocyte function associated antigen-1 (LFA-1) on T-lymphoctytes and intercellular adhesion molecule-1 (ICAM-1) on epithelial cells controls leukocyte adhesion, spreading, and extravasation. This process plays an important role in leukocyte recruitment to a specific site of inflammation and has been indentified as a biomarker for certain types of carcinomas. Cyclo-(1,12)-PenITDGEATDSGC (cLABL) has been shown to inhibit LFA-1 and ICAM-1 interaction via binding to ICAM-1. In addition, cLABL has been shown to internalize after binding ICAM-1. The possibility of using cLABL conjugated nanoparticles (cLABL-NP) as a targeted and controlled release drug delivery system has been investigated in this study. The cLABL peptide was conjugated to a modified Pluronic® surfactant on poly (DL-lactic-co-glycolic acid) (PLGA) nanoparticles. The cLABL-NP showed more rapid cellular uptake by A549 lung epithelial cells compared to nanoparticles without peptide. The specificity of ICAM-1 mediated internalization was confirmed by blocking the uptake of cLABL-NP to ICAM-1 using free cLABL peptide to block the binding of cLABL-NP to ICAM-1 on the cell surface. Cell studies suggested that cLABL-NPs targeted encapsulated doxorubicin to ICAM-1 expressing cells. Cytotoxicity assay confirmed the activity of the drug incorporated in nanoparticles. Sustained release of doxorubicin afforded by PLGA nanoparticles may enable cLABL-NP as a targeted, controlled release drug delivery system. PMID:19429421

  20. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells

    PubMed Central

    2014-01-01

    Background One of the major challenges of nanotechnology during the last decade has been the development of new procedures to synthesize nanoparticles. In this context, biosynthetic methods have taken hold since they are simple, safe and eco-friendly. Results In this study, we report the biosynthesis of TiO2 nanoparticles by an environmental isolate of Bacillus mycoides, a poorly described Gram-positive bacterium able to form colonies with novel morphologies. This isolate was able to produce TiO2 nanoparticles at 37°C in the presence of titanyl hydroxide. Biosynthesized nanoparticles have anatase polymorphic structure, spherical morphology, polydisperse size (40–60 nm) and an organic shell as determined by UV–vis spectroscopy, TEM, DLS and FTIR, respectively. Also, conversely to chemically produced nanoparticles, biosynthesized TiO2 do not display phototoxicity. In order to design less expensive and greener solar cells, biosynthesized nanoparticles were evaluated in Quantum Dot Sensitized Solar Cells (QDSSCs) and compared with chemically produced TiO2 nanoparticles. Solar cell parameters such as short circuit current density (ISC) and open circuit voltage (VOC) revealed that biosynthesized TiO2 nanoparticles can mobilize electrons in QDSSCs similarly than chemically produced TiO2. Conclusions Our results indicate that bacterial extracellular production of TiO2 nanoparticles at low temperatures represents a novel alternative for the construction of green solar cells. PMID:25027643

  1. Real-time monitoring of the Trojan-horse effect of silver nanoparticles by using a genetically encoded fluorescent cell sensor.

    PubMed

    You, Fang; Tang, Wenqin; Yung, Lin-Yue Lanry

    2018-04-26

    Silver nanoparticles (AgNPs) are widely incorporated into commercial products due to their antimicrobial properties. As a consequence, concerns about the adverse effects induced by AgNPs to humans and the environment need to be carefully examined. The existing literature reveals that AgNPs exhibit certain toxic effects, but it remains to be proved whether AgNPs or the ionic silver (Ag+) released from AgNPs are the main toxic species. Here, a genetically encoded fluorescent protein sensor with high affinity to Ag+ was developed. The resulting sensor, MT2a-FRET, was found to be ratiometric, sensitive and selective toward only Ag+ but inert against AgNPs. This makes this sensor a potential useful tool for monitoring the real-time intracellular dissolutions of AgNPs. Our data supported that AgNPs display the "Trojan-horse" mechanism, where AgNPs are internalized by cells and undergo dissolution intracellularly. We further found that cells exhibited a detoxification ability to remove active Ag+ from cells in 48 hours.

  2. Near Infrared-Emitting Cr3+/Eu3+ Co-doped Zinc Gallogermanate Persistence Luminescent Nanoparticles for Cell Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoqiao; Zhang, Shuyun; Li, Zhiwei; Zhu, Qi

    2018-02-01

    Near infrared (NIR)-emitting persistent luminescent nanoparticles have been developed as potential agents for bioimaging. However, synthesizing uniform nanoparticles with long afterglow for long-term imaging is lacking. Here, we demonstrated the synthesis of spinel structured Zn3Ga2Ge2O10:Cr3+ (ZGGO:Cr3+) and Zn3Ga2Ge2O10:Cr3+,Eu3+ (ZGGO:Cr3+,Eu3+) nanoparticles by a sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The samples were investigated via detailed characterizations by combined techniques of XRD, TEM, STEM, selected area electron diffraction, photoluminescence excitation (PLE)/photoluminescence (PL) spectroscopy, and temperature-dependent PL analysis. The single-crystalline nanoparticles are homogeneous solid solution, possessing uniform cubic shape and lateral size of 80-100 nm. Upon UV excitation at 273 nm, ZGGO:Cr3+,Eu3+ exhibited a NIR emission band at 697 nm (2E → 4A2 transition of distorted Cr3+ ions in gallogermanate), in the absence of Eu3+ emission. NIR persistent luminescence of the sample can last longer than 7200 s and still hold intense intensity. Eu3+ incorporation increased the persistent luminescence intensity and the afterglow time of ZGGO:Cr3+, but it did not significantly affect the thermal stability. The obtained ZGGO:Cr3+,Eu3+-NH2 nanoparticles possessed an excellent imaging capacity for cells in vitro.

  3. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.

    PubMed

    Feng, Yan; Ye, Feng; Liu, Hui; Yang, Jun

    2015-11-18

    Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic activity for oxygen reduction reaction. This strategy starts with the synthesis of core-shell-shell nanoparticles with Pt and silver (Ag) residing respectively in the core and inner shell regions, which are then agitated with saturated sodium chloride (NaCl) solution to eliminate the Ag component from the inner shell region, leading to the formation of bimetallic nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a metal shell with nano-channels, which exhibit superior methanol-tolerant property in catalyzing oxygen reduction reaction due to the different diffusion behaviour of methanol and oxygen in the porous metal shell of cage-bell structured nanoparticles. In particular, the use of remarkably inexpensive chemical agent (NaCl) to promote the formation of cage-bell structured particles containing a wide spectrum of metal shells highlights its engineering merit to produce highly selective electrocatalysts on a large scale for the cathode reaction of direct methanol fuel cells.

  4. Platinum Nanoparticles Induce Apoptosis on Raw 264.7 Macrophage Cells.

    PubMed

    Loan, Ta Thi; Do, Le Thanh; Yoo, Hoon

    2018-02-01

    The cellular effects of platinum nanoparticles (PNP05, average size of 5 nm, and PNP30, average size of 30 nm) were investigated on murine leukemia Raw 264.7 cells. Cells treated with various concentrations of PNPs showed size-dependent cytotoxicity in an MTT assay with PNP5 of smaller nanoparticles higher toxicity than PNP30. Investigations on cell morphology, Annexin V assay, DNA fragmentation and the activity of caspase-3/-7 showed that PNPs induced apoptosis on Raw 264.7 cells by changing cell morphology and density, increasing cell population in apoptosis and causing nucleus fragmentation. Further study on caspase activity by Western blotting revealed that the apoptosis was induced by the activation of caspase-3 and -7. In addition, PNPs inactivated DNA repair system, generating dose-dependent DNA ladder bands on agarose gel electrophoresis. Taken together, PNPs triggered cytotoxicity on Raw 264.7 cells by suppressing cell growth/survival and inducing apoptosis.

  5. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    NASA Astrophysics Data System (ADS)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  6. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy.

    PubMed

    Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling

    2015-03-02

    Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer.

  7. The Role of Dextran Coatings on the Cytotoxicity Properties of Ceria Nanoparticles Toward Bone Cancer Cells

    NASA Astrophysics Data System (ADS)

    Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.

    2015-04-01

    Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.

  8. Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Liu, Qisheng; Wei, Yunwei; Shahid, Malik Zeeshan; Yao, Mingming; Xu, Bo; Liu, Guangning; Jiang, Kejian; Li, Cuncheng

    2018-03-01

    Spectrum-enhanced Au@ZnO plasmonic nanoparticles (NPs) are developed for fabrication of the dye-sensitized solar cells (DSSCs), and their remarkable enhanced performances are achieved due to Surface Plasmon Resonance (SPR) effects. When being doped different blended amounts of the Au@ZnO NPs within the photoanode layers, various enhanced effects in the SPR-based DSSCs are exhibited. Compared with the power conversion efficiency (PCE, 7.50%) achieved for bare DSSC, device with doped Au@ZnO NPs of 1.93% delivers the top PCE of 8.91%, exhibiting about 20% enhancement. To elaborate the charge transfer process in the Au@ZnO NPs blended DSSCs, the photoluminescence (PL), electrochemical impedance spectra (EIS), etc are performed. We find that both the enhanced SPR absorption properties and the suppressed recombination process of charges contribute much to the improved performance of Au@ZnO-incorporated DSSCs.

  9. MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection.

    PubMed

    Cai, Li; Chen, Ze-Zhong; Chen, Min-Yan; Tang, Hong-Wu; Pang, Dai-Wen

    2013-01-01

    In this work, we have prepared three types of aptamer-conjugated Rubpy-doped silica nanoparticles for Human breast carcinoma MCF-7 cells labeling. Probe A is prepared through covalent conjugation between amine-labeled MUC-1 aptamer and carboxyl-modified Rubpy-doped NPs (NPs-aptamer). Probe B is prepared based on the interaction between biotin-labeled MUC-1 aptamer and avidin-conjugated Rubpy-doped NPs (NPs-avidin-biotin-aptamer). For Probe C, there is a PEG with flexible long chain as the bridge between avidin and the NPs (NPs-PEG-avidin-biotin-aptamer). In addition, we further investigate the practical number of MUC-1 aptamers on an NP of each probe using hoechst33258 dye. The binding efficiency of MUC-1 aptamer on the three types of probes as follows: Probe A < Probe B < Probe C. In addition, microscopic fluorescence imaging shows that Probe C containing the PEG molecules can be effectively applied for the recognition of MUC-1 protein in human breast carcinoma MCF-7 cells thus demonstrates that the PEG with flexible long chain as the bridge between the aptamer and NP can greatly enhances the freedom of MUC-1 aptamer. Compared with common organic dyes, the dye-doped silica nanoparticles serve as a stable bioprobe because of their facile conjugation with the desirable biomolecules, and have exhibited great potential in bioanalysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Carbon nanoparticles as possible radioprotectors in biological systems

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Lichota, Anna; Nowak, Katarzyna E.; Grebowski, Jacek

    2016-11-01

    Ionizing radiation causes radiolysis of water and the production of reactive oxygen species (ROS), which interact with biochemically important molecules in cells leading to cell death. In order to reduce the dangerous radiation effects on cells, tissues and organs, the search for radioprotectors is essential. ROS result in damage to biomolecules, e.g. proteins, lipids and DNA, and as a consequence, cause the loss of cell function. The chemical and biological properties of fullerenes and other carbon nanoparticles enable the possibility of generating either oxidative stress or its attenuation by both scavenging free radicals and modification/upregulation of endogenous antioxidative systems in cells. This study discusses the possible applications of carbon nanoparticles as radioprotective agents and/or free radical scavengers. Special attention is paid to water-soluble fullerenes as they are promising radioprotectors and exhibit low toxicity and cytotoxicity.

  11. Live Cell Imaging of the Endocytosis and the Intracellular Trafficking of Multifunctional Lipid Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tieqiao; Danthi, S. N.; Xie, Jianwu

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug deliverymore » system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.« less

  12. Live cell imaging of the endocytosis and the intracellular trafficking of multifunctional lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Tieqiao; Danthi, S. Narasimhan; Xie, Jianwu; Hu, Dehong; Lu, Peter; Li, King

    2006-02-01

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug delivery system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.

  13. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    NASA Astrophysics Data System (ADS)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  14. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells

    PubMed Central

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S.; Guo, Bing; Barakat, Abdul I.; Kennedy, Ian M.

    2010-01-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001–50 μg/ml) of CeO2 nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y2O3 and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition. PMID:19558244

  15. Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles.

    PubMed

    Mitchell, K K Pohaku; Sandoval, S; Cortes-Mateos, M J; Alfaro, J G; Kummel, A C; Trogler, W C

    2014-12-07

    Iron(III)-doped silica nanoshells are shown to possess an in vitro cell-receptor mediated targeting functionality for endocytosis. Compared to plain silica nanoparticles, iron enriched ones are shown to be target-specific, a property that makes them potentially better vehicles for applications, such as drug delivery and tumor imaging, by making them more selective and thereby reducing the nanoparticle dose. Iron(III) in the nanoshells can interact with endogenous transferrin, a serum protein found in mammalian cell culture media, which subsequently promotes transport of the nanoshells into cells by the transferrin receptor-mediated endocytosis pathway. The enhanced uptake of the iron(III)-doped nanoshells relative to undoped silica nanoshells by a transferrin receptor-mediated pathway was established using fluorescence and confocal microscopy in an epithelial breast cancer cell line. This process was also confirmed using fluorescence activated cell sorting (FACS) measurements that show competitive blocking of nanoparticle uptake by added holo-transferrin.

  16. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    NASA Astrophysics Data System (ADS)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan; Nalbant, Perihan; Buer, Jan; Knuschke, Torben; Westendorf, Astrid M.; Epple, Matthias

    2012-06-01

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  17. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeyaraj, M.; Arun, R.; Sathishkumar, G.

    2014-04-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometricmore » proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy.« less

  18. Labeling mesenchymal cells with DMSA-coated gold and iron oxide nanoparticles: assessment of biocompatibility and potential applications.

    PubMed

    Silva, Luisa H A; da Silva, Jaqueline R; Ferreira, Guilherme A; Silva, Renata C; Lima, Emilia C D; Azevedo, Ricardo B; Oliveira, Daniela M

    2016-07-18

    Nanoparticles' unique features have been highly explored in cellular therapies. However, nanoparticles can be cytotoxic. The cytotoxicity can be overcome by coating the nanoparticles with an appropriated surface modification. Nanoparticle coating influences biocompatibility between nanoparticles and cells and may affect some cell properties. Here, we evaluated the biocompatibility of gold and maghemite nanoparticles functionalized with 2,3-dimercaptosuccinic acid (DMSA), Au-DMSA and γ-Fe2O3-DMSA respectively, with human mesenchymal stem cells. Also, we tested these nanoparticles as tracers for mesenchymal stem cells in vivo tracking by computed tomography and as agents for mesenchymal stem cells magnetic targeting. Significant cell death was not observed in MTT, Trypan Blue and light microscopy analyses. However, ultra-structural alterations as swollen and degenerated mitochondria, high amounts of myelin figures and structures similar to apoptotic bodies were detected in some mesenchymal stem cells. Au-DMSA and γ-Fe2O3-DMSA labeling did not affect mesenchymal stem cells adipogenesis and osteogenesis differentiation, proliferation rates or lymphocyte suppression capability. The uptake measurements indicated that both inorganic nanoparticles were well uptaken by mesenchymal stem cells. However, Au-DMSA could not be detected in microtomograph after being incorporated by mesenchymal stem cells. γ-Fe2O3-DMSA labeled cells were magnetically responsive in vitro and after infused in vivo in an experimental model of lung silicosis. In terms of biocompatibility, the use of γ-Fe2O3-DMSA and Au-DMSA as tracers for mesenchymal stem cells was assured. However, Au-DMSA shown to be not suitable for visualization and tracking of these cells in vivo by standard computed microtomography. Otherwise, γ-Fe2O3-DMSA shows to be a promising agent for mesenchymal stem cells magnetic targeting.

  19. The Light-Induced Field-Effect Solar Cell Concept - Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency.

    PubMed

    Wang, Yusheng; Xia, Zhouhui; Liu, Lijia; Xu, Weidong; Yuan, Zhongcheng; Zhang, Yupeng; Sirringhaus, Henning; Lifshitz, Yeshayahu; Lee, Shui-Tong; Bao, Qiaoliang; Sun, Baoquan

    2017-05-01

    Solar cell generates electrical energy from light one via pulling excited carrier away under built-in asymmetry. Doped semiconductor with antireflection layer is general strategy to achieve this including crystalline silicon (c-Si) solar cell. However, loss of extra energy beyond band gap and light reflection in particular wavelength range is known to hinder the efficiency of c-Si cell. Here, it is found that part of short wavelength sunlight can be converted into polarization electrical field, which strengthens asymmetry in organic-c-Si heterojunction solar cell through molecule alignment process. The light harvested by organometal trihalide perovskite nanoparticles (NPs) induces molecular alignment on a conducting polymer, which generates positive electrical surface field. Furthermore, a "field-effect solar cell" is successfully developed and implemented by combining perovskite NPs with organic/c-Si heterojunction associating with light-induced molecule alignment, which achieves an efficiency of 14.3%. In comparison, the device with the analogous structure without perovskite NPs only exhibits an efficiency of 12.7%. This finding provides a novel concept to design solar cell by sacrificing part of sunlight to provide "extra" asymmetrical field continuously as to drive photogenerated carrier toward respective contacts under direct sunlight. Moreover, it also points out a method to combine promising perovskite material with c-Si solar cell. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transport of NaYF4:Er3+, Yb3+ up-converting nanoparticles into HeLa cells

    NASA Astrophysics Data System (ADS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Szewczyk, Sebastian; Paterczyk, Bohdan; Wojciechowski, Tomasz; Sobczak, Kamil; Minikayev, Roman; Paszkowicz, Wojciech; Stępień, Piotr; Elbaum, Danek

    2013-06-01

    An effective, simple and practically useful method to incorporate fluorescent nanoparticles inside live biological cells was developed. The internalization time and concentration dependence of a frequently used liposomal transfection factor (Lipofectamine 2000) was studied. A user friendly, one-step technique to obtain water and organic solvent soluble Er3+ and Yb3+ doped NaYF4 nanoparticles coated with polyvinylpyrrolidone was obtained. Structural analysis of the nanoparticles confirmed the formation of nanocrystals of the desired sizes and spectral properties. The internalization of NaYF4 nanoparticles in HeLa cervical cancer cells was determined at different nanoparticle concentrations and for incubation periods from 3 to 24 h. The images revealed a redistribution of nanoparticles inside the cell, which increases with incubation time and concentration levels, and depends on the presence of the transfection factor. The study identifies, for the first time, factors responsible for an effective endocytosis of the up-converting nanoparticles to HeLa cells. Thus, the method could be applied to investigate a wide range of future ‘smart’ theranostic agents. Nanoparticles incorporated into the liposomes appear to be very promising fluorescent probes for imaging real-time cellular dynamics.

  1. Evaluation of a PSMA-targeted BNF nanoparticle construct

    NASA Astrophysics Data System (ADS)

    Behnam Azad, Babak; Banerjee, Sangeeta R.; Pullambhatla, Mrudula; Lacerda, Silvia; Foss, Catherine A.; Wang, Yuchuan; Ivkov, Robert; Pomper, Martin G.

    2015-02-01

    Early detection enables improved prognosis for prostate cancer (PCa). A promising target for imaging and therapy of PCa is the prostate-specific membrane antigen (PSMA), which exhibits both expression within the epithelium of PCa cells, and becomes internalized upon ligand binding. Here we report the synthesis of a PSMA-targeted bionized nanoferrite (BNF) nanoparticle and its biological evaluation in an experimental model of PCa. The BNF nanoparticle formulation exhibits properties conducive to targeted imaging such as stealth, prolonged circulation time and enhanced clearance from non-target sites. Optical imaging of the targeted BNF in vivo indicates preferential accumulation in PSMA+ tumors 4 h post-injection, suggesting target specificity. On the other hand, non-targeted nanoparticles exhibit lower uptake with similar accumulation in both PSMA+ and PSMA- tumors indicating tumor access without preferential accumulation. Imaging with single photon emission computed tomography (SPECT) and biodistribution studies of a modified construct indicate highest tumor accumulation at 48 h post-injection [4.3 +/- 0.4 percentage injected dose per gram of tissue (%ID g-1)], with tumor/blood and tumor/muscle ratios of 7.5 +/- 2.4 and 11.6 +/- 1.2 %ID g-1, respectively. Ex vivo fluorescence microscopy, Prussian blue staining, immunohistochemistry and biodistribution studies confirm enhanced nanoparticle uptake in PSMA+ tumors compared to those not expressing PSMA. The BNF nano-formulation described is promising for PSMA-targeted imaging applications in vivo.Early detection enables improved prognosis for prostate cancer (PCa). A promising target for imaging and therapy of PCa is the prostate-specific membrane antigen (PSMA), which exhibits both expression within the epithelium of PCa cells, and becomes internalized upon ligand binding. Here we report the synthesis of a PSMA-targeted bionized nanoferrite (BNF) nanoparticle and its biological evaluation in an experimental model of

  2. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    PubMed Central

    2011-01-01

    Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS) usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial) and HK-2 (epithelial proximal) cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential. PMID:21371295

  3. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells.

    PubMed

    Suwannoi, Panita; Chomnawang, Mullika; Sarisuta, Narong; Reichl, Stephan; Müller-Goymann, Christel C

    2017-12-01

    The aim of the present study was to develop acyclovir (ACV) ocular drug delivery systems of bovine serum albumin (BSA) nanoparticles as well as to assess their in vitro transcorneal permeation across human corneal epithelial (HCE-T) cell multilayers. The ACV-loaded BSA nanoparticles were prepared by desolvation method along with physicochemical characterization, cytotoxicity, as well as in vitro transcorneal permeation studies across HCE-T cell multilayers. The nanoparticles appeared to be spherical in shape and nearly uniform in size of about 200 nm. The size of nanoparticles became smaller with decreasing BSA concentration, while the ratios of water to ethanol seemed not to affect the size. Increasing the amount of ethanol in desolvation process led to significant reduction of drug entrapment of nanoparticles with smaller size and more uniformity. The ACV-loaded BSA nanoparticles prepared were shown to have no cytotoxic effect on HCE-T cells used in permeation studies. The in vitro transcorneal permeation results revealed that ACV could permeate through the HCE-T cell multilayers significantly higher from BSA nanoparticles than from aqueous ACV solutions. The ACV-loaded BSA nanoparticles could be prepared by desolvation method without glutaraldehyde in the formulation. ACV could increasingly permeate through the multilayers of HCE-T cells from the ACV-loaded BSA nanoparticles. Therefore, the ACV-loaded BSA nanoparticles could be a highly potential ocular drug delivery system.

  4. Fabrication of Sb₂S₃ Hybrid Solar Cells Based on Embedded Photoelectrodes of Ag Nanowires-Au Nanoparticles Composite.

    PubMed

    Kim, Kang-Pil; Hwang, Dae-Kue; Woo, Sung-Ho; Kim, Dae-Hwan

    2018-09-01

    The Ag nanowire (NW) + Au nanoparticle (NP)-embedded TiO2 photoelectrodes were adopted for conventional planar TiO2-based Sb2S3 hybrid solar cells to improve the cell efficiency. Compared to conventional planar TiO2-based Sb2S3 hybrid solar cells, the Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells exhibited an improvement of approximately 40% in the cell efficiency due to the significant increase in both Jsc and Voc. These enhanced Jsc and Voc were attributed to the increased surface area, charge-collection efficiency, and light absorption by embedding the Ag NWs + Au NPs composite. The Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells showed the highest efficiency of 2.17%, demonstrating that the Ag NW + Au NP-embedded TiO2 photoelectrode was a suitable photoelectrode structure to improve the power conversion efficiency in the Sb2S3 hybrid solar cells.

  5. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.

    PubMed

    Treuel, Lennart; Brandholt, Stefan; Maffre, Pauline; Wiegele, Sarah; Shang, Li; Nienhaus, G Ulrich

    2014-01-28

    Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses.

  6. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Subia, B.; Kundu, S. C.

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.

  7. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation.

    PubMed

    Lachaine, Rémi; Boutopoulos, Christos; Lajoie, Pierre-Yves; Boulais, Étienne; Meunier, Michel

    2016-05-11

    Metallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic. However, identifying and tailoring nanoparticles morphology to specific applications remains challenging and limits the development of efficient nanoplasmonic technologies. In this work, we report a strategy for the rational design of gold plasmonic nanoshells (AuNS) for the efficient ultrafast laser-based nanoscale bubble generation and cell membrane perforation, which constitute one of the most crucial challenges toward the development of effective gene therapy treatments. We design an in silico rational design framework that we use to tune AuNS morphology to simultaneously optimize for the reduction of the cavitation threshold while preserving the particle structural integrity. Our optimization procedure yields optimal AuNS that are slightly detuned compared to their plasmonic resonance conditions with an optical breakdown threshold 30% lower than randomly selected AuNS and 13% lower compared to similarly optimized gold nanoparticles (AuNP). This design strategy is validated using time-resolved bubble spectroscopy, shadowgraphy imaging and electron microscopy that confirm the particle structural integrity and a reduction of 51% of the cavitation threshold relative to optimal AuNP. Rationally designed AuNS are finally used to perforate cancer cells with an efficiency of 61%, using 33% less energy compared to AuNP, which demonstrate that our rational design framework is readily transferable to a cell environment

  8. Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici.

    PubMed

    Sathiyabama, M; Charles, R Einstein

    2015-11-20

    Cell wall polymer (chitosan) was isolated from Fusarium oxysporum f.sp. lycopersici. They were cross linked with sodium tripolyphosphate (TPP) to synthesize nanoparticles (CWP-NP). The nanoparticles were characterized by FTIR, DLS, SEM, XRD and NMR analyses. The isolated CWP-NP exhibit antifungal activity under in vitro condition. The foliar application of the CWP-NP to tomato plants challenged with F. oxysporum f. sp. lycopersici showed delay in wilt disease symptom expression and reduce the wilt disease severity. Treated plants also showed enhanced yield. These results suggested the role of the CWP-NP in protecting tomato plants from F. oxysporum f.sp. lycopersici infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    PubMed Central

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  10. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.

    PubMed

    Townley, Helen E; Rapa, Elizabeth; Wakefield, Gareth; Dobson, Peter J

    2012-05-01

    We report significant and controlled cell death using novel x-ray-activatable titania nanoparticles (NPs) doped with lanthanides. Preferential incorporation of such materials into tumor tissue can enhance the effect of radiation therapy. Herein, the incorporation of gadolinium into the NPs is designed to optimize localized energy absorption from a conventional medical x-ray. This result is further optimized by the addition of other rare earth elements. Upon irradiation, energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species (ROS). The authors report significant and controlled cell death using x-ray-activated titania nanoparticles doped with lanthanides as enhancers. Upon irradiation X-ray energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Evaluation of the impact of chitosan/DNA nanoparticles on the differentiation of human naive CD4+ T cells

    NASA Astrophysics Data System (ADS)

    Liu, Lanxia; Bai, Yuanyuan; Zhu, Dunwan; Song, Liping; Wang, Hai; Dong, Xia; Zhang, Hailing; Leng, Xigang

    2011-06-01

    Chitosan (CS) is one of the most widely studied polymers in non-viral gene delivery since it is a cationic polysaccharide that forms nanoparticles with DNA and hence protects the DNA against digestion by DNase. However, the impact of CS/DNA nanoparticle on the immune system still remains poorly understood. Previous investigations did not found CS/DNA nanoparticles had any significant impact on the function of human and murine macrophages. To date, little is known about the interaction between CS/DNA nanoparticles and naive CD4+ T cells. This study was designed to investigate whether CS/DNA nanoparticles affect the initial differentiation direction of human naive CD4+ T cells. The indirect impact of CS/DNA nanoparticles on naive CD4+ T cell differentiation was investigated by incubating the nanoparticles with human macrophage THP-1 cells in one chamber of a transwell co-incubation system, with the enriched human naive CD4+ T cells being placed in the other chamber of the transwell. The nanoparticles were also co-incubated with the naive CD4+ T cells to explore their direct impact on naive CD4+ T cell differentiation by measuring the release of IL-4 and IFN-γ from the cells. It was demonstrated that CS/DNA nanoparticles induced slightly elevated production of IL-12 by THP-1 cells, possibly owing to the presence of CpG motifs in the plasmid. However, this macrophage stimulating activity was much less significant as compared with lipopolysaccharide and did not impact on the differentiation of the naive CD4+ T cells. It was also demonstrated that, when directly exposed to the naive CD4+ T cells, the nanoparticles induced neither the activation of the naive CD4+ T cells in the absence of recombinant cytokines (recombinant human IL-4 or IFN-γ) that induce naive CD4+ T cell polarization, nor any changes in the differentiation direction of naive CD4+ T cells in the presence of the corresponding cytokines.

  12. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Fede, C.; Albertin, Giovanna; Petrelli, L.; De Caro, R.; Fortunati, I.; Weber, V.; Ferrante, Camilla

    2017-09-01

    Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.

  13. Toxicological characterization of ZnO nanoparticles in malignant and non-malignant cells.

    PubMed

    Moratin, Helena; Scherzad, Agmal; Gehrke, Thomas; Ickrath, Pascal; Radeloff, Katrin; Kleinsasser, Norbert; Hackenberg, Stephan

    2018-04-01

    The increasing usage of zinc oxide nanoparticles (ZnO-NPs) in industrial applications as well as in consumer products raises concern regarding their potential adverse effects to a greater extend. Numerous studies have demonstrated toxic properties of NPs, however there is still a lack of knowledge concerning the underlying mechanisms. This study was designed to systematically investigate cytotoxicity, apoptosis, cell cycle alterations, and genotoxicity induced by ZnO-NP. Moreover, it was an aim of the investigations to specify the diverse effects of nanoparticle exposure in malignant in comparison with non-malignant cells. Therefore, human head and neck squamous cell carcinoma-derived FaDu cells were incubated with 4-20 µg/ml of ZnO-NPs for 1-48 hr and tested for cell viability, cell cycle alterations, apoptosis and caspase-3 gene expression as a sensitive marker of molecular apoptotic processes with regard to time- and dose-dependent effects. Human mesenchymal bone marrow stem cells were used as non-malignant representatives to examine oxidative stress-related genotoxicity. Results showed a significant reduction in cell viability as well as dose- and time-dependent increase of apoptotic cells following nanoparticle treatment. Likewise, caspase-3 gene expression enhanced already before first apoptotic cells were detectable. It could be observed that doses that were cytotoxic in tumor cells did not reduce viability in stem cells. However, the same concentrations already induced significant DNA damage. The findings of the study suggest to keep a more critical eye on the use of nanoparticles as anti-cancer agents. Yet, additional in vivo studies are needed to assess safety concerns for consumers and patients. Environ. Mol. Mutagen. 59:247-259, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter

    2017-11-01

    Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.

  15. Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells.

    PubMed

    Hu, J; Obayemi, J D; Malatesta, K; Košmrlj, A; Soboyejo, W O

    2018-07-01

    Targeted therapy is an emerging technique in cancer detection and treatment. This paper presents the results of a combined experimental and theoretical study of the specific targeting and entry of luteinizing hormone releasing hormone (LHRH)-conjugated PEG-coated magnetite nanoparticles into triple negative breast cancer (TNBC) cells and normal breast cells. The conjugated nanoparticles structures, cellular uptake of PEG-coated magnetite nanoparticles (MNPs) and LHRH-conjugated PEG-coated magnetite nanoparticles (LHRH-MNPs) into breast cancer cells and normal breast cells were investigated using a combination of transmission electron microscope, optical and confocal fluorescence microscopy techniques. The results show that the presence of LHRH enhances the uptake of LHRH-MNPs into TNBC cells. Nanoparticle entry into breast cancer cells is also studied using a combination of thermodynamics and kinetics models. The trends in the predicted nanoparticle entry times (into TNBC cells) and the size ranges of the engulfed nanoparticles (within the TNBC cells) are shown to be consistent with experimental observations. The implications of the results are then discussed for the specific targeting of TNBCs with LHRH-conjugated PEG-coated magnetite nanoparticles for the early detection and treatment of TNBC. Copyright © 2018. Published by Elsevier B.V.

  16. Seeing the electroporative uptake of cell-membrane impermeable fluorescent molecules and nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Kisoo; Kim, Jeong Ah; Lee, Soon-Geul; Lee, Won Gu

    2012-07-01

    This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities that occurred at cell membranes in both uptake directions toward the electrodes have been sequentially recorded and quantitatively analyzed pixel by pixel. In our experiments, we found that fluorescent molecules, even not labeled to target biomolecules, had their own uptake direction with different intensities. It is also observed that the uptake intensity toward the cell membrane had a maximal value at a certain electric voltage, not at the highest value of voltages applied. The results also imply that the uptake direction of fluorescence-doped nanoparticles can be determined by a net surface charge of uptake materials and sizes in the electroporative environments. In summary, we performed a quantitative screening and direct visualization of uptake directionality for a set of fluorescent molecules and fluorescence-doped nanoparticles using electric-pulsation. Taking a closer look at the uptake direction of exogenous materials will help researchers to understand an unknown uptake phenomenon in which way foreign materials are inclined to move, and furthermore to design functional nanoparticles for electroporative gene delivery.This paper presents direct visualization of uptake directionality for cell-membrane impermeant fluorescent molecules and fluorescence-doped nanoparticles at a single-cell level during electroporation. To observe directly the uptake direction, we used microchannel-type electroporation that can generate a relatively symmetric and uniform electric field. For all the image frames during electroporation, fluorescence intensities

  17. Peripherally Administered Nanoparticles Target Monocytic Myeloid Cells, Secondary Lymphoid Organs and Tumors in Mice

    PubMed Central

    Kourtis, Iraklis C.; Hirosue, Sachiko; de Titta, Alexandre; Kontos, Stephan; Stegmann, Toon; Hubbell, Jeffrey A.; Swartz, Melody A.

    2013-01-01

    Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma. PMID:23626707

  18. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice.

    PubMed

    Kourtis, Iraklis C; Hirosue, Sachiko; de Titta, Alexandre; Kontos, Stephan; Stegmann, Toon; Hubbell, Jeffrey A; Swartz, Melody A

    2013-01-01

    Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma.

  19. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells.

    PubMed

    Kempen, Paul J; Greasley, Sarah; Parker, Kelly A; Campbell, Jos L; Chang, Huan-Yu; Jones, Julian R; Sinclair, Robert; Gambhir, Sanjiv S; Jokerst, Jesse V

    2015-01-01

    Increasing cell survival in stem cell therapy is an important challenge for the field of regenerative medicine. Here, we report theranostic mesoporous silica nanoparticles that can increase cell survival through both diagnostic and therapeutic approaches. First, the nanoparticle offers ultrasound and MRI signal to guide implantation into the peri-infarct zone and away from the most necrotic tissue. Second, the nanoparticle serves as a slow release reservoir of insulin-like growth factor (IGF)-a protein shown to increase cell survival. Mesenchymal stem cells labeled with these nanoparticles had detection limits near 9000 cells with no cytotoxicity at the 250 µg/mL concentration required for labeling. We also studied the degradation of the nanoparticles and showed that they clear from cells in approximately 3 weeks. The presence of IGF increased cell survival up to 40% (p<0.05) versus unlabeled cells under in vitro serum-free culture conditions.

  20. Chitosan nanoparticles from marine squid protect liver cells against N-diethylnitrosoamine-induced hepatocellular carcinoma.

    PubMed

    Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-09-01

    Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Acid-Responsive Therapeutic Polymer for Prolonging Nanoparticle Circulation Lifetime and Destroying Drug-Resistant Tumors.

    PubMed

    Piao, Ji-Gang; Gao, Feng; Yang, Lihua

    2016-01-13

    How to destroy drug-resistant tumor cells remains an ongoing challenge for cancer treatment. We herein report on a therapeutic nanoparticle, aHLP-PDA, which has an acid-activated hemolytic polymer (aHLP) grafted onto photothermal polydopamine (PDA) nanosphere via boronate ester bond, in efforts to ablate drug-resistant tumors. Upon exposure to oxidative stress and/or near-infrared laser irradiation, aHLP-PDA nanoparticle responsively releases aHLP, likely via responsive cleavage of boronate ester bond, and thus responsively exhibits acid-facilitated mammalian-membrane-disruptive activity. In vitro cell studies with drug-resistant and/or thermo-tolerant cancer cells show that the aHLP-PDA nanoparticle demonstrates preferential cytotoxicity at acidic pH over physiological pH. When administered intravenously, the aHLP-PDA nanoparticle exhibits significantly prolonged blood circulation lifetime and enhanced tumor uptake compared to bare PDA nanosphere, likely owing to aHLP's stealth effects conferred by its zwitterionic nature at blood pH. As a result, the aHLP-PDA nanoparticle effectively ablates drug-resistant tumors, leading to 100% mouse survival even on the 32nd day after suspension of photothermal treatment, as demonstrated with the mouse model. This work suggests that a combination of nanotechnology with lessons learned in bacterial antibiotic resistance may offer a feasible and effective strategy for treating drug-resistant cancers often found in relapsing patients.

  2. Metal oxide nanoparticles with low toxicity.

    PubMed

    Ng, Alan Man Ching; Guo, Mu Yao; Leung, Yu Hang; Chan, Charis M N; Wong, Stella W Y; Yung, Mana M N; Ma, Angel P Y; Djurišić, Aleksandra B; Leung, Frederick C C; Leung, Kenneth M Y; Chan, Wai Kin; Lee, Hung Kay

    2015-10-01

    A number of different nanomaterials produced and incorporated into various products are rising. However, their environmental hazards are frequently unknown. Here we consider three different metal oxide compounds (SnO2, In2O3, and Al2O3), which have not been extensively studied and are expected to have low toxicity. This study aimed to comprehensively characterize the physicochemical properties of these nanomaterials and investigate their toxicity on bacteria (Escherichia coli) under UV illumination and in the dark, as well as on a marine diatom (Skeletonema costatum) under ambient illumination/dark (16-8h) cycles. The material properties responsible for their low toxicity have been identified based on comprehensive experimental characterizations and comparison to a metal oxide exhibiting significant toxicity under illumination (anatase TiO2). The metal oxide materials investigated exhibited significant difference in surface properties and interaction with the living organisms. In order for a material to exhibit significant toxicity, it needs to be able to both form a stable suspension in the culture medium and to interact with the cell walls of the test organism. Our results indicated that the observed low toxicities of the three nanomaterials could be attributed to the limited interaction between the nanoparticles and cell walls of the test organisms. This could occur either due to the lack of significant attachment between nanoparticles and cell walls, or due to their tendency to aggregate in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Human Mesenchymal Stem Cell Spheroids in Fibrin Hydrogels Exhibit Improved Cell Survival and Potential for Bone Healing

    PubMed Central

    Murphy, Kaitlin C.; Fang, Sophia Y.; Leach, J. Kent

    2014-01-01

    Mesenchymal stem cells (MSC) have great therapeutic potential for the repair of nonhealing bone defects due to their proliferative capacity, multilineage potential, trophic factor secretion, and lack of immunogenicity. However, a major barrier to the translation of cell-based therapies into clinical practice is ensuring their survival and function upon implantation into the defect site. We hypothesized that forming MSC into more physiologic 3-dimensional spheroids, rather than employing dissociated cells from 2-dimensional monolayer culture, would enhance their survival when exposed to a harsh microenvironment while maintaining their osteogenic potential. MSC spheroids were formed using the hanging drop method with increasing cell numbers. Compared to larger spheroids, the smallest spheroids which contained 15,000 cells exhibited increased metabolic activity, reduced apoptosis, and the most uniform distribution of proliferating cells. Spheroids were then entrapped in fibrin gels and cultured in serum-free media and 1% oxygen. Compared to identical numbers of dissociated MSC in fibrin gels, spheroids exhibited significantly reduced apoptosis and secreted up to 100-fold more VEGF. We also observed that fibrin gels containing spheroids and those containing an equivalent number of dissociated cells exhibited similar expression levels of early and late markers of osteogenic differentiation. These data demonstrate that MSC spheroids exhibit greater resistance to apoptosis and enhanced proangiogenic potential, while maintaining similar osteogenic potential to dissociated MSC entrapped in a clinically relevant biomaterial, supporting the use of MSC spheroids in cell-based approaches to bone repair. PMID:24781147

  4. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells.

    PubMed

    Faklaris, Orestis; Joshi, Vandana; Irinopoulou, Theano; Tauc, Patrick; Sennour, Mohamed; Girard, Hugues; Gesset, Céline; Arnault, Jean-Charles; Thorel, Alain; Boudou, Jean-Paul; Curmi, Patrick A; Treussart, François

    2009-12-22

    Diamond nanoparticles (nanodiamonds) have been recently proposed as new labels for cellular imaging. For small nanodiamonds (size <40 nm), resonant laser scattering and Raman scattering cross sections are too small to allow single nanoparticle observation. Nanodiamonds can, however, be rendered photoluminescent with a perfect photostability at room temperature. Such a remarkable property allows easier single-particle tracking over long time scales. In this work, we use photoluminescent nanodiamonds of size <50 nm for intracellular labeling and investigate the mechanism of their uptake by living cells. By blocking selectively different uptake processes, we show that nanodiamonds enter cells mainly by endocytosis, and converging data indicate that it is clathrin-mediated. We also examine nanodiamond intracellular localization in endocytic vesicles using immunofluorescence and transmission electron microscopy. We find a high degree of colocalization between vesicles and the biggest nanoparticles or aggregates, while the smallest particles appear free in the cytosol. Our results pave the way for the use of photoluminescent nanodiamonds in targeted intracellular labeling or biomolecule delivery.

  5. Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency.

    PubMed

    Hajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed

    2018-05-23

    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce 4+ state ions to the Ce 3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce 3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce 4+ to Ce 3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.

  6. Hyaluronan and calcium carbonate hybrid nanoparticles for colorectal cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Bai, Jinghui; Xu, Jian; Zhao, Jian; Zhang, Rui

    2017-09-01

    A hybrid drug delivery system (DDS) composed of hyaluronan and calcium carbonate (CC) was developed. By taking advantage of the tumor-targeting ability of hyaluronan and the drug-loading property of CC, the well-formed hyaluronan-CC nanoparticles were able to serve as a DDS targeting colorectal cancer with a decent drug loading content, which is beneficial in the chemotherapy of colorectal cancer. In this study, hyaluronan-CC nanoparticles smaller than 100 nm were successfully developed to load the wide-range anti-cancer drug adriamycin (Adr) to construct hyaluronan-CC/Adr nanoparticles. On the other hand, we also found that hyaluronan-CC/Adr nanoparticles can possibly increase the uptake ratio of Adr into HT29 colorectal cancer cells when compared with hyaluronan-free nanoparticles (CC/Adr) via the CD44 receptor-mediated endocytosis via competitive uptake and in vivo imaging assays. Note that both in vitro (CCK-8 assay on HT29 cells) and in vivo (anti-cancer assay on HT-29 tumor-bearing nude mice model) experiments revealed that hyaluronan-CC/Adr nanoparticles exhibited stronger anti-cancer activity than free Adr or CC/Adr nanoparticles with minimized toxic side effects and preferable cancer-suppression potential.

  7. Receptor-Targeted Nanoparticles for In Vivo Imaging of Breast Cancer

    PubMed Central

    Yang, Lily; Peng, Xiang-Hong; Wang, Y. Andrew; Wang, Xiaoxia; Cao, Zehong; Ni, Chunchun; Karna, Prasanthi; Zhang, Xinjian; Wood, William C.; Gao, Xiaohu; Nie, Shuming; Mao, Hui

    2009-01-01

    Purpose Cell surface receptor-targeted magnetic iron oxide (IO) nanoparticles provide molecular magnetic resonance imaging (MRI) contrast agents for improving specificity of the detection of human cancer. Experimental design The present study reports the development of a novel targeted IO nanoparticle using a recombinant peptide containing the amino-terminal fragment (ATF) of urokinase plasminogen activator conjugated to IO nanoparticles (ATF-IO). This nanoparticle targets urokinase plasminogen activator receptor (uPAR), which is overexpressed in breast cancer tissues. Results ATF-IO nanoparticles are able to specifically bind to and be internalized by uPAR-expressing tumor cells. Systemic delivery of ATF-IO nanoparticles into mice bearing subcutaneous and intraperitoneal mammary tumors leads to the accumulation of the particles in tumors, generating a strong MRI contrast detectable by a clinical MRI scanner at a field strength of 3 Tesla. Target specificity of ATF-IO nanoparticles demonstrated by in vivo MRI is further confirmed by near infrared (NIR) fluorescence imaging of the mammary tumors using NIR dye-labeled ATF peptides conjugated to IO nanoparticles. Furthermore, mice administered ATF-IO nanoparticles exhibit lower uptake of the particles in the liver and spleen compared to those receiving non-targeted IO nanoparticles. Conclusions Our results suggest that uPAR-targeted ATF-IO nanoparticles have potential as molecularly-targeted, dual modality imaging agents for in vivo imaging of breast cancer. PMID:19584158

  8. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.

    PubMed

    Leung, Yu Hang; Yung, Mana M N; Ng, Alan M C; Ma, Angel P Y; Wong, Stella W Y; Chan, Charis M N; Ng, Yip Hang; Djurišić, Aleksandra B; Guo, Muyao; Wong, Mabel Ting; Leung, Frederick C C; Chan, Wai Kin; Leung, Kenneth M Y; Lee, Hung Kay

    2015-04-01

    Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Vapor bubble generation around gold nano-particles and its application to damaging of cells

    PubMed Central

    Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.

    2011-01-01

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875

  10. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ponraj, Thondhi; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-03-01

    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as

  11. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles.

    PubMed

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe2O4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe2O4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe2O4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV-visible spectroscopy (UV-vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe2O4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV-vis spectra of complete coated MgFe2O4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe2O4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe2O4 core. Both of MgFe2O4 and MgFe2O4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells

    PubMed Central

    Mura, Simona; Hillaireau, Herve; Nicolas, Julien; Le Droumaguet, Benjamin; Gueutin, Claire; Zanna, Sandrine; Tsapis, Nicolas; Fattal, Elias

    2011-01-01

    Background Because of the described hazards related to inhalation of manufactured nanoparticles, we investigated the lung toxicity of biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles displaying various surface properties on human bronchial Calu-3 cells. Methods Positively and negatively charged as well as neutral nanoparticles were tailored by coating their surface with chitosan, Poloxamer, or poly (vinyl alcohol), respectively. Nanoparticles were characterized in terms of size, zeta potential, and surface chemical composition, confirming modifications provided by hydrophilic polymers. Results Although nanoparticle internalization by lung cells was clearly demonstrated, the cytotoxicity of the nanoparticles was very limited, with an absence of inflammatory response, regardless of the surface properties of the PLGA nanoparticles. Conclusion These in vitro results highlight the safety of biodegradable PLGA nanoparticles in the bronchial epithelium and provide initial data on their potential effects and the risks associated with their use as nanomedicines. PMID:22114491

  13. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    PubMed

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  15. Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy.

    PubMed

    Zhang, Shengchang; Wu, Lin; Cao, Jin; Wang, Kaili; Ge, Yanru; Ma, Wanjun; Qi, Xueyong; Shen, Song

    2018-06-13

    Nanoparticles based multifunctional system exhibits great potential in diagnosis and therapy of rheumatoid arthritis (RA). The size of nanoparticles plays an essential role in biodistribution and cellular uptake, in turn affects the drug delivery efficiency and therapeutic effect. To investigate the optimal size for RA targeting, Fe 3 O 4 nanoparticles with well-defined particle sizes (70-350 nm) and identical surface properties were developed as model nanoparticles. The synthesized Fe 3 O 4 nanoparticles exhibited excellent biocompatibility and showed higher temperature response under irradiation of near infrared light. Size-dependent internalization was observed when incubated with inflammatory cells. Compared with large ones, small nanoparticles were more readily be phagocytized, leading to higher cytotoxicity in vitro. However, the in vivo experiment in CIA mice demonstrated a quite different result that nanoparticles with size of 220 nm exerted better accessibility to inflamed joint and resulted in higher temperature and better therapeutic effect under laser irradiation. This study not only offered a novel method for RA therapy but also a guideline for RA targeted drug carrier design. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    NASA Astrophysics Data System (ADS)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  17. Targeting B lymphoma with nanoparticles bearing glycan ligands of CD22.

    PubMed

    Chen, Weihsu C; Sigal, Darren S; Saven, Alan; Paulson, James C

    2012-02-01

    CD22 is a member of the siglec (sialic acid-binding immunoglobulin-like lectin) family expressed on B cells that recognizes glycans of glycoproteins as ligands. Because siglecs exhibit restricted expression on one or a few leukocyte cell types, they have gained attention as attractive targets for cell-directed therapies. Several antibody-based therapies targeting CD22 (Siglec-2) are currently in clinical trials for the treatment of hairy cell leukemia and other B cell lymphomas. As an alternative to antibodies we have developed liposomal nanoparticles decorated with glycan ligands of CD22 that selectively target B cells. Because CD22 is an endocytic receptor, ligand-decorated liposomes are bound by CD22 and rapidly internalized by the cell. When loaded with a toxic cargo such as doxorubicin, they are efficacious in prolonging life in a Daudi B cell lymphoma model. These B cell targeted nanoparticles have been demonstrated to bind and kill malignant B cells from patients with hairy cell leukemia, marginal zone lymphoma and chronic lymphocytic leukemia. The results demonstrate the potential of using CD22 ligand-targeted liposomal nanoparticles as an alternative approach for the treatment of B cell malignancies.

  18. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    NASA Astrophysics Data System (ADS)

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml-1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.

  19. Labeling of HeLa cells using ZrO2:Yb3+-Er3+ nanoparticles with upconversion emission

    NASA Astrophysics Data System (ADS)

    Ceja-Fdez, Andrea; López-Luke, Tzarara; Oliva, Jorge; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana Lilia; Rojas, Ruben A. Rodriguez; Martínez-Pérez, Andrea; de la Rosa, Elder

    2015-04-01

    This work reports the synthesis, structural characterization, and optical properties of ZrO2:Yb3+-Er3+ (2-1 mol%) nanocrystals. The nanoparticles were coated with 3-aminopropyl triethoxysilane (APTES) and further modified with biomolecules, such as Biotin-Anti-rabbit (mouse IgG) and rabbit antibody-AntiKi-67, through a conjugation method. The conjugation was successfully confirmed by Fourier transform infrared, zeta potential, and dynamic light scattering. The internalization of the conjugated nanoparticles in human cervical cancer (HeLa) cells was followed by two-photon confocal microscopy. The ZrO2:Yb3+-Er3+ nanocrystals exhibited strong red emission under 970-nm excitation. Moreover, the luminescence change due to the addition of APTES molecules and biomolecules on the nanocrystals was also studied. These results demonstrate that ZrO2:Yb3+-Er3+ nanocrystals can be successfully functionalized with biomolecules to develop platforms for biolabeling and bioimaging.

  20. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  1. Multifunctional platinum-based nanoparticles for biomedical applications.

    PubMed

    Cheng, Qinqin; Liu, Yangzhong

    2017-03-01

    Platinum-based anticancer drugs play a central role in current cancer therapy. However, their applicability and efficacy are limited by drug resistance and adverse effects. Nanocarrier-based platinum drug delivery systems are promising alternatives to circumvent the disadvantages of bare platinum drugs. The various properties of nanoparticle chemistry allow for the trend toward multiple functionality. Nanoparticles preferentially accumulate at the tumor site through passive targeting, and the attachment of tumor targeting moieties further enhances their tumor-specific localization as well as tumor cell uptake. The introduction of stimuli-responsive groups into drug delivery systems can further achieve spatially and temporally controlled drug release in response to specific stimuli. Combination therapy strategies have been used to promote synergetic efficacy and overcome the resistance of platinum drugs. The tumor-localized drug delivery strategies exhibit benefits for preventing local tumor recurrence. In addition, the combination of platinum drugs and imaging agents in one unity allows the cancer diagnostics for real-time monitoring the distribution of drug-loaded nanoparticles inside the body and tumor. This review discusses recent scientific advances in multifunctional nanoparticle formulations of platinum drugs, and these designs exhibit new potential of multifunctional nanoparticles for delivering platinum-based anticancer drugs. WIREs Nanomed Nanobiotechnol 2017, 9:e1410. doi: 10.1002/wnan.1410 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  2. Synthesis of curcumin-functionalized gold nanoparticles and cytotoxicity studies in human prostate cancer cell line

    NASA Astrophysics Data System (ADS)

    Nambiar, Shruti; Osei, Ernest; Fleck, Andre; Darko, Johnson; Mutsaers, Anthony J.; Wettig, Shawn

    2018-03-01

    Gold nanoparticles synthesized using plant extracts with medicinal properties have gained traction in recent years, especially for their use in various biomedical applications. Colloidal stability of these nanoparticles in different environments is critical to retain the expected therapeutic/diagnostic efficacy and toxicological outcome. Any change in the colloidal stability leads to dramatic changes in the physico-chemical properties of the nanoparticles such as size and surface charge, which in turn may alter the biological activity of the particles. Such changes are imminent in physiologically-relevant environment wherein interactions with different biomolecules, such as serum proteins, may modify the overall properties of the nanoparticles. In this regard, we synthesized 15 nm sized gold nanoparticles using curcumin, a plant extract from turmeric root, to evaluate cytotoxicity, uptake, and localization in human prostate cancer cells using cell-culture medium supplemented with or without fetal bovine serum (FBS). The results indicate a dramatic difference in the cytotoxicity and uptake between cells treated with curcumin-functionalized gold nanoparticles (cur-AuNPs) in cell-culture medium with and without serum. The addition of FBS to the medium not only increased the stability of the nanoparticles but also enhanced the biocompatibility (i.e. minimal cytotoxicity for a wide range of cur-AuNP concentrations). We conclude that the presence of serum proteins significantly impact the therapeutic potential of cur-AuNPs.

  3. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    PubMed Central

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  4. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    PubMed

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis

    NASA Astrophysics Data System (ADS)

    Rampazzo, Enrico; Voltan, Rebecca; Petrizza, Luca; Zaccheroni, Nelsi; Prodi, Luca; Casciano, Fabio; Zauli, Giorgio; Secchiero, Paola

    2013-08-01

    Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2

  6. Pullulan-coated phospholipid and Pluronic F68 complex nanoparticles for carrying IR780 and paclitaxel to treat hepatocellular carcinoma by combining photothermal therapy/photodynamic therapy and chemotherapy

    PubMed Central

    Zhang, Tao; Wan, Guoyun; Chen, Bowei; Xiong, Qingqing; Zhang, Jie; Zhang, Wenxue; Wang, Yinsong

    2017-01-01

    IR780, a near-infrared dye, can also be used as a photosensitizer both for photothermal therapy (PTT) and photodynamic therapy (PDT). In this study, we designed a simple but effective nanoparticle system for carrying IR780 and paclitaxel, thus hoping to combine PTT/PDT and chemotherapy to treat hepatocellular carcinoma (HCC). This nanosystem, named PDF nanoparticles, consisted of phospholipid/Pluronic F68 complex nanocores and pullulan shells. IR780 and paclitaxel were loaded separately into PDF nanoparticles to form PDFI and PDFP nanoparticles, which had regular sphere shapes and relatively small sizes. Upon near-infrared laser irradiation at 808 nm, PDFI nanoparticles showed strong PTT/PDT efficacy both in vitro and in vivo. In MHCC-97H cells, the combined treatment of PDFI nanoparticles/laser irradiation and PDFP nanoparticles exhibited significant synergistic effects on inhibiting cell proliferation and inducing cell apoptosis and cell cycle arrest at G2/M phase. In MHCC-97H tumor-bearing mice, PDFI nanoparticles exhibited excellent HCC-targeting and accumulating capability after intravenous injection. Furthermore, the combined treatment of PDFI nanoparticles/laser irradiation and PDFP nanoparticles also effectively inhibited the tumor growth and the tumor angiogenesis in MHCC-97H tumor-bearing mice. In summary, we put forward a therapeutic strategy for HCC treatment by combining PTT/PDT and chemotherapy. PMID:29255359

  7. Pullulan-coated phospholipid and Pluronic F68 complex nanoparticles for carrying IR780 and paclitaxel to treat hepatocellular carcinoma by combining photothermal therapy/photodynamic therapy and chemotherapy.

    PubMed

    Wang, Dan; Zhang, Sipei; Zhang, Tao; Wan, Guoyun; Chen, Bowei; Xiong, Qingqing; Zhang, Jie; Zhang, Wenxue; Wang, Yinsong

    2017-01-01

    IR780, a near-infrared dye, can also be used as a photosensitizer both for photothermal therapy (PTT) and photodynamic therapy (PDT). In this study, we designed a simple but effective nanoparticle system for carrying IR780 and paclitaxel, thus hoping to combine PTT/PDT and chemotherapy to treat hepatocellular carcinoma (HCC). This nanosystem, named PDF nanoparticles, consisted of phospholipid/Pluronic F68 complex nanocores and pullulan shells. IR780 and paclitaxel were loaded separately into PDF nanoparticles to form PDFI and PDFP nanoparticles, which had regular sphere shapes and relatively small sizes. Upon near-infrared laser irradiation at 808 nm, PDFI nanoparticles showed strong PTT/PDT efficacy both in vitro and in vivo. In MHCC-97H cells, the combined treatment of PDFI nanoparticles/laser irradiation and PDFP nanoparticles exhibited significant synergistic effects on inhibiting cell proliferation and inducing cell apoptosis and cell cycle arrest at G2/M phase. In MHCC-97H tumor-bearing mice, PDFI nanoparticles exhibited excellent HCC-targeting and accumulating capability after intravenous injection. Furthermore, the combined treatment of PDFI nanoparticles/laser irradiation and PDFP nanoparticles also effectively inhibited the tumor growth and the tumor angiogenesis in MHCC-97H tumor-bearing mice. In summary, we put forward a therapeutic strategy for HCC treatment by combining PTT/PDT and chemotherapy.

  8. Aeromonas species exhibit aggregative adherence to HEp-2 cells.

    PubMed Central

    Neves, M S; Nunes, M P; Milhomem, A M

    1994-01-01

    Clinical and environmental isolates of Aeromonas species (five A. hydrophila isolates, three A. caviae isolates, and two A. sobria isolates) were tested for their adherence to HEp-2 cells. Clinical isolates of A. hydrophila and A. sobria exhibited aggregative adherence similar to that presented by enteroadherent-aggregative Escherichia coli. Bacterial aggregates adhered to cells with a typical "stacked-brick" appearance. In contrast, A. caviae strains showed a diffuse adherence pattern. Images PMID:8027331

  9. Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles.

    PubMed

    Oh, Yunok; Moorthy, Madhappan Santha; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Oh, Junghwan

    2017-02-01

    Magnetic iron oxide nanoparticles (MNPs) have been extensively utilized in a wide range of biomedical applications including magnetic hyperthermia agent. To improve the efficiency of the MNPs in therapeutic applications, in this study, we have synthesized CoFe 2 O 4 nanoparticles and its surface was further functionalized with meso-2,3-dimercaptosuccinic acid (DMSA). The anticancer agent, Doxorubucin (DOX) was conjugated with CoFe 2 O 4 @DMSA nanoparticle to evaluate the combined effects of thermotherapy and chemotherapy. The drug delivery efficiency of the DOX loaded CoFe 2 O 4 @DMSA nanoparticles were examined based on magnetically triggered delivery of DOX into the subcellular level of cancer cells by using MDA-MB-231 cell line. The amine part of the DOX molecules were effectively attached through an electrostatic interactions and/or hydrogen bonding interactions with the carboxylic acid groups of the DMSA functionalities present onto the surface of the CoFe 2 O 4 nanoparticles. The DOX loaded CoFe 2 O 4 @DMSA nanoparticles can effectively uptake with cancer cells via typical endocytosis process. After endocytosis, DOX release from CoFe 2 O 4 nanoparticles was triggered by intracellular endosomal/lysosomal acidic environments and the localized heat can be generated under an alternating magnetic field (AMF). In the presence of AMF, the released DOX molecules were accumulated with high concentrations into the subcellular level at a desired sites and exhibited a synergistic effect of an enhanced cell cytotoxicity by the combined effects of thermal-chemotherapy. Importantly, pH- and thermal-responsive Dox-loaded CoFe 2 O 4 nanoparticles induced significant cellular apoptosis more efficiently mediated by active mitochondrial membrane and ROS generation than the free Dox. Thus, the Dox-loaded CoFe 2 O 4 @DMSA nanoparticles can be used as a potential therapeutic agent in cancer therapy by combining the thermo-chemotherapy techniques. Copyright © 2016. Published by

  10. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  11. In Vivo Tumor Cell Targeting with “Click” Nanoparticles

    PubMed Central

    von Maltzahn, Geoffrey; Ren, Yin; Park, Ji-Ho; Min, Dal-Hee; Kotamraju, Venkata Ramana; Jayakumar, Jayanthi; Fogel, Valentina; Sailor, Michael J.; Ruoslahti, Erkki; Bhatia, Sangeeta N.

    2008-01-01

    The in vivo fate of nanomaterials strongly determines their biomedical efficacy. Accordingly, much effort has been invested into the development of library screening methods to select targeting ligands for a diversity of sites in vivo. Still, broad application of chemical and biological screens to the in vivo targeting of nanomaterials requires ligand attachment chemistries that are generalizable, efficient, covalent, orthogonal to diverse biochemical libraries, applicable under aqueous conditions, and stable in in vivo environments. To date, the copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition or “click” reaction has shown considerable promise as a method for developing targeted nanomaterials in vitro. Here, we investigate the utility of “click” chemistry for the in vivo targeting of inorganic nanoparticles to tumors. We find that “click” chemistry allows cyclic LyP-1 targeting peptides to be specifically linked to azido-nanoparticles and to direct their binding to p32-expressing tumor cells in vitro. Moreover, “click” nanoparticles are able to stably circulate for hours in vivo following intravenous administration (>5h circulation time), extravasate into tumors, and penetrate the tumor interstitium to specifically bind p32-expressing cells in tumors. In the future, in vivo use of “click” nanomaterials should expedite the progression from ligand discovery to in vivo evaluation and diversify approaches toward multifunctional nanoparticle development. PMID:18611045

  12. Cellular Uptake and Tissue Biodistribution of Functionalized Gold Nanoparticles and Nanoclusters.

    PubMed

    Escudero-Francos, María A; Cepas, Vanesa; González-Menédez, Pedro; Badía-Laíño, Rosana; Díaz-García, Marta E; Sainz, Rosa M; Mayo, Juan C; Hevia, David

    2017-02-01

    In this study, the in vitro uptake by fibroblasts and in vivo biodistribution of 15 nm 11-mercaptoundecanoicacid-protected gold nanoparticles (AuNPs-MUA) and 3 nm glutathione- and 3 nm bovine serum albumin-protected gold nanoclusters (AuNCs@GSH and AuNCs@BSA, respectively) were evaluated. In vitro cell viability was examined after gold nanoparticle treatment for 48 h, based on MTT assays and analyses of morphological structure, the cycle cell, cellular doubling time, and the gold concentration in cells. No potential toxicity was observed at any studied concentration (up to 10 ppm) for AuNCs@GSH and AuNCs@BSA, whereas lower cell viability was observed for AuNPs-MUA at 10 ppm than for other treatments. Neither morphological damage nor modifications to the cell cycle and doubling time were detected after contact with nanoparticles. Associations between cells and AuNPs and AuNCs were demonstrated by inductively coupled plasma mass spectrometry (ICP-MS). AuNCs@GSH exhibited fluorescence emission at 611 nm, whereas AuNCs@BSA showed a band at 640 nm. These properties were employed to confirm their associations with cells by fluorescence confocal microscopy; both clusters were observed in cells and maintained their original fluorescence. In vivo assays were performed using 9 male mice treated with 1.70 μg Au/g body weight gold nanoparticles for 24 h. ICP-MS measurements showed a different biodistribution for each type of nanoparticle; AuNPs-MUA mainly accumulated in the brain, AuNCs@GSH in the kidney, and AuNCs@BSA in the liver and spleen. Spleen indexes were not affected by nanoparticle treatment; however, AuNCs@BSA increased the thymus index significantly from 1.28 to 1.79, indicating an immune response. These nanoparticles have great potential as organ-specific drug carriers and for diagnosis, photothermal therapy, and imaging.

  13. Comparative evaluation of PLGA nanoparticle delivery system for 5-fluorouracil and curcumin on squamous cell carcinoma.

    PubMed

    Masloub, Shaimaa M; Elmalahy, Mohamed H; Sabry, Dina; Mohamed, Wael S; Ahmed, Sahar H

    2016-04-01

    The purpose of this study is to assess the effect of 5-fluorouracil nanoparticles and curcumin naoparticles on cell proliferation and the expression of the apoptotic marker (caspase 3) in squamous cell carcinoma cell line. PLGA 5-fluorouracil nanopartciles and PLGA curcumin nanoparticles were prepared and applied for 24 and 48h on human laryngeal squamous carcinoma cell line (Hep-2) as regard IC 50 concentration. MTT assay was used for evaluation of cytotoxicity of prepared nanoparticles. Quantitaive reverse transcriptase polymerase chain reaction (QRT-PCR) was used for the assessment of caspase-3 expression in the treated cell line. The drug release rate profiles was dependent upon polymer to drug ratio, noting that the higher PLGA polymer ratio to 5-fluprouracil or curcumin drug showed faster release rates. On the other hand, the least PLGA polymer ratio to 5-fluprouracil or curcumin drug showed the slowest release rates. MTT assay revelaed that 5-fluorouracil nanoparticels or curcumin nanoparticels showed a clear cytotoxic effect on Hep-2 cell line compared to non treated cancer cells. The RT-PCR assessment of caspase-3 expression revealed that there was a significant increase in caspase-3 expression in Hep-2 cell line treated with 5-fluorouracil nanoparticles or curcumin compared to non treated cancer cells. Curcumin nanoparticles could be more active in inducing apoptosis in short term assays (24h) than long term assays (48h) due to differential cellular uptake. While 5-fluorouracil nanoparticles induced higher significant apoptosis in long term (48h) compared to curcumin group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hydroxylapatite nanoparticles: fabrication methods and medical applications

    NASA Astrophysics Data System (ADS)

    Okada, Masahiro; Furuzono, Tsutomu

    2012-12-01

    Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic and dental applications. Nanosized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. This review summarizes existing knowledge and recent progress in fabrication methods of nanosized (or nanostructured) HAp particles, as well as their recent applications in medical and dental fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2, fabrication methods of HAp nanoparticles are described based on the particle formation mechanisms. Recent applications of HAp nanoparticles are summarized in section 3. The future perspectives in this active research area are given in section 4.

  15. Characterizing the interactions of organic nanoparticles with renal epithelial cells in vivo.

    PubMed

    Nair, Anil V; Keliher, Edmund J; Core, Amanda B; Brown, Dennis; Weissleder, Ralph

    2015-01-01

    Nanotechnology approaches are actively being pursued for drug delivery, novel diagnostics, implantable devices, and consumer products. While considerable research has been performed on the effects of these materials on targeted tumor or phagocytic cells, relatively little is known about their effects on renal cells. This becomes critical for supersmall nanoparticles (<10 nm), designed to be renally excreted. The active endocytic machinery of kidney proximal tubules avidly internalizes filtered proteins, which may also be the case for filtered nanoparticles. To test whether such interactions affect kidney function, we injected mice with either 5 nm dextran-based nanoparticles (DNP) that are similar in composition to FDA-approved materials or poly(amido amine) dendrimer nanoparticles (PNP) of comparable size. These fluorescently tagged nanoparticles were both filtered and internalized by renal tubular epithelial cells in a dose- and time-dependent fashion. The biological effects were quantitated by immunocytochemistry, measuring kidney injury markers and performing functional tests. DNP administration resulted in a dose-dependent increase in urinary output, while cellular albumin endocytosis was increased. The expression of megalin, a receptor involved in albumin uptake, was also increased, but AQP1 expression was unaffected. The effects after PNP administration were similar but additionally resulted in increased clathrin expression and increased endocytosis of dextran. We conclude that there are no major detrimental renal effects of DNP on overall kidney function, but changes in endocytosis-mediating protein expression do occur. These studies provide a framework for the testing of additional nanoparticle preparations as they become available.

  16. M2 polarization enhances silica nanoparticle uptake by macrophages.

    PubMed

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  17. M2 polarization enhances silica nanoparticle uptake by macrophages

    PubMed Central

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K.

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  18. Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells.

    PubMed

    Dhas, T Stalin; Kumar, V Ganesh; Karthick, V; Govindaraju, K; Shankara Narayana, T

    2014-12-10

    In this investigation, biological synthesis of gold nanoparticles (AuNPs) using Sargassum swartzii and its cytotoxicity against human cervical carcinoma (HeLa) cells is reported. The biological synthesis involved the reduction of chloroauric acid led to the formation of AuNPs within 5min at 60°C and the formation of AuNPs was confirmed using UV-vis spectrophotometer. The AuNPs were stable; spherical in shape with well-defined dimensions, and the average size of the particle is 35nm. A zeta potential value of -27.6mV revealed synthesized AuNPs were highly stable. The synthesized AuNPs exhibited a dose-dependent cytotoxicity against human cervical carcinoma (HeLa) cells. Furthermore, induction of apoptosis was measured by DAPI (4',6-Diamidino-2-phenylindole dihydrochloride) staining. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer.

    PubMed

    Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A; Then, Kong Yong

    2017-02-08

    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.

  20. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer

    PubMed Central

    Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj.; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A.; Then, Kong Yong

    2017-01-01

    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases. PMID:28208719

  1. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  2. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals

    PubMed Central

    Chuan, Li; Jia, Zhang; Yu-Jiao, Zu; Shu-Fang, Nie; Jun, Cao; Qian, Wang; Shao-Ping, Nie; Ze-Yuan, Deng; Ming-Yong, Xie; Shu, Wang

    2017-01-01

    Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (–)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer. PMID:26412423

  3. Efficient Production of Retroviruses Using PLGA/bPEI-DNA Nanoparticles and Application for Reprogramming Somatic Cells

    PubMed Central

    Do, Eun Kyoung; Cheon, Hyo Cheon; Heo, Soon Chul; Kwon, Yang Woo; Jeong, Geun Ok; Kim, Ba Reun; Kim, Jae Ho

    2013-01-01

    Reprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells. The aim of this study is to evaluate the efficiency of PLGA/ bPEI nanoparticles in transfection and virus production. Using a modified method of producing PLGA nanoparticles, PLGA/bPEI-DNA nanoparticles were examined for transfection efficiency and virus production yield in comparison with PLGA-DNA, bPEI-DNA nanoparticles or liposome-DNA complexes. After testing various ratios of PLGA, bPEI, and DNA, the ratio of 6:3:1 (PLGA:bPEI:DNA, w/w/w) was determined to be optimal, with acceptable cellular toxicity. PLGA/bPEI-DNA (6:3:1) nanoparticles showed superior transfection efficiency, especially in multiple gene transfection, and viral yield when compared with liposome-DNA complexes. The culture supernatants of HEK293FT cells transfected with PLGA/bPEI-DNA of viral constructs containing reprogramming factors (Oct4, Sox2, Klf4, or c-Myc) successfully and more efficiently generated induced pluripotent stem cell colonies from mouse embryonic fibroblasts. These results strongly suggest that PLGA/bPEI-DNA nanoparticles can provide significant advantages in studying the effect of multiple factor delivery such as in reprogramming or direct conversion of cell fate. PMID:24098810

  4. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  5. Folate Receptor-targeted Bioflavonoid Genistein-loaded Chitosan Nanoparticles for Enhanced Anticancer Effect in Cervical Cancers

    NASA Astrophysics Data System (ADS)

    Cai, Limei; Yu, Rufen; Hao, Xi; Ding, Xiangcui

    2017-08-01

    In this study, novel folic acid-conjugated chitosan nanoparticle was formulated for specific delivery of bioflavonoid, Genistein (GEN), to the cervical cancer cells. The prepared GEN-loaded chitosan nanoparticles (GCN) and folic acid-conjugated GCN (FGCN) showed smaller size with a controlled drug release profile. FGCN exhibited enhanced internalization potential in HeLa cells than that of GCN. The specific internalization of FGCN was mainly due to the affinity of folic acid (FA) with FRs-α which is present in large numbers in HeLa cells. The results revealed that FGCN has a specific affinity towards HeLa cells that will contribute to the better treatment. Folic acid-tagged nanoformulations exhibited a superior cytotoxic effect compared to that of non-targeted formulations. Consistently, IC50 value of GEN decreased from 33.8 to 14.6 μg/ml when treated with FGCN after 24 h incubation. The apoptosis studies indicated that the FGCN nanoparticles were then either GCN or free GEN in terms of anticancer activity. Overall, results revealed that folate conjugation to the delivery system might have great effect on the survival of cervical cancers that will be beneficial for overall cancer treatment.

  6. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells.

    PubMed

    Jafari, A R; Mosavi, T; Mosavari, N; Majid, A; Movahedzade, F; Tebyaniyan, M; Kamalzadeh, M; Dehgan, M; Jafari, S; Arastoo, S

    2016-12-01

    Humans have been in a constant battle with tuberculosis (TB). Currently, overuse of antibiotics has resulted in the spread of multidrug-resistant Mycobacterium tuberculosis (MDR), leading to antibiotic ineffectiveness at controlling the spread of TB infection in host cells and especially macrophages. Additionally, the Mycobacterium tuberculosis (Mtb) has developed methods to evade the immune system and survive. With the discovery of nanoparticle (NP)-based drugs, it is necessary to research their anti-mycobacterial properties and bactericidal mechanisms. In this study, we synthesized mixed metal oxide NPs and tested their ability to inhibit Mtb growth into macrophages and investigated the cytotoxic effects of NPs in THP-1 cells. Silver (Ag) NPs and zinc oxide (ZnO) NPs were synthesized by chemical reduction and chemical deposition in aqueous solution, and the diffraction light scattering, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible light-absorption spectra were used to identify NP properties. Ag and ZnO NPs were mixed together at a ratio of 8 ZnO /2 Ag and diluted into Löwenstein-Jensen medium followed by the addition of bacteria and incubation for 28days at 37°C. The toxicity of NPs to THP-1 cells was assessed by MTT test, and macrophages were infected with Mtb for 4h at 37°C under 5% CO 2 . Nano-sized particles were estimated at ∼30-80nm, and the initial concentration of Ag NPs and ZnO NPs were estimated at ∼20ppm and ∼60ppm. The minimal inhibitory concentration ratio of 8 ZnO /2 Ag NPs against Mtb was detected at ∼1/32 of the initial concentration. Ag NPs in the range of concentrations exhibited no anti-Mtb effects, whereas ZnO NPs showed potent antibacterial activity at ∼1/128 of the initial concentration. ZnO NPs at all concentrations showed cytotoxic activity, whereas 100% of THP-1 cells remained viable in the presence of Ag NPs at ∼1/32 and ∼1/64 of the initial concentrations. However, at ratios of

  7. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  8. Protection and Sensitization of Human Cells to Proton Radiation by Cerium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Carlson, Nathan B.

    In radiation therapy for the treatment of cancer, there is demand for novel approaches that will improve tumor cell killing while protecting healthy tissue. One such approach that has shown considerable promise is the application of nanoparticles as radiation sensitizers for tumor cells and as radiation protectants for healthy tissue. In this investigation, cerium oxide nanoparticles (CNPs) obtained from the University of Central Florida's NanoScience Technology Center were studied for their protective effect to charged particle radiation in non-malignant breast cells, and for their sensitizing effect in breast and prostate cancer cell lines. These experiments were conducted at East Carolina University, where human cells were grown in the cell culture facility in the Department of Biology and then irradiated with energetic protons in the Accelerator Laboratory in the Department of Physics. Prior to irradiation, the cells were treated with distinct CNP preparations ranging in concentrations from 10 nanomolar to 10 micromolar, and cell viability was assessed using multiple assays post-irradiation. Radioprotection and radiosensitization were observed for several of the CNP treatments tested. Ultimately, the goal is to find a specific nanoparticle treatment that holds the synergistic effect of enhancing the rate of killing in tumor cells while simultaneously improving the survival of normal cells.

  9. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  10. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer.

    PubMed

    Fazal, Sajid; Jayasree, Aswathy; Sasidharan, Sisini; Koyakutty, Manzoor; Nair, Shantikumar V; Menon, Deepthy

    2014-06-11

    Nanoparticles of varying composition, size, shape, and architecture have been explored for use as photothermal agents in the field of cancer nanomedicine. Among them, gold nanoparticles provide a simple platform for thermal ablation owing to its biocompatibility in vivo. However, the synthesis of such gold nanoparticles exhibiting suitable properties for photothermal activity involves cumbersome routes using toxic chemicals as capping agents, which can cause concerns in vivo. Herein, gold nanoparticles, synthesized using green chemistry routes possessing near-infrared (NIR) absorbance facilitating photothermal therapy, would be a viable alternative. In this study, anisotropic gold nanoparticles were synthesized using an aqueous route with cocoa extract which served both as a reducing and stabilizing agent. The as-prepared gold nanoparticles were subjected to density gradient centrifugation to maximize its NIR absorption in the wavelength range of 800-1000 nm. The particles also showed good biocompatibility when tested in vitro using A431, MDA-MB231, L929, and NIH-3T3 cell lines up to concentrations of 200 μg/mL. Cell death induced in epidermoid carcinoma A431 cells upon irradiation with a femtosecond laser at 800 nm at a low power density of 6 W/cm(2) proved the suitability of green synthesized NIR absorbing anisotropic gold nanoparticles for photothermal ablation of cancer cells. These gold nanoparticles also showed good X-ray contrast when tested using computed tomography (CT), proving their feasibility for use as a contrast agent as well. This is the first report on green synthesized anisotropic and cytocompatible gold nanoparticles without any capping agents and their suitability for photothermal therapy.

  11. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

    PubMed

    Havrdova, M; Polakova, K; Skopalik, J; Vujtek, M; Mokdad, A; Homolkova, M; Tucek, J; Nebesarova, J; Zboril, R

    2014-12-01

    When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  13. FITC labeled silica nanoparticles as efficient cell tags: uptake and photostability study in endothelial cells.

    PubMed

    Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, Sheikh; Aravind, Athulya; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2012-03-01

    The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.

  14. Visualization of MMP-2 Activity Using Dual-Probe Nanoparticles to Detect Potential Metastatic Cancer Cells

    PubMed Central

    Kim, Sung Hoon; Lee, Hyun; Kim, Bohee; Kim, Yoon Suk; Key, Jaehong

    2018-01-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent enzymes capable of degrading extracellular matrix components. Previous studies have shown that the upregulation of MMP-2 is closely related to metastatic cancers. While Western blotting, zymography, and Enzyme-Linked Immunosorbent Assays (ELISA) can be used to measure the amount of MMP-2 activity, it is not possible to visualize the dynamic MMP-2 activities of cancer cells using these techniques. In this study, MMP-2-activated poly(lactic-co-glycolic acid) with polyethylenimine (MMP-2-PLGA-PEI) nanoparticles were developed to visualize time-dependent MMP-2 activities. The MMP-2-PLGA-PEI nanoparticles contain MMP-2-activated probes that were detectable via fluorescence microscopy only in the presence of MMP-2 activity, while the Rhodamine-based probes in the nanoparticles were used to continuously visualize the location of the nanoparticles. This approach allowed us to visualize MMP-2 activities in cancer cells and their microenvironment. Our results showed that the MMP-2-PLGA-PEI nanoparticles were able to distinguish between MMP-2-positive (HaCat) and MMP-2-negative (MCF-7) cells. While the MMP-2-PLGA-PEI nanoparticles gave fluorescent signals recovered by active recombinant MMP-2, there was no signal recovery in the presence of an MMP-2 inhibitor. In conclusion, MMP-2-PLGA-PEI nanoparticles are an effective tool to visualize dynamic MMP-2 activities of potential metastatic cancer cells. PMID:29466303

  15. Selenium Nanoparticles Induce the Chemo-Sensitivity of Fluorouracil Nanoparticles in Breast and Colon Cancer Cells.

    PubMed

    Abd-Rabou, Ahmed A; Shalby, Aziza B; Ahmed, Hanaa H

    2018-05-11

    Drug resistance is a major challenge of breast and colon cancer therapies leading to treatment failure. The main objective of the current study is to investigate whether selenium nanoparticles (nano-Se) can induce the chemo-sensitivity of 5-fluorouracil (FU)-encapsulated poly (D, L-lactide-co-glycolide) nanoparticles (nano-FU) in breast and colon cancer cell lines. Nano-Se and nano-FU were synthesized and characterized, then applied individually or in combination upon MCF7, MDA-MB-231, HCT 116, and Caco-2 cancerous cell lines. Cytotoxicity, cellular glucose uptake, and apoptosis, as well as malondialdehyde (MDA), nitric oxide (NO), and zinc (Zn) levels, were investigated upon the different treatments. We have resulted that nano-FU induced cell death in MCF7 and Caco-2 more effectively than MDA-MB-231 and HCT 116 cell lines. Moreover, nano-FU plus nano-Se potentiate MCF7 and Caco-2 chemo-sensitivity were higher than MDA-MB-231 and HCT 116 cancerous cell lines. It is relevant to note that Se and FU nano-formulations inhibited cancer cell bioenergetics via glucose uptake slight blockage. Furthermore, nano-FU increased the levels of NO and MDA in media over cancer cells, while their combinations with nano-Se rebalance the redox status with Zn increment. We noticed that MCF7 cell line is sensitive, while MDA-MB-231 cell line is resistant to Se and nano-Se. This novel approach could be of great potential to enhance the chemo-sensitivity in breast and colon cancer cells.

  16. Quantitative Mapping of the Spatial Distribution of Nanoparticles in Endo-Lysosomes by Local pH.

    PubMed

    Wang, Jing; MacEwan, Sarah R; Chilkoti, Ashutosh

    2017-02-08

    Understanding the intracellular distribution and trafficking of nanoparticle drug carriers is necessary to elucidate their mechanisms of drug delivery and is helpful in the rational design of novel nanoparticle drug delivery systems. The traditional immunofluorescence method to study intracellular distribution of nanoparticles using organelle-specific antibodies is laborious and subject to artifacts. As an alternative, we developed a new method that exploits ratiometric fluorescence imaging of a pH-sensitive Lysosensor dye to visualize and quantify the spatial distribution of nanoparticles in the endosomes and lysosomes of live cells. Using this method, we compared the endolysosomal distribution of cell-penetrating peptide (CPP)-functionalized micelles to unfunctionalized micelles and found that CPP-functionalized micelles exhibited faster endosome-to-lysosome trafficking than unfunctionalized micelles. Ratiometric fluorescence imaging of pH-sensitive Lysosensor dye allows rapid quantitative mapping of nanoparticle distribution in endolysosomes in live cells while minimizing artifacts caused by extensive sample manipulation typical of alternative approaches. This new method can thus serve as an alternative to traditional immunofluorescence approaches to study the intracellular distribution and trafficking of nanoparticles within endosomes and lysosomes.

  17. Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles.

    PubMed

    Ashokkumar, Thirunavukkarasu; Prabhu, Durai; Geetha, Ravi; Govindaraju, Kasivelu; Manikandan, Ramar; Arulvasu, Chinnasamy; Singaravelu, Ganesan

    2014-11-01

    An ethnopharmacological approach for biosynthesis of gold nanoparticles is being demonstrated using seed coat of Cajanus cajan. Medicinal value of capping molecule investigated for anticancer activity and results disclose its greater potential. The active principle of the seed coat [3-butoxy-2-hydroxypropyl 2-(2,4-dihydroxyphenyl) acetate] is elucidated. Rapid one-step synthesis yields highly stable, monodisperse (spherical) gold nanoparticles in the size ranging from 9 to 41 nm. Anticancer activity has been studied using liver cancer cells and cytotoxic mechanism has been evaluated using MTT, Annexin-V/PI Double-Staining Assay, Cell cycle, Comet assay and Flow cytometric analysis for apoptosis. The present investigation will open up a new possibility of functionalizing gold nanoparticles for apoptosis studies in liver cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses

    PubMed Central

    Chakravarty, Prerona; Qian, Wei; El-Sayed, Mostafa A.; Prausnitz, Mark R.

    2010-01-01

    A major barrier to drug and gene delivery is crossing the cell's plasma membrane. Physical forces applied to cells via electroporation1, ultrasound2 and laser-irradiation3–6 generate nanoscale holes in the plasma membrane for direct delivery of drugs into the cytoplasm. Inspired by previous work showing that laser excitation of carbon nanoparticles can drive the carbon-steam reaction to generate highly controlled shock waves7–10, here we show carbon black (CB) nanoparticles activated by femtosecond laser pulses can facilitate the delivery of small molecules, proteins and DNA into two types of cells. Our initial results suggest that interaction between the laser energy and CB nanoparticles may generate photoacoustic forces by chemical reaction to create transient holes in the membrane for delivery. PMID:20639882

  19. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  20. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells.

    PubMed

    Altındal, Damla Çetin; Gümüşderelioğlu, Menemşe

    2016-02-01

    Melatonin loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and microparticles in the diameter of ∼200 nm and 3.5 μm, respectively, were prepared by emulsion-diffusion-evaporation method. Melatonin entrapment into the particles was significantly improved with the addition of 0.2% (w/v) melatonin into the aqueous phase and encapsulation efficiencies were found as 14 and 27% for nanoparticles and microparticles, respectively. At the end of 40 days, ∼70% of melatonin was released from both of particles, with high burst release. Both blank and melatonin loaded PLGA nanoparticles caused toxic effect on the MG-63 cells due to their uptake by the cells. However, when 0.05 mg microparticle that is carrying ∼1.7 μg melatonin was added to the cm(2) of culture, inhibitory effect of melatonin on the cells were obviously observed. The results would provide an expectation about the usage of melatonin as an adjunct to the routine chemotherapy of osteosarcoma by encapsulating it into a polymeric carrier system.

  1. Biocompatibility of tungsten disulfide inorganic nanotubes and fullerene-like nanoparticles with salivary gland cells.

    PubMed

    Goldman, Elisheva B; Zak, Alla; Tenne, Reshef; Kartvelishvily, Elena; Levin-Zaidman, Smadar; Neumann, Yoav; Stiubea-Cohen, Raluca; Palmon, Aaron; Hovav, Avi-Hai; Aframian, Doron J

    2015-03-01

    Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles.

  2. Biocompatibility of Tungsten Disulfide Inorganic Nanotubes and Fullerene-Like Nanoparticles with Salivary Gland Cells

    PubMed Central

    Goldman, Elisheva B.; Zak, Alla; Tenne, Reshef; Kartvelishvily, Elena; Levin-Zaidman, Smadar; Neumann, Yoav; Stiubea-Cohen, Raluca; Palmon, Aaron; Hovav, Avi-Hai

    2015-01-01

    Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles. PMID:25366879

  3. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles.

    PubMed

    Wang, Yichao; Li, Puwang; Chen, Lijue; Gao, Weimin; Zeng, Fanbo; Kong, Ling Xue

    2015-02-01

    The incorporation of a high percentage of targeting molecules into drug delivery system is one of the important methods for improving efficacy of targeting therapeutic drugs to cancer cells. PLGA-based drug delivery carriers with folic acid (FA) as targeting molecule have a low targeting efficiency due to a low FA conjugation ratio. In this work, we fabricated a FA-conjugated PLGA system using a crosslinker 1, 3-diaminopropane and have achieved a high conjugation ratio of 46.7% (mol/mol). The as-prepared PLGA-based biomaterial was used to encapsulate therapeutic drug 5-fluorouracil (5-FU) into nanoparticles. In the in vitro experiments, an IC₅₀ of 5.69 µg/mL has been achieved for 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles on HT-29 cancer cells and is significantly lower than that of 5-FU and 5-FU loaded PLGA nanoparticles which only have an IC₅₀ of 22.9 and 14.17 µg/mL, respectively. The fluorescent microscopy images showed that nanoparticles with FA are largely taken up by HT-29 cancer cells and the targeting nanoparticles have more affinity to cancer cells than the pure drugs and untreated nanoparticles. Therefore, the 1, 3-diaminopropane can facilitate the conjugation of FA to PLGA to form a novel polymer and 5-FU loaded PLGA-1, 3-diaminopropane-folic acid nanoparticles can be a highly efficient system for specific delivery of drugs to cancer cells.

  4. Cell viability study of thermo-responsive core-shell superparamagnetic nanoparticles for multimodal cancer therapy

    NASA Astrophysics Data System (ADS)

    Shah, Saqlain A.; Majeed, A.; Shafique, M. A.; Rashid, K.; Awan, Saif-Ullah

    2014-02-01

    This is a vital extension of our previously published work. Thermo-responsive copolymer coated superparamagnetic MnFe2O4 nanoparticles are tested for cell viability and affinity on HeLa carcinoma cells under different conditions. Nanoparticles were loaded with anticancer drug doxorubicin. Composite nanoparticles of average diameter 45 nm were of core-shell structure having magnetic core of about 18 nm. Magnetic hyperthermia effects on cell viability and drug delivery were studied by exposing the cell suspension to high frequency magnetic field, and living cells were quantified using MTT method. There was almost absence of drug release at 37 °C. Drug was released at temperatures above lower critical solution temperature (LCST) by magnetic heating. LCST of the thermo-responsive copolymer was observed to be around 39 °C. Below this temperature, copolymer was hydrophilic and swelled. But above LCST, copolymer could become hydrophobic, expel water and drug and shrink in volume. Combination of hyperthermia and drug delivery effectively treated cancer cells.

  5. The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors

    PubMed Central

    Jiráková, Klára; Šeneklová, Monika; Jirák, Daniel; Turnovcová, Karolína; Vosmanská, Magda; Babič, Michal; Horák, Daniel; Veverka, Pavel; Jendelová, Pavla

    2016-01-01

    Introduction Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-Fe2O3) and studied their effect on proliferation and neuronal differentiation. Materials and methods We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability. We further defined the intracellular localization and labeling efficiency and analyzed labeled cells by MR. Results Cell proliferation was not affected by PLL-coated γ-Fe2O3 but was slowed down in cells labeled with CZF. Labeling efficiency, iron content and relaxation rates measured by MR were lower in cells labeled with CZF when compared to PLL-coated γ-Fe2O3. Cytoplasmic localization of both types of nanoparticles was confirmed by transmission electron microscopy. Flow cytometry and immunocytochemical analysis of specific markers expressed during neuronal differentiation did not show any significant differences between unlabeled cells or cells labeled with both magnetic nanoparticles. Conclusion Our results show that cells labeled with PLL-coated γ-Fe2O3 are suitable for MR detection, did not affect the differentiation potential of iPSC-NPs and are suitable for in vivo cell therapies in experimental models of central nervous system disorders. PMID:27920532

  6. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells

    PubMed Central

    Gándola, Yamila B.; Pérez, Sebastián E.; Irene, Pablo E.; Sotelo, Ana I.; Miquet, Johanna G.; Corradi, Gerardo R.; Carlucci, Adriana M.; Gonzalez, Lorena

    2014-01-01

    Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC), have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v) prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR) content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design. PMID:24772432

  7. Methods, compositions and kits for imaging cells and tissues using nanoparticles and spatial frequency heterodyne imaging

    DOEpatents

    Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian

    2016-04-19

    Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.

  8. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  9. Adhesion, Vitality and Osteogenic Differentiation Capacity of Adipose Derived Stem Cells Seeded on Nitinol Nanoparticle Coatings

    PubMed Central

    Strauß, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W.; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M.

    2013-01-01

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells. PMID:23308190

  10. Cryo-STEM-EDX spectroscopy for the characterisation of nanoparticles in cell culture media

    NASA Astrophysics Data System (ADS)

    Ilett, M.; Bamiduro, F.; Matar, O.; Brown, A.; Brydson, R.; Hondow, N.

    2017-09-01

    We present a study of barium titanate nanoparticles dispersed in cell culture media. Scanning transmission electron microscopy combined with energy dispersive X-ray spectroscopy was undertaken on samples prepared using both conventional drop casting and also plunge freezing and examination under cryogenic conditions. This showed that drying artefacts occurred during conventional sample preparation, whereby some salt components of the cell culture media accumulated around the barium titanate nanoparticles; these were removed using the cryogenic route. Importantly, the formation of a calcium and phosphorus rich coating around the barium titanate nanoparticles was retained under cryo-conditions, highlighting that significant interactions do occur between nanomaterials and biological media.

  11. A comprehensive analysis of transfection-assisted delivery of iron oxide nanoparticles to dendritic cells.

    PubMed

    Toki, Shinji; Omary, Reed A; Wilson, Kevin; Gore, John C; Peebles, R Stokes; Pham, Wellington

    2013-11-01

    Polylysine (PL) has been used to facilitate dendritic cell (DC) uptake of super paramagnetic iron oxide (SPIO) nanoparticles for use in magnetic resonance imaging (MRI). In this work, we examined the effect of PL on cell toxicity and induction of cell maturation as manifested by the up-regulation of surface molecules. We found that PL became toxic to bone marrow-derived DCs (BMDCs) at the 10 μg/ml threshold. Incubation of BMDCs with 20 μg/ml of PL for 1h resulted in approximately 90% cell death. However, addition of SPIO nanoparticles rescued DCs from PL-induced death as the combination of SPIO with PL did not cause cytotoxicity until the PL concentration was 1000 μg/ml. Prolonged exposure to PL induced BMDC maturation as noted by the expression of surface molecules such as MHC class II, CD40, CCR7 and CD86. However, the combination of SPIO and PL did not induce BMDC maturation at 1h. However prolonged exposure to SPIO nanoparticles induced CD40 expression and protein expression of TNFα and KC. The data suggest that the use of PL to enhance the labeling of DCs with SPIO nanoparticles is a dedicated work. Appropriate calibration of the incubation time and concentrations of PL and SPIO nanoparticles is crucial to the development of MRI technology for noninvasive imaging of DCs in vivo. The authors of this study present detailed data on toxicity and efficiency of polylysine-facilitated uptake of USPIO-s by dendritic cells for cell-specific MR imaging. Copyright © 2013. Published by Elsevier Inc.

  12. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

    PubMed Central

    Ahlberg, Sebastian; Antonopulos, Alexandra; Diendorf, Jörg; Dringen, Ralf; Flöck, Rebekka; Goedecke, Wolfgang; Graf, Christina; Haberl, Nadine; Helmlinger, Jens; Herzog, Fabian; Heuer, Frederike; Hirn, Stephanie; Johannes, Christian; Kittler, Stefanie; Köller, Manfred; Korn, Katrin; Kreyling, Wolfgang G; Krombach, Fritz; Lademann, Jürgen; Loza, Kateryna; Luther, Eva M; Malissek, Marcelina; Meinke, Martina C; Nordmeyer, Daniel; Pailliart, Anne; Raabe, Jörg; Rancan, Fiorenza; Rothen-Rutishauser, Barbara; Rühl, Eckart; Schleh, Carsten; Seibel, Andreas; Sengstock, Christina; Treuel, Lennart; Vogt, Annika; Weber, Katrin; Zellner, Reinhard

    2014-01-01

    Summary PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful

  13. Optical properties and antimicrobial effects of silver nanoparticles synthesized by femtosecond laser photoreduction

    NASA Astrophysics Data System (ADS)

    dos Santos Courrol, Daniella; Regina Borges Lopes, Carla; da Silva Cordeiro, Thiago; Regina Franzolin, Marcia; Dias Vieira Junior, Nilson; Elgul Samad, Ricardo; Coronato Courrol, Lilia

    2018-07-01

    Silver nanoparticles exhibit a powerful antimicrobial action showing a pronounced potential to be widely used against drug resistance bacteria. The present work describes the optical properties and antimicrobial effect of silver nanoparticles produced by femtosecond laser photoreduction of AgNO3 in the presence of tryptophan water solution. The advantages of this method are the absence of hazardous chemical reducing agents in the solution, and the versatile dimensional control achieved. The synthesized silver nanoparticles were characterized by absorption and fluorescence spectroscopy and their antibacterial activity were determined by monitoring the cell viability of Escherichia coli. The effects of the silver nanoparticles concentration and laser parameters (exposure time and pulse energy), on the formation of the nanoparticles, and its influence on the bacteria growth inhibition were studied. The prepared silver nanoparticles exhibited suitable antimicrobial properties. The results demonstrated that the nanoparticles concentration plays an important role in their bactericidal efficacy. The increase in the laser energy caused an increase in E. coli growth inhibition. Irradiations with energies around 300 μJ for 60 min presented high antimicrobial activity due to the presence of kynurenine, sub product of tryptophan photolysis. The first-time formation mechanism of tryptophan silver nanoparticles in high optical intensities was also discussed.

  14. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.

    PubMed

    Tao, Cuilian; Zhu, Yufang

    2014-11-07

    Magnetic mesoporous silica (MMS) nanoparticles with controllable magnetization have been synthesized by encapsulating Fe3O4 nanoparticles in a mesoporous silica matrix. The structure, magnetic heating capacity and drug delivery ability of MMS nanoparticles were evaluated. The results showed that MMS nanoparticles had an average particle size of 150 nm and showed low cytotoxicity and efficient cell uptake ability. MMS nanoparticles exhibited a sustained drug release in the medium of pH 5.0, but a very slow release in the medium of pH 7.4. On the other hand, MMS nanoparticles could controllably generate heat to reach the hyperthermia temperature within a short time upon exposure to an alternating magnetic field due to the superparamagnetic behavior and controllable magnetization. Therefore, MMS nanoparticles could provide a promising multifunctional platform for the combination of chemotherapy and hyperthermia for cancer therapy.

  15. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Javed; Ahamed, Maqusood, E-mail: maqusood@gmail.com; Akhtar, Mohd Javed

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion ofmore » glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.« less

  16. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.

    PubMed

    La-Torre-Riveros, Lyda; Guzman-Blas, Rolando; Méndez-Torres, Adrián E; Prelas, Mark; Tryk, Donald A; Cabrera, Carlos R

    2012-02-01

    Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.

  17. Aptamer-Nanoparticle Strip Biosensor for Rapid and Sensitive Detection of Cancer Cells

    PubMed Central

    Mao, Xun; Phillips, Joseph A.; Xu, Hui; Tan, Weihong; Zeng, Lingwen; Liu, Guodong

    2009-01-01

    We report an aptamer-nanoparticle strip biosensor (ANSB) for the rapid, specific, sensitive and low-cost detection of circulating cancer cells. Known for their high specificity and affinity, aptamers were first selected from live cells by the cell-SELEX (systematic evolution of ligands by exponential enrichment) process. When next combined with the unique optical properties of gold nanoparticles (Au-NPs), ANSBs were prepared on a lateral flow device. Ramos cells were used as a model target cell to demonstrate proof of principle. Under optimal conditions, the ANSB was capable of detecting a minimum of 4000 Ramos cells without instrumentation (visual judgment) and 800 Ramos cells with a portable strip reader within 15 minutes. Importantly, ANSB has successfully detected Ramos cells in human blood, thus providing a rapid, sensitive and low-cost quantitative tool for the detection of circulating cancer cells. ANSB therefore shows great promise for in-field and point-of-care cancer diagnosis and therapy. PMID:19904989

  18. The Effects of Inhaled Nickel Nanoparticles on Murine Endothelial Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Liberda, Eric N.

    Introduction. Particulate air pollution, specifically nickel found on or in particulate matter, has been associated with an increased risk of mortality in human population studies and can cause increases in vascular inflammation, generate reactive oxygen species, alter vasomotor tone, and potentiate atherosclerosis in murine exposures. With the discovery of endothelial progenitor cells (EPCs), a door has been opened which may explain these observed cardiovascular effects associated with inhaled air particles and nickel exposure. In order to further quantify the effects of inhaled nickel nanoparticles and attempt to elucidate how the observed findings from other studies may occur, several whole body inhalation exposure experiments to nickel nanoparticles were performed. Methods. Following whole body exposure to approximately 500mug/m3 of nickel nanoparticles for 5 hrs, bone marrow EPCs from C57BL/6 mice were isolated. EPCs were harvested for their RNA or used in a variety of assays including chemotaxis, tube formation, and proliferation. Gene expression was assessed for important receptors involved in EPC mobilization and homing using RT-PCR methods. EPCs, circulating endothelial progenitor cells, circulating endothelial cells (CECs), and endothelial microparticles (EMPs) were quantified on a BD FACSCalibur to examine endothelial damage and repair associated with the inhalation exposure. Plasma proteins were assessed using the 2D DIGE proteomic approach and commercially available ELISAs. Results and Conclusions. Exposure to inhaled nickel nanoparticles significantly increased both bone marrow EPCs as well as their levels in circulation. CECs were significantly upregulated suggesting that endothelial damage occurred due to the exposure. There was no significant difference in EMPs between the two groups. Tube formation and chemotaxis, but not proliferation, of bone marrow EPCs was impaired in the nickel nanoparticle exposed group. This decrease in EPC function

  19. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    PubMed Central

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    Abstract This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml–1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses. PMID:27877913

  20. Emergent Electronic and Dielectric Properties of Interacting Nanoparticles at Finite Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Arin R.; Voros, Marton; Giberti, Federico

    Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilitiesmore » substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Lastly, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.« less

  1. Emergent Electronic and Dielectric Properties of Interacting Nanoparticles at Finite Temperature

    DOE PAGES

    Greenwood, Arin R.; Voros, Marton; Giberti, Federico; ...

    2017-12-11

    Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilitiesmore » substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Lastly, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.« less

  2. The effect of particle size on the toxic action of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sosenkova, L. S.; Egorova, E. M.

    2011-04-01

    Silver nanoparticles in AOT reverse micelles were obtained by means of the biochemical synthesis. Synthesis of nanoparticles was carried out with variation of the three parameters of reverse-micellar systems: concentration of silver ions, concentration of the stabilizer (AOT) and hydration extent w = [H2O]/[AOT]. The combinations of varied parameters have been found, allowing to prepare micellar solutions of spherical silver nanoparticles with average sizes 4.6 and 9.5 nm and narrow size distribution. From micellar solution the nanoparticles were transferred into the water phase; water solutions of the nanoparticles were used for testing their biological activity. Our assay is based on negative chemotaxis, a motile reaction of cells to an unfavorable chemical environment. Plasmodium of the slime mold Physarum polycephalum used as an object is a multinuclear amoeboid cell with unlimited growth and the auto-oscillatory mode of locomotion. In researches of chemotaxis on plasmodium it is learned that silver nanoparticles of smaller size exhibit a higher biological activity (behave as stronger repellent) and this correlates with the literary data obtained in studies of silver nanoparticles interaction with other biological objects.

  3. Imaging and radiation effects of gold nanoparticles in tumour cells

    PubMed Central

    McQuaid, Harold N.; Muir, Mark F.; Taggart, Laura E.; McMahon, Stephen J.; Coulter, Jonathan A.; Hyland, Wendy B.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.; Hirst, David G.; Botchway, Stanley W.; Currell, Fred J.

    2016-01-01

    Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events. PMID:26787230

  4. Circulating B cells in type 1 diabetics exhibit fewer maturation-associated phenotypes.

    PubMed

    Hanley, Patrick; Sutter, Jennifer A; Goodman, Noah G; Du, Yangzhu; Sekiguchi, Debora R; Meng, Wenzhao; Rickels, Michael R; Naji, Ali; Luning Prak, Eline T

    2017-10-01

    Although autoantibodies have been used for decades as diagnostic and prognostic markers in type 1 diabetes (T1D), further analysis of developmental abnormalities in B cells could reveal tolerance checkpoint defects that could improve individualized therapy. To evaluate B cell developmental progression in T1D, immunophenotyping was used to classify circulating B cells into transitional, mature naïve, mature activated, and resting memory subsets. Then each subset was analyzed for the expression of additional maturation-associated markers. While the frequencies of B cell subsets did not differ significantly between patients and controls, some T1D subjects exhibited reduced proportions of B cells that expressed transmembrane activator and CAML interactor (TACI) and Fas receptor (FasR). Furthermore, some T1D subjects had B cell subsets with lower frequencies of class switching. These results suggest circulating B cells exhibit variable maturation phenotypes in T1D. These phenotypic variations may correlate with differences in B cell selection in individual T1D patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Temozolomide nanoparticles for targeted glioblastoma therapy.

    PubMed

    Fang, Chen; Wang, Kui; Stephen, Zachary R; Mu, Qingxin; Kievit, Forrest M; Chiu, Daniel T; Press, Oliver W; Zhang, Miqin

    2015-04-01

    Glioblastoma (GBM) is a deadly and debilitating brain tumor with an abysmal prognosis. The standard therapy for GBM is surgery followed by radiation and chemotherapy with Temozolomide (TMZ). Treatment of GBMs remains a challenge, largely because of the fast degradation of TMZ, the inability to deliver an effective dose of TMZ to tumors, and a lack of target specificity that may cause systemic toxicity. Here, we present a simple method for synthesizing a nanoparticle-based carrier that can protect TMZ from rapid degradation in physiological solutions and can specifically deliver them to GBM cells through the mediation of a tumor-targeting peptide chlorotoxin (CTX). Our nanoparticle, namely NP-TMZ-CTX, had a hydrodynamic size of <100 nm, exhibited sustained stability in cell culture media for up to 2 weeks, and could accommodate stable drug loading. TMZ bound to nanoparticles showed a much higher stability at physiological pH, with a half-life 7-fold greater than that of free TMZ. NP-TMZ-CTX was able to target GBM cells and achieved 2-6-fold higher uptake and a 50-90% reduction of IC50 72 h post-treatment as compared to nontargeted NP-TMZ. NP-TMZ-CTX showed great promise in its ability to deliver a large therapeutic dose of TMZ to GBM cells and could serve as a template for targeted delivery of other therapeutics.

  6. Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport Behaviors.

    PubMed

    Rao, Siyuan; Si, Kae Jye; Yap, Lim Wei; Xiang, Yan; Cheng, Wenlong

    2015-11-24

    Natural cell membranes can directionally and selectively regulate the ion transport, which is critical for the functioning of living cells. Here, we report on the fabrication of an artificial membrane based on an asymmetric nanoparticle superlattice bilayered nanosheet, which exhibits similar ion transport characteristics. The superlattice nanosheets were fabricated via a drying-mediated self-assembly of polystyrene-capped gold nanoparticles at the liquid-air interface. By adopting a layer-by-layer assembly process, an asymmetric nanomembrane could be obtained consisting of two nanosheets with different nanoparticle size. The resulting nanomembranes exhibit an asymmetric ion transport behavior, and diode-like current-voltage curves were observed. The asymmetric ion transport is attributed to the cone-like nanochannels formed within the membranes, upon which a simulation map was established to illustrate the relationship between the channel structure and the ionic selectivity, in consistency with our experimental results. Our superlattice nanosheet-based design presents a promising strategy for the fabrication of next-generation smart nanomembranes for rationally and selectively regulating the ion transport even at a large ion flux, with potential applications in a wide range of fields, including biosensor devices, energy conversion, biophotonics, and bioelectronics.

  7. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles

    PubMed Central

    Polf, Jerimy C.; Bronk, Lawrence F.; Driessen, Wouter H. P.; Arap, Wadih; Pasqualini, Renata; Gillin, Michael

    2011-01-01

    The development and use of sensitizing agents to improve the effectiveness of radiotherapy have long been sought to improve our ability to treat cancer. In this letter, we have studied the relative biological effectiveness of proton beam radiotherapy on prostate tumor cells with and without internalized gold nanoparticles. The effectiveness of proton radiotherapy for the killing of prostate tumor cells was increased by approximately 15%–20% for those cells containing internalized gold nanoparticles. PMID:21915155

  8. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    PubMed Central

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  9. Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems

    PubMed Central

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Constantinou, Pamela E.; Danysh, Brian P.; Shenefelt, Derek L.; Carson, Daniel D.; Farach-Carson, Mary C.; Kulchitsky, Vladimir A.; Wu, Xiangwei; Wagner, Daniel S.; Lapotko, Dmitri O.

    2012-01-01

    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level. PMID:22509318

  10. Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Ren, Xiaoyang; Constantinou, Pamela E; Danysh, Brian P; Shenefelt, Derek L; Carson, Daniel D; Farach-Carson, Mary C; Kulchitsky, Vladimir A; Wu, Xiangwei; Wagner, Daniel S; Lapotko, Dmitri O

    2012-01-01

    The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level.

  11. Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro.

    PubMed

    Sun, Hui-Ping; Su, Jing-Han; Meng, Qing-Shuo; Yin, Qi; Zhang, Zhi-Wen; Yu, Hai-Jun; Zhang, Peng-Cheng; Wang, Si-Ling; Li, Ya-Ping

    2016-07-01

    To improve the therapeutic efficacy of cancer treatments, combinational therapies based on nanosized drug delivery system (NDDS) has been developed recently. In this study we designed a new NDDS loaded with an anti-metastatic drug silibinin and a photothermal agent indocyanine green (ICG), and investigated its effects on the growth and metastasis of breast cancer cells in vitro. Silibinin and ICG were self-assembled into PCL lipid nanoparticles (SIPNs). Their physical characteristics including the particle size, zeta potential, morphology and in vitro drug release were examined. 4T1 mammalian breast cancer cells were used to evaluate their cellular internalization, cytotoxicity, and their influences on wound healing, in vitro cell migration and invasion. SIPNs showed a well-defined spherical shape with averaged size of 126.3±0.4 nm and zeta potential of -10.3±0.2 mV. NIR laser irradiation substantially increased the in vitro release of silibinin from the SIPNs (58.3% at the first 8 h, and 97.8% for the total release). Furthermore, NIR laser irradiation markedly increased the uptake of SIPNs into 4T1 cells. Under the NIR laser irradiation, both SIPNs and IPNs (PCL lipid nanoparticles loaded with ICG alone) caused dose-dependent ablation of 4T1 cells. The wound healing, migration and invasion experiments showed that SIPNs exposed to NIR laser irradiation exhibited dramatic in vitro anti-metastasis effects. SIPNs show temperature-sensitive drug release following NIR laser irradiation, which can inhibit the growth and metastasis of breast cancer cells in vitro.

  12. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahbubur; Im, Sang Hyuk; Lee, Jae-Joon

    2016-03-01

    We demonstrated the localized surface plasmon resonance (LSPR) effect of Ni nanoparticles (NiNPs) on the performance of dye-sensitized solar cells (DSSCs). Our study revealed that NiNPs in a conventional I-/I3- electrolyte (NiNPs@I-/I3-) increased the net optical absorption of a N719 dye over a broad wavelength range by LSPR, and concurrently improved the power conversion efficiency (PCE) in DSSCs. At an optimized concentration of the NiNPs@I-/I3- electrolyte (1 mg mL-1), N719-sensitized DSSCs with a photoanode thickness of ca. 2, 5, and 10 μm, exhibited net PCEs of 2.32, 6.02, and 9.83%, respectively. These efficiencies were consistent with a net improvement of 43.2, 20.4, and 12.7%, respectively and were mainly attributed to a significant enhancement of the short circuit current density (Jsc) by the LSPR from the NiNPs. Similar effects were observed for cells sensitized by the N3, Ru505, and Z907 dyes. Furthermore, the NiNPs exhibited excellent resistance to corrosion from a conventional I-/I3- electrolyte over a period of 60 days.We demonstrated the localized surface plasmon resonance (LSPR) effect of Ni nanoparticles (NiNPs) on the performance of dye-sensitized solar cells (DSSCs). Our study revealed that NiNPs in a conventional I-/I3- electrolyte (NiNPs@I-/I3-) increased the net optical absorption of a N719 dye over a broad wavelength range by LSPR, and concurrently improved the power conversion efficiency (PCE) in DSSCs. At an optimized concentration of the NiNPs@I-/I3- electrolyte (1 mg mL-1), N719-sensitized DSSCs with a photoanode thickness of ca. 2, 5, and 10 μm, exhibited net PCEs of 2.32, 6.02, and 9.83%, respectively. These efficiencies were consistent with a net improvement of 43.2, 20.4, and 12.7%, respectively and were mainly attributed to a significant enhancement of the short circuit current density (Jsc) by the LSPR from the NiNPs. Similar effects were observed for cells sensitized by the N3, Ru505, and Z907 dyes. Furthermore, the Ni

  13. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    PubMed

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  14. Gold nanoparticles delivery in mammalian live cells: a critical review

    PubMed Central

    Lévy, Raphaël; Shaheen, Umbreen; Cesbron, Yann; Sée, Violaine

    2010-01-01

    Functional nanomaterials have recently attracted strong interest from the biology community, not only as potential drug delivery vehicles or diagnostic tools, but also as optical nanomaterials. This is illustrated by the explosion of publications in the field with more than 2,000 publications in the last 2 years (4,000 papers since 2000; from ISI Web of Knowledge, ‘nanoparticle and cell’ hit). Such a publication boom in this novel interdisciplinary field has resulted in papers of unequal standard, partly because it is challenging to assemble the required expertise in chemistry, physics, and biology in a single team. As an extreme example, several papers published in physical chemistry journals claim intracellular delivery of nanoparticles, but show pictures of cells that are, to the expert biologist, evidently dead (and therefore permeable). To attain proper cellular applications using nanomaterials, it is critical not only to achieve efficient delivery in healthy cells, but also to control the intracellular availability and the fate of the nanomaterial. This is still an open challenge that will only be met by innovative delivery methods combined with rigorous and quantitative characterization of the uptake and the fate of the nanoparticles. This review mainly focuses on gold nanoparticles and discusses the various approaches to nanoparticle delivery, including surface chemical modifications and several methods used to facilitate cellular uptake and endosomal escape. We will also review the main detection methods and how their optimum use can inform about intracellular localization, efficiency of delivery, and integrity of the surface capping. PMID:22110850

  15. Molecular imaging and sensing using plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Crow, Matthew James

    Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression

  16. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo.

    PubMed

    Clark, Andrea J; Coury, Emma L; Meilhac, Alexandra M; Petty, Howard R

    2016-02-12

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte's functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye's anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  17. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  18. Antimicrobial properties and dental pulp stem cell cytotoxicity using carboxymethyl cellulose-silver nanoparticles deposited on titanium plates

    PubMed Central

    Laredo-Naranjo, Martha Alicia; Carrillo-Gonzalez, Roberto; De La Garza-Ramos, Myriam Angelica; Garza-Navarro, Marco Antonio; Torre-Martinez, Hilda H. H.; Del Angel-Mosqueda, Casiano; Mercado-Hernandez, Roberto; Carrillo-Fuentevilla, Roberto

    2016-01-01

    Abstract Objective: To evaluate the antimicrobial properties and dental pulp stem cells (DPSCs) cytotoxicity of synthesized carboxymethyl cellulose-silver nanoparticles impregnated on titanium plates. Material and methods: The antibacterial effect of silver nanoparticles in a carboxymethyl cellulose matrix impregnated on titanium plates (Ti-AgNPs) in three concentrations: 16%, 50% and 100% was determined by adding these to bacterial cultures of Streptococcus mutans and Porphyromonas gingivalis. The Ti-AgNPs cytotoxicity on DPSCs was determined using a fluorimetric cytotoxicity assay with 0.12% chlorhexidine as a positive control. Results: Silver nanoparticles in all concentrations were antimicrobial, with concentrations of 50% and 100% being more cytotoxic with 4% cell viability. Silver nanoparticles 16% had a cell viability of 95%, being less cytotoxic than 0.12% chlorhexidine. Conclusions: Silver nanoparticles are a promising structure because of their antimicrobial properties. These have high cell viability at a concentration of 16%, and are less toxic than chlorhexidine. PMID:28642914

  19. Studies on stabilization mechanism and stealth effect of poloxamer 188 onto PLGA nanoparticles.

    PubMed

    Jain, Darshana; Athawale, Rajani; Bajaj, Amrita; Shrikhande, Shruti; Goel, Peeyush N; Gude, Rajiv P

    2013-09-01

    In nanoparticulate engineering for drug delivery systems, poloxamers tri block copolymers are employed as adsorbing molecules to modify the aggregation state and impart stability to products. The aim was to prepare nanoparticles using poloxamer188 as stabiliser and investigate the mechanism of stabilisation of the prepared particles. Nanoparticles were prepared by solvent diffusion method with poloxamer 188 as stabiliser. Hydrodynamic thickness and zeta potential of the prepared nanoparticles were determined by photon correlation spectroscopy. To study the extent of adsorption of poloxamer onto the prepared nanoparticles, adsorption isotherms were constructed. The adsorbed amount of poloxamer 188 onto the particles was determined by depletion method. Macrophageal uptake study was performed to assess the uptake of the prepared nanoparticles using RAW 264.7 cell lines. Nanoparticles were prepared with slight increase in particle size and in absolute value of zeta potential compared to uncoated particles suggesting that this effect was due to adsorption of poloxamer 188. TEM studies and surface area analysis supported the results obtained from particle size analysis indicating preparation of particles with a thin layer of adsorbed poloxamer 188. Adsorption kinetics modeling suggested that at low concentrations (0.001-0.010 g/L), Langmuir monolayer equation fits quite well and at higher concentrations (above 0.010 g/L) multilayer adsorption of poloxamer 188 onto the prepared particles occurred. Thus the nanoparticles had multilayer of poloxamer 188 adsorbed onto the non uniform surface of PLGA. Results of macrophageal uptake and liver cell study exhibits adsorbed concentration dependent bypass of RES uptake of nanoparticles. Hence, results substantiate the application of adsorption isotherms for designing nanoparticles possessing potential to exhibit prolonged circulation when administered in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Silver nanoparticles exhibit size-dependent differential toxicity and induce expression of syncytin-1 in FA-AML1 and MOLT-4 leukaemia cell lines.

    PubMed

    Alqahtani, Sultan; Promtong, Pawika; Oliver, Anthony W; He, Xiaotong T; Walker, Thomas D; Povey, Andrew; Hampson, Lynne; Hampson, Ian N

    2016-11-01

    Human endogenous retrovirus (HERV) sequences make up ~8% of the human genome and increased expression of some HERV proteins has been observed in various pathologies including leukaemia and multiple sclerosis. However, little is known about the function of these HERV proteins or environmental factors which regulate their expression. Silver nanoparticles (AgNPs) are used very extensively as antimicrobials and antivirals in numerous consumer products although their effect on the expression of HERV gene products is unknown. Cell proliferation and cell toxicity assays were carried out on human acute T lymphoblastic leukaemia (MOLT-4) and Fanconi anaemia associated acute myeloid leukaemia (FA-AML1) cells treated with two different sizes of AgNPs (7nm and 50nm diameter). Reverse-transcriptase polymerase chain reaction and western blotting were then used to the assess expression of HERV-W syncytin-1 mRNA and protein in these cells. FA-AML1 cells were more sensitive overall than MOLT-4 to treatment with the smaller 7nm sized AgNp's being the most toxic in these cells. MOLT-4 cell were more resistant and showed no evidence of differential toxicity to the different sized particles. Syncytin-1 mRNA and protein were induced by both 7 and 50nm AgNPs in both cell types yet with different kinetics. In summary, the observation that AgNPs induce expression of syncytin-1 in FA-AML1 and MOLT-4 cells at doses as little as 5 µg/ml is grounds for concern since this protein is up-regulated in both malignant and neurodegenerative diseases. Considering the widespread use of AgNPs in the environment it is clear that their ability to induce syncytin-1 should be investigated further in other cell types. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Enhancement of Thermal Damage to Adenocarcinoma Cells by Iron Nanoparticles Modified with MUC1 Aptamer.

    PubMed

    Guo, Fangqin; Hu, Yan; Yu, Lianyuan; Deng, Xiaoyuan; Meng, Jie; Wang, Chen; Yang, Xian-Da

    2016-03-01

    Hyperthermia cancer treatment is an adjunctive therapy that aims at killing the tumor cells with excessive heat that is usually generated by metal contrasts exposed to alternating magnetic field. The efficacy of hyperthermia is often limited by the heat damage to normal tissue due to indiscriminate distribution of the metal contrasts within the body. Tumor-targeting metal contrasts may reduce the toxicity of hyperthermia and improve the efficacy of thermotherapy against cancer. MUC1 is a glycoprotein over expressed in most adenocarcinomas, and represents an attractive therapeutic target. In this study, a MUC1 aptamer is conjugated with iron nanoparticles to construct adenocarcinoma-targeting metal contrasts. DNA hybridization studies confirmed that the aptamers were conjugated to the iron nanoparticles. Importantly, more aptamer-modified nanoparticles attached to the MUC1-positive cancer cells compared with the unmodified nanoparticles. Moreover, aptamer-modified nanoparticles significantly enhanced the targeted hyperthermia damage to MUC1-positive cancer cells in vitro (p < 0.05). The results suggest that MUC1 aptamer-modified metal particles may have potential in development of targeted hyperthermia therapy against adenocarcinomas.

  2. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    NASA Astrophysics Data System (ADS)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  3. Cell-based cytotoxicity assays for engineered nanomaterials safety screening: exposure of adipose derived stromal cells to titanium dioxide nanoparticles.

    PubMed

    Xu, Yan; Hadjiargyrou, M; Rafailovich, Miriam; Mironava, Tatsiana

    2017-07-11

    Increasing production of nanomaterials requires fast and proper assessment of its potential toxicity. Therefore, there is a need to develop new assays that can be performed in vitro, be cost effective, and allow faster screening of engineered nanomaterials (ENMs). Herein, we report that titanium dioxide (TiO 2 ) nanoparticles (NPs) can induce damage to adipose derived stromal cells (ADSCs) at concentrations which are rated as safe by standard assays such as measuring proliferation, reactive oxygen species (ROS), and lactate dehydrogenase (LDH) levels. Specifically, we demonstrated that low concentrations of TiO 2 NPs, at which cellular LDH, ROS, or proliferation profiles were not affected, induced changes in the ADSCs secretory function and differentiation capability. These two functions are essential for ADSCs in wound healing, energy expenditure, and metabolism with serious health implications in vivo. We demonstrated that cytotoxicity assays based on specialized cell functions exhibit greater sensitivity and reveal damage induced by ENMs that was not otherwise detected by traditional ROS, LDH, and proliferation assays. For proper toxicological assessment of ENMs standard ROS, LDH, and proliferation assays should be combined with assays that investigate cellular functions relevant to the specific cell type.

  4. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans.

    PubMed

    Longhi, Carline; Santos, Jussevania Pereira; Morey, Alexandre Tadachi; Marcato, Priscyla Daniely; Durán, Nelson; Pinge-Filho, Phileno; Nakazato, Gerson; Yamada-Ogatta, Sueli Fumie; Yamauchi, Lucy Megumi

    2016-05-01

    Silver nanoparticles (AgNPs) have been extensively studied because of their anti-microbial potential. Here, we evaluated the effect of biologically synthesized silver nanoparticles (AgNPbio) alone and in combination with fluconazole (FLC) against planktonic cells and biofilms of FLC-resistant Candida albicans AgNPbio exhibited a fungicidal effect, with a minimal inhibitory concentration (MIC) and fungicidal concentration ranging from 2.17 to 4.35 μg/ml. The combination of AgNPbio and FLC reduced the MIC of FLC around 16 to 64 times against planktonic cells of allC. albicans There was no significant inhibitory effect of AgNPbio on biofilm cells. However, FLC combined with AgNPbio caused a significant dose-dependent decrease in the viability of both initial and mature biofilm. All concentrations of AgNPbio, alone or in combination with FLC, were not cytotoxic to mammalian cells.The results highlight the effectiveness of the combination of AgNPbio with FLC against FLC-resistant C. albicans. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Nanoparticles and clinically applicable cell tracking

    PubMed Central

    Guenoun, Jamal; van Tiel, Sandra T; Krestin, Gabriel P

    2015-01-01

    In vivo cell tracking has emerged as a much sought after tool for design and monitoring of cell-based treatment strategies. Various techniques are available for pre-clinical animal studies, from which much has been learned and still can be learned. However, there is also a need for clinically translatable techniques. Central to in vivo cell imaging is labelling of cells with agents that can give rise to signals in vivo, that can be detected and measured non-invasively. The current imaging technology of choice for clinical translation is MRI in combination with labelling of cells with magnetic agents. The main challenge encountered during the cell labelling procedure is to efficiently incorporate the label into the cell, such that the labelled cells can be imaged at high sensitivity for prolonged periods of time, without the labelling process affecting the functionality of the cells. In this respect, nanoparticles offer attractive features since their structure and chemical properties can be modified to facilitate cellular incorporation and because they can carry a high payload of the relevant label into cells. While these technologies have already been applied in clinical trials and have increased the understanding of cell-based therapy mechanism, many challenges are still faced. PMID:26248872

  6. Efficient Intracellular Delivery of Molecules with High Cell Viability Using Nanosecond-Pulsed Laser-Activated Carbon Nanoparticles

    PubMed Central

    2015-01-01

    Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946

  7. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  8. Effects of subtoxic concentrations of TiO{sub 2} and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO{sub 2} and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO{sub 2} or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cellsmore » (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO{sub 2} nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO{sub 2} and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO{sub 2} nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO{sub 2} or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO{sub 2} and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO{sub 2} nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16

  9. 'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics.

    PubMed

    Jenkins, Stuart I; Weinberg, Daniel; Al-Shakli, Arwa F; Fernandes, Alinda R; Yiu, Humphrey H P; Telling, Neil D; Roach, Paul; Chari, Divya M

    2016-02-28

    Surface engineering to control cell behavior is of high interest across the chemical engineering, drug delivery and biomaterial communities. Defined chemical strategies are necessary to tailor nanoscale protein interactions/adsorption, enabling control of cell behaviors for development of novel therapeutic strategies. Nanoparticle-based therapies benefit from such strategies but particle targeting to sites of neurological injury remains challenging due to circulatory immune clearance. As a strategy to overcome this barrier, the use of stealth coatings can reduce immune clearance and prolong circulatory times, thereby enhancing therapeutic capacity. Polyethylene glycol (PEG) is the most widely-used stealth coating and facilitates particle accumulation in the brain. However, once within the brain, the mode of handling of PEGylated particles by the resident immune cells of the brain itself (the 'microglia') is unknown. This is a critical question as it is well established that microglia avidly sequester nanoparticles, limiting their bioavailability and posing a major translational barrier. If PEGylation can be proved to promote evasion of microglia, then this information will be of high value in developing tailored nanoparticle-based therapies for neurological applications. Here, we have conducted the first comparative study of uptake of PEGylated particles by all the major (immune and non-immune) brain cell types. We prove for the first time that PEGylated nanoparticles evade major brain cell populations - a phenomenon which will enhance extracellular bioavailability. We demonstrate changes in protein coronas around these particles within biological media, and discuss how surface chemistry presentation may affect this process and subsequent cellular interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Multifunctional Surface-Enhanced Raman Spectroscopy-Detectable Silver Nanoparticles Combined Photodynamic Therapy and pH-Triggered Chemotherapy.

    PubMed

    Srinivasan, Supriya; Bhardwaj, Vinay; Nagasetti, Abhignyan; Fernandez-Fernandez, Alicia; McGoron, Anthony J

    2016-12-01

    This research paper reports the development of a multifunctional anti-cancer prodrug system based on silver nanoparticles. This prodrug system is composed of 70-nm sized nanoparticles and features photodynamic therapeutic properties and active, pH-triggered drug release. The silver nanoparticles are decorated with a folic acid (FA) targeting ligand via an amide bond, and also conjugated to the chemotherapeutic drug doxorubicin (DOX) via an acid-cleavable hydrazone bond. Both FA and DOX are attached to the silver nanoparticles through a polyethylene glycol (PEG) spacer. This prodrug system can preferentially enter cells that over-express folic acid receptors, with subsequent intracellular drug release triggered by reduced intracellular pH. Moreover, the silver nanoparticle carrier system exhibits photodynamic therapeutic (PDT) activity, so that the cell viability of cancer cells that overexpress folate receptors can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of this system. The multifunctional nanoparticles can be probed intracellularly through Surface-Enhanced Raman Spectroscopy (SERS) and fluorescence spectroscopy. The current report explores the applicability of this multifunctional silver nanoparticle-based system for cancer theranostics.

  11. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    PubMed Central

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles. PMID:22754315

  12. The effect of novel magnetic nanoparticles on vascular endothelial cell function in vitro and in vivo.

    PubMed

    Su, Le; Han, Lei; Ge, Fei; Zhang, Shang Li; Zhang, Yun; Zhao, Bao Xiang; Zhao, Jing; Miao, Jun Ying

    2012-10-15

    Manufactured nanoparticles are currently used for many fields. However, their potential toxicity provides a growing concern for human health. In our previous study, we prepared novel magnetic nanoparticles (MNPs), which could effectively remove heavy metal ions and cationic dyes from aqueous solution. To understand its biocompatibility, we investigated the effect of the nanoparticles on the function of vascular endothelial cells. The results showed that the nanoparticles were taken up by human umbilical vein endothelial cells (HUVECs) and could inhibit cell proliferation at 400 μg/ml. An increase in nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity were induced, which companied with the decrease in caveolin-1 level. The endothelium in the aortic root was damaged and the NO level in serum was elevated after treated mice with 20mg/kg nanoparticles for 3 days, but it was integrated after treated with 5mg/kg nanoparticles. Meanwhile, an increase in eNOS activity and decrease in caveolin-1 level were induced in the endothelium. The data suggested that the low concentration of nanoparticles could not affect the function and viability of VECs. The high concentration of nanoparticles could inhibit VEC proliferation through elevation of the eNOS activity and NO production and thus present toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells.

    PubMed

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells.

  14. Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells

    NASA Astrophysics Data System (ADS)

    Strobel, L. A.; Hild, N.; Mohn, D.; Stark, W. J.; Hoppe, A.; Gbureck, U.; Horch, R. E.; Kneser, U.; Boccaccini, A. R.

    2013-07-01

    The present study investigates a new family of bioactive glass nanoparticles with and without Sr-doping focusing on the influence of the nanoparticles on human bone marrow stromal cells (hBMSCs) in vitro. The bioactive glass nanoparticles were fabricated by flame spray synthesis and a particle diameter of 30-35 nm was achieved. Glass nanoparticles were undoped (BG 13-93-0Sr) or doped with 5 wt% strontium (Sr) (BG 13-93-5Sr) and used at concentrations of 10 and 100 μg/cm² (particles per culture plate area), respectively. Cells were cultured for 14 days after which the samples were analysed regarding metabolic activity and expression of various bone-specific genes. Cell growth and morphology indicated the high cytocompatibility of the nanoparticulate bioactive glass. The presence of the nanoparticles enhanced cell growth compared to the plain polystyrene control group. At a concentration of 100 μg/cm², Sr-doped particles led to significantly enhanced gene expression of osteocalcin, collagen type 1 and vascular endothelial growth factor. Thus, Sr-doped nanoparticles showing a dose-dependent increase of osteogenic differentiation in hBMSCs are a promising biomaterial for bone regeneration purposes.

  15. Multifunctional superparamagnetic nanoparticles for enhanced drug transport in cystic fibrosis

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Rivera, Antonio C.; Cook, Nathaniel C.; Plumley, John B.; Withers, Nathan J.; Kopciuch, Michael; Smolyakov, Gennady A.; Huber, Dale L.; Smyth, Hugh D.; Osinski, Marek

    2012-10-01

    Iron oxide colloidal nanoparticles (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanoparticles to increase the effectiveness of administering antibiotics through aerosol inhalation using two mechanisms: directed particle movement in the presence of an inhomogeneous static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm, thereby enhancing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanoparticles of various sizes and morphologies were synthesized and tested for specific losses (heating power). Nanoparticles in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide / zinc selenide core/shell nanoparticles were prepared, in order to enable imaging of the iron oxide nanoparticles. We also report on synthesis and characterization of MnSe/ZnSeS alloyed quantum dots.

  16. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    PubMed Central

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The optimization of the nanoparticles’ size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents. PMID:24232575

  17. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery.

    PubMed

    Parodi, Alessandro; Molinaro, Roberto; Sushnitha, Manuela; Evangelopoulos, Michael; Martinez, Jonathan O; Arrighetti, Noemi; Corbo, Claudia; Tasciotti, Ennio

    2017-12-01

    The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles. Copyright © 2017. Published by Elsevier Ltd.

  18. Magnetic nanoparticles for selective heating of magnetically labelled cells in culture: preliminary investigation

    NASA Astrophysics Data System (ADS)

    Hilger, Ingrid; Kießling, Andreas; Romanus, Erik; Hiergeist, Robert; Hergt, Rudolf; Andrä, Wilfried; Roskos, Martin; Linss, Werner; Weber, Peter; Weitschies, Werner; Kaiser, Werner A.

    2004-08-01

    The minimally invasive elimination of tumours using heating as a therapeutic agent is an emerging technology in medical applications. Particularly, the intratumoural application of magnetic nanoparticles as potential heating sources when exposed to an alternating magnetic field has been demonstrated. The present work deals with the estimation of the basic relationships when the magnetic material has access and binds to structures on cell membranes of target cells at the tumour region, particularly as a consequence of administration through tumour supplying vessels. Therefore, using mouse endothelial cells in culture, the binding of dextran coated magnetic nanoparticles (mean hydrodynamic particle diameter 65 nm) was modelled using the periodate method. The efficacy of cell labelling was demonstrated by magnetorelaxometry (MRX)—a selective method for the detection of only those magnetic nanoparticles that were immobilized—as well as by electron microscopy and iron staining. The amount of iron immobilized on cells was found to be 153 ± 56 µg Fe per 1 × 107 cells as determined by atomic absorption spectrometry. Moreover, after exposure of those 1 × 107 labelled cells to an alternating magnetic field (frequency 410 kHz, amplitude 11 kA m-1) for 5 min, temperature increases of 2 °C were achieved. The consequences of particle immobilization are reflected by the results of the measurements related to the specific heating power (SHP) of the magnetic material. Basically, the heating potential is explained by the superposition of Brown and Neél relaxation while for immobilized nanoparticles the Brown contribution is absent. In the long term the data could open the door to targeted magnetic heating after further optimization of the heating potential of magnetic material as well as after functionalization with biomolecules which recognize specific structures on the surface of cells at the target region.

  19. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis.

    PubMed

    Li, Xiaoling; Wang, Zi; Li, Yanji; Bian, Kexin; Yin, Tian; Gao, Dawei

    2018-01-01

    As the widely use of gold nanoparticles (AuNPs) in drug delivery, the precise control on the size and morphology of the AuNPs is urgently required. In this scenario, traditional synthesis methods cannot meet current requirement because of their inherent defects. We have depicted here a novel method for fabricating monodispersed large size gold nanoparticles, based on the self-assembly of bacitracin. The AuNPs could be facilely, low-cost, and green synthesized with repeatability and controllability in this method. The Bac gold nanoparticles (Bac-AuNPs), composed by bacitracin core and gold shell, exhibited a spherical morphology in TEM and a face-centered cubic crystal structure in X-Ray diffraction and selected area electron diffraction. The mean diameter of the Bac-AuNPs was 89nm. The nanoparticles were mono-dispersed and the zeta potential of the nanoparticles was 4.1±0.64mV. Notably, in cell viability assay, the Bac-AuNPs showed less toxicity to HepG2 cells and HEK293 cells compared to small size AuNPs. Collectively, the size, rheological characteristic and the biocompatibility supported the use of the gold nanoparticles as intracellular delivery vehicles for drug delivery, especially for tumor therapy. And this study could provide a maneuverable, controllable and green strategy for the synthesis of AuNPs, which would be applied in disease diagnosis and therapy with biosafety. Copyright © 2017. Published by Elsevier B.V.

  20. Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals.

    PubMed

    Li, Chuan; Zhang, Jia; Zu, Yu-Jiao; Nie, Shu-Fang; Cao, Jun; Wang, Qian; Nie, Shao-Ping; Deng, Ze-Yuan; Xie, Ming-Yong; Wang, Shu

    2015-09-01

    Many phytochemicals show promise in cancer prevention and treatment, but their low aqueous solubility, poor stability, unfavorable bioavailability, and low target specificity make administering them at therapeutic doses unrealistic. This is particularly true for (-)-epigallocatechin gallate, curcumin, quercetin, resveratrol, and genistein. There is an increasing interest in developing novel delivery strategies for these natural products. Liposomes, micelles, nanoemulsions, solid lipid nanoparticles, nanostructured lipid carriers and poly (lactide-co-glycolide) nanoparticles are biocompatible and biodegradable nanoparticles. Those nanoparticles can increase the stability and solubility of phytochemicals, exhibit a sustained release property, enhance their absorption and bioavailability, protect them from premature enzymatic degradation or metabolism, prolong their circulation time, improve their target specificity to cancer cells or tumors via passive or targeted delivery, lower toxicity or side-effects to normal cells or tissues through preventing them from prematurely interacting with the biological environment, and enhance anti-cancer activities. Nanotechnology opens a door for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  1. Number of Nanoparticles per Cell through a Spectrophotometric Method - A key parameter to Assess Nanoparticle-based Cellular Assays.

    PubMed

    Unciti-Broceta, Juan D; Cano-Cortés, Victoria; Altea-Manzano, Patricia; Pernagallo, Salvatore; Díaz-Mochón, Juan J; Sánchez-Martín, Rosario M

    2015-05-15

    Engineered nanoparticles (eNPs) for biological and biomedical applications are produced from functionalised nanoparticles (NPs) after undergoing multiple handling steps, giving rise to an inevitable loss of NPs. Herein we present a practical method to quantify nanoparticles (NPs) number per volume in an aqueous suspension using standard spectrophotometers and minute amounts of the suspensions (up to 1 μL). This method allows, for the first time, to analyse cellular uptake by reporting NPs number added per cell, as opposed to current methods which are related to solid content (w/V) of NPs. In analogy to the parameter used in viral infective assays (multiplicity of infection), we propose to name this novel parameter as multiplicity of nanofection.

  2. Planar n-Si/PEDOT:PSS hybrid heterojunction solar cells utilizing functionalized carbon nanoparticles synthesized via simple pyrolysis route

    NASA Astrophysics Data System (ADS)

    Nam, Yoon-Ho; Kim, Dong-Hyung; Shinde, Sambhaji S.; Song, Jae-Won; Park, Min-Joon; Yu, Jin-Young; Lee, Jung-Ho

    2017-11-01

    Herein, we present a facile and simple strategy for in situ synthesis of functionalized carbon nanoparticles (CNPs) via direct pyrolysis of ethylenediaminetetraacetic acid (EDTA) on silicon surface. The CNPs were incorporated in hybrid planar n-Si and poly(3,4-etyhlenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) solar cells to improve device performance. We demonstrate that the CNPs-incorporated devices showed increased electrical conductivity (reduced series resistance) and minority carrier lifetime (better charge carrier collection) than those of the cells without CNPs due to the existence of electrically conductive sp 2-hybridized carbon at the heterojunction interfaces. With an optimal concentration of CNPs, the hybrid solar cells exhibited power conversion efficiency up to 11.95%, with an open-circuit voltage of 614 mV, short-circuit current density of 26.34 mA cm-2, and fill factor of 73.93%. These results indicate that our approach is promising for the development of highly efficient organic-inorganic hybrid solar cells.

  3. Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos

    PubMed Central

    2012-01-01

    Background Semiconductor Quantum dots (QDs) have become quite popular thanks to their properties and wide use in biological and biomedical studies. However, these same properties entail new challenges in understanding, predicting, and managing potential adverse health effects following exposure. Cadmium and selenium, which are the major components of the majority of quantum dots, are known to be acutely and chronically toxic to cells and organisms. Protecting the core of nanoparticles can, to some degree, control the toxicity related to cadmium and selenium leakage. Results This study successfully synthesized and characterized maltodextrin coated cadmium sulfide semiconductor nanoparticles. The results show that CdS-MD nanoparticles are cytotoxic and embryotoxic. CdS-MD nanoparticles in low concentrations (4.92 and 6.56 nM) lightly increased the number of HepG2 cell. A reduction in MDA-MB-231 cells was observed with concentrations higher than 4.92 nM in a dose response manner, while Caco-2 cells showed an important increase starting at 1.64 nM. CdS-MD nanoparticles induced cell death by apoptosis and necrosis in MDA-MD-231 cells starting at 8.20 nM concentrations in a dose response manner. The exposure of these cells to 11.48-14.76 nM of CdS-MD nanoparticles induced ROS production. The analysis of cell proliferation in MDA-MB-231 showed different effects. Low concentrations (1.64 nM) increased cell proliferation (6%) at 7 days (p < 0.05). However, higher concentrations (>4.92 nM) increased cell proliferation in a dose response manner (15-30%) at 7 days. Exposures of chicken embryos to CdS-MD nanoparticles resulted in a dose-dependent increase in anomalies that, starting at 9.84 nM, centered on the heart, central nervous system, placodes, neural tube and somites. No toxic alterations were observed with concentrations of < 3.28 nM, neither in cells nor chicken embryos. Conclusions Our results indicate that CdS-MD nanoparticles induce cell death and alter cell

  4. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    PubMed Central

    Gao, Wenjuan; Lai, James C. K.; Leung, Solomon W.

    2012-01-01

    As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel, and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures. PMID:22934070

  5. A pH-sensitive methenamine mandelate-loaded nanoparticle induces DNA damage and apoptosis of cancer cells.

    PubMed

    Zhang, Linhua; Hao, Wenbo; Xu, Lv; Gao, Yongfeng; Wang, Xusheng; Zhu, Dunwan; Chen, Zhuo; Zhang, Xudong; Chen, Hongbo; Mei, Lin

    2017-10-15

    Methenamine mandelate is a urinary antibacterial agent, which can be converted to formaldehyde in urine that has a relatively low pH of average 5.5-6.8. Here, we prepare a pH-sensitive PLGA-based nanoparticle containing both methenamine mandelate and NaHCO 3 . Methenamine mandelate/NaHCO 3 -coloaded nanoparticle could enter cells via endosome/lysosome pathway. The pH in lysosomes and endo-lysosomes is approximately 5.0. In the acidic environment, NaHCO 3 reacts with proton and produce CO 2 bubbles, which burst nanoparticles and lead to the rapidly release of methenamine mandelate. Meanwhile, methenamine mandelate was then quickly converted to a sufficient amount of formaldehyde in this acidic environment, which induced DNA damage and DNA damage response (DDR). Consequently, methenamine mandelate/NaHCO 3 -coloaded nanoparticles caused cell cycle arrest, cell growth inhibition and apoptosis of cancer cells. Moreover, methenamine mandelate/NaHCO 3 -coloaded nanoparticles also show intensive inhibitory effect on the growth of MCF-7 xenograft tumor in vivo. Therefore, methenamine mandelate/NaHCO 3 -coloaded nanoparticle is a promising type of formulation for the treatment of cancer, which could give the "old drug" methenamine mandelate a new anti-cancer function in clinical. Methenamine mandelate is a urinary antibacterial agent, which can be converted to formaldehyde in urine that has a relatively low pH of average 5.5-6.8. Here, we prepare a pH-sensitive PLGA-based nanoparticle containing both methenamine mandelate and NaHCO 3 . Methenamine mandelate/NaHCO 3 -coloaded nanoparticle could enter cells via endosome/lysosome pathway. The pH in lysosomes and endo-lysosomes is approximately 5.0. In the acidic environment, NaHCO 3 reacts with proton and produce CO 2 bubbles, which burst nanoparticles and lead to the rapidly release of methenamine mandelate. Meanwhile, methenamine mandelate was then quickly converted to a sufficient amount of formaldehyde in this acidic

  6. Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells.

    PubMed

    Chang, Zhi-Min; Wang, Zheng; Shao, Dan; Yue, Juan; Xing, Hao; Li, Li; Ge, Mingfeng; Li, Mingqiang; Yan, Huize; Hu, Hanze; Xu, Qiaobing; Dong, Wen-Fei

    2018-04-04

    Magnetic mesoporous silica nanoparticles (M-MSNs) are attractive candidates for the immunomagnetic isolation and detection of circulating tumor cells (CTCs). Understanding of the interactions between the effects of the shape of M-MSNs and CTCs is crucial to maximize the binding capacity and capture efficiency as well as to facilitate the sensitivity and efficiency of detection. In this work, fluorescent M-MSNs were rationally designed with sphere and rod morphologies while retaining their robust fluorescence and uniform surface functionality. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), both of the differently shaped M-MSNs-EpCAM obtained achieved efficient enrichment of CTCs and fluorescent-based detection. Importantly, rodlike M-MSNs exhibited faster immunomagnetic isolation as well as better performance in the isolation and detection of CTCs in spiked cells and real clinical blood samples than those of their spherelike counterparts. Our results showed that shape engineering contributes positively toward immunomagnetic isolation, which might open new avenues to the rational design of magnetic-fluorescent nanoprobes for the sensitive and efficient isolation and detection of CTCs.

  7. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations.

    PubMed

    Fasehee, Hamidreza; Dinarvand, Rassoul; Ghavamzadeh, Ardeshir; Esfandyari-Manesh, Mehdi; Moradian, Hanieh; Faghihi, Shahab; Ghaffari, Seyed Hamidollah

    2016-04-21

    A folate-receptor-targeted poly (lactide-co-Glycolide) (PLGA)-Polyethylene glycol (PEG) nanoparticle is developed for encapsulation and delivery of disulfiram into breast cancer cells. After a comprehensive characterization of nanoparticles, cell cytotoxicity, apoptosis induction, cellular uptake and intracellular level of reactive oxygen species are analyzed. In vivo acute and chronic toxicity of nanoparticles and their efficacy on inhibition of breast cancer tumor growth is studied. The folate-receptor-targeted nanoparticles are internalized into the cells, induce reactive oxygen species formation, induce apoptosis and inhibit cell proliferation more efficiently compared to the untargeted nanoparticles. The acute and toxicity test show the maximum dose of disulfiram equivalent of nanoparticles for intra-venous injection is 6 mg/kg while show significant decrease in the breast cancer tumor growth rate. It is believed that the developed formulation could be used as a potential vehicle for successful delivery of disulfiram, an old and inexpensive drug, into breast cancer cells and other solid tumors.

  8. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    PubMed

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Preparation and Characterization of Selenium Incorporated Guar Gum Nanoparticle and Its Interaction with H9c2 Cells

    PubMed Central

    Soumya, Rema Sreenivasan; Vineetha, Vadavanath Prabhakaran; Reshma, Premachandran Latha; Raghu, Kozhiparambil Gopalan

    2013-01-01

    This study deals with the preparation and characterization of selenium incorporated guar gum nanoparticle (SGG), and its effect on H9c2 cardiomyoblast. Herein, nanoprecipitation techniques had been employed for the preparation of SGG nanoparticle. The prepared nanoparticle had been subjected to various types of analytical techniques like transmission electron microscopy (TEM), X-ray diffraction (XRD) and particle size analysis to confirm the characteristics of nanoparticle as well as for selenium incorporation. Physical characterization of nanoparticle showed that the size of nanoparticles increase upto ∼69–173 nm upon selenium incorporation from ∼41–132 nm. Then the prepared nanoparticles were evaluated for its effect on H9c2 cells. In this regard, the effect of nanoparticle on various vital parameters of H9c2 cells was studied. Parameters like cell viability, uptake of selenium incorporated guar gum nanoparticle by the cells, effect of SGG on DNA integrity, apoptosis, reactive oxygen species generation, alteration in transmembrane potential of mitochondria and cytoskeletal integrity had been investigated. Viability results showed that up to 25 nM of SGG was safe (10.31%) but beyond that it induces cytotoxicity. Cellular uptake of selenium showed that cell permeability for SGG is significantly high compared to normal selenium (7.2 nM of selenium for 25 nM SGG compared with 5.2 nM selenium for 25 nM sodium selenite). There was no apoptosis with SGG and also it protects DNA from hydroxyl radical induced breakage. Likewise no adverse effect on mitochondria and cytoskeleton was observed for 25 nM of SGG. Overall results reveal that SGG is highly suitable for biomedical research application. PMID:24098647

  10. Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells.

    PubMed

    Alshatwi, Ali A; Athinarayanan, Jegan; Vaiyapuri Subbarayan, Periasamy

    2015-01-01

    Platinum-based chemotherapeutic drugs, including cisplatin, carboplatin, and oxaliplatin, have been used to manage cancer in spite of dose-dependent side effects, including nephrotoxicity, neurotoxicity and ototoxicity. These disadvantages have prompted the development of new strategies for cancer therapy that utilize functionalized nanoparticles as nanomedicines. In the present investigation, we have synthesized platinum nanoparticles using tea polyphenol (TPP) as both a reducing and surface modifying agent. The crystalline nature and morphology of the prepared TPP-functionalized platinum nanoparticles (TPP@Pt) were analyzed using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD results revealed that the TPP@Pt had a crystalline nature with a face-centered cubic structure. TEM imaging suggested that the TTP@Pt are flower shaped with a well-dispersed 30-60 nm-sized TPP@Pt formation. Cervical cancer cells (SiHa) were then treated with different concentrations of TPP@Pt. The effects of TPP@Pt on cell viability, nuclear morphology and cell cycle distribution were investigated. A cell viability assay revealed that the proliferation of SiHa cells was inhibited by TPP@Pt. Propidium iodide nuclear staining indicated that TPP@Pt induced nuclear fragmentation and chromatin condensation. Treatment with TPP@Pt significantly increased the percentage of cells in the G2/M phase, which indicates induced cell cycle arrest in the G2/M phase and an increased number of cells in the subG0 cell death phase. These findings highlight a potential use of TPP@Pt in cervical cancer treatment.

  11. Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics†

    PubMed Central

    Babu, Suresh; Cho, Jung-Hyun; Dowding, Janet M.; Heckert, Eric; Komanski, Chris; Das, Soumen; Colon, Jimmie; Baker, Cheryl H.; Bass, Michael; Self, William T.; Seal, Sudipta

    2011-01-01

    Cytocompatible, co-doped cerium oxide nanoparticles exhibited strong upconversion properties that were found to kill lung cancer cells by inducing apoptosis thereby demonstrating the potential to be used as clinical contrast agents for imaging and as therapeutic agents for treatment of cancer. PMID:20683524

  12. Mesenchymal Stem Cell/Red Blood Cell-Inspired Nanoparticle Therapy in Mice with Carbon Tetrachloride-Induced Acute Liver Failure.

    PubMed

    Liang, Hongxia; Huang, Ke; Su, Teng; Li, Zhenhua; Hu, Shiqi; Dinh, Phuong-Uyen; Wrona, Emily A; Shao, Chen; Qiao, Li; Vandergriff, Adam C; Hensley, M Taylor; Cores, Jhon; Allen, Tyler; Zhang, Hongyu; Zeng, Qinglei; Xing, Jiyuan; Freytes, Donald O; Shen, Deliang; Yu, Zujiang; Cheng, Ke

    2018-06-26

    Acute liver failure is a critical condition characterized by global hepatocyte death and often time needs a liver transplantation. Such treatment is largely limited by donor organ shortage. Stem cell therapy offers a promising option to patients with acute liver failure. Yet, therapeutic efficacy and feasibility are hindered by delivery route and storage instability of live cell products. We fabricated a nanoparticle that carries the beneficial regenerative factors from mesenchymal stem cells and further coated it with the membranes of red blood cells to increase blood stability. Unlike uncoated nanoparticles, these particles promote liver cell proliferation in vitro and have lower internalization by macrophage cells. After intravenous delivery, these artificial stem cell analogs are able to remain in the liver and mitigate carbon tetrachloride-induced liver failure in a mouse model, as gauged by histology and liver function test. Our technology provides an innovative and off-the-shelf strategy to treat liver failure.

  13. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field.

    PubMed

    Shen, Yajing; Wu, Congyu; Uyeda, Taro Q P; Plaza, Gustavo R; Liu, Bin; Han, Yu; Lesniak, Maciej S; Cheng, Yu

    2017-01-01

    Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells.

  14. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field

    PubMed Central

    Shen, Yajing; Wu, Congyu; Uyeda, Taro Q. P.; Plaza, Gustavo R.; Liu, Bin; Han, Yu; Lesniak, Maciej S.; Cheng, Yu

    2017-01-01

    Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells. PMID:28529648

  15. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

    PubMed

    Sun, Yimin; He, Kui; Zhang, Zefen; Zhou, Aijun; Duan, Hongwei

    2015-06-15

    In this work, we develop a new type of flexible and lightweight electrode based on highly dense Pt nanoparticles decorated free-standing graphene-carbon nanotube (CNT) hybrid paper (Pt/graphene-CNT paper), and explore its practical application as flexible electrochemical biosensor for the real-time tracking hydrogen peroxide (H2O2) secretion by live cells. For the fabrication of flexible nanohybrid electrode, the incorporation of CNT in graphene paper not only improves the electrical conductivity and the mechanical strength of graphene paper, but also increases its surface roughness and provides more nucleation sites for metal nanoparticles. Ultrafine Pt nanoparticles are further decorated on graphene-CNT paper by well controlled sputter deposition method, which offers several advantages such as defined particle size and dispersion, high loading density and strong adhesion between the nanoparticles and the substrate. Consequently, the resultant flexible Pt/graphene-CNT paper electrode demonstrates a variety of desirable electrochemical properties including large electrochemical active surface area, excellent electrocatalytic activity, high stability and exceptional flexibility. When used for nonenzymatic detection of H2O2, Pt/graphene-CNT paper exhibits outstanding sensing performance such as high sensitivity, selectivity, stability and reproducibility. The sensitivity is 1.41 µA µM(-1) cm(-2) with a linear range up to 25 µM and a low detection limit of 10 nM (S/N=3), which enables the resultant biosensor for the real-time tracking H2O2 secretion by live cells macrophages. Copyright © 2015. Published by Elsevier B.V.

  16. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    PubMed

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  17. Effective cellular internalization, cell cycle arrest and improved pharmacokinetics of Tamoxifen by cholesterol based lipopolymeric nanoparticles.

    PubMed

    Mazumdar, Samrat; Italiya, Kishan S; Sharma, Saurabh; Chitkara, Deepak; Mittal, Anupama

    2018-05-30

    The present study aims at the development of cholesterol based lipopolymeric nanoparticles for improved entrapment, better cell penetration and improved pharmacokinetics of Tamoxifen (TMX). Self-assembling cholesterol grafted lipopolymer, mPEG-b-(CB-{g-chol}-co-LA) was synthesized from poly(ethyleneglycol)-block-2-methyl-2-carboxyl-propylenecarboxylic acid-co-poly (l-lactide) [mPEG-b-(CB-{g-COOH}-co-LA)] copolymer followed by carbodiimide coupling for attaching cholesterol. Lipopolymeric nanoparticles were prepared using o/w solvent evaporation technique, which were subsequently characterized to determine its particle size, entrapment efficiency, release pattern and compared with mPEG-PLA nanoparticles. Further, in order to assess the in vitro efficacy, cytotoxicity studies, uptake, apoptosis assay and cell cycle analysis were performed in breast cancer cell lines (MCF-7 and 4T1). Finally, the pharmacokinetic profile of TMX loaded mPEG-b-(CB-{g-chol}-co-LA) lipopolymeric nanoparticles was also performed. TMX loaded lipopolymeric nanoparticles of particle size 151.25 ± 3.74 (PDI 0.123) and entrapment efficiency of 73.62 ± 3.08% were formulated. The haemolytic index, protein binding and in vitro drug release of the optimized nanoparticles were found to be comparable to that of the TMX loaded mPEG-PLA nanoparticles. Lipopolymeric nanoparticles demonstrated improved IC 50 values in breast cancer cells (22.2 μM in 4T1; 18.8 μM in MCF-7) than free TMX (27.6 μM and 23.5 μM respectively) and higher uptake efficiency. At IC 50 values, TMX loaded lipopolymeric nanoparticles induced apoptosis and cell cycle arrest (G 0 /G 1 phase) to similar extent as that of free drug. Pharmacokinetic studies indicated ∼2.5-fold increase in the half-life (t 1/2 ) (p < 0.001) and ∼2.7-fold (p < 0.001) increase in the mean residence time (MRT) of TMX following incorporation into lipopolymeric nanoparticles. Thus, mPEG-b-(CB-{g-chol}-co-LA) lipopolymeric

  18. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice.

    PubMed

    Oyewumi, Moses O; Yokel, Robert A; Jay, Michael; Coakley, Tricia; Mumper, Russell J

    2004-03-24

    The purpose of these studies was to compare the cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium (Gd) nanoparticles. Gd is a potential agent for neutron capture therapy (NCT) of tumors. Gd nanoparticles were engineered from oil-in-water microemulsion templates. To obtain folate-coated nanoparticles, a folate ligand [folic acid chemically linked to distearoylphosphatidylethanolamine (DSPE) via a PEG spacer MW 3350] was included in nanoparticle preparations. Similarly, control nanoparticles were coated with DSPE-PEG-MW 3350 (PEG-coated). Nanoparticles were characterized based on size, size distribution, morphology, biocompatibility and tumor cell uptake. In vivo studies were carried out in KB (human nasopharyngeal carcinoma) tumor-bearing athymic mice. Biodistribution and tumor retention studies were carried out at pre-determined time intervals after injection of nanoparticles (10 mg/kg). Gd nanoparticles did not aggregate platelets or activate neutrophils. The retention of nanoparticles in the blood 8, 16 and 24 h post-injection was 60%, 13% and 11% of the injected dose (ID), respectively. A maximum Gd tumor localization of 33+/-7 microg Gd/g was achieved. Both folate-coated and PEG-coated nanoparticles had comparable tumor accumulation. However, the cell uptake and tumor retention of folate-coated nanoparticles was significantly enhanced over PEG-coated nanoparticles. Thus, the benefits of folate ligand coating were to facilitate tumor cell internalization and retention of Gd-nanoparticles in the tumor tissue. The engineered nanoparticles may have potential in tumor-targeted delivery of Gd thereby enhancing the therapeutic success of NCT.

  19. Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte

    NASA Astrophysics Data System (ADS)

    Shah, Jyoti; Kumar Kotnala, Ravinder

    2017-09-01

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.

  20. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro.

    PubMed

    Yu, Chenchen; Hu, Yan; Duan, Jinhong; Yuan, Wei; Wang, Chen; Xu, Haiyan; Yang, Xian-Da

    2011-01-01

    MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.