Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing
2014-12-01
We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.
Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Min; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002; Zhang, De-Xiang
2016-05-15
An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB). - Graphical abstract: An amine-functionalized neutral Cd(II) boron imidazolate framework can load Ag NPs and show excellent photocatalytic degradation behavious for MB. - Highlights: • Amine-functionalization. • Neutral boron imidazolate framework. • Loading Ag nanoparticles (NPs). • Photocatalytic degradation of methylene blue.
Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.
Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong
2018-05-18
Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rao, Komal; Imran, Muhammad; Jabri, Tooba; Ali, Imdad; Perveen, Samina; Shafiullah; Ahmed, Shakil; Shah, Muhammad Raza
2017-10-15
Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khanadeev, Vitaly; Khlebtsov, Boris; Packirisamy, Gopinath; Khlebtsov, Nikolai
2017-03-01
Polymeric nanoparticles (NPs) are widely used for drug delivery applications due to high biodegradability, low toxicity and high loading capacity. The focus of this study is the development of photosensitizer Photosens (PS) loaded albumin NPs for efficient photodynamic therapy (PDT). To fabricate PS-loaded bovine serum albumin nanoparticles (BSA-PS NPs), we used a coacervation method with glutaraldehyde followed by passive loading of PS. Successful loading of PS was confirmed by appearance of characteristic peak in absorption spectrum which allows to determine the PS loading in BSA NPs. The synthesized BSA-PS NPs demonstrated low toxicity to HeLa cells at therapeutic concentrations of loaded PS. Compared to free PS solution, the synthesized BSA-PS NPs generated the singlet oxygen more effectively under laser irradiation at 660 nm. In addition, due to presence of various chemical groups on the surface of BSA-PS NPs, they are capable to adsorb on cell surface and accumulate in cells due to cellular uptake mechanisms. Owing to combination of PD and cell uptake advantages, BSA-PS NPs demonstrated higher efficacy of photodynamic damage to cancer cells as compared to free PS at equivalent concentrations. These results suggest that non-targeted BSA-PS NPs with high PD activity and low-fabrication costs of are promising candidates for transfer to PD clinic treatments.
Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj
2016-03-01
Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability. Copyright © 2015 Elsevier Inc. All rights reserved.
Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling
2015-03-02
Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer.
NASA Astrophysics Data System (ADS)
Zhao, Yanna; Guo, Yifei; Li, Ran; Wang, Ting; Han, Meihua; Zhu, Chunyan; Wang, Xiangtao
2016-07-01
The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PGD NPs possessed spherical morphology, nanoscaled particle size (approximately 182.4 nm), and narrow particle size distribution. Release of MTX from MTX/PGD NPs showed a sustained release manner and completed within 48 h. Hemolytic evaluation indicated MTX/PGD NPs presented good blood compatibility, and the cytotoxicity of nanoparticles against breast cancer cells in vitro, biodistribution in tumor tissue, and antitumor efficacy in vivo were enhanced significantly compared to MTX injection. According to the higher drug-loading content, enhanced antitumor efficacy, and appropriate particle size, MTX/PGD NPs as the drug delivery systems could have potential application for cancer chemotherapy in clinic.
Zhao, Yanna; Guo, Yifei; Li, Ran; Wang, Ting; Han, Meihua; Zhu, Chunyan; Wang, Xiangtao
2016-01-01
The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PGD NPs possessed spherical morphology, nanoscaled particle size (approximately 182.4 nm), and narrow particle size distribution. Release of MTX from MTX/PGD NPs showed a sustained release manner and completed within 48 h. Hemolytic evaluation indicated MTX/PGD NPs presented good blood compatibility, and the cytotoxicity of nanoparticles against breast cancer cells in vitro, biodistribution in tumor tissue, and antitumor efficacy in vivo were enhanced significantly compared to MTX injection. According to the higher drug-loading content, enhanced antitumor efficacy, and appropriate particle size, MTX/PGD NPs as the drug delivery systems could have potential application for cancer chemotherapy in clinic. PMID:27388443
Chen, Shuangxi; Guo, Feng; Deng, Tiantian; Zhu, Siqi; Liu, Wenyu; Zhong, Haijun; Yu, Hua; Luo, Rong; Deng, Zeyuan
2017-05-01
In order to improve oral absorption of insulin, especially the absorption at the colon, Eudragit S100® (ES)-coated chitosan nanoparticles loading insulin and a trans-activating transcriptional peptide (Tat) were employed as the vehicle. In vitro releases of insulin and Tat from ES-coated chitosan nanoparticles had a pH-dependant characteristic. A small amount of the contents was released from the coated nanoparticles at pH 1.2 simulated gastric fluid, while a fairly fast and complete release was observed in pH 7.4 medium. Caco-2 cell was used as the model of cellular transport and uptake studies. The results showed that the cellular transport and uptake of insulin for ES-coated chitosan nanoparticles co-loading insulin and Tat (ES-Tat-cNPs) were about 3-fold and 4-fold higher than those for the nanoparticles loading only insulin (ES-cNPs), respectively. The evaluations in vivo of ES-Tat-cNPs were conducted on diabetic rats and normal minipigs, respectively. The experimental results on rats revealed that the pharmacodynamical bioavailability of ES-Tat-cNPs had 2.16-fold increase compared with ES-cNPs. After oral administration of nanoparticle suspensions to the minipigs, insulin bioavailability of ES-Tat-cNPs was 1.73-fold higher than that of ES-cNPs, and the main absorption site of insulin was probably located in the colon for the two nanoparticles. In summary, this report provided an exploratory means for the improvement of oral absorption of insulin.
Smitha, K T; Anitha, A; Furuike, T; Tamura, H; Nair, Shantikumar V; Jayakumar, R
2013-04-01
Chitin and its derivatives have been widely used in drug delivery applications due to its biocompatible, biodegradable and non-toxic nature. In this study, we have developed amorphous chitin nanoparticles (150±50 nm) and evaluated its potential as a drug delivery system. Paclitaxel (PTX), a major chemotherapeutic agent was loaded into amorphous chitin nanoparticles (AC NPs) through ionic cross-linking reaction using TPP. The prepared PTX loaded AC NPs had an average diameter of 200±50 nm. Physico-chemical characterization of the prepared nanoparticles was carried out. These nanoparticles were proven to be hemocompatible and in vitro drug release studies showed a sustained release of PTX. Cellular internalization of the NPs was confirmed by fluorescent microscopy as well as by flow cytometry. Anticancer activity studies proved the toxicity of PTX-AC NPs toward colon cancer cells. These preliminary results indicate the potential of PTX-AC NPs in colon cancer drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of a new delivery system consisting in 'drug-in cyclodextrin-in PLGA nanoparticles'.
Mura, Paola; Maestrelli, Francesca; Cecchi, Matteo; Bragagni, Marco; Almeida, Antonio
2010-01-01
A combined approach based on drug cyclodextrin (CD) complexation and loading into PLGA nanoparticles (NP) has been developed to improve oxaprozin therapeutic efficiency. This strategy exploits the solubilizing and stabilizing properties of CDs and the prolonged-release and targeting properties of PLGA NPs. Drug-loaded NPs, prepared by double-emulsion, were examined for dimensions, zeta-potential and entrapment efficiency. Solid-state studies demonstrated the absence of drug-polymer interactions and assessed the amorphous state of the drug-CD complex loaded into NPs. Drug release rate from NPs was strongly influenced by the presence and kind of CD used. The percentage released at 24 h varied from 16% (plain drug-loaded NPs) to 50% (drug-betaCD-loaded NPs) up to 100% (drug-methylbetaCD-loaded NPs). This result suggests the possibility of using CD complexation not only to promote, but also to regulate drug release rate from NPs, by selecting the proper type of CD or CD combination.
Improved reactive nanoparticles to treat dentin hypersensitivity.
Toledano-Osorio, Manuel; Osorio, Estrella; Aguilera, Fátima S; Luis Medina-Castillo, Antonio; Toledano, Manuel; Osorio, Raquel
2018-05-01
The aim of this study was to evaluate the effectiveness of different nanoparticles-based solutions for dentin permeability reduction and to determine the viscoelastic performance of cervical dentin after their application. Four experimental nanoparticle solutions based on zinc, calcium or doxycycline-loaded polymeric nanoparticles (NPs) were applied on citric acid etched dentin, to facilitate the occlusion and the reduction of the fluid flow at the dentinal tubules. After 24 h and 7 d of storage, cervical dentin was evaluated for fluid filtration. Field emission scanning electron microscopy, energy dispersive analysis, AFM and Nano-DMA analysis were also performed. Complex, storage, loss modulus and tan delta (δ) were assessed. Doxycycline-loaded NPs impaired tubule occlusion and fluid flow reduction trough dentin. Tubules were 100% occluded in dentin treated with calcium-loaded NPs or zinc-loaded NPs, analyzed at 7 d. Dentin treated with both zinc-NPs and calcium-NPs attained the highest reduction of dentinal fluid flow. Moreover, when treating dentin with zinc-NPs, complex modulus values attained at intertubular and peritubular dentin were higher than those obtained after applying calcium-NPs. Zinc-NPs are then supposed to fasten active dentin remodeling, with increased maturity and high mechanical properties. Zinc-based nanoparticles are then proposed for effective dentin remineralization and tubular occlusion. Further research to finally prove for clinical benefits in patients with dentin hypersensitivity using Zn-doped nanoparticles is encouraged. Erosion from acids provokes dentin hypersensitivity (DH) which presents with intense pain of short duration. Open dentinal tubules and demineralization favor DH. Nanogels based on Ca-nanoparticles and Zn-nanoparticles produced an efficient reduction of fluid flow. Dentinal tubules were filled by precipitation of induced calcium-phosphate deposits. When treating dentin with Zn-nanoparticles, complex modulus values attained at intertubular and peritubular dentin were higher than those obtained after applying Ca-nanoparticles. Zn-nanoparticles are then supposed to fasten active dentin remodeling, with increased maturity and high mechanical properties. Zinc-based nanogels are, therefore, proposed for effective dentin remineralization and tubular occlusion. Further research to finally prove for clinical benefits in patients with dentin hypersensitivity using Zn-doped nanogels is encouraged. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Dalvi, Bhagyashree R; Siddiqui, Ejaz A; Syed, Asad S; Velhal, Shilpa M; Ahmad, Absar; Bandivdekar, Atmaram B; Devarajan, Padma V
2016-01-01
HIV/AIDS is a macrophage resident infection localized in the reticuloendothelial system and remote locations of brain and bone marrow. We present core shell nanoparticles of gold(AuNPs) and nevirapine(NVP) for targeted delivery to the multiple HIV reservoirs. The aim of the study was to design core shell NVP loaded AuNPs with high drug loading and to evaluate biodistribution of the nanoparticles in possible HIV reservoirs in vivo. A specific objective was to assess the possible synergy of AuNPs with NVP on anti-HIV activity in vitro. Core shell nanoparticles were prepared by double emulsion solvent evaporation method and characterized. Glyceryl monostearate-nevirapine-gold nanoparticles(GMS-NVP-AuNPs) revealed high entrapment efficiency (>70%), high loading (~40%), particle size <250 nm and zeta potential -35.9± 1.41mv and exhibited sustained release with good stability. Surface plasmon resonance indicated shell formation while SEM coupled EDAX confirmed the presence of Au. TEM confirmed formation of spherical core shell nanoparticles. GMS-NVP-AuNPs revealed low hemolysis (<10 %) and serum stability upto 6 h. GMS-NVP-AuNPs exhibited rapid, high and sustained accumulation in the possible HIV reservoir organs, including the major organs of liver, spleen, lymph nodes, thymus and also remote locations of brain, ovary and bone marrow. High cell viability and enhanced uptake in PBMC's and TZM-bl cells were observed. While uptake in PBMC's proposed monocytes/macrophages enabled brain delivery. GMS-NVP-AuNPs demonstrated synergistic anti-HIV activity. The superior anti-HIV activity in vitro coupled with extensive localization of the nanoparticles in multiple HIV reservoirs suggests great promise of the core shell GMS-NVP-AuNPs for improved therapy of HIV.
Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.
Zhang, Hui-zhu; Li, Xue-min; Gao, Fu-ping; Liu, Ling-rong; Zhou, Zhi-min; Zhang, Qi-qing
2010-01-01
The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (¹H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.
Cancer-targeting siRNA delivery from porous silicon nanoparticles.
Wan, Yuan; Apostolou, Sinoula; Dronov, Roman; Kuss, Bryone; Voelcker, Nicolas H
2014-10-01
Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.
NASA Astrophysics Data System (ADS)
Gao, Nansha; Chen, Zhihong; Xiao, Xiaojun; Ruan, Changshun; Mei, Lin; Liu, Zhigang; Zeng, Xiaowei
2015-08-01
In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide- co-glycolide)- b-poly(ethylene glycol)- b-poly(lactide- co-glycolide) (PLGA- b-PEG- b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA- b-PEG- b-PLGA was synthesized by ring-opening polymerization and characterized by 1H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol® as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol® did. All the results suggested that surface modification of PTX-loaded PLGA- b-PEG- b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.
Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy
NASA Astrophysics Data System (ADS)
Phuc Le, Thi Minh; Phuc Pham, Van; Lua Dang, Thi Minh; Huyen La, Thi; Hanh Le, Thi; Huan Le, Quang
2013-06-01
Nanoparticles (NPs) have been proven to be an effective delivery system with few side effects for anticancer drugs. In this study, curcumin-loaded NPs have been prepared by an ionic gelation method using chitosan (Chi) and pluronic®F-127 (PF) as carriers to deliver curcumin to the target cancer cells. Prepared NPs were characterized using Zetasizer, fluorescence microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our results showed that the encapsulation efficiency of curcumin was approximately 50%. The average size of curcumin-loaded PF/Chi NPs was 150.9 nm, while the zeta potential was 5.09 mV. Cellular uptake of curcumin-loaded NPs into HEK293 cells was confirmed by fluorescence microscopy.
Zhuo, Xuezhi; Lei, Tian; Miao, Linlin; Chu, Wei; Li, Xiaowen; Luo, Lifeng; Gou, Jingxin; Zhang, Yu; Yin, Tian; He, Haibing; Tang, Xing
2018-05-30
To develop an injectable formulation and improve the stability of disulfiram (DSF), DSF was encapsulated into mixed nanoparticles (DSF-NPs) through a high-pressure homogenization method. The Flory-Huggins interaction parameters (χ FH ) were calculated to predict the miscibility between DSF and the hydrophobic core, resulting in PCL 5000 selected as the hydrophobic block to encapsulate the DSF, as PCL 5000 had a lower χ FH 3.39 and the drug loading of the nanoparticles prepared by mPEG 5000 -PCL 5000 was relatively higher. mPEG 5000 -PCL 5000 and PCL 5000 were blended to reduce the leakage of DSF during preparation, as well as increase the stability of the nanoparticles. The cargo-loading capacity of the nanoparticles was improved from 3.35% to 5.50% by reducing the crystallinity of the PCL nanoparticle core, and the crystallinity decreased from 51.13% to 25.15% after adding medium chain triglyceride (MCT). The DSF-NPs prepared by the above method had a small particle size of 98.1 ± 10.54 nm, with a polydispersity index (PDI) of 0.036, as well as drug loading of 5.50%. Furthermore, DSF-NPs containing MCT showed higher stability than DSF-NPs without MCT and DSF-sol (DSF dissolved in Cremophor EL and ethanol) in water and 90% plasma-containing PBS. The pharmacokinetics proved that DSF-NPs containing MCT enhanced the DSF concentration in the blood. Finally, DSF-NPs effectively inhibited H22 xenograft tumor growth in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
Dmour, Isra; Taha, Mutasem O
2017-08-30
Chitosan-based nanoparticles prepared by ionotropic gelation are prone to stability issues. The aim of this work is to chemically modify chitosan by grafting to succinate, phthalate, glutarate and phenylsuccinate moieties and to investigate the suitability of the resulting polymers as covalently-crosslinked nanocarriers. Corresponding nanoparticles (NPs) were formulated by ionotropic gelation using tripolyphosphate (TPP) anion then they were covalently crosslinked using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). Infrared and thermal analysis confirmed the formation of phosphoramide bonds within the NPs indicating the involvement of TPP in covalent crosslinking. This is the first time to report phosphormide covalent crosslinking within nanoparticles matrices. The resulting NPs were found to resist drastic pH and calcium ion conditions. Size analysis indicated the NPs to be spherical and less than 500nm in diameter. Loading studies using Safranine O showed enhanced NPs drug loading upon covalent crosslinking compared to ionotropic gelling. Doxorubicin-loaded NPs were of superior cytotoxic properties compared to free doxorubicin. Copyright © 2017 Elsevier B.V. All rights reserved.
Ren, Hong; Zhang, Lingyu; An, Jiping; Wang, Tingting; Li, Lu; Si, Xiaoyan; He, Liu; Wu, Xiaotong; Wang, Chungang; Su, Zhongmin
2014-01-28
The polyacrylic acid@zeolitic imidazolate framework-8 (PAA@ZIF-8) nanoparticles (NPs) were first fabricated using a facile and simple route. It is worthwhile noting that the as-fabricated PAA@ZIF-8 NPs possessed ultrahigh doxorubicin (DOX) loading capability (1.9 g DOX g(-1) NPs), which were employed as pH-dependent drug delivery vehicles.
NASA Astrophysics Data System (ADS)
Aminu, Nafiu; Baboota, Sanjula; Pramod, K.; Singh, Manisha; Dang, Shweta; Ansari, Shahid H.; Sahni, Jasjeet K.; Ali, Javed
2013-11-01
Periodontal disease affects tooth-supporting structures and nanoparticles (NPs) have been a promising approach for its treatment. The purpose of the study was to develop triclosan-loaded poly-ɛ-caprolactone (PCL) NPs for the treatment of periodontal infections. Solvent displacement method was used to prepare NPs following Box-Behnken design. The NPs were evaluated with respect to particle size, polydispersity index, surface morphology, zeta potential, thermal properties, in vitro drug release, and cell viability assay. The optimized NPs were in the size range of 180-230 nm with a mean size of 205.61 ± 10.4 nm. Entrapment efficiency (EE) of 91.02 ± 2.4 % was obtained with a drug loading of 21.71 ± 1.3 %. About 97 % of drug was released in vitro after 3 h. NPs demonstrated almost 100 % cell viability in L929 cell lines. Shelf life of the nanoparticles was 17.07 months. PCL affected particle size whereas triclosan affected loading and EE. The optimized NPs were spherical with smooth surface and exhibited biphasic in vitro release pattern. NPs had optimum zeta potential and PDI and were stable on storage. Absence of cytotoxicity of NPs to L929 cells indicated its safety. Triclosan-loaded PCL nanoparticles could thus serve as a novel colloidal drug delivery system against periodontal infections.
Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling
2016-01-01
Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin-phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin-phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity.
Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling
2016-01-01
Purpose Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Methods Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Results Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. Conclusion With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity. PMID:26966360
Tan, Rong; Liu, Ying; Feng, Nianping; Zhao, Jihui
2011-06-01
To prepare vincristine sulphate loaded poly (butylcyanoacrylate) nanoparticles (VCR-PBCA-NPs) and to investigate the in vitro release charactersitics. VCR-PBCA-NPs were prepared by emulsion polymerization method, and characterized for morphology, particle size, drug encapsulation efficiency and loading efficiency. The formulation was optimized using central composite design and response surface methodology. In vitro release study of VCR-PBCA-NPs was performed by dialysis technique. Model fitting was used to determine the kinetics and to discuss the mechanism. The nanoparticles were spherical and uniform with a mean diameter of (98.9 +/- 3.05) nm. The drug encapsulation efficiency and loading efficiency were (55.23 +/- 0.96)% and (7.87 +/- 0.11)%, respectively. In vitro release results showed that 63.66% of VCR was released from VCR-PBCA-NPs in 4 h, and the Weibull model fitted VCR release pattern best. The VCR-PBCA-NPs prepared in this study showed sustained release compared with VCR solution.
Bhargava-Shah, Aarohi; Foygel, Kira; Devulapally, Rammohan; Paulmurugan, Ramasamy
2016-01-01
Background: This study explores the use of hydrophilic poly(ethylene glycol)-conjugated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NPs) as delivery system to improve the antitumor effect of antiobesity drug orlistat for triple-negative breast cancer (TNBC) therapy by improving its bioavailability. Materials & methods: PLGA-PEG-NPs were synthesized by emulsion-diffusion-evaporation method, and the experiments were conducted in vitro in MDA-MB-231 and SKBr3 TNBC and normal breast fibroblast cells. Results: Delivery of orlistat via PLGA-PEG-NPs reduced its IC50 compared with free orlistat. Combined treatment of orlistat-loaded NPs and doxorubicin or antisense-miR-21-loaded NPs significantly enhanced apoptotic effect compared with independent doxorubicin, anti-miR-21-loaded NPs, orlistat-loaded NPs or free orlistat treatments. Conclusion: We demonstrate that orlistat in combination with antisense-miR-21 or current chemotherapy holds great promise as a novel and versatile treatment agent for TNBC. PMID:26787319
Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao
2016-01-01
Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240
Liu, Chun; Cheng, Fenfen; Yang, Xiaoquan
2017-03-22
Curcumin is a poorly water-soluble drug, and its oral bioavailability is very low. Here, a novel self-assembly nanoparticle delivery carrier has been successfully developed by using soybean Bowman-Birk inhibitor (BBI) to improve the solubility, bioaccessibility, and oral absorption of curcumin. BBI is a unique protein, which can be resistant to the pH range and proteolytic enzymes in the gastrointestinal tract (GIT), bioavailable, and not allergenic. The encapsulation efficiencies (EE) and the loading capacities (LC) of curcumin in the curcumin-loaded BBI nanoparticles (Cur-BBI-NPs, size = 90.09 nm, PDI = 0.103) were 86.17 and 10.31%, respectively. The in vitro bioaccessibility of Cur-BBI-NPs was superior to that of curcumin-loaded sodium caseinate (SC) nanoparticles (Cur-SC-NPs) (as control). Moreover, Cur-BBI-NPs significantly enhanced the bioavailability of curcumin in rats compared with Cur-SC-NPs, and the clathrin-mediated endocytosis pathway probably contributed to the favorable bioavailability of Cur-BBI-NPs, as revealed by the cellular uptake inhibition study.
Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2015-10-21
Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.
NASA Astrophysics Data System (ADS)
Yuan, Conghui; Xu, Yiting; Luo, Weiang; Zeng, Birong; Qiu, Wuhui; Liu, Jie; Huang, Huiling; Dai, Lizong
2012-05-01
Core-shell nanospheres (CSNSs) with hydrophobic cores and hydrophilic shells were fabricated via a simple mini-emulsion polymerization for the stabilization of platinum nanoparticles (Pt-NPs). The CSNSs showed extremely high loading capacity of Pt-NPs (the largest loading amount of the Pt-NPs was about 49.2 wt%). Importantly, the Pt-NPs/CSNSs nanocomposites had unexpected stability in aqueous solution. DLS results revealed that the CSNSs loaded with Pt-NPs exhibited almost no aggregation after standing for a long time . However, the Pt-NPs immobilized on the CSNSs were not straitlaced: they could transport and redistribute between CSNSs freely when the environmental temperature was higher than the melting point of the CSNS shell. Owing to their excellent stability in aqueous solution, the surface of the Pt-NPs/CSNSs nanocomposites could be further decorated easily. For example, polyaniline (PANI)-coated Pt-NPs/CSNSs, nickel (Ni)-coated Pt-NPs/CSNSs and PANI/Pt-NPs dual-layer hollow nanospheres were facilely fabricated from the Pt-NPs/CSNS nanocomposites.
Vita, Francesco; Boccia, Alice; Marrani, Andrea G; Zanoni, Robertino; Rossi, Francesca; Arduini, Arturo; Secchi, Andrea
2015-10-19
A series of lipophilic gold nanoparticles (AuNPs) circa 5 nm in diameter and having a mixed organic layer consisting of 1-dodecanethiol and 1-(11-mercaptoundecyl) pyridinium bromide was synthesised by reacting tetraoctylammonium bromide stabilised AuNPs in toluene with different mixtures of the two thiolate ligands. A bidentate ω-alkylthiolate calix[4]arene derivative was instead used as a functional protecting layer on AgNPs of approximately 3 nm. The functionalised nanoparticles were characterised by transmission electron microscopy (TEM), and by UV/Vis and X-ray photoelectron spectroscopy (XPS). Recognition of the pyridinium moieties loaded on the AuNPs by the calix[4]arene units immobilised on the AgNPs was demonstrated in solution of weakly polar solvents by UV/Vis titrations and DLS measurements. The extent of Au-AgNPs aggregation, shown through the low-energy shift of their surface plasmon bands (SPB), was strongly dependent on the loading of the pyridinium moieties present in the organic layer of the AuNPs. Extensive aggregation between dodecanethiol-capped AuNPs and the Ag calix[4]arene-functionalised NPs was also promoted by the action of a simple N-octyl pyridinium difunctional supramolecular linker. This linker can interdigitate through its long fatty tail in the organic layer of the dodecanethiol-capped AuNPs, and simultaneously interact through its pyridinium moiety with the calix[4]arene units at the surface of the modified AgNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Fangyuan; Guo, Dingjia; Zhang, Wei; Yan, Qinying; Yang, Yan; Hong, Weiyong; Yang, Gensheng
2017-03-01
Biodegradable polymeric nanoparticles (NPs) have potential therapeutic applications; however, preparing NPs of a specific diameter and uniform size distribution is a challenge. In this work, we fabricated a microchannel system for the preparation of curcumin (Cur)-loaded NPs by the interfacial precipitation method, which rapidly and consistently generated stable NPs with a relatively smaller diameter, narrow size distribution, and higher drug-loading capacity and entrapment efficiency. Poly(ε-caprolactone)-poly(ethylene glycol)-poly (ε-caprolactone) triblock copolymers(PCEC) used as the carrier material was synthesized and characterized. Cur-loaded PCEC NPs had an average size of 167.2nm with a zeta potential of -29.23mV, and showed a loading capacity and drug entrapment efficiency of 15.28%±0.23% and 96.11%±0.13%, respectively. Meanwhile, the NPs demonstrated good biocompatibility and bioavailability, efficient cellular uptake, and long circulation time and a possible liver targeting effect in vivo. These results indicate that the Cur-loaded PCEC NPs can be used as drug carriers in controlled delivery systems and other biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Folic acid-modified soy protein nanoparticles for enhanced targeting and inhibitory.
Cheng, Xu; Wang, Xin; Cao, Zhipeng; Yao, Weijing; Wang, Jun; Tang, Rupei
2017-02-01
Soy protein isolate (SPI) was hydrolyzed by compound enzymes to give water soluble low molecular soy protein (SP). SP and folic acid (FA) modified SP was polymerized with N-3- acrylamidophenylboronic acid (APBA) monomer in aqueous solution to give SP nanoparticles (SP NPs) and FA modified nanoparticles (FA-SP NPs), respectively. These NPs display excellent stability in different conditions, and have a uniform spherical shape with a diameter around of 200nm. Doxorubicin (DOX) was then successfully loaded into SP and FA-SP NPs with a desirable loading content of 13.33% and 16.01%, respectively. The cellular uptake and cytotoxicity of DOX-loaded SP NPs and FA-SP NPs were investigated using the two-dimensional (2D) monolayer cell model and three-dimensional (3D) multicellular spheroids (MCs). In vivo, tumor accumulation and growth inhibitory were then examined using H22 tumor-bearing mice. All these results demonstrated that conjugation of FA can efficiently enhance SP-based NPs' tumor accumulation and antitumor effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Mosafer, Jafar; Abnous, Khalil; Tafaghodi, Mohsen; Mokhtarzadeh, Ahad; Ramezani, Mohammad
2017-04-01
A superparamagnetic iron oxide nanoparticles (SPIONs)/doxorubicin (Dox) co-loaded poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles targeted with AS1411 aptamer (Apt) against murine C26 colon carcinoma cells is successfully developed via a modified multiple emulsion solvent evaporation method for theranostic purposes. The mean size of SPIO/Dox-NPs (NPs) was 130nm with a narrow particle size distribution and Dox loading of 3.0%. The SPIO loading of 16.0% and acceptable magnetic properties are obtained and analyzed using thermogravimetric and vibration simple magnetometer analysis, respectively. The best release profile from NPs was observed in PBS at pH 7.4, in which very low burst release was observed. Nucleolin is a targeting ligand to facilitate anti-tumor delivery of AS1411-targeted NPs. The Apt conjugation to NPs (Apt-NPs) enhanced cellular uptake of Dox in C26 cancer cells. Apt-NPs enhance the cytotoxicity effect of Dox followed by a significantly higher tumor inhibition and prolonged animal survival in mice bearing C26 colon carcinoma xenografts. Furthermore, Apt-NPs enhance the contrast of magnetic resonance images in tumor site. Altogether, these Apt-NPs could be considered as a powerful tumor-targeted delivery system for their potential as dual therapeutic and diagnostic applications in cancers. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Varadharajaperumal, Pradeepa; Subramanian, Balakumar; Santhanam, Amutha
2017-09-01
Silver nanoparticles (AgNPs) are an important class of nanomaterials, which have used as antimicrobial and disinfectant agents due to their detrimental effect on target cells. In the present study it was explored to deliver a novel tamoxifen drug system that can be used in breast cancer treatment, based on chitosan coated silver nanoparticles on MCF-7 human breast cancer cells. AgNPs synthesized from Adenia hondala tuber extract were used to make the chitosan coated AgNPs (Ch-AgNPs), in which the drug tamoxifen was loaded on chitosan coated silver nanoparticles (Tam-Ch-AgNPs) to construct drug loaded nanoparticles as drug delivery system. The morphology and characteristics of the Ch-AgNPs were investigated by UV, FTIR, zeta potential and FESEM. Furthermore, the toxicity of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs was evaluated through cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3, DNA laddering, and TUNEL assay in human breast cancer cells (MCF-7) and HBL-100 continuous cell line as a control. Treatment of cancer cells with various concentrations of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs for 24 h revealed that Tam-Ch-AgNPs could inhibit cell viability and induce significant membrane leakage in a dose-dependent manner. Cells exposed to Tam-Ch-AgNPs showed increased reactive oxygen species and hydroxyl radical production when compared to AgNPs, Ch-AgNPs. Furthermore, the apoptotic effects of AgNPs, Ch-AgNPs, Tam-Ch-AgNPs were confirmed by activation of caspase-3 and DNA nuclear fragmentation. The present findings suggest that Tam-Ch-AgNPs could contribute to the development of a suitable anticancer drug delivery.
Zhao, Yinbo; Lin, Dayong; Wu, Fengbo; Guo, Li; He, Gu; Ouyang, Liang; Song, Xiangrong; Huang, Wei; Li, Xiang
2014-09-29
In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs) modified by Arg-Gly-Asp(RGD) peptide, loaded with curcumin (Cur), were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD-lpNPs) could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid))-mPEG (methoxyl poly(ethylene- glycol)), RGD-polyethylene glycol (PEG)-cholesterol (Chol) copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD-lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD-lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD-lpNPs was increased for human umbilical vein endothelial cells (HUVEC). Furthermore, Cur loaded RGD-lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD-lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD-lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD-lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.
One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy.
Jiang, Shan; Hua, Li; Guo, Zilong; Sun, Lin
2018-09-01
The present work reveals a new and simple one-pot green method to load doxorubicin (DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the formation of silica nanoparticles. The release profile, cellular uptake behavior, cytotoxicity and antitumor effect of SiNPs/DOX nanoparticles were investigated and compared to free DOX. The silica nanoparticles improved the cellular drug delivery efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group. The one-pot green synthesis system may have the potential to be developed as a promising drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Chun-ge; Zhu, Qiao-ling; Zhou, Yi; Liu, Yang; Chen, Wei-liang; Yuan, Zhi-Qiang; Yang, Shu-di; Zhou, Xiao-feng; Zhu, Ai-jun; Zhang, Xue-nong; Jin, Yong
2014-01-01
N-Succinyl-chitosan (NSC) was synthesized and NSC nanoparticles (NPs) with loaded osthole (Ost) (Ost/NSC-NPs) were prepared by emulsion solvent diffusion. Subsequently, low-density lipoprotein (LDL)-mediated NSC-NPs with loaded Ost (Ost/LDL-NSC-NPs) were obtained by coupling LDL with Ost/NSC-NPs through amide linkage. The average particle size of Ost/NSC-NPs was approximately 145 nm, the entrapment efficiency was 78.28%±2.06%, and the drug-loading amount was 18.09%±0.17%. The release of Ost from Ost/NSC-NPs in vitro showed a more evident sustained effect than the native material. The half maximal inhibitory concentration of Ost/LDL-NSC-NPs was only 16.23% that of the free Ost at 24 hours in HepG2 cells. Ost inhibited HepG2 cell proliferation by arresting cells in the synthesis phase of the cell cycle and by triggering apoptosis. Cellular uptake and subcellular localization in vitro and near-infrared fluorescence real-time imaging in vivo showed that Ost/LDL-NSC-NPs had high targeting efficacy. Therefore, LDL-NSC-NPs are a promising system for targeted Ost delivery to liver tumor. PMID:24966673
Novel method for synthesis of silver nanoparticles and their application on wool
NASA Astrophysics Data System (ADS)
Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria
2015-08-01
In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (RDye/Ag = [Dye]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy-dispersive X-ray spectroscopy (EDX). AgNPs loaded fabrics showed excellent antibacterial efficiency even after five washing cycles. To investigate the nature of interaction and bonding between the AgNPs and the wool substrate XPS measurements were performed.
Antibiotic loading and release studies of LSMO nanoparticles embedded in an acrylic polymer
NASA Astrophysics Data System (ADS)
Biswas, Sonali; Keshri, Sunita; Goswami, Sudipta; Isaac, Jinu; Ganguly, Swastika; Perov, Nikolai
2016-12-01
In this paper, we present the drug loading and release works of ? (LSMO) manganite nanoparticles (NPs). The LSMO NPs, grown using the sol-gel method, were embedded in an acrylic interpenetrating polymer network to make the sample applicable for biomedical purposes. The results of scanning electron microscopy showed that these NPs were well dispersed in the polymer. The grain size of these NPs lies in the range of 25-45 nm, as confirmed by transmission electron microscopy. The measurements of DC magnetization and hysteresis loops reveal that the basic magnetic behaviour of the LSMO NPs remained almost unaltered even after embedding in polymer, but with lower saturation value of magnetization. The drug loading and release studies of the grown sample were carried out using an antibiotic, ciprofloxacin. The minimum inhibitory effect of the sample loaded with this drug has exhibited high activity against different strains of bacteria, comparable to the pure ciprofloxacin.
Shah, Neha; Chaudhari, Kiran; Dantuluri, Prudhviraju; Murthy, R S R; Das, Susobhan
2009-08-01
The development of multidrug resistance (due to drug efflux by P-glycoproteins) is a major drawback with the use of paclitaxel (PTX) in the treatment of cancer. The rationale behind this study is to prepare PTX nanoparticles (NPs) for the reversal of multidrug resistance based on the fact that PTX loaded into NPs is not recognized by P-glycoproteins and hence is not effluxed out of the cell. Also, the intracellular penetration of the NPs could be enhanced by anchoring transferrin (Tf) on the PTX-PLGA-NPs. PTX-loaded PLGA NPs (PTX-PLGA-NPs), Pluronic((R))P85-coated PLGA NPs (P85-PTX-PLGA-NPs), and Tf-anchored PLGA NPs (Tf-PTX-PLGA-NPs) were prepared and evaluted for cytotoxicity and intracellular uptake using C6 rat glioma cell line. A significant increase in cytotoxicity was observed in the order of Tf-PTX-PLGA-NPs > P85-PTX-PLGA-NPs > PTX-PLGA-NPs in comparison to drug solution. In vivo biodistribution on male Sprague-Dawley rats bearing C6 glioma (subcutaneous) showed higher tumor PTX concentrations in animals administered with PTX-NPs compared to drug solution.
Ahmadi, Fatemeh; Ghasemi-Kasman, Maryam; Ghasemi, Shahram; Gholamitabar Tabari, Maryam; Pourbagher, Roghayeh; Kazemi, Sohrab; Alinejad-Mir, Ali
2017-01-01
Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR). FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was <50 nm. In vitro cytotoxicity assay suggested that curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of apoptosis in human cervical epithelioid carcinoma cancer cells, which might be regarded as an effective alternative strategy for cancer therapy.
Ahmadi, Fatemeh; Ghasemi-Kasman, Maryam; Ghasemi, Shahram; Gholamitabar Tabari, Maryam; Pourbagher, Roghayeh; Kazemi, Sohrab; Alinejad-Mir, Ali
2017-01-01
Natural herbal compounds have been widely introduced as an alternative therapeutic approach in cancer therapy. Despite potent anticancer activity of curcumin, its clinical application has been limited because of low water solubility and resulting poor bioavailability. In this study, we designed a novel ultrasonic-assisted method for the synthesis of curcumin-loaded chitosan–alginate–sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). Furthermore, antitumor effect of curcumin-loaded NPs was evaluated in vitro. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to characterize the properties of NPs. Antitumor activity of curcumin-loaded NPs was assessed by using MTT and quantitative real-time polymerase chain reaction (qRT-PCR). FE-SEM and AFM data revealed the spherical morphology, and the average size of NPs was <50 nm. In vitro cytotoxicity assay suggested that curcumin-loaded CS-ALG-STPP NPs displayed significant antitumor activity compared with the free curcumin. Gene expression level analyses showed that curcumin NPs significantly increased the apoptotic gene expression. Collectively, our results suggest that curcumin-loaded NPs significantly suppressed proliferation and promoted the induction of apoptosis in human cervical epithelioid carcinoma cancer cells, which might be regarded as an effective alternative strategy for cancer therapy. PMID:29238191
Guccione, Clizia; Oufir, Mouhssin; Piazzini, Vieri; Eigenmann, Daniela Elisabeth; Jähne, Evelyn Andrea; Zabela, Volha; Faleschini, Maria Teresa; Bergonzi, Maria Camilla; Smiesko, Martin; Hamburger, Matthias; Bilia, Anna Rita
2017-10-01
Andrographolide (AG) is a major diterpenoid of the Asian medicinal plant Andrographis paniculata which has shown exciting pharmacological potential for the treatment of inflammation-related pathologies including neurodegenerative disorders. Conversely, the low bioavailability of AG still represents a limiting factor for its use. To overcome these limitations, AG was loaded into human serum albumin based nanoparticles (HSA NPs) and poly ethylcyanoacrylate nanoparticles (PECA NPs). HSA NPs were prepared by thermal (HSAT AG NPs) and chemical cross-linking (HSAC AG NPs), while PECA AG NPs were produced by emulsion-polymerization. NPs were characterized in terms of size, zeta (ζ)-potential, polydispersity, and release studies of AG. In addition, the ability of free AG and AG-loaded in PECA and HSAT NPs to cross the blood-brain barrier (BBB) was assessed using an in vitro BBB model based on human cerebral microvascular endothelial cell line (hCMEC/D3). For BBB drug permeability assays, a quantitative UPLC-MS/MS method for AG in Ringer HEPES buffer was developed and validated according to international regulatory guidelines for industry. Free AG did not permeate the BBB model, as also predicted by in silico studies. HSAT NPs improved by two-fold the permeation of AG while maintaining the integrity of the cell layer, while PECA NPs temporarily disrupted BBB integrity. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Panwar, Richa; Sharma, Asvene K.; Kaloti, Mandeep; Dutt, Dharm; Pruthi, Vikas
2016-08-01
Ferulic acid (FA) is a widely distributed hydroxycinnamic acid found in various cereals and fruits exhibiting potent antioxidant and anticancer activities. However, due to low solubility and permeability, its availability to biological systems is limited. Non-toxic chitosan-tripolyphosphate pentasodium (CS-TPP) nanoparticles (NPs) are used to load sparingly soluble molecules and drugs, increasing their bioavailability. In the present work, we have encapsulated FA into the CS-TPP NPs to increase its potential as a therapeutic agent. Different concentrations of FA were tested to obtain optimum sized FA-loaded CS-TPP nanoparticles (FA/CS-TPP NPs) by ionic gelation method. Nanoparticles were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy (FTIR), thermogravimetric analyses and evaluated for their anticancer activity against ME-180 human cervical cancer cell lines. The FTIR spectra confirmed the encapsulation of FA and thermal analysis depicted its degradation profile. A concentration-dependent relationship between FA encapsulation efficiency and FA/CS-TPP NPs diameter was observed. Smooth and spherical FA-loaded cytocompatible nanoparticles with an average diameter of 125 nm were obtained at 40 µM FA conc. The cytotoxicity of 40 µM FA/CS-TPP NPs against ME-180 cervical cancer cell lines was found to be higher as compared to 40 µM native FA. Apoptotic morphological changes as cytoplasmic remnants and damaged wrinkled cells in ME-180 cells were visualized using scanning electron microscopic and fluorescent microscopic techniques. Data concluded that chitosan enveloped FA nanoparticles could be exploited as an excellent therapeutic drug against cancer cells proliferation.
Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles
NASA Astrophysics Data System (ADS)
Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Arpanaei, Ayyoob; Marvian, Amir Tayaranian
2015-04-01
Gallic acid (GA), as an antioxidant and antiparkinson agent, was loaded onto cationic human serum albumin nanoparticles (HSA NPs). Polyethylenimine (PEI)-coated HSA (PEI-HSA) NPs were prepared using three different methods: (I) coating negatively charged HSA NPs with positively charged PEI through attractive electrostatic interactions, (II) coating HSA NPs with PEI via covalent amide bond formation using N-(3-dimethylaminopropyl)- N-ethylcarbodiimide hydrochloride, and (III) coating HSA NPs with PEI via covalent bonding using glutaraldehyde for linking amine groups of PEI and amine groups of albumin NPs. Method II was selected since it resulted in a higher shift in the zeta potential value (mV) and less zeta potential value deviation, and also less size polydispersity. GA was loaded by adsorption onto the surface of PEI-HSA NPs of two different sizes: 117 ± 2.9 nm (PEI-P1) and 180 ± 3.1 nm (PEI-P2) NPs. Both GA-entrapment and GA-loading efficiencies increased slightly with the increasing size of NPs, and were affected intensely by the mass ratio of GA to PEI-HSA NPs. Free radical scavenging of GA was quantified based on the 2,2-diphenyl-1-picrylhydrazyl method. The obtained results showed that GA remains active during the preparation of GA-loaded PEI-HSA NPs. The cytotoxicities of HSA, PEI-HSA, and GA-loaded PEI-HSA NPs on the PC-12 cells, as the neuroendocrine cell line, were measured. Our results indicate that positively charged PEI-HSA NPs are good candidates for efficient and safe delivery of GA to the brain.
2014-01-01
The use of nebulizable, nanoparticle-based antimicrobial delivery systems can improve efficacy and reduce toxicity for treatment of multi-drug-resistant bacteria in the chronically infected lungs of cystic fibrosis patients. Nanoparticle vehicles are particularly useful for applying broad-spectrum silver-based antimicrobials, for instance, to improve the residence time of small-molecule silver carbene complexes (SCCs) within the lung. Therefore, we have synthesized multifunctional, shell cross-linked knedel-like polymeric nanoparticles (SCK NPs) and capitalized on the ability to independently load the shell and core with silver-based antimicrobial agents. We formulated three silver-loaded variants of SCK NPs: shell-loaded with silver cations, core-loaded with SCC10, and combined loading of shell silver cations and core SCC10. All three formulations provided a sustained delivery of silver over the course of at least 2–4 days. The two SCK NP formulations with SCC10 loaded in the core each exhibited excellent antimicrobial activity and efficacy in vivo in a mouse model of Pseudomonas aeruginosa pneumonia. SCK NPs with shell silver cation-load only, while efficacious in vitro, failed to demonstrate efficacy in vivo. However, a single dose of core SCC10-loaded SCK NPs (0.74 ± 0.16 mg Ag) provided a 28% survival advantage over sham treatment, and administration of two doses (0.88 mg Ag) improved survival to 60%. In contrast, a total of 14.5 mg of Ag+ delivered over 5 doses at 12 h intervals was necessary to achieve a 60% survival advantage with a free-drug (SCC1) formulation. Thus, SCK NPs show promise for clinical impact by greatly reducing antimicrobial dosage and dosing frequency, which could minimize toxicity and improve patient adherence. PMID:23718195
Zhang, DanDan; Kong, Yan Yan; Sun, Jia Hui; Huo, Shao Jie; Zhou, Min; Gui, Yi Ling; Mu, Xu; Chen, Huan; Yu, Shu Qin; Xu, Qian
2017-01-01
Combination chemotherapy in clinical practice has been generally accepted as a feasible strategy for overcoming multidrug resistance (MDR). Here, we designed and successfully prepared a co-delivery system named S-D1@L-D2 NPs, where denoted some smaller nanoparticles (NPs) carrying a drug doxorubicin (DOX) were loaded into a larger NP containing another drug (vincristine [VCR]) via water-in-oil-in-water double-emulsion solvent diffusion-evaporation method. Chitosan-alginate nanoparticles carrying DOX (CS-ALG-DOX NPs) with a smaller diameter of about 20 nm formed S-D1 NPs; vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-modified poly(lactic-co-glycolic acid) nanoparticles carrying VCR (TPGS-PLGA-VCR NPs) with a larger diameter of about 200 nm constituted L-D2 NPs. Some CS-ALG-DOX NPs loaded into TPGS-PLGA-VCR NPs formed CS-ALG-DOX@TPGS-PLGA-VCR NPs. Under the acidic environment of cytosol and endosome or lysosome in MDR cell, CS-ALG-DOX@TPGS-PLGA-VCR NPs released VCR and CS-ALG-DOX NPs. VCR could arrest cell cycles at metaphase by inhibiting microtubule polymerization in the cytoplasm. After CS-ALG-DOX NPs escaped from endosome, they entered the nucleus through the nuclear pore and released DOX in the intra-nuclear alkaline environment, which interacted with DNA to stop the replication of MDR cells. These results indicated that S-D1@L-D2 NPs was a co-delivery system of intracellular precision release loaded drugs with pH-sensitive characteristics. S-D1@L-D2 NPs could obviously enhance the in vitro cytotoxicity and the in vivo anticancer efficiency of co-delivery drugs, while reducing their adverse effects. Overall, S-D1@L-D2 NPs can be considered an innovative platform for the co-delivery drugs of clinical combination chemotherapy for the treatment of MDR tumor. PMID:28356731
NASA Astrophysics Data System (ADS)
Liang, Ruijing; Wang, Jing; Wu, Xian; Dong, Liyun; Deng, Renhua; Wang, Ke; Sullivan, Martin; Liu, Shanqin; Wu, Min; Tao, Juan; Yang, Xiangliang; Zhu, Jintao
2013-11-01
We present a simple, yet versatile strategy for the fabrication of uniform biodegradable polymer nanoparticles (NPs) with controllable sizes by a hand-driven membrane-extrusion emulsification approach. The size and size distribution of the NPs can be easily tuned by varying the experimental parameters, including initial polymer concentration, surfactant concentration, number of extrusion passes, membrane pore size, and polymer molecular weight. Moreover, hydrophobic drugs (e.g., paclitaxel (PTX)) and inorganic NPs (e.g., quantum dots (QDs) and magnetic NPs (MNPs)) can be effectively and simultaneously encapsulated into the polymer NPs to form the multifunctional hybrid NPs through this facile route. These PTX-loaded NPs exhibit high encapsulation efficiency and drug loading density as well as excellent drug sustained release performance. As a proof of concept, the A875 cell (melanoma cell line) experiment in vitro, including cellular uptake analysis by fluorescence microscope, cytotoxicity analysis of NPs, and magnetic resonance imaging (MRI) studies, indicates that the PTX-loaded hybrid NPs produced by this technique could be potentially applied as a multifunctional delivery system for drug delivery, bio-imaging, and tumor therapy, including malignant melanoma therapy.
NASA Astrophysics Data System (ADS)
Sadeghi, R.; Moosavi-Movahedi, A. A.; Emam-jomeh, Z.; Kalbasi, A.; Razavi, S. H.; Karimi, M.; Kokini, J.
2014-09-01
The desolvation method was successfully used to prepare nanoparticles from bovine serum albumin (BSA) using ethanol, acetone, and their mixtures (70:30 and 50:50, respectively). Ethanol and mixtures of ethanol and acetone led to the most spherical nanoparticles, while using pure acetone resulted in a mixture of spherical and rod shape nanoparticle. Acetone was the solvent with higher encapsulation efficiency equal to 99.2 ± 0.36 %. The polydispersity values of BSA NPs in this study were 0.045 ± 0.007, 0.065 ± 0.013, 0.091 ± 0.012, and 0.120 ± 0.016 for ethanol (100) 4×, Et:Ac (70:30) 4×, Et:Ac (50:50) 4×, and acetone (100) 3×, respectively. Encapsulation efficiencies of curcumin inside BSA NPs were 19.4 ± 2.2 and 19.8 ± 1.6 % for 1.0 and 1.5 molar ratios of curcumin to BSA, respectively. Crosslinking using glutaraldehyde improved the stability of BSA NPs and curcumin-loaded BSA NPs and both groups of nanoparticles were stable for 1 month; the lyophilized curcumin-loaded BSA NPs were able to redisperse in water. The particle size and polydispersity index of redispersed NPs were higher than the original NPs before lyophilization. The size distribution study shows that after 10 s of sonication most nanoparticles were well dispersed; however, a small but significant fraction formed aggregates. Sonication for 10 s decreased the effective diameter and polydispersity of the redispersed nanoparticles, while increasing the sonication time to 20 s did not show significant changes. In vitro release study of curcumin from BSA NPs showed that these biocompatible nanoparticles have the ability to be used as a carrier to improve controlled release of curcumin.
Enhanced tumor targeting of cRGD peptide-conjugated albumin nanoparticles in the BxPC-3 cell line.
Yu, Xinzhe; Song, Yunlong; Di, Yang; He, Hang; Fu, Deliang; Jin, Chen
2016-08-12
The emerging albumin nanoparticle brings new hope for the delivery of antitumor drugs. However, a lack of robust tumor targeting greatly limits its application. In this paper, cyclic arginine-glycine-aspartic-conjugated, gemcitabine-loaded human serum albumin nanoparticles (cRGD-Gem-HSA-NPs) were successfully prepared, characterized, and tested in vitro in the BxPC-3 cell line. Initially, 4-N-myristoyl-gemcitabine (Gem-C14) was formed by conjugating myristoyl to the 4-amino group of gemcitabine. Then, cRGD-HSA was synthesized using sulfosuccinimidyl-(4-N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC) cross-linkers. Finally, cRGD-Gem-HSA-NPs were formulated based on the nanoparticle albumin-bound (nab) technology. The resulting NPs were characterized for particle size, zeta potential, morphology, encapsulation efficiency, and drug loading efficiency. In vitro cellular uptake and inhibition studies were conducted to compare Gem-HSA-NPs and cRGD-Gem-HSA-NPs in a human pancreatic cancer cell line (BxPC-3). The cRGD-Gem-HSA-NPs exhibited an average particle size of 160 ± 23 nm. The encapsulation rate and drug loading rate were approximately 83 ± 5.6% and 11 ± 4.2%, respectively. In vitro, the cRGD-anchored NPs exhibited a significantly greater affinity for the BxPC-3 cells compared to non-targeted NPs and free drug. The cRGD-Gem-HSA-NPs also showed the strongest inhibitory effect in the BxPC-3 cells among all the analyzed groups. The improved efficacy of cRGD-Gem-HSA-NPs in the BxPC-3 cell line warrants further in vivo investigations.
Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy
Ge, Liang; You, Xinru; Huang, Jun; Chen, Yuejian; Chen, Li; Zhu, Ying; Zhang, Yuan; Liu, Xiqiang; Wu, Jun; Hai, Qian
2018-01-01
For enhanced anti-cancer performance, human serum albumin fragments (HSAFs) nanoparticles (NPs) were developed as paclitaxel (PTX) carrier in this paper. Human albumins were broken into fragments via degradation and crosslinked by genipin to form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs showed relative smaller particle size, higher drug loading, and improved sustained release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs have shown good anti-cancer performance. And the anticancer results confirmed that NPs with fast cellular internalization showed better tumor inhibition. These findings will not only provide a safe and robust drug delivery NP platform for cancer therapy, but also offer fundamental information for the optimal design of albumin based NPs. PMID:29946256
Wu, Puyuan; Liu, Qin; Li, Rutian; Wang, Jing; Zhen, Xu; Yue, Guofeng; Wang, Huiyu; Cui, Fangbo; Wu, Fenglei; Yang, Mi; Qian, Xiaoping; Yu, Lixia; Jiang, Xiqun; Liu, Baorui
2013-12-11
Non-toxic, safe materials and preparation methods are among the most important factors when designing nanoparticles (NPs) for future clinical application. Here we report a novel and facile method encapsulating anticancer drug paclitaxel (PTX) into silk fibroin (SF), a biocompatible and biodegradable natural polymer, without adding any toxic organic solvents, surfactants or other toxic agents. The paclitaxel loaded silk fibroin nanoparticles (PTX-SF-NPs) with a diameter of 130 nm were formed in an aqueous solution at room temperature by self-assembling of SF protein, which demonstrated mainly silk I conformation in the NPs. In cellular uptake experiments, coumarin-6 loaded SF NPs were taken up efficiently by two human gastric cancer cell lines BGC-823 and SGC-7901. In vitro cytotoxicity studies demonstrated that PTX kept its pharmacological activity when incorporating into PTX-SF-NPs, while SF showed no cytotoxicity to cells. The in vivo antitumor effects of PTX-SF-NPs were evaluated on gastric cancer nude mice exnograft model. We found that locoregional delivery of PTX-SF-NPs demonstrated superior antitumor efficacy by delaying tumor growth and reducing tumor weights compared with systemic administration. Furthermore, the organs of mice in NP treated groups didn't show obvious toxicity, indicating the in vivo safety of SF NPs. These results suggest that SF NPs are promising drug delivery carriers, and locoregional delivery of SF NPs could be a potential future clinical cancer treatment regimen.
Development of CMC hydrogels loaded with silver nano-particles for medical applications.
Hebeish, Ali; Hashem, M; El-Hady, M M Abd; Sharaf, S
2013-01-30
Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted as stabilizing for AgNPs, trisodium citrate was added to the reaction medium to assist CMC in establishing reduction of Ag(+) to AgNPs. The second strategy entailed preparation of CMC hydrogel which assists the in situ preparation of AgNPs under the same conditions. In both strategies, factors affecting the characterization of AgNPs-loaded CMC hydrogels were studied. Analysis and characterization of the so obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, EDX, UV-vis spectrophotometer and TEM. Antimicrobial activity of the hydrogels was examined and mechanisms involved in their synthesis were reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
Safavi, Maryam Sadat; Shojaosadati, Seyed Abbas; Yang, Hye Gyeong; Kim, Yejin; Park, Eun Ji; Lee, Kang Choon; Na, Dong Hee
2017-08-30
The purpose of this study was to prepare curcumin-loaded bovine serum albumin nanoparticles (CCM-BSA-NPs) by reducing agent-free self-assembly at room temperature. A 2 4 factorial design approach was used to investigate the CCM-BSA-NP preparation process at different pH values, temperatures, dithiothreitol amounts, and CCM/BSA mass ratios. Increasing the ionic strength enabled preparation of CCM-BSA-NPs at 25°C without reducing agent. CCM-BSA-NPs prepared under the optimized conditions at 25°C showed a particle size of 110±6nm, yield of 88.5%, and drug loading of 7.1%. The CCM-BSA-NPs showed strong antioxidant activity and neuroprotective effects in glutamate-induced mouse hippocampal neuronal HT22 cells. This study suggests that ionic strength can be a key parameter affecting the preparation of albumin-based NPs. Copyright © 2017 Elsevier B.V. All rights reserved.
Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S
2012-05-30
Mucoadhesive chitosan based films, incorporated with insulin loaded nanoparticles (NPs) made of poly(ethylene glycol)methyl ether-block-polylactide (PEG-b-PLA) have been developed and characterised. Blank-NPs were prepared by double emulsion solvent evaporation technique with varying concentrations of the copolymer (5 and 10%, w/v). The optimised formulation was loaded with insulin (model protein) at initial loadings of 2, 5 and 10% with respect to copolymer weight. The developed NPs were analysed for size, size distribution, surface charge, morphology, encapsulation efficiency and drug release. NPs showing negative (ζ)-potential (<-6 mV) with average diameter> 300 nm and a polydispersity index (P.I.) of ≈ 0.2, irrespective of formulation process, were achieved. Insulin encapsulation efficiencies of 70% and 30% for NPs-Insulin-2 and NPs-Insulin-5 were obtained, respectively. The in vitro release behaviour of both formulations showed a classic biphasic sustained release of protein over 5 weeks which was influenced by pH of the release medium. Optimised chitosan films embedded with 3mg of insulin loaded NPs were produced by solvent casting with homogeneous distribution of NPs in the mucoadhesive matrix, which displayed excellent physico-mechanical properties. The drug delivery system has been designed as a novel platform for potential buccal delivery of macromolecules. Copyright © 2012 Elsevier B.V. All rights reserved.
Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza
2010-08-09
The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies.
Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza
2010-01-01
The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies. PMID:20957168
Ding, Shukai; Attia, Mohamed F; Wallyn, Justine; Taddei, Chiara; Serra, Christophe A; Anton, Nicolas; Kassem, Mohamad; Schmutz, Marc; Er-Rafik, Meriem; Messaddeq, Nadia; Collard, Alexandre; Yu, Wei; Giordano, Michele; Vandamme, Thierry F
2018-02-06
In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.
Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging
Reisch, Andreas; Klymchenko, Andrey S.
2017-01-01
Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many-fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye-loaded NPs) have emerged recently as attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers. Superior brightness requires strong dye loading without aggregation caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ~10-fold for comparable size and start reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye-loaded NPs for in vitro and in vivo imaging are reviewed. PMID:26901678
Lei, Yang; Nosoudi, Nasim; Vyavahare, Naren
2014-01-01
Background and aims Elastin-specific medial arterial calcification (MAC) is an arterial disease commonly referred as Monckeberg’s sclerosis. It causes significant arterial stiffness, and as yet, no clinical therapy exists to prevent or reverse it. We developed albumin nanoparticles (NPs) loaded with disodium ethylene diaminetetraacetic acid (EDTA) that were designed to target calcified elastic lamina when administrated by intravenous injection. Methods and Results We optimized NP size, charge, and EDTA-loading efficiency (150~200 nm, zeta potential of − 22.89 ~ − 31.72 mV, loading efficiency for EDTA ~20 %) for in vivo targeting in rats. These NPs released EDTA slowly for up to 5 days. In both ex-vivo study and in vivo study with injury-induced local abdominal aortic calcification, we showed that elastin antibody-coated and EDTA-loaded albumin NPs targeted the damaged elastic lamina while sparing healthy artery. Intravenous NP injections reversed elastin-specific MAC in rats after four injections over a 2-week period. EDTA-loaded albumin NPs did not cause the side effects observed in EDTA injection alone, such as decrease in serum calcium (Ca), increase in urine Ca, or toxicity to kidney. There was no bone loss in any treated groups. Conclusion We demonstrate that elastin antibody-coated and EDTA-loaded albumin NPs might be a promising nanoparticle therapy to reverse elastin-specific MAC and circumvent side effects associated with systemic EDTA chelation therapy. PMID:25285609
Chitosan Ascorbate Nanoparticles for the Vaginal Delivery of Antibiotic Drugs in Atrophic Vaginitis
Vigani, Barbara; Puccio, Antonella; Ferrari, Franca
2017-01-01
The aim of the present work was the development of chitosan ascorbate nanoparticles (CSA NPs) loaded into a fast-dissolving matrix for the delivery of antibiotic drugs in the treatment of atrophic vaginitis. CSA NPs loaded with amoxicillin trihydrate (AX) were obtained by ionotropic gelation in the presence of pentasodium tripolyphosphate (TPP). Different CSA:TPP and CSA:AX weight ratios were considered and their influence on the particle size, polydispersion index and production yield were investigated. CSA NPs were characterized for mucoadhesive, wound healing and antimicrobial properties. Subsequently, CSA NPs were loaded in polymeric matrices, whose composition was optimized using a DoE (Design of Experiments) approach (simplex centroid design). Matrices were obtained by freeze-drying aqueous solutions of three hydrophilic excipients, polyvinylpirrolidone, mannitol and glycin. They should possess a mechanical resistance suitable for the administration into the vaginal cavity and should readily dissolve in the vaginal fluid. In addition to antioxidant properties, due to the presence of ascorbic acid, CSA NPs showed in vitro mucoadhesive, wound healing and antimicrobial properties. In particular, nanoparticles were characterized by an improved antimicrobial activity with respect to a chitosan solution, prepared at the same concentration. The optimized matrix was characterized by mechanical resistance and by the fast release in simulated vaginal fluid of nanoparticles characterized by unchanged size. PMID:29048359
Copper Loading of Preformed Nanoparticles for PET-Imaging Applications.
Lu, Hoang D; Wang, Leon Z; Wilson, Brian K; McManus, Simon A; Jumai'an, Jenny; Padakanti, Prashanth K; Alavi, Abass; Mach, Robert H; Prud'homme, Robert K
2018-01-31
Nanoparticles (NP) are promising contrast agents for positron emission tomography (PET) radionuclide imaging that can increase signal intensity by localizing clusters of PET radionuclides together. However, methods to load NPs with PET radionuclides suffer from harsh loading conditions or poor loading efficacies or result in NP surface modifications that alter targeting in vivo. We present the formation of water-dispersible, polyethylene glycol coated NPs that encapsulate phthalocyanines into NP cores at greater than 50 wt % loading, using the self-assembly technique Flash NanoPrecipitation. Particles from 70 to 160 nm are produced. Phthalocyanine NPs rapidly and spontaneously chelate metals under mild conditions and can act as sinks for PET radionuclides such as 64-Cu to produce PET-active NPs. NPs chelate copper(II) with characteristic rates of 1845 M -1 h -1 at pH 6 and 37 °C, which produced >90% radionuclide chelation within 1 h. NP physical properties, such as core composition, core fluidity, and size, can be tuned to modulate chelation kinetics. These NPs retain 64 Cu even in the presence of the strong chelator ethylene diamine tetraacetic acid. The development of these constructs for rapid and facile radionuclide labeling expands the applications of NP-based PET imaging.
Biophysical characterization of gold nanoparticles-loaded liposomes.
Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed
2012-10-01
Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infections.
Díez-Martínez, Roberto; García-Fernández, Esther; Manzano, Miguel; Martínez, Ángel; Domenech, Mirian; Vallet-Regí, María; García, Pedro
2016-01-18
Drug-loaded nanoparticles (NPs) can improve infection treatment by ensuring drug concentration at the right place within the therapeutic window. Poly(lactic-co-glycolic acid) (PLGA) NPs are able to enhance drug localization in target site and to sustainably release the entrapped molecule, reducing the secondary effects caused by systemic antibiotic administration. We have loaded auranofin, a gold compound traditionally used for treatment of rheumatoid arthritis, into PLGA NPs and their efficiency as antibacterial agent against two Gram-positive pathogens, Streptococcus pneumoniae and Streptococcus pyogenes was evaluated. Auranofin-PLGA NPs showed a strong bactericidal effect as cultures of multiresistant pneumococcal strains were practically sterilized after 6 h of treatment with such auranofin-NPs at 0.25 μM. Moreover, this potent bactericidal effect was also observed in S. pneumoniae and S. pyogenes biofilms, where the same concentration of auranofin-NPs was capable of decreasing the bacterial population about 4 logs more than free auranofin. These results were validated using a zebrafish embryo model demonstrating that treatment with auranofin loaded into NPs achieved a noticeable survival against pneumococcal infections. All these approaches displayed a clear superiority of loaded auranofin PLGA nanocarriers compared to free administration of the drug, which supports their potential application for the treatment of streptococcal infections.
Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres.
Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran
2017-01-01
Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD 50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings.
Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres
Bai, Kaikai; Hong, Bihong; He, Jianlin; Hong, Zhuan; Tan, Ran
2017-01-01
Selenium nanoparticles (SeNPs), as a special form of selenium (Se) supplement, have attracted worldwide attention due to their favorable properties and unique bioactivities. Herein, an eco-friendly and economic way to prepare stable SeNPs is introduced. SeNPs were synthesized in aqueous chitosan (CTS) and then embedded into CTS microspheres by spray-drying, forming selenium nanoparticles-loaded chitosan microspheres (SeNPs-M). The physicochemical properties including morphology, elemental state, size distribution and surface potential were investigated. Institute of Cancer Research mice were used as model animal to evaluate the bioactivities of SeNPs-M. Trigonal-phase SeNPs of ~35 nm were synthesized, and SeNPs-M physically embedding those SeNPs were successfully prepared. Amazingly, acute toxicity test indicated that SeNPs-M were much safer than selenite in terms of Se dose, with a LD50 of around 18-fold of that of selenite. In addition, SeNPs-M possessed powerful antioxidant activities, as evidenced by a dramatic increase of both Se retention and the levels of glutathione peroxidase, superoxide dismutase and catalase. The design of SeNPs-M can offer a new way for further development of SeNPs with a higher efficacy and better biosafety. Thus, SeNPs-M may be a potential candidate for further evaluation as an Se supplement with antioxidant properties and be used against Se deficiency in animals and human beings. PMID:28684913
Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K
2016-05-01
Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Transient loading of CD34+ hematopoietic progenitor cells with polystyrene nanoparticles.
Deville, Sarah; Hadiwikarta, Wahyu Wijaya; Smisdom, Nick; Wathiong, Bart; Ameloot, Marcel; Nelissen, Inge; Hooyberghs, Jef
2017-01-01
CD34 + hematopoietic progenitor cells (HPCs) offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP)-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS) NPs with HPCs. Interestingly, a transient association of the NPs with HPCs is observed, reaching a maximum within 1 hour and declining afterwards. This behavior is not seen in dendritic cells (CD34-DCs) differentiated from HPCs, which display a monotonic increase in NP load. We demonstrate that this transient interaction requires an energy-dependent cellular process, suggesting active loading and release of NPs by HPCs. This novel observation offers a unique approach to transiently equip HPCs. A simple theoretical approach modeling the kinetics of NP loading and release is presented, contributing to a framework of describing this phenomenon.
NASA Astrophysics Data System (ADS)
Amgoth, Chander; Joshi, Suman
2017-10-01
Synthesis and characterization of [(PNIPAM)-b-(Gly)] and mesoporous silica nanoparticles (MP-SiO2 NPs) were carried out separately and used to develop [(PNIPAM)-b-(Gly)]-(MP-SiO2 NPs). The synthesized MP-SiO2 NPs were meso porous in nature. The size of SiO2 NPs is in the range of ~180-250 nm (in diameter) with an average pore size of 2.8 nm within the particles. Interestingly, these mesoporous SiO2 NPs were loaded with anticancer drug (ITM-imatinib mesylate) fallow by the incubation for 24 h at RT. However, ITM loaded MP-SiO2 NPs were capped or covered with synthesized [(PNIPAM)-b-(Gly)] thin film. Here, thin film acts as protective layer for drug loaded MP-SiO2 NPs, with that leakage of drug molecules throughout its transport pathway can be avoided. Significantly, thermosensitive [(PNIPAM)-b-(Gly)] polymer thin film depletes at body temperature (~37 °C) and drug molecules come out from the pores of SiO2 NPs. However, developed [(PNIPAM)-b-(Gly)]-(MP-SiO2 NPs) is compatible and used for cell inhibition studies. After 24 h treatment, drug ITM released from [(PNIPAM)-b-(Gly)]-(MP-SiO2 NPs) shows significant (>90%) inhibition on leukemia blood cancer (K562) cells.
NASA Astrophysics Data System (ADS)
Lin, Cheng-Kuo; Chuang, Chung-Ching; Raghunath, Putikam; Srinivasadesikan, V.; Wang, T. T.; Lin, M. C.
2017-01-01
The effects of Ni-loading on TiO2 nanoparticles can pronouncedly reduce the barriers for dissociation of H2 from 48 kcal/mol on the pure TiO2 to as low as 1-3 kcal/mol on the loaded samples facilitating the hydrogenation of NPs. Preliminary data of our test indicate that the hydrogenation of Ni-loaded TiO2 NPs results in a significant UV-visible absorption extending well beyond 750 nm with an increase in water splitting efficiency by as much as 67 times over those of pure and hydrogenated TiO2 NPs without Ni-loading under our mild hydrogenation condition using 800 Torr of H2 at 300 °C for 3 h.
Natesan, Subramanian; Pandian, Saravanakumar; Ponnusamy, Chandrasekar; Palanichamy, Rajaguru; Muthusamy, Sivakumar; Kandasamy, Ruckmani
2017-11-01
Natural anti-oxidants resveratrol (RES) and quercetin (QUR) posses the ability to reduce intra ocular pressure efficiently. Concurrent administration of RES and QUR was able to enhance the bioavailability of RES. Present research work describes upsurge of QUR in RES loaded chitosan (CS) nanoparticles (NPs) and polyethylene glycol (PEG) modified CS NPs for improved delivery and synergic effects on reducing intra ocular pressure for the treatment of glaucoma. CS NPs and PEG modified CS NPs were prepared by ionic gelation of tripolyphosphate and CS. The synthesised NPs were spherical in shape and RES entrapment and loading efficiency in the formulation decreased with increasing PEG concentration. Particle size of the formulation increased while incorporating PEG and drugs. The crystalline nature of RES and QUR changed in the NPs and that was confirmed by XRD study. Free radical neutralising efficiency improved while incorporating QUR in the formulation. Ex-vivo corneal permeation of RES was higher from RES and QUR loaded formulation than RES alone containing NPs and free RES dispersion. RES and QUR loaded PEG modified CS NPs showed sustained and enhanced reduction of intra ocular pressure (5.5±0.5mmHg) in normotensive rabbits. Copyright © 2017 Elsevier B.V. All rights reserved.
Stimuli-sensitive nanoparticles for multiple anti-HIV microbicides
NASA Astrophysics Data System (ADS)
Giri, Namita; Oh, Byeongtaek; Lee, Chi H.
2016-05-01
This study is aimed to develop and evaluate an advanced intravaginal formulation for the delivery of multiple anti-HIV microbicides. Novel stimuli-sensitive nanoparticles (NPs) which protected the encapsulated drugs from being degraded in acidic pH conditions were made of Eudragit S-100® (ES100®), a pH-sensitive polymer. ES100® NPs were prepared using the quasi-emulsion solvent diffusion technique and loaded with two microbicides namely Tenofovir (TNF) and Etravirine (ETV). The effects of various fabrication parameters on the formulation properties were evaluated for the optimization of ES100® NPs. The morphology of the ES100® NPs was examined by scanning electron microscopy. The cytotoxicity of NPs containing microbicides individually or in a combination was assessed using cell viability and trans-epithelial electrical resistance (TEER) measurements. The cellular uptake rates of the model microbicides by human vaginal epithelial cells, VK2 E6/E7 cells, were evaluated using confocal microscopy and florescence-assisted cell sorting technique. ES100® NPs had a spherical shape, smooth surface, and uniform texture with a little aggregation. The average particle size for NPs loaded with TNF ranged from 125 to 230 nm, whereas those for ETV-loaded NPs ranged from 160 to 280 nm. ES100® NPs had zeta potential in the range of -5 to -10 mV. In-vitro release studies displayed the potential benefits of ES100® NPs in retaining and protecting the loaded microbicides at vaginal pH (acidic), but immediately releasing them as the pH changes to neutral or 7.4 (physiological pH). Cell viability studies demonstrated that ES100® NPs did not exert any cytotoxicity individually or in a combination of both microbicides. TEER measurements confirmed that ES100® NPs loaded with TNF and ETV did not cause any changes in the barrier integrity of VK2 E6/E7 cell monolayer. The cellular uptake study revealed that ES100® NPs were taken by vaginal epithelial cells through the endocytosis process and that the uptake rate of the model microbicides loaded in nanoparticles was greater than that in the solution. The ES100® NPs whose degradation rates are dependent on environmental pH would serve as an efficient platform for targeted delivery of multiple microbicides to protect women from sexually transmitted diseases including HIV-1 infection.
Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang
2016-10-20
Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhanced antitumor efficacy of folate targeted nanoparticles co-loaded with docetaxel and curcumin.
Hu, Liandong; Pang, Saixi; Hu, Qiaofeng; Gu, Deliang; Kong, Dongqian; Xiong, Xiaoyun; Su, Jianying
2015-10-01
The current study aimed to investigate whether the novel folate (FT) modified nanoparticles (NPs) co-loaded with docetaxel (DT) and curcumin (CU) (named as FT-NPs) could enhance the delivery efficiency to tumor compared with the NPs without FT (non-targeted NPs). FT-NPs were successfully formulated in this article. In vitro cytotoxic activity against A549 cells and in vivo antitumor activity of FT-NPs in S180 cell bearing mice were conducted. Cellular uptake test was used to evaluate uptake efficiency of FT-NPs. Histological observation was used to determine the lung security. Besides, the physical chemical properties such as stability, particle size, zeta potential, drug encapsulation efficiency, transmission electron microscopy (TEM) were also conducted. FT-NPs exhibited stronger growth inhibition effects on A549 cells compared with non-targeted NPs, moreover, the novel FT-NPs indicated more effective antitumor efficacy in inhibiting tumor growth. Confocal laser scanning microscopy indicated that the uptake of FT-NPs was facilitated and effective. Histological observation meant that FT-NPs were biocompatible and appropriate for pulmonary administration. These results confirmed that FT-NPs with relatively high drug loading capacity could effectively inhibit tumor growth and reduce toxicity. The novel FT-NPs could produce as an outstanding nanocarrier for the targeted treatment of cancers. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Peng, Qiang; Zhang, Zhi-Rong; Gong, Tao; Chen, Guo-Qiang; Sun, Xun
2012-02-01
The application of poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) for sustained and controlled delivery of hydrophilic insulin was made possible by preparing insulin phospholipid complex loaded biodegradable PHBHHx nanoparticles (INS-PLC-NPs). The INS-PLC-NPs produced by a solvent evaporation method showed a spherical shape with a mean particle size, zeta potential and entrapment efficiency of 186.2 nm, -38.4 mv and 89.73%, respectively. In vitro studies demonstrated that only 20% of insulin was released within 31 days with a burst release of 5.42% in the first 8 h. The hypoglycaemic effect in STZ induced diabetic rats lasted for more than 3 days after the subcutaneous injection of INS-PLC-NPs, which significantly prolonged the therapeutic effect compared with the administration of insulin solution. The pharmacological bioavailability (PA) of INS-PLC-NPs relative to insulin solution was over 350%, indicating that the bioavailability of insulin was significantly enhanced by INS-PLC-NPs. Therefore, the INS-PLC-NPs system is promising to serve as a long lasting insulin release formulation, by which the patient compliance can be enhanced significantly. This study also showed that phospholipid complex loaded biodegradable nanoparticles (PLC-NPs) have a great potential to be used as a sustained delivery system for hydrophilic proteins to be encapsulated in hydrophobic polymers. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shan, Xiaoqian; Yuan, Yuan; Liu, Changsheng
2015-01-01
The influence of polyethylene glycol (PEG) molar ratio on the nanoparticles (NPs) properties is described herein. Especially, a facile and nondestructive determination route has been raised to quantify the hemoglobin (Hb) amounts in NPs via an internal standard FTIR method. The subsequent results indicated that, briefly, the PEG molar ratio did negligible influence on the size distribution of NPs, however, it did have great effect on the NPs zeta potential and hydrophilicity as well as the Hb loading amount. These findings highlight that the PEG density on the surface is a key parameter affecting the NPs properties.
Enhanced anticancer activity of DM1-loaded star-shaped folate-core PLA-TPGS nanoparticles
NASA Astrophysics Data System (ADS)
Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Cai, Shiyu; Sun, Leilei; Chen, Tianyi
2014-10-01
The efficient delivery of therapeutic drugs into interested cells is a critical challenge to broad application of nonviral vector systems. In this research, emtansine (DM1)-loaded star-shaped folate-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (FA-PLA-TPGS-DM1) copolymer which demonstrated superior anticancer activity in vitro/ vivo in comparison with linear FA-PLA-TPGS nanoparticles was applied to be a vector of DM1 for FR+ breast cancer therapy. The DM1- or coumarin 6-loaded nanoparticles were fabricated, and then characterized in terms of size, morphology, drug encapsulation efficiency, and in vitro drug release. And the viability of MCF-7/HER2 cells treated with FA-DM1-nanoparticles (NPs) was assessed. Severe combined immunodeficient mice carrying MCF-7/HER2 tumor xenografts were treated in several groups including phosphate-buffered saline control, DM1, DM1-NPs, and FA-DM1-NPs. The antitumor activity was then assessed by survival time and solid tumor volume. All the specimens were prepared for formalin-fixed and paraffin-embedded tissue sections for hematoxylin-eosin staining. The data showed that the FA-DM1-NPs could efficiently deliver DM1 into MCF-7/HER2 cells. The cytotoxicity of DM1 to MCF-7/HER2 cells was significantly increased by FA-DM1-NPs when compared with the control groups. In conclusion, the FA-DM1-NPs offered a considerable potential formulation for FR+ tumor-targeting biotherapy.
Zhang, Yan; Wu, Xiaorong; Meng, Lingkuo; Zhang, Yu; Ai, Ruiting; Qi, Na; He, Haibing; Xu, Hui; Tang, Xing
2012-10-15
In the present study thiolated Eudragit L100 (Eul) based polymeric nanoparticles (NPs) were employed to develop an oral insulin delivery system. Sulfydryl modification was achieved by grafting cysteine to the carboxylic acid group of Eudragit L100, which displayed maximum conjugate level of 390.3±13.4 μmol thiol groups per gram. Eudragit L100-cysteine (Eul-cys) and Eul nanoparticles were prepared by the precipitation method, in which reversible swelling of pH-sensitive material was used for insulin loading and release. Nanoparticles were characterized in terms of their particle size, morphology, loading efficiency (LE%) and in vitro insulin release behavior. The NPs had an average size of 324.2±39.0 nm and 308.8±35.7 nm, maximal LE% of 92.2±1.7% and 96.4±0.5% for Eul-cys and Eul, respectively. The release profile of NPs in vitro showed pH-dependent behavior. Circular dichroism (CD) spectroscopy analysis proved that the secondary structure of the insulin released from NPs was unchanged compared with native insulin. The mucoadhesion study in vitro showed that Eul-cys NPs produced a 3-fold and 2.8-fold increase in rat jejunum and ileum compared with unmodified polymer NPs, respectively, which was due to the immobilization of thiol groups on Eudragit L100. Oral administration of insulin-loaded Eul-cys NPs produced a higher and prolonged hypoglycemic action, and the corresponding relative bioavailability of insulin was found to be 7.33±0.33%, an increase of 2.8-fold compared with Eul NPs (2.65±0.63%). This delivery system is a promising novel tool to improve the absorption of protein and peptide drugs in the intestinal tract. Copyright © 2012 Elsevier B.V. All rights reserved.
Doggui, Sihem; Sahni, Jasjeet Kaur; Arseneault, Madeleine; Dao, Lé; Ramassamy, Charles
2012-01-01
Curcumin, a natural polyphenolic pigment present in the spice turmeric (Curcuma longa), is known to possess a pleiotropic activity such as antioxidant, anti-inflammatory, and anti-amyloid-β activities. However, these benefits of curcumin are limited by its poor aqueous solubility and oral bioavailability. In the present study, a polymer-based nanoparticle approach has been utilized to deliver drugs to neuronal cells. Curcumin was encapsulated in biodegradable poly (lactide-co-glycolide) (PLGA) based-nanoparticulate formulation (Nps-Cur). Dynamic laser light scattering and transmission electronic microscopy analysis indicated a particle diameter ranging from 80 to 120 nm. The entrapment efficiency was 31% with 15% drug-loading. In vitro release kinetics of curcumin from Nps-Cur revealed a biphasic pattern with an initial exponential phase followed by a slow release phase. Cellular internalization of Nps-Cur was confirmed by fluorescence and confocal microscopy with a wide distribution of the fluorescence in the cytoplasm and within the nucleus. The prepared nanoformulation was characterized for cellular toxicity and biological activity. Cytotoxicity assays showed that void PLGA-nanoparticles (Nps) and curcumin-loaded PLGA nanoparticles (Nps-Cur) were nontoxic to human neuroblastoma SK-N-SH cells. Moreover, Nps-Cur was able to protect SK-N-SH cells against H2O2 and prevent the elevation of reactive oxygen species and the consumption of glutathione induced by H2O2. Interestingly, Nps-Cur was also able to prevent the induction of the redox-sensitive transcription factor Nrf2 in the presence of H2O2. Taken together, these results suggest that Nps-Cur could be a promising drug delivery strategy to protect neurons against oxidative damage as observed in Alzheimer's disease.
Yan, Jinhua; Abdelgawad, Abdelrahman M; El-Naggar, Mehrez E; Rojas, Orlando J
2016-08-20
Spray technique was used for the adsorption of in-situ silver nanoparticles (AgNPs) onto and inside the surface of nano- and micro- fibrillar cellulose (NFC and MFC) as well as filter paper. The abundance of hydroxyl and carboxyl groups located in NFC and MFC are used to stabilize Ag ions (Ag(+)) which were then in-situ reduced to (AgNPs) by chemical or UV reduction. The surface characteristic features, elemental analysis, particle size as well as size distribution of the obtained MFC, NFC and filter paper loaded with AgNPs were characterized via field emission scanning electron microscopy connected to energy dispersive X-ray spectroscopy (FESEM- EDX) and transmission electron microscopy (TEM). The associated chemical changes after growth of AgNPs onto the cellulose substrates were assessed by fourier transform infra-red (FT-IR) while the thermal stability of such systems were investigated by thermogravimetrical analyses (TGA). The antibacterial properties of AgNPs loaded NFC, MFC and filter paper as well was investigated against Escherichia Coli. The resulted data indicate that the particle size was found to be 11 and 26nm for AgNPs nucleated on NFC and MFC-based papers respectively. The antibacterial activity of AgNPs loaded MFC exhibited higher antibacterial activity than that of AgNPs loaded NFC. Overall, the present research demonstrates facile and fast method for in-situ antibacterial AgNPs loading on cellulose substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arora, Divya; Kumar, Amit; Gupta, Prasoon; Chashoo, Gousia; Jaglan, Sundeep
2017-12-01
In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95 ± 4.44 nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26 ± 4.48% and 7.09 ± 0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Li, Chuanlong; Hu, Hongbo; Zhang, Xuehong
2017-12-01
Herein, a facile biosynthesis of silver nanoparticles (AgNPs) and AgNPs-loaded chitosan-alginate constructs with biomedical potentialities is reported. The UV-vis spectroscopic profile confirmed the synthesis of AgNPs using methanolic leaves extract of Euphorbia helioscopia. The newly developed AgNPs were characterized using various analytical and imaging techniques including UV-vis and FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The optimally yielded AgNPs at 24h reaction period were loaded onto various chitosan-alginate constructs. A maximum of 95% loading efficiency (LE) was recorded with a chitosan: alginate ratio at 2:1, followed by 81% at 2:2 ratios. The anti-bacterial activities of AgNPs and AgNPs loaded chitosan-alginate constructs were tested against six bacterial strains i.e. Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Morganella morganii and Haemophilus influenza. A significant reduction in the log values was recorded for all test constructs, in comparison to the initial bacterial count (control value, i.e., 1.5×10 8 CFU/mL). The cytotoxicity profile revealed complete biocompatibility against normal cell line i.e. L929. Almost all constructs showed considerable cytotoxicity up to certain extant against human epithelial cells (HeLa) cancer cells. In summary, the highest antibacterial activities along with anti-cancer behavior both suggest the biomedical potentialities of newly engineered AgNPs and AgNPs-loaded chitosan-alginate constructs. Copyright © 2017 Elsevier B.V. All rights reserved.
Lim, Young H; Tiemann, Kristin M; Heo, Gyu Seong; Wagers, Patrick O; Rezenom, Yohannes H; Zhang, Shiyi; Zhang, Fuwu; Youngs, Wiley J; Hunstad, David A; Wooley, Karen L
2015-02-24
The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach, and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials-silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5-5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against 10 contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract.
Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha
2015-11-28
The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the first time, Hypericin containing NPs are prepared by combining the miniemulsion technique with the solvent evaporation method. This approach yields an efficient loading of the NPs with Hypericin and allows for additional cargo molecules. To monitor the release of Hypercin from the NPs, an additional fluorescent lipophilic dye Coumarin-6 is incorporated in the NPs. Temporal and spatiotemporal image correlation spectroscopy is used to determine the fate of the NPs carrying the potential cargo. Both directed and non-directed motions are detected. By using image cross-correlation spectroscopy and specific fluorescent labeling of endosomes, lysosomes and mitochondria, the dynamics of the cargo loaded NPs in association with the organelles is studied. Copyright © 2015 Elsevier B.V. All rights reserved.
Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine.
Asgary, Vahid; Shoari, Alireza; Baghbani-Arani, Fahimeh; Sadat Shandiz, Seyed Ataollah; Khosravy, Mohammad Sadeq; Janani, Alireza; Bigdeli, Razieh; Bashar, Rouzbeh; Cohan, Reza Ahangari
2016-01-01
Green synthesis of nanoparticles by plant extracts plays a significant role in different applications. Recently, several studies were conducted on the use of nanoparticles as adjuvant. The main aim of this study was to evaluate green synthesized silver nanoparticles (AgNPs) as adjuvant in rabies veterinary vaccine and compare the results with the existing commercially available alum adjuvant. In the current study, AgNPs were prepared by the reduction of aqueous silver nitrate by leaf extract of Eucalyptus procera. The formation of AgNPs was confirmed by ultraviolet (UV)-visible spectrophotometer, scanning electron microscopy, dynamic light scattering, and X-ray diffraction analysis. Then, different amounts of AgNPs (200 µg, 400 µg, 600 µg, and 800 µg) were added to 1 mL of inactivated rabies virus. The loaded vaccines (0.5 mL) were injected intraperitoneally into six Naval Medical Research Institute mice in each group on days 1 and 7. On the 15th day, the mice were intracerebrally challenged with 0.03 mL of challenge rabies virus (challenge virus strain-11, 20 lethal dose [20 LD50]), and after the latency period of rabies disease in mice (5 days), the mice were monitored for 21 days. Neutralizing antibodies against rabies virus were also investigated using the rapid fluorescent focus inhibition test method. The National Institutes of Health test was performed to determine the potency of optimum concentration of AgNPs as adjuvant. In vitro toxicity of AgNPs was assessed in L929 cell line using MTT assay. In addition, in vivo toxicity of AgNPs and AgNPs-loaded vaccine was investigated according to the European Pharmacopeia 8.0. AgNPs were successfully synthesized, and the identity was confirmed by UV-visible spectrophotometry and X-ray diffraction analysis. The prepared AgNPs were spherical in shape, with an average size of 60 nm and a negative zeta potential of -14 mV as determined by dynamic light scattering technique. The highest percentage of viability was observed at 15 mg/kg and 20 mg/kg of AgNPs-loaded vaccine concentrations after injecting into the mice. The calculated potencies for alum-containing vaccine and AgNPs-loaded vaccine (dose 15 mg/kg) were 1.897 and 1.303, respectively. MTT assay demonstrated that alum at the concentration of 10 mg/mL was toxic, but AgNPs were not toxic. The in vivo toxicity also elucidated the safety of AgNPs and AgNPs-loaded vaccine in mice and dogs, respectively. In the current study, for the first time, the adjuvanticity effect of green synthesized AgNPs on veterinary rabies vaccine potency with no in vivo toxicity was elucidated according to the European Pharmacopeia 8.0.
Zhu, Dunwan; Tao, Wei; Zhang, Hongling; Liu, Gan; Wang, Teng; Zhang, Linhua; Zeng, Xiaowei; Mei, Lin
2016-01-01
Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle (NP) surfaces with ligands and/or additional polymeric layers. In this work, we developed DTX-loaded formulations using polydopamine-modified NPs synthesized using D-α-tocopherol polyethylene glycol 1000 succinate-poly(lactide) (pD-TPGS-PLA/NPs). To target liver cancer cells, galactosamine was conjugated on the prepared NPs (Gal-pD-TPGS-PLA/NPs) to enhance the delivery of DTX via ligand-mediated endocytosis. The size and morphology of pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs changed obviously compared with TPGS-PLA/NPs. In vitro studies showed that TPGS-PLA/NPs, pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs had similar release profiles of DTX. Both confocal laser scanning microscopy and flow cytometric results showed that coumarin 6-loaded Gal-pD-TPGS-PLA/NPs had the highest cellular uptake efficiency in liver cancer cell line HepG2. Moreover, DTX-loaded Gal-pD-TPGS-PLA/NPs inhibited the growth of HepG2 cells more potently than TPGS-PLA/NPs, pD-TPGS-PLA/NPs, and a clinically available DTX formulation (Taxotere®). The in vivo biodistribution experiments show that the Gal-pD-TPGS-PLA/NPs are specifically targeted to the tumor. Furthermore, the in vivo anti-tumor effects study showed that injecting DTX-loaded Gal-pD-TPGS-PLA/NPs reduced the tumor size most significantly on hepatoma-bearing nude mice. These results suggest that Gal-pD-TPGS-PLA/NPs prepared in the study specifically interacted with the hepatocellular carcinoma cells through ligand-receptor recognition and they may be used as a potentially eligible drug delivery system targeting liver cancers. Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle surfaces with ligands and/or additional polymeric layers. In this work, we developed docetaxel (DTX)-loaded formulations using polydopamine-modified NPs synthesized from D-α-tocopherol polyethylene glycol 1000 succinate-poly(lactide) (pD-TPGS-PLA/NPs). To target liver cancer cells, galactosamine was conjugated on the prepared NPs (Gal-pD-TPGS-PLA/NPs) to enhance the delivery of DTX via ligand-mediated endocytosis. Both confocal laser scanning microscopy and flow cytometric results showed that coumarin 6-loaded Gal-pD-TPGS-PLA/NPs had the highest cellular uptake efficiency for liver cancer cell line HepG2. The in vivo biodistribution experiments show that the Gal-pD-TPGS-PLA/NPs are specifically targeted to the tumor. Furthermore, the in vivo anti-tumor effects study showed that injecting DTX-loaded Gal-pD-TPGS-PLA/NPs reduced the tumor size most significantly on hepatoma-bearing nude mice. These results suggest that Gal-pD-TPGS-PLA/NPs prepared in the study specifically interacted with the hepatocellular carcinoma cells through ligand-receptor recognition and they could be used as a potentially eligible drug delivery system targeting liver cancers. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hamed, Laroui; Emilie, Viennois; Xiao, Bo; Canup, Brandon S.; Duke, Geem; Denning, Timothy L.; Didier, Merlin
2014-01-01
Patients suffering from Inflammatory Bowel Disease (IBD) are currently treated by systemic drugs that can have significant side effects. Thus, it would be highly desirable to target TNFα siRNA (a therapeutic molecule) to the inflamed tissue. Here, we demonstrate that TNFα siRNA can be efficiently loaded into nanoparticles (NPs) made of poly (lactic acid) poly (ethylene glycol) block copolymer (PLA-PEG), and that grafting of the Fab’ portion of the F4/80 Ab (Fab’-bearing) onto the NP surface via maleimide/thiol group-mediated covalent bonding improves the macrophage (MP)-targeting kinetics of the NPs to RAW264.7 cells in vitro. Direct binding was shown between MPs and the Fab’-bearing NPs. Next, we orally administered hydrogel (chitosan/alginate)-encapsulated Fab’-bearing TNFα-siRNA-loaded NPs to 3% dextran sodium sulfate (DSS)-treated mice and investigated the therapeutic effect on colitis. In vivo, the release of TNFα-siRNA-loaded NPs into the mouse colon attenuated colitis more efficiently when the NPs were covered with Fab’-bearing, compared to uncovered NPs. All DSS-induced parameters of colonic inflammation (e.g., weight loss, myeloperoxidase activity, and Iκbα accumulation) were more attenuated Fab’-bearing NPs loaded with TNFα siRNA than without the Fab’-bearing. Grafting the Fab’-bearing onto the NPs improved the kinetics of endocytosis as well as the MP-targeting ability, as indicated by flow cytometry. Collectively, our results show that Fab’-bearing PLA-PEG NPs are powerful and efficient nanosized tools for delivering siRNAs into colonic macrophages. PMID:24810114
de Campos, Vânia Emerich Bucco; Teixeira, Cesar Augusto Antunes; da Veiga, Venicio Feo; Júnior, Eduardo Ricci; Holandino, Carla
2010-01-01
Inhibition of tumor growth induced by treatment with direct electric current (DC) has been reported in several models. One of the mechanisms responsible for the antitumoral activity of DC is the generation of oxidative species, known as chloramines. With the aim of increasing chloramine production in the electrolytic medium and optimizing the antitumoral effects of DC, poly(ɛ-caprolactone) (PCL) nanoparticles (NPs) loaded with the amino acid tyrosine were obtained. The physical–chemical characterization showed that the NPs presented size in nanometric range and monomodal distribution. A slightly negative electrokinetic potential was also found in both blank NPs and l-tyrosine-loaded PCL NPs. The yield of the loading process was approximately 50%. Within 3 h of dissolution assay, a burst release of about 80% l-tyrosine was obtained. The in vitro cytotoxicity of DC was significantly increased when associated with l-tyrosine-loaded NPs, using a murine multidrug-resistant melanoma cell line model. This study showed that the use of the combination of nanotechnology and DC has a promising antineoplastic potential and opens a new perspective in cancer therapy. PMID:21187948
NASA Astrophysics Data System (ADS)
Patel, Z.; Berlin, J.; Abidi, W.
2018-02-01
One of the drugs used to treat ovarian cancer is cisplatin. However, cisplatin kills normal surrounding tissue in addition to cancer cells. To improve tumor targeting efficiency, our lab uses neural stem cells (NSCs), which migrate directly to ovarian tumors. If free cisplatin is loaded into NSCs for targeted drug delivery, it will kill the NSCs. To prevent the drug cisplatin from killing both the NSCs and normal surrounding tissue, our lab synthesizes silica nanoparticles (SiNPs) that act as a protective carrier. The big picture here is to maximize efficiency of tumor targeting using NSCs and minimize toxicity to these NSCs using SiNPs. The goal of this project is to optimize the stability of SiNPs, which is important for efficient drug loading. To do this, the concentration of tetraethyl orthosilicate (TEOS), one of the main components of SiNPs, was varied. We hypothesized that more TEOS equates to more stable SiNPs because TEOS contributes carbon to SiNPs, and thus a tightly-packed chemical structure results in a stable particle. Then, the stability of the SiNPs were checked in cell media and phosphate buffered saline (PBS). Lastly, the SiNPs were analyzed for their porosity using the transmission electron microscope (TEM). TEM imaging showed white spots in the 200-800 μL TEOS batches and no white spots in the 1000-1800 μL TEOS batches. The white spots were pores, which indicate instability. We concluded that the ultimate factor that determines the stability of SiNPs (100 nm) is the concentration of organic substance.
Cui, Yan-Na; Xu, Qing-Xing; Davoodi, Pooya; Wang, De-Ping; Wang, Chi-Hwa
2017-06-01
Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors.
Cui, Yan-na; Xu, Qing-xing; Davoodi, Pooya; Wang, De-ping; Wang, Chi-Hwa
2017-01-01
Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors. PMID:28552909
Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer
Qu, Na; Lee, Robert J; Sun, Yating; Cai, Guangsheng; Wang, Junyang; Wang, Mengqiao; Lu, Jiahui; Meng, Qingfan; Teng, Lirong; Wang, Di; Teng, Lesheng
2016-01-01
Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs) were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween). A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%), and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. PMID:27555767
Shalviri, Alireza; Raval, Gaurav; Prasad, Preethy; Chan, Carol; Liu, Qiang; Heerklotz, Heiko; Rauth, Andrew Michael; Wu, Xiao Yu
2012-11-01
This work investigated the capability of a new nanoparticulate system, based on terpolymer of starch, polymethacrylic acid and polysorbate 80, to load and release doxorubicin (Dox) as a function of pH and to evaluate the anticancer activity of Dox-loaded nanoparticles (Dox-NPs) to overcome multidrug resistance (MDR) in human breast cancer cells in vitro. The Dox-NPs were characterized by Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The cellular uptake and cytotoxicity of the Dox-loaded nanoparticles were investigated using fluorescence microscopy, flow cytometry, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. The nanoparticles were able to load up to 49.7±0.3% of Dox with a high loading efficiency of 99.9±0.1%, while maintaining good colloidal stability. The nanoparticles released Dox at a higher rate at acidic pH attributable to weaker Dox-polymer molecular interactions evidenced by ITC. The Dox-NPs were taken up by the cancer cells in vitro and significantly enhanced the cytotoxicity of Dox against human MDR1 cells with up to a 20-fold decrease in the IC50 values. The results suggest that the new terpolymeric nanoparticles are a promising vehicle for the controlled delivery of Dox for treatment of drug resistant breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Run; Xu, Yong
2017-02-01
The aim of present study was to develop VIN-loaded mPEG-PLA nanoparticle systems. The VIN mPEG-PLA nanoparticles were prepared using an emulsion solvent evaporation method, and studied their particle size, morphology, encapsulation efficiency and drug-loading coefficient. Moreover, the nanoparticles were evaluated on the drug release behaviors in vitro and bioavailability in vivo. The results show that the spherical nanoparticles obtained were negatively charged with a zeta potential of about -23.4 mV and characterized ∼110 nm with a narrow size distribution. The encapsulation efficiency and drug loading of prepared NPs were 76.4 ± 6.3 and 9.2 ± 2.2% (n=5), respectively. The in vitro release showed that the percent of accumulated dissolution of VIN NPs in phosphate-buffered saline 6.8 over 24 h was <80%, which was almost 100% of VIN in commercial injections. The in vivo study indicated that systemic absorption of VIN was significantly enhanced by incorporating into mPEG-PLA NPs compared with VIN injection (2.87-fold in AUC 0- t ). The results suggested that the form of VIN in mPEG-PLA NPs could enter the body circulation to perform sustained release in vitro and in vivo.
[PLA-O-CMC nanoparticles: HGF loading and delivery behaviors in vitro].
Li, Zhifeng; Chen, Zhong; Chang, Ren'an
2011-04-01
This paper is aimed to observe the hepatocyte growth factor (HGF) loading and delivery ability of polylactic acid and oxygen carboxymethylated chitosan copolyer nanoparticles (PLA-O-CMC NPs). We prepared PLA-O-CMC NPs loaded with HGF by ultrasound in combination with magnetic stirring method. The NPs were characterized by transmission electron microscopy, embedding ratio; drug loading and drug delivery behaviors were observed by ELISA. The characteristics of PLA-O-CMC NPs loaded with HGF showed that the mean size was 139. 82 nm, polydispersity was 0.108, maximal HGF-embedding ratio was 76. 32%. The cumulative HGF release gradually increased in the first 24 hours in vitro, with sharp increasing in the first 7 hours, and moderate and steady increasing in the following 17 hours. The HGF had a burst release in the first 24 hours, and in this process the released HGF took up 36.7% of the whole release. From the second day,the HGF release decreased obviously, while it kept on releasing steadily (45-55 ng/d) for quite long time up to 30 days. The experiment proved that PLA-O-CMC NPs is a favourable carrier of HGF. PLA-O-CMC NPs loaded with HGF could rapidly release HGF in vitro. The released HGF reached the effective drug concentration and maintained the certain effective drug concentration for a long time.
Kumar, C Senthil; Raja, M D; Sundar, D Sathish; Gover Antoniraj, M; Ruckmani, K
2015-09-05
In this study, green synthesis of gold nanoparticles (AuNPs) was achieved using the extract of eggplant as a reducing agent. Hyaluronic acid (HA) serves as a capping and targeting agent. Metformin (MET) was successfully loaded on HA capped AuNPs (H-AuNPs) and this formulation binds easily on the surface of the liver cancer cells. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, HR-TEM, particle size analyser and zeta potential measurement. Toxicity studies of H-AuNPs in zebra fish confirmed the in vivo safety of the AuNPs. The in vitro cytotoxicity results showed that the amount of MET-H-AuNPs enough to achieve 50% inhibition (IC50) was much lower than free MET. Flow cytometry analysis showed the significant reduction in G2/M phase after treatment with MET-H-AuNPs, and molecular level apoptosis were studied using western blotting. The novelty of this study is the successful synthesis of AuNPs with a higher MET loading and this formulation exhibited better targeted delivery as well as increased regression activity than free MET in HepG2 cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Darvishi, B; Manoochehri, S; Esfandyari-Manesh, M; Samadi, N; Amini, M; Atyabi, F; Dinarvand, R
2015-12-01
The aim of the present work was to encapsulate 18-β-Glycyrrhetinic acid (GLA) in albumin conjugated poly(lactide-co-glycolide) (PLGA) nanoparticles by a modified nanoprecipitation method. Nanoparticles (NPs) were prepared by different drug to polymer ratios, human serum albumin (HSA) content, dithiothreitol (as producer of free thiol groups) content, and acetone (as non-solvent in nanoprecipitation). NPs with a size ranging from 126 to 174 nm were achieved. The highest entrapment efficiency (89.4±4.2%) was achieved when the ratio of drug to polymer was 1:4. The zeta potential of NPs was fairly negative (-8 to -12). Fourier transform infrared spectroscopy and differential scanning calorimetry proved the conjugation of HSA to PLGA NPs. In vitro release profile of NPs showed 2 phases: an initial burst for 4 h (34-49%) followed by a slow release pattern up to the end. The antibacterial effects of NPs against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa were studied by microdilution method. The GLA-loaded NPs showed more antibacterial effect than pure GLA (2-4 times). The anticancer MTT test revealed that GLA-loaded NPs were approximately 9 times more effective than pure GLA in Hep G2 cells. © Georg Thieme Verlag KG Stuttgart · New York.
Eudragit RS PO nanoparticles for sustained release of pyridostigmine bromide
NASA Astrophysics Data System (ADS)
Hoobakht, Fatemeh; Ganji, Fariba; Vasheghani-Farahani, Ebrahim; Mousavi, Seyyed Mohammad
2013-09-01
Pyridostigmine bromide (PB) is an inhibitor of cholinesterase, which is used in the treatment of myasthenia gravis and administered for protection against exposure to toxic nerve agents. Tests were done to investigate prolonging the half-life of PB and improving its release behavior. PB was loaded in nanoparticles (NPs) of Eudragit RS PO (Eu-RS) prepared using the technique of quasi emulsion solvent diffusion. Variables of output power of the sonicator, bath temperature and mixing time, were chosen as the optimization factors to obtain the minimum sized NPs. In addition, emulsions were tested at different ratios of drug-to-polymer by dynamic light scattering to determine size and zeta potential of NPs. UV-spectroscopy was used to determine PB content of the NPs. Drug-loaded NPs were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectra. Results determined that mixing time had a significant impact on the size of Eu-RS NPs, but power output of sonicator and bath temperature had no significant effect. The particle size obtained at the optimum condition (power output of 70 W, bath temperature of 33 °C, and mixing time of 7 min) was less than 200 nm (optimum sizes were 138.9 and 179.5 nm for Eu-RS and PB-loaded Eu-RS NPs, respectively). The optimum PB-loaded Eu-RS NPs at the PB to Eu-RS weight ratio of 1-4 and 20 % of loaded PB released from the nanocarriers within 100 h.
Engineering Tenofovir Loaded Chitosan Nanoparticles
Meng, Jianing; Sturgis, Timothy F.; Youan, Bi-Botti C.
2011-01-01
The objective of this study was to engineer a model anti-HIV microbicide (Tenofovir) loaded chitosan based nanoparticles (NPs). Box-Behnken design allowed to assess the influence of formulation variables on the size of NPs and drug encapsulation efficiency (EE%) that were analyzed by dynamic light scattering and UV spectroscopy, respectively. The effect of the NPs on vaginal epithelial cells and Lactobacillus crispatus viability and their mucoadhesion to porcine vaginal tissue were assessed by cytotoxicity assays and fluorimetry, respectively. In the optimal aqueous conditions, the EE% and NPs size was 5.83% and 207.97nm, respectively. With 50% (v/v) ethanol/water as alternative solvent, these two responses increased to 20% and 602 nm, respectively. Drug release from medium (281 nm) and large size (602 nm)-sized NPs fitted the Higuchi (r2=0.991) and first-order release (r2=0.999) models, respectively. These NPs were not cytotoxic to both the vaginal epithelial cell line and Lactobacillus for 48 hours. When the diameter of the NPs decreased from 900 nm to 188 nm, the mucoadhesion increased from 6% to 12%. However, the combinatorial effect of EE% × mucoadhesion for larger size NPs was the highest. Overall, large-size, microbicide loaded chitosan NPs appeared to be promising nanomedicines for the prevention of HIV transmission. PMID:21704704
Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer.
Zeisser-Labouèbe, Magali; Lange, Norbert; Gurny, Robert; Delie, Florence
2006-12-01
A photodynamic approach has been suggested to improve diagnosis and therapy of ovarian cancer. As Hypericin (Hy), a natural photosensitizer (PS) extracted from Hypericum perforatum, has been shown to be efficient in vitro and in vivo for the detection or treatment of other cancers, Hy could also be a potent tool for the treatment and detection of ovarian cancer. Due to its hydrophobicity, systemic administration of Hy is problematic. Thus, polymeric nanoparticles (NPs) of polylactic acid (PLA) or polylactic-co-glycolic acid (PLGA) were used as a drug delivery system. Hy-loaded NPs were produced with the following characteristics: (i) size in the 200-300 nm range, (ii) negative zeta potential, (iii) low residual PVAL and (iv) drug loading from 0.03 to 0.15% (w/w). Their in vitro photoactivity was investigated on the NuTu-19 ovarian cancer cell model derived from Fischer 344 rats and compared to free drug. Hy-loaded PLA NPs exhibited a higher photoactivity than free drug. Increasing light dose or incubation time with cells induced an enhanced activity of Hy-loaded PLA NPs. Increased NP drug loading had a negative effect on their photoactivity on NuTu-19 cells: at the same Hy concentration, the higher was the drug loading, the lower was the phototoxic effect. The influence of NP drug loading on the Hy release from NPs was also investigated.
Genta, Ida; Colonna, Claudia; Conti, Bice; Caliceti, Paolo; Salmaso, Stefano; Speziale, Pietro; Pietrocola, Giampiero; Chiesa, Enrica; Modena, Tiziana; Dorati, Rossella
2016-12-01
The aim of this work was the assessment of the "in vivo" immune response of a poly(lactide-co-glycolide)-based nanoparticulate adjuvant for a sub-unit vaccine, namely, a purified recombinant collagen-binding bacterial adhesion fragment (CNA19), against Staphylococcus aureus-mediated infections. "In vivo" immunogenicity studies were performed on mice: immunisation protocols encompassed subcutaneous and intranasal administration of CNA19 formulated as nanoparticles (NPs) and furthermore, CNA19-loaded NPs formulated in a set-up thermosetting chitosan-β-glycerolphosphate (chitosan-β-GP) solution for intranasal route in order to extend antigen exposure to nasal mucosa. CNA19 loaded NPs (mean size of about 195 nm, 9.04 ± 0.37μg/mg as CNA19 loading capacity) confirmed as suitable vaccine for subcutaneous administration with a more pronounced adjuvant effect (about 3-fold higher) with respect to aluminium, recognised as "reference" adjuvant. CNA19 loaded NPs formulated in an optimised thermogelling chitosan-β-GP solution showed promising results for eliciting an effective humoral response and a good chance as intranasal boosting dose.
Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli
2017-01-01
Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.
Xie, Yue-Ling; Lu, Wei; Jiang, Xin-Guo
2006-10-02
NC-1900, an active fragment analog of arginine vasopressin [arginine vasopressin-(4-9)], has proved to be capable of improving the spatial memory deficits and the impairments in passive avoidance test. In this study, a novel drug carrier for brain delivery, cationic bovine serum albumin conjugated pegylated nanoparticles (CBSA-NPs) holding NC-1900, was developed and its improvement on scopolamine-induced memory deficits was investigated in mice using the platform-jumping avoidance test. CBSA-NPs loaded with NC-1900 in spherical shape and uniform size below 100 nm were prepared by the double emulsion/solvent evaporation procedure, and the zeta potential of CBSA-NPs was about -8mV with the loading capacity of NC-1900 around 0.46%. The in vitro study showed that approximately 10% NC-1900 was released from CBSA-NPs in pH 7.4 phosphate buffer saline (PBS) during 56 h incubation with about 15% NC-1900 released in pH 4.0 PBS during 7 days, indicating the sustained release of this carrier. Furthermore, the half-life of NC-1900 loaded in CBSA-NPs in plasma was about 78 h, which was 4-fold longer than that of free NC-1900 (19 h). The active avoidance behavioral results showed that the s.c. administration of NC-1900 tended to improve memory deficits, but the difference did not present any statistical significance, whereas this peptide failed to produce any positive effects by i.v. administration. However, the i.v. injection of CBSA-NPs loaded with NC-1900 greatly improved memory impairments to a normal level, but the efficacy was slight if the loaded nanoparticles (NPs) were exclusive of the conjugation of CBSA, indicating that CBSA-NP was a promising brain delivery carrier for NC-1900 with CBSA as a potent brain targetor. It was concluded that CBSA-NP loaded with NC-1900 was potentially efficacious in the treatment of memory deficits via i.v. administration.
Jain, Ashay; Sharma, Gajanand; Ghoshal, Gargi; Kesharwani, Prashant; Singh, Bhupinder; Shivhare, U S; Katare, O P
2018-04-30
The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention. Copyright © 2018 Elsevier B.V. All rights reserved.
das Neves, José; Sarmento, Bruno
2015-05-01
Polymeric nanoparticles (NPs) have the potential to provide effective and safe delivery of antiretroviral drugs in the context of prophylactic anti-HIV vaginal microbicides. Dapivirine-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) NPs were produced by an emulsion-solvent evaporation method, optimized for colloidal properties using a 3-factor, 3-level Box-Behnken experimental design, and characterized for drug loading, production yield, morphology, thermal behavior, drug release, in vitro cellular uptake, cytotoxicity and pro-inflammatory potential. Also, drug permeability/membrane retention in well-established HEC-1-A and CaSki cell monolayer models as mediated by NPs was assessed in the absence or presence of mucin. Box-Behnken design allowed optimizing monodisperse 170nm drug-loaded NPs. Drug release experiments showed an initial burst effect up to 4h, followed by sustained 24h release at pH 4.2 and 7.4. NPs were readily taken up by different genital and macrophage cell lines as assessed by fluorescence microscopy. Drug-loaded NPs presented lower or at least similar cytotoxicity as compared to the free drug, with up to around one-log increase in half-maximal cytotoxic concentration values. In all cases, no relevant changes in cell pro-inflammatory cytokine/chemokine production were observed. Dapivirine transport across cell monolayers was significantly decreased when mucin was present at the donor side with either NPs or the free drug, thus evidencing the influence of this natural glycoprotein in membrane permeability. Moreover, drug retention in cell monolayers was significantly higher for NPs in comparison with the free drug. Overall, obtained dapivirine-loaded PLGA NPs possess interesting technological and biological features that may contribute to their use as novel safe and effective vaginal microbicides. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.
Naeimi, Reza; Safarpour, Fatemeh; Hashemian, Mona; Tashakorian, Hamed; Ahmadian, Seyed Raheleh; Ashrafpour, Manouchehr; Ghasemi-Kasman, Maryam
2018-05-01
Curcumin has been introduced as effective anti-inflammatory agent in treatment of several inflammatory disorders. Despite the wide range pharmacological activities, clinical application of curcumin is restricted mainly due to the low water solubility of this substance. More recently, we could remarkably improve the aqueous solubility of curcumin by its encapsulation in chitosan-alginate-sodium tripolyphosphate nanoparticles (CS-ALG-STPP NPs). In this study, the anti-inflammatory and myelin protective effects of curcumin-loaded NPs were evaluated in lysolecithin (LPC)-induced focal demyelination model. Pharmacokinetic of curcumin was assessed using high performance liquid chromatography (HPLC). Local demyelination was induced by injection of LPC into corpus callosum of rats. Animals were pre-treated with intraperitoneal (i.p.) injections of curcumin or curcumin-loaded NPs at dose of 12.5 mg/kg, 10 days prior to LPC injection and the injections were continued for 7 or 14 days post lesion. Hematoxylin and eosin (H&E) staining and immunostaining against activated glial cells including astrocytes and microglia were carried out for assessment of inflammation level in lesion site. Myelin specific staining was performed to evaluate the effect of curcumin-loaded NPs on myelination of LPC receiving animals. HPLC results showed the higher plasma concentration of curcumin after administration of NPs. Histological evaluation demonstrated that, the extent of demyelination areas was reduced in animals under treatment of curcumin-loaded NPs. Furthermore, treatment with curcumin-loaded NPs effectively attenuated glial activation and inflammation in LPC-induced demyelination model compared to curcumin receiving animals. Overall; these findings indicate that treatment with curcumin-loaded NPs preserve myelinated axons through amelioration of glial activation and inflammation in demyelination context. Copyright © 2018 Elsevier B.V. All rights reserved.
Thomas, Shindu C; Sharma, Harshita; Rawat, Purnima; Verma, Anita K; Leekha, Ankita; Kumar, Vijay; Tyagi, Aakriti; Gurjar, Bahadur S; Iqbal, Zeenat; Talegaonkar, Sushama
2016-10-01
The present work evaluates the synergistic anticancer efficacy of bioactive Hydroxyapatite (HA) nanoparticles (HA NPs) loaded with Bendamustine HCl. Hydroxyapatite is a material with an excellent biological compatibility, a well-known fact which was also supported by the results of the Hemolytic studies and a high IC50 value observed in the MTT assay. HA NPs were prepared by the chemical precipitation method and loaded with the drug via physical adsorption. In-vitro release study was performed, which confirmed the sustained release of the drug from the drug loaded HA NPs. MTT assay, Cell Uptake and FACS studies on JURKAT E6.1 cell line and in-vivo pharmacokinetic studies in Wistar rats revealed that the drug loaded HA NPs could be easily internalized by the cells and release drug in a sustained manner. The drug loaded HA NPs showed cytotoxicity similar to the drug solution at 1/10th of the drug content, which indicates a possible synergism between the activity of the anticancer drug and calcium ions derived from the carrier. An increase in intracellular Ca(2+) ions is reported to induce apoptosis in cells. Tumor regression study in Balb/c mice Ehrlich's ascites model presented a similar synergistic efficacy. The drug solution was able to decrease the tumor volume by half, while the drug loaded HA NPs reduced the tumor size by 6 times. Copyright © 2016 Elsevier B.V. All rights reserved.
Guo, Lian-Wang; Si, Yi; Zhu, Men; Pilla, Srikanth; Liu, Bo; Gong, Shaoqin; Kent, K. Craig
2014-01-01
Open vascular reconstructions frequently fail due to the development of recurrent disease or intimal hyperplasia (IH). This paper reports a novel drug delivery method using a rapamycin-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs)/pluronic gel system that can be applied periadventitially around the carotid artery immediately following the open surgery. In vitro studies revealed that rapamycin dispersed in pluronic gel was rapidly released over 3 days whereas release of rapamycin from rapamycin-loaded PLGA NPs embedded in pluronic gel was more gradual over 4 weeks. In cultured rat vascular smooth muscle cells (SMCs), rapamycin-loaded NPs produced durable (14 days versus 3 days for free rapamycin) inhibition of phosphorylation of S6 kinase (S6K1), a downstream target in the mTOR pathway. In a rat balloon injury model, periadventitial delivery of rapamycin-loaded NPs produced inhibition of phospho-S6K1 14 days after balloon injury. Immunostaining revealed that rapamycin-loaded NPs reduced SMC proliferation at both 14 and 28 days whereas rapamycin alone suppressed proliferation at day 14 only. Moreover, rapamycin-loaded NPs sustainably suppressed IH for at least 28 days following treatment, whereas rapamycin alone produced suppression on day 14 with rebound of IH by day 28. Since rapamycin, PLGA, and pluronic gel have all been approved by the FDA for other human therapies, this drug delivery method could potentially be translated into human use quickly to prevent failure of open vascular reconstructions. PMID:24586612
Fukushima, Daichi; Sk, Ugir Hossain; Sakamoto, Yasuhiro; Nakase, Ikuhiko; Kojima, Chie
2015-08-01
Dendrimers are synthetic macromolecules with unique structures that can work as nanoplatforms for both photothermogenic gold nanoparticles (AuNPs) and thermosensitive elastin-like peptides (ELPs) with valine-proline-glycine-valine-glycine (VPGVG) repeats. In this study, photothermogenic AuNPs were loaded into thermo-responsive elastin-mimetic dendrimers (dendrimers conjugating ELPs at their periphery) to produce dual stimuli-sensitive nanoparticles. Polyamidoamine G4 dendrimers were modified with acetylated VPGVG and (VPGVG)2, and the resulting materials were named ELP1-den and ELP2-den, respectively. The AuNPs were prepared by the reduction of Au ions using a dendrimer-nanotemplated method. The AuNP-loaded elastin-mimetic dendrimers exhibited photothermal properties. ELP1-den and ELP2-den showed similar temperature-dependent changes in their conformations. Phase transitions were observed at around 55°C and 35°C for the AuNP-loaded ELP1-den and AuNP-loaded ELP2-den, respectively, but not for the corresponding PEGylated dendrimer. In contrast to the AuNP-loaded PEGylated dendrimer, AuNP-loaded ELP2-den readily associated with cells and induced efficient photocytotoxicity at 37°C. The cell association and the photocytotoxicity properties of AuNP-loaded ELP2-den could be controlled by temperature. These results therefore suggest that dual stimuli-sensitive dendrimer nanoparticles of this type could be used for photothermal therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles.
Suematsu, Koichi; Watanabe, Kosuke; Tou, Akihiro; Sun, Yongjiao; Shimanoe, Kengo
2018-02-06
Selectivity is an important parameter of resistive-type gas sensors that use metal oxides. In this study, a highly selective toluene sensor is prepared using highly dispersed gold-nanoparticle-loaded zinc oxide nanoparticles (Au-ZnO NPs). Au-ZnO NPs are synthesized by coprecipitation and calcination at 400 °C with Au loadings of 0.15, 0.5, and 1.5 mol %. The Au NPs on ZnO are about 2-4 nm in size, and exist in a metallic state. Porous gas-sensing layers are fabricated by screen printing. The responses of the sensor to 200 ppm hydrogen, 200 ppm carbon monoxide, 100 ppm ethanol, 100 ppm acetaldehyde, 100 ppm acetone, and 100 ppm toluene are evaluated at 377 °C in a dry atmosphere. The sensor response of 0.15 mol % Au-ZnO NPs to toluene is about 92, whereas its sensor responses to other combustible gases are less than 7. Such selective toluene detection is probably caused by the utilization efficiency of the gas-sensing layer. Gas diffusivity into the sensing layer of Au-ZnO NPs is lowered by the catalytic oxidation of combustible gases during their diffusion through the layer. The present approach is an effective way to improve the selectivity of resistive-type gas sensors.
Varchi, Greta; Benfenati, Valentina; Pistone, Assunta; Ballestri, Marco; Sotgiu, Giovanna; Guerrini, Andrea; Dambruoso, Paolo; Liscio, Andrea; Ventura, Barbara
2013-05-01
Among the medical applications of nanoparticles, their usage as photosensitizer (PS) carriers for photodynamic therapy (PDT) has attracted increasing attention. In the present study we explored the morphological and photophysical properties of core-shell PMMA nanoparticles (PMMA-NPs) electrostatically post-loaded with the synthetic, water soluble 5,10,15,20-tetrakis(4-sulphonatophenyl)-porphyrin (TPPS4). pH response and singlet oxygen analyses of differently loaded samples proved the high capability of the PMMA-NPs to shield the PS from the environment, while retaining the PS singlet oxygen production capability. Preliminary in vitro imaging and phototoxicity experiments on HepG2 cells demonstrated the efficacy of the system to trigger photoinduced cell death in the culture.
Sánchez-López, Elena; Ettcheto, Miren; Egea, Maria Antonia; Espina, Marta; Cano, Amanda; Calpena, Ana Cristina; Camins, Antoni; Carmona, Nuria; Silva, Amélia M; Souto, Eliana B; García, Maria Luisa
2018-03-27
Memantine, drug approved for moderate to severe Alzheimer's disease, has not shown to be fully effective. In order to solve this issue, polylactic-co-glycolic (PLGA) nanoparticles could be a suitable solution to increase drug's action on the target site as well as decrease adverse effects. For these reason, Memantine was loaded in biodegradable PLGA nanoparticles, produced by double emulsion method and surface-coated with polyethylene glycol. MEM-PEG-PLGA nanoparticles (NPs) were aimed to target the blood-brain barrier (BBB) upon oral administration for the treatment of Alzheimer's disease. The production parameters were optimized by design of experiments. MEM-PEG-PLGA NPs showed a mean particle size below 200 nm (152.6 ± 0.5 nm), monomodal size distribution (polydispersity index, PI < 0.1) and negative surface charge (- 22.4 mV). Physicochemical characterization of NPs confirmed that the crystalline drug was dispersed inside the PLGA matrix. MEM-PEG-PLGA NPs were found to be non-cytotoxic on brain cell lines (bEnd.3 and astrocytes). Memantine followed a slower release profile from the NPs against the free drug solution, allowing to reduce drug administration frequency in vivo. Nanoparticles were able to cross BBB both in vitro and in vivo. Behavioral tests carried out on transgenic APPswe/PS1dE9 mice demonstrated to enhance the benefit of decreasing memory impairment when using MEM-PEG-PLGA NPs in comparison to the free drug solution. Histological studies confirmed that MEM-PEG-PLGA NPs reduced β-amyloid plaques and the associated inflammation characteristic of Alzheimer's disease. Memantine NPs were suitable for Alzheimer's disease and more effective than the free drug.
Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie
2015-08-01
In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.
Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines.
Youm, Ibrahima; Youan, Bi-Botti C
2013-10-01
This study tests the hypothesis that pegylated nanoparticles (NPs) could be taken up by the cochlear cells [House Ear Institute-organ of Corti 1 (HEI-OC1) and Stria vascularis K-1 (SVK-1)], through endocytic pathways. Furthermore, the in vitro drug release and the cytotoxicity of Furosemide (FUR)-loaded NPs on these two cochlear cells are investigated. FUR-loaded pegylated NPs are prepared by the emulsion-solvent diffusion method without surfactant. The NPs are characterized for particle mean diameter, polydispersity index (PDI), morphology, percent drug encapsulation efficiency (EE%), and FUR release kinetics. The methyl tetrazolium salt (MTS) and lactate dehydrogenase (LDH) bioassays are used to evaluate in vitro, the cytotoxicity of FUR-loaded NPs and native FUR. The NPs uptake is investigated using confocal microscopy, microplate reader/fluorimetry, and flow cytometry. Spherical NPs with a mean diameter range of 133-210 nm and PDI values varying from 0.037 to 0.41 are produced. The FUR EE% is 86% and the drug is released from the NPs according to the zero-order and Higuchi models. After treatment with blank NPs, the percentage of cell viability and cell death are 95.96% and 8.95%, in HEI-OC1 cells, respectively. The NPs are internalized by HEI-OC1 cells through a clathrin-dependent pathway. In addition, results show that NPs can be taken up via clathrin and cytoskeleton mediated pathways in SVK-1 cells. The internalization of the pegylated NPs can enhance the drug toxicity by necrosis in a dose-dependent and sustained release manner. The formulated NPs provide a promising template for a targeted drug delivery system to the inner ear. Copyright © 2013 Elsevier B.V. All rights reserved.
Park, Ju-Hwan; Lee, Jae-Young; Termsarasab, Ubonvan; Yoon, In-Soo; Ko, Seung-Hak; Shim, Jae-Seong; Cho, Hyun-Jong; Kim, Dae-Duk
2014-10-01
A hyaluronic acid-ceramide (HACE) nanostructure embedded with docetaxel (DCT)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) was fabricated for tumor-targeted drug delivery. NPs with a narrow size distribution and negative zeta potential were prepared by embedding DCT-loaded PLGA NPs into a HACE nanostructure (DCT/PLGA/HACE). DCT-loaded PLGA and DCT/PLGA/HACE NPs were characterized by solid-state techniques, including Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). A sustained drug release pattern from the NPs developed was observed and negligible cytotoxicity was seen in NIH3T3 cells (normal fibroblast, CD44 receptor negative) and MDA-MB-231 cells (breast cancer cells, CD44 receptor positive). PLGA/HACE NPs containing coumarin 6, used as a fluorescent dye, exhibited improved cellular uptake efficiency, based on the HA-CD44 receptor interaction, compared to plain PLGA NPs. Cyanine 5.5 (Cy5.5)-labeled PLGA/HACE NPs were injected intravenously into a MDA-MB-231 tumor xenograft mouse model and demonstrated enhanced tumor targetability, compared with Cy5.5-PLGA NPs, according to a near-infrared fluorescence (NIRF) imaging study. Considering these experimental results, the DCT/PLGA/HACE NPs developed may be useful as a tumor-targeted drug delivery system. Copyright © 2014 Elsevier B.V. All rights reserved.
Ghorbani, Marjan; Hamishehkar, Hamed
2017-12-01
The aim of this study was to design and develop a new pH-responsive nano-platform for controlled and targeted delivery of anticancer drugs. Engineering of pH-responsive nanocarriers was prepared via decoration of gold nanoparticles (NPs) by thiolated (methoxy-poly(ethylene glycol)-b-poly((2-dimethylamino) ethyl methacrylate-co-itaconic acid) (mPEG-b-p(DMAEMA-co-IA) copolymer and fully characterized by various techniques and subsequently used for loading and targeted delivery of anticancer agent, methotrexate (MTX). By conjugation of MTX with the amino groups of polymeric shell of gold NPs (with the high loading capacity of 31%), since MTX is also the target ligand of folate receptors, the targeted performance of NPs examined through the cell uptake study. The results indicated that MTX-loaded NPs showed 1.3 times more cell internalization than MTX free NPs. Cell cytotoxicity studies pointed out ~1.5 and 3 times higher cell cytotoxicity after 24h for MTX-loaded nanoparticles than MTX in MTT assay and cell cycle arrest experiments, respectively. Additionally, mPEG was used as the outer shell of NPs which caused the long-term dispersibility of the NPs even under high ionic strength. The in-vitro pH-triggered drug release of MTX showed that MTX released more than three times in simulated cancerous tissue (40°C, pH5.3) than physiologic condition (37°C, pH7.4) during 48h. The results of various experiments determined that the developed smart nanocarrier proposed as a promising nanocarrier for active and passive targeting of anionic anti-cancer agents such as MTX. Copyright © 2017. Published by Elsevier B.V.
das Neves, José; Araújo, Francisca; Andrade, Fernanda; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno
2014-07-01
To assess the potential of polymeric nanoparticles (NPs) to affect the genital distribution and local and systemic pharmacokinetics (PK) of the anti-HIV microbicide drug candidate dapivirine after vaginal delivery. Dapivirine-loaded, poly(ethylene oxide)-coated poly(epsilon-caprolactone) (PEO-PCL) NPs were prepared by a nanoprecipitation method. Genital distribution of NPs and their ability to modify the PK of dapivirine up to 24 h was assessed after vaginal instillation in a female mouse model. Also, the safety of NPs upon daily administration for 14 days was assessed by histological analysis and chemokine/cytokine content in vaginal lavages. PEO-PCL NPs (180-200 nm) were rapidly eliminated after administration but able to distribute throughout the vagina and lower uterus, and capable of tackling mucus and penetrate the epithelial lining. Nanocarriers modified the PK of dapivirine, with higher drug levels being recovered from vaginal lavages and vaginal/lower uterine tissues as compared to a drug suspension. Systemic drug exposure was reduced when NPs were used. Also, NPs were shown safe upon administration for 14 days. Dapivirine-loaded PEO-PCL NPs were able to provide likely favorable genital drug levels, thus attesting the potential value of using this vaginal drug delivery nanosystem in the context of HIV prophylaxis.
Ilk, Sedef; Saglam, Necdet; Özgen, Mustafa
2017-08-01
Flavonoid compounds are strong antioxidant and antifungal agents but their applications are limited due to their poor dissolution and bioavailability. The use of nanotechnology in agriculture has received increasing attention, with the development of new formulations containing active compounds. In this study, kaempferol (KAE) was loaded into lecithin/chitosan nanoparticles (LC NPs) to determine antifungal activity compared to pure KAE against the phytopathogenic fungus Fusarium oxysporium to resolve the bioavailability problem. The influence of formulation parameters on the physicochemical properties of KAE loaded lecithin chitosan nanoparticles (KAE-LC NPs) were studied by using the electrostatic self-assembly technique. KAE-LC NPs were characterized in terms of physicochemical properties. KAE has been successfully encapsulated in LC NPs with an efficiency of 93.8 ± 4.28% and KAE-LC NPs showed good physicochemical stability. Moreover, in vitro evaluation of the KAE-LC NP system was made by the release kinetics, antioxidant and antifungal activity in a time-dependent manner against free KAE. Encapsulated KAE exhibited a significantly inhibition efficacy (67%) against Fusarium oxysporium at the end of the 60 day storage period. The results indicated that KAE-LC NP formulation could solve the problems related to the solubility and loss of KAE during use and storage. The new nanoparticle system enables the use of smaller quantities of fungicide and therefore, offers a more environmentally friendly method of controlling fungal pathogens in agriculture.
Madhusudhan, Alle; Reddy, Gangapuram Bhagavanth; Venkatesham, Maragoni; Veerabhadram, Guttena; Kumar, Dudde Anil; Natarajan, Sumathi; Yang, Ming-Yeh; Hu, Anren; Singh, Surya S.
2014-01-01
Doxorubicin (DOX) was immobilized on gold nanoparticles (AuNPs) capped with carboxymethyl chitosan (CMC) for effective delivery to cancer cells. The carboxylic group of carboxymethyl chitosan interacts with the amino group of the doxorubicin (DOX) forming stable, non-covalent interactions on the surface of AuNPs. The carboxylic group ionizes at acidic pH, thereby releasing the drug effectively at acidic pH suitable to target cancer cells. The DOX loaded gold nanoparticles were effectively absorbed by cervical cancer cells compared to free DOX and their uptake was further increased at acidic conditions induced by nigericin, an ionophore that causes intracellular acidification. These results suggest that DOX loaded AuNPs with pH-triggered drug releasing properties is a novel nanotheraputic approach to overcome drug resistance in cancer. PMID:24821542
Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna
2016-08-20
The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghadiri, Maryam; Vasheghani-Farahani, Ebrahim; Atyabi, Fatemeh; Kobarfard, Farzad; Mohamadyar-Toupkanlou, Farzaneh; Hosseinkhani, Hossein
2017-10-01
Application of many vital hydrophilic medicines have been restricted by blood-brain barrier (BBB) for treatment of brain diseases. In this study, a targeted drug delivery system based on dextran-spermine biopolymer was developed for drug transport across BBB. Drug loaded magnetic dextran-spermine nanoparticles (DS-NPs) were prepared via ionic gelation followed by transferrin (Tf) conjugation as targeting moiety. The characteristics of Tf conjugated nanoparticles (TDS-NPs) were analyzed by different methods and their cytotoxicity effects on U87MG cells were tested. The superparamagnetic characteristic of TDS-NPs was verified by vibration simple magnetometer. Capecitabine loaded TDS-NPs exhibited pH-sensitive release behavior with enhanced cytotoxicity against U87MG cells, compared to DS-NPs and free capecitabine. Prussian-blue staining and TEM-imaging showed the significant cellular uptake of TDS-NPs. Furthermore, a remarkable increase of Fe concentrations in brain was observed following their biodistribution and histological studies in vivo, after 1 and 7 days of post-injection. Enhanced drug transport across BBB and pH-triggered cellular uptake of TDS-NPs indicated that these theranostic nanocarriers are promising candidate for the brain malignance treatment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2851-2864, 2017. © 2017 Wiley Periodicals, Inc.
Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent.
Sousa, Fernanda; Sanavio, Barbara; Saccani, Alessandra; Tang, Yun; Zucca, Ileana; Carney, Tamara M; Mastropietro, Alfonso; Jacob Silva, Paulo H; Carney, Randy P; Schenk, Kurt; Omrani, Arash O; Huang, Ping; Yang, Lin; Rønnow, Henrik M; Stellacci, Francesco; Krol, Silke
2017-01-18
Nanoparticle-based magnetic resonance imaging T 2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magnetic properties are characterized. The two classes of sulfonated Au/Fe NPs, with an average diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8, which enables the Au/Fe NPs to be superparamagnetic with a blocking temperature of 56 K and 96 K. Furthermore, preliminary cellular studies reveal that both Au/Fe NPs show very limited toxicity. MRI phantom experiments show that r 2 /r 1 ratio of Au/Fe NPs is as high as 670, leading to a 66% reduction in T 2 relaxation time. These nanoparticles provide great versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Yuchen; Xiao, Chaoxian; Goh, Tian -Wei
2015-10-20
Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. Amore » series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV–Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA–IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. Lastly, these results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion.« less
Ma, Tao; Jiang, Jin-Ling; Liu, Ying; Ye, Zheng-Bao; Zhang, Jun
2014-09-01
c-Myc plays a key role in glioma cancer stem cell maintenance. A drug delivery system, nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene (NPs-c-Myc-siRNA-pDNAs), for the treatment of glioma, has not previously been reported. NPs-c-Myc-siRNA-pDNAs were prepared and evaluated in vitro. Three kinds of c-Myc-siRNA fragments were separately synthesized and linked with empty siRNA expression vectors in the mole ratio of 3:1 by T4 DNA ligase. The linked products were then separately transfected into Escherichia coli. DH5α followed by extraction with Endofree plasmid Mega kit (Qiagen, Hilden, Germany) obtained c-Myc-siRNA-pDNAs. Finally, the recombinant c-Myc-siRNA3-pDNAs, generating the highest transfection efficiency and the greatest apoptotic ability, were chosen for encapsulation into NPs by the double-emulsion solvent-evaporation procedure, followed by stability, transfection efficiency, as well as qualitative and quantitative apoptosis evaluation. NPs-c-Myc-siRNA3-pDNAs were obtained with spherical shape in uniform size below 150 nm, with the zeta potential about -18 mV, the encapsulation efficiency and loading capacity as 76.3 ± 5.4% and 1.91 ± 0.06%, respectively. The stability results showed that c-Myc-siRNA3-pDNAs remained structurally and functionally stable after encapsulated into NPs, and NPs could prevent the loaded c-Myc-siRNA3-pDNAs from DNase degradation. The transfection efficiency of NPs-c-Myc-siRNA3-pDNAs was proven to be positive. Furthermore, NPs-c-Myc-siRNA3-pDNAs produced significant apoptosis with the apoptotic rate at 24.77 ± 5.39% and early apoptosis cells observed. Methoxy-poly-(ethylene-glycol)-poly-(lactide-co-glycolide) nanoparticles (MPEG-PLGA-NPs) are potential delivery carriers for c-Myc-siRNA3-pDNAs.
AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery.
Aravind, Athulya; Jeyamohan, Prashanti; Nair, Remya; Veeranarayanan, Srivani; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi
2012-11-01
Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug-loaded PLGA-lecithin-PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti-nucleolin aptamers for site-specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The drug-loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF-7 and GI-1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug-loading studies indicated that under the same drug loading, the aptamer-targeted NPs show enhanced cancer killing effect compared to the corresponding non-targeted NPs. In addition, the PLGA-lecithin-PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer-PLGA-lecithin-PEG NPs are potential carrier candidates for differential targeted drug delivery. Copyright © 2012 Wiley Periodicals, Inc.
Ding, Baoyue; Zhang, Wei; Wu, Xin; Wang, Jeffrey; Xie, Chen; Huang, Xuan; Zhan, Shuyu; Zheng, Yongxia; Huang, Yueyan; Xu, Ningyin; Ding, Xueying; Gao, Shen
2016-08-30
We combined chemo- and immunotherapies by constructing dual therapeutic function immuno-nanoparticles (NPs) consisting of death receptor 5 monoclonal antibody (DR5 mAb)-conjugated nanoparticles loaded with dacarbazine (DTIC) (DTIC-NPs-DR5 mAb). We determined the in vivo targeting specificity of DTIC-NPs-DR5 mAb by evaluating distribution in tumor-bearing nude mice using a real-time imaging system. Therapeutic efficacy was assessed in terms of its effect on tumor volume, survival time, histomorphology, microvessel density (MVD), and apoptotic index (AI). Systemic toxicity was evaluated by measuring white blood cells (WBC) counts, alanine aminotransferase (ALT) levels, and creatinine clearance (CR).In vivo and ex vivo imaging indicates that DR5 mAb modification enhanced the accumulation of NPs within the xenograft tumor. DTIC-NPs-DR5 mAb inhibited tumor growth more effectively than DTIC or DR5 mAb alone, indicating that combining DTIC and DR5 mAb through pharmaceutical engineering achieves a better therapeutic effect. Moreover, the toxicity of DTIC-NPs-DR5 mAb was much lower than that of DTIC, implying that DR5 mAb targeting reduces nonspecific uptake of DTIC into normal tissue and thus decreases toxic side effects. These results demonstrate that DTIC-NPs-DR5 mAb is a safe and effective nanoparticle formulation with the potential to improve the efficacy and specificity of melanoma treatment.
Wang, Jeffrey; Xie, Chen; Huang, Xuan; Zhan, Shuyu; Zheng, Yongxia; Huang, Yueyan; Xu, Ningyin; Ding, Xueying; Gao, Shen
2016-01-01
We combined chemo- and immunotherapies by constructing dual therapeutic function immuno-nanoparticles (NPs) consisting of death receptor 5 monoclonal antibody (DR5 mAb)-conjugated nanoparticles loaded with dacarbazine (DTIC) (DTIC-NPs-DR5 mAb). We determined the in vivo targeting specificity of DTIC-NPs-DR5 mAb by evaluating distribution in tumor-bearing nude mice using a real-time imaging system. Therapeutic efficacy was assessed in terms of its effect on tumor volume, survival time, histomorphology, microvessel density (MVD), and apoptotic index (AI). Systemic toxicity was evaluated by measuring white blood cells (WBC) counts, alanine aminotransferase (ALT) levels, and creatinine clearance (CR).In vivo and ex vivo imaging indicates that DR5 mAb modification enhanced the accumulation of NPs within the xenograft tumor. DTIC-NPs-DR5 mAb inhibited tumor growth more effectively than DTIC or DR5 mAb alone, indicating that combining DTIC and DR5 mAb through pharmaceutical engineering achieves a better therapeutic effect. Moreover, the toxicity of DTIC-NPs-DR5 mAb was much lower than that of DTIC, implying that DR5 mAb targeting reduces nonspecific uptake of DTIC into normal tissue and thus decreases toxic side effects. These results demonstrate that DTIC-NPs-DR5 mAb is a safe and effective nanoparticle formulation with the potential to improve the efficacy and specificity of melanoma treatment. PMID:27494835
Pradhan, Roshan; Poudel, Bijay Kumar; Ramasamy, Thiruganesh; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh
2013-08-01
In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate (SLS) and poloxamer 407, the anionic and non-ionic surfactants respectively for stabilization. The NPs were prepared by emulsification/solvent evaporation method. The combination of these surfactants at weight ratio of 1:0.5 was able to produce uniformly distributed small sized NPs and demonstrated the better stability of NP dispersion with high encapsulation efficiency (85.9 +/- 0.6%). The drug/polymer ratio and phase ratio were 2:10 and 1:10, respectively. The optimized formulation of DTX-loaded PLGA NPs had a particle size and polydispersity index of 104.2 +/- 1.5 nm and 0.152 +/- 0.006, respectively, which was further supported by TEM image. In vitro release study was carried out with dialysis membrane and showed 32% drug release in 192 h. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.481, which suggested the drug was released by anomalous or non-Fickian diffusion. In addition, DTX-loaded PLGA NPs in 72 h, displayed approximately 75% cell viability reduction at 10 microg/ml DTX concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of DTX into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.
NASA Astrophysics Data System (ADS)
Tsend-Ayush, Altansukh; Zhu, Xiumei; Ding, Yu; Yao, Jianxu; Yin, Lifang; Zhou, Jianping; Yao, Jing
2017-05-01
Many effective anti-cancer drugs have limited use in hepatocellular carcinoma (HCC) therapy due to the drug resistance mechanisms in liver cells. In recent years, tumor-targeted drug delivery and the inhibition of drug-resistance-related mechanisms has become an integrated strategy for effectively combating chemo-resistant cancer. Herein, lactobionic acid-conjugated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS-LA conjugate) has been developed as a potential asialoglycoprotein receptor (ASGPR)-targeted nanocarrier and an efficient inhibitor of P-glycoprotein (P-gp) to enhance etoposide (ETO) efficacy against HCC. The main properties of ETO-loaded TPGS-LA nanoparticles (NPs) were tested through in vitro and in vivo studies after being prepared using the nanoprecipitation method and characterized by dynamic light scattering (DLS). According to the results, smaller (˜141.43 nm), positively charged ETO-loaded TPGS-LA NPs were more suitable for providing efficient delivery to hepatoma cells by avoiding the clearance mechanisms. It was found that ETO-loaded TPGS-LA NPs were noticeably able to enhance the cytotoxicity of ETO in HepG2 cells. Besides this, markedly higher internalization by the ASGPR-overexpressed HepG2 cells and efficient accumulation at the tumor site in vivo were revealed in the TPGS-LA NP group. More importantly, animal studies confirmed that ETO-loaded TPGS-LA NPs achieved the highest therapeutic efficacy against HCC. Interestingly, ETO-loaded TPGS-LA NPs also exhibited a great inhibitory effect on P-gp compared to the ETO-loaded TPGS NPs. These results suggest that TPGS-LA NPs could be used as a potential ETO delivery system against HCC.
Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid
NASA Astrophysics Data System (ADS)
Chuacharoen, Thanida; Sabliov, Cristina M.
2017-02-01
Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.
Khaliq, Nisar Ul; Park, Dal Yong; Lee, Jae Young; Joo, Yeonhee; Oh, Keun Sang; Kim, Jung Seok; Kim, Jin-Seok; Kim, In-San; Kwon, Ick Chan; Yuk, Soon Hong
2016-10-01
Deep penetration of the anticancer drug, docetaxel (DTX), into tumor parenchyma was demonstrated to achieve improved chemotherapy. For this purpose, a multistage nanostructure was designed and characterized using the multilayer nanoparticles (NPs). The multilayer NPs had a core/shell structure. The core was composed of the DTX-loaded Pluronic NPs (diameter: 12nm) that were transferred into the inner side of vesicles to form the vesicle NPs. Förster resonance energy transfer (FRET) in the NPs was observed to verify the incorporation of the DTX-loaded Pluronic NPs into the inner side of the vesicles during the formation of the vesicle NPs. Subsequently, the vesicle NPs were stabilized through Pluronic-lipid bilayer interaction to form the multilayer NPs. To examine the morphology and size distribution of the multilayer NPs, transmittance electron microscopy and dynamic light scattering were used. In vitro release behavior and toxicity were observed to verify the functionality of the multilayer NPs as nanocarriers for cancer therapy. Multistage functionality was evaluated by cellular uptake and tissue distribution behaviors of the multilayer NPs. The biodistribution of the multilayer NPs and their antitumor efficacy were also observed to understand the role of multistage functionality for improved chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Di Crescenzo, A.; Cacciatore, I.; Petrini, M.; D'Alessandro, M.; Petragnani, N.; Del Boccio, P.; Di Profio, P.; Boncompagni, S.; Spoto, G.; Turkez, H.; Ballerini, P.; Di Stefano, A.; Fontana, A.
2017-01-01
We report the facile and non-covalent preparation of gold nanoparticles (AuNPs) stabilized by an antiparkinson codrug based on lipoic acid (LA). The obtained AuNPs appear stable in both dimethyl sulfoxide and fetal bovine serum and able to load an amount of codrug double the weight of gold. These NPs were demonstrated to be safe and biocompatible towards primary human blood cells and human neuroblastoma cells, one of the most widely used cellular models to study dopaminergic neural cells, therefore are ideal drug carriers for difficult to solubilize molecules. Very interestingly, the codrug-stabilized AuNPs were shown to reduce the accumulation of reactive oxygen species in SH-SY5Y cells treated with LD and did not change total oxidant status levels in cultured human blood cells, thus confirming the antioxidant role of LA although bound to AuNPs. The characterization of AuNPs in terms of loading and stability paves the way for their use in biomedical and pharmacological applications.
NASA Astrophysics Data System (ADS)
Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong
2014-12-01
To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.
Self-Assembled Nanoparticles from Phenolic Derivatives for Cancer Therapy.
Dai, Yunlu; Guo, Junling; Wang, Ting-Yi; Ju, Yi; Mitchell, Andrew J; Bonnard, Thomas; Cui, Jiwei; Richardson, Joseph J; Hagemeyer, Christoph E; Alt, Karen; Caruso, Frank
2017-08-01
Therapeutic nanoparticles hold clinical promise for cancer treatment by avoiding limitations of conventional pharmaceuticals. Herein, a facile and rapid method is introduced to assemble poly(ethylene glycol) (PEG)-modified Pt prodrug nanocomplexes through metal-polyphenol complexation and combined with emulsification, which results in ≈100 nm diameter nanoparticles (PtP NPs) that exhibit high drug loading (0.15 fg Pt per nanoparticle) and low fouling properties. The PtP NPs are characterized for potential use as cancer therapeutics. Mass cytometry is used to quantify uptake of the nanoparticles and the drug concentration in individual cells in vitro. The PtP NPs have long circulation times, with an elimination half-life of ≈18 h in healthy mice. The in vivo antitumor activity of the PtP NPs is systematically investigated in a human prostate cancer xenograft mouse model. Mice treated with the PtP NPs demonstrate four times better inhibition of tumor growth than either free prodrug or cisplatin. This study presents a promising strategy to prepare therapeutic nanoparticles for biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy.
Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-Yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong
2016-01-01
A mixture of docetaxel (DTX) and Solutol(®) HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
Ye, Ya-Jing; Wang, Yun; Lou, Kai-Yan; Chen, Yan-Zuo; Chen, Rongjun; Gao, Feng
2015-01-01
A novel biocompatible and biodegradable drug-delivery nanoparticle (NP) has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX) for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), using an aqueous solution-stirring method followed by lyophilization. The resulting PTX/DM-β-CD inclusion complex dramatically enhanced the solubility of PTX in water and was directly incorporated into chitosan (CS) to form NPs (with a size of 323.9–407.8 nm in diameter) using an ionic gelation method. The formed NPs had a zeta potential of +15.9–23.3 mV and showed high colloidal stability. With the same weight ratio of PTX to CS of 0.7, the loading efficiency of the PTX/DM-β-CD inclusion complex-loaded CS NPs was 30.3-fold higher than that of the PTX-loaded CS NPs. Moreover, it is notable that PTX was released from the DM-β-CD/CS NPs in a sustained-release manner. The pharmacokinetic studies revealed that, compared with reference formulation (Taxol®), the PTX/DM-β-CD inclusion complex-loaded CS NPs exhibited a significant increase in AUC0→24h (the area under the plasma drug concentration–time curve over the period of 24 hours) and mean residence time by 2.7-fold and 1.4-fold, respectively. Therefore, the novel drug/DM-β-CD inclusion complex-loaded CS NPs have promising applications for the significantly improved delivery and controlled release of the poorly water-soluble drug PTX or its derivatives, thus possibly leading to enhanced therapeutic efficacy and less severe side effects. PMID:26170666
Lim, Young H.; Tiemann, Kristin M.; Heo, Gyu Seong; Wagers, Patrick O.; Rezenom, Yohannes H.; Zhang, Shiyi; Zhang, Fuwu; Youngs, Wiley J.; Hunstad, David A.; Wooley, Karen L.
2015-01-01
The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials – silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5–5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against ten contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract. PMID:25621868
RES-loaded pegylated CS NPs: for efficient ocular delivery.
Pandian, Saravanakumar; Jeevanesan, Vinoth; Ponnusamy, Chandrasekar; Natesan, Subramanian
2017-02-01
The objective of this study is to develop resveratrol (RES) loaded polyethylene glycols (PEGs) modified chitosan (CS) nanoparticles (NPs) by ionic gelation method for the treatment of glaucoma. While increasing the concentration of PEG, the particle size and polydispersity index of the formulations increased. Entrapment efficiency and RES loading (RL) of NPs decreased while increasing PEG concentration. The in vitro release of NPs showed an initial burst release of RES (45%) followed by controlled release. Osmolality of formulations revealed that the prepared NPs were iso-osmolar with the tear. Ocular tolerance of the NPs was evaluated using hen's egg test on the chorioallantoic membrane and it showed that the NPs were non-irritant. RES-loaded PEG-modified CS NPs shows an improved corneal permeation compared with RES dispersion. Fluorescein isothiocyanate loaded CS NPs accumulated on the surface of the cornea but the PEG-modified CS NPs crossed the cornea and reached retinal choroid. RES-loaded PEG-modified CS NPs reduced the intra-ocular pressure (IOP) by 4.3 ± 0.5 mmHg up to 8 h in normotensive rabbits. These results indicate that the developed NPs have efficient delivery of RES to the ocular tissues and reduce the IOP for the treatment of glaucoma.
Suarasan, Sorina; Simon, Timea; Boca, Sanda; Tomuleasa, Ciprian; Astilean, Simion
2016-06-01
This study presents the design of a gold nanoparticle (AuNPs)-drug system with improved efficiency for the treatment of acute myeloid leukemia. The system is based on four different FLT3 inhibitors, namely midostaurin, sorafenib, lestaurtinib, and quizartinib, which were independently loaded onto gelatin-coated gold nanoparticles. Detailed investigation of the physicochemical properties of the formed complexes lead to the selection of quizartinib-loaded AuNPs for the in vitro evaluation of the biological effects of the formed complex against OCI-AML3 acute myeloid leukemia cells. Viability tests by MTT demonstrated that the proposed drug complex has improved efficacy when compared with the drug alone. The obtained results constitute a premise for further in vivo investigation of such drug vehicles based on AuNPs. To the best of our knowledge, this is the first study that investigates the delivery of the above-mentioned FLT3 inhibitors via gelatin-coated gold nanoparticles. © 2016 John Wiley & Sons A/S.
Hassouna, M E M; ElBably, M A; Mohammed, Asmaa N; Nasser, M A G
2017-02-01
This work evaluated the antimicrobial efficacy of kaolin clay and its loaded forms with carbon nanotubes (CNTs) and silver nanoparticles (AgNPs) against bacterial isolates from different water supplies (tap, underground and surface water) in addition to wastewater. A total of 160 water samples were collected from different water sources in the investigated districts. Samples were cultured for isolation and serological identification of pathogenic bacteria. AgNPs were synthesized by a typical one-step synthesis protocol, where CNTs were carried out in a reactor employing the double bias-assisted hot filament chemical vapor deposition method. Both were characterized using transmission electron microscopy, infrared and X-ray fluorescence (XRF) spectroscopy. The antimicrobial efficacy of each of natural kaolin clay, AgNPs- and CNTs-loaded clays were evaluated by their application in four concentrations (0.01, 0.03, 0.05 and 0.1 ppm) at different contact times (5 min, 15 min, 30 min and 2 h). AgNPs-loaded clays at concentrations of 0.05 and 0.1 mg/l for 2 h contact time exhibited a higher bactericidal efficacy on Escherichia coli and Salmonella spp. (70, 70, 80 and 90%, respectively) compared to CNTs-loaded clay. Concluding, the application of AgNPs-loaded clay for removal of water bacterial contaminants at a concentration of 0.1 ppm for 2 h contact times resulted in highly effective removals.
Synthetically lethal nanoparticles for treatment of endometrial cancer
NASA Astrophysics Data System (ADS)
Ebeid, Kareem; Meng, Xiangbing; Thiel, Kristina W.; Do, Anh-Vu; Geary, Sean M.; Morris, Angie S.; Pham, Erica L.; Wongrakpanich, Amaraporn; Chhonker, Yashpal S.; Murry, Daryl J.; Leslie, Kimberly K.; Salem, Aliasger K.
2018-01-01
Uterine serous carcinoma, one of the most aggressive types of endometrial cancer, is characterized by poor outcomes and mutations in the tumour suppressor p53. Our objective was to engender synthetic lethality to paclitaxel (PTX), the frontline treatment for endometrial cancer, in tumours with mutant p53 and enhance the therapeutic efficacy using polymeric nanoparticles (NPs). First, we identified the optimal NP formulation through comprehensive analyses of release profiles and cellular-uptake and cell viability studies. Not only were PTX-loaded NPs superior to PTX in solution, but the combination of PTX-loaded NPs with the antiangiogenic molecular inhibitor BIBF 1120 (BIBF) promoted synthetic lethality specifically in cells with the loss-of-function (LOF) p53 mutation. In a xenograft model of endometrial cancer, this combinatorial therapy resulted in a marked inhibition of tumour progression and extended survival. Together, our data provide compelling evidence for future studies of BIBF- and PTX-loaded NPs as a therapeutic opportunity for LOF p53 cancers.
Djiokeng Paka, Ghislain; Doggui, Sihem; Zaghmi, Ahlem; Safar, Ramia; Dao, Lé; Reisch, Andreas; Klymchenko, Andrey; Roullin, V Gaëlle; Joubert, Olivier; Ramassamy, Charles
2016-02-01
Curcumin, a neuroprotective agent with promising therapeutic approach has poor brain bioavailability. Herein, we demonstrate that curcumin-encapsulated poly(lactide-co-glycolide) (PLGA) 50:50 nanoparticles (NPs-Cur 50:50) are able to prevent the phosphorylation of Akt and Tau proteins in SK-N-SH cells induced by H2O2 and display higher anti-inflammatory and antioxidant activities than free curcumin. PLGA can display various physicochemical and degradation characteristics for controlled drug release applications according to the matrix used. We demonstrate that the release of curcumin entrapped into a PLGA 50:50 matrix (NPs-Cur 50:50) is faster than into PLGA 65:35. We have studied the effects of the PLGA matrix on the expression of some key antioxidant- and neuroprotective-related genes such as APOE, APOJ, TRX, GLRX, and REST. NPs-Cur induced the elevation of GLRX and TRX while decreasing APOJ mRNA levels and had no effect on APOE and REST expressions. In the presence of H2O2, both NPs-Cur matrices are more efficient than free curcumin to prevent the induction of these genes. Higher uptake was found with NPs-Cur 50:50 than NPs-Cur 65:35 or free curcumin. By using PLGA nanoparticles loaded with the fluorescent dye Lumogen Red, we demonstrated that PLGA nanoparticles are indeed taken up by neuronal cells. These data highlight the importance of polymer composition in the therapeutic properties of the nanodrug delivery systems. Our study demonstrated that NPs-Cur enhance the action of curcumin on several pathways implicated in the pathophysiology of Alzheimer's disease (AD). Overall, these results suggest that PLGA nanoparticles are a promising strategy for the brain delivery of drugs for the treatment of AD.
Zhaodong Li; Chunhua Yao; Yi-Cheng Wang; Solomon Mikael; Sundaram Gunasekaran; Zhenqiang Ma; Zhiyong Cai; Xudong Wang
2016-01-01
Aldehyde-functionalized cellulose nanofibers (CNFs) were applied to synthesize Pt nanoparticles (NPs) on CNF surfaces via on-site Pt ion reduction and achieve high concentration and uniform Pt NP loading. ALD could then selectively deposit TiO2 on CNFs and keep the Pt NPs uncovered due to their drastically different hydro-affinity properties. The...
Ma, Yiming; Fuchs, Adrian V; Boase, Nathan R B; Rolfe, Barbara E; Coombes, Allan G A; Thurecht, Kristofer J
2015-08-01
Anti-cancer drug loaded-nanoparticles (NPs) or encapsulation of NPs in colon-targeted delivery systems shows potential for increasing the local drug concentration in the colon leading to improved treatment of colorectal cancer. To investigate the potential of the NP-based strategies for colon-specific delivery, two formulations, free Eudragit® NPs and enteric-coated NP-loaded chitosan-hypromellose microcapsules (MCs) were fluorescently-labelled and their tissue distribution in mice after oral administration was monitored by multispectral small animal imaging. The free NPs showed a shorter transit time throughout the mouse digestive tract than the MCs, with extensive excretion of NPs in faeces at 5h. Conversely, the MCs showed complete NP release in the lower region of the mouse small intestine at 8h post-administration. Overall, the encapsulation of NPs in MCs resulted in a higher colonic NP intensity from 8h to 24h post-administration compared to the free NPs, due to a NP 'guarding' effect of MCs during their transit along mouse gastrointestinal tract which decreased NP excretion in faeces. These imaging data revealed that this widely-utilised colon-targeting MC formulation lacked site-precision for releasing its NP load in the colon, but the increased residence time of the NPs in the lower gastrointestinal tract suggests that it is still useful for localised release of chemotherapeutics, compared to NP administration alone. In addition, both formulations resided in the stomach of mice at considerable concentrations over 24h. Thus, adhesion of NP- or MC-based oral delivery systems to gastric mucosa may be problematic for colon-specific delivery of the cargo to the colon and should be carefully investigated for a full evaluation of particulate delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
das Neves, José; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno
2013-11-18
Nanocarriers may provide interesting delivery platforms for microbicide drugs and their characterization should be addressed early in development. Differently surface-engineered dapivirine-loaded, poly(epsilon-caprolactone) (PCL)-based nanoparticles (NPs) were obtained by nanoprecipitation using polyethylene oxide (PEO), sodium lauryl sulfate (SLS), or cetyltrimethylammonium bromide (CTAB) as surface modifiers. Physical-chemical properties of NP aqueous dispersions were evaluated upon storage at -20-40 °C for one year. NPs presented 170-200 nm in diameter, roundish-shape, low polydispersity index (≤0.18), and high drug association efficiency (≥97%) and loading (≥12.7%). NPs differed in zeta potential, depending on surface modifier (PEO: -27.9 mV; SLS: -54.7 mV; CTAB: +42.4 mV). No interactions among formulation components were detected by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR), except for SLS-PCL NPs. Colloidal properties of NPs were lost at -20 °C storage. Negatively charged NPs were stable up to one year at 5-40°C; as for CTAB-PCL NPs, particle aggregation was observed from 30 to 90 days of storage depending on temperature. Colloidal instability affected the in vitro drug release of CTAB-PCL NPs after 360 days. In any case, no degradation of dapivirine was apparent. Overall, PEO-PCL and SLS-PCL NPs presented suitable properties as nanocarriers for dapivirine. Conversely, CTAB-PCL NPs require additional strategies in order to increase stability. Copyright © 2013 Elsevier B.V. All rights reserved.
Dai, Yu; Xing, Han; Song, Fuling; Yang, Yue; Qiu, Zhixia; Lu, Xiaoyu; Liu, Qi; Ren, Shuangxia; Chen, Xijing; Li, Ning
2016-09-01
Multilayer nanoparticle combining the merits of liposome and polymer nanoparticle has been designed for the targeted delivery of doxorubicin (DOX) in cancer treatment. In this study, DOX-PLGA-lecithin-PEG-biotin nanoparticles (DOX-PLPB-NPs) were fabricated and functionalized with biotin for specific tumor targeting. Under the transmission electron microscopy observation, the lipid layer was found to be coated on the polymer core. The physical characteristics of PLPB-NPs were also evaluated. The confocal laser scanning microscopy confirmed the cellular uptake of nanoparticles and targeted delivery PLPB-NPs. The in vitro release experiment demonstrated a pH-depending release of DOX from drug-loaded PLPB-NPs. Cytotoxicity studies in HepG2 cells and in vivo antitumor experiment in tumor-bearing mice both proved DOX-PLPB-NPs showed the best inhibition effect of tumor proliferation. In biodistribution studies, DOX-PLPB-NPs showed a higher DOX concentration than free DOX and DOX-PLGA-lecithin-PEG nanoparticles (DOX-PLP-NPs) in tumor site, especially in 24 h, and the lowest DOX level in normal organs. The results were coincident with the strongest antitumor ability showed among in vivo antitumor experiment. Histopathology analysis demonstrated that DOX-PLPB-NPs exhibited the strongest antitumor ability and lowest cardiotoxicity. In brief, the PLPB-NPs were proved to be an efficient delivery system for tumor-targeting treatment. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Chen, Yunsheng; Ding, Jiayue; Zhang, Chunlei; Zhang, Amin; He, Dannong; Zhang, Yixin
2017-12-01
Biocompatible 5-aminolevulinic acid/Au nanoparticle-loaded ethosomal vesicle (A/A-ES) is prepared via ultrasonication for synergistic transdermal photodynamic/photothermal therapy (PDT/PTT) of hypertrophic scar (HS). Utilizing ultrasonication, Au nanoparticles (AuNPs) are synthesized and simultaneously loaded in ethosomal vesicles (ES) without any toxic agents, and 5-aminolevulinic acid (ALA) is also loaded in ES with 20% of the entrapment efficiency (EE). The prepared A/A-ES displays strong absorbance in 600-650 nm due to the plasmonic coupling effect between neighboring AuNPs in the same A/A-ES, which can simultaneously stimulate A/A-ES to produce heat and enhance quantum yields of reactive oxygen species (ROS) by using 632 nm laser. In vitro transdermal penetrability study demonstrates that A/A-ES acts as a highly efficient drug carrier to enhance both ALA and AuNPs penetration into HS tissue . Taking human hypertrophic scar fibroblasts (HSF) as therapeutic targets, synergistic PDT/PTT of HS indicates that A/A-ES could enhance quantum yields of ROS by photothermal effect and localized surface plasmon resonance (LSPR) of AuNPs, resulting in a high level of apoptosis or necrosis. In a word, the prepared A/A-ES shows a better synergistic PDT/PTT efficiency for HSF than the individual PDT and PTT, encouraging perspective for treatment of HS.
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment.
Varma, Vegesna Naga Sravan Kumar; Shivakumar, Hosakote Gurumalappa; Balamuralidhara, Veerna; Navya, Manne; Hani, Umme
2016-01-01
The aim of the research work was to chemically modify guargum (GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-polymer. The effect of GG and acryl amide (AAm) on grafting was studied. Esomeprazole magnesium (ESO) loaded pH sensitive NPs were prepared by nano-emulsification polymer crosslinking method and characterized. Sixteen formulations were prepared and the concentration of process variables wasvaried to obtain nanoparticles of 200-600 nm. The NPs were found to be homogenous in size distribution. The encapsulation efficiency and drug loading ranged from 33.2% to 50.1% and 12.2% to 17.2% respectively. Particle size, encapsulation efficiency and drug loading increasedalong with co-polymer concentration. In-vitro release studies at pH 1.2 for 2 h, followed by pH 6.8 showed that environment pH significantly affected the drug release. SEM has shown that NPsare spherical with smooth surface. The pH sensitive PAAm-g-GGNPs resisted the initial release of the drug from the drug loaded NPs in acidic pH and delayed the release process to a longer period in alkaline environment. PMID:27610149
Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.
Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao
2015-07-01
A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.
Saremi, Shahrooz; Dinarvand, Rassoul; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh
2013-01-01
The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P(app)) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs.
Saremi, Shahrooz; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh
2013-01-01
The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P app) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs. PMID:23971023
Manukumar, H M; Umesha, S; Kumar, H N Naveen
2017-09-01
The advent of biodegradable polymer-encapsulated drug nanoparticles has made an exciting area of drug delivery research. The present study investigated novel and simple route for synthesis of thymol loaded chitosan silver nanoparticles (T-C@AgNPs) using chitosan and thymol as reducing, capping agent respectively to understand the therapeutic efficacy. The UV-vis spectroscopy, DLS, FT-IR, SEM, EDS, XRD used for characterization and radical scavenging activity, anti-microbial and biocompatibility was taken to ascertain an efficacy of novel T-C@AgNPs. The T-C@AgNPs intense peak at 490nm indicates the formation of nanoparticles and had average particle size of 28.94nm with spherical shape, monodisperse state in water, also exhibited excellent biocompatibility of cubic shaped pure silver element containing T-C@AgNPs. The antibacterial activity was studied for gram positive and gram negative food-borne pathogens and effective inhibition at 100μgmL -1 to S. aureus, S. epidermidis, S. haemolyticus (10.08, 10.00, 11.23mm) and S. typhimurium, P. aeruginosa and S. flexneri (9.28, 9.33, 12.03mm) compared to antibiotic Streptomycin. This study revealed the efficacy against multiple food-borne pathogens and therapeutic efficacy of T-C@AgNPs offers a valuable contribution in the area of nanotechnology. This proved to be a first-class novel antimicrobial material for the first time in this study. Copyright © 2017 Elsevier B.V. All rights reserved.
Salts affect the interaction of ZnO or CuO nanoparticles with wheat.
Stewart, Jacob; Hansen, Trevor; McLean, Joan E; McManus, Paul; Das, Siddhartha; Britt, David W; Anderson, Anne J; Dimkpa, Christian O
2015-09-01
Exposure to nanoparticles (NPs) that release metals with potential phytotoxicity could pose problems in agriculture. The authors of the present study used growth in a model growth matrix, sand, to examine the influence of 5 mmol/kg of Na, K, or Ca (added as Cl salts) and root exudates on transformation and changes to the bioactivity of copper(II) oxide (CuO) and zinc oxide (ZnO) NPs on wheat. These salt levels are found in saline agricultural soils. After 14 d of seedling growth, particles with crystallinity typical of CuO or ZnO remained in the aqueous fraction from the sand; particles had negative surface charges that differed with NP type and salt, but salt did not alter particle agglomeration. Reduction in shoot and root elongation and lateral root induction by ZnO NPs were mitigated by all salts. However, whereas Na and K promoted Zn loading into shoots, Ca reduced loading, suggesting that competition with Zn ions for uptake occurred. With CuO NPs, plant growth and loading was modified equally by all salts, consistent with major interaction with the plant with CuO rather than Cu ions. Thus, for both NPs, loading into plant tissues was not solely dependent on ion solubility. These findings indicated that salts in agricultural soils could modify the phytotoxicity of NPs. © 2015 SETAC.
Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides.
Li, Jiuxing; Zhu, Binqing; Yao, Xiujie; Zhang, Yicong; Zhu, Zhi; Tu, Song; Jia, Shasha; Liu, Rudi; Kang, Huaizhi; Yang, Chaoyong James
2014-10-08
Attaching thiolated DNA on gold nanoparticles (AuNPs) has been extremely important in nanobiotechnology because DNA-AuNPs combine the programmability and molecular recognition properties of the biopolymers with the optical, thermal, and catalytic properties of the inorganic nanomaterials. However, current standard protocols to attach thiolated DNA on AuNPs involve time-consuming, tedious steps and do not perform well for large AuNPs, thereby greatly restricting applications of DNA-AuNPs. Here we demonstrate a rapid and facile strategy to attach thiolated DNA on AuNPs based on the excellent stabilization effect of mPEG-SH on AuNPs. AuNPs are first protected by mPEG-SH in the presence of Tween 20, which results in excellent stability of AuNPs in high ionic strength environments and extreme pHs. A high concentration of NaCl can be applied to the mixture of DNA and AuNP directly, allowing highly efficient DNA attachment to the AuNP surface by minimizing electrostatic repulsion. The entire DNA loading process can be completed in 1.5 h with only a few simple steps. DNA-loaded AuNPs are stable for more than 2 weeks at room temperature, and they can precisely hybridize with the complementary sequence, which was applied to prepare core-satellite nanostructures. Moreover, cytotoxicity assay confirmed that the DNA-AuNPs synthesized by this method exhibit lower cytotoxicity than those prepared by current standard methods. The proposed method provides a new way to stabilize AuNPs for rapid and facile loading thiolated DNA on AuNPs and will find wide applications in many areas requiring DNA-AuNPs, including diagnosis, therapy, and imaging.
Ali, Isra H; Khalil, Islam A; El-Sherbiny, Ibrahim M
2016-06-15
Phenytoin (Ph), an antiepileptic drug, was reported to exhibit high wound healing activity. However, its limited solubility, bioavailability, and inefficient distribution during topical administration limit its use. Therefore, this study aims to develop new single-dose electrospun nanoparticles-in-nanofibers (NPs-in-NFs) wound dressings that allow a well-controlled release of Ph. These NPs-in-NFs systems are based on enhanced chitosan (CS)/poly(ethylene oxide) (PEO) electrospun nanofibers (NFs) incorporating optimized Ph-loaded nanocarriers. First, a study was conducted to investigate Ph loading efficiency into polymeric nanocarriers of different types; pluronic nanomicelles and poly(lactic-co-glycolic) acids nanoparticles (PLGA NPs). The drug release profile from the nanocarriers was further optimized via lecithin coating. Second, different electrospinning parameters were manipulated to fabricate beads-free homogeneous NFs with optimized polymer ratios. Plain and Ph-loaded nanocarriers were characterized using Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and scanning electron microscopy (SEM). Both entrapment efficiency of Ph (EE%) and its release profile in phosphate buffer saline (PBS; pH 5.5), simulating the wound environment, were studied. Biodegradability, swelling, vapor permeability, and porosity of the developed Ph-loaded NPs-in-NFs wound dressings were investigated. Morphology of the NPs-in-NFs was also studied using SEM and confocal laser microscopy (CLSM). Besides, the release profiles of Ph from the optimized NPs-in-NFs were assessed. The newly developed wound dressings were evaluated in vitro for their cytotoxicity using human fibroblasts and in vivo using a wound healing mice model. Nanocarriers with particle size ranging from 100 to 180 nm were successfully prepared. All nanocarriers attained a high drug entrapment efficiency exceeding 94% and showed promising sustained release profiles compared to free Ph. Results also demonstrated that NFs incorporating the optimized lecithin-coated Ph-loaded PLGA NPs could be the most promising candidate for efficient wound healing. These NPs-in-NFs systems conferred a well-controlled and sustained release of Ph over 9 days. Moreover, they showed the best re-epithelization and healing quality during the in vivo study with minimal inflammatory and necrotic cells formation.
Wang, Fengzhang; Yang, Yijie; Ju, Xingrong; Udenigwe, Chibuike C; He, Rong
2018-03-21
Curcumin is a polyphenol that exhibits several biological activities, but its low aqueous solubility results in low bioavailability. To improve curcumin bioavailability, this study has focused on developing a polyelectrolyte complexation method to form layer-by-layer assembled nanoparticles, for curcumin delivery, with positively charged chitosan (CS) and negatively charged acylated cruciferin (ACRU), a rapeseed globulin. Nanoparticles (NPs) were prepared from ACRU and CS (2:1) at pH 5.7. Three samples with weight of 5%, 10%, and 15% of curcumin, respectively, in ACRU/CS carrier were prepared. To verify the stability of the NPs, encapsulation efficiency and size of the 5% Cur-ACRU/CS NPs were determined at intervals of 5 days in a one month period. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and differential scanning calorimetry confirmed the electrostatic interaction and hydrogen bond formation between the carrier and core. The result showed that hollow ACRU/CS nanocapsules (ACRU/CS NPs) and curcumin-loaded ACRU/CS nanoparticles (Cur-ACRU/CS NPs) were homogenized spherical with average sizes of 200-450 nm and zeta potential of +15 mV. Encapsulation and loading efficiencies were 72% and 5.4%, respectively. In vitro release study using simulated gastro (SGF) and intestinal fluids (SIF) showed controlled release of curcumin in 6 h of exposure. Additionally, the Cur-ACRU/CS NPs are nontoxic to cultured Caco-2 cells, and the permeability assay indicated that Cur-ACRU/CS NPs had improved permeability efficiency of free curcumin through the Caco-2 cell monolayer. The findings suggest that ACRU/CS NPs can be used for encapsulation and delivery of curcumin in functional foods.
Liu, Y Y; Zhao, Y H; Zhou, Y; Guo, X L; Chen, Z T; Zhang, W J; Zhang, Y; Chen, J; Wang, Z M; Sun, L T; Zhang, T
2018-08-03
Noble metal nanoparticles (NPs) such as Au and Ag have shown many applications in the field of catalysis, sensing etc. due to their excellent photoelectric properties. But agglomeration and a low recovery rate are big problems for their applications. In this research, a novel Ag NPs/graphene (reduced graphene oxide)-loading loofah sponge (Ag NPs/RGO-LS) was synthesized through a one-step reduction method. Where the RGO is used as a nano-support with the high specific surface area and the high conductivity to prevent the agglomeration of Ag NPs and provide a conductive layer. The natural, green, low-cost and high-yield LS is designed as a macro-support to reduce the loss of Ag NPs during recycling. The as-prepared Ag NPs/RGO-LS is stable, uniform, and exhibits high efficiency and reusability in the catalytic reduction of 4-nitrophenol (4-NP) with a high rate constant of 1.893 min -1 as well as an average conversion of 98% in 6 min during five cycles. The results have not only paved the way for the wide application of Ag NPs but also provide a new road for the application of other metal NPs.
Direct deposit laminate nanocomposites with enhanced propellent properties.
Li, Xiangyu; Guerieri, Philip; Zhou, Wenbo; Huang, Chuan; Zachariah, Michael R
2015-05-06
One of the challenges in the use of energetic nanoparticles within a polymer matrix for propellant applications is obtaining high particle loading (high energy density) while maintaining mechanical integrity and reactivity. In this study, we explore a new strategy that utilizes laminate structures. Here, a laminate of alternating layers of aluminum nanoparticle (Al-NPs)/copper oxide nanoparticle (CuO-NPs) thermites in a polyvinylidene fluoride (PVDF) reactive binder, with a spacer layer of PVDF was fabricated by a electrospray layer-by-layer deposition method. The deposited layers containing up to 60 wt % Al-NPs/CuO-NPs thermite are found to be uniform and mechanically flexible. Both the reactive and mechanical properties of laminate significantly outperformed the single-layer structure with the same material composition. These results suggest that deploying a multilayer laminate structure enables the incorporation of high loadings of energetic materials and, in some cases, enhances the reactive properties over the corresponding homogeneous structure. These results imply that an additive manufacturing approach may yield significant advantages in developing a tailored architecture for advanced propulsion systems.
Chu, Dafeng; Gao, Jin; Wang, Zhenjia
2015-12-22
Endothelial cells form a monolayer in lumen of blood vessels presenting a great barrier for delivery of therapeutic nanoparticles (NPs) into extravascular tissues where most diseases occur, such as inflammation disorders and infection. Here, we report a strategy for delivering therapeutic NPs across this blood vessel barrier by nanoparticle in situ hitchhiking activated neutrophils. Using intravital microscopy of TNF-α-induced inflammation of mouse cremaster venules and a mouse model of acute lung inflammation, we demonstrated that intravenously (iv) infused NPs made from denatured bovine serum albumin (BSA) were specifically internalized by activated neutrophils, and subsequently, the neutrophils containing NPs migrated across blood vessels into inflammatory tissues. When neutrophils were depleted using anti-Gr-1 in a mouse, the transport of albumin NPs across blood vessel walls was robustly abolished. Furthermore, it was found that albumin nanoparticle internalization did not affect neutrophil mobility and functions. Administration of drug-loaded albumin NPs markedly mitigated the lung inflammation induced by LPS (lipopolysaccharide) or infection by Pseudomonas aeruginosa. These results demonstrate the use of an albumin nanoparticle platform for in situ targeting of activated neutrophils for delivery of therapeutics across the blood vessel barriers into diseased sites. This study demonstrates our ability to hijack neutrophils to deliver nanoparticles to targeted diseased sites.
Wang, Qian; Li, Chan; Ren, Tianyang; Chen, Shizhu; Ye, Xiaoxia; Guo, Hongbo; He, Haibing; Zhang, Yu; Yin, Tian; Liang, Xing-Jie; Tang, Xing
2017-10-02
Bioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.0%. The nanoparticles were uniform and spherical in shape and exhibited a sustained drug release compared with Taxol. m-NPs also exhibited favorable bioadhesive efficiency at the same time. Coumarin 6 or DiR-loaded nanoparticles with/without PVMMA (C6-m-NPs/DiR-m-NPs or C6-p-NPs/DiR-p-NPs) were used for cellular uptake and intestinal adhesion experiments, respectively. C6-m-NPs were shown to enhance cellular uptake, and caveolae/lipid raft mediated endocytosis was the primary route for the uptake of the nanoparticles. Favorable bioadhesive efficiency led to prolonged retention in the intestine reflected by the fluorescence in isolated intestines ex vivo. In a ligated intestinal loops model, C6-m-NPs showed a clear advantage for transporting NPs across the mucus layer over C6-p-NPs and free C6. The apparent permeability coefficient (Papp) of PTX-m-NPs through Caco-2/HT29 monolayers was 1.3- and 1.6-fold higher than PTX-p-NPs and Taxol, respectively, which was consistent with the AUC 0-t of different PTX formulations after oral administration in rats. PTX-m-NPs also exhibited a more effective anticancer efficacy, with an IC 50 of 0.2 ± 1.4 μg/mL for A549 cell lines, further demonstrating the advantage of bioadhesive nanoparticles. The bioadhesive nanoparticles m-NPs demonstrated both mucus permeation and epithelial absorption, and thus, this bioadhesive drug delivery system has the potential to improve the bioavailability of drugs that are insoluble in the gastrointestinal environment.
Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy
NASA Astrophysics Data System (ADS)
Kim, Hyungjun; Lee, Yonghyun; Kang, Sukmo; Choi, Minsuk; Lee, Soyoung; Kim, Sunghyun; Gujrati, Vipul; Kim, Jinjoo; Jon, Sangyong
2016-12-01
Self-assembled nanoparticles (NPs) have been intensively utilized as cancer drug delivery carriers because hydrophobic anticancer drugs may be efficiently loaded into the particle cores. In this study, we synthesized and evaluated the therapeutic index of self-assembled NPs chemically conjugated to a fibronectin extra domain B-specific peptide (APTEDB) and an anticancer agent SN38. The APTEDB-SN38 formed self-assembled structures with a diameter of 58 ± 3 nm in an aqueous solution and displayed excellent drug loading, solubility, and stability properties. A pharmacokinetic study revealed that the blood circulation half-life of SN38 following injection of the APTEDB-SN38 NPs was markedly higher than that of the small molecule CPT-11. The APTEDB-SN38 NPs delivered SN38 to tumor sites by both passive and active targeting. Finally, the APTEDB-SN38 NPs exhibited potent antitumor activities and low toxicities against EDB-expressing tumors (LLC, U87MG) in mice. This system merits further preclinical and clinical investigations for SN38 delivery.
NASA Astrophysics Data System (ADS)
Khattabi, Areen M.; Alqdeimat, Diala A.
2018-02-01
One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.
NASA Astrophysics Data System (ADS)
Naz, M.; Nasiri, N.; Ikram, M.; Nafees, M.; Qureshi, M. Z.; Ali, S.; Tricoli, A.
2017-11-01
The work aimed to prepare silver nanoparticles (Ag-NPs) from silver nitrate and various concentrations of the seed extract ( Setaria verticillata) by a green synthetic route. The chemical and physical properties of the resulting Ag-NPs were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry and ultraviolet-visible (UV-Vis) spectrophotometry. Anticancer activity of Ag-NPs (5-20 nm) had dose-dependent cytotoxic effect against breast cancer (MCF7-FLV) cells. The in vitro toxicity was studied on adult earthworms (Lumbricina) resulting in statistically significant ( P < 0.05) inhibition. The prepared NPs were loaded with hydrophilic anticancer drugs (ACD), doxorubicin (DOX) and daunorubicin (DNR), for developing a novel drug delivery carrier having significant adsorption capacity and efficiency to remove the side effects of the medicines effective for leukemia chemotherapy.
NASA Astrophysics Data System (ADS)
Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung
2017-05-01
Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low- k). To supplement low- k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high- k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high- k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3. [Figure not available: see fulltext.
Mondal, Nita; Halder, Kamal Krishna; Kamila, Madan Mohan; Debnath, Mita Chatterjee; Pal, Tapan K; Ghosal, Saroj K; Sarkar, Bharat R; Ganguly, Shantanu
2010-09-15
Letrozole (LTZ) incorporated PLGA nanoparticles were prepared by solvent displacement technique and characterized by transmission electron microscopy, poly-dispersity index and zeta potential measurement. Radiolabeling of free LTZ and LTZ-loaded PLGA NPs was performed with technetium-99m with high labeling efficiency. The labeled complex showed good in vitro stability as verified by DTPA challenge test. The labeled complexes also showed significant in vivo stability when incubated in rat serum for 24 h. Biodistribution studies of (99m)Tc-labeled complexes were performed after intravenous administration in normal mice and Ehrlich Ascites tumor bearing mice. Compared to free LTZ, LTZ-loaded PLGA NPs exhibited significantly lower uptake by the organs of RES. The tumor concentration of LTZ-loaded PLGA NPs was 4.65 times higher than that of free LTZ at 4 h post-injection. This study indicates the capability of PLGA nanopartcles in enhancing the tumor uptake of letrozole. Copyright 2010 Elsevier B.V. All rights reserved.
Wang, Yi-Ran; Yang, Shi-Yan; Chen, Guang-Xia; Wei, Ping
2018-04-30
Gastric cancer is the third leading cause of cancer-associated death worldwide. Although a decrease in its incidence is observed, gastric cancer still poses a major clinical challenge due to poor prognosis and limited treatments. Barbaloin (BBL) is a main medicinal composition of the Chinese traditional medicine aloe vera. BBL has various bioactivities, including anti-oxidant, anti-inflammatory and anti-tumor properties. Polydopamine (pD)-based surface modification is easy to functionalize polymeric nanoparticles (NPs) surfaces with ligands and/or additional polymeric layers. In the present study, BBL-loaded formulations was developed with pD-modified NPs, which was synthesized by polylactide-TPGS (PLA-TPGS) (pD-PLA-TPGS/NPs). And galactosamine (Gal) was conjugated on the prepared NPs (Gal-pD-PLA-TPGS/NPs) for targeting the gastric cancer cells. Here, we found that BBL-loaded Gal-pD-PLA-TPGS/NPs showed the highest cellular uptake efficacy in gastric cancer cells. Gal-pD-PLA-TPGS/NPs more significantly reduced the gastric cancer cell viability. Further, greater apoptosis, autophagy and ROS generation was induced by Gal-pD-PLA-TPGS/NPs in gastric cancer cells. Additionally, compared to the other two NPs, Gal-pD-PLA-TPGS/NPs most markedly decreased ATP levels in gastric cancer cells. In vivo, Gal-pD-PLA-TPGS/NPs were specifically targeted to tumor site. Moreover, Gal-pD-PLA-TPGS/NPs exhibited the most anti-tumor effects, as evidenced by the lowest tumor volume and tumor weight. Of note, there was no significant difference was observed in body and liver weight, as well as the histological changes in major organs isolated from each group of mice. Together, the findings indicated that BBL-loaded Gal-pD-PLA-TPGS/NPs could be targeted to gastric cancer cells to suppress tumor progression without toxicity. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Maiolino, Sara; Moret, Francesca; Conte, Claudia; Fraix, Aurore; Tirino, Pasquale; Ungaro, Francesca; Sortino, Salvatore; Reddi, Elena; Quaglia, Fabiana
2015-03-01
In the attempt to develop novel concepts in designing targeted nanoparticles for combination therapy of cancer, we propose here CD44-targeted hyaluronan-decorated double-coated nanoparticles (dcNPs) delivering the lipophilic chemotherapeutic docetaxel (DTX) and an anionic porphyrin (TPPS4). dcNPs are based on electrostatic interactions between a negative DTX-loaded nanoscaffold of poly(lactide-co-glycolide), a polycationic shell of polyethyleneimine entangling negatively-charged TPPS4 and finally decorated with hyaluronan (HA) to promote internalization through CD44 receptor-mediated endocytosis. DTX/TPPS4-dcNPs, prepared through layer-by-layer deposition, showed a hydrodynamic diameter of around 180 nm, negative zeta potential and efficient loading of both DTX and TPPS4. DTX/TPPS4-dcNPs were freeze-dried with trehalose giving a powder that could be easily dispersed in different media. Excellent stability of dcNPs in specific salt- and protein-containing media was found. Spectroscopic behavior of DTX/TPPS4-dcNPs demonstrated a face-to-face arrangement of the TPPS4 units in non-photoresponsive H-type aggregates accounting for an extensive aggregation of the porphyrin embedded in the shell. Experiments in MDA-MB-231 cells overexpressing the CD44 receptor demonstrated a 9.4-fold increase in the intracellular level of TPPS4 delivered from dcNPs as compared to free TPPS4. Light-induced death increased tremendously in cells that had been treated with a combination of TPPS4 and DTX delivered through dcNPs as compared with free drugs, presumably due to efficient uptake and co-localization inside the cells. In perspective, the strategy proposed here to target synergistic drug combinations through HA-decorated nanoparticles seems very attractive to improve the specificity and efficacy of cancer treatment.In the attempt to develop novel concepts in designing targeted nanoparticles for combination therapy of cancer, we propose here CD44-targeted hyaluronan-decorated double-coated nanoparticles (dcNPs) delivering the lipophilic chemotherapeutic docetaxel (DTX) and an anionic porphyrin (TPPS4). dcNPs are based on electrostatic interactions between a negative DTX-loaded nanoscaffold of poly(lactide-co-glycolide), a polycationic shell of polyethyleneimine entangling negatively-charged TPPS4 and finally decorated with hyaluronan (HA) to promote internalization through CD44 receptor-mediated endocytosis. DTX/TPPS4-dcNPs, prepared through layer-by-layer deposition, showed a hydrodynamic diameter of around 180 nm, negative zeta potential and efficient loading of both DTX and TPPS4. DTX/TPPS4-dcNPs were freeze-dried with trehalose giving a powder that could be easily dispersed in different media. Excellent stability of dcNPs in specific salt- and protein-containing media was found. Spectroscopic behavior of DTX/TPPS4-dcNPs demonstrated a face-to-face arrangement of the TPPS4 units in non-photoresponsive H-type aggregates accounting for an extensive aggregation of the porphyrin embedded in the shell. Experiments in MDA-MB-231 cells overexpressing the CD44 receptor demonstrated a 9.4-fold increase in the intracellular level of TPPS4 delivered from dcNPs as compared to free TPPS4. Light-induced death increased tremendously in cells that had been treated with a combination of TPPS4 and DTX delivered through dcNPs as compared with free drugs, presumably due to efficient uptake and co-localization inside the cells. In perspective, the strategy proposed here to target synergistic drug combinations through HA-decorated nanoparticles seems very attractive to improve the specificity and efficacy of cancer treatment. Electronic supplementary information (ESI) available: Synthetic and experimental procedures. See DOI: 10.1039/c4nr06910b
Controlled-release biodegradable nanoparticles: From preparation to vaginal applications.
Martínez-Pérez, Beatriz; Quintanar-Guerrero, David; Tapia-Tapia, Melina; Cisneros-Tamayo, Ricardo; Zambrano-Zaragoza, María L; Alcalá-Alcalá, Sergio; Mendoza-Muñoz, Néstor; Piñón-Segundo, Elizabeth
2018-03-30
This study aimed to prepare poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with chitosan (CTS) surface modification to be used as a vaginal delivery system for antimycotic drugs. Clotrimazole was encapsulated with entrapment efficiencies of 86.1 and 68.9% into Clotrimazole-PLGA-NPs (CLT-PLGA-NPs) and PLGA-NPs with CTS-modified surface (CLT-PLGA-CTS-NPs), respectively. The later NPs exhibited a larger size and higher positive zeta potential (Z potential) in comparison to unmodified NPs. In vitro release kinetic studies indicated that Clotrimazole was released in percentages of >98% from both nanoparticulate systems after 18days. Antifungal activity and mucoadhesive properties of NPs were enhanced when CTS was added onto the surface. In summary, these results suggested that Clotrimazole loaded into PLGA-CTS-NPs has great potential for vaginal applications in treating vaginal infections generated by Candida albicans. Copyright © 2018 Elsevier B.V. All rights reserved.
Wasmuth, Claus; Rüdel, Heinz; Düring, Rolf-Alexander; Klawonn, Thorsten
2016-02-01
The OECD guidance document No. 29 was designed to determine the rate and extend to which metals can produce soluble available ionic metal species. This transformation/dissolution protocol was applied to silver nanomaterials. The results prove that concentrations of released Ag(+) at pH 8 were nearly similar at all three different loadings. At pH 6, the concentration of Ag(+) was almost the same at loadings of 10 and 100 mg L(-1) AgNPs. However, the study showed changes in concentrations of nanoparticles and aggregates (operationally defined as the fraction passing a 0.2 µm filter). At the higher pH both the concentrations in the test medium of Ag(+) and of AgNPs (fraction < 0.2 µm) decreased. After 7 days of test duration, 71 µg L(-1) of Ag(+) was found in pH 6 medium (initial loading of 100 mg L(-1)). In pH 8 medium a maximum concentration of 29 µg L(-1) Ag(+) was measured (initial loading of 10 mg L(-1)). The maximum transformation from AgNPs to Ag(+) was 2.7% (27 µg L(-1)) in pH 8 medium (loading of 1 mg L(-1)) after 7 days. At an initial loading of 100 mg L(-1) AgNPs in medium at pH 8, only 0.03% (30 µg L(-1)) were transformed to Ag(+) after 7 days. At the loading of 1 mg L(-1) AgNPs all silver concentrations remain relatively constant for the duration of the test after 7 until 28 days. The results reveal that only low concentrations of Ag(+) are released from AgNPs under the applied conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kushwah, Varun; Katiyar, Sameer S; Dora, Chander Parkash; Kumar Agrawal, Ashish; Lamprou, Dimitrios A; Gupta, Ramesh C; Jain, Sanyog
2018-06-01
In the present study, we have modified bovine serum albumin (BSA) by covalently conjugating with anacardic acid (AA) and gemcitabine (GEM) and further used for development of docetaxel (DTX) loaded nanoparticles (AA-GEM-BSA NPs). AA is supposed to provide tumor targeting through VEGF receptors overexpressed in tumors, while the combination of GEM and DTX is supposed to provide synergistic activity by targeting multiple pathways. The conjugate was synthesized via carbodiimide chemistry and characterized by 1 H NMR, FTIR, MALDI-TOF and elemental analysis. Conformational changes owing to conjugation of AA and GEM were estimated via fluorescence, Raman and CD spectroscopy, while changes in physiochemical properties were studied by differential scanning calorimetry (DSC), thermogravimetry (TGA) and contact angle goniometry (CAG). Synthesized conjugate was further transformed into DTX loaded NPs and freeze dried. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) demonstrated formation of spherical NPs having particle size, 163 ± 8 nm, PDI, 0.13 ± 0.09 and ZP, -27 ± 1 mV. Cellular uptake in MCF-7 and MDA-MB-231 revealed hNTs, OATP1B3 independent, clathrin mediated internalization followed via nuclear co-localization of C-6 loaded AA-GEM-BSA NPs, responsible for significantly higher apoptosis index. Pharmacokinetic profile of DTX loaded AA-GEM-BSA NPs revealed 6.12 and 3.27-fold and 6.28 and 8.9-fold higher AUC and T 1/2 values of DTX and GEM as compared to Taxotere® and Gemzar®, respectively. Interestingly, the developed NPs were found safe with no marked effect on RBCs, lower hepato and nephro toxicity. Data in hand suggest promising potential of developed NPs in ameliorating the pharmacokinetic and therapeutic profile of combinatorial regimen of DTX and GEM. The present report is the original state of art technology to selectively target dual drug (DTX and GEM) loaded BSA NPs via exploring tumor targeting potential of AA, having high affinity towards VEGF receptors (angiogenesis marker) overexpressed in tumor. The AA and GEM bio-conjugated BSA was synthesized and further used to develop DTX loaded nanoparticles (AA-GEM-BSA NPs). The optimized NPs were further evaluated via extensive in vitro and in vivo studies, demonstrating ameliorated cellular uptake, pharmacokinetic and toxicity profile of drugs. Conclusively, DTX loaded AA-GEM-BSA NPs, holds promising potential in increasing the therapeutic efficiency of drugs and overcoming solvent and drug mediated side effects and can be explored further as a scalable platform technology for difficult to deliver drugs. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy
Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong
2016-01-01
A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects. PMID:27042062
Xu, Guojun; Yu, Xinghua; Zhang, Jinxie; Sheng, Yingchao; Liu, Gan; Tao, Wei; Mei, Lin
2016-01-01
One limitation of current biodegradable polymeric nanoparticles (NPs) is the contradiction between functional modification and maintaining formerly excellent bioproperties with simple procedures. Here, we reported a robust aptamer-polydopamine-functionalized mannitol-functionalized poly(lactide-co-glycolide) (M-PLGA)-D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoformulation (Apt-pD-NPs) for the delivery of docetaxel (DTX) with enhanced cervical cancer therapy effects. The novel DTX-loaded Apt-pD-NPs possess satisfactory advantages: 1) increased drug loading content and encapsulation efficiency induced by star-shaped copolymer M-PLGA-TPGS; 2) significant active targeting effect caused by conjugated AS1411 aptamers; and 3) excellent long-term compatibility by incorporation of TPGS. Therefore, with simple preparation procedures and excellent bioproperties, the new functionalized Apt-pD-NPs could maximally increase the local effective drug concentration on tumor sites, achieving enhanced treatment effectiveness and minimizing side effects. In a word, the robust DTX-loaded Apt-pD-NPs could be used as potential nanotherapeutics for cervical cancer treatment, and the aptamer-polydopamine modification strategy could be a promising method for active targeting of cancer therapy with simple procedures.
Venkatesh, D. Nagasamy; Baskaran, Mahendran; Karri, Veera Venkata Satyanarayana Reddy; Mannemala, Sai Sandeep; Radhakrishna, Kollipara; Goti, Sandip
2015-01-01
Nelfinavir mesylate (NFV) is an anti-viral drug, used in the treatment of Acquired Immunodeficiency Syndrome (AIDS). Poor oral bioavailability and shorter half-life (3.5–5 h) remain a major clinical limitation of NFV leading to unpredictable drug bioavailability and frequent dosing. In this context, the objective of the present study was to formulate NFV loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which can increase the solubility and oral bioavailability along with sustained release of the drug. NFV loaded PLGA-NPs were prepared by nanoprecipitation method using PLGA and Poloxomer 407. The prepared NPs were evaluated for particle size, zeta potential, morphology, drug content, entrapment efficiency (EE) and in vitro dissolution studies. Oral bioavailability studies were carried out in New Zealand rabbits by administering developed NFV PLGA-NPs and pure drug suspension. PLGA-NPs prepared by using 1:4 ratio of drug and PLGA, with a stirring rate of 1500 rpm for 4 h. The prepared NPs were in the size of 185 ± 0.83 nm with a zeta potential of 28.7 ± 0.09 mV. The developed NPs were found to be spherical with uniform size distribution. The drug content and EE of the optimized formulation were found to be 36 ± 0.19% and 72 ± 0.47% respectively. After oral administration of NFV PLGA-NPs, the relative bioavailability was enhanced about 4.94 fold compared to NFV suspension as a control. The results describe an effective strategy for oral delivery of NFV loaded PLGA NPs that helps in enhancing bioavailability and reduce the frequency of dosing. PMID:26702262
Yano, Kazuhisa; Zhang, Shuyi; Pan, Xiaoqing; Tatsuda, Narihito
2014-05-01
The effect of the pore size of mesoporous silica on the stability of Pt nanoparticles (NPs) has been investigated. TEM observation and XRD measurement were conducted in situ for Pt loaded mesoporous silica with different mesopore sizes. It turns out that smaller pores are more effective to stabilize Pt NPs below 600 °C. However, aggregation of Pt NPs on the surface of particles is not fully suppressed more than 1000 °C in ambient atmosphere even though smaller mesopore size is applied. The type of precursor does not affect the stability of Pt NPs. Copyright © 2014. Published by Elsevier Inc.
Dimchevska, Simona; Geskovski, Nikola; Petruševski, Gjorgji; Chacorovska, Marina; Popeski-Dimovski, Riste; Ugarkovic, Sonja; Goracinova, Katerina
2017-03-01
One of the most important problems in nanoencapsulation of extremely hydrophobic drugs is poor drug loading due to rapid drug crystallization outside the polymer core. The effort to use nanoprecipitation, as a simple one-step procedure with good reproducibility and FDA approved polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), will only potentiate this issue. Considering that drug loading is one of the key defining characteristics, in this study we attempted to examine whether the nanoparticle (NP) core composed of two hydrophobic polymers will provide increased drug loading for 7-Ethyl-10-hydroxy-camptothecin (SN-38), relative to NPs prepared using individual polymers. D-optimal design was applied to optimize PLGA/PCL ratio in the polymer blend and the mode of addition of the amphiphilic copolymer Lutrol ® F127 in order to maximize SN-38 loading and obtain NPs with acceptable size for passive tumor targeting. Drug/polymer and polymer/polymer interaction analysis pointed to high degree of compatibility and miscibility among both hydrophobic polymers, providing core configuration with higher drug loading capacity. Toxicity studies outlined the biocompatibility of the blank NPs. Increased in vitro efficacy of drug-loaded NPs compared to the free drug was confirmed by growth inhibition studies using SW-480 cell line. Additionally, the optimized NP formulation showed very promising blood circulation profile with elimination half-time of 7.4 h.
Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticle.
Xiao, Bo; Yang, Yang; Viennois, Emilie; Zhang, Yuchen; Ayyadurai, Saravanan; Baker, Mark; Laroui, Hamed; Merlin, Didier
2014-03-21
Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab'-bearing quantum dots (QDs)-loaded nanoparticles (Fab'-NPs). The resultant Fab'-NPs had desired particle size (~458 nm) with a narrow size distribution and zeta-potential (approximately +19 mV), low cytotoxicity, and excellent fluorescence properties. Electron microscopy images provided direct evidence for the well-dispersed distribution of QDs within spherical Fab'-NPs. Cellular uptake experiments demonstrated that Fab'-NPs were efficiently internalized into Colon-26 and RAW 264.7 cells through the CD98-mediated endocytosis pathway, and showed that the targeting effect of CD98 Fab' markedly increased their cellular uptake efficiency compared with control pegylated QDs-loaded NPs (PEG-NPs). Furthermore, ex vivo studies showed much more effective accumulation of Fab'-NPs in colitis tissue than that of PEG-NPs. These findings suggest that because of inflammation-dependent over-expression of CD98, active colitis-targeted delivery can be accomplished using NPs decorated with CD98 antibody.
Guimarães, Pedro Pires Goulart; Oliveira, Sheila Rodrigues; de Castro Rodrigues, Gabrielle; Gontijo, Savio Morato Lacerda; Lula, Ivana Silva; Cortés, Maria Esperanza; Denadai, Ângelo Márcio Leite; Sinisterra, Rubén Dario
2015-01-08
The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide) (SUL-PLGA) nanoparticles (NPs) for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were characterized using transmission and scanning electron microscopy and dynamic light scattering. Additionally, the zeta potential, drug content, and in vitro 5-FU release were evaluated. We found that for the SUL-PLGA NPs, Dh = 114.0 nm, ZP = -32.1 mV and the encapsulation efficiency was 49%. The 5-FU was released for up to 7 days from the NPs. Cytotoxicity evaluations of 5-FU-loaded NPs (5-FU-SUL-PLGA and 5-FU-PLGA) on two cancer cell lines (Caco-2, A431) and two normal cell lines (fibroblast, osteoblast) were compared. Higher cytotoxicity of 5-FU-SUL-PLGA NPs were found to both cancer cell lines when compared to normal cell lines, demonstrating that the presence of SUL could significantly enhance the cytotoxicity of the 5-FU-SUL-PLGA NPs when compared with 5-FU-PLGA NPs. Thus, the development of 5-FU-SUL-PLGA NPs to cancer cells is a promising strategy for the 5-FU antitumor formulation in the future.
Liu, Xu-Jie; Li, Liang; Liu, Xiu-Jun; Li, Yi; Zhao, Chun-Yan; Wang, Rui-Qi; Zhen, Yong-Su
2017-01-01
Previous studies have shown that mithramycin A (MIT) is a promising candidate for the treatment of pancreatic carcinoma through inhibiting transcription factor Sp1. However, systemic toxicities may limit its clinical application. Here, we report a rationally designed formulation of MIT-loaded nanoparticles (MIT-NPs) with a small size and sustained release for improved passive targeting and enhanced therapeutic efficacy. Nearly spherical MIT-NPs with a mean particle size of 25.0±4.6 nm were prepared by encapsulating MIT into methoxy poly(ethylene glycol)-block-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (NPs) with drug loading of 2.11%±0.51%. The in vitro release of the MIT-NPs lasted for >48 h with a sustained-release pattern. The cytotoxicity of MIT-NPs to human pancreatic cancer BxPC-3 and MIA Paca-2 cells was comparable to that of free MIT. Determined by flow cytometry and confocal microscopy, the NPs internalized into the cells quickly and efficiently, reaching the peak level at 1–2 h. In vivo fluorescence imaging showed that the prepared NPs were gradually accumulated in BxPC-3 and MIA Paca-2 xenografts and retained for 168 h. The fluorescence intensity in both BxPC-3 and MIA Paca-2 tumors was much stronger than that of various tested organs. Therapeutic efficacy was evaluated with the poorly permeable BxPC-3 pancreatic carcinoma xenograft model. At a well-tolerated dose of 2 mg/kg, MIT-NPs suppressed BxPC-3 tumor growth by 96%. Compared at an equivalent dose, MIT-NPs exerted significantly higher therapeutic effect than free MIT (86% versus 51%, P<0.01). Moreover, the treatment of MIT and MIT-NPs reduced the expression level of oncogene c-Myc regulated by Sp1, and notably, both of them decreased the protein level of CD47. In summary, the novel formulation of MIT-NPs shows highly therapeutic efficacy against pancreatic carcinoma xenograft. In addition, MIT-NPs can downregulate CD47 expression, implying that it might play a positive role in cancer immunotherapy. PMID:28769562
Laquintana, Valentino; Denora, Nunzio; Lopalco, Antonio; Lopedota, Angela; Cutrignelli, Annalisa; Lasorsa, Francesco Massimo; Agostino, Giulia; Franco, Massimo
2014-03-03
Translocator protein 18 kDa (TSPO) is a promising target for molecular imaging and for targeted drug delivery to tumors overexpressing TSPO. In our previous work, new macromolecular conjugates with a high affinity and selectivity for TSPO were prepared by conjugating the biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) polymer with two potent and selective TSPO ligands, namely, compounds 1 and 2. Based on this, nanoparticle delivery systems (NPs), employing TSPO ligand-PLGA conjugated (PLGA-TSPO) polymers, were prepared. Furthermore, to evaluate the ability of the new NPs to be used as a drug delivery systems for anticancer therapy, PLGA-TSPO NPs were loaded with 5-fluorouracil (5-FU), chosen as a model hydrophilic anticancer drug. The main goal of this work was to investigate the synergistic potential of using NP conjugates PLGA-TSPO, TSPO ligands being pro-apoptotic agents, to simultaneously deliver a cytotoxic anticancer drug. To better highlight the occurrence of synergistic effects, dual drug loaded PLGA NPs (PLGA NPs/5-FU/1) and dual drug loaded PLGA-TSPO NPs (PLGA-TSPO NPs/5-FU/1), with 5-FU and TSPO ligand 1 physically incorporated together, were also prepared and characterized. The particle size and size distribution, surface morphology, and drug encapsulation efficiency, as well as the drug release kinetics, were investigated. In vitro cytotoxicity studies were carried out on C6 glioma cells overexpressing TSPO, and to evaluate the potential uptake of these nanoparticulate systems, the internalization of fluorescent labeled PLGA-TSPO NPs (FITC-PLGA-TSPO NPs) was also investigated by fluorescence microscopy. Results demonstrated that PLGA-TSPO NPs/5-FU and dual drug loaded PLGA NPs/5-FU/1 and PLGA-TSPO NPs/5-FU/1 could significantly enhance toxicity against human cancer cells due to the synergistic effect of the TSPO ligand 1 with the anticancer drug 5-FU.
Wang, Xin; Zhang, Manjie; Zhang, Lingyu; Li, Lu; Li, Shengnan; Wang, Chungang; Su, Zhongmin; Yuan, Yue; Pan, Weisan
2017-05-11
Herein, we report a facile strategy to prepare supported lipid-bilayer-coated polyacrylic acid/calcium phosphate nanoparticles (designated as PAA/CaP@SLB NPs) as a new dual pH-responsive drug-delivery platform for cancer chemotherapy. The synthesized PAA/CaP NPs exhibited both a high payload of doxorubicin (DOX) and dual pH-responsive drug-release properties. Additionally, the coated lipid bilayer had the ability to enhance the cellular uptake of PAA/CaP NPs without affecting the pH-responsive drug release. Moreover, the blank PAA/CaP@SLB NPs exhibited excellent biocompatibility and the DOX-loaded PAA/CaP@SLB NPs markedly increased the cellular accumulation of DOX and its cytotoxic effects on HepG-2 cells. Furthermore, when used to evaluate the in vivo therapeutic efficacy in mice with the hepatocarcinoma cell line (H-22), the DOX-loaded PAA/CaP@SLB NPs exhibited superior inhibition of tumor growth compared with the free DOX group. Thus, PAA/CaP@SLB NPs are a promising drug-delivery vehicle to increase the therapeutic efficacy of anticancer drugs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rabanel, Jean-Michel; Faivre, Jimmy; Paka, Ghislain Djiokeng; Ramassamy, Charles; Hildgen, Patrice; Banquy, Xavier
2015-10-01
We developed a nanoparticles (NPs) library from poly(ethylene glycol)-poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a "micelle-like" or "polymer nano-aggregate" structure. Drug loading, loading efficacy and release kinetics were determined. The diffusion coefficients of curcumin in NPs were determined using a mathematical modeling. The higher diffusion was observed for solid particles compared to "polymer nano-aggregate" particles. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. Our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers. Copyright © 2015 Elsevier B.V. All rights reserved.
Novel dipeptide nanoparticles for effective curcumin delivery
Alam, Shadab; Panda, Jiban J; Chauhan, Virander S
2012-01-01
Background: Curcumin, the principal curcuminoid of the popular Indian spice turmeric, has a wide spectrum of pharmaceutical properties such as antitumor, antioxidant, antiamyloid, and anti-inflammatory activity. However, poor aqueous solubility and low bioavailability of curcumin is a major challenge in its development as a useful drug. To enhance the aqueous solubility and bioavailability of curcumin, attempts have been made to encapsulate it in liposomes, polymeric nanoparticles (NPs), lipid-based NPs, biodegradable microspheres, cyclodextrin, and hydrogels. Methods: In this work, we attempted to entrap curcumin in novel self-assembled dipeptide NPs containing a nonprotein amino acid, α, β-dehydrophenylalanine, and investigated the biological activity of dipeptide-curcumin NPs in cancer models both in vitro and in vivo. Results: Of the several dehydrodipeptides tested, methionine-dehydrophenylalanine was the most suitable one for loading and release of curcumin. Loading of curcumin in the dipeptide NPs increased its solubility, improved cellular availability, enhanced its toxicity towards different cancerous cell lines, and enhanced curcumin’s efficacy towards inhibiting tumor growth in Balb/c mice bearing a B6F10 melanoma tumor. Conclusion: These novel, highly biocompatible, and easy to construct dipeptide NPs with a capacity to load and release curcumin in a sustained manner significantly improved curcumin’s cellular uptake without altering its anticancer or other therapeutic properties. Curcumin-dipeptide NPs also showed improved in vitro and in vivo chemotherapeutic efficacy compared to curcumin alone. Such dipeptide-NPs may also improve the delivery of other potent hydrophobic drug molecules that show poor cellular uptake, bioavailability, and efficacy. PMID:22915849
Ma, Qing; Li, Bo; Yu, Yiyi; Zhang, Ying; Wu, Yang; Ren, Wen; Zheng, Yu; He, Jun; Xie, Yongmei; Song, Xiangrong; He, Gu
2013-03-10
A novel biomaterial poly(ethylene glycol)-block-poly(γ-cholesterol-l-glutamate) (mPEG-PCHLG) was designed and synthesized by introducing cholesterol side chains into this pegylated poly(amino acid) copolymers to enlarge the core space to increase the drug capacity. Paclitaxel (PTX) loaded mPEG-PCHLG nanoparticles (PTX-mPEG-PCHLG-Nps) were developed for the first time. The preparation method of nanoparticles was screened and optimized systemically. The optimal PTX-mPEG-PCHLG-Nps with the average diameter of 213.71 nm were constructed through the O/W single-emulsion solvent evaporation method. The entrapment efficiency and drug loading was 38.02 ± 4.51% and 93.90 ± 4.56%, respectively. PTX-mPEG-PCHLG-Nps were spherical and well-dispersed and displayed a dramatic sustained-release property. The in vitro cytotoxicity experiments demonstrated that the blank mPEG-PCHLG nanoparticles had no cytotoxicities on four tumor cell lines including A549, HepG-2, MCF-7 and C26, which implied that mPEG-PCHLG might be biocompatible. PTX-mPEG-PCHLG-Nps obtained the same cell growth inhibition activities as free PTX when incubated with the above tumor cells for 48h. It can be inferred that PTX-mPEG-PCHLG-Nps could probably have higher anticancer efficacy due to the inadequate release of PTX from nanoparticles. PTX-mPEG-PCHLG-Nps achieved the highest antitumor activity in A549 rather than HepG-2, MCF-7 and C26, thus PTX-mPEG-PCHLG-Nps could have a potential application in lung cancer therapy. All the data indicated that mPEG-PCHLG was one of biocompatible biomaterials and worth being widely investigated as hydrophobic antitumor drug carrier. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khatik, Renuka; Mishra, Ramakant; Verma, Ashwni; Dwivedi, Pankaj; Kumar, Vivek; Gupta, Varsha; Paliwal, Sarvesh Kumar; Mishra, Prabhat Ranjan; Dwivedi, Anil Kumar
2013-09-01
The aim of present investigation was to prepare chitosan (CS) nanoparticles (NPs) and to study the targeting ability of Eudragit S 100 (ES)-coated chitosan nanoparticles (ES-CS-NPs) in comparison with CS-NPs; both loaded with curcumin (CU); to colon, when administered orally, by restricting the size of formulation up to few nanometers and exploiting the pH sensitivity of ES. The CU-loaded CS-NPs (CS-NPs-CU) have been prepared by ionic gelation method. The coating of ES on CS-NPs-CU (ES-CS-NPs-CU) was performed by oil-in-oil solvent evaporation method using coat:core ratio (2:1). The cross-linking of CS with tri poly phosphate during the preparation of CS-NPs has been confirmed by FTIR. CS-NPs-CU and ES-CS-NPs-CU were evaluated for particle size, their size distribution, percentage drug entrapment, and in vitro drug release study. CS-NPs-CU has an average size 173 ± 4.5 nm and poly dispersity index (PDI) 0.16, whereas ES-CS-NPs-CU shows average size 236 ± 3.2 nm and PDI 0.22. Surface morphology of prepared NPs was confirmed by scanning electron microscopy and transmission electron microscopy. The release profile reveals that the ES coating on the ES-CS-NPs-CU protects the release of CU in upper gastrointestinal tract while maximum release of CU occurred in simulated colonic fluids of pH 6.8. There was no major difference in cell viability between ES-CS-NPs-CU and CS-NPs-CU when they were exposed to Caco-2 cells at all equivalent concentrations. The in vivo uptake studies revealed preferential uptake of ES-CS-NPs-CU in the colon. The significantly higher ( P < 0.01) AUC0-∞ has been observed in case of ES-CS-NPs-CU as compared to CU and CS-NPs-CU representing that ES-CS-NPs-CU was more bioavailable. These results demonstrated that ES-CS-NPs-CU may be useful as potential delivery system for treatment of colon cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan
2014-12-15
Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent ismore » explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.« less
Peng, Xiaochun; Chen, Yunsu; Li, Yamin; Wang, Yiming
2016-01-01
We explored a novel poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with hydrophilic recombinant human BMP-2 with amphiphilic phospholipid (BPC-PHB NP) for a rapid-acting and long-acting delivery system of BMP-2 for osteogenic differentiation. The BPC-PHB NPs were prepared by a solvent evaporation method and showed a spherical particle with a mean particle size of 253.4 nm, mean zeta potential of −22.42 mV, and high entrapment efficiency of 77.18%, respectively. For BPC-PHB NPs, a short initial burst release of BMP-2 from NPs in 24 h was found and it has steadily risen to reach about 80% in 20 days for in vitro test. BPC-PHB NPs significantly reduced the burst release of BMP-2, as compared to that of PHB NPs loading BMP-2 without PL (B-PHB NPs). BPC-PHB NPs maintained the content of BMP-2 for a long-term osteogenic differentiation. The OCT-1 cells with BPC-PHB NPs have high ALP activity in comparison with others. The gene markers for osteogenic differentiation were significantly upregulated for sample with BPC-PHB NPs, implying that BPC-PHB NPs can be used as a rapid-acting and long-acting BMP-2 delivery system for osteogenic differentiation. PMID:27379249
Chhabra, Resham; Grabrucker, Andreas M; Veratti, Patrizia; Belletti, Daniela; Boeckers, Tobias M; Vandelli, Maria Angela; Forni, Flavio; Tosi, Giovanni; Ruozi, Barbara
2014-08-25
Polymeric nanoparticles (NPs) offer a promising approach for therapeutic intracellular delivery of proteins, conventionally hampered by short half-lives, instability and immunogenicity. Remarkably, NPs uptake occurs via endocytic internalization leading to NPs content's release within lysosomes. To overcome lysosomal degradation and achieve NPs and/or loaded proteins release into cytosol, we propose the formulation of hybrid NPs by adding 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as pH sensitive component in the formulation of poly-lactide-co-glycolide (PLGA) NPs. Hybrid NPs, featured by different DOPE/PLGA ratios, were characterized in terms of structure, stability and lipid organization within the polymeric matrix. Experiments on NIH cells and rat primary neuronal cultures highlighted the safety profile of hybrid NPs. Moreover, after internalization, NPs are able to transiently destabilize the integrity of lysosomes in which they are taken up, speeding their escape and favoring cytoplasmatic localization. Thus, these DOPE/PLGA-NPs configure themselves as promising carriers for intracellular protein delivery. Copyright © 2014 Elsevier B.V. All rights reserved.
Low, Kim-Fatt; Rijiravanich, Patsamon; Singh, Kirnpal Kaur Banga; Surareungchai, Werasak; Yean, Chan Yean
2015-04-01
An ultrasensitive electrochemical genosensing assay was developed for the sequence-specific detection of Vibrio cholerae DNA using magnetic beads as the biorecognition surface and gold nanoparticle-loaded latex microspheres (latex-AuNPs) as a signal-amplified hybridization tag. This biorecognition surface was prepared by immobilizing specific biotinylated capturing probes onto the streptavidin-coupled magnetic beads. Fabricating a hybridization tag capable of amplifying the electrochemical signal involved loading multiple AuNPs onto polyelectrolyte multilayer film-coated poly(styrene-co-acrylic acid) latex microspheres as carrier particles. The detection targets, single-stranded 224-bp asymmetric PCR amplicons of the V. cholerae lolB gene, were sandwich-hybridized to magnetic bead-functionalized capturing probes and fluorescein-labeled detection probes and tagged with latex-AuNPs. The subsequent electrochemical stripping analysis of chemically dissolved AuNPs loaded onto the latex microspheres allowed for the quantification of the target amplicons. The high-loading capacity of the AuNPs on the latex microspheres for sandwich-type dual-hybridization genosensing provided eminent signal amplification. The genosensing variables were optimized, and the assay specificity was demonstrated. The clinical applicability of the assay was evaluated using spiked stool specimens. The current signal responded linearly to the different V. cholerae concentrations spiked into stool specimens with a detection limit of 2 colony-forming units (CFU)/ml. The proposed latex-AuNP-based magnetogenosensing platform is promising, exhibits an effective amplification performance, and offers new opportunities for the ultrasensitive detection of other microbial pathogens.
Matrix metalloproteases inhibition and biocompatibility of gold and platinum nanoparticles.
Hashimoto, Masanori; Kawai, Koji; Kawakami, Hayato; Imazato, Satoshi
2016-01-01
Matrix metalloprotease (MMP) inhibitors improve the longevity of dental adhesives/tooth bonds; however, biocompatibility is required for their clinical use. This study evaluated the inhibition of MMPs and toxicity of two gold (AuNPs) and platinum nanoparticles (PtNPs) as possible compounds for use in dental adhesives. The MMP assay for studying the interaction of MMPs and nanoparticles (NPs) was evaluated by an MMP assay kit and gelatin zymography. Cultured L929 fibroblast cells or RAW264 macrophages were exposed to NPs. The cellular responses to NPs were examined using cytotoxic (cell viability) and genotoxic assays (comet assay), and transmission electron microscopic (TEM) analysis. The mechanical properties (elastic modulus) of the experimental resin loaded with NPs were examined using thermomechanical analysis. All NPs inhibited MMP activity at relatively low concentrations. The NPs inhibit MMPs by chelating with the Zn(2+) bound in the active sites of MMPs. No cytotoxic and genotoxic effects were found in AuNPs, whereas the PtNPs possessed both adverse effects. In TEM analysis, the NPs were localized mainly in lysosomes without penetration into nuclei. The mechanical properties of the resins increased when AuNPs were added in resins, but not by PtNPs. AuNPs are attractive candidates to inhibit MMPs and improve the mechanical properties of resins without cytotoxic/genotoxic effects to cells, and therefore should be suitable for applications in adhesive resin systems. © 2015 Wiley Periodicals, Inc.
Turner, Christopher T; McInnes, Steven J P; Melville, Elizabeth; Cowin, Allison J; Voelcker, Nicolas H
2017-01-01
Flightless I (Flii) is elevated in human chronic wounds and is a negative regulator of wound repair. Decreasing its activity improves healing responses. Flii neutralizing antibodies (FnAbs) decrease Flii activity in vivo and hold significant promise as healing agents. However, to avoid the need for repeated application in a clinical setting and to protect the therapeutic antibody from the hostile environment of the wound, suitable delivery vehicles are required. In this study, the use of porous silicon nanoparticles (pSi NPs) is demonstrated for the controlled release of FnAb to diabetic wounds. We achieve FnAb loading regimens exceeding 250 µg antibody per mg of vehicle. FnAb-loaded pSi NPs increase keratinocyte proliferation and enhance migration in scratch wound assays. Release studies confirm the functionality of the FnAb in terms of Flii binding. Using a streptozotocin-induced model of diabetic wound healing, a significant improvement in healing is observed for mice treated with FnAb-loaded pSi NPs compared to controls, including FnAb alone. FnAb-loaded pSi NPs treated with proteases show intact and functional antibody for up to 7 d post-treatment, suggesting protection of the antibodies from proteolytic degradation in wound fluid. pSi NPs may therefore enable new therapeutic approaches for the treatment of diabetic ulcers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Qiang; Yang, Junjie; Huang, Xu; Guo, Weisheng; Li, Sulei; Zhou, Hao; Li, Jingwei; Cao, Feng; Chen, Yundai
2018-04-01
Stem cell transplantation is a promising therapeutic strategy for myocardial infarction. However, transplanted cells face low survival rates due to oxidative stress and the inflammatory microenvironment in ischemic heart tissue. Melatonin has been used as a powerful endogenous antioxidant to protect cells from oxidative injury. However, melatonin cannot play a long-lasting effect against the hostile microenvironment. Nano drug delivery carriers have the ability to protect the loaded drug from degradation in physiological environments in a controlled manner, which results in longer effects and decreased side effects. Therefore, we constructed poly(lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) (PLGA-mPEG) nanoparticles to encapsulate melatonin. We tested whether the protective effect of melatonin encapsulated by PLGA-mPEG nanoparticles (melatonin nanoparticles [Mel-NPs]) on adipose-derived mesenchymal stem cells (ADSCs) was enhanced compared to that of free melatonin both in vitro and in vivo. In the in vitro study, we found that Mel-NPs reduced formation of the p53- cyclophilin D complex, prevented mitochondrial permeability transition pores from opening, and rescued ADSCs from hypoxia/reoxygenation injury. Moreover, Mel-NPs can achieve higher ADSC survival rates than free melatonin in rat myocardial infarction areas, and the therapeutic effects of ADSCs pretreated with Mel-NPs were more apparent. Hence, the combination of Mel-NPs and stem cell transplantation may be a promising strategy for myocardial infarction therapy. Stem Cells 2018;36:540-550. © AlphaMed Press 2018.
Zhu, Xianbing; Zeng, Xiaowei; Zhang, Xudong; Cao, Wei; Wang, Yilin; Chen, Houjie; Wang, Teng; Tsai, Hsiang-I; Zhang, Ran; Chang, Danfeng; He, Shuai; Mei, Lin; Shi, Xiaojun
2016-04-01
Ultraviolet (UV) radiation has deleterious effects on living organisms, and functions as a tumor initiator and promoter. Multiple natural compounds, like quercetin, have been shown the protective effects on UV-induced damage. However, quercetin is extremely hydrophobic and limited by its poor percutaneous permeation and skin deposition. Here, we show that quercetin-loaded PLGA-TPGS nanoparticles could overcome low hydrophilicity of quercetin and improve its anti-UVB effect. Quercetin-loaded NPs can significantly block UVB irradiation induced COX-2 up-expression and NF-kB activation in Hacat cell line. Moreover, PLGA-TPGS NPs could efficiently get through epidermis and reach dermis. Treatment of mice with quercetin-loaded NPs also attenuates UVB irradiation-associated macroscopic and histopathological changes in mice skin. These results demonstrated that copolymer PLGA-TPGS could be used as drug nanocarriers against skin damage and disease. The findings provide an external use of PLGA-TPGS nanocarriers for application in the treatment of skin diseases. Skin is the largest organ in the body and is subjected to ultraviolet (UV) radiation damage daily from the sun. Excessive exposure has been linked to the development of skin cancer. Hence, topically applied agents can play a major role in skin protection. In this article, the authors developed quercetin-loaded PLGA-TPGS nanoparticles and showed their anti-UVB effect. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yumin; Yang, Cuihong; Wang, Weiwei; Liu, Jinjian; Liu, Qiang; Huang, Fan; Chu, Liping; Gao, Honglin; Li, Chen; Kong, Deling; Liu, Qian; Liu, Jianfeng
2016-02-01
Ample attention has focused on cancer drug delivery via prodrug nanoparticles due to their high drug loading property and comparatively lower side effects. In this study, we designed a PEG-DOX-Cur prodrug nanoparticle for simultaneous delivery of doxorubicin (DOX) and curcumin (Cur) as a combination therapy to treat cancer. DOX was conjugated to PEG by Schiff’s base reaction. The obtained prodrug conjugate could self-assemble in water at pH 7.4 into nanoparticles (PEG-DOX NPs) and encapsulate Cur into the core through hydrophobic interaction (PEG-DOX-Cur NPs). When the PEG-DOX-Cur NPs are internalized by tumor cells, the Schiff’s base linker between PEG and DOX would break in the acidic environment that is often observed in tumors, causing disassembling of the PEG-DOX-Cur NPs and releasing both DOX and Cur into the nuclei and cytoplasma of the tumor cells, respectively. Compared with free DOX, free Cur, free DOX-Cur combination, or PEG-DOX NPs, PEG-DOX-Cur NPs exhibited higher anti-tumor activity in vitro. In addition, the PEG-DOX-Cur NPs also showed prolonged blood circulation time, elevated local drug accumulation and increased tumor penetration. Enhanced anti-tumor activity was also observed from the PEG-DOX-Cur-treated animals, demonstrating better tumor inhibitory property of the NPs. Thus, the PEG-DOX-Cur prodrug nanoparticle system provides a simple yet efficient approach of drug delivery for chemotherapy.
Si, Fengzhan; Zhang, Guoguang; Huang, Kevin
2016-04-09
Here, the present study investigates the mass loading effect of an infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) nanoparticles (NPs) catalyst on the area-specific polarization resistance (Rp) of a screen-printed porous LSCF cathode for solid oxide fuel cells. The results show that R p of the LSCF-NPs decorated LSCF cathode can be substantially reduced by as much as 89.3% after a single-step impregnation of 1.5 M nitrate solution containing La:Sr:Co:Fe = 0.6:0.4:0.2:0.8 with a mass loading of 3 wt%.
pH-responsive drug release and real-time fluorescence detection of porous silica nanoparticles.
Zhang, Xu; Wang, Yamin; Zhao, Yanbao; Sun, Lei
2017-08-01
In this work, pH-sensitive "dual-switch" porous silica (pSiO 2 ) nanoparticles (NPs) were constructed for drug delivery. Poly(acrylic acid) (PAA) was grafting onto the internal and external surfaces of amino groups functionalized porous silica (pSiO 2 -NH 2 ) NPs by the amidation between the amino groups and the carboxyl groups of PAA for pH triggered drug release. The resultant pSiO 2 /PAA NPs have an average diameter of 50-60nm and high specific surface area (914m 2 ·g -1 ). To improve the loading capacity, ZnO quantum dots (QDs) were used to block the partial pores of pSiO 2 /PAA and the loading capacity reached to 28% for methotrexate (MTX) model drug. The in vitro cellular cytotoxicity test and a hemolysis assay demonstrated that the pSiO 2 /PAA/ZnO NPs were highly biocompatible and suitable to utilize as drug carriers. The MTX-loaded pSiO 2 /PAA/ZnO NPs displayed more efficient cytotoxic to HepG2 cells than free MTX. The pSiO 2 /PAA/ZnO NPs displayed low premature, pH-responsive release and pH-dependent fluorescence. Moreover, pH-dependent fluorescence enables to trace MTX release behavior. Copyright © 2017 Elsevier B.V. All rights reserved.
Eskinazi-Budge, Aaron; Manickavasagam, Dharani; Czech, Tori; Novak, Kimberly; Kunzler, James; Oyewumi, Moses O
2018-05-30
Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia that has attracted so much attention in bone regeneration based on its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0-500 µg/mL) were prepared and showed an average particle size of about 150 nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy simvastatin-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.
Van de Ven, H; Vermeersch, M; Matheeussen, A; Vandervoort, J; Weyenberg, W; Apers, S; Cos, P; Maes, L; Ludwig, A
2011-11-25
Colloidal carriers are known to improve the therapeutic index of the conventional drugs in the treatment of visceral leishmaniasis (VL) by decreasing their toxicity whilst maintaining or increasing therapeutic efficacy. This paper describes the development of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) for the antileishmanial saponin β-aescin. NPs were prepared by the W/O/W emulsification solvent evaporation technique and the influence of five preparation parameters on the NPs' size (Z(ave)), zeta potential and entrapment efficiency (EE%) was investigated using a 2(5-2) fractional factorial design. Cytotoxicity of aescin, aescin-loaded and blank PLGA NPs was evaluated in J774 macrophages and non-phagocytic MRC-5 cells, whereas antileishmanial activity was determined in the Leishmania infantum ex vivo model. The developed PLGA NPs were monodispersed with Z(ave)<500 nm and exhibited negative zeta potentials. The process variables 'surfactant primary emulsion', 'concentration aescin' and 'solvent evaporation rate' had a positive effect on EE%. Addition of Tween 80 to the inner aqueous phase rendered the primary emulsion more stable, which in its turn led to better saponin entrapment. The selectivity index (SI) towards the supporting host macrophages increased from 4 to 18 by treating the cells with aescin-loaded NPs instead of free β-aescin. In conclusion, the in vitro results confirmed our hypothesis. Copyright © 2011 Elsevier B.V. All rights reserved.
Alyafee, Yusra A; Alaamery, Manal; Bawazeer, Shahad; Almutairi, Mansour S; Alghamdi, Badr; Alomran, Nawaf; Sheereen, Atia; Daghestani, Maha; Massadeh, Salam
2018-01-01
Anastrozole (ANS) is an aromatase inhibitor that is widely used as a treatment for breast cancer in postmenopausal women. Despite the wide use of ANS, it is associated with serious side effects due to uncontrolled delivery. In addition, ANS exhibits low solubility and short plasma half-life. Nanotechnology-based drug delivery has the potential to enhance the efficacy of drugs and overcome undesirable side effects. In this study, we aimed to prepare novel ANS-loaded PLA-PEG-PLA nanoparticles (ANS-NPs) and to compare the apoptotic response of MCF-7 cell line to both ANS and ANS-loaded NPs. ANS-NPs were synthesized using double emulsion method and characterized using different methods. The apoptotic response was evaluated by assessing cell viability, morphology, and studying changes in the expression of MAPK3 , MCL1 , and c-MYC apoptotic genes in MCF-7 cell lines. ANS was successfully encapsulated within PLA-PEG-PLA, forming monodisperse therapeutic NPs with an encapsulation efficiency of 67%, particle size of 186±27.13, and a polydispersity index of 0.26±0.11 with a sustained release profile extended over 144 hours. In addition, results for cell viability and for gene expression represent a similar apoptotic response between the free ANS and ANS-NPs. The synthesized ANS-NPs showed a similar therapeutic effect as the free ANS, which provides a rationale to pursue pre-clinical evaluation of ANS-NPs on animal models.
Dai, Juan; Long, Wei; Liang, Zhongping; Wen, Lu; Yang, Fan; Chen, Gang
2018-01-01
Delivery of biomacromolecular drugs into the inner ear is challenging, mainly because of their inherent instability as well as physiological and anatomical barriers. Therefore, protein-friendly, hydrogel-based delivery systems following local administration are being developed for inner ear therapy. Herein, biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing interferon α-2 b (IFN α-2 b) were loaded in chitosan/glycerophosphate (CS/GP)-based thermosensitive hydrogel for IFN delivery by intratympanic injection. The injectable hydrogel possessed a physiological pH and formed semi-solid gel at 37 °C, with good swelling and deswelling properties. The CS/GP hydrogel could slowly degrade as visualized by scanning electron microscopy (SEM). The presence of NPs in CS/GP gel largely influenced in vitro drug release. In the guinea pig cochlea, a 1.5- to 3-fold increase in the drug exposure time of NPs-CS/GP was found than those of the solution, NPs and IFN-loaded hydrogel. Most importantly, a prolonged residence time was attained without obvious histological changes in the inner ear. This biodegradable, injectable, and thermosensitive NPs-CS/GP system may allow longer delivery of protein drugs to the inner ear, thus may be a potential novel vehicle for inner ear therapy.
Zhang, Jinfeng; Zhang, Jun; Li, Wenyue; Chen, Rui; Zhang, Zhenyu; Zhang, Wenjun; Tang, Yongbing; Chen, Xiaoyuan; Liu, Gang; Lee, Chun-Sing
2017-01-01
The development of nanoscaled theranostic agents for cancer combination therapies has received intensive attention in recent years. In this report, a degradable hollow mesoporous PEG-Si/C-DOX NP is designed and fabricated for pH-responsive, photoacoustic imaging-guided highly effective chemo-thermal combination therapy. The intrinsic hollow mesoporous structure endows the as-synthesized nanoparticles (NPs) with a high drug loading capacity (31.1%). Under NIR (808 nm) irradiation, the photothermal conversion efficiency of the Si/C NPs is as high as 40.7%. Preferential accumulation of the PEG-Si/C-DOX NPs around tumor tissue was demonstrated with photoacoustic images. Cellular internalization of the NPs and release of the DOX in nuclei are shown with fluorescent images. With efficient NIR photothermal conversion and high DOX loading capacity, the PEG-Si/C-DOX NPs are demonstrated to have remarkable cancer-cell-killing ability and to achieve complete in vivo tumor elimination via combinational chemo-thermal therapy. Last but not least, the NPs show good biodegradability and biosafety, making them a promising candidate for multifunctional drug delivery and cancer theranostic. PMID:28839460
Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine.
Dias, Sávia Francisca Lopes; Nogueira, Silvania Siqueira; de França Dourado, Flaviane; Guimarães, Maria Adelaide; de Oliveira Pitombeira, Nádia Aline; Gobbo, Graciely Gomides; Primo, Fernando Lucas; de Paula, Regina Célia Monteiro; Feitosa, Judith Pessoa Andrade; Tedesco, Antonio Claudio; Nunes, Lívio Cesar Cunha; Leite, José Roberto Souza Almeida; da Silva, Durcilene Alves
2016-06-05
Nanoprecipitation and dialysis methods were employed to obtain nanoparticles (NPs) of acetylated cashew gum (ACG). NPs synthesized by dialysis showed greater average size compared to those synthesized by nanoprecipitation, but they presented improved stability and yield. NPs were loaded with diclofenac diethylamine and the efficiency of the drug incorporation was over 60% for both methods, for an ACG:NP a weight ratio of 10:1. The cytotoxicity assay demonstrated that the NPs had no significant effect on the cell viability, verifying their biocompatibility. The release profile for the diclofenac diethylamine associated with the ACG-NPs showed a more controlled release compared to the free drug and a Fickian diffusion mechanism was observed. Transdermal permeation reached 90% penetration of the drug. Copyright © 2016. Published by Elsevier Ltd.
Topography-specific isotropic tunneling in nanoparticle monolayer with sub-nm scale crevices.
Wang, Guisheng; Jiao, Weihong; Yi, Lizhi; Zhang, Yuejiao; Wu, Ke; Zhang, Chao; Lv, Xianglong; Qian, Lihua; Li, Jianfeng; Yuan, Songliu; Chen, Liang
2016-10-07
Material used in flexible devices may experience anisotropic strain with identical magnitude, outputting coherent signals that tend to have a serious impact on device reliability. In this work, the surface topography of the nanoparticles (NPs) is proposed to be a parameter to control the performance of strain gauge based on tunneling behavior. In contrast to anisotropic tunneling in a monolayer of spherical NPs, electron tunneling in a monolayer of urchin-like NPs actually exhibits a nearly isotropic response to strain with different loading orientations. Isotropic tunneling of the urchin-like NPs is caused by the interlocked pikes of these urchin-like NPs in a random manner during external mechanical stimulus. Topography-dependent isotropic tunneling in two dimensions reported here opens a new opportunity to create highly reliable electronics with superior performance.
Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S
2013-12-01
Peptide (insulin) loaded nanoparticles (NPs) have been embedded into buccal chitosan films (Ch-films-NPs). These films were produced by solvent casting and involved incorporating in chitosan gel (1.25% w/v), NPs-Insulin suspensions at three different concentrations (1, 3, and 5mg of NPs per film) using glycerol as plasticiser. Film swelling and mucoadhesion were investigated using 0.01M PBS at 37°C and texture analyzer, respectively. Formulations containing 3mg of NPs per film produced optimised films with excellent mucoadhesion and swelling properties. Dynamic laser scattering measurements showed that the erosion of the chitosan backbone controlled the release of NPs from the films, preceding in vitro drug (insulin) release from Ch-films-NPs after 6h. Modulated release was observed with 70% of encapsulated insulin released after 360h. The use of chitosan films yielded a 1.8-fold enhancement of ex vivo insulin permeation via EpiOral™ buccal tissue construct relative to the pure drug. Flux and apparent permeation coefficient of 0.1μg/cm(2)/h and 4×10(-2)cm(2)/h were respectively obtained for insulin released from Ch-films-NPs-3. Circular dichroism and FTIR spectroscopy demonstrated that the conformational structure of the model peptide drug (insulin) released from Ch-films-NPs was preserved during the formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.
Lalani, Jigar; Rathi, Mohan; Lalan, Manisha; Misra, Ambikanandan
2013-06-01
Poly (d,l-lactide-co-glycolide acid) (PLGA) Nanoparticles (NPs) with sustained drug release and enhanced circulation time presents widely explored non-invasive approach for drug delivery to brain. However, blood-brain barrier (BBB) limits the drug delivery to brain. This can be overcome by anchoring endogenous ligand like Transferrin (Tf) and Lactoferrin (Lf) on the surface of NPs, allowing efficient brain delivery via receptor-mediated endocytosis. The aim of the present investigation was preparation, optimization, characterization and comparative evaluation of targeting efficiency of Tf- vs. Lf-conjugated NPs. Tramadol-loaded PLGA NPs were prepared by nanoprecipitation techniques and optimized using 3(3) factorial design. The effect of polymer concentration, stabilizer concentration and organic:aqueous phase ratio were evaluated on particle size (PS) and entrapment efficiency (EE). The formulation was optimized based on desirability for lower PS (<150 nm) and higher EE (>70%). Optimized PLGA NPs were conjugated with Tf and Lf, characterized and evaluated for stability study. Pharmacodynamic study was performed in rat after intravenous administration. The optimized formulation had 100 mg of PLGA, 1% polyvinyl alcohol (PVA) and 1:2 acetone:water ratio. The Lf and Tf conjugation to PLGA NPs was estimated to 186 Tf and 185 Lf molecules per NPs. Lyophilization was optimized at 1:2 ratio of NPs:trehalose. The NPs were found stable for 6 months at refrigerated condition. Pharmacodynamic study demonstrated enhanced efficacy of ligand-conjugated NPs against unconjugated NPs. Conjugated NPs demonstrated significantly higher pharmacological effect over a period of 24 h. Furthermore Lf functionalized NPs exhibited better antinociceptive effect as compared to Tf functionalized NPs.
Yu, Chenchen; Hu, Yan; Duan, Jinhong; Yuan, Wei; Wang, Chen; Xu, Haiyan; Yang, Xian-Da
2011-01-01
MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.
Hydrazone linked doxorubicin-PLA prodrug nanoparticles with high drug loading
NASA Astrophysics Data System (ADS)
Gatti, Simone; Agostini, Azzurra; Capasso Palmiero, Umberto; Colombo, Claudio; Peviani, Marco; Biffi, Alessandra; Moscatelli, Davide
2018-07-01
An optimal drug delivery system should be characterized by biocompatibility, biodegradability, high drug loading and favorable drug release profile. To achieve this goal a hydrazone linked doxorubicin-poly(lactic acid) prodrug (PLA-DOX) was synthesized by the functionalization of a short polymer chain produced by ring opening polymerization. The hydrophobic prodrug generated in this way was nanoprecipitated using a block copolymer to form polymeric nanoparticles (NPs) with a quantitative loading efficiency and a high and tunable drug loading. The effects of the concentration of the PLA-DOX prodrug and surfactant were studied by dynamic light scattering showing a range of NP size between 50 and 90 nm and monodispersed size distributions with polydispersity indexes lower then 0.27 up to a maximum DOX concentration of 27% w/w. The release profile of DOX from these NPs, tested at different pH conditions, showed a higher release rate in acidic conditions, consistent with the nature of the hydrazone bond which was used to conjugate the drug to the polymer. In vitro cytotoxicity studies performed on BV2 microglia-like cell line highlighted a specific cytotoxic effect of these NPs suggesting the maintenance of the drug efficacy and a modified release profile upon encapsulation of DOX in the NPs.
Ma, Wen; Soroush, Adel; Van Anh Luong, Tran; Brennan, Gregory; Rahaman, Md Saifur; Asadishad, Bahareh; Tufenkji, Nathalie
2016-08-01
Copper nanoparticles (CuNPs) have long been considered as highly effective biocides; however, the lack of suitable methods for loading CuNPs onto polymeric membranes is recognized as being one of the primary reasons for the limited research concerning their application in membrane industries. A highly efficient spray- and spin-assisted layer-by-layer (SSLbL) method was developed to functionalize the TFC polyamide RO membranes with controllable loading of CuNPs for biofouling control. The SSLbL method was able to produce a uniform bilayer of polyethyleneimine-coated CuNPs and poly(acrylic) acid in less than 1 min, which is far more efficient than the traditional dipping approach (25-60 min). The successful loading of CuNPs onto the membrane surface was confirmed by XPS analysis. Increasing the number of bilayers from 2 to 10 led to an increased quantity of CuNPs on the membrane surface, from 1.75 to 23.7 μg cm(-2). Multi-layer coating exhibited minor impact on the membrane water permeation flux (13.3% reduction) while retaining the original salt rejection ability. Both static bacterial inactivation and cross-flow filtration tests demonstrated that CuNPs could significantly improve anti-biofouling property of a polyamide membrane and effectively inhibit the permeate flux reduction caused by bacterial deposition on the membrane surface. Once depleted, CuNPs can also be potentially regenerated on the membrane surface via the same SSLbL method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming
2017-09-01
Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment.
Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming
2017-01-01
Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment. PMID:28947984
NASA Astrophysics Data System (ADS)
Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C.
2017-03-01
Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.
Yadav, Khushwant S; Jacob, Sheeba; Sachdeva, Geetanjali; Sawant, Krutika K
2011-08-01
The preferred delivery systems for anticancer drugs would be the one which would have selective and effective destruction of cancer cells. In the present study etoposide (ETO) loaded nanoparticles (NP) were prepared using PLGA (ETO-PLGA NP), PLGA-MPEG block copolymer (ETO-PLGA-MPEG NP) and PLGA-Pluronic copolymer (ETO-PLGA-PLU NP) and they were evaluated for cytotoxicity and cellular uptake studies using two cancer cell lines, L1210 and DU145. The IC50 values for L1210 cells were 18.0, 6.2, 4.8 and 5.4 microM and for DU145 cells the IC50 values were 98.4, 75.1, 60.1 and 71.3 microM for ETO, ETO-PLGA NP, ETO-PLGA-MPEG NP and ETO-PLGA-PLU NP respectively. The increased cytotoxicities were attributed to increased uptake of the NPs by the cells. Moreover the ETO loaded PLGA-MPEG NP and PLGA-Pluronic NP showed a sustained cytotoxic effect till 5 days on both the cell lines. Results of the long term cytotoxicity study concluded that the drug loaded PLGA nanoparticulate formulations were efficient in decreasing the viability of the L1210 cells over a period of three days, whereas the pure drug exerted its maximum efficiency on the day one itself. Z-stack confocal images of NPs showed fluorescence activity in each section of DU 145 and L1210 cells indicating that the nanoparticles were internalized by the cells. The study concluded that ETO loaded PLGA NPs had higher cytotoxicity compared with that of the free drug and ETO-PLGA-MPEG NP and ETO-PLGA-PLU NP had higher cell uptake efficiency compared with that of ETO-PLGA NP. The developed PLGA based NPs shows promise to be used for cancer therapy.
NASA Astrophysics Data System (ADS)
Geng, Hongquan; Song, Hua; Qi, Jun; Cui, Daxiang
2011-12-01
We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic- co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.
NASA Astrophysics Data System (ADS)
Chen, Wei; Wang, Jun; Zhang, Bin; Wu, Qilei; Su, Xiaogang
2017-12-01
The multiscale approach has been adapted to enhance the electromagnetic interference shielding properties of carbon fiber (CF) veil epoxy-based composites. The Fe3O4 nanoparticles (NPs) were homogeneously dispersed in the epoxy matrix after surface modification by using silane coupling agent. The CF veil/Fe3O4 NPs/epoxy multiscale composites were manufactured by impregnating the CF veils with Fe3O4 NPs/epoxy mixture to prepare prepreg followed by vacuum bagging process. The electromagnetic interference shielding properties combined with the complex permittivity and complex permeability of the composites were investigated in the X-band (8.2-12.4 GHz) range. The total shielding effectiveness (SET) increases with increasing Fe3O4 NPs loadings and the maximum SET is 51.5 dB at low thickness of 1 mm. The incorporation of Fe3O4 NPs into the composites enhances the complex permittivity and complex permeability thus enhancing the electromagnetic wave absorption capability. The increased SET dominated by absorption loss SEA is attributed to the enhanced magnetic loss and dielectric loss generated by Fe3O4 NPs and multilayer construction of the composites. The microwave conductivity increases and the skin depth decreases with increasing Fe3O4 NPs loadings.
The Impact of Nanoparticle Surface Chemistry on Biological Systems
NASA Astrophysics Data System (ADS)
Thorn, Angie Sue Morris
The unique properties of nanomaterials, such as their small size and large surface area-to-volume ratios, have attracted tremendous interest in the scientific community over the last few decades. Thus, the synthesis and characterization of many different types of nanoparticles has been well defined and reported on in the literature. Current research efforts have redirected from the basic study of nanomaterial synthesis and their properties to more application-based studies where the development of functionally active materials is necessary. Today such nanoparticle-based systems exist for a range of biomedical applications including imaging, drug delivery and sensors. The inherent properties of the nanomaterial, although important, aren't always ideal for specific applications. In order to optimize nanoparticles for biomedical applications it is often desirable to tune their surface properties. Researchers have shown that these surface properties (such as charge, hydrophobicity, or reactivity) play a direct role in the interactions between nanoparticles and biological systems can be altered by attaching molecules to the surface of nanoparticles. In this work, the effects of physicochemical properties of a wide variety of nanoparticles was investigated using in vitro and in vivo models. For example, copper oxide (CuO) nanoparticles were of interest due to their instability in biological media. These nanoparticles undergo dissolution when in an aqueous environment and tend to aggregate. Therefore, the cytotoxicity of two sizes of CuO NPs was evaluated in cultured cells to develop a better understanding of how these propertied effect toxicity outcomes in biological systems. From these studies, it was determined that CuO NPs are cytotoxic to lung cells in a size-dependent manner and that dissolved copper ions contribute to the cytotoxicity however it is not solely responsible for cell death. Moreover, silica nanoparticles are one of the most commonly used nanomaterials because they are easy to synthesize and their properties (such as size, porosity and surface chemistry) can be fine-tuned. Silica nanoparticles can be found in thousands of commercially available products such as toothpastes, cosmetics and detergents and are currently being developed for biomedical applications such as drug delivery and biomedical imaging. Our findings herein indicate that the surface chemistry of silica nanoparticles can have an effect on lung inflammation after exposure. Specifically, amine-modified silica NPs are considered to be less toxic compared to bare silica nanoparticles. Together, these studies provide insight into the role that material properties have on toxicity and allow for a better understanding of their impact on human and environmental health. The final aim of this thesis was to develop surface-modified nanoparticles for drug delivery applications. For this, biodegradable, polymeric NPs were used due to their inert nature and biocompatibility. Furthermore, polymeric NPs are excellent for loading drugs and using them as drug delivery vehicles. In this work, poly (lactic-co-glycolic acid) (PLGA) NPs were loaded with a therapeutic peptide. These NPs were then coated with chitosan (a mucoadhesive polymer) for the treatment of allergic asthma or coated with a small cationic mitochondrial targeting agent for the treatment of ischemia/reperfusion injury. Taken as a whole, this thesis sheds light on the impact of NPs on human health. First by providing useful toxological data for CuO and silica NPs as well as highlighting the potential of surface-modified polymeric NPs to be used in drug delivery-based applications.
NASA Astrophysics Data System (ADS)
Li, Hao; Jin, Zhen; Cho, Sunghoon; Jeon, Mi Jeong; Du Nguyen, Van; Park, Jong-Oh; Park, Sukho
2017-10-01
We propose the use of folate-receptor-targeted, near-infrared-sensitive polydopamine nanoparticles (NPs) for chemo-photothermal cancer therapy as an enhanced type of drug-delivery system which can be synthesized by in situ polymerization and conjugation with folic acid. The NPs consist of a Fe3O4/Au core, coated polydopamine, conjugated folic acid, and loaded anti-cancer drug (doxorubicin). The proposed multifunctional NPs show many advantages for therapeutic applications such as good biocompatibility and easy bioconjugation. The polydopamine coating of the NPs show a higher photothermal effect and thus more effective cancer killing compared to Fe3O4/Au nanoparticles at the same intensity as near-infrared laser irradiation. In addition, the conjugation of folic acid was shown to enhance cancer cellular uptake efficiency via the folate receptor and thus improve chemotherapeutic efficiency. Through in vitro cancer cell treatment testing, the proposed multifunctional NPs showed advanced photothermal and chemotherapeutic performance. Based on these enhanced anti-cancer properties, we expect that the proposed multifunctional NPs can be used as a drug-delivery system in cancer therapy.
Kong, Na; Deng, Mei; Sun, Xiu-Na; Chen, Yi-Ding; Sui, Xin-Bing
2018-01-01
Current limitations of cancer therapy include the lack of effective strategy for target delivery of chemotherapeutic drugs, and the difficulty of achieving significant efficacy by single treatment. Herein, we reported a synergistic chemo-photothermal strategy based on aptamer (Apt)-polydopamine (pD) functionalized CA-(PCL-ran-PLA) nanoparticles (NPs) for effective delivery of docetaxel (DTX) and enhanced therapeutic effect. The developed DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs achieved promising advantages, such as (i) improved drug loading content (LC) and encapsulation efficiency (EE) initiated by star-shaped copolymer CA-(PCL-ran-PLA); (ii) effective target delivery of drugs to tumor sites by incorporating AS1411 aptamers; (iii) significant therapeutic efficacy caused by synergistic chemo-photothermal treatment. In addition, the pD coating strategy with simple procedures could address the contradiction between targeting modification and maintaining formerly excellent bio-properties. Therefore, with excellent bio-properties and simple preparation procedures, the DTX-loaded Apt-pD-CA-(PCL-ran-PLA) NPs effectively increased the local drug concentration in tumor sites, minimized side effects, and significantly eliminated tumors, indicating the promising application of these NPs for cancer therapy. PMID:29527167
NASA Astrophysics Data System (ADS)
Guo, Miao; Rong, Wen-Ting; Hou, Jie; Wang, Dong-Fang; Lu, Yu; Wang, Ying; Yu, Shu-Qin; Xu, Qian
2013-06-01
Chitosan-modified poly(lactic-co-glycolic acid) nanoparticles (CHI/PLGA NPs) loaded with 7-ethyl-10-hydroxycamptothecin (SN-38), named CHI/PLGA/SN-38 NPs, were successfully prepared using an oil-in-water (O/W) solvent evaporation method. The physicochemical properties of the novel NPs were characterized by DLS, Zeta potential, SEM, DSC, XRD, and FTIR. The encapsulation efficiency and drug loading content were 71.83 (±2.77)% and 6.79 (±0.26)%, respectively. In vitro drug release in the simulated gastric juice was lower than that in the intestinal juice. In situ single-pass intestinal perfusion (SPIP) studies indicated a dramatic improvement of drug absorption as a result of the synergistic effect between CHI and PLGA on P-glycoprotein (Pgp) inhibition. CHI/PLGA NPs showed high cellular uptake and low efflux for drugs in Caco-2 cells. The cytotoxicity studies revealed that CHI/PLGA NPs had a transient effect on the membrane integrity, but did not have an influence on cell viability. Based on the in vitro release studies, SPIP, and intracellular drug accumulation and transport investigations, we speculate rationally that CHI/PLGA NPs were mainly internalized in the form of intact NPs, thus escaping the recognition of enterocyte Pgp and avoiding efflux into the apical part of the enterocytes. After partial release of drugs inside the enterocytes, CHI/PLGA interfered with the microenvironment of Pgp and further weakened the Pgp-mediated efflux. Then, the drug-loaded NPs exited via the exocytose effect from the basal part of the enterocytes and entered the blood circulation. These results showed that CHI/PLGA NPs would be smart oral delivery carriers for antineoplastic agents that are also Pgp substrates.
NASA Astrophysics Data System (ADS)
Sun, Ping; Song, Hua; Cui, Daxiang; Qi, Jun; Xu, Mousheng; Geng, Hongquan
2012-07-01
Matrix metalloproteases are key regulatory molecules in the breakdown of extracellular matrix and in inflammatory processes. Matrix metalloproteinase-1 (MMP-1) can significantly enhance muscle regeneration by promoting the formation of myofibers and degenerating the fibrous tissue. Herein, we prepared novel MMP-1-loaded poly(lactide-co-glycolide-co-caprolactone) (PLGA-PCL) nanoparticles (NPs) capable of sustained release of MMP-1. We established quadratic equations as mathematical models and employed rotatable central composite design and response surface methodology to optimize the preparation procedure of the NPs. Then, characterization of the optimized NPs with respect to particle size distribution, particle morphology, drug encapsulation efficiency, MMP-1 activity assay and in vitro release of MMP-1 from NPs was carried out. The results of mathematical modeling show that the optimal conditions for the preparation of MMP-1-loaded NPs were as follows: 7 min for the duration time of homogenization, 4.5 krpm for the agitation speed of homogenization and 0.4 for the volume ratio of organic solvent phase to external aqueous phase. The entrapment efficiency and the average particle size of the NPs were 38.75 ± 4.74% and 322.7 ± 18.1 nm, respectively. Further scanning electron microscopy image shows that the NPs have a smooth and spherical surface, with mean particle size around 300 nm. The MMP-1 activity assay and in vitro drug release profile of NPs indicated that the bioactivity of the enzyme can be reserved where the encapsulation allows prolonged release of MMP-1 over 60 days. Taken together, we reported here novel PLGA-PCL NPs for sustained release of MMP-1, which may provide an ideal MMP-1 delivery approach for tissue reconstruction therapy.
Herrera, Victoria LM; Colby, Aaron H; Tan, Glaiza AL; Moran, Ann M; O’Brien, Michael J; Colson, Yolonda L; Ruiz-Opazo, Nelson; Grinstaff, Mark W
2016-01-01
Aim: To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. Methods & materials: A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. Results: The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. Conclusion: eNPs are a promising tool for the detection and treatment of PPC. PMID:27078118
Pahuja, Richa; Seth, Kavita; Shukla, Anshi; Shukla, Rajendra Kumar; Bhatnagar, Priyanka; Chauhan, Lalit Kumar Singh; Saxena, Prem Narain; Arun, Jharna; Chaudhari, Bhushan Pradosh; Patel, Devendra Kumar; Singh, Sheelendra Pratap; Shukla, Rakesh; Khanna, Vinay Kumar; Kumar, Pradeep; Chaturvedi, Rajnish Kumar; Gupta, Kailash Chand
2015-05-26
Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.
Rafiei, Pedram; Haddadi, Azita
2017-01-01
Docetaxel is a highly potent anticancer agent being used in a wide spectrum of cancer types. There are important matters of concern regarding the drug’s pharmacokinetics related to the conventional formulation. Poly(lactide-co-glycolide) (PLGA) is a biocompatible/biodegradable polymer with variable physicochemical characteristics, and its application in human has been approved by the United States Food and Drug Administration. PLGA gives polymeric nanoparticles with unique drug delivery characteristics. The application of PLGA nanoparticles (NPs) as intravenous (IV) sustained-release delivery vehicles for docetaxel can favorably modify pharmacokinetics, biofate, and pharmacotherapy of the drug in cancer patients. Surface modification of PLGA NPs with poly(ethylene glycol) (PEG) can further enhance NPs’ long-circulating properties. Herein, an optimized fabrication approach has been used for the preparation of PLGA and PLGA–PEG NPs loaded with docetaxel for IV application. Both types of NP formulations demonstrated in vitro characteristics that were considered suitable for IV administration (with long-circulating sustained-release purposes). NP formulations were IV administered to an animal model, and docetaxel’s pharmacokinetic and biodistribution profiles were determined and compared between study groups. PLGA and PEGylated PLGA NPs were able to modify the pharmacokinetics and biodistribution of docetaxel. Accordingly, the mode of changes made to pharmacokinetics and biodistribution of docetaxel is attributed to the size and surface properties of NPs. NPs contributed to increased blood residence time of docetaxel fulfilling their role as long-circulating sustained-release drug delivery systems. Surface modification of NPs contributed to more pronounced docetaxel blood concentration, which confirms the role of PEG in conferring long-circulation properties to NPs. PMID:28184163
Heleg-Shabtai, Vered; Aizen, Ruth; Sharon, Etery; Sohn, Yang Sung; Trifonov, Alexander; Enkin, Natalie; Freage, Lina; Nechushtai, Rachel; Willner, Itamar
2016-06-15
Mesoporous SiO2 nanoparticles, MP-SiO2 NPs, are functionalized with the boronic acid ligand units. The pores of the MP-SiO2 NPs are loaded with the anticancer drug mitoxantrone, and the pores are capped with the anticancer drug gossypol. The resulting two-drug-functionalized MP-SiO2 NPs provide a potential stimuli-responsive anticancer drug carrier for cooperative chemotherapeutic treatment. In vitro experiments reveal that the MP-SiO2 NPs are unlocked under environmental conditions present in cancer cells, e.g., acidic pH and lactic acid overexpressed in cancer cells. The effective unlocking of the capping units under these conditions is attributed to the acidic hydrolysis of the boronate ester capping units and to the cooperative separation of the boronate ester bridges by the lactate ligand. The gossypol-capped mitoxantrone-loaded MP-SiO2 NPs reveals preferential cytotoxicity toward cancer cells and cooperative chemotherapeutic activities toward the cancer cells. The MCF-10A epithelial breast cells and the malignant MDA-MB-231 breast cancer cells treated with the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed after a time-interval of 5 days a cell death of ca. 8% and 60%, respectively. Also, the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed superior cancer-cell death (ca. 60%) as compared to control carriers consisting of β-cyclodextrin-capped mitoxantrone-loaded (ca. 40%) under similar loading of the mitoxantrone drug. The drugs-loaded MP-SiO2 NPs reveal impressive long-term stabilities.
Jinu, U; Gomathi, M; Saiqa, I; Geetha, N; Benelli, G; Venkatachalam, P
2017-04-01
This research focused on green engineering and characterization of silver (PcAgNPs) and copper nanoparticles (PcCuNPs) using Prosopis cineraria (Pc) leaf extract prepared by using microwave irradiation. We studied their enhanced antimicrobial activity on human pathogens as well as cytotoxicity on breast cancer cells (MCF-7). Biofabricated silver and copper nanoparticles exhibited UV-Visible absorbance peaks at 420 nm and 575 nm, confirming the bioreduction and stabilization of nanoparticles. Nanoparticles were characterized by FTIR, XRD, FESEM, and EDX analysis. FTIR results indicated the presence of alcohols, alkanes, aromatics, phenols, ethers, benzene, amines and amides that were possibly involved in the reduction and capping of silver and copper ions. XRD analysis was performed to confirm the crystalline nature of the silver and copper nanoparticles. FESEM analysis suggested that the nanoparticles were hexagonal or spherical in shape with size ranging from 20 to 44.49 nm and 18.9-32.09 nm for AgNPs and CuNPs, respectively. EDX analysis confirmed the presence of silver and copper elemental signals in the nanoparticles. The bioengineered silver and copper nanohybrids showed enhanced antimicrobial activity against Gram-positive and Gram-negative MDR human pathogens. MTT assay results indicated that CuNPs show potential cytotoxic effect followed by AgNPs against MCF-7 cancer cell line. IC 50 were 65.27 μg/ml, 37.02 μg/ml and 197.3 μg/ml for PcAgNPs, PcCuNPs and P. cineraria leaf extracts, respectively, treated MCF-7 cells. The present investigation highlighted an effective protocol for microwave-assisted synthesis of biomolecule-loaded silver and copper nanoparticles with enhanced antibacterial and anticancer activity. Results strongly suggested that bioengineered AgNPs and CuNPs could be used as potential tools against microbial pathogens and cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ding, Baoyue; Wu, Xin; Fan, Wei; Wu, Zhaoyong; Gao, Jing; Zhang, Wei; Ma, Lulu; Xiang, Wang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen
2011-01-01
The increased incidence of malignant melanoma in recent decades, along with its high mortality rate and pronounced resistance to therapy pose an enormous challenge. Novel therapeutic strategies, such as immunotherapy and targeted therapy, are urgently needed for melanoma. In this study, a new active targeting drug delivery system was constructed to combine chemotherapy and active specific immunotherapy. The chemotherapeutic drug, dacarbazine (DTIC), that induces apoptosis through the intrinsic pathway which typically responds to severe DNA damage, was used as a model drug to prepare DTIC-loaded polylactic acid (PLA) nanoparticles (DTIC-NPs), which were covalently conjugated to a highly specific targeting functional TRAIL-receptor 2 (DR5) monoclonal antibody (mAb) that can contribute directly to cancer cell apoptosis or growth inhibition through the extrinsic pathway. Our in vitro experiments demonstrated that DTIC-PLA-DR5 mAb nanoparticles (DTIC-NPs-DR5 mAb) are an active targeting drug delivery system which can specifically target DR5-overexpressing malignant melanoma cells and become efficiently internalized. Most strikingly, compared with conventional DTIC-NPs, DTIC-NPs-DR5 mAb showed significantly enhanced cytotoxicity and increased cell apoptosis in DR5-positive malignant melanoma cells. The DTIC-NPs-DR5 mAb described in this paper might be a potential formulation for targeting chemotherapy and immunotherapy to DR5-overexpressing metastatic melanoma.
Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells
Liu, Guomu; Li, Qiongshu; Ni, Weihua; Zhang, Nannan; Zheng, Xiao; Wang, Yingshuai; Shao, Dan; Tai, Guixiang
2015-01-01
Recently, gold nanoparticles (AuNPs) have shown promising biological applications due to their unique electronic and optical properties. However, the potential toxicity of AuNPs remains a major hurdle that impedes their use in clinical settings. Mesoporous silica is very suitable for the use as a coating material for AuNPs and might not only reduce the cytotoxicity of cetyltrimethylammonium bromide-coated AuNPs but might also facilitate the loading and delivery of drugs. Herein, three types of rod-like gold-mesoporous silica nanoparticles (termed bare AuNPs, core–shell Au@mSiO2NPs, and Janus Au@mSiO2NPs) were specially designed, and the effects of these AuNPs on cellular uptake, toxic behavior, and mechanism were then systematically studied. Our results indicate that bare AuNPs exerted higher toxicity than the Au@mSiO2NPs and that Janus Au@mSiO2NPs exhibited the lowest toxicity in human breast cancer MCF-7 cells, consistent with the endocytosis capacity of the nanoparticles, which followed the order, bare AuNPs > core–shell Au@mSiO2NPs > Janus Au@mSiO2NPs. More importantly, the AuNPs-induced apoptosis of MCF-7 cells exhibited features that were characteristic of intracellular reactive oxygen species (ROS) generation, activation of c-Jun-N-terminal kinase (JNK) phosphorylation, an enhanced Bax-to-Bcl-2 ratio, and loss of the mitochondrial membrane potential. Simultaneously, cytochrome c was released from mitochondria, and the caspase-3/9 cascade was activated. Moreover, both ROS scavenger (N-acetylcysteine) and JNK inhibitor (SP600125) partly blocked the induction of apoptosis in all AuNPs-treated cells. Taken together, these findings suggest that all AuNPs induce apoptosis through the ROS-/JNK-mediated mitochondrial pathway. Thus, Janus Au@mSiO2NPs exhibit the potential for applications in biomedicine, thus aiding the clinical translation of AuNPs. PMID:26491285
NASA Astrophysics Data System (ADS)
Ghorbani, Marjan; Hamishehkar, Hamed; Arsalani, Naser; Entezami, Ali Akbar
2015-07-01
In this work, a thermo and pH-responsive poly- N-isopropylacrylamide-co-itaconic acid containing thiol side groups were successfully synthesized to prepare Doxorubicin-loaded polymer@Au/Fe3O4 core/shell nanoparticles (DOX-NPs). Copolymer and NPs were fully characterized by FT-IR, HNMR, photo-correlation spectroscopy, SEM, X-ray diffraction, vibrating-sample magnetometer, thermal gravimetric analysis, and UV-Vis spectroscopy. The stimuli-responsive characteristics of NPs were evaluated by in vitro release study in simulated cancerous environment. The biocompatibility and cytotoxic properties of NPs and DOX-NPs are explored by MTT method. The prepared NPs with the size of 50 nm showed paramagnetic characteristics with suitable and stable dispersion at physiological medium and high loading capacity (up to 55 %) of DOX. DOX-NPs yielded a pH- and temperature-triggered release of entrapped drugs at tumor tissue environment (59 % of DOX release) compared to physiological condition (20 % of DOX release) during 48 h. In vitro cytotoxicity studies indicated that the NPs showed no cytotoxicity on A549 cells at different amounts after incubation for 72 h confirming its suitability as a drug carrier. DOX-NPs, on the other hand, caused an efficient anticancer performance as verified by MTT assay test. It was concluded that developed NPs by us in this study may open the possibilities for targeted delivery of DOX to the cancerous tissues.
Chen, Yongxia; Yang, Ziying; Liu, Chao; Wang, Cuiwei; Zhao, Shunxin; Yang, Jing; Sun, Hongfan; Zhang, Zhengpu; Kong, Deling; Song, Cunxian
2013-01-01
Background Star-shaped polymers provide more terminal groups, and are promising for application in drug-delivery systems. Methods A new series of six-arm star-shaped poly(lactic-co-glycolic acid) (6-s-PLGA) was synthesized by ring-opening polymerization. The structure and properties of the 6-s-PLGA were characterized by carbon-13 nuclear magnetic resonance spectroscopy, infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. Then, paclitaxel-loaded six-arm star-shaped poly(lactic-co-glycolic acid) nanoparticles (6-s-PLGA-PTX-NPs) were prepared under the conditions optimized by the orthogonal testing. High-performance liquid chromatography was used to analyze the nanoparticles’ encapsulation efficiency and drug-loading capacity, dynamic light scattering was used to determine their size and size distribution, and transmission electron microscopy was used to evaluate their morphology. The release performance of the 6-s-PLGA-PTX-NPs in vitro and the cytostatic effect of 6-s-PLGA-PTX-NPs were investigated in comparison with paclitaxel-loaded linear poly(lactic-co-glycolic acid) nanoparticles (L-PLGA-PTX-NPs). Results The results of carbon-13 nuclear magnetic resonance spectroscopy and infrared spectroscopy suggest that the polymerization was successfully initiated by inositol and confirm the structure of 6-s-PLGA. The molecular weights of a series of 6-s-PLGAs had a ratio corresponding to the molar ratio of raw materials to initiator. Differential scanning calorimetry revealed that the 6-s-PLGA had a low glass transition temperature of 40°C–50°C. The 6-s-PLGA-PTX-NPs were monodispersed with an average diameter of 240.4±6.9 nm in water, which was further confirmed by transmission electron microscopy. The encapsulation efficiency of the 6-s-PLGA-PTX-NPs was higher than that of the L-PLGA-PTX-NPs. In terms of the in vitro release of nanoparticles, paclitaxel (PTX) was released more slowly and more steadily from 6-s-PLGA than from linear poly(lactic-co-glycolic acid). In the cytostatic study, the 6-s-PLGA-PTX-NPs and L-PLGA-PTX-NPs were found to have a similar antiproliferative effect, which indicates durable efficacy due to the slower release of the PTX when loaded in 6-s-PLGA. Conclusion The results suggest that 6-s-PLGA may be promising for application in PTX delivery to enhance sustained antiproliferative therapy. PMID:24235829
Preparation of silver nanoparticles loaded graphene oxide nanosheets for antibacterial activity
NASA Astrophysics Data System (ADS)
T, T. T., Vi; Lue, S. J.
2016-11-01
A simple, facile method to fabricate successfully silver nanoparticle (AgNPs) decorated on graphene oxide (GO) layers via grafted thiol groups. Samples were prepared with different concentrations of AgNO3. Resulting AgNPs were quasi-spherical in shape and attached on the layers of GO. Physical properties were confirmed by X-ray diffraction (XRD), zeta potential, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectra, thermogravimetric analyzer (TGA), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM). Antimicrobial test was effectively showed using MRSA (Staphylococcus areus). The GO-Ag NPs with appropriate Ag NPs content of 0.2 M AgNO3 exhibited the strongest antibacterial activity at 48.77% inhibition after 4 hours incubation.
Single-step assembly of polymer-lipid hybrid nanoparticles for mitomycin C delivery
2014-01-01
Mitomycin C is one of the most effective chemotherapeutic agents for a wide spectrum of cancers, but its clinical use is still hindered by the mitomycin C (MMC) delivery systems. In this study, the MMC-loaded polymer-lipid hybrid nanoparticles (NPs) were prepared by a single-step assembly (ACS Nano 2012, 6:4955 to 4965) of MMC-soybean phosphatidyhlcholine (SPC) complex (Mol. Pharmaceutics 2013, 10:90 to 101) and biodegradable polylactic acid (PLA) polymers for intravenous MMC delivery. The advantage of the MMC-SPC complex on the polymer-lipid hybrid NPs was that MMC-SPC was used as a structural element to offer the integrity of the hybrid NPs, served as a drug preparation to increase the effectiveness and safety and control the release of MMC, and acted as an emulsifier to facilitate and stabilize the formation. Compared to the PLA NPs/MMC, the PLA NPs/MMC-SPC showed a significant accumulation of MMC in the nuclei as the action site of MMC. The PLA NPs/MMC-SPC also exhibited a significantly higher anticancer effect compared to the PLA NPs/MMC or free MMC injection in vitro and in vivo. These results suggested that the MMC-loaded polymer-lipid hybrid NPs might be useful and efficient drug delivery systems for widening the therapeutic window of MMC and bringing the clinical use of MMC one step closer to reality. PMID:25324707
Liu, Dongfei; Bimbo, Luis M; Mäkilä, Ermei; Villanova, Francesca; Kaasalainen, Martti; Herranz-Blanco, Barbara; Caramella, Carla M; Lehto, Vesa-Pekka; Salonen, Jarno; Herzig, Karl-Heinz; Hirvonen, Jouni; Santos, Hélder A
2013-09-10
Nanoparticulate drug delivery systems offer remarkable opportunities for clinical treatment. However, there are several challenges when they are employed to deliver multiple cargos/payloads, particularly concerning the synchronous delivery of small molecular weight drugs and relatively larger peptides. Since porous silicon (PSi) nanoparticles (NPs) can easily contain high payloads of drugs with various properties, we evaluated their carrier potential in multi-drug delivery for co-loading of the hydrophobic drug indomethacin and the hydrophilic human peptide YY3-36 (PYY3-36). Sequential loading of these two drugs into the PSi NPs enhanced the drug release rate of each drug and also their amount permeated across Caco-2 and Caco-2/HT29 cell monolayers. Regardless of the loading approach used, dual or single, the drug permeation profiles were in good correlation with their drug release behaviour. Furthermore, the permeation studies indicated the critical role of the mucus intestinal layer and the paracellular resistance in the permeation of the therapeutic compounds across the intestinal wall. Loading with PYY3-36 also greatly improved the cytocompatibility of the PSi NPs. Conformational analysis indicated that the PYY3-36 could still display biological activity after release from the PSi NPs and permeation across the intestinal cell monolayers. These results are the first demonstration of the promising potential of PSi NPs for simultaneous multi-drug delivery of both hydrophobic and hydrophilic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
Peng, Jian-Min; Lin, Jia-Cheng; Chen, Zhuo-Yu; Wei, Meng-Chao; Fu, Yuan-Xiang; Lu, Shu-Shen; Yu, Dong-Sheng; Zhao, Wei
2017-02-01
As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong
Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide- a -loaded polyethylene glycol-poly(lactic- co -glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm 2 , 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide- a has the potential to be used in tumor-targeted PDT.
Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong
2016-01-01
Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm2, 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide-a has the potential to be used in tumor-targeted PDT. PMID:27729788
Colloid particle formulations for antimicrobial applications.
Halbus, Ahmed F; Horozov, Tommy S; Paunov, Vesselin N
2017-11-01
Colloidal particles are being extensively studied in various antimicrobial applications due to their small size to volume ratio and ability to exhibit a wide spectrum of antibacterial, antifungal, antialgal and antiviral action. The present review focuses on various nanoparticles (NPs) of inorganic, organic and hybrid materials, and discusses some of the methods for their preparation as well as mechanisms of their antimicrobial action. We consider the antimicrobial applications of metal oxide nanoparticles (ZnO, MgO, CuO, Cu 2 O, Al 2 O 3 , TiO 2 , CeO 2 and Y 2 O 3 ), metal nanoparticles (NPs), such as copper, silver and gold, metal hydroxide NPs such as Mg(OH) 2 as well as hybrid NPs made from biodegradable materials, such as chitosan, lignin and dextran, loaded with other antimicrobial agents. Recent developments for targeted delivery of antimicrobials by using colloid antibodies for microbial cell shape and surface recognition are also discussed. We also consider recent advances in the functionalization of nanoparticles and their potential antimicrobial applications as a viable alternative of conventional antibiotics and antiseptic agents which can help to tackle antimicrobial resistance. The review also covers the recently developed environmentally benign NPs (EbNPs) as a "safer-by-design" green chemistry solution of the post use fate of antimicrobial nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
Garcia Campoy, Abraham Heriberto; Perez Gutierrez, Rosa Martha; Manriquez-Alvirde, Gabriela; Muñiz Ramirez, Alethia
2018-01-01
The aim was to explore the efficacy of extract of Eysenhardtia polystachya -loaded silver nanoparticles (EP/AgNPs) on pancreatic β cells, INS-1 cells, and zebrafish as a valuable model for the study of diabetes mellitus. EP/AgNPs were synthesized using methanol/water bark extract of E. polystachya and characterized using various physicochemical techniques. Immersion of adult zebrafish in 111 mM glucose solution resulted in a sustained hyperglycemic, hyperlipidemic state, and serum insulin levels decreased. The synthesized EP/AgNPs showed an absorption peak at 413 nm on ultraviolet-visible spectroscopy, revealing the surface plasmon resonance of the nanoparticles. Transmission electron microscopy indicated that most of the particles were spherical, with a diameter of 10-12 nm, a polydispersity index of 0.197, and a zeta potential of -32.25 mV, suggesting high stability of the nanoparticles. EP/AgNPs promote pancreatic β-cell survival, insulin secretion, enhanced hyperglycemia, and hyperlipidemia in glucose-induced diabetic zebrafish. EP/AgNPs also showed protection of the pancreatic β-cell line INS-1 against hydrogen peroxide-induced oxidative injury. The results indicate that EP/AgNPs have good antidiabetic activity and therefore could be used to prevent the development of diabetes.
Mo, Liqian; Hou, Lianbing; Guo, Dan; Xiao, Xiaoyan; Mao, Ping; Yang, Xixiao
2012-10-15
Many studies have demonstrated the uptake mechanisms of various nanoparticle delivery systems with different physicochemical properties in different cells. In this study, we report for the first time the preparation and characterization of teniposide (VM-26) poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) and their cellular uptake pathways in human glioblastoma U87MG cells. The nanoparticles prepared with oil-in-water (O/W) single-emulsion solvent evaporation method had a small particle size and spherical shape and provided effective protection against degradation of teniposide in PBS solution. Differential scanning calorimeter (DSC) thermograms concluded that VM-26 was dispersed as amorphous or disordered crystalline phase in the PLGA matrix. A cytotoxicity study revealed that, in a 24h period, blank PLGA NPs had no cytotoxicity, whereas teniposide-loaded PLGA NPs (VM-26-NPs) had U87MG cytotoxicity levels similar to free teniposide. Confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) images showed the distribution and degradation processes of nanoparticles in cells. An endocytosis inhibition test indicated that clathrin-mediated endocytosis and macropinocytosis were the primary modes of engulfment involved in the internalization of VM-26-NPs. Our findings suggest that PLGA nanoparticles containing a sustained release formula of teniposide may multiplex the therapeutic effect and ultimately degrade in lysosomal within human glioblastoma U87MG cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Hernández-Gordillo, Agileo; Arroyo, Missael; Zanella, R; Rodríguez-González, V
2014-03-15
The photocatalytic properties of functionalized TiO2 with silver nanoparticles (AgNPs) for the conversion of 4-nitrophenol to 4-aminophenol in the presence of hydrazine were investigated. The TiO2 semiconductor synthesized by the sol-gel method was functionalized with AgNPs at different loadings, and their structural and optical properties were characterized by several techniques. The functionalized TiO2 with 1.5wt% AgNPs presented the highest photocatalytic activity for the conversion of 4-nitrophenol with appropriate hydrazine concentrations (0.5M). The photoefficiency enhancement under UV light irradiation was attributed to the electron transfer from the TiO2 semiconductor surface to the adsorbed acceptor reactant (4-nitrophenol) through the deposited AgNPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Gayathri, N K; Aparna, V; Maya, S; Biswas, Raja; Jayakumar, R; Mohan, C Gopi
2017-12-01
We present a computational investigation of binding affinity of different types of drugs with chitin nanocarriers. Understanding the chitn polymer-drug interaction is important to design and optimize the chitin based drug delivery systems. The binding affinity of three different types of anti-bacterial drugs Ethionamide (ETA) Methacycline (MET) and Rifampicin (RIF) with amorphous chitin nanoparticles (AC-NPs) were studied by integrating computational and experimental techniques. The binding energies (BE) of hydrophobic ETA, hydrophilic MET and hydrophobic RIF were -7.3kcal/mol, -5.1kcal/mol and -8.1kcal/mol respectively, with respect to AC-NPs, using molecular docking studies. This theoretical result was in good correlation with the experimental studies of AC-drug loading and drug entrapment efficiencies of MET (3.5±0.1 and 25± 2%), ETA (5.6±0.02 and 45±4%) and RIF (8.9±0.20 and 53±5%) drugs respectively. Stability studies of the drug encapsulated nanoparticles showed stable values of size, zeta and polydispersity index at 6°C temperature. The correlation between computational BE and experimental drug entrapment efficiencies of RIF, ETA and MET drugs with four AC-NPs strands were 0.999 respectively, while that of the drug loading efficiencies were 0.854 respectively. Further, the molecular docking results predict the atomic level details derived from the electrostatic, hydrogen bonding and hydrophobic interactions of the drug and nanoparticle for its encapsulation and loading in the chitin-based host-guest nanosystems. The present results thus revealed the drug loading and drug delivery insights and has the potential of reducing the time and cost of processing new antibiotic drug delivery nanosystem optimization, development and discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash
2014-08-01
Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, Chang-Seuk; Kim, Hyungjoo; Yu, Joonhee; Yu, Su Hwan; Ban, Seona; Oh, Seunghyun; Jeong, Dongjun; Im, Jungkyun; Baek, Moo Jun; Kim, Tae Hyun
2017-12-15
In this study, we propose doxorubicin (DOX) loaded oligonucleotides (ONTs) attached to gold nanoparticles (AuNPs) as a drug delivery system for cancer chemotherapy. DOX is one of the representative cancer chemotherapy agents and is widely used by many researchers as a chemotherapy agent in the drug delivery system. Due to the advantages of AuNPs such as simple steps in synthesis, high surface-area-to-volume ratio, and biocompatibility, we utilized AuNPs as drug delivery vehicle. AuNPs were synthesized by chemical reduction to be 13 nm diameter. The G-C rich oligonucleotides were used both for drug loading sites and AuNPs capping agents. 80% of DOX in solution could be bound to ONTs on AuNPs to became DOX-loaded AuNPs coated with ONTs (Doxorubicin-Oligomer-AuNP, DOA), and about 28% of loaded DOX was released from the as-prepared DOA. Confocal microscopy observation showed that DOA was well transported into cells, and finally the DOX was released into the cell nucleus. The drug's efficacies such as in vitro cytotoxicity and in vivo tumor growth inhibition were demonstrated with SW480 colon cancer cell line and a xenograft mouse model. MTT assay was performed to see the cytotoxicity effect on SW480 cells treated with DOA for 24 h, and the cell viability was determined to be 41.77% (p < 0.001). When DOA was administered regularly to a tumor bearing mouse, the tumor growth inhibition degree was examined by measuring the tumor size. The treatment-control (T/C) ratio was found to be 0.69. Thus, our results suggest the use of DOAs as promising drug delivery systems for colorectal cancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Turino, Ludmila N; Ruggiero, Maria R; Stefanìa, Rachele; Cutrin, Juan C; Aime, Silvio; Geninatti Crich, Simonetta
2017-04-19
Polylactic and glycolic acid nanoparticles (PLGA-NPs), coated with L-ferritin, are exploited for the simultaneous delivery of paclitaxel and an amphiphilic Gd based MRI contrast agent into breast cancer cells (MCF7). L-ferritin has been covalently conjugated to the external surface of PLGA-NPs exploiting NHS activated carboxylic groups. The results confirmed that nanoparticles decorated with L-ferritin have many advantages with respect to both albumin-decorated and nondecorated particles. Ferritin moieties endow PLGA-NPs with targeting capability, exploiting SCARA5 receptors overexpressed by these tumor cells, that results in an increased paclitaxel cytotoxicity. Moreover, protein coating increased nanoparticle stability, thus reducing the fast and aspecific drug release before reaching the target. The theranostic potential of the nanoparticles has been demonstrated by evaluating the signal intensity enhancement on T 1 -weighted MRI images of labeled MCF7 cells. The results were compared with that obtained with MDA cells used as negative control due to their lower SCARA5 expression.
L-Valine appended PLGA nanoparticles for oral insulin delivery.
Jain, Ashish; Jain, Sanjay K
2015-08-01
Oral insulin delivery has been the major research issue, since many decades, due to several obvious advantages over other routes. However, this route poses several constraints for the delivery of peptides and proteins which are to be worked upon. The small intestine has been shown to be able to transport the L-forms of amino acids against a concentration gradient and that they compete for the mechanism concerned. So, L-valine was used as a ligand for carrier-mediated transport of insulin-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (NPs). L-Valine-conjugated PLGA nanoparticles were prepared using double emulsion solvent evaporation method. The NPs and conjugated NPs were characterized for their size, drug entrapment efficiency, zeta potential, polydispersity index and in vitro insulin release. Ex vivo studies on intestine revealed that conjugated nanoparticles showed greater insulin uptake as compared to non-conjugated nanoparticles. In vivo studies were performed on streptozotocin-induced diabetic rabbits. Oral suspension of insulin-loaded PLGA nanoparticles reduced blood glucose level from 265.4 ± 8.5 to 246.6 ± 2.4 mg/dL within 4 h which further decreased to 198.7 ± 7.1 mg/dL value after 8 h. The ligand-conjugated formulation on oral administration produced hypoglycaemic effect (216.9 ± 1.9 mg/dL) within 4 h of administration, and the hypoglycaemic effect prolonged till 12 h of oral administration. Simultaneously, the insulin concentration in withdrawn samples was also assessed and found that profile of insulin level is in compliance with the blood glucose reduction profile. Hence, it is concluded that the L-valine-conjugated NPs bearing insulin are the promising carrier for the transportation of insulin across the intestine on oral administration.
Alemrayat, Bayan; Elhissi, Abdelbary; Younes, Husam M
2018-04-05
Letrozole (LTZ), an aromatase inhibitor used for the treatment of hormonally-positive breast cancer in postmenopausal women, has poor water solubility, rapid metabolism, and a range of side effects. In this study, polymer-based nanoparticles (NPs) incorporating the drug have been designed and characterized, aimed to control the release, potentially maximize the therapeutic efficiency, and minimize the side effects of the drug. LTZ was incorporated into poly(d,l-lactide) (PDLLA) NPs by employing the emulsion-solvent evaporation technique using a range of drug concentrations. Loaded drug and drug-polymer interactions were studied using X-ray diffraction and NPs morphology was evaluated using scanning electron microscopy (SEM). Particle size distribution (PSD) and zeta potential of the NPs were analyzed using dynamic light scattering (DLS) and laser Doppler velocimetry (LDV), respectively. Drug content and release profile studies were carried out and determined using ultra performance liquid chromatography (UPLC). The yield of LTZ-PDLLA NPs reached as high as 85%. The NPs were spherical and smooth, regardless of LTZ concentration in the formulation. However, particle size increased from 241.6 ± 1.2 to 348.7 ± 6.1 nm upon increasing LTZ concentration from 0 to 30% w/w, with entrapment efficiencies reaching up to 96.8%. Drug release from the polymeric matrix was best described by Higuchi model with a predominant diffusion-based mechanism. More than 15, 46, and 86% of LTZ was released in a controlled fashion over 30 d from the 10, 20, and 30% LTZ-PDLLA NPs, respectively. Overall, LTZ-PDLLA NPs were designed with appropriate size and surface charge, high drug loading, superior entrapment efficiency, and prolonged release profile.
NASA Astrophysics Data System (ADS)
Zhang, Shenghuan; Gai, Shili; He, Fei; Ding, Shujiang; Li, Lei; Yang, Piaoping
2014-09-01
The easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m2 g-1), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts. Ni/SNTs still showed high activity even after re-use for several cycles, suggesting good stability. In particular, the magnetic property of Ni/SNTs makes it easy to recycle for reuse.The easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m2 g-1), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts. Ni/SNTs still showed high activity even after re-use for several cycles, suggesting good stability. In particular, the magnetic property of Ni/SNTs makes it easy to recycle for reuse. Electronic supplementary information (ESI) available: XRD pattern and TEM image of SNTs after calcination, XRD pattern and EDS of NiSNTs, SEM images of a single SNT, NiSNTs and Ni/SNTs, enlarged HRTEM of Ni/SNTs, XRD pattern of NiO/SNTs, UV-vis spectra of the catalytic reduction of 4-NP to 4-AP over Ni/SNTs with different loading amounts, Ni/SNTs synthesized by wet impregnation and Ni/CNTs, TEM images of Ni/SNTs synthesized by wet impregnation and Ni/CNTs. See DOI: 10.1039/c4nr02096k
PD-PK evaluation of freeze-dried atorvastatin calcium-loaded poly-ε-caprolactone nanoparticles.
Ahmed, Iman S; El-Hosary, Rania; Shalaby, Samia; Abd-Rabo, Marwa M; Elkhateeb, Dalia G; Nour, Samia
2016-05-17
In this work lyophilized poly-ε-caprolactone nanoparticles (NPs) loaded with atorvastatin calcium (AC) were developed in an attempt to improve the in-vivo performance of AC following oral administration. The individual and combined effects of several formulation variables were previously investigated using step-wise full factorial designs in order to produce optimized AC-NPs with predetermined characteristics including particle size, drug loading capacity, drug release profile and physical stability. Four optimized formulations were further subjected in this work to lyophilization to promote their long-term physical stability and were fully characterized. The pharmacodynamics (PD)/pharmacokinetics (PK) properties of two optimized freeze-dried AC-NPs formulations showing acceptable long-term stability were determined and compared to a marketed AC immediate release tablet (Lipitor(®)) in albino rats. PD results revealed that the two tested formulations were equally effective in reducing low density lipoproteins (LDL) and triglycerides (TG) levels when given in reduced doses compared to Lipitor(®) and showed no adverse effects. PK results, on the other hand, revealed that the two freeze-dried AC-NPs formulations were of significantly lower bioavailability compared to Lipitor(®). Taken together the PD and PK results demonstrate that the improved efficacy obtained at reduced doses from the freeze-dried AC-NPs could be due to increased concentration of AC in the liver rather than in the plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.
Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab
2017-04-01
Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.
Preparation and characterization of triclosan nanoparticles for periodontal treatment.
Piñón-Segundo, E; Ganem-Quintanar, A; Alonso-Pérez, V; Quintanar-Guerrero, D
2005-04-27
The aim of this work was to produce and characterize triclosan-loaded nanoparticles (NPs) by the emulsification-diffusion process, in an attempt to obtain a novel delivery system adequate for the treatment of periodontal disease. The NPs were prepared using poly(D,L-lactide-co-glycolide) (PLGA), poly(D,L-lactide) (PLA) and cellulose acetate phthalate (CAP). Poly(vinyl alcohol) (PVAL) was used as stabilizer. Batches were prepared with different amounts of triclosan (TCS) in order to evaluate the influence of drug on NP properties. Solid NPs of less than 500 nm in diameter were obtained. Entrapment efficiencies were higher than 63.8%. The characterization by scanning electron microscopy and light scattering indicated that high concentrations of TCS seemingly caused the increase of NP mean size. A decrease in the PLGA glass transition temperature was observed by differential scanning calorimetry. This could indicate that TCS in PLGA-NPs behaves as a non-conventional plasticizer. Subsequently, in vitro release studies were carried out under sink conditions using a device designed in our laboratory to allow a direct contact between the particles and the dissolution medium. A fast release of TCS from NPs was detected. A preliminary in vivo study in dogs with induced periodontal defects suggested that TCS-loaded NPs penetrate through the junctional epithelium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Cao, Guixin; Gai, Zheng
In our paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe 3O 4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe 3O 4@PC-CDs-Au NPs firstly involves the preparation of core-shell template NPs with magnetite nanocrystals clustered in the cores and fluorescent carbon dots (CDs) embedded in a porous carbon shell, followed by an in situ reduction of silver ions (Ag +) loaded in the porous carbon shell and a subsequent replacement ofmore » Ag NPs with Au NPs through a galvanic replacement reaction using HAuCl 4 as a precursor. Moreover, the Fe 3O 4@PC-CDsAu NPs can enter the intracellular region and light up mouse melanoma B16F10 cells in multicolor mode. The porous carbon shell, anchored with hydrophilic hydroxyl/carboxyl groups, endows the Fe 3O 4@PC-CDs-Au NPs with excellent stability in the aqueous phase and a high loading capacity (719 mg g -1) for the anti-cancer drug doxorubicin (DOX). The superparamagnetic Fe 3O 4@PC-CDs-Au NPs with a saturation magnetization of 23.26 emu g -1 produce localized heat under an alternating magnetic field, which triggers the release of the loaded drug. The combined photothermal effects of the Au nanocrystals and the CDs on/in the carbon shell can not only regulate the release rate of the loaded drug, but also efficiently kill tumor cells under NIR irradiation. Finally, in benefitting from their excellent optical properties, their magnetic field and NIR light-responsive drug release capabilities and their enhanced photothermal effect, such nanostructured Fe 3O 4@PC-CDs-Au hybrid NPs are very promising for simultaneous imaging diagnostics and high efficacy therapy.« less
Wang, Hui; Cao, Guixin; Gai, Zheng; ...
2015-03-25
In our paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe 3O 4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe 3O 4@PC-CDs-Au NPs firstly involves the preparation of core-shell template NPs with magnetite nanocrystals clustered in the cores and fluorescent carbon dots (CDs) embedded in a porous carbon shell, followed by an in situ reduction of silver ions (Ag +) loaded in the porous carbon shell and a subsequent replacement ofmore » Ag NPs with Au NPs through a galvanic replacement reaction using HAuCl 4 as a precursor. Moreover, the Fe 3O 4@PC-CDsAu NPs can enter the intracellular region and light up mouse melanoma B16F10 cells in multicolor mode. The porous carbon shell, anchored with hydrophilic hydroxyl/carboxyl groups, endows the Fe 3O 4@PC-CDs-Au NPs with excellent stability in the aqueous phase and a high loading capacity (719 mg g -1) for the anti-cancer drug doxorubicin (DOX). The superparamagnetic Fe 3O 4@PC-CDs-Au NPs with a saturation magnetization of 23.26 emu g -1 produce localized heat under an alternating magnetic field, which triggers the release of the loaded drug. The combined photothermal effects of the Au nanocrystals and the CDs on/in the carbon shell can not only regulate the release rate of the loaded drug, but also efficiently kill tumor cells under NIR irradiation. Finally, in benefitting from their excellent optical properties, their magnetic field and NIR light-responsive drug release capabilities and their enhanced photothermal effect, such nanostructured Fe 3O 4@PC-CDs-Au hybrid NPs are very promising for simultaneous imaging diagnostics and high efficacy therapy.« less
2013-01-01
Background and the aim of the study The objective of the present study was to formulate and optimize nanoparticles (NPs) of sildenafil-loaded poly (lactic-co-glycolic acid) (PLGA) by double emulsion solvent evaporation (DESE) method. The relationship between design factors and experimental data was evaluated using response surface methodology. Method A Box-Behnken design was made considering the mass ratio of drug to polymer (D/P), the volumetric proportion of the water to oil phase (W/O) and the concentration of polyvinyl alcohol (PVA) as the independent agents. PLGA-NPs were successfully prepared and the size (nm), entrapment efficiency (EE), drug loading (DL) and cumulative release of drug from NPs post 1 and 8 hrs were assessed as the responses. Results The NPs were prepared in a spherical shape and the sizes range of 240 to 316 nm. The polydispersity index of size was lower than 0.5 and the EE (%) and DL (%) varied between 14-62% and 2-6%, respectively. The optimized formulation with a desirability factor of 0.9 was selected and characterized. This formulation demonstrated the particle size of 270 nm, EE of 55%, DL of 3.9% and cumulative drug release of 79% after 12 hrs. In vitro release studies showed a burst release at the initial stage followed by a sustained release of sildenafil from NPs up to 12 hrs. The release kinetic of the optimized formulation was fitted to Higuchi model. Conclusions Sildenafil citrate NPs with small particle size, lipophilic feature, high entrapment efficiency and good loading capacity is produced by this method. Characterization of optimum formulation, provided by an evaluation of experimental data, showed no significant difference between calculated and measured data. PMID:24355133
Nosoudi, Nasim; Nahar-Gohad, Pranjal; Sinha, Aditi; Chowdhury, Aniqa; Gerard, Patrick; Carsten, Christopher G; Gray, Bruce H; Vyavahare, Naren R
2015-11-06
Matrix metalloproteinases (MMPs)-mediated extracellular matrix destruction is the major cause of development and progression of abdominal aortic aneurysms. Systemic treatments of MMP inhibitors have shown effectiveness in animal models, but it did not translate to clinical success either because of low doses used or systemic side effects of MMP inhibitors. We propose a targeted nanoparticle (NP)-based delivery of MMP inhibitor at low doses to the abdominal aortic aneurysms site. Such therapy will be an attractive option for preventing expansion of aneurysms in patients without systemic side effects. Our previous study showed that poly(d,l-lactide) NPs conjugated with an antielastin antibody could be targeted to the site of an aneurysm in a rat model of abdominal aortic aneurysms. In the study reported here, we tested whether such targeted NPs could deliver the MMP inhibitor batimastat (BB-94) to the site of an aneurysm and prevent aneurysmal growth. Poly(d,l-lactide) NPs were loaded with BB-94 and conjugated with an elastin antibody. Intravenous injections of elastin antibody-conjugated BB-94-loaded NPs targeted the site of aneurysms and delivered BB-94 in a calcium chloride injury-induced abdominal aortic aneurysms in rats. Such targeted delivery inhibited MMP activity, elastin degradation, calcification, and aneurysmal development in the aorta (269% expansion in control versus 40% elastin antibody-conjugated BB-94-loaded NPs) at a low dose of BB-94. The systemic administration of BB-94 alone at the same dose was ineffective in producing MMP inhibition. Targeted delivery of MMP inhibitors using NPs may be an attractive strategy to inhibit aneurysmal progression. © 2015 American Heart Association, Inc.
Zhang, Yi; Yang, Jia-Cheng E; Fu, Ming-Lai; Yuan, Baoling; Gupta, Kiran
2018-05-15
Fabrication of smart composites with expected removal property and excellent recycle performance for micro-pollutants including microbes and organic contaminants without formation of second-pollutants is highly desired. In this work, Ag nanoparticles (Ag NPs) homogenously loaded on graphene aerogel (GA) as Ag NPs/GA was facilely fabricated by a one-step process and the composite was characterized in detail. The bactericidal performance of the composite towards escherichia coli (E. coli) was evaluated and the catalytic activity was probed for the reduction of 4-nitrophenol (4-NP). Results showed that the composite contains about 44.4 wt% of well-dispersed Ag NPs with diameters ranging from 10 to 100 nm. Compared with the bare Ag particles or GA, Ag NPs/GA exhibited an enhanced bactericidal performance for 8-lg of E. coli cells with 100% inactivation rate and catalytic activity for 4-NP with 96.6% degradation rate, respectively. Impressively, the 100% inactivation rates for 8-lg of E. coli remained after 7 recycles and the releasing silver was negligible compared with the loaded Ag NPs. Moreover, the used Ag NPs/GA for the catalytic reduction of 4-NP can be regenerated easily by calcination in inert atmosphere. Hence, Ag NPs/GA can be regarded as a promising and cost-efficient composite for environmental remediation.
Multifunctional porous silicon nanoparticles for cancer theranostics.
Wang, Chang-Fang; Sarparanta, Mirkka P; Mäkilä, Ermei M; Hyvönen, Maija L K; Laakkonen, Pirjo M; Salonen, Jarno J; Hirvonen, Jouni T; Airaksinen, Anu J; Santos, Hélder A
2015-04-01
Nanomaterials provide a unique platform for the development of theranostic systems that combine diagnostic imaging modalities with a therapeutic payload in a single probe. In this work, dual-labeled iRGD-modified multifunctional porous silicon nanoparticles (PSi NPs) were prepared from dibenzocyclooctyl (DBCO) modified PSi NPs by strain-promoted azide-alkyne cycloaddition (SPAAC) click chemistry. Hydrophobic antiangiogenic drug, sorafenib, was loaded into the modified PSi NPs to enhance the drug dissolution rate and improve cancer therapy. Radiolabeling of the developed system with (111)In enabled the monitoring of the in vivo biodistribution of the nanocarrier by single photon emission computed tomography (SPECT) in an ectopic PC3-MM2 mouse xenograft model. Fluorescent labeling with Alexa Fluor 488 was used to determine the long-term biodistribution of the nanocarrier by immunofluorescence at the tissue level ex vivo. Modification of the PSi NPs with an iRGD peptide enhanced the tumor uptake of the NPs when administered intravenously. After intratumoral delivery the NPs were retained in the tumor, resulting in efficient tumor growth suppression with particle-loaded sorafenib compared to the free drug. The presented multifunctional PSi NPs highlight the utility of constructing a theranostic nanosystems for simultaneous investigations of the in vivo behavior of the nanocarriers and their drug delivery efficiency, facilitating the selection of the most promising materials for further NP development. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Ting; Yao, Xin; Zhang, Shuang; Guo, Yang; Duan, Xiao-Chuan; Ren, Wei; Dan Huang; Yin, Yi-Fan; Zhang, Xuan
2016-11-01
The main objective of this study was to demonstrate the proof-of-principle for the hypothesis that conjugated linoleic acid-paclitaxel conjugate (CLA-PTX), a novel fatty acid modified anti-cancer drug conjugate, could self-assemble forming nanoparticles. The results indicated that a novel self-assembling nanomedicine, CLA-PTX@PEG NPs (about 105 nm), with Cremophor EL (CrEL)-free and organic solvent-free characteristics, was prepared by a simple precipitation method. Being the ratio of CLA-PTX:DSPE-PEG was only 1:0.1 (w/w), the higher drug loading CLA-PTX@PEG NPs (about 90%) possessed carrier-free characteristic. The stability results indicated that CLA-PTX@PEG NPs could be stored for at least 9 months. The safety of CLA-PTX@PEG NPs was demonstrated by the MTD results. The anti-tumor activity and cellular uptake were also confirmed in the in vitro experiments. The lower crystallinity, polarity and solubility of CLA-PTX compared with that of paclitaxel (PTX) might be the possible reason for CLA-PTX self-assembling forming nanoparticles, indicating a relationship between PTX modification and nanoparticles self-assembly. Overall, the data presented here confirm that this drug self-delivery strategy based on self-assembly of a CLA-PTX conjugate may offer a new way to prepare nanomedicine products for cancer therapy involving the relationship between anticancer drug modification and self-assembly into nanoparticles.
Warsi, Musarrat H; Anwar, Mohammed; Garg, Vaidehi; Jain, Gaurav K; Talegaonkar, Sushama; Ahmad, Farhan J; Khar, Roop K
2014-10-01
Poor drug penetration and rapid clearance after topical instillation of a drug formulation into the eyes are the major causes for the lower ocular bioavailability from conventional eye drops. Along with this, poor encapsulation efficiency of hydrophilic drug in polymeric nanoparticles remains a major formulation challenge. Taking this perspective into consideration, dorzolamide (DZ)-loaded PLGA nanoparticles were developed employing two different emulsifiers (PVA and vitamin E TPGS) and the effects of various formulation and process variables on particle size and encapsulation efficiency were assessed. Nanoparticles emulsified with vitamin E TPGS (DZ-T-NPs) were found to possess enhanced drug encapsulation (59.8±6.1%) as compared to those developed with PVA as emulsifier (DZ-P-NPs). Transcorneal permeation study revealed a significant enhancement in permeation (1.8-2.5 fold) as compared to solution. In addition, ex vivo biodistribution study showed a higher concentration of drug in the aqueous humour (1.5-2.3 fold). Histological and IR-camera studies proved the non-irritant potential of the formulations. Pharmacoscintigraphic studies revealed the reduced corneal clearance, as well as naso-lachrymal drainage in comparison to drug solution. Furthermore, efficacy study revealed that DZ-P-NPs and DZ-T-NPs significantly reduced the intraocular pressure by 22.81% and 29.12%, respectively, after a single topical instillation into the eye. Copyright © 2014 Elsevier B.V. All rights reserved.
Danish, Minna K; Vozza, Giuliana; Byrne, Hugh J; Frias, Jesus M; Ryan, Sinéad M
2017-09-01
The chicken- or fish-derived tripeptide, leucine-lysine-proline (LKP), inhibits the angiotensin converting enzyme and may be used as an alternative treatment for prehypertension. However, it has low permeation across the small intestine. The formulation of LKP into a nanoparticle (NP) has the potential to address this issue. LKP-loaded NPs were produced using an ionotropic gelation technique, using chitosan (CL113). Following optimization of unloaded NPs, a mixture amount design was constructed using variable concentration of CL113 and tripolyphosphate at a fixed LKP concentration. Resultant particle sizes ranged from 120 to 271 nm, zeta potential values from 29 to 37 mV, and polydispersity values from 0.3 to 0.6. A ratio of 6:1 (CL113:TPP) produced the best encapsulation of approximately 65%. Accelerated studies of the loaded NPs indicated stability under normal storage conditions (room temperature). Cytotoxicity assessment showed no significant loss of cell viability and in vitro release studies indicated an initial burst followed by a slower and sustained release. © 2017 Institute of Food Technologists®.
Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems.
Shen, Lazhen; Li, Bei; Qiao, Yongsheng
2018-02-23
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf
2018-08-01
Lactoferrin (Lf) exerts anti-cancer effects on glioma, however, the exact mechanism remains unclear. Despite possessing a nuclear localization sequence (NLS), Lf was found to allocate only in the cytoplasm of glioma 261. Lf was therefore loaded into nuclear and cytoplasmic targeted nanoparticles (NPs) to determine whether nuclear delivery of Lf would enhance its anti-cancer effect. Upon treatment with 300 and 800 µg/mL Lf loaded chitosan NPs, nuclear targeted Lf-NPs showed 1.3 and 2.7 folds increase in cell viability, whereas cytoplasmic targeted Lf-NPs at 300 µg/mL decreased cell viability by 0.8 folds in comparison to free Lf and controls. Results suggest that the cytotoxicity of Lf on glioma is attributable to its cytoplasmic allocation. Nuclear delivery of Lf induced cell proliferation rather than cytotoxicity, indicating that the mode of action of Lf in glioma is cell location dependent. This calls for caution about the general use of Lf as an anti-cancer protein. Copyright © 2018. Published by Elsevier B.V.
Investigation of antitumor activities of trastuzumab delivered by PLGA nanoparticles
Hoti, Ada; Iovene, Pietro Alessandro; Natalello, Antonino; Avvakumova, Svetlana; Colombo, Miriam
2018-01-01
Background We report the development of an efficient antibody delivery system for the incorporation of trastuzumab (TZ) into poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs). The aim of the work was to overcome the current limitations in the clinical use of therapeutic antibodies, including immunogenicity, poor pharmacokinetics, low tumor penetration and safety issues. Materials and methods Trastuzumab-loaded PLGA NPs (PLGA-TZ) were synthesized according to a double emulsion method. The same protocol was used to produce control batches of nonspecific IgG-loaded NPs and empty PLGA NPs. After release of TZ from PLGA NPs, the effects on the main biological activities of the antibody were evaluated on SKBR3 (human epidermal growth factor receptor 2 [HER2]-positive breast cancer cell line), including specific binding to HER2, phosphorylation of HER2 (Y1248), degradation of HER2 protein and antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism. In addition, an MTT assay was performed for treating SKBR3 cells with PLGA NPs loaded with TZ and doxorubicin to evaluate the cytotoxic activity of the combined treatment. Results and discussion TZ was gradually released in a prolonged way over 30 days. The physical characterization performed with circular dichroism, Fourier transform infrared and fluorescence spectroscopy of TZ after release demonstrated that no structural alterations occurred compared to the native antibody. In vitro experiments using SKBR3 cells showed that TZ released from PLGA NPs maintained the same biological activity of native TZ. PLGA NPs allowed a good co-encapsulation efficiency of TZ and doxorubicin resulting in improved therapy. Conclusion With the TZ case study, we demonstrate that the distinctive features of therapeutic monoclonal antibodies, including molecular targeting efficiency, capability to inhibit or properly affect the regulatory signaling pathways of cancer cells and stimulation of the ADCC, are fully preserved after loading into and release from PLGA NPs. In addition, PLGA NPs are shown to allow for the simultaneous incorporation of TZ and conventional chemotherapeutics, resulting in a potent antitumor nanodrug well suited for in situ combination and neoadjuvant therapy. PMID:29491709
Carbothermal shock synthesis of high-entropy-alloy nanoparticles
NASA Astrophysics Data System (ADS)
Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing
2018-03-01
The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.
Ding, Baoyue; Wu, Xin; Fan, Wei; Wu, Zhaoyong; Gao, Jing; Zhang, Wei; Ma, Lulu; Xiang, Wang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen
2011-01-01
Background The increased incidence of malignant melanoma in recent decades, along with its high mortality rate and pronounced resistance to therapy pose an enormous challenge. Novel therapeutic strategies, such as immunotherapy and targeted therapy, are urgently needed for melanoma. In this study, a new active targeting drug delivery system was constructed to combine chemotherapy and active specific immunotherapy. Methods The chemotherapeutic drug, dacarbazine (DTIC), that induces apoptosis through the intrinsic pathway which typically responds to severe DNA damage, was used as a model drug to prepare DTIC-loaded polylactic acid (PLA) nanoparticles (DTIC-NPs), which were covalently conjugated to a highly specific targeting functional TRAIL-receptor 2 (DR5) monoclonal antibody (mAb) that can contribute directly to cancer cell apoptosis or growth inhibition through the extrinsic pathway. Results Our in vitro experiments demonstrated that DTIC-PLA-DR5 mAb nanoparticles (DTIC-NPs-DR5 mAb) are an active targeting drug delivery system which can specifically target DR5-overexpressing malignant melanoma cells and become efficiently internalized. Most strikingly, compared with conventional DTIC-NPs, DTIC-NPs-DR5 mAb showed significantly enhanced cytotoxicity and increased cell apoptosis in DR5-positive malignant melanoma cells. Conclusion The DTIC-NPs-DR5 mAb described in this paper might be a potential formulation for targeting chemotherapy and immunotherapy to DR5-overexpressing metastatic melanoma. PMID:21976975
PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses
Ma, Wenxue; Chen, Mingshui; Kaushal, Sharmeela; McElroy, Michele; Zhang, Yu; Ozkan, Cengiz; Bouvet, Michael; Kruse, Carol; Grotjahn, Douglas; Ichim, Thomas; Minev, Boris
2012-01-01
The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund’s adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of −15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund’s adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor CTL responses in vivo. PMID:22619507
PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses.
Ma, Wenxue; Chen, Mingshui; Kaushal, Sharmeela; McElroy, Michele; Zhang, Yu; Ozkan, Cengiz; Bouvet, Michael; Kruse, Carol; Grotjahn, Douglas; Ichim, Thomas; Minev, Boris
2012-01-01
The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96(®) Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund's adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of -15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund's adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor CTL responses in vivo.
Rao, Lei; Ma, Yi; Zhuang, Manjiao; Luo, Tianjie; Wang, Yayu; Hong, An
2014-01-01
As a potential protein therapeutic for type 2 diabetes mellitus (T2DM), BAY 55-9837 is limited by poor stability and a very short half-life in vivo. The purpose of this study was to construct a novel nanostructured biomaterial by conjugating BAY 55-9837 to chitosan-decorated selenium nanoparticles (CS-SeNPs) to prolong the in vivo half-life of BAY 55-9837 by reducing its renal clearance rate. BAY 55-9837-loaded CS-SeNPs (BAY-CS-SeNPs) were prepared, and their surface morphology, particle size, zeta potential, and structure were characterized. The stability, protein-loading rate, and in vitro release of BAY 55-9837 from CS-SeNPs were also quantified. Additionally, a sensitive high-performance liquid chromatography (HPLC) assay was developed for the quantification of BAY 55-9837 in mouse plasma. Thereafter, mice were injected via the tail vein with either BAY 55-9837 or BAY-CS-SeNPs, and the plasma concentration of BAY 55-9837 was determined via our validated HPLC method at different time intervals postinjection. Relevant in vivo pharmacokinetic parameters (half-life, area under the curve from time 0 to last sampling point, observed clearance) were then calculated and analyzed. BAY-CS-SeNPs were successfully synthesized, with diameters of approximately 200 nm. BAY-CS-SeNPs displayed good stability with a high protein-loading rate, and the release process of BAY 55-9837 from the CS-SeNPs lasted for over 70 hours, with the cumulative release reaching 78.9%. Moreover, the conjugation of CS-SeNPs to BAY 55-9837 significantly reduced its renal clearance to a rate of 1.56 mL/h and extended its half-life to 20.81 hours. In summary, our work provides a simple method for reducing the renal clearance rate and extending the half-life of BAY 55-9837 in vivo by utilizing CS-SeNPs as nanocarriers.
Speciation of nanoscale objects by nanoparticle imprinted matrices
NASA Astrophysics Data System (ADS)
Hitrik, Maria; Pisman, Yamit; Wittstock, Gunther; Mandler, Daniel
2016-07-01
The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects.The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects. Electronic supplementary information (ESI) available: S1 - instrumentation, S2 - immobilization of AuNPs, S3 - time dependent immobilization, S4 - CVs at matrix-coated substrates, S5 - CVs at AuNP-loaded matrices, S6 - peak potentials for the oxidation of AuNPs of different sizes, S7 - schematics for the change of conductive area of the matrices, S8 - probe CVs before and after AuNPs oxidation, S9 - calculation of adsorbed and reuptaken AuNPs, S10 - CVs of AuNPs adsorbed on non-imprinted matrices, S11 - SEM images of AuNPs adsorbed on non-imprinted matrices, S12 - SEM images after reuptake of AuNPs, S13 - schematic of the effect of thickening the matrix. See DOI: 10.1039/c6nr01106c
NASA Astrophysics Data System (ADS)
Feng, Runliang; Zhu, Wenxia; Song, Zhimei; Zhao, Liyan; Zhai, Guangxi
2013-06-01
To improve curcumin's (CURs) water solubility and release property, a novel star methoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) copolymer was synthesized through O-alkylation, basic hydrolysis and ring-opening polymerization reaction with MPEG, epichlorohydrin, and ɛ-caprolactone as raw materials. The structure of the novel copolymer was characterized by 1H NMR, FT-IR, and GPC. The results of FT-IR and differential scanning calorimeter of CUR-loaded nanoparticles (NPs) prepared by dialysis method showed that CUR was successfully encapsulated into the SMP12 copolymeric NPs with 98.2 % of entrapment efficiency, 10.91 % of drug loading, and 88.4 ± 11.2 nm of mean particle diameter in amorphous forms. The dissolubility of nanoparticulate CUR was increased by 1.38 × 105 times over CUR in water. The obtained blank copolymer showed no hemolysis. A sustained CUR release to a total of approximately 56.13 % was discovered from CUR-NPs in 40 % of ethanol saline solution within 72 h on the use of dialysis method. The release behavior fitted the ambiexponent and biphasic kinetics equation. In conclusion, the copolymeric NPs loading CUR might serve as a potential nanocarrier to improve the solubility and release property of CUR.
In vitro evaluation of Aurora kinase inhibitor—VX680—in formulation of PLA-TPGS nanoparticles
NASA Astrophysics Data System (ADS)
Thuy Duong Le, Thi; Thu Ha, Phuong; Hai Yen Tran, Thi; Nguyen, Dac Tu; Nguyen, Hoai Nam; Khanh Bui, Van; Nhung Hoang, My
2016-06-01
Polymeric nanoparticles prepared from poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) were used as potential drug carries with many advantages to overcome the disadvantages of insoluble anticancer drugs and enhance blood circulation time and tissues. VX680 is an Aurora kinase inhibitor and is also the foremost Aurora kinase inhibitor to be studied in clinical trials. In this study, we aimed to investigate whether VX680-loaded PLA-TPGS nanoparticles (VX680-NPs) are able to effectively increase the toxicity of chemotherapy. Accordingly, we first synthesized VX680-loaded nanoparticles and NP characterizations of morphology, mean size, zeta potential, and encapsulation efficiency were spherical shape, 63 nm, -30 mV and 76%, respectively. Then, we investigated the effects on HeLa cells. The cell cytotoxicity was evaluated by the xCELLigence real-time cell analyzer allowing measurement of changes in electrical impedance on the surface of the E-plate. Analysis of nucleus morphology and level of histone H3 phosphorylation was observed by confocal fluorescence scanning microscopy. Cell cycle distribution and apoptosis were analyzed by flow cytometry. Our results showed that VX680-NPs reduced cell viability with IC50 value lower 3.4 times compared to free VX680. Cell proliferation was inhibited by VX680-NPs accompanied by other effects such as high abnormal changes of nucleus, a decrease of phospho-histone H3 at Ser10 level, an increase of polyploid cells and resulted in higher apoptotic cells. These results demonstrated that VX680-NPs had more cytotoxicity than as treated with VX680 alone. Thus, VX680-NPs may be considered as promising drug delivery system for cancer treatment.
Zeng, Liang; Yan, Jingna; Luo, Liyong; Ma, Mengjun; Zhu, Huiqun
2017-03-28
We were employing nanotechnology to improve the targeting ability of (-)-Epigallocatechin-3-gallate (EGCG) towards MCF-7 cells, and two kinds of EGCG nanoparticles (FA-NPS-PEG and FA-PEG-NPS) were obtained, besides, their characteristics and effects on MCF-7 cells were studied. The results indicated that (i) both FA-NPS-PEG and FA-PEG-NPS have high stabilities; (ii) their particles sizes were 185.0 ± 13.5 nm and 142.7 ± 7.2 nm, respectively; (iii) their encapsulation efficiencies of EGCG were 90.36 ± 2.20% and 39.79 ± 7.54%, respectively. (iv) there was no cytotoxicity observed in EGCG, FA-NPS-PEG and FA-PEG-NPS toward MCF-7 cells over all concentrations (0~400 μg/mL) tested; (v) EGCG, FA-NPS-PEG and FA-PEG-NPS inhibited MCF-7 cells proliferation in dose-dependent manners, with the average IC 50 of 470.5 ± 33.0, 65.9 ± 0.4 and 66.6 ± 0.6 μg/mL; (vi) EGCG, FA-NPS-PEG and FA-PEG-NPS could modulated the expressions of several key regulatory proteins in PI3K-Akt pathway such as up-regulation of PTEN, p21 and Bax, and down-regulation of p-PDK1, p-AKT, CyclinD1 and Bcl-2, which gave an illustration about the mechanism by which EGCG nanoparticles inhibited MCF-7 cells proliferation. In this study, EGCG nanoparticles can significantly enhance the targeting ability and efficacy of EGCG, which is considered to an experimental foundation for further research on its activity, targeting ability and metabolism in vivo.
Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong
2016-01-01
Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely used as systemic gene vectors.
Xiao, Bo; Xu, Zhigang; Viennois, Emilie; Zhang, Yuchen; Zhang, Zhan; Zhang, Mingzhen; Han, Moon Kwon; Kang, Yuejun; Merlin, Didier
2017-07-05
Overcoming adverse effects and selectively delivering drug to target cells are two major challenges in the treatment of ulcerative colitis (UC). Lysine-proline-valine (KPV), a naturally occurring tripeptide, has been shown to attenuate the inflammatory responses of colonic cells. Here, we loaded KPV into hyaluronic acid (HA)-functionalized polymeric nanoparticles (NPs). The resultant HA-KPV-NPs had a desirable particle size (∼272.3 nm) and a slightly negative zeta potential (∼-5.3 mV). These NPs successfully mediated the targeted delivery of KPV to key UC therapy-related cells (colonic epithelial cells and macrophages). In addition, these KPV-loaded NPs appear to be nontoxic and biocompatible with intestinal cells. Intriguingly, we found that HA-KPV-NPs exert combined effects against UC by both accelerating mucosal healing and alleviating inflammation. Oral administration of HA-KPV-NPs encapsulated in a hydrogel (chitosan/alginate) exhibited a much stronger capacity to prevent mucosa damage and downregulate TNF-α, thus they showed a much better therapeutic efficacy against UC in a mouse model, compared with a KPV-NP/hydrogel system. These results collectively demonstrate that our HA-KPV-NP/hydrogel system has the capacity to release HA-KPV-NPs in the colonic lumen and that these NPs subsequently penetrate into colitis tissues and enable KPV to be internalized into target cells, thereby alleviating UC. Copyright © 2016 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Development of New Lipid-Based Paclitaxel Nanoparticles Using Sequential Simplex Optimization
Dong, Xiaowei; Mattingly, Cynthia A.; Tseng, Michael; Cho, Moo; Adams, Val R.; Mumper, Russell J.
2008-01-01
The objective of these studies was to develop Cremophor-free lipid-based paclitaxel (PX) nanoparticle formulations prepared from warm microemulsion precursors. To identify and optimize new nanoparticles, experimental design was performed combining Taguchi array and sequential simplex optimization. The combination of Taguchi array and sequential simplex optimization efficiently directed the design of paclitaxel nanoparticles. Two optimized paclitaxel nanoparticles (NPs) were obtained: G78 NPs composed of glyceryl tridodecanoate (GT) and polyoxyethylene 20-stearyl ether (Brij 78), and BTM NPs composed of Miglyol 812, Brij 78 and D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Both nanoparticles successfully entrapped paclitaxel at a final concentration of 150 μg/ml (over 6% drug loading) with particle sizes less than 200 nm and over 85% of entrapment efficiency. These novel paclitaxel nanoparticles were stable at 4°C over three months and in PBS at 37°C over 102 hours as measured by physical stability. Release of paclitaxel was slow and sustained without initial burst release. Cytotoxicity studies in MDA-MB-231 cancer cells showed that both nanoparticles have similar anticancer activities compared to Taxol®. Interestingly, PX BTM nanocapsules could be lyophilized without cryoprotectants. The lyophilized powder comprised only of PX BTM NPs in water could be rapidly rehydrated with complete retention of original physicochemical properties, in-vitro release properties, and cytotoxicity profile. Sequential Simplex Optimization has been utilized to identify promising new lipid-based paclitaxel nanoparticles having useful attributes. PMID:19111929
Pandey, Prem C; Pandey, Govind; Narayan, Roger J
2017-03-27
Mesoporous silica nanoparticles (MSNPs) have been used as an efficient and safe carrier for drug delivery and biocatalysis. The surface modification of MSNPs using suitable reagents may provide a robust framework in which two or more components can be incorporated to give multifunctional capabilities (e.g., synthesis of noble metal nanoparticles within mesoporous architecture along with loading of a bioactive molecule). In this study, the authors reported on a new synthetic route for the synthesis of gold nanoparticles (AuNPs) within (1) unmodified MSNPs and (2) 3-trihydroxysilylpropyl methylphosphonate-modified MSNPs. A cationic polymer, polyethylenimine (PEI), and formaldehyde were used to mediate synthetic incorporation of AuNPs within MSNPs. The AuNPs incorporated within the mesoporous matrix were characterized by transmission electron microscopy, energy dispersive x-ray analysis, and high-resolution scanning electron microscopy. PEI in the presence of formaldehyde enabled synthetic incorporation of AuNPs in both unmodified and modified MSNPs. The use of unmodified MSNPs was associated with an increase in the polycrystalline structure of the AuNPs within the MSNPs. The AuNPs within modified MSNPs showed better catalytic activity than those within unmodified MSNPs. MSNPs with an average size of 200 nm and with a pore size of 4-6 nm were used for synthetic insertion of AuNPs. It was found that the PEI coating enabled AuNPs synthesis within the mesopores in the presence of formaldehyde or tetrahydrofuran hydroperoxide at a temperature between 10 and 25 °C or at 60 °C in the absence of organic reducing agents. The as-made AuNP-inserted MSNPs exhibited enhanced catalytic activity. For example, these materials enabled rapid catalytic oxidation of the o-dianisidine substrate to produce a colored solution in proportion to the amount of H 2 O 2 generated as a function of glucose oxidase-catalyzed oxidation of glucose; a linear concentration range from 80 to 800 μM and a detection limit as low as 80 μM were observed. The mesoscale pores of the as developed AuNP-inserted MSNPs were also used to entrap the hydrophobic drug paclitaxel. The results of this study indicate the potential use of the AuNP-inserted MSNPs in biocatalysis and drug delivery.
NASA Astrophysics Data System (ADS)
Sanna, Vanna; Roggio, Anna Maria; Posadino, Anna Maria; Cossu, Annalisa; Marceddu, Salvatore; Mariani, Alberto; Alzari, Valeria; Uzzau, Sergio; Pintus, Gianfranco; Sechi, Mario
2011-12-01
Docetaxel (Dtx) chemotherapy is the optional treatment in patients with hormone-refractory metastatic prostate cancer, and Dtx-loaded polymeric nanoparticles (NPs) have the potential to induce durable clinical responses. However, alternative formulations are needed to overcome the serious side effects, also due to the adjuvant used, and to improve the clinical efficacy of the drug. In the present study, two novel biodegradable block-copolymers, poly(lactide-co-caprolactone) (PLA-PCL) and poly(lactide-co-caprolactone-co-glycolide) (PLGA-PCL), were explored for the formulation of Dtx-loaded NPs and compared with PLA- and PLGA-NPs. The nanosystems were prepared by an original nanoprecipitation method, using Pluronic F-127 as surfactant agent, and were characterized in terms of morphology, size distribution, encapsulation efficiency, crystalline structure, and in vitro release. To evaluate the potential anticancer efficacy of a nanoparticulate system, in vitro cytotoxicity studies on human prostate cancer cell line (PC3) were carried out. NPs were found to be of spherical shape with an average diameter in the range of 100 to 200 nm and a unimodal particle size distribution. Dtx was incorporated into the PLGA-PCL NPs with higher ( p < 0.05) encapsulation efficiency than that of other polymers. Differential scanning calorimetry suggested that Dtx was molecularly dispersed in the polymeric matrices. In vitro drug release study showed that release profiles of Dtx varied on the bases of characteristics of polymers used for formulation. PLA-PCL and PLGA-PCL drug loaded NPs shared an overlapping release profiles, and are able to release about 90% of drug within 6 h, when compared with PLA- and PLGA-NPs. Moreover, cytotoxicity studies demonstrated advantages of the Dtx-loaded PLGA-PCL NPs over pure Dtx in both time- and concentration-dependent manner. In particular, an increase of 20% of PC3 growth inhibition was determined by PLGA-PCL NPs with respect to free drug after 72 h incubation and at all tested Dtx concentration. In summary, PLGA-PCL copolymer may be considered as an attractive and promising polymeric material for the formulation of Dtx NPs as delivery system for prostate cancer treatment, and can also be pursued as a validated system in a more large context.
Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes.
Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael
2014-01-01
In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles. 61.46.Fg; 62.23.Pq; 75.75.-c; 75.20.-g.
Yu, Fengli; Li, Gang; Qu, Bin; Cao, Wei
2010-11-15
A novel and ultrasensitive electrochemical approach for sequence-specific DNA detection based on signal dual-amplification with Au NPs and marker-loaded apoferritin NPs was reported. Target DNA was sandwiched between capture DNA coupled to magnetic beads and signal DNA self-assembled on Au NPs which were incorporated with marker-loaded apoferritin NPs. Subsequent electrochemical stripping analysis of the electroactive markers released from apoferritin NPs in acidic buffers provided a means to quantify the concentration of target DNA. In this means, one target signal could be transformed into multiple redox signals of the markers since a single Au NP could be loaded with dozens of apoferritin NPs, and an apoferritin NP could be loaded with thousands of markers. Under the optimum conditions, the linear range was from 2.0 × 10(-16) to 1.0 × 10(-14)M and the detection limit was 5.1 × 10(-17)M by using the cadmium as a model marker. The proposed DNA biosensor not only exhibited excellent sensitivity but also had good reproducibility and selectivity against two-base mismatched DNA. Copyright © 2010 Elsevier B.V. All rights reserved.
Jin, Honglin; Qian, Yuan; Dai, Yanfeng; Qiao, Sha; Huang, Chuan; Lu, Lisen; Luo, Qingming; Chen, Jing; Zhang, Zhihong
2016-01-01
Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy. PMID:27698936
Jesus, Sandra; Soares, Edna; Borchard, Gerrit; Borges, Olga
2018-01-02
Polymeric nanoparticles (NPs) are extremely attractive vaccine adjuvants, able to promote antigen delivery and in some instances, exert intrinsic immunostimulatory properties that enhance antigen specific humoral and cellular immune responses. The poly-ε-caprolactone (PCL)/chitosan NPs were designed with the aim of being able to combine the properties of the 2 polymers in the preparation of an adjuvant for the hepatitis B surface antigen (HBsAg). This article reports important results of an in vitro mechanistic study and immunization studies with HBsAg associated with different concentrations of the nanoparticles. The results revealed that PCL/chitosan NPs promoted mast cell (MC) activation (β-hexosaminidase release) and that its adjuvant effect is not mediated by the TNF-α secretion. Moreover, we demonstrated that HBsAg loaded PCL/chitosan NPs, administered through the subcutaneous (SC) route, were able to induce higher specific antibody titers without increasing IgE when compared to a commercial vaccine, and that the IgG titers are nanoparticle-dose dependent. The results also revealed the NPs' capability to promote a cellular immune response against HBsAg, characterized by the production of IFN-γ and IL-17. These results demonstrated that PCL/chitosan NPs are a good hepatitis B antigen adjuvant, with direct influence on the intensity and type of the immune response generated.
Garcia Campoy, Abraham Heriberto; Perez Gutierrez, Rosa Martha; Manriquez-Alvirde, Gabriela; Muñiz Ramirez, Alethia
2018-01-01
Background The aim was to explore the efficacy of extract of Eysenhardtia polystachya-loaded silver nanoparticles (EP/AgNPs) on pancreatic β cells, INS-1 cells, and zebrafish as a valuable model for the study of diabetes mellitus. Materials and methods EP/AgNPs were synthesized using methanol/water bark extract of E. polystachya and characterized using various physicochemical techniques. Results Immersion of adult zebrafish in 111 mM glucose solution resulted in a sustained hyperglycemic, hyperlipidemic state, and serum insulin levels decreased. The synthesized EP/AgNPs showed an absorption peak at 413 nm on ultraviolet–visible spectroscopy, revealing the surface plasmon resonance of the nanoparticles. Transmission electron microscopy indicated that most of the particles were spherical, with a diameter of 10–12 nm, a polydispersity index of 0.197, and a zeta potential of −32.25 mV, suggesting high stability of the nanoparticles. EP/AgNPs promote pancreatic β-cell survival, insulin secretion, enhanced hyperglycemia, and hyperlipidemia in glucose-induced diabetic zebrafish. EP/AgNPs also showed protection of the pancreatic β-cell line INS-1 against hydrogen peroxide-induced oxidative injury. Conclusion The results indicate that EP/AgNPs have good antidiabetic activity and therefore could be used to prevent the development of diabetes. PMID:29750032
Abou-ElNaga, Amoura; Mutawa, Ghada; El-Sherbiny, Ibrahim M; Abd-ElGhaffar, Hassan; Allam, Ahmed A; Ajarem, Jamaan; Mousa, Shaker A
2017-04-12
The power of tumorigenesis, chemo-resistance and metastasis in malignant ovarian tumors resides in a tiny population of cancer cells known as ovarian cancer stem cells (OCSCs). Developing nano-therapeutic targeting of OCSCs is considered a great challenge. The potential use of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) was investigated as a drug delivery system for paclitaxel (PTX) against OCSCs in vitro and in vivo. PTX-loaded PLGA NPs were prepared by an emulsion solvent evaporation method, supported by incorporation of folic acid (FA) as the ligand. NPs were characterized for size, surface morphology, drug loading, and encapsulation efficiency. In vitro cytotoxicity of PTX-loaded FA/PLGA NPs was tested against OCSCs with MTT assay. In vivo anti-tumoral efficiency and active targeting potential of prepared NPs against tumors in nude mice were investigated. In vitro results revealed that IC 50 of PTX was significantly reduced after loading on PLGA NPs. On the other hand, in vivo results showed that PLGA NPs enhanced the tumor suppression efficiency of PTX. Investigation with real time quantitative PCR analysis revealed the limiting expression of chemo-resistant genes ( ABCG2 and MDR1 ) after applying PLGA NPs as a drug delivery system for PTX. Histopathological examination of tumors showed the effective biological influence of PTX-loaded FA/PLGA NPs through the appearance of reactive lymphoid follicles. Targeting potential of PTX was activated by FA/PLGA NPs through significant preservation of body weight ( p < 0.0001) and minimizing the systemic toxicity in healthy tissues. Immunohistochemical investigation revealed a high expression of apoptotic markers in tumor tissue, supporting the targeting effect of FA/PLGA NPs. A drug delivery system based on FA/PLGA NPs can enhance PTX's in vitro cytotoxicity and in vivo targeting potential against OCSCs.
Network dynamics in nanofilled polymers
NASA Astrophysics Data System (ADS)
Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.
2016-04-01
It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.
Yan, Jing-Kun; Qiu, Wen-Yi; Wang, Yao-Yao; Wu, Jian-Yong
2017-07-19
Polyelectrolyte complex nanoparticles (PEC NPs) were fabricated via electrostatic interactions between positively charged heat-denatured lactoferrin (LF) particles and negatively charged pectin. The obtained PEC NPs were then utilized as curcumin carriers. PEC NPs were prepared by mixing 1.0 mg/mL solutions of heat-denatured LF and pectin at a mass ratio of 1:1 (w/w) in the absence of NaCl at pH 4.50. PEC NPs that were prepared under optimized conditions were spherical in shape with a particle size of ∼208 nm and zeta potential of ∼-32 mV. Hydrophobic curcumin was successfully encapsulated into LF/pectin PEC NPs with high encapsulation efficiency (∼85.3%) and loading content (∼13.4%). The in vitro controlled release and prominent antioxidant activities of curcumin from LF/pectin PEC NPs were observed. The present work provides a facile and fast method to synthesize nanoscale food-grade delivery systems for the improved water solubility, controlled release, and antioxidant activity of hydrophobic curcumin.
Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen.
Jesus, Sandra; Soares, Edna; Borchard, Gerrit; Borges, Olga
2017-10-01
This work aims to investigate the adjuvant effect of poly-ϵ-caprolactone/chitosan nanoparticles (NPs) for hepatitis B surface antigen (HBsAg) and the plasmid DNA encoding HBsAg (pRC/CMV-HBs). Both antigens were adsorbed onto preformed NPs. Vaccination studies were performed in C57BL/6 mice. Transfection efficiency was investigated in A549 cell line. HBsAg-adsorbed NPs generated strong anti-HBsAg IgG titers, mainly of IgG1 isotype, and induced antigen-specific IFN-γ and IL-17 secretion by spleen cells. The addition of pRC/CMV-HBs to the HBsAg-adsorbed NPs inhibited IL-17 secretion but had minor effect on IFN-γ levels. Lastly, pRC/CMV-HBs-loaded NPs generated a weak serum antibody response. Poly-ϵ-caprolactone/chitosan NPs provide a strong humoral adjuvant effect for HBsAg and induce a Th1/Th17-mediated cellular immune responses worth explore for hepatitis B virus vaccination.
The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy.
Oh, Keun Sang; Lee, Hwanbum; Kim, Jae Yeon; Koo, Eun Jin; Lee, Eun Hee; Park, Jae Hyung; Kim, Sang Yoon; Kim, Kwangmeyung; Kwon, Ick Chan; Yuk, Soon Hong
2013-01-10
The multilayer nanoparticles (NPs) were prepared for cancer-targeting therapy using the layer by layer approach. When drug-loaded Pluronic NPs were mixed with vesicles (liposomes) in the aqueous medium, Pluronic NPs were incorporated into the vesicles to form the vesicle NPs. Then, the multilayer NPs were formed by freeze-drying the vesicle NPs in a Pluronic aqueous solution. The morphology and size distribution of the multilayer NPs were observed using a TEM and a particle size analyzer. In order to apply the multilayer NPs as a delivery system for docetaxel (DTX), which is a model anticancer drug, the release pattern of the DTX was observed and the tumor growth was monitored by injecting the multilayer NPs into the tail veins of tumor (squamous cell carcinoma)-bearing mice. The cytotoxicity of free DTX (commercial DTX formulation (Taxotere®)) and the multilayer NPs was evaluated using MTT assay. We also evaluated the tumor targeting ability of the multilayer NPs using magnetic resonance imaging. The multilayer NPs showed excellent tumor targetability and antitumor efficacy in tumor-bearing mice, caused by the enhanced permeation and retention (EPR) effect. These results suggest that the multilayer NPs could be a potential drug delivery system for cancer-targeting therapy. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin
2018-03-01
Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.
Mustafa, Sanaul
2017-01-01
Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. Due to its intense hydrophilicity, KS is cleared from the body within 8 h. KS has a very short plasma half-life (2.5 h). KS is used in high concentrations to reach the therapeutic levels in plasma, which results in serious nephrotoxicity/ototoxicity. To overcome aforementioned limitations, the current study aimed to develop KS loaded PLGA-Vitamin-E-TPGS nanoparticles (KS-PLGA-TPGS NPs), to act as an efficient carrier for controlled delivery of KS. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to KS-PLGA-TPGS NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was raised for surface modification of NPs. Surface modified NPs (KS-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetics and in vivo biodistribution following intramuscular administration were investigated. NPs surface charge was close to neutral +3.61 mV and significantly affected by the WSC coating. KS-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long drew-out the blood circulation half-life with resultant reduced kidney sequestration vis-à-vis KS-PLGA-TPGS NPs. The studies, therefore, indicate the successful formulation development of KS-PEG-WSC NPs with reduced frequency of dosing of KS indicating low incidence of nephrotoxicity/ototoxicity. PMID:28352475
Ahmed, Tarek A
2016-01-01
In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559
Gundogdu, Nuran; Cetin, Meltem
2014-11-01
In this study, the preparation and in vitro characterisation of metformin HCl-loaded CS-PLGA nanoparticles (NPs) were aimed. The prepared nanoparticles (blank nanoparticles (C-1), 50 mg of metformin HCl loaded nanoparticles (C-2) and 75 mg of metformin HCl loaded nanoparticles (C-3) ranged in size from 506.67±13.61 to 516.33±16.85 nm and had surface charges of 22.57±1.21 to 32.37±0.57 mV. Low encapsulation efficiency was observed for both nanoparticle formulations due to the leakage of metformin HCl to the external medium during preparation of nanoparticles. Nanoparticle formulations showed highly reproducible drug release profiles. ~20% of metformin HCl was released within 30 minutes and approximately 98% of the loaded metformin HCl was released at 144 hours in a phosphate buffer (PB; pH 6.8). No statistically significant difference was noted between the in vitro release profiles of the nanoparticles (C-2 and C-3) containing metformin HCl. Also, nanoparticles were characterised using FT-IR and DSC.
Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S
2017-02-01
Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.
Natesan, Subramanian; Krishnaswami, Venkateshwaran; Ponnusamy, Chandrasekar; Madiyalakan, Madi; Woo, Thomas; Palanisamy, Rajaguru
2017-08-01
A nanoparticulate photodynamic approach was employed with an objective to achieve enhanced production of singlet oxygen ( 1 O 2 ), for the management of posterior segment eye diseases like age related macular degeneration. The hypocrellin B (HB) loaded poly lactide-co-glycolide nanoparticle formulations were incorporated with nano silver (HBS-NPs). The optimized HBS-NPs contained 2.60±0.06mg/mL of HB and showed (i) 135.6 to 828.2nm size range, and (ii) negative zeta potential with a narrow polydispersity index. The DSC thermograms suggested the amorphous nature of HB inside the HBS-NPs. With the average encapsulation efficiency of 92.9±1.79%, the drug release from the HBS-NPs followed a biphasic pattern with an initial burst of 3.50% during first 8h followed by a sustained release of 47.82% within 3days. The interaction between nano silver and HB as assessed by the increase in spectral intensity of Raman spectrum demonstrates that HB may be attached over the nano silver. Generation of reactive oxygen species (ROS) by HBS-NPs was significantly higher than that of HB/HB-NPs. The singlet oxygen generating efficiency assessed using EPR spectrometer follows the order of nano silver>HB-NPs>pure HB drug solution>HBS-NPs. The HBS-NPs had a concentration and time dependent phototoxicity on A549 (human adeno lung carcinoma) cells in the presence of light providing a superior phototoxic effect (82.2% at 50μM) at 2h irradiation. The CAM treated with HBS-NPs showed a significant anti-angiogenic effect compared to a blank formulation. In vivo biodistribution studies revealed that intravenous administration of HBS-NPs lead into significant exposure to the posterior segment of the eye. This proof of principle study demonstrates that HB based nanoparticles may be a valuable new tool for application in ocular photodynamic therapy for the treatment of AMD in future. Copyright © 2017 Elsevier B.V. All rights reserved.
Contreras-Ruiz, Laura; de la Fuente, María; Párraga, Jenny E; López-García, Antonio; Fernández, Itziar; Seijo, Begoña; Sánchez, Alejandro; Calonge, Margarita; Diebold, Yolanda
2011-01-27
Nanoparticles are a promising alternative for ocular drug delivery, and our group has proposed that they are especially suited for ocular mucosal disorders. The goal of the present study was to determine which internalization pathway is used by cornea-derived and conjunctiva-derived cell lines to take up hyaluronic acid (HA)-chitosan oligomer (CSO)-based nanoparticles (HA-CSO NPs). We also determined if plasmids loaded onto the NPs reached the cell nucleus. HA-CSO NPs were made of fluoresceinamine labeled HA and CSO by ionotropic gelation and were conjugated with a model plasmid DNA for secreted alkaline phosphatase. Human epithelial cell lines derived from the conjunctiva and the cornea were exposed to HA-CSO NPs for 1 h and the uptake was investigated in living cells by fluorescence microscopy. The influence of temperature and metabolic inhibition, the effect of blocking hyaluronan receptors, and the inhibition of main endocytic pathways were studied by fluorometry. Additionally, the metabolic pathways implicated in the degradation of HA-CSO NPs were evaluated by lysosome identification. There was intracellular localization of plasmid-loaded HACSO NPs in both corneal and conjunctival cells. The intracellular presence of NPs diminished with time. HA-CSO NP uptake was significantly reduced by inhibition of active transport at 4 °C and by sodium azide. Uptake was also inhibited by blocking hyaluronan receptors with anti-CD44 Hermes-1 antibody, by excess HA, and by filipin, an inhibitor of caveolin-dependent endocytosis. HA-CSO NPs had no effect on cell viability. The transfection efficiency of the model plasmid was significantly higher in NP treated cells than in controls. HA-CSO NPs were internalized by two different ocular surface cell lines by an active transport mechanism. The uptake was mediated by hyaluronan receptors through a caveolin-dependent endocytic pathway, yielding remarkable transfection efficiency. Most of HA-CSO NPs were metabolized within 48 h. This uptake did not compromise cell viability. These findings further support the potential use of HA-CSO NPs to deliver genetic material to the ocular surface.
NASA Astrophysics Data System (ADS)
Choi, Sun-Woo; Byun, Young Tae
2018-03-01
The correlation between platinum (Pt) functionalization and chlorine (Cl2) sensing capability in single-walled carbon nanotubes (SWCNTs) was investigated. Utilizing a photoreduction technique via ultraviolet (UV) irradiation, the Pt nanoparticles (NPs) with various diameters of 7-80 nm, which were controlled by Pt precursor concentrations, were successfully functionalized on the sidewalls of SWCNTs. The discrete Pt NP-loaded SWCNTs exhibited significantly enhanced response value (-(ΔR/R0) × 100 = 33.8%) for 1 ppm Cl2 at room temperature (25 °C) compared with that (no response) of pure SWCNTs. On the other hand, in case of continuous Pt NP-loaded SWCNTs, Cl2 sensing capabilities were significantly degraded. The Cl2 sensing capabilities of fabricated sensors tended to correlate with geometric configurations of the catalytic Pt NPs on the sidewalls of SWCNTs, due to differences in the electron pathway.
Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Xie, Chunmei; Yao, Aixia; Chen, Li; Jiang, Qinglin; Liu, Tingting; Wang, Xiaoyu; Qian, Yunyun; Wei, Jia; Ni, Wenxuan; Dai, Jingjing; Jiang, Zhenyou; Hou, Wei
2015-01-01
Fatal fungal infections in central nervous system (CNS) can occur through hematogenous spread or direct extension. At present, hydrophobic amphotericin B (AMB) is the most effective antifungal drug in clinical trials. However, AMB is hydrophobic and therefore penetrates poorly into the CNS, and therapeutic levels of AMB are hard to achieve. The transferrin receptor (TfR/CD71) located at the blood-brain barrier mediates transferrin transcytosis. In order to enhance the receptor-mediated delivery of AMB into CNS with therapeutic level, an anti-TfR antibody (OX26)-modified AMB-loaded PLA (poly[lactic acid])-PEG (polyethylene glycol)-based micellar drug delivery system was constructed. The prepared OX26-modified AMB-loaded nanoparticles (OX26-AMB-NPs) showed significant reduction of CNS fungal burden and an increase of mouse survival time. In conclusion, OX26-AMB-NPs represent a promising novel drug delivery system for intracerebral fungal infection.
Synthesis of CeO2 nanoparticles: Photocatalytic and antibacterial activities
NASA Astrophysics Data System (ADS)
Reddy Yadav, L. S.; Lingaraju, K.; Daruka Prasad, B.; Kavitha, C.; Banuprakash, G.; Nagaraju, G.
2017-05-01
We have successfully synthesized CeO2 nanoparticles (Nps) via the solution combustion method using sugarcane juice as a novel combustible fuel. The structural features, optical properties and morphology of the nanoparticles were characterized using XRD, FTIR, and Raman spectroscopy, UV-Vis, SEM and TEM. Structural characterization of the product shows cubic phase CeO2 . FTIR and Raman spectrum show characteristic peaks due to the presence of Ce-O vibration. SEM images show a porous structure and, from TEM images, the size of the nanoparticles were found to be ˜ 50 nm. The photocatalytic degradation of the methylene blue (MB) dye was examined using CeO2 Nps under solar irradiation as well as UV light irradiation and we studied the effect of p H, catalytic load and concentration on the degradation of the MB dye. Furthermore, the antibacterial properties of CeO2 Nps were investigated against Gram+ve and Gram- ve pathogenic bacterial strains using the agar well diffusion method.
NASA Astrophysics Data System (ADS)
Beik, Jaber; Abed, Ziaeddin; Shakeri-Zadeh, Ali; Nourbakhsh, Mitra; Shiran, Mohammad Bagher
2016-07-01
In cancer hyperthermia, ultrasound is considered as an appropriate source of energy to achieve desired therapeutic levels of heating. It is assumed that such a heating is targeted to cancer cells by using nanoparticles as sonosensitization agents. Here, we report the sonosensitizing effects of Nano-Graphene Oxide (NGO) and compare them with gold nanoparticles (AuNPs), Iron Oxide nanoparticles (IONPs). Experiments were conducted to explore the effects of nanoparticle type and concentration, as well as ultrasound power, on transient heating up of the solutions exposed by 1 MHz ultrasound. Nanoparticles concentration was selected from 0.25 to 2.5 mg/ml and the solutions were exposed by ultrasound powers from 1 to 8 W. Real time temperature monitoring was done by a thermocouple and obtained data was analyzed. Temperature profiles of various nanoparticle solutions showed the higher heating rates, in comparison to water. Heating rise was strongly depended on nanoparticles concentration and ultrasound power. AuNPs showed a superior efficiency in heat generation enhancement in comparison to IONPs and NGO. Our result supports the idea of sonosensitizing capabilities of AuNPs, IONPs, and NGO. Targeted hyperthermia may be achievable by preferential loading of tumor with nanoparticles and subsequent ultrasound irradiation.
NASA Astrophysics Data System (ADS)
Yi, Huqiang; Liu, Peng; Sheng, Nan; Gong, Ping; Ma, Yifan; Cai, Lintao
2016-03-01
Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07348k
Li, Zhen; Chen, Qixian; Qi, Yan; Liu, Zhihao; Hao, Tangna; Sun, Xiaoxin; Qiao, Mingxi; Ma, Xiaodong; Xu, Ting; Zhao, Xiuli; Yang, Chunrong; Chen, Dawei
2018-04-11
A multifunctional nanoparticulate system composed of methoxy poly(ethylene glycol)-poly(l-histidine)-d-α-vitamin E succinate (MPEG-PLH-VES) copolymers for encapsulation of doxorubicin (DOX) was elaborated with the aim of circumventing the multidrug resistance (MDR) in breast cancer treatment. The MPEG-PLH-VES nanoparticles (NPs) were subsequently functionalized with biotin motif for targeted drug delivery. The MPEG-PLH-VES copolymer exerts no obvious effect on the P-gp expression level of MCF-7/ADR but exhibited a significant influence on the loss of mitochondrial membrane potential, the reduction of intracellular ATP level, and the inhibition of P-gp ATPase activity of MCF-7/ADR cells. The constructed MPEG-PLH-VES NPs exhibited an acidic pH-induced increase on particle size in aqueous solution. The DOX-encapsulated MPEG-PLH-VES/biotin-PEG-VES (MPEG-PLH-VES/B) NPs were characterized to possess high drug encapsulation efficiency of approximate 90%, an average particle size of approximately 130 nm, and a pH-responsive drug release profile in acidic milieu. Confocal laser scanning microscopy (CLSM) investigations revealed that the DOX-loaded NPs resulted in an effective delivery of DOX into MCF-/ADR cells and a notable carrier-facilitated escape from endolysosomal entrapment. Pertaining to the in vitro cytotoxicity evaluation, the DOX-loaded MPEG-PLH-VES/B NPs resulted in more pronounced cytotoxicity to MCF-/ADR cells compared with DOX-loaded MPEG-PLH-VES NPs and free DOX solution. In vivo imaging study in MCF-7/ADR tumor-engrafted mice exhibited that the MPEG-PLH-VES/B NPs accumulated at the tumor site more effectively than MPEG-PLH-VES NPs due to the biotin-mediated active targeting effect. In accordance with the in vitro results, DOX-loaded MPEG-PLH-VES/B NPs showed the strongest inhibitory effect against the MCF-7/ADR xenografted tumors with negligible systemic toxicity, as evidenced by the histological analysis and change of body weight. The multifunctional MPEG-PLH-VES/B nanoparticulate system has been demonstrated to provide a promising strategy for efficient delivery of DOX into MCF-7/ADR cancerous cells and reversing MDR.
NASA Astrophysics Data System (ADS)
Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Wang, Xiuli; Zhao, Feng; Luan, Hansen
2015-03-01
Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted ALA delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Methods: UV-induced cutaneous SCCs were established in hairless mice. ALA loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NPs-induced protoporphyrin IX (PpIX) fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results: PLGA NPs could enhance PpIX production in SCC. ALA PLGA NP mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC.
Hafner, Anita; Lovrić, Jasmina; Voinovich, Dario; Filipović-Grcić, Jelena
2009-11-03
In this study, the potential of lecithin/chitosan nanoparticles (NPs) as a mucoadhesive colloidal nanosystem for transmucosal delivery of melatonin was investigated. The size, zeta potential and melatonin loading of the lecithin/chitosan NPs were investigated as a function of lecithin type (Lipoid S45, S75 and S100) and chitosan content in the preparation. The NPs were characterised by mean diameter and zeta potential ranging between 121.6 and 347.5 nm, and 7.5 and 32.7 mV, respectively, and increasing with lecithin-negative charge and chitosan content in the preparation. Melatonin loadings were up to 7.1%. All NPs were characterised by prolonged release profiles with an initial burst (approximately 25%), followed by a slow release phase. Approximately 60-70% of melatonin was released in 4h. The permeability of melatonin was investigated using Caco-2 cells as an in vitro model of the epithelial barrier. Melatonin permeability from an NP suspension prepared with Lipoid S45 lecithin and a lecithin-to-chitosan weight ratio (L/C) of 20:1 (sample C2) was significantly improved compared to the permeability of melatonin from the solution (P<0.001) and from all other NPs investigated (P<0.05). The results obtained by the cell viability studies (MTT and LDH leakage assays) showed that C2 NP suspension did not induce plasma membrane damage or decrease cell viability and could be safely applied to Caco-2 cells in the concentration range tested (<400 microg/ml).
Fang, Ruiqi; Tian, Panliang; Yang, Xianfeng
2018-01-01
The development of efficient encapsulation strategies has attracted intense interest for preparing highly active and stable heterogeneous metal catalysts. However, issues related to low loadings, costly precursors and complex synthesis processes restrict their potential applications. Herein, we report a novel and general strategy to encapsulate various ultrafine metal-oxides nanoparticles (NPs) into the mesoporous KIT-6. The synthesis is facile, which only involves self-assembly of a metal–organic framework (MOF) precursor in the silica mesopores and a subsequent calcination process to transform the MOF into metal-oxide NPs. After the controlled calcination, the metal-oxide NPs produced from MOF decomposition are exclusively confined and uniformly distributed in the mesopores of KIT-6 with high metal loadings. Benefitting from the encapsulation effects, as-synthesized Co@KIT-6 materials exhibit superior catalytic activity and recycling stability in biomass-derived HMF oxidation under mild reaction conditions. PMID:29675231
Lin, Song; Wang, Run-Ze; Yi, Ying; Wang, Zheng; Hao, Li-Mei; Wu, Jin-Hui; Hu, Guo-Han; He, Hua
2014-01-01
Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned via in situ ultraviolet light irradiation or under preheating conditions, but with different particle sizes and size distributions. The morphology, loading concentrations, and dispersities of AgNPs embedded within PVA nanofiber mats are characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Moreover, the biocidal activities and cytotoxicity of the electrospun nanofiber mats are determined by zone of inhibition, dynamic shaking method, and cell counting kit (CCK)-8 assay tests.
d'Angelo, Ivana; Costabile, Gabriella; Durantie, Estelle; Brocca, Paola; Rondelli, Valeria; Russo, Annapina; Russo, Giulia; Miro, Agnese; Quaglia, Fabiana; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Ungaro, Francesca
2017-10-16
Nowadays, the downregulation of genes involved in the pathogenesis of severe lung diseases through local siRNA delivery appears an interesting therapeutic approach. In this study, we propose novel hybrid lipid-polymer nanoparticles (hNPs) consisting of poly(lactic-co-glycolic) acid (PLGA) and dipalmitoyl phosphatidylcholine (DPPC) as siRNA inhalation system. A panel of DPPC/PLGA hNPs was prepared by emulsion/solvent diffusion and fully characterized. A combination of model siRNAs against the sodium transepithelial channel (ENaC) was entrapped in optimized hNPs comprising or not poly(ethylenimine) (PEI) as third component. siRNA-loaded hNPs were characterized for encapsulation efficiency, release kinetics, aerodynamic properties, and stability in artificial mucus (AM). The fate and cytotoxicity of hNPs upon aerosolization on a triple cell co-culture model (TCCC) mimicking human epithelial airway barrier were assessed. Finally, the effect of siRNA-loaded hNPs on ENaC protein expression at 72 hours was evaluated in A549 cells. Optimized muco-inert hNPs encapsulating model siRNA with high efficiency were produced. The developed hNPs displayed a hydrodynamic diameter of ∼150 nm, a low polydispersity index, a negative ζ potential close to -25 mV, and a peculiar triphasic siRNA release lasting for 5 days, which slowed down in the presence of PEI. siRNA formulations showed optimal in vitro aerosol performance after delivery with a vibrating mesh nebulizer. Furthermore, small-angle X-ray scattering analyses highlighted an excellent stability upon incubation with AM, confirming the potential of hNPs for direct aerosolization on mucus-lined airways. Studies in TCCC confirmed that fluorescent hNPs are internalized inside airway epithelial cells and do not exert any cytotoxic or acute proinflammatory effect. Finally, a prolonged inhibition of ENaC protein expression was observed in A549 cells upon treatment with siRNA-loaded hNPs. Results demonstrate the great potential of hNPs as carriers for pulmonary delivery of siRNA, prompting toward investigation of their therapeutic effectiveness in severe lung diseases.
Wang, Xin; Zhen, Xu; Wang, Jing; Zhang, Jialiang; Wu, Wei; Jiang, Xiqun
2013-06-01
Boronic acid-rich chitosan-poly(N-3-acrylamidophenylboronic acid) nanoparticles (CS-PAPBA NPs) with the tunable size were successfully prepared by polymerizing N-3-acrylamidophenylboronic acid in the presence of chitosan in an aqueous solution. The CS-PAPBA NPs were then functionalized by a tumor-penetrating peptide iRGD and loading doxorubicin (DOX). The interaction between boronic acid groups of hydrophobic PAPBA and the amino groups of hydrophilic chitosan inside the nanoparticles was examined by solid-state NMR measurement. The size and morphology of nanoparticles were characterized by dynamic light scattering and electron microscopy. The cellular uptake, tumor penetration, biodistribution and antitumor activity of the nanoparticles were evaluated by using three-dimensional (3-D) multicellular spheroids (MCs) as the in vitro model and H22 tumor-bearing mice as the in vivo model. It was found that the iRGD-conjugated nanoparticles significantly improved the efficiency of DOX penetration in MCs, compared with free DOX and non-conjugated nanoparticles, resulting in the efficient cell killing in the MCs. In vivo antitumor activity examination indicated that iRGD-conjugated CS-PAPBA nanoparticles promoted the accumulation of nanoparticles in tumor tissue and enhanced their penetration in tumor areas, both of which improved the efficiency of DOX-loaded nanoparticles in restraining tumor growth and prolonging the life time of H22 tumor-bearing mice. Copyright © 2013 Elsevier Ltd. All rights reserved.
Badri, Waisudin; Miladi, Karim; Robin, Sophie; Viennet, Céline; Nazari, Qand Agha; Agusti, Géraldine; Fessi, Hatem; Elaissari, Abdelhamid
2017-09-01
This work focused on the preparation of polycaprolactone based nanoparticles containing indomethacin to provide topical analgesic and anti-inflammatory effect for symptomatic treatment of inflammatory diseases. Indomethacin loaded nanoparticles are prepared for topical application to decrease indomethacin side effects and administration frequency. Oppositely to already reported works, in this research non-invasive method has been used for the enhancement of indomethacin dermal drug penetration. Ex-vivo skin penetration study was carried out on fresh human skin. Nanoprecipitation was used to prepare nanoparticles. Nanoparticles were characterized using numerous techniques; dynamic light scattering, SEM, TEM, DSC and FTIR. Regarding ex-vivo skin penetration of nanoparticles, confocal laser scanning microscopy has been used. The results showed that NPs hydrodynamic size was between 220 to 245 nm and the zeta potential value ranges from -19 to -13 mV at pH 5 and 1 mM NaCl. The encapsulation efficiency was around 70% and the drug loading was about 14 to 17%. SEM and TEM images confirmed that the obtained nanoparticles were spherical with smooth surface. The prepared nanoparticles dispersions were stable for a period of 30 days under three temperatures of 4°C, 25°C and 40°C. In addition, CLSM images proved that obtained NPs can penetrate the skin as well. The prepared nanoparticles are submicron in nature, with good colloidal stability and penetrate the stratum corneum layer of the skin. This formulation potentiates IND skin penetration and as a promising strategy would be able to decline the side effects of IND.
NASA Astrophysics Data System (ADS)
Huang, Jie; Zong, Cheng; Shen, He; Cao, Yuhua; Ren, Bin; Zhang, Zhijun
2013-10-01
We have developed a graphene oxide (GO)-based nanoplatform simultaneously loaded with a chemical drug and Ag nanoparticles (NPs), and employed it to study the drug release from GO in living cells by surface-enhanced Raman spectroscopy (SERS). In our strategy, doxorubicin (DOX), a typical model anticancer drug, was loaded onto chemically prepared GO by means of π-π stacking, while the Ag NPs were covalently modified onto GO. After incubation of the DOX- and Ag NPs-loaded GO with Ca Ski cells for several hours, DOX will detach from the GO in an acidic environment due to the pH-dependent π-π interaction between DOX and GO. Real-time measurement of SERS signals of DOX using the GO loaded with Ag NPs as a SERS-active substrate allows us to monitor the process of the drug release inside the living cell. The SERS results reveal that DOX is initially released from the GO surface inside the lysosomes, then escapes into the cytoplasm, and finally enters the nucleus, while GO, the nanocarrier, remains within the cytoplasm, without entering the nucleus.We have developed a graphene oxide (GO)-based nanoplatform simultaneously loaded with a chemical drug and Ag nanoparticles (NPs), and employed it to study the drug release from GO in living cells by surface-enhanced Raman spectroscopy (SERS). In our strategy, doxorubicin (DOX), a typical model anticancer drug, was loaded onto chemically prepared GO by means of π-π stacking, while the Ag NPs were covalently modified onto GO. After incubation of the DOX- and Ag NPs-loaded GO with Ca Ski cells for several hours, DOX will detach from the GO in an acidic environment due to the pH-dependent π-π interaction between DOX and GO. Real-time measurement of SERS signals of DOX using the GO loaded with Ag NPs as a SERS-active substrate allows us to monitor the process of the drug release inside the living cell. The SERS results reveal that DOX is initially released from the GO surface inside the lysosomes, then escapes into the cytoplasm, and finally enters the nucleus, while GO, the nanocarrier, remains within the cytoplasm, without entering the nucleus. Electronic supplementary information (ESI) available: Cytotoxicity of Ag-GO SERS image after the cell incubated with Ag-GO for 2 h fluorescence images of Ca Ski cells. See DOI: 10.1039/c3nr03264g
Abrego, Guadalupe; Alvarado, Helen; Souto, Eliana B; Guevara, Bessy; Bellowa, Lyda Halbaut; Parra, Alexander; Calpena, Ana; Garcia, María Luisa
2015-09-01
Two optimized pranoprofen-loaded poly-l-lactic-co glycolic acid (PLGA) nanoparticles (PF-F1NPs; PF-F2NPs) have been developed and further dispersed into hydrogels for the production of semi-solid formulations intended for ocular administration. The optimized PF-NP suspensions were dispersed in freshly prepared carbomer hydrogels (HG_PF-F1NPs and HG_PF-F2NPs) or in hydrogels containing 1% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone) in order to improve the ocular biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (NSAID), by prolonging the contact of the pranoprofen with the eye, increasing the drug retention in the organ and enhancing its anti-inflammatory and analgesic efficiency. Carbomer 934 has been selected as gel-forming polymer. The hydrogel formulations with or without azone showed a non-Newtonian behavior and adequate physicochemical properties for ocular instillation. The release study of pranoprofen from the semi-solid formulations exhibited a sustained release behavior. The results obtained from ex vivo corneal permeation and in vivo anti-inflammatory efficacy studies suggest that the ocular application of the hydrogels containing azone was more effective over the azone-free formulations in the treatment of edema on the ocular surface. No signs of ocular irritancy have been detected for the produced hydrogels. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Lan; Li, Jiezhen; ThanhThuy, T Tran; Zhou, Liping; Huang, Chen'an; Yuan, Lijuan; Cai, Qingyun
2014-02-15
A wireless, remote query octachlorostyrene (OCS) biosensor was fabricated by coating a mass-sensitive magnetoelastic ribbon with anti-OCS antibody. In response to a time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic resonance frequency which inversely depends on the sensor mass loading. As the magnetoelastic film is magnetostrictive itself, the vibrations launch magnetic flux that can be remotely detected using a pickup coil. Au nanoparticles (NPs) were used to amplify the mass loading. In a sample solution containing OCS target and OCS-modified AuNPs (OCS-AuNPs), both OCS and OCS-AuNPs react with the anti-OCS antibody immobilized on the sensor surface in a competition mode. The bound OCS-AuNPs amount is inversely proportional to the OCS target concentration. The reduction of bound OCS-AuNPs induced by free OCS results in significant change in mass loading, which amplifies the responses. The biosensor demonstrates a linear shift in resonance frequency with OCS concentration between 7.4 μM and 9 nM, with a detection limit of 2.8 nM. © 2013 Published by Elsevier B.V.
A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells
Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab
2017-01-01
Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells. PMID:28875004
NASA Astrophysics Data System (ADS)
Bhat, Anupama; Zhao, Jian; Cooks, Tiana; Ren, Jun; Lu, Qi
2018-02-01
Giant unilamellar vesicles (GUVs) are well-established model systems for studying lipid packing and membrane dynamics. With sizes larger than 1 μm, GUVs are easily observable using optical microscopy. Gold nanoparticles (AuNPs) are well known for their biocompatibility and such biomedical applications in drug and gene delivery as well as medical diagnostics and therapeutics. On the other hand, silver nanoparticles (AgNPs) have long been known for their potent antimicrobial and anti-inflammatory effects for such applications as wound dressing and biomedical implants. In this work, we employed the dark-field microscopy (CytoViva Inc.) to study the interactions between AuNPs/AgNPs and GUVs, respectively. The GUVs used in this study were prepared with 1,2 dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as well as cholesterol (chol) at various mol% concentrations (0, 10, 20, 30, 40%). The electroformed GUVs were allowed to incubate with gold or silver nanoparticles of various sizes (between 10 and 100 nm) for 2 hrs before microscopic examination. The experiment has shown that the size of nanoparticles is a critical factor that determines the penetration rate. In addition, the membrane rigidity increases with the molar concentration of cholesterol hence making the NP penetration more difficult. Comparative studies have been made between AuNPs and AgNPs in regard to NP penetration and loading rate as well as the morphological changes induced in GUVs. This work aims to better understand the mechanisms of AuNP/AgNP and membrane interactions for their respective future applications in nanomedicine and nanotechnology.
Anitha, A; Deepa, N; Chennazhi, K P; Lakshmanan, Vinoth-Kumar; Jayakumar, R
2014-09-01
Evaluation of the combinatorial anticancer effects of curcumin/5-fluorouracil loaded thiolated chitosan nanoparticles (CRC-TCS-NPs/5-FU-TCS-NPs) on colon cancer cells and the analysis of pharmacokinetics and biodistribution of CRC-TCS-NPs/5-FU-TCS-NPs in a mouse model. CRC-TCS-NPs/5-FU-TCS-NPs were developed by ionic cross-linking. The in vitro combinatorial anticancer effect of the nanomedicine was proven by different assays. Further the pharmacokinetics and biodistribution analyses were performed in Swiss Albino mouse using HPLC. The 5-FU-TCS-NPs (size: 150±40nm, zeta potential: +48.2±5mV) and CRC-TCS-NPs (size: 150±20nm, zeta potential: +35.7±3mV) were proven to be compatible with blood. The in vitro drug release studies at pH4.5 and 7.4 showed a sustained release profile over a period of 4 days, where both the systems exhibited a higher release in acidic pH. The in vitro combinatorial anticancer effects in colon cancer (HT29) cells using MTT, live/dead, mitochondrial membrane potential and cell cycle analysis measurements confirmed the enhanced anticancer effects (2.5 to 3 fold). The pharmacokinetic studies confirmed the improved plasma concentrations of 5-FU and CRC up to 72h, unlike bare CRC and 5-FU. To conclude, the combination of 5-FU-TCS-NPs and CRC-TCS-NPs showed enhanced anticancer effects on colon cancer cells in vitro and improved the bioavailability of the drugs in vivo. The enhanced anticancer effects of combinatorial nanomedicine are advantageous in terms of reduction in the dosage of 5-FU, thereby improving the chemotherapeutic efficacy and patient compliance of colorectal cancer cases. Copyright © 2014 Elsevier B.V. All rights reserved.
Mady, Fatma M; Shaker, Mohamed A
2017-01-01
Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion-diffusion-evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity.
Mady, Fatma M; Shaker, Mohamed A
2017-01-01
Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity. PMID:29066891
NASA Astrophysics Data System (ADS)
Zhang, Xiquan; Xie, Li; Zheng, Ming; Yao, Juan; Song, Lina; Chang, Weiwei; Zhang, Yu; Ji, Min; Gu, Ning; Zhan, Xi
2015-06-01
We have developed a novel Aurora kinase inhibitor (AKI) AM-005, an analogue of pan-AKI AT-9283. To improve the intracellular efficacy of AM-005 and AT-9283, we utilized magnetite nanoparticles (NPs) to deliver AM-005 and AT-9283 into human SMMC-7721 and HepG2 liver cancer cells. The drug-loaded NPs were prepared through quasi-emulsion solvent diffusion of magnetite NPs with AM-005 or AT-9283. The encapsulated drugs were readily released from NPs, preferentially at low pHs. Upon exposure, cancer cells effectively internalized drug-loaded NPs into lysosome-like vesicles, which triggered a series of cellular changes, including the formation of enlarged cytoplasm, the significant increase of membrane permeability, and the generation of reactive oxygen species (ROS). The increased ROS synthesis sustained over 72 h, whereas that in the cells treated with free-form drugs declined rapidly after 48 h. However, chemical sequestration of the iron core of NPs had a minor influence on the generation of intracellular ROS. On the other hand, uncoupling of AM-005 uptake with NP internalization into cells failed to induce ROS synthesis. Overall, our approach achieved two-fold increase in suppressing the viability of tumor cells in vitro and the growth of tumors in vivo. We conclude that magnetite NPs can be used as pH responsive nanocarriers that are able to improve the efficacy of AKIs.
Hindi, Khadijah M.; Ditto, Andrew J.; Panzner, Matthew J.; Medvetz, Douglas A.; Han, Daniel S.; Hovis, Christine E.; Hilliard, Julia K.; Taylor, Jane B.; Yun, Yang H.; Cannon, Carolyn L.; Youngs, Wiley J.
2009-01-01
The pressing need to treat multi-drug resistant bacteria in the chronically infected lungs of cystic fibrosis (CF) patients has given rise to novel nebulized antimicrobials. We have synthesized a silver–carbene complex (SCC10) active against a variety of bacterial strains associated with CF and chronic lung infections. Our studies have demonstrated that SCC10-loaded into l-tyrosine polyphosphate nanoparticles (LTP NPs) exhibits excellent antimicrobial activity in vitro and in vivo against the CF relevant bacteria Pseudomonas aeruginosa. Encapsulation of SCC10 in LTP NPs provides sustained release of the antimicrobial over the course of several days translating into efficacious results in vivo with only two administered doses over a 72 h period. PMID:19395021
Kuo, Yung-Chih; Chen, Yu-Chun
2015-02-01
Lactoferrin (Lf) and folic acid (FA) were crosslinked on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) for transporting etoposide across the blood-brain barrier (BBB) and treating human brain malignant glioblastoma. Lf- and FA-grafted PLGA NPs (Lf/FA/PLGA NPs) were employed to permeate the monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and to inhibit the multiplication of U87MG cells. Lf/FA/PLGA NPs showed a satisfactory entrapment efficiency of etoposide and characteristics of sustained drug release. When compared with PLGA NPs, the permeability coefficient for etoposide across the BBB using Lf/FA/PLGA NPs increased about twofold. The antiproliferative efficacy against the growth of U87MG cells was in the following order: Lf/FA/PLGA NPs>FA/PLGA NPs>PLGA NPs>free etoposide solution. In addition, the targeting ability of Lf/FA/PLGA NPs was evidenced by immunostaining of Lf receptor on HBMECs and folate receptor on U87MG cells during endocytosis. Lf/FA/PLGA NPs with loaded etoposide can be a promising anticancer pharmacotherapy to enhance the delivery of etoposide to malignant brain tumors for preclinical trials. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Lin; Zhang, Xiangyi; Li, Wuchao; Sun, Haozhen; Lou, Yan; Zhang, Xingguo; Li, Fanzhu
2013-11-01
A novel drug carrier for brain delivery, maleimide-poly(ethyleneglycol)-poly(lactide) (maleimide-PEG-PLA) nanoparticles (NPs) conjugated with mouse-anti-rat monoclonal antibody OX26 (OX26-NPs), was developed and its brain delivery property was evaluated. The diblock copolymers of maleimide-PEG-PLA were synthesized and applied to α-cobrotoxin (αCT)-loaded NPs which were characterized by transmission electron micrograph imaging, Fourier-transform IR, and X-ray diffraction. The NPs encapsulating αCT had a round and vesicle-like shape with a mean diameter around 100 nm, and the OX26 had covalently conjugated to the surface of NPs. MTT studies in brain microvascular endothelial cells (BMEC) revealed a moderate decrease in the cell viability of αCT, when incorporated in OX26-NPs compared to free αCT in solution. A higher affinity of the OX26-αCT-NPs to the BMEC was shown in comparison to αCT-NPs. Then, OX26-αCT-NPs were intranasally (i.n.) administered to rats, and αCT in the periaqueductal gray was monitored for up to 480 min using microdialysis technique in free-moving rats, with i.n. αCT-NPs, i.n. OX26-αCT-NPs, intramuscular injection (i.m.) αCT-NPs, and i.m. OX26-αCT-NPs. The brain transport results showed that the corresponding absolute bioavailability ( F abs) of i.n. OX26-αCT-NPs were about 125 and 155 % with i.n. αCT-NPs and i.m. OX26-αCT-NPs, respectively, and it was found that both the C max and AUC of the four groups were as follows: i.n. OX26-αCT-NPs > i.n. αCT-NPs > i.m. OX26-αCT-NPs > i.m. αCT-NPs, while αCT solution, as control groups, could hardly enter the brain. These results indicated that OX26-NPs are promising carriers for peptide brain delivery.
Novel PLGA-based nanoparticles for the oral delivery of insulin.
Malathi, Sampath; Nandhakumar, Perumal; Pandiyan, Velayudham; Webster, Thomas J; Balasubramanian, Sengottuvelan
2015-01-01
Insulin is the drug therapy for patients with insulin-dependent diabetes mellitus. A number of attempts have been made in the past to overcome the problems associated with the oral delivery of insulin, but with little success. Orally administered insulin has encountered with many difficulties such as rapid degradation and poor intestinal absorption. The potential use of D-α-tocopherol poly(ethylene glycol) 1000 succinate (TPGS)-emulsified poly(ethylene glycol) (PEG)-capped poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) was investigated for sustained delivery of insulin (IS). To investigate the efficacy of TPGS-emulsified PEG-capped PLGA NPs (TPPLG NPs) as a potential drug carrier for the oral delivery of insulin. A series of biodegradable low-molecular-weight PLGA (80/20 [PLG4] and 70/30 [PLG6]) copolymers were synthesized by melt polycondensation. The commercial insulin-loaded TPGS-emulsified PEG-capped PLGA NPs (ISTPPLG NPs) were synthesized by water-oil-water emulsion solvent evaporation method. The physical and chemical properties of PLGA copolymers, particle size, zeta potential, and morphology of the NPs were examined. The in vivo studies of ISTPPLG NPs were carried out in diabetic rats by oral administration. The maximum encapsulation efficiency of ISTPPLG6 NPs was 78.6% ± 1.2%, and the mean diameter of the NPs was 180 ± 20 nm. The serum glucose level was significantly (twofold) decreased on treatment with ISTPPLG NPs, and there was a threefold decrease with insulin-loaded PLGA (70/30) NPs when compared to that of free insulin-treated diabetic rats. The results show that the oral administration of ISTPPLG6 NPs is an effective method of reducing serum glucose level for a period of 24 hours. Histopathological studies reveal that ISTPPLG NPs could restore the damage caused by streptozotocin in the liver, kidneys, and pancreas, indicating its biocompatibility and regenerative effects. ISTPPLG6 NPs can act as potential drug carriers for the oral delivery of insulin.
Novel PLGA-based nanoparticles for the oral delivery of insulin
Malathi, Sampath; Nandhakumar, Perumal; Pandiyan, Velayudham; Webster, Thomas J; Balasubramanian, Sengottuvelan
2015-01-01
Background Insulin is the drug therapy for patients with insulin-dependent diabetes mellitus. A number of attempts have been made in the past to overcome the problems associated with the oral delivery of insulin, but with little success. Orally administered insulin has encountered with many difficulties such as rapid degradation and poor intestinal absorption. The potential use of D-α-tocopherol poly(ethylene glycol) 1000 succinate (TPGS)-emulsified poly(ethylene glycol) (PEG)-capped poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) was investigated for sustained delivery of insulin (IS). Objective To investigate the efficacy of TPGS-emulsified PEG-capped PLGA NPs (TPPLG NPs) as a potential drug carrier for the oral delivery of insulin. Methods A series of biodegradable low-molecular-weight PLGA (80/20 [PLG4] and 70/30 [PLG6]) copolymers were synthesized by melt polycondensation. The commercial insulin-loaded TPGS-emulsified PEG-capped PLGA NPs (ISTPPLG NPs) were synthesized by water–oil–water emulsion solvent evaporation method. The physical and chemical properties of PLGA copolymers, particle size, zeta potential, and morphology of the NPs were examined. The in vivo studies of ISTPPLG NPs were carried out in diabetic rats by oral administration. Results The maximum encapsulation efficiency of ISTPPLG6 NPs was 78.6%±1.2%, and the mean diameter of the NPs was 180±20 nm. The serum glucose level was significantly (twofold) decreased on treatment with ISTPPLG NPs, and there was a threefold decrease with insulin-loaded PLGA (70/30) NPs when compared to that of free insulin-treated diabetic rats. The results show that the oral administration of ISTPPLG6 NPs is an effective method of reducing serum glucose level for a period of 24 hours. Histopathological studies reveal that ISTPPLG NPs could restore the damage caused by streptozotocin in the liver, kidneys, and pancreas, indicating its biocompatibility and regenerative effects. Conclusion ISTPPLG6 NPs can act as potential drug carriers for the oral delivery of insulin. PMID:25848248
Bahari Javan, Nika; Montazeri, Hamed; Rezaie Shirmard, Leila; Jafary Omid, Nersi; Barbari, Ghullam Reza; Amini, Mohsen; Ghahremani, Mohammad Hossein; Rafiee-Tehrani, Morteza; Abedin Dorkoosh, Farid
2017-04-01
In the current study, biodegradable PHBV/PLGA blend nanoparticles (NPs) containing Teriparatide were loaded in hyaluronic acid/jeffamine (HA-JEF ED-600) hydrogel to prepare a combination delivery system (CDS) for prolonged delivery of Teriparatide. The principal purpose of the present study was to formulate an effective and prolonged Teriparatide delivery system in order to reduce the frequency of injection and thus enhance patient's compliance. Morphological properties, swelling behaviour, crosslinking efficiency and rheological characterization of HA-JEF ED-600 hydrogel were evaluated. The CDS was acquired by adding PHBV/PLGA NPs to HA-JEF ED-600 hydrogel simultaneously with crosslinking reaction. The percentage of NPs incorporation within the hydrogel as well as the loading capacity and morphology of Teriparatide loaded CDS were examined. Intrinsic fluorescence and circular dichroism spectroscopy proved that Teriparatide remains stable after processing. The release profile represented 63% Teriparatide release from CDS within 50days with lower burst release compared to NPs and hydrogel. MTT assay was conducted by using NIH3T3 cell line and no sign of reduction in cell viability was observed. Based on Miller and Tainter method, LD 50 of Teriparatide loaded CDS was 131.8mg/kg. In vivo studies demonstrated that Teriparatide loaded CDS could effectively increase serum calcium level after subcutaneous injection in mice. Favourable results in the current study introduced CDS as a promising candidate for controlled delivery of Teriparatide and pave the way for future investigations in the field of designing prolonged delivery systems for other peptides and proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
T cells enhance gold nanoparticle delivery to tumors in vivo.
Kennedy, Laura C; Bear, Adham S; Young, Joseph K; Lewinski, Nastassja A; Kim, Jean; Foster, Aaron E; Drezek, Rebekah A
2011-04-04
Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.
T cells enhance gold nanoparticle delivery to tumors in vivo
NASA Astrophysics Data System (ADS)
Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.
2011-12-01
Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.
Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems
Shen, Lazhen; Li, Bei; Qiao, Yongsheng
2018-01-01
Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914
Zhao, Kai; Sun, Yanwei; Chen, Gang; Rong, Guangyu; Kang, Hong; Jin, Zheng; Wang, Xiaohua
2016-09-20
Mucosal immune system plays a very important role in antiviral immune response. We prepared Newcastle disease viruses (NDV) encapsulated in N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) nanoparticles (NDV/La Sota-N-2-HACC-NPs) by an ionic cross linking method, and assessed the potential of N-2-HACC-NPs as a mucosal immune delivery carrier. The properties of the nanoparticles were determined by transmission electron microscopy, Zeta potential and particle size analysis, encapsulation efficiency and loading capacity. NDV/La Sota-N-2-HACC-NPs have regular spherical morphologies and high stability; with 303.88±49.8nm mean diameter, 45.77±0.75mV Zeta potential, 94.26±0.42% encapsulation efficiency and 54.06±0.21% loading capacity. In vitro release assay indicated that the release of NDV from NDV/La Sota-N-2-HACC-NPs is slow. The NDV/La Sota-N-2-HACC-NPs have good biological characteristics, very low toxicity and high level of safety. Additionally, specific pathogen-free chickens immunized with NDV/La Sota-N-2-HACC-NPs showed much stronger cellular, humoral and mucosal immune responses than commercial attenuated live Newcastle disease vaccine, and NDV/La Sota-N-2-HACC-NPs reached the sustainable release effect. Our study here provides a foundation for the further development of mucosal vaccines and drugs, and the N-2-HACC-NPs should be a potential drug delivery carrier with immense potential in medical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Self-assembled albumin nanoparticles as a nanocarrier for aclacinomycin A
NASA Astrophysics Data System (ADS)
Gong, Guangming; Liu, Wenya; Wang, Shudong
2016-11-01
This study aimed to reduce the cytotoxicity and improve the targeting of aclacinomycin (ACM) by covalently coupling it with amino-oxyacetic acid (AOA) to generate an active intermediate, AOA-ACM. AOA-ACM was conjugated with self-assembled human serum albumin (HSA) nanoparticles constructed using tris(2-carboxyethyl)phosphine (TCEP) as disulfide bond breaking molecules in an ‘opening stage-intermediate-closing stage’ route, in which the hydrophobic interaction, interchange of sulfhydryl and hydrogen bond may be the key factors in the assembling process. Conjugation between ACM and albumin nanoparticles was found to occur at an ACM ketone site using 1H-NMR and 13C-NMR matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass analysis indicated that the drug loading efficiency of ACM conjugated with HSA nanoparticles (NPs-ACM) was 7.4% (molar ratio = 6:1). The release of NPs-ACM was pH dependent. In vivo studies indicated that NPs-ACM exhibited fourfold higher tumor targeting capability on S180-tumor-bearing mice compared with the free ACM (p < 0.05). The cytotoxictiy and cardiotoxicity of NPs-ACM was reduced compared with the free ACM. Albumin carrier altered the blood pharmacokinetics and distribution of ACM. Hence, the NPs-ACM prodrug is ideal tumor targeting drug carriers for ACM, and the easy approach developed in this study for active intermediate and prodrug preparation can be applied to other pharmacological substances containing ketone groups. The method of preparing HSA-blank nanoparticles through TCEP reduction could be adopted to improve the water solubility of lipophilic drugs and their tumor-targeting specificity by fabricating HSA-lipophilic drug nanoparticles.
Benefits of nanoencapsulation for the hypercin-mediated photodetection of ovarian micrometastases.
Zeisser-Labouèbe, Magali; Delie, Florence; Gurny, Robert; Lange, Norbert
2009-02-01
The high recurrence and lethality of ovarian cancer at advanced stages is problematic, especially due to the development of numerous micrometastases scattered throughout the abdominal cavity. Fluorescence photodetection (PD) used in combination with surgical resection of malignant tissues has been suggested to improve recovery. Based on promising in vivo results for the detection of bladder cancer, hypericin (Hy), a natural photosensitizer (PS), stands as a good candidate for the photodetection of ovarian cancer. However, due to its hydrophobicity, systemic administration of Hy is problematic. Polymeric nanoparticles (NPs) help to overcome these delivery and stability problems and enable intravenous administration of Hy. In this study, Hy-loaded NPs of polylactic acid were produced with the following properties: (i) mean size of 268 nm, (ii) negative zeta potential, (iii) low residual surfactant and (iv) drug loading of 3.7 % (w/w). The potential of hypericin-loaded nanoparticles for the fluorescence photodetection of ovarian metastases in Fischer 344 rats bearing ovarian tumours was compared to free drug. The selectivity of Hy administered with both formulations was assessed first by fluorescence endoscopy, and then quantified after tissue extraction. The results showed an improved selective accumulation of Hy in ovarian micrometastases when NPs were used.
Markovic, Stacey; Belz, Jodi; Kumar, Rajiv; Cormack, Robert A; Sridhar, Srinivas; Niedre, Mark
2016-01-01
Drug loaded implants are a new, versatile technology platform to deliver a localized payload of drugs for various disease models. One example is the implantable nanoplatform for chemo-radiation therapy where inert brachytherapy spacers are replaced by spacers doped with nanoparticles (NPs) loaded with chemotherapeutics and placed directly at the disease site for long-term localized drug delivery. However, it is difficult to directly validate and optimize the diffusion of these doped NPs in in vivo systems. To better study this drug release and diffusion, we developed a custom macroscopic fluorescence imaging system to visualize and quantify fluorescent NP diffusion from spacers in vivo. To validate the platform, we studied the release of free fluorophores, and 30 nm and 200 nm NPs conjugated with the same fluorophores as a model drug, in agar gel phantoms in vitro and in mice in vivo. Our data verified that the diffusion volume was NP size-dependent in all cases. Our near-infrared imaging system provides a method by which NP diffusion from implantable nanoplatform for chemo-radiation therapy spacers can be systematically optimized (eg, particle size or charge) thereby improving treatment efficacy of the platform.
Wu, Yongmei; Xu, Wenju; Bai, Lijuan; Yuan, Yali; Yi, Huayu; Chai, Yaqin; Yuan, Ruo
2013-12-15
For the first time, a sandwich-type electrochemical method was proposed for ultrasensitive thrombin (TB) detection based on direct electrochemistry of highly loaded hemoglobin spheres-encapsulated platinum nanoparticles (PtNPs@Hb) as labels and electrocatalysts. The prepared PtNPs@Hb not only exhibited good biocompatibility, excellent electrocatalytic activity, but also presented redox activity of Hb. Thus, it was employed for the fabrication of aptasensor without any extraneous redox mediators, leading to a simple preparation process for the aptasensor. The high loading of Hb spheres as redox mediators could enhance the electrochemical signal. Importantly, the synergetic electrocatalytic behavior of Hb and PtNPs toward H2O2 reduction greatly amplified the electrochemical signal, resulting in the high sensitivity of aptasensor. Consequently, under optimal conditions, the designed aptasensor exhibited a lower detection limit of 0.05 pM and wide dynamic linear range from 0.15 pM to 40 nM for TB detection. Additionally, the proposed mediator-free and signal-amplified electrochemical aptasensor showed great potential in portable and cost-effective TB sensing devices. Copyright © 2013 Elsevier B.V. All rights reserved.
PLGA/polymeric liposome for targeted drug and gene co-delivery.
Wang, Hanjie; Zhao, Peiqi; Su, Wenya; Wang, Sheng; Liao, Zhenyu; Niu, Ruifang; Chang, Jin
2010-11-01
Chemotherapy is one of the most effective approaches to treat cancers in the clinic, but the problems, such as multidrug resistance (MDR), low bioavailability and toxicity, severely constrain the further application of chemotherapy. Our group recently reported that cationic PLGA/folate coated PEGlated polymeric liposome core-shell nanoparticles (PLGA/FPL NPs). It was self-assembled from a hydrophobic PLGA core and a hydrophilic folate coated PEGlated lipid shell for targeting co-delivery of drug and gene. Hydrophobic drugs can be incorporated into the core and the cationic shell of the drug-loaded nanoparticles can be used to bind DNA. The drug-loaded PLGA/FPL NPs/DNA complexes offer advantages to overcome these problems mentioned above, such as co-delivery of drugs and DNA to improving the chemosensitivity of cancer cells at a gene level, and targeting delivery of drug to the cancer tissue that enhance the bioavailability and reduce the toxicity. The experiment showed that nanoparticles have core-shell structure with nanosize, sustained drug release profile and good DNA-binding ability. Importantly, the core-shell nanoparticles achieve the possibility of co-delivering drugs and genes to the same cells with high gene transfection and drug delivery efficiency. Our data suggest that the PLGA/FPL NPs may be a useful drug and gene co-delivery system. Copyright © 2010 Elsevier Ltd. All rights reserved.
Recombinant IκBα-loaded curcumin nanoparticles for improved cancer therapeutics
NASA Astrophysics Data System (ADS)
Banerjee, Subhamoy; Sahoo, Amaresh Kumar; Chattopadhyay, Arun; Sankar Ghosh, Siddhartha
2014-08-01
The field of recombinant protein therapeutics has been evolving rapidly, making significant impact on clinical applications for several diseases, including cancer. However, the functional aspects of proteins rely exclusively on their structural integrity, in which nanoparticle mediated delivery offers unique advantages over free proteins. In the present work, a novel strategy has been developed where the nanoparticles (NPs) used for the delivery of the recombinant protein could contribute to enhancing the therapeutic efficacy of the recombinant protein. The transcription factor, NFκB, involved in cell growth and its inhibitor, IκBα, regulates its proliferation. Another similar naturally available molecule, which inhibits the function of NFκB, is curcumin. Hence, we have developed a ‘green synthesis’ method for preparing water-soluble curcumin nanoparticles to stabilize recombinant IκBα protein. The NPs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering before administration into human cervical carcinoma (HeLa) and glioblastoma (U87MG) cells. Experimental results demonstrated that this combined module had enhanced therapeutic efficacy, causing apoptotic cell death, which was confirmed by cytotoxicity assay and flowcytometry analyses. The expression of apoptotic genes studied by semi-quantitative reverse transcription PCR delineated the molecular pathways involved in cell death. Thus, our study revealed that the functional delivery of recombinant IκBα-loaded curcumin NPs has promise as a natural-product-based protein therapeutics against cancer cells.
Recombinant IκBα-loaded curcumin nanoparticles for improved cancer therapeutics.
Banerjee, Subhamoy; Sahoo, Amaresh Kumar; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar
2014-08-29
The field of recombinant protein therapeutics has been evolving rapidly, making significant impact on clinical applications for several diseases, including cancer. However, the functional aspects of proteins rely exclusively on their structural integrity, in which nanoparticle mediated delivery offers unique advantages over free proteins. In the present work, a novel strategy has been developed where the nanoparticles (NPs) used for the delivery of the recombinant protein could contribute to enhancing the therapeutic efficacy of the recombinant protein. The transcription factor, NFκB, involved in cell growth and its inhibitor, IκBα, regulates its proliferation. Another similar naturally available molecule, which inhibits the function of NFκB, is curcumin. Hence, we have developed a 'green synthesis' method for preparing water-soluble curcumin nanoparticles to stabilize recombinant IκBα protein. The NPs were characterized by UV-vis and fluorescence spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering before administration into human cervical carcinoma (HeLa) and glioblastoma (U87MG) cells. Experimental results demonstrated that this combined module had enhanced therapeutic efficacy, causing apoptotic cell death, which was confirmed by cytotoxicity assay and flowcytometry analyses. The expression of apoptotic genes studied by semi-quantitative reverse transcription PCR delineated the molecular pathways involved in cell death. Thus, our study revealed that the functional delivery of recombinant IκBα-loaded curcumin NPs has promise as a natural-product-based protein therapeutics against cancer cells.
In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles.
Nogueira, Daniele Rubert; Tavano, Lorena; Mitjans, Montserrat; Pérez, Lourdes; Infante, M Rosa; Vinardell, M Pilar
2013-04-01
Nanoparticles with pH-sensitive behavior may enhance the success of chemotherapy in many cancers by efficient intracellular drug delivery. Here, we investigated the effect of a bioactive surfactant with pH-sensitive properties on the antitumor activity and intracellular behavior of methotrexate-loaded chitosan nanoparticles (MTX-CS-NPs). NPs were prepared using a modified ionotropic complexation process, in which was included the surfactant derived from N(α),N(ε)-dioctanoyl lysine with an inorganic lithium counterion. The pH-sensitive behavior of NPs allowed accelerated release of MTX in an acidic medium, as well as membrane-lytic pH-dependent activity, which facilitated the cytosolic delivery of endocytosed materials. Moreover, our results clearly proved that MTX-CS-NPs were more active against the tumor HeLa and MCF-7 cell lines than the free drug. The feasibilty of using NPs to target acidic tumor extracellular pH was also shown, as cytotoxicity against cancer cells was greater in a mildly acidic environment. Finally, the combined physicochemical and pH-sensitive properties of NPs generally allowed the entrapped drug to induce greater cell cycle arrest and apoptotic effects. Therefore, our overall results suggest that pH-sensitive MTX-CS-NPs could be potentially useful as a carrier system for tumor and intracellular drug delivery in cancer therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yihan, Sun; Mingming, Liu; Guo, Zhiguang
2018-05-19
Herein, a catalytic mesh with unique wettability, high oil-water separation efficiency and excellent catalytic performance towards aromatic dyes was fabricated. Polypyrrole (PPy) was firstly pre-coated on pristine stainless-steel mesh (SSM) surface via cyclic voltammetry approach. Subsequently, a simple electrodeposition process was performed to prepare and anchor Ag nanoparticles (AgNPs) onto the PPy-coated SSM surface. The PPy-coated mesh with anchored AgNPs was denoted as PPy/AgNPs-coated SSM. The obtained PPy/AgNPs-coated SSM exhibited dual superlyophobic properties and were able to achieve on-demand separation to deal with various of light oil (ρ oil < ρ water ) and heavy oil (ρ oil > ρ water )-water mixtures. Importantly, benefitting from AgNPs on mesh surface, the obtained PPy/AgNPs-coated SSM exhibits exceptional catalytic activity. As proof-of-concept three typical aromatic dye molecules (methylene blue, rhodamine B and Congo red) can be effectivity degraded. Additionally, the degradation of aromatic dyes and oil-water separation were achieved simultaneously when the PPy/AgNPs-coated SSM was converted to water-removing mode. Therefore, the present work is of great significance to the development of novel oil-water filtration membranes and can open a new avenue towards the practicability of metal nanoparticle catalysts in wastewater treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhou, Zhao-xiong; Zhang, Bai-gen; Zhang, Hao; Huang, Xiao-zhong; Hu, Ya-li; Sun, Li; Wang, Xiao-min; Zhang, Ji-wei
2009-01-01
Aim: To investigate the in vitro release profile of drugs encapsulated within perfluorocarbon (PFC) nanoparticles (NPs) and their ability to inhibit the activity of vascular smooth muscle cells (SMCs). Methods: Dexamethasone phosphate (DxP) or dexamethasone acetate (DxA) was encapsulated into PFC nanoparticles using a high-pressure homogenous method. The morphology and size of the NPs were examined using scanning electron microscopy (SEM) and a laser particle size analyzer. Drug loading and in vitro release were assessed by high-performance liquid chromatography (HPLC). The impact of NP capsules on SMC proliferation, migration and apoptosis in vitro was assessed using cell counting kit-8, transwell cell migration and flow cytometry assays. Results: The sizes of DxP-NPs and DxA-NPs were 224±6 nm and 236±9 nm, respectively. The encapsulation efficiency (EE) of DxP-NPs was 66.4%±1.0%, with an initial release rate of 77.2%, whereas the EE of DxA-NPs was 95.3%±1.3%, with an initial release rate of 23.6%. Both of the NP-coated drugs could be released over 7 d. Human umbilical artery SMCs were harvested and cultured for four to six passages. Compared to free DxP, SMCs treated with tissue factor (TF)-directed DxP-NPs showed significant differences in the inhibition of proliferation, migration and apoptosis (P<0.05). Conclusion: The results collectively suggest that PFC nanoparticles will be beneficial for targeted drug delivery because of the sustained drug release and effective inhibition of SMC proliferation and migration. PMID:19890365
Li, Qiuxia; Xia, Dengning; Tao, Jinsong; Shen, Aijun; He, Yuan; Gan, Yong; Wang, Chi
2017-10-01
Lipid-polymer hybrid nanoparticles (NPs) are advantageous for drug delivery. However, their intracellular trafficking mechanism and relevance for oral drug absorption are poorly understood. In this study, self-assembled core-shell lipid-polymer hybrid NPs made of poly(lactic-co-glycolic acid) (PLGA) and various lipids were developed to study their differing intracellular trafficking in intestinal epithelial cells and their relevance for oral absorption of a model drug saquinavir (SQV). Our results demonstrated that the endocytosis and exocytosis of hybrid NPs could be changed by varying the kind of lipid. A glyceride mixture (hybrid NPs-1) decreased endocytosis but increased exocytosis in Caco-2 cells, whereas the phospholipid (E200) (hybrid NPs-2) decreased endocytosis but exocytosis was unaffected as compared with PLGA nanoparticles. The transport of hybrid NPs-1 in cells involved various pathways, including caveolae/lipid raft-dependent endocytosis, and clathrin-mediated endocytosis and macropinocytosis, which was different from the other groups of NPs that involved only caveolae/lipid raft-dependent endocytosis. Compared with that of the reference formulation (nanoemulsion), the oral absorption of SQV-loaded hybrid NPs in rats was poor, probably due to the limited drug release and transcytosis of NPs across the intestinal epithelium. In conclusion, the intracellular processing of hybrid NPs in intestinal epithelia can be altered by adding lipids to the NP. However, it appears unfavorable to use PLGA-based NPs to improve oral absorption of SQV compared with nanoemulsion. Our findings will be essential in the development of polymer-based NPs for the oral delivery of drugs with the purpose of improving their oral absorption. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio
2014-06-24
Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.
Lu, Zhisong; Xiao, Jing; Wang, Ying; Meng, Mei
2015-08-15
Fabrication of silver nanoparticles (AgNPs)-modified silk for antibacterial application is one of the hottest topics in the textile material research. However, the utilization of a polymer as both 3-dimensional matrix and reductant for the in-situ synthesis of AgNPs on silk fibers has not been realized. In this work, a facile, efficient and green approach was developed to in-situ grow AgNPs on the polydopamine (PDA)-functionalized silk. AgNPs with the size of 30-90 nm were uniformly deposited on the silk fiber surface with the PDA coating layer as a reduction reagent. The AgNPs exhibit excellent face-centered cubic crystalline structures. The bacterial growth curve and inhibition zone assays clearly demonstrate the antibacterial properties of the functionalized silk. Both high Ag(+) release level and long-time release profile were observed for the as-prepared AgNPs-PDA-coated silk, indicating the high-density loading of AgNPs and the possible long-term antibacterial effects. This work may provide a new method for the preparation of AgNPs-functionalized silk with antibacterial activity for the clothing and textile industry. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Yi Seul; Bae, Ji Young; Koo, Hye Young; Lee, Young Boo; Choi, Won San
2016-03-01
We present the synthesis of polydopamine particle-gold composites (PdopP-Au) and unique release of Au@Pdop core@shell nanoparticles (NPs) from the PdopP-Au upon external stimuli. The PdopP-Au was prepared by controlled synthesis of AuNPs on the Pdop particles. Upon near infrared (NIR) irradiation or NaBH4 treatment on the PdopP-Au, the synthesized AuNPs within the PdopPs could be burst-released as a form of Au@Pdop NPs. The PdopP-Au composite showed outstanding photothermal conversion ability under NIR irradiation due to the ultrahigh loading of the AuNPs within the PdopPs, leading to a remote-controlled explosion of the PdopP-Au and rapid formation of numerous Au@Pdop NPs. The release of the Au@Pdop NPs could be instantly stopped or re-started by off or reboot of NIR, respectively. The structure of the released Au@Pdop NPs is suitable for a catalyst or adsorbent, thus we demonstrated that the PdopP-Au composite exhibited excellent and sustained performances for environmental remediation due to its capability of the continuous production of fresh catalysts or adsorbents during the reuse.
Adjei, Isaac M; Sharma, Blanka; Peetla, Chiranjeevi; Labhasetwar, Vinod
2016-06-28
Advanced-stage prostate cancer usually metastasizes to bone and is untreatable due to poor biodistribution of intravenously administered anticancer drugs to bone. In this study, we modulated the surface charge/composition of biodegradable nanoparticles (NPs) to sustain their blood circulation time and made them small enough to extravasate through the openings of the bone's sinusoidal capillaries and thus localize into marrow. NPs with a neutral surface charge, achieved by modulating the NP surface-associated emulsifier composition, were more effective at localizing to bone marrow than NPs with a cationic or anionic surface charge. These small neutral NPs (~150nm vs. the more usual ~320nm) were also ~7-fold more effective in localizing in bone marrow than large NPs. We hypothesized that NPs that effectively localize to marrow could improve NP-mediated anticancer drug delivery to sites of bone metastasis, thereby inhibiting cancer progression and preventing bone loss. In a PC-3M-luc cell-induced osteolytic intraosseous model of prostate cancer, these small neutral NPs demonstrated greater accumulation in bone within metastatic sites than in normal contralateral bone as well as co-localization with the tumor mass in marrow. Significantly, a single-dose intravenous administration of these small neutral NPs loaded with paclitaxel (PTX-NPs), but not anionic PTX-NPs, slowed the progression of bone metastasis. In addition, neutral PTX-NPs prevented bone loss, whereas animals treated with the rapid-release drug formulation Cremophor EL (PTX-CrEL) or saline (control) showed >50% bone loss. Neutral PTX-NPs did not cause acute toxicity, whereas animals treated with PTX-CrEL experienced weight loss. These results indicate that NPs with appropriate physical and sustained drug-release characteristics could be explored to treat bone metastasis, a significant clinical issue in prostate and other cancers. Copyright © 2016 Elsevier B.V. All rights reserved.
Punfa, Wanisa; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Ampasavate, Chadarat; Limtrakul, Pornngarm
2012-06-01
To compare the anti-cancer activity and cellular uptake of curcumin (Cur) delivered by targeted and non-targeted drug delivery systems in multidrug-resistant cervical cancer cells. Cur was entrapped into poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Cur-NPs) in the presence of modified-pluronic F127 stabilizer using nano-precipitation technique. On the surface of Cur-NPs, the carboxy-terminal of modified pluronic F127 was conjugated to the amino-terminal of anti-P-glycoprotein (P-gp) (Cur-NPs-APgp). The physical properties of the Cur-NPs, including particle size, zeta potential, particle morphology and Cur release kinetics, were investigated. Cellular uptake and specificity of the Cur-NPs and Cur-NPs-APgp were detected in cervical cancer cell lines KB-V1 (higher expression of P-gp) and KB-3-1 (lower expression of P-gp) using fluorescence microscope and flow cytometry, respectively. Cytotoxicity of the Cur-NPs and Cur-NPs-APgp was determined using MTT assay. The particle size of Cur-NPs and Cur-NPs-APgp was 127 and 132 nm, respectively. The entrapment efficiency and actual loading of Cur-NPs-APgp (60% and 5 μg Cur/mg NP) were lower than those of Cur-NPs (99% and 7 μg Cur/mg NP). The specific binding of Cur-NPs-APgp to KB-V1 cells was significantly higher than that to KB-3-1 cells. Cellular uptake of Cur-NPs-APgp into KB-V1 cells was higher, as compared to KB-3-1 cells. However, the cellular uptake of Cur-NPs and Cur-NPs-IgG did not differ between the two types of cells. Besides, the cytotoxicity of Cur-NPs-APgp in KB-V1 cells was higher than those of Cur and Cur-NPs. The results demonstrate that Cur-NPs-APgp targeted to P-gp on the cell surface membrane of KB-V1 cells, thus enhancing the cellular uptake and cytotoxicity of Cur.
Mechanical Strength and Stability of DNA-modified Gold Nanoparticle Systems
NASA Astrophysics Data System (ADS)
Lam, Letisha McLaughlin
Systems in which gold nanoparticles (AuNPs) are functionalized with DNA have the potential for a broad range of applications in gene regulation therapies, drug delivery, sensing, innovative biomaterials and material templates. The use of DNA-modified gold nanoparticle (AuNP-DNA) systems is driven by their ease of assembly with bottom-up methods as well as the tunability of the systems' mechanical, optical, and electronic properties by exploiting AuNP characteristics and behavior in a multi-particle arrangement. Periodic arrangements of AuNPs precisely distributed through ligated DNA linkers may be assembled and used on relatively large length scales, on the order of hundreds of nanometers, for use in potential nanoscale technologies and applications. However, because of the size and heterogeneous composition of AuNP-DNA systems, their stability under mechanical loading is not well understood or quantified on relevant physical scales for these applications. Hence, a large-scale specialized finite-element predictive approach with a dislocation-density based crystalline plasticity has been used to investigate the mechanical stability of AuNP-DNA-ligand systems with AuNPs within the physical dimensions required for plasmon resonance. The crystalline formulation for the AuNPs accounts for multiple crystalline slip, dislocation-density evolution, lattice rotations, and large inelastic strains. A hypoelastic formulation was used for the DNA and the ligands. The nonlinear finite-element scheme is based on accounting for finite elastic and inelastic strains. These approaches were employed to predict and understand the fundamental scale-dependent microstructural behavior, the evolving heterogeneous microstructure, and localized phenomena that can contribute to failure initiation and instability. Each system was loaded using quasi-static plane strain tension and compression to simulate application loading conditions, and the elastic and inelastic evolutions were analyzed for evidence of mechanical strengthening as well as possible failure modes. To establish a foundation for AuNP-DNA stability analysis, several different two-particle conformations were investigated, including systems with pentagonally twinned AuNPs, systems with circular AuNPs, systems with non-textured and textured cuboctahedron AuNPs with 6 nm DNA, 12 nm DNA, and 18 nm DNA. In general, the analyses indicated that the systems' stability are mainly affected by large stress gradients at AuNP-ligand interfaces, as well as large dislocation-density, normal stresses, and inelastic accumulations in the region adjacent to these interfaces between the AuNPs and the DNA. The predictions also indicate that highly faceted f.c.c. AuNPs with DNA lengths of approximately 6 nm in biaxial loading conditions were found to have the highest strength and overall stability. Furthermore, periodic AuNP-DNA superlattice composites, which mimic the crystallography of f.c.c. atomic lattices, were investigated for mechanical effectiveness as both a composite material and thin film. This investigation analyzed the stress behavior and inelastic evolution of f.c.c. AuNP-DNA superlattice systems with different Au volume fractions, matrix strengths, intrinsic nanoparticle crystallographic orientations and sizes. These analyses were also extended to superlattice f.c.c. composites on a silicon substrate. The results indicate that f.c.c. AuNP-DNA superlattices have a combination of high strength and toughness due to the ductile nature of the nanoparticles in conjunction with the physical properties of the DNA and matrix materials. The superlattice films also exhibited high strengths and toughness, with the limiting factor being the interrelated aspects of film thickness and delamination. These predictions can be used as guidelines for using these composites, superlattices, and thin films as candidates for innovative building blocks for new material systems.
NASA Astrophysics Data System (ADS)
Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.; Broome, Ann-Marie
2015-01-01
Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to untargeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging.
Dixit, Suraj; Novak, Thomas; Miller, Kayla; Zhu, Yun; Kenney, Malcolm E.
2015-01-01
Therapeutic drug delivery across the blood-brain barrier (BBB) is not only inefficient, but also nonspecific to brain stroma. These are major limitations in the effective treatment of brain cancer. Transferrin peptide (Tfpep) targeted gold nanoparticles (Tfpep-Au NPs) loaded with the photodynamic pro-drug, Pc 4, have been designed and compared with untargeted Au NPs for delivery of the photosensitizer to brain cancer cell lines. In vitro studies of human glioma cancer lines (LN229 and U87) overexpressing the transferrin receptor (TfR) show a significant increase in cellular uptake for targeted conjugates as compared to un-targeted particles. Pc 4 delivered from Tfpep-Au NPs clusters within vesicles after targeting with the Tfpep. Pc 4 continues to accumulate over a 4 hour period. Our work suggests that TfR-targeted Au NPs may have important therapeutic implications for delivering brain tumor therapies and/or providing a platform for noninvasive imaging. PMID:25519743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in
2015-10-15
Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry.more » It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.« less
Abulateefeh, Samer R; Taha, Mutasem O
2015-01-01
Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.
NASA Astrophysics Data System (ADS)
Kasoju, Naresh; Bora, Debajeet K.; Bhonde, Ramesh R.; Bora, Utpal
2010-03-01
We report the synthesis of novel biodegradable nanoparticles (NPs) which can kill the cancer cells without any additional drug loading. The NP was a self-assembled form of a phthalimide based conjugate, in which the phthalimide moiety was responsible for the anticancer activity. We describe the synthesis of a novel 2-(N-phthalimido) ethyl palmitate (PHEP-Pal) conjugate and subsequent preparation of NPs by a simple self assembly process. The successful synthesis of conjugate was confirmed by various characterization studies including nuclear magnetic resonance spectroscope, Fourier transform infrared spectroscope, TOF-liquid chromatography mass spectroscope, differential scanning calorimetry, and X-ray diffraction unit. The synthesis, shape, size, and size distribution of PHEP-Pal NPs were determined by transmission electron microscope, atomic force microscope, and dynamic light scattering technique. Finally, cell culture studies using A549 and HeLa cells were done to evaluate the anticancer effect of PHEP-Pal NPs, which demonstrated the potency of these NPs for use in cancer chemotherapy.
Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang
We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.
Mahdizadeh Barzoki, Zahra; Emam-Djomeh, Zahra; Mortazavian, Elaheh; Akbar Moosavi-Movahedi, Ali; Rafiee Tehrani, M
2016-11-01
The present study was performed to optimise the formulation of a muco-adhesive buccal patch for insulin nanoparticles (NPs) delivery. Insulin NPs were synthesised by an ionic gelation technique using N-di methyl ethyl chitosan cysteine (DMEC-Cys) as permeation enhancer biopolymer, tripolyphosphate (TPP) and insulin. Buccal patches were developed by solvent-casting technique using chitosan and gelatine as muco-adhesive polymers. Optimised patches were embedded with 3 mg of insulin-loaded NPs with a homogeneous distribution of NPs in the muco-adhesive matrix, which displayed adequate physico-mechanical properties. The drug release characteristics, release mechanism and kinetics were investigated. Data fitting to Peppas equation with a correlation coefficient indicated that the mechanism of drug release followed an anomalous transport that means drug release was afforded through drug diffusion along with polymer erosion. In vitro drug release, release kinetics, physical and mechanical studies for all patch formulations reflected the ideal characteristics of this buccal patch for the delivery of insulin NPs.
Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang
2016-01-01
We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs. PMID:27822034
Drinkel, Emma E; Campedelli, Roberta R; Manfredi, Alex M; Fiedler, Haidi D; Nome, Faruk
2014-03-21
Palladium nanoparticles (NPs) stabilized by a zwitterionic surfactant are revealed here to be good catalysts for the reductive amination of benzaldehydes using formate salts as hydrogen donors in aqueous isopropanol. In terms of environmental impact and economy, metallic NPs offer several advantages over homogeneous and traditional heterogeneous catalysts. NPs usually display greater activity due to the increased metal surface area and sometimes exhibit enhanced selectivity. Thus, it is possible to use very low loadings of expensive metal. The methodology eliminates the use of a hydrogen gas atmosphere or toxic or expensive reagents. A range of aromatic aldehydes were converted to benzylamines when reacted with primary and secondary amines in the presence of the Pd NPs, which also displayed good activity when supported on alumina. In every case, the Pd NPs could be easily recovered and reused up to three more times, and at the end of the process, the product was metal-free.
Liu, Xi; Liu, Yan; Zhang, Pengcheng; Jin, Xiaodong; Zheng, Xiaogang; Ye, Fei; Chen, Weiqiang; Li, Qiang
2016-01-01
Reductive drug-functionalized gold nanoparticles (AuNPs) have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ) moiety, and then thioctyl TPZ (TPZs)-modified AuNPs (TPZs-AuNPs) were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. PMID:27555772
NASA Astrophysics Data System (ADS)
Mandal, Subhra; Zhou, You; Shibata, Annemarie; Destache, Christopher J.
2015-08-01
In the last decade, confocal fluorescence microscopy has emerged as an ultra-sensitive tool for real-time study of nanoparticles (NPs) fate at the cellular-level. According to WHO 2007 report, Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) is still one of the world's major health threats by claiming approximately 7,000 new infections daily worldwide. Although combination antiretroviral drugs (cARV) therapy has improved the life-expectancy of HIV-infected patients, routine use of high doses of cARV has serious health consequences and requires complete adherence to the regimen for success. Thus, our research goal is to fabricate long-acting novel cARV loaded poly(lactide-co-glycolic acid) (PLGA) nanoparticles (cARV-NPs) as drug delivery system. However, important aspects of cARV-NPs that require special emphasis are their cellular-uptake, potency, and sustained drug release efficiency over-time. In this article, ultra-sensitive confocal microscopy is been used to evaluate the uptake and sustained drug release kinetics of cARV-NPs in HeLa cells. To evaluate with the above goal, instead of cARV-drug, Rhodamine6G dye (fluorescent dye) loaded NPs (Rho6G NPs) have been formulated. To correlate the Rhodamin6G release kinetics with the ARV release from NPs, a parallel HPLC study was also performed. The results obtained indicate that Rho6G NPs were efficiently taken up at low concentration (<500 ng/ml) and that release was sustained for a minimum of 4 days of treatment. Therefore, high drug assimilation and sustained release properties of PLGA-NPs make them an attractive vehicle for cARV nano-drug delivery with the potential to reduce drug dosage as well as the number of drug administrations per month.
Kanoujia, Jovita; Singh, Mahendra; Singh, Pooja; Saraf, Shubhini A
2016-12-01
The objective of this study was to demonstrate the therapeutic as well as biopolymer like characteristics of naturally occurring sericin protein for development of nanoparticulate system of atorvastatin (Atr) to improve therapeutic effect and to reduce toxicity. The sericin encapsulated atorvastatin nanoparticles (Seri-Atr NPs) were prepared by desolvation method utilizing genipin (Gn) as a natural and nontoxic crosslinker. The optimized NPs exhibited small particle size (166±0.30nm), high entrapment efficiency (91±0.69%) and uniform spherical shape with sustained release profile. Moreover, the results of pharmacokinetic studies indicated an increase in AUC0-∞ of NPs (1189.74±52.3hng/ml) compared with Atr (501.84±66hng/ml). The cellular uptake of NPs suggested an interaction of negatively charged particles with the cell surface and considerable reduction in systemic toxicity. Histopathology studies also demonstrated the therapeutic potential of sericin and cytocompatibility. Hence, genipin crosslinked sericin based nanoparticles represents a promising nanoplatform for improved therapeutic efficiency of Atr. Copyright © 2016 Elsevier B.V. All rights reserved.
Shabani, Ronak; Ashjari, Mohsen; Ashtari, Khadijeh; Izadyar, Fariborz; Behnam, Babak; Khoei, Samideh; Asghari-Jafarabadi, Mohamad; Koruji, Morteza
2018-01-01
Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug.
Shabani, Ronak; Ashjari, Mohsen; Ashtari, Khadijeh; Izadyar, Fariborz; Behnam, Babak; Khoei, Samideh; Asghari-Jafarabadi, Mohamad; Koruji, Morteza
2018-01-01
Background Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. Objective The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. Methods SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. Results The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. Conclusion The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug. PMID:29849458
Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong
2017-11-01
The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.
Radwan, Mahasen A; AlQuadeib, Bushra T; Šiller, Lidija; Wright, Matthew C; Horrocks, Benjamin
2017-11-01
Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p < 0.05) improved the bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.
Natan, Michal; Gutman, Ori; Lavi, Ronit; Margel, Shlomo; Banin, Ehud
2015-02-24
Increased resistance of bacteria to disinfection and antimicrobial treatment poses a serious public health threat worldwide. This has prompted the search for agents that can inhibit both bacterial growth and withstand harsh conditions (e.g., high organic loads). In the current study, N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) were synthesized by copolymerization of the monomer methacrylamide (MAA) and the cross-linker monomer N,N-methylenebis(acrylamide) (MBAA) and were subsequently loaded with oxidative chlorine using sodium hypochlorite (NaOCl). The chlorinated NPs demonstrated remarkable stability and durability to organic reagents and to repetitive bacterial loading cycles as compared with the common disinfectant NaOCl (bleach), which was extremely labile under these conditions. The antibacterial mechanism of the cross-linked P(MAA-MBAA)-Cl NPs was found to involve generation of reactive oxygen species (ROS) only upon exposure to organic media. Importantly, ROS were not generated upon suspension in water, revealing that the mode of action is target-specific. Further, a unique and specific interaction of the chlorinated NPs with Staphylococcus aureus was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. This bacterial encircling was achieved without using a targeting module (e.g., an antibody or a ligand) and represents a highly beneficial, natural property of the P(MAA-MBAA)-Cl nanostructures. Our findings provide insights into the mechanism of action of P(MAA-MBAA)-Cl NPs and demonstrate the superior efficacy of the NPs over bleach (i.e., stability, specificity, and targeting). This work underscores the potential of developing sustainable P(MAA-MBAA)-Cl NP-based devices for inhibiting bacterial colonization and growth.
Formulation and Characterization of Acetaminophen Nanoparticles in Orally Disintegrating Films
NASA Astrophysics Data System (ADS)
AI-Nemrawi, Nusaiba K.
The purpose of this study is to prepare acetaminophen loaded nanoparticles to be cast directly, while still in the emulsion form, into Orally Disintegrating Films (ODF). By casting the nanoparticles in the films, we expected to keep the particles in a stable form where the nanoparticles would be away from each other to prevent their aggregation. Once the films are applied on the buccal mucosa, they are supposed to dissolve within seconds, releasing the nanoparticles. Then the nanoparticles could be directly absorbed through the mucosa to the blood stream and deliver acetaminophen there. The oral cavity mucosa is one of the most attractive sites for systemic drug delivery due to its high permeability and blood supply. Furthermore, it is robust and shows short recovery times after stress or damage, and the drug bypasses first pass effect and avoids presystemic elimination in the GI tract. Nanoencapsulation increases drug efficacy, specificity, tolerability and therapeutic index. These Nanocapsules have several advantages in the protection of premature degradation and interaction with the biological environment, enhancement of absorption into a selected tissue, bioavailability, retention time and improvement of intracellular penetration. The most important characteristics of nanoparticles are their size, encapsulation efficiency (EE), zeta potential (surface charge), and the drug release profiles. Unfortunately, nanoparticles tend to precipitate or aggregate into larger particles within a short time after preparation or during storage. Some solutions for this problem were mentioned in literature including lyophilization and spray drying. These methods are usually expensive and give partial solutions that might have secondary problems; such as low re-dispersion efficacy of the lyophilized NPs. Furthermore, most of the formulations of NPs are invasive or topical. Few formulas are available to be given orally. Fast disintegrating films (ODFs) are rapidly gaining interest in the pharmaceutical industry. These thin films are designed to dissolve within a few seconds without the need for water or chewing. The introduction of fast disintegrating dosage forms has solved some problems encountered in the administration of drugs to pediatric and elderly patients. This convenience provides both marketing advantages and higher patient compliance. Acetaminophen was chosen to be the model drug due to its safety. The amount of acetaminophen in each film is much below the therapeutic dose, but the purpose of using acetaminophen is to be an analytical tracer only. Films were formulated using hydroxypropyl methyl cellulose (HPMC) as film forming polymer, polyethylene glycol 400 (PEG) as a plasticizer and polyvinyl alcohol (PVA) as a NPs stabilizer. First of all, the effect of different Methocel grades and concentration, PEG 400 concentration and PVA 80% concentration on the films were determined. Ingredients that gave best physico-mechanical properties to the films were used in the formulation of ODFs that are loaded with the NPs. Nanoparticles were prepared by the emulsion-solvent evaporation method where acetone phase containing the drug and NPs forming polymers were added to water phase containing other additives. Three types of NPs were prepared: empty, loaded and loaded in ODF dispersion. The size, polydispersity index (PI), zeta potential and drug entrapment efficacy (EE) of NPs were measured. The effect of addition rate, agitation rate, viscosity of the continuous phase, PVA hydrolization, PLGA polymerization and the PLGA to PVA ratio on NPs properties was investigated. The nanoemulsions were cast to form films which were studied in vitro and ex-vivo. Furthermore, the mechanism of drug appearance in the receiver of a Franz cell was explored. Films were placed on a pork buccal membrane using a Franz cell and samples were withdrawn at specific time intervals. Samples were divided into two portions; one of them was extracted while the other was not extracted before analysis. The amount of drug in extracted and non-extracted samples was different which indicated that the NPs diffused through the membrane. The primary screening showed that films with 6% of HPMC E15, 2% PVA 80% and 5% PEG 400 had good properties; 1018.5 N/m2, 750 N and 37 s for TS, FB and DT, respectively. Therefore, these film ingredients were used in later steps to prepare nanoparticles in films. The nanoparticles physical properties and drug release from the nanoparticles showed a high sensitivity to the materials used and methods of preparation. The prepared NPs size ranged from 180 to 645 nm. The particle size was not changed as the addition rate increases till we get to 2.0 drop/s. In other words, as the hydrolyzation increases the particle size increases. The particle size did not show a pattern that's related to PLGA polymerization. Both the agitation rate and the ratio of PLGA to PVA had a negative effect on the particles size. In general, all NPs have negative zeta potential ranged between -7.07 and -0.98. Zeta potential was found to decrease (become more negative) when PLGA polymerization increases, PVA hydrolyzation increases or the ratio of PLGA to PVA decreases. EE was almost constant and not affected by formulation variables and recorded high values (above 90%). EE recorded a huge drop when acetaminophen was dissolved in the aqueous phase rather than being dissolved in the acetone phase. All films disintegrated in less than one minute, but acetaminophen was not free in the dissolution media, even after 6 days. These results indicate that although the nanoparticles immediately released from the films when impressed in solution, the drug is retained in the nanoparticles for a longer time. The release from the NPs was related to PVA hydrolyzation, PLGA polymerization and the PLGA to PVA ratio. Finally, from the results we got ex-vivo, and by comparing the extracted and non-extracted samples we were able to estimate the amount of NPs diffused through the membranes. The appearance of the free drug was a factor of two processes; the diffusion through the buccal membrane and the diffusion through NPs. The order of these two processes was related to the NPs properties which were related to PVA hydrolyzation, PLGA polymerization and the PLGA to PVA ratio. In conclusion, casting PLGA NPs into films could be a new method to introduce NPs into the mouth cavity where the NPs are released within seconds from the films. Then the NPs diffuse through the membrane to the blood stream where they release the drug in a controlled manner.
Sun, Deqing; Xue, Aiying; Zhang, Bin; Lou, Haiyan; Shi, Huanying; Zhang, Xiumei
2015-12-01
Acetylpuerarin (AP) is an acetylated derivative of puerarin (PUE). The study aimed to prepare polysorbate 80-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles to improve the permeability of AP across the blood-brain barrier (BBB) and enhance its brain-protective effects. AP-loaded PLGA nanoparticles (AP-PLGA-NPs) were prepared using a solvent diffusion methodology. The NPs were characterized. The pharmacokinetics, tissue distributions and brain-protective effects of AP-PLGA-NPs were evaluated in animals. AP-PLGA-NPs were successfully prepared with a mean particle size of 145.0 nm and a zeta potential of -14.81 mV. The in-vitro release of AP from the PLGA-NPs showed a biphasic release profile. AP was metabolized into PUE in rats. The AUC0-∞ values of AP and PUE for AP-PLGA-NPs were 2.90- and 2.29-fold as great as those for AP solution, respectively. The values of the relative targeting efficiency in the brain were 2.40 and 2.58 for AP and PUE, and the ratios of peak concentration were 1.91 and 1.89 for AP and PUE, respectively. Compared with the crude drug, AP-PLGA-NPs showed better brain-protective effects in rats. Polysorbate 80-coated PLGA-NPs can improve the permeability of AP cross the BBB and enhance its brain-protective effects in rats. © 2015 Royal Pharmaceutical Society.
Zhang, Ri-Chao; Sun, Dan; Zhang, Ruirui; Lin, Wen-Feng; Macias-Montero, Manuel; Patel, Jenish; Askari, Sadegh; McDonald, Calum; Mariotti, Davide; Maguire, Paul
2017-01-01
Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The resulting AuNPs/PEDOT:PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT:PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT:PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT:PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces. PMID:28436454
NASA Astrophysics Data System (ADS)
Zhang, Ri-Chao; Sun, Dan; Zhang, Ruirui; Lin, Wen-Feng; Macias-Montero, Manuel; Patel, Jenish; Askari, Sadegh; McDonald, Calum; Mariotti, Davide; Maguire, Paul
2017-04-01
Conductive polymers have been increasingly used as fuel cell catalyst support due to their electrical conductivity, large surface areas and stability. The incorporation of metal nanoparticles into a polymer matrix can effectively increase the specific surface area of these materials and hence improve the catalytic efficiency. In this work, a nanoparticle loaded conductive polymer nanocomposite was obtained by a one-step synthesis approach based on room temperature direct current plasma-liquid interaction. Gold nanoparticles were directly synthesized from HAuCl4 precursor in poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The resulting AuNPs/PEDOT:PSS nanocomposites were subsequently characterized under a practical alkaline direct ethanol fuel cell operation condition for its potential application as an electrocatalyst. Results show that AuNPs sizes within the PEDOT:PSS matrix are dependent on the plasma treatment time and precursor concentration, which in turn affect the nanocomposites electrical conductivity and their catalytic performance. Under certain synthesis conditions, unique nanoscale AuNPs/PEDOT:PSS core-shell structures could also be produced, indicating the interaction at the AuNPs/polymer interface. The enhanced catalytic activity shown by AuNPs/PEDOT:PSS has been attributed to the effective electron transfer and reactive species diffusion through the porous polymer network, as well as the synergistic interfacial interaction at the metal/polymer and metal/metal interfaces.
Haberl, Johannes M; Sánchez-Ferrer, Antoni; Mihut, Adriana M; Dietsch, Hervé; Hirt, Ann M; Mezzenga, Raffaele
2013-06-21
We combine tensile strength analysis and X-ray scattering experiments to establish a detailed understanding of the microstructural coupling between liquid-crystalline elastomer (LCE) networks and embedded magnetic core-shell ellipsoidal nanoparticles (NPs). We study the structural and magnetic re-organization at different deformations and NP loadings, and the associated shape and magnetic memory features. In the quantitative analysis of a stretching process, the effect of the incorporated NPs on the smectic LCE is found to be prominent during the reorientation of the smectic domains and the softening of the nanocomposite. Under deformation, the soft response of the nanocomposite material allows the organization of the nanoparticles to yield a permanent macroscopically anisotropic magnetic material. Independent of the particle loading, the shape-memory properties and the smectic phase of the LCEs are preserved. Detailed studies on the magnetic properties demonstrate that the collective ensemble of individual particles is responsible for the macroscopic magnetic features of the nanocomposite.
Lecithin/chitosan nanoparticles for transdermal delivery of melatonin.
Hafner, Anita; Lovrić, Jasmina; Pepić, Ivan; Filipović-Grčić, Jelena
2011-01-01
In this study, the potential of lecithin/chitosan nanoparticles (NPs) as colloidal nanosystem for transdermal melatonin delivery was investigated. Mean diameter and zeta-potential of NPs differing in lecithin type (Lipoid S45 and S100) and chitosan content ranged between 113.7 and 331.5 nm and 4.6 and 31.2 mV, respectively. Melatonin loadings were up to 7.2%. The potential of lecithin/chitosan NPs to enhance transdermal melatonin delivery was investigated by determining the drug flux across dermatomed porcine skin and its skin deposition. Lecithin/chitosan NPs provided 1.3-2.3-fold higher flux compared to melatonin solution. The highest flux, 9.0 ± 0.21 µg/cm²/h, was observed for S45 lecithin/chitosan NPs with lecithin/chitosan weight ratio of 20:1. NP possible cytotoxicity in vitro was evaluated using human skin keratinocytes and fibroblasts. It was demonstrated that lecithin/chitosan NPs can be applied to skin cells at concentrations up to 200 µg/mL without inducing plasma membrane damage or cell viability decrease.
Bhatnagar, Priyanka; Kumari, Manisha; Pahuja, Richa; Pant, A B; Shukla, Y; Kumar, Pradeep; Gupta, K C
2018-06-01
To promote the specific targeting and elimination of CD44-positive cancer cells, berberine chloride (BRB)-encapsulated hyaluronic acid-grafted poly(lactic-co-glycolic acid) copolymer (BRB-d(HA)-g-PLGA) nanoparticles (NPs) were prepared. The targeted action of these NPs was compared to non-targeted BRB-loaded PLGA NPs and bulk BRB. The in vitro studies demonstrated faster release of BRB and increased cytotoxicity of BRB-d(HA)-g-PLGA NPs in Hela and MCF-7 cells in comparison to BRB-PLGA NPs and bulk BRB. The uptake of BRB-d(HA)-g-PLGA NPs was increased in case of MCF-7 cells as compared to HeLa cells owing to the higher expression of CD44 receptors on MCF-7 cells. The CD44 receptor-mediated uptake of these NPs was confirmed through competitive inhibition experiments. The in vitro results were further validated in vivo in Ehrlich Ascites Carcinoma (EAC)-bearing mice. EAC-bearing mice were injected intravenously with these NPs and the results obtained were compared with that of BRB-PLGA NPs and bulk BRB. BRB-d(HA)-g-PLGA NPs were found to significantly enhance apoptosis, sub-G1 content, life span, mean survival time, and ROS levels in EAC cells with subsequent decrease in mitochondrial membrane potential and tumor burden ion tumor-bearing mice. Taking into account the findings of in vitro and in vivo studies, the enhanced and targeted anti-tumor activity of HA-grafted PLGA copolymer-encapsulated NPs of BRB cannot be negated. Therefore, HA-grafted nanoparticle-based delivery of BRB may offer a promising and improved alternative for anti-tumor therapy.
Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route.
Mittal, Deepti; Md, Shadab; Hasan, Quamrul; Fazil, Mohammad; Ali, Asgar; Baboota, Sanjula; Ali, Javed
2016-01-01
The aim of the present study was to prepare and evaluate a rasagiline-loaded chitosan glutamate nanoparticles (RAS-CG-NPs) by ionic gelation of CG with tripolyphosphate anions (TPP). RAS-loaded CG-NPs were characterized for particle size, size distribution, encapsulation efficiency and in vitro drug release. The mean particles size, polydispersity index (PDI) and encapsulation efficiency was found to be 151.1 ± 10.31, 0.380 ± 0.01 and 96.43 ± 4.23, respectively. Biodistribution of RAS formulations in the brain and blood of mice following intranasal (i.n.) and intravenous (i.v.) administration was performed using HPLC analytical method. The drug concentrations in brain following the i.n. of CG-NPs were found to be significantly higher at all the time points compared to both drug (i.n.) and drug CG-NPs (i.v.). The Cmax (999.25 ng/ml) and AUC (2086.60 ng h/ml) of formulation CG-NPs (i.n) were found to be significantly higher than CG-NPs (i.v.) and RAS solution (i.n.). The direct transport percentage (DTP%) values of RAS-loaded CG-NPs (i.n.) as compared to drug solution (i.n.) increased from 66.27 ± 1.8 to 69.27 ± 2.1%. The results showed significant enhancement of bioavailability in brain, after administration of the RAS-loaded CG-NPs which could be a substantial achievement of direct nose to brain targeting in Parkinson's disease therapy.
Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj
2013-01-01
Purpose The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. Methods The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. Results sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. Conclusion The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation. PMID:24039397
Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj
2013-01-01
The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation.
Zeng, Liang; Yan, Jingna; Luo, Liyong; Ma, Mengjun; Zhu, Huiqun
2017-01-01
We were employing nanotechnology to improve the targeting ability of (−)-Epigallocatechin-3-gallate (EGCG) towards MCF-7 cells, and two kinds of EGCG nanoparticles (FA-NPS-PEG and FA-PEG-NPS) were obtained, besides, their characteristics and effects on MCF-7 cells were studied. The results indicated that (i) both FA-NPS-PEG and FA-PEG-NPS have high stabilities; (ii) their particles sizes were 185.0 ± 13.5 nm and 142.7 ± 7.2 nm, respectively; (iii) their encapsulation efficiencies of EGCG were 90.36 ± 2.20% and 39.79 ± 7.54%, respectively. (iv) there was no cytotoxicity observed in EGCG, FA-NPS-PEG and FA-PEG-NPS toward MCF-7 cells over all concentrations (0~400 μg/mL) tested; (v) EGCG, FA-NPS-PEG and FA-PEG-NPS inhibited MCF-7 cells proliferation in dose-dependent manners, with the average IC50 of 470.5 ± 33.0, 65.9 ± 0.4 and 66.6 ± 0.6 μg/mL; (vi) EGCG, FA-NPS-PEG and FA-PEG-NPS could modulated the expressions of several key regulatory proteins in PI3K-Akt pathway such as up-regulation of PTEN, p21 and Bax, and down-regulation of p-PDK1, p-AKT, CyclinD1 and Bcl-2, which gave an illustration about the mechanism by which EGCG nanoparticles inhibited MCF-7 cells proliferation. In this study, EGCG nanoparticles can significantly enhance the targeting ability and efficacy of EGCG, which is considered to an experimental foundation for further research on its activity, targeting ability and metabolism in vivo. PMID:28349962
Jin, Mingji; Jin, Guangming; Kang, Lin; Chen, Liqing; Gao, Zhonggao; Huang, Wei
2018-01-01
The co-delivery of chemotherapeutic agents and small interfering RNA (siRNA) within one cargo can enhance the anticancer outcomes through its synergistic therapeutic effects. We prepared smart polymeric nanoparticles (NPs) with pH-responsive and poly(ethylene glycol) (PEG)-detachable properties to systemically co-deliver paclitaxel (PTX) and siRNA against survivin gene for lung cancer therapy. The cationic polyethyleneimine-block-polylactic acid (PEI-PLA) was first synthesized and characterized, with good biocompatibility. PTX was encapsulated into the hydrophobic core of the PEI-PLA polymers by dialysis, and then the survivin siRNA was loaded onto the PTX-loaded NPs (PEI-PLA/PTX) through electrostatic interaction between siRNA and PEI block. Finally, the negatively charged poly(ethylene glycol)-block-poly(L-aspartic acid sodium salt) (PEG-PAsp) was coated onto the surface of NPs by electrostatic interaction to form final smart polymeric NPs with mean particle size of 82.4 nm and zeta potential of 4.1 mV. After uptake of NPs by tumor cells, the PEG-PAsp segments became electrically neutral owing to the lower endosome pH and consequently detached from the smart NPs. This process allowed endosomal escape of the NPs through the proton-sponge effect of the exposed PEI moiety. The resulting NPs achieved drug loading of 6.04 wt% and exhibited good dispersibility within 24 h in 10% fetal bovine serum (FBS). At pH 5.5, the NPs presented better drug release and cellular uptake than at pH 7.4. The NPs with survivin siRNA effectively knocked down the expression of survivin mRNA and protein owing to enhanced cell uptake of NPs. Cell counting kit-8 (CCK-8) assay showed that the NPs presented low systemic toxicity and improved antiproliferation effect of PTX on A549 cells. Moreover, in vivo studies demonstrated that accumulated NPs in the tumor site were capable of inhibiting the tumor growth and extending the survival rate of the mice by silencing the survivin gene and delivering PTX into tumor cells simultaneously. These results indicate that the prepared nano-vectors could be a promising co-delivery system for novel chemo/gene combination therapy.
Jin, Mingji; Jin, Guangming; Kang, Lin; Chen, Liqing; Gao, Zhonggao; Huang, Wei
2018-01-01
Background The co-delivery of chemotherapeutic agents and small interfering RNA (siRNA) within one cargo can enhance the anticancer outcomes through its synergistic therapeutic effects. Materials and methods We prepared smart polymeric nanoparticles (NPs) with pH-responsive and poly(ethylene glycol) (PEG)-detachable properties to systemically co-deliver paclitaxel (PTX) and siRNA against survivin gene for lung cancer therapy. The cationic polyethyleneimine-block-polylactic acid (PEI-PLA) was first synthesized and characterized, with good biocompatibility. PTX was encapsulated into the hydrophobic core of the PEI-PLA polymers by dialysis, and then the survivin siRNA was loaded onto the PTX-loaded NPs (PEI-PLA/PTX) through electrostatic interaction between siRNA and PEI block. Finally, the negatively charged poly(ethylene glycol)-block-poly(L-aspartic acid sodium salt) (PEG-PAsp) was coated onto the surface of NPs by electrostatic interaction to form final smart polymeric NPs with mean particle size of 82.4 nm and zeta potential of 4.1 mV. After uptake of NPs by tumor cells, the PEG-PAsp segments became electrically neutral owing to the lower endosome pH and consequently detached from the smart NPs. This process allowed endosomal escape of the NPs through the proton-sponge effect of the exposed PEI moiety. Results The resulting NPs achieved drug loading of 6.04 wt% and exhibited good dispersibility within 24 h in 10% fetal bovine serum (FBS). At pH 5.5, the NPs presented better drug release and cellular uptake than at pH 7.4. The NPs with survivin siRNA effectively knocked down the expression of survivin mRNA and protein owing to enhanced cell uptake of NPs. Cell counting kit-8 (CCK-8) assay showed that the NPs presented low systemic toxicity and improved antiproliferation effect of PTX on A549 cells. Moreover, in vivo studies demonstrated that accumulated NPs in the tumor site were capable of inhibiting the tumor growth and extending the survival rate of the mice by silencing the survivin gene and delivering PTX into tumor cells simultaneously. Conclusion These results indicate that the prepared nano-vectors could be a promising co-delivery system for novel chemo/gene combination therapy. PMID:29719390
He, Xuezhong; Ma, Junyu; Mercado, Angel E; Xu, Weijie; Jabbari, Esmaiel
2008-07-01
Biodegradable core-shell polymeric nanoparticles (NPs), with a hydrophobic core and hydrophilic shell, are developed for surfactant-free encapsulation and delivery of Paclitaxel to tumor cells. Poly (lactide-co-glycolide fumarate) (PLGF) and Poly (lactide-fumarate) (PLAF) were synthesized by condensation polymerization of ultra-low molecular weight poly(L: -lactide-co-glycolide) (ULMW PLGA) with fumaryl chloride (FuCl). Similarly, poly(lactide-co-ethylene oxide fumarate) (PLEOF) macromer was synthesized by reacting ultra-low molecular weight poly(L: -lactide) (ULMW PLA) and PEG with FuCl. The blend PLGF/PLEOF and PLAF/PLEOF macromers were self-assembled into NPs by dialysis. The NPs were characterized with respect to particle size distribution, morphology, and loading efficiency. The physical state and miscibility of Paclitaxel in NPs were characterized by differential scanning calorimetry. Tumor cell uptake and cytotoxicity of Paclitaxel loaded NPs were measured by incubation with HCT116 human colon carcinoma cells. The distribution of NPs in vivo was assessed with Apc(Min/+)mouse using infrared imaging. PLEOF macromer, due to its amphiphilic nature, acted as a surface active agent in the process of self-assembly which produced core-shell NPs with PLGF/PLAF and PLEOF macromers as the core and shell, respectively. The encapsulation efficiency ranged from 70 to 56% and it was independent of the macromer but decreased with increasing concentration of Paclitaxel. Most of the PLGF and PLAF NPs degraded in 15 and 28 days, respectively, which demonstrated that the release was dominated by hydrolytic degradation and erosion of the matrix. As the concentration of Paclitaxel was increased from 0 to 10, and 40 mug/ml, the viability of HCT116 cells incubated with free Paclitaxel decreased from 100 to 65 and 40%, respectively, while those encapsulated in PLGF/PLEOF NPs decreased from 93 to 54 and 28%. Groups with Paclitaxel loaded NPs had higher cytotoxicity compared to Paclitaxel directly added to the media at the same concentration. NPs acted as reservoirs to protect the drug from epimerization and hydrolysis while providing a sustained dose of Paclitaxel with time. Infrared image of the Apc(Min/+) mouse injected with NPs showed significantly higher concentration of NPs in the intestinal tissue.
Liu, Rong; Colby, Aaron H; Gilmore, Denis; Schulz, Morgan; Zeng, Jialiu; Padera, Robert F; Shirihai, Orian; Grinstaff, Mark W; Colson, Yolonda L
2016-09-01
The treatment outcomes for malignant peritoneal mesothelioma are poor and associated with high co-morbidities due to suboptimal drug delivery. Thus, there is an unmet need for new approaches that concentrate drug at the tumor for a prolonged period of time yielding enhanced antitumor efficacy and improved metrics of treatment success. A paclitaxel-loaded pH-responsive expansile nanoparticle (PTX-eNP) system is described that addresses two unique challenges to improve the outcomes for peritoneal mesothelioma. First, following intraperitoneal administration, eNPs rapidly and specifically localize to tumors. The rate of eNP uptake by tumors is an order of magnitude faster than the rate of uptake in non-malignant cells; and, subsequent accumulation in autophagosomes and disruption of autophagosomal trafficking leads to prolonged intracellular retention of eNPs. The net effect of these combined mechanisms manifests as rapid localization to intraperitoneal tumors within 4 h of injection and persistent intratumoral retention for >14 days. Second, the high tumor-specificity of PTX-eNPs leads to delivery of greater than 100 times higher concentrations of drug in tumors compared to PTX alone and this is maintained for at least seven days following administration. As a result, overall survival of animals with established mesothelioma more than doubled when animals were treated with multiple doses of PTX-eNPs compared to equivalent dosing with PTX or non-responsive PTX-loaded nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Min, Sun Young; Byeon, Hyeong Jun; Lee, Changkyu; Seo, Jisoo; Lee, Eun Seong; Shin, Beom Soo; Choi, Han-Gon; Lee, Kang Choon; Youn, Yu Seok
2015-10-15
Nanoparticle albumin-bound (nab™) technology is an effective way of delivering hydrophobic chemotherapeutics. We developed a one-pot/one-step formulation of paclitaxel (PTX)-bound albumin nanoparticles with embedded tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/PTX HSA-NP) for the treatment of pancreatic cancer. TRAIL/PTX HSA-NPs were fabricated using a high-pressure homogenizer at a TRAIL feeding ratio of 0.2%, 1.0%, and 2.0%. TRAIL/PTX HSA-NPs were spherical and became larger in size (170-230 nm) with increasing TRAIL amount (0.2-2.0%). The loading efficiencies of PTX were in the range of ∼86.4% and significantly low at 2.0% TRAIL (60.4%). Specifically, the inhibitory concentrations (IC50) of TRAIL (1.0 or 2.0%)/PTX HSA-NPs were >20-fold lower than that of plain PTX-HSA NP (0.032±0.06, 0.022±0.005, and 0.96±0.15 ng/ml, respectively) in pancreatic Mia Paca-2 cells. Considering TRAIL loading, bioactivity, and particle size, TRAIL(1.0%)/PTX HSA-NPs were determined as the optimal candidate for further studies. TRAIL(1.0%)/PTX HSA-NPs displayed substantially greater apoptotic activity than plain PTX HSA-NP in both FACS and TUNEL analysis. The loaded PTX and TRAIL were gradually released from the TRAIL(1.0%)/PTX HSA-NPs until ∼24 h, which is considered to be a sufficient time for delivery to the tumor tissue. TRAIL(1.0%)/PTX HSA-NP displayed markedly more antitumor efficacy than plain PTX HSA-NP in Mia Paca-2 cell-xenografted mice in terms of tumor volume (size) and weight (213.9 mm(3) and 0.18 g vs. 1126.8 mm(3) and 0.80 g, respectively). These improved in vitro and in vivo performances were due to the combined synergistic effects of PTX and TRAIL. We believe that this TRAIL/PTX HSA-NP would have potential as a novel apoptosis-based anticancer agent. Copyright © 2015 Elsevier B.V. All rights reserved.
Al Faraj, Achraf; Alotaibi, Basem; Shaik, Abjal Pasha; Shamma, Khaled Z; Al Jammaz, Ibrahim; Gerl, Jürgen
2015-01-01
Despite their advantageous chemical properties for nuclear imaging, radioactive sodium-22 (22Na) tracers have been excluded for biomedical applications because of their extremely long lifetime. In the current study, we proposed, for the first time, the use of 22Na radiotracers for pre-clinical applications by efficiently loading with silica nanoparticles (SiNPs) and thus offering a new life for this radiotracer. Crown-ether-conjugated SiNPs (300 nm; −0.18±0.1 mV) were successfully loaded with 22Na with a loading efficacy of 98.1%±1.4%. Noninvasive positron emission tomography imaging revealed a transient accumulation of 22Na-loaded SiNPs in the liver and to a lower extent in the spleen, kidneys, and lung. However, the signal gradually decreased in a time-dependent manner to become not detectable starting from 2 weeks postinjection. These observations were confirmed ex vivo by quantifying 22Na radioactivity using γ-counter and silicon content using inductively coupled plasma-mass spectrometry in the blood and the different organs of interest. Quantification of Si content in the urine and feces revealed that SiNPs accumulated in the organs were cleared from the body within a period of 2 weeks and completely in 1 month. Biocompatibility evaluations performed during the 1-month follow-up study to assess the possibility of synthesized nanocarriers to induce oxidative stress or DNA damage confirmed their safety for pre-clinical applications. 22Na-loaded nanocarriers can thus provide an innovative diagnostic agent allowing ultra-sensitive positron emission tomography imaging. On the other hand, with its long lifetime, onsite generators or cyclotrons will not be required as 22Na can be easily stored in the nuclear medicine department and be used on-demand. PMID:26504381
Wehrung, Daniel; Bi, Lipeng; Geldenhuys, Werner J; Oyewumi, Moses O
2013-06-01
The widespread clinical success with most gallium compounds in cancer therapy is markedly hampered by lack of tumor specific accumulation, poor tumor permeability and undesirable toxicity to healthy tissues. The aim of this work was to investigate for the first time antitumor mechanism of a new gallium compound (gallium acetylacetonate; GaAcAc) while assessing effectiveness of gelucire-stabilized nanoparticles (NPs) for potential application in gallium-based lung cancer therapy. NPs loaded with GaAcAc (Ga-NPs) were prepared using mixtures of cetyl alcohol with Gelucire 44/14 (Ga-NP-1) or Gelucire 53/13 (Ga-NP-2) as matrix materials. Of special note from this work is the direct evidence of involvement of microtubule disruption in antitumor effects of GaAcAc on human lung adenocarcinoma (A549). In-vivo tolerability studies were based on plasma ALT, creatinine levels and histopathological examination of tissues. The superior in-vivo antitumor efficacy of Ga-NPs over GaAcAc was depicted in marked reduction of tumor weight and tumor volume as well as histological assessment of excised tumors. Compared to free GaAcAc, Ga-NPs showed a 3-fold increase in tumor-to-blood gallium concentrations with minimized overall exposure to healthy tissues. Overall, enhancement of antitumor effects of GaAcAc by gelucire-stabilized NPs coupled with reduced exposure of healthy tissues to gallium would likely ensure desired therapeutic outcomes and safety of gallium-based cancer treatment.
Ding, Yi; Qiao, Youbei; Wang, Min; Zhang, Huinan; Li, Liang; Zhang, Yikai; Ge, Jie; Song, Ying; Li, Yuwen; Wen, Aidong
2016-08-01
Acetyl-11-keto-β-boswellic acid (AKBA), a main active constituent from Boswellia serrata resin, is a novel candidate for therapy of cerebral ischemia-reperfusion (I/R) injury. Nevertheless, its poor solubility in aqueous solvent, bioavailability, and rapid clearance limit its curative efficacy. To enhance its potency, in our study, AKBA-loaded o-carboxymethyl chitosan nanoparticle (AKBA-NP) delivery system was synthesized. The transmission electron microscopy and transmission electron microscope images of AKBA-NPs suggested that particle size was 132 ± 18 nm, and particles were spherical in shape with smooth morphology. In pharmacokinetics study, AKBA-NPs apparently increases the area under the curve of plasma concentration-time and prolonged half-life compared with AKBA. The tissue distribution study confirmed that AKBA-NPs had a better brain delivery efficacy in comparison with AKBA. The results from our pharmacodynamic studies showed that AKBA-NPs possess better neuroprotection compared with AKBA in primary neurons with oxygen-glucose deprivation (OGD) model and in animals with middle cerebral artery occlusion (MCAO) model. Additionally, AKBA-NPs modulate antioxidant and anti-inflammatory pathways more effectively than AKBA by increasing nuclear erythroid 2-related factor 2 and heme oxygenase-1 expression, and by decreasing nuclear factor-kappa B and 5-lipoxygenase expression. Collectively, our results suggest that AKBA-NPs serve as a potent delivery vehicle for AKBA in cerebral ischemic therapy.
Hashemian, Mona; Anissian, Diana; Ghasemi-Kasman, Maryam; Akbari, Atefeh; Khalili-Fomeshi, Mohsen; Ghasemi, Shahram; Ahmadi, Fatemeh; Moghadamnia, Ali Akbar; Ebrahimpour, Anahita
2017-10-03
Despite several beneficial effects of curcumin, its medical application has been hampered due to low water solubility. To improve the aqueous solubility of curcumin, it has been loaded on chitosan (CS)-alginate (ALG) - sodium tripolyphosphate (STPP) nanoparticles (NPs). Then, the effect of curcumin NPs on memory improvement and glial activation was investigated in pentylenetetrazol (PTZ)-induced kindling model. Male NMRI mice have received the daily injection of curcumin NPs at dose of 12.5 or 25mg/kg. All interventions were injected intraperitoneally (i.p), 10days before PTZ administration and the injections were continued until 1h before each PTZ injection. Spatial learning and memory was evaluated using Morris water maze test after the 7th PTZ injection. Animals have received 10 injections of PTZ and then, brain tissues were removed for histological evaluation. Nissl staining was used to determine the level of cell death in hippocampus and immunostaining method was performed against NeuN and GFAP/Iba1 for assessment of neuronal density and glial activation respectively. Behavioral results showed that curcumin NPs exhibit anticonvulsant activity and prevent cognitive impairment in fully kindled animals. The level of cell death and glial activation reduced in animals which have received curcumin NPs compared to those received free curcumin. To conclude, these findings suggest that curcumin NPs effectively ameliorate memory impairment and attenuate the level of activated glial cells in a mice model of chronic epilepsy. Copyright © 2017. Published by Elsevier Inc.
Validation of a Janus role of methotrexate-based PEGylated chitosan nanoparticles in vitro
NASA Astrophysics Data System (ADS)
Luo, Fanghong; Li, Yang; Jia, Mengmeng; Cui, Fei; Wu, Hongjie; Yu, Fei; Lin, Jinyan; Yang, Xiangrui; Hou, Zhenqing; Zhang, Qiqing
2014-07-01
Recently, methotrexate (MTX) has been used to target to folate (FA) receptor-overexpressing cancer cells for targeted drug delivery. However, the systematic evaluation of MTX as a Janus-like agent has not been reported before. Here, we explored the validity of using MTX playing an early-phase cancer-specific targeting ligand cooperated with a late-phase therapeutic anticancer agent based on the PEGylated chitosan (CS) nanoparticles (NPs) as drug carriers. Some advantages of these nanoscaled drug delivery systems are as follows: (1) the NPs can ensure minimal premature release of MTX at off-target site to reduce the side effects to normal tissue; (2) MTX can function as a targeting ligand at target site prior to cellular uptake; and (3) once internalized by the target cell, the NPs can function as a prodrug formulation, releasing biologically active MTX inside the cells. The (MTX + PEG)-CS-NPs presented a sustained/proteases-mediated drug release. More importantly, compared with the PEG-CS-NPs and (FA + PEG)-CS-NPs, the (MTX + PEG)-CS-NPs showed a greater cellular uptake. Furthermore, the (MTX + PEG)-CS-NPs demonstrated a superior cytotoxicity compare to the free MTX. Our findings therefore validated that the MTX-loaded PEGylated CS-NPs can simultaneously target and treat FA receptor-overexpressing cancer cells.
Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G
2015-08-19
Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.
Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.
2015-01-01
Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906
Dhivya, Raman; Ranjani, Jothi; Rajendhran, Jeyaprakash; Mayandi, Jeyanthinath; Annaraj, Jamespandi
2018-01-01
Curcumin loaded ZnO nanoparticles were successfully synthesised and encapsulated with co-polymer PMMA-AA (Cur/PMMA-AA/ZnO NPs). The ZnO nanoparticles have been converted as good cargo materials to carry the well-known hydrophobic drug curcumin by surface functionalization. Physical characteristics of these novel nanomaterials have been studied with transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) in conjunction with spectral techniques. A narrow particle size distribution with an average value of 42nm was found via TEM. Most importantly, the pH-responsive release of curcumin from the nano-vehicle ensures safer, more controlled delivery of the drug at physiological pH. The drug entrapment efficiency and loading was evaluated and the in vitro efficacy as anticancer drug delivery vehicle was analyzed. The potential toxicity of Cur/PMMA-AA/ZnO NPs was studied by using AGS gastric cancer cell lines via MTT assay. These results revealed that the proposed nanomaterials induce a remarkable cell death in in-vitro models. The multifunctional properties of Cur/PMMA-AA/ZnO NPs may open up new avenues in cancer therapy through overcoming the limitations of conventional cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew
2015-03-01
Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Shuang; Sun, Yanhui; Kuang, Xiao; Hou, Shanshan; Yang, YinXian; Wang, Zhenjie; Liu, Hongzhuo
2018-04-21
We report a proof-of-concept for the development of mitochondria-targeting nanoparticles (NPs) loaded with geranylgeranylacetone (GGA) to protect against a wide range of gentamicin-induced ototoxicity symptoms in a zebrafish model. The polymeric NPs were functionalized with a mitochondrial-homing peptide (d‑Arg‑Dmt‑Orn‑Phe‑NH 2 ) and exhibited greater mitochondrial uptake and lower gentamicin uptake in hair cells via mechanotransduction (MET) channels and tuned machinery in the hair bundle than the ordinary NPs did. Blockade of MET channels rapidly reversed this effect, indicating the reversible responses of hair cells to the targeting NPs were mediated by MET channels. Pretreatment of hair cells with mitochondria-targeting GGA-loaded NPs exhibited a superior acute or chronic protective efficacy against subsequent exposure to gentamicin compared with unmodified formulations. Mitochondrial delivery regulating the death pathway of hair cells appeared to cause the therapeutic failure of untargeted NPs. Thus, peptide-directed mitochondria-targeting NPs may represent a novel therapeutic strategy for mitochondrial dysfunction-linked diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong
2017-01-01
In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level. PMID:28406431
Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong
2017-04-13
In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level.
Tang, Qin; Cui, Jianyu; Tian, Zhonghua; Sun, Jiangchuan; Wang, Zhigang; Chang, Shufang; Zhu, Shenyin
2017-01-01
Photodynamic therapy and sonodynamic therapy are developing, minimally invasive, and site-specific modalities for cancer therapy. A combined strategy PSDT (photodynamic therapy followed by sonodynamic therapy) has been proposed in this study. Here, we aimed to develop novel biodegradable poly(DL-lactide- co -glycolic acid) phase-transition nanoparticles simultaneously loaded with oxygen and indocyanine green (OI-NPs) and to investigate the cytotoxic effects and the potential mechanisms of OI-NP-mediated PSDT on MH7A synoviocytes. The OI-NPs were prepared using a modified double emulsion method and the physicochemical properties were determined. The cellular uptake of OI-NPs was detected by confocal microscopy and flow cytometry. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay, flow cytometry, and Hoechst 33342/propidium iodide double staining were used to determine the cytotoxic effect of OI-NP-mediated PSDT on MH7A cells. Fluorescence microscope and fluorescence microplate reader were used to detect reactive oxygen species (ROS) generation. The OI-NPs were a stable and efficient carrier to deliver oxygen and indocyanine green, and enhanced cellular uptake was observed in MH7A cells with the nanoparticles. OI-NP-mediated PSDT caused more serious cell damage and more evident cell apoptosis, compared with other groups. Furthermore, increased generation of intracellular ROS was detected in MH7A cells treated with PSDT. Interestingly, the OI-NP-mediated PSDT-induced cell viability loss was effectively rescued by pretreatment with the ROS scavenger N -acetylcysteine. Multifunctional OI-NPs were successfully developed and characterized for the combined delivery of oxygen and indocyanine green, and OI-NP-mediated PSDT would be a potential cytotoxic treatment for MH7A cells. This study may provide a novel strategy for the treatment of RA and develop a model of theranostic application through phase-transition nanoparticle-mediated PSDT in the future.
Tang, Qin; Cui, Jianyu; Tian, Zhonghua; Sun, Jiangchuan; Wang, Zhigang; Chang, Shufang; Zhu, Shenyin
2017-01-01
Background Photodynamic therapy and sonodynamic therapy are developing, minimally invasive, and site-specific modalities for cancer therapy. A combined strategy PSDT (photodynamic therapy followed by sonodynamic therapy) has been proposed in this study. Here, we aimed to develop novel biodegradable poly(DL-lactide-co-glycolic acid) phase-transition nanoparticles simultaneously loaded with oxygen and indocyanine green (OI-NPs) and to investigate the cytotoxic effects and the potential mechanisms of OI-NP–mediated PSDT on MH7A synoviocytes. Methods The OI-NPs were prepared using a modified double emulsion method and the physicochemical properties were determined. The cellular uptake of OI-NPs was detected by confocal microscopy and flow cytometry. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay, flow cytometry, and Hoechst 33342/propidium iodide double staining were used to determine the cytotoxic effect of OI-NP–mediated PSDT on MH7A cells. Fluorescence microscope and fluorescence microplate reader were used to detect reactive oxygen species (ROS) generation. Results The OI-NPs were a stable and efficient carrier to deliver oxygen and indocyanine green, and enhanced cellular uptake was observed in MH7A cells with the nanoparticles. OI-NP–mediated PSDT caused more serious cell damage and more evident cell apoptosis, compared with other groups. Furthermore, increased generation of intracellular ROS was detected in MH7A cells treated with PSDT. Interestingly, the OI-NP–mediated PSDT-induced cell viability loss was effectively rescued by pretreatment with the ROS scavenger N-acetylcysteine. Conclusion Multifunctional OI-NPs were successfully developed and characterized for the combined delivery of oxygen and indocyanine green, and OI-NP–mediated PSDT would be a potential cytotoxic treatment for MH7A cells. This study may provide a novel strategy for the treatment of RA and develop a model of theranostic application through phase-transition nanoparticle-mediated PSDT in the future. PMID:28123298
Behnke, Thomas; Mathejczyk, Julia E; Brehm, Robert; Würth, Christian; Gomes, Fernanda Ramos; Dullin, Christian; Napp, Joanna; Alves, Frauke; Resch-Genger, Ute
2013-01-01
Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression. Copyright © 2012 Elsevier Ltd. All rights reserved.
Su, Chia-Wei; Chiang, Min-Yu; Lin, Yu-Ling; Tsai, Nu-Man; Chen, Yen-Po; Li, Wei-Ming; Hsu, Chin-Hao; Chen, San-Yuan
2016-05-01
For oral anti-cancer drug delivery, a new chitosan-lipid nanoparticle with sodium dodecyl sulfate modification was designed and synthesized using a double emulsification. TEM examination showed that the DOX-loaded nanoparticles, termed D-PL/TG NPs, exhibited a unique core-shell configuration composed of multiple amphiphilic chitosan-lecithin reverse micelles as the core and a triglyceride shell as a physical barrier to improve the encapsulation efficiency and reduce the drug leakage. In addition, the D-PL/TG NPs with sodium dodecyl sulfate modification on the surface have enhanced stability in the GI tract and increased oral bioavailability of doxorubicin. In vitro transport studies performed on Caco-2 monolayers indicated that the D-PL/TG NPs enhanced the permeability of DOX in the Caco-2 monolayers by altering the transport pathway from passive diffusion to transcytosis. The in vivo intestinal absorption assay suggested that the D-PL/TG NPs were preferentially absorbed through the specialized membranous epithelial cells (M cells) of the Peyer's patches, resulting in a significant improvement (8-fold) in oral bioavailability compared to that of free DOX. The experimental outcomes in this work demonstrate that the D-PL/TG NPs provide an exciting opportunity for advances in the oral administration of drugs with poor bioavailability that are usually used in treating tough and chronic diseases.
Chen, Long Xia; Ni, Xiao Ling; Zhang, Heng; Wu, Min; Liu, Jing; Xu, Shan; Yang, Ling Lin; Fu, Shao Zhi; Wu, Jingbo
2018-01-01
Thalidomide (THA) is an angiogenesis inhibitor and an efficient inhibitor of the tumor necrosis factor-α (TNF-α). However, the clinical application of THA has been limited due to hydrophobicity of the compound. To increase the water solubility of THA and in order to evaluate the anticancer abilities of this material on human lung carcinoma, methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanoparticles loaded with THA (THA-NPs) were prepared. The synthesis of THA-NPs was carried out via a dialysis method with relative satisfactory encapsulation efficiency, loading capacity, size distribution, and zeta potential. A cytotoxicity assay demonstrated that THA-NPs inhibited the growth of cells in a dose-dependent manner. The evaluation of anti-tumor activity in vivo showed that THA-NPs could inhibit tumor growth and prolong the survival rate of tumor-bearing mice. Immunohistochemical analysis indicated that THA-NPs inhibited cell proliferation (Ki-67 positive rate, 32.8%±4.2%, P <0.01), and resulted in a decreased rate of the tumor tissue microvessel density (3.87%±0.77%, P <0.01), VEGF (26.67%±4.02%, P <0.01), and TNF-α (75.21±6.85 ng/mL, P <0.01). In general, the drug delivery system reported herein may shed light on future targeted therapy in lung cancer treatment.
Lin, Xi; Yan, Shu-Zhen; Qi, Shan-Shan; Xu, Qiao; Han, Shuang-Shuang; Guo, Ling-Yuan; Zhao, Ning; Chen, Shuang-Lin; Yu, Shu-Qin
2017-01-01
Photodynamic therapy (PDT) has emerged as a potent novel therapeutic modality that induces cell death through light-induced activation of photosensitizer. But some photosensitizers have characteristics of poor water-solubility and non-specific tissue distribution. These characteristics become main obstacles of PDT. In this paper, we synthesized a targeting drug delivery system (TDDS) to improve the water-solubility of photosensitizer and enhance the ability of targeted TFR positive tumor cells. TDDS is a transferrin-modified Poly(D,L-Lactide-co-glycolide (PLGA) and carboxymethyl chitosan (CMC) nanoparticle loaded with a photosensitizer hypocrellin A (HA), named TF-HA-CMC-PLGA NPs. Morphology, size distribution, Fourier transform infrared (FT-IR) spectra, encapsulation efficiency, and loading capacity of TF-HA-CMC-PLGA NPs were characterized. In vitro TF-HA-CMC-PLGA NPs presented weak dark cytotoxicity and significant photo-cytotoxicity with strong reactive oxygen species (ROS) generation and apoptotic cancer cell death. In vivo photodynamic antitumor efficacy of TF-HA-CMC-PLGA NPs was investigated with an A549 (TFR positive) tumor-bearing model in male athymic nude mice. TF-HA-CMC-PLGA NPs caused tumor delay with a remarkable tumor inhibition rate of 63% for 15 days. Extensive cell apoptosis in tumor tissue and slight side effects in normal organs were observed. The results indicated that TDDS has great potential to enhance PDT therapeutic efficacy. PMID:29209206
Ibrahim, Mohammed Mostafa; Abd-Elgawad, Abd-Elgawad Helmy; Soliman, Osama Abd-Elazeem; Jablonski, Monica M
2016-12-01
A spontaneous emulsification and/or solvent diffusion method was used for the preparation of celecoxib-loaded nanoparticles (NPs) using polymers, including chitosan (CS), sodium alginate, poly-ε-caprolactone (PCL), poly-l-lactide, and poly-d,l-lactide-co-glycolide. NPs were incorporated into vehicles (eye drops, in situ gelling system, and gel). Formulations were subjected to an accelerated stability study by storing them at elevated temperatures of 30, 35, and 45°C for 6 months. Formulations were evaluated monthly for general appearance, pH, viscosity, particle size, polydispersity index, zeta potential, and drug content. Gels containing CS-NPs and PCL-NPs were selected for an ocular pharmacokinetics study using Sprague-Dawley rats due to their high stability and long shelf lives (24.56 and 33.76 months, respectively). The gel improved NP stability by keeping it inside its network structure, which protected them from aggregation and interacting with water. Our formulations improved celecoxib bioavailability due to their bioadhesivness, thus preventing their rapid removal. Also, NPs acted as drug reservoirs that adhered to eye surface and continuously released the drug. The availability of celecoxib in all eye tissues and its absence in plasma suggests that our formulation could be used for anterior eye disorders and also for treatment of diseases associated with the posterior eye with no systemic side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Self-assembled albumin nanoparticles as a nanocarrier for aclacinomycin A.
Gong, Guangming; Liu, Wenya; Wang, Shudong
2016-11-18
This study aimed to reduce the cytotoxicity and improve the targeting of aclacinomycin (ACM) by covalently coupling it with amino-oxyacetic acid (AOA) to generate an active intermediate, AOA-ACM. AOA-ACM was conjugated with self-assembled human serum albumin (HSA) nanoparticles constructed using tris(2-carboxyethyl)phosphine (TCEP) as disulfide bond breaking molecules in an 'opening stage-intermediate-closing stage' route, in which the hydrophobic interaction, interchange of sulfhydryl and hydrogen bond may be the key factors in the assembling process. Conjugation between ACM and albumin nanoparticles was found to occur at an ACM ketone site using 1 H-NMR and 13 C-NMR matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass analysis indicated that the drug loading efficiency of ACM conjugated with HSA nanoparticles (NPs-ACM) was 7.4% (molar ratio = 6:1). The release of NPs-ACM was pH dependent. In vivo studies indicated that NPs-ACM exhibited fourfold higher tumor targeting capability on S180-tumor-bearing mice compared with the free ACM (p < 0.05). The cytotoxictiy and cardiotoxicity of NPs-ACM was reduced compared with the free ACM. Albumin carrier altered the blood pharmacokinetics and distribution of ACM. Hence, the NPs-ACM prodrug is ideal tumor targeting drug carriers for ACM, and the easy approach developed in this study for active intermediate and prodrug preparation can be applied to other pharmacological substances containing ketone groups. The method of preparing HSA-blank nanoparticles through TCEP reduction could be adopted to improve the water solubility of lipophilic drugs and their tumor-targeting specificity by fabricating HSA-lipophilic drug nanoparticles.
Amato, Dahlia N.; Amato, Douglas V.; Mavrodi, Olga V.; Braasch, Dwaine A.; Walley, Susan E.; Douglas, Jessica R.
2017-01-01
The synthesis of antimicrobial thymol/carvacrol-loaded polythioether nanoparticles (NPs) via a one-pot, solvent-free miniemulsion thiol-ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as “solvents” for the thiol-ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (>95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow-release and delivery of thymol/carvacrol-combination payloads that exhibit inhibitory and bactericidal activity (>99.9% kill efficiency at 24 h) against gram-positive and gram-negative bacteria, including both saprophytic (Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 25922) and pathogenic species (E. coli ATCC 43895, Staphylococcus aureus RN6390, and Burkholderia cenocepacia K56-2). This report is among the first to demonstrate antimicrobial efficacy of essential oil-loaded nanoparticles against B. cenocepacia – an innately resistant opportunistic pathogen commonly associated with debilitating respiratory infections in cystic fibrosis. Although a model platform, these results point to promising pathways to particle-based delivery of plant-derived extracts for a range of antimicrobial applications, including active packaging materials, topical antiseptics, and innovative therapeutics. PMID:26946055
Shi, Chunshan; Yu, Haiyang; Sun, Dejun; Ma, Lili; Tang, Zhaohui; Xiao, Qiusheng; Chen, Xuesi
2015-05-01
Cisplatin-loaded poly(l-glutamic acid)-g-methoxy poly(ethylene glycol 5K) nanoparticles (CDDP-NPs) were characterized and exploited for the treatment of non-small cell lung carcinoma (NSCLC). In vitro metabolism experiments showed that a glutamic acid 5-mPEG ester [CH3O(CH2CH2O)nGlu] was generated when the poly(l-glutamic acid)-g-methoxy poly(ethylene glycol 5K) (PLG-g-mPEG5K) was incubated with HeLa cells. This suggests that the poly(glutamic acid) backbone of the PLG-g-mPEG5K is biodegradable. Furthermore, the size of the CDDP-NPs in an aqueous solution was affected by varying the pH (5.0-8.0) and their degradation rate was dependent on temperature. The CDDP-NPs could also bind to the model nucleotide 2'-deoxyguanosine 5'-monophosphate, indicating a biological activity similar to cisplatin. The CDDP-NPs showed a significantly lower peak renal platinum concentration after a single systemic administration when compared to free cisplatin. In vivo experiments with a Lewis lung carcinoma (LLC) model showed that the CDDP-NPs suppressed the growth of tumors. In addition, LLC tumor-bearing mice treated with the CDDP-NPs (5mg/kg cisplatin eq.) showed much longer survival rates (median survival time: 51days) as compared with mice treated with free cisplatin (median survival time: 18days), due to the acceptable antitumor efficacy and low systemic toxicity of CDDP-NPs. These results suggest that the CDDP-NPs may be successfully applied to the treatment of NSCLC. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhang, Mingzhen; Xu, Changlong; Liu, Dandan; Han, Moon Kwon; Wang, Lixin; Merlin, Didier
2018-01-24
Oral drug delivery is the most attractive pathway for ulcerative colitis [UC] therapy, since it has many advantages. However, this strategy has encountered many challenges, including the instability of drugs in the gastrointestinal tract [GT], low targeting of disease tissues, and severe adverse effects. Nanoparticles capable of colitis tissue-targeted delivery and site-specific drug release may offer a unique and therapeutically effective system that addresses these formidable challenges. We used a versatile single-step surface-functionalising technique to prepare PLGA/PLA-PEG-FA nanoparticles loaded with the ginger active compound, 6-shogaol [NPs-PEG-FA/6-shogaol]. The therapeutic efficacy of NPs-PEG-FA/6-shogaol was evaluated in the well-established mouse model of dextran sulphate sodium [DSS]-induced colitis. NPs-PEG-FA exhibited very good biocompatibility both in vitro and in vivo. Subsequent cellular uptake experiments demonstrated that NPs-PEG-FA could undergo efficient receptor-mediated uptake by colon-26 cells and activated Raw 264.7 macrophage cells. In vivo, oral administration of NPs-PEG-FA/6-shogaol encapsulated in a hydrogel system [chitosan/alginate] significantly alleviated colitis symptoms and accelerated colitis wound repair in DSS-treated mice by regulating the expression levels of pro-inflammatory [TNF-α, IL-6, IL-1β, and iNOS] and anti-inflammatory [Nrf-2 and HO-1] factors. Our study demonstrates a convenient, orally administered 6-shogaol drug delivery system that effectively targets colitis tissue, alleviates colitis symptoms, and accelerates colitis wound repair. This system may represent a promising therapeutic approach for treating inflammatory bowel disease [IBD]. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Luo, Binhua; Wang, Siqi; Rao, Rong; Liu, Xuhan; Xu, Haibo; Wu, Yun; Yang, Xiangliang; Liu, Wei
2016-04-01
The diagnosis of malignant brain gliomas is largely based on magnetic resonance imaging (MRI) with contrast agents. In recent years, nano-sized contrast agents have been developed for improved MRI diagnosis. In this study, oleylamine-coated Fe3O4 magnetic nanoparticles (OAM-MNPs) were synthesized with thermal decomposition method and encapsulated in novel amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer nanoparticles. The OAM-MNP-loaded PAEEP-PLLA nanoparticles (M-PAEEP-PLLA-NPs) were further conjugated with lactoferrin (Lf) for glioma tumor targeting. The Lf-conjugated M-PAEEP-PLLA-NPs (Lf-M-PAEEP-PLLA-NPs) were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The average size of OAM-MNPs, M-PAEEP-PLLA-NPs, and Lf-M-PAEEP-PLLA-NPs were 8.6 ± 0.3, 165.7 ± 0.6, and 218.2 ± 0.4 nm, with polydispersity index (PDI) of 0.185 ± 0.023, 0.192 ± 0.021, and 0.224 ± 0.036, respectively. TEM imaging showed that OAM-MNPs were monodisperse and encapsulated in Lf-M-PAEEP-PLLA-NPs. TGA analysis showed that the content of iron oxide nanoparticles was 92.8 % in OAM-MNPs and 45.2 % in Lf-M-PAEEP-PLLA-NPs. VSM results indicated that both OAM-MNPs and Lf-M-PAEEP-PLLA-NPs were superparamagnetic, and the saturated magnetic intensity were 77.1 and 74.8 emu/g Fe. Lf-M-PAEEP-PLLA-NPs exhibited good biocompatibility in cytotoxicity assay. The high cellular uptake of Lf-M-PAEEP-PLLA-NPs in C6 cells indicated that Lf provided effective targeting for the brain tumor cells. The T 2 relaxation rate ( r 2) of M-PAEEP-PLLA-NPs and Lf-M-PAEEP-PLLA-NPs were calculated to be 167.2 and 151.3 mM-1 s-1. In MRI on Wistar rat-bearing glioma tumor, significant contrast enhancement could clearly appear at 4 h after injection and last 48 h. Prussian blue staining of the section clearly showed the retention of Lf-M-PAEEP-PLLA-NPs in tumor tissues. The results from the in vitro and in vivo MRI indicated that Lf-M-PAEEP-PLLA-NPs possessed strong, long-lasting, tumor targeting, and enhanced tumor MRI contrast ability. Lf-M-PAEEP-PLLA-NPs represent a promising nano-sized MRI contrast agent for brain glioma targeting MRI.
Dorati, Rossella; DeTrizio, Antonella; Spalla, Melissa; Migliavacca, Roberta; Pagani, Laura; Pisani, Silvia; Chiesa, Enrica; Modena, Tiziana; Genta, Ida
2018-01-01
Nanotechnology is a promising approach both for restoring or enhancing activity of old and conventional antimicrobial agents and for treating intracellular infections by providing intracellular targeting and sustained release of drug inside infected cells. The present paper introduces a formulation study of gentamicin loaded biodegradable nanoparticles (Nps). Solid-oil-in water technique was studied for gentamicin sulfate nanoencapsulation using uncapped Polylactide-co-glycolide (PLGA-H) and Polylactide-co-glycolide-co-Polyethylenglycol (PLGA-PEG) blends. Screening design was applied to optimize: drug payload, Nps size and size distribution, stability and resuspendability after freeze-drying. PLGA-PEG concentration resulted most significant factor influencing particles size and drug content (DC): 8 w/w% DC and 200 nm Nps were obtained. Stirring rate resulted most influencing factor for size distribution (PDI): 700 rpm permitted to obtain homogeneous Nps dispersion (PDI = 1). Further experimental parameters investigated, by 23 screening design, were: polymer blend composition (PLGA-PEG and PLGA-H), Polyvinylalcohol (PVA) and methanol concentrations into aqueous phase. Drug content was increased to 10.5 w/w%. Nanoparticle lyophilization was studied adding cryoprotectants, polyvinypirrolidone K17 and K32, and sodiumcarboxymetylcellulose. Freeze-drying protocol was optimized by a mixture design. A freeze-dried Nps powder free resuspendable with stable Nps size and payload, was developed. The powder was tested on clinic bacterial isolates demonstrating that after encapsulation, gentamicin sulfate kept its activity. PMID:29329209
NASA Astrophysics Data System (ADS)
Wang, Ying; Guo, Miao; Lu, Yu; Ding, Li-Ying; Ron, Wen-Ting; Liu, Ya-Qing; Song, Fei-Fei; Yu, Shu-Qin
2012-12-01
Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work might provide a new insight into the design of pharmacologically inactive excipients that can serve as P-gp modulators instead of drugs that are P-gp inhibitors.
Xing, Lingxi; Shi, Qiusheng; Zheng, Kailiang; Shen, Ming; Ma, Jing; Li, Fan; Liu, Yang; Lin, Lizhou; Tu, Wenzhi; Duan, Yourong; Du, Lianfang
2016-01-01
Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been shown to significantly increase the cellular uptake in vitro and drug retention in vivo, suggesting a promising strategy for cancer therapy. In this study, we synthesized pancreatic cancer-targeting organic NPs that were modified with anti CA19-9 antibody and encapsulated paclitaxol (PTX). The three-block copolymer methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) constituted the skeleton of the NPs. We speculated that the PTX-NPs-anti CA19-9 would circulate long-term in vivo, "actively target" pancreatic cancer cells, and sustainably release the loaded PTX while UMMD would "passively target" the irradiated tumor and effectively increase the permeability of cell membrane and capillary gaps. Our results demonstrated that the combination of PTX-NPs-anti CA19-9 with UMMD achieved a low IC50, significant cell cycle arrest, and cell apoptosis in vitro. In mouse pancreatic tumor xenografts, the combined application of PTX-NP-anti CA19-9 NPs with UMMD attained the highest tumor inhibition rate, promoted the pharmacokinetic profile by increasing AUC, t1/2, and mean residence time (MRT), and decreased clearance. Consequently, the survival of the tumor-bearing nude mice was prolonged without obvious toxicity. The dynamic change in cellular uptake, targeted real-time imaging, and the concentration of PTX in the plasma and tumor were all closely associated with the treatment efficacy both in vitro and in vivo. Our study suggests that PTX-NP-anti CA19-9 NPs combined with UMMD is a promising strategy for the treatment of pancreatic cancer.
Novel galactosylated biodegradable nanoparticles for hepatocyte-delivery of oridonin.
Wang, Ying; Liu, Xinquan; Liu, Guangpu; Guo, Hejian; Li, Caiyun; Zhang, Yongchun; Zhang, Fang; Zhao, Zhongxi; Cheng, Huiling
2016-04-11
Nanoparticles based on the newly synthesized copolymers of linear PLGA blocked with two TPGS ends and galactosylated TPGS were successfully constructed as carriers of oridonin for liver-targeting. The novel copolymers were characterized by (1)H-NMR and TGA. The drug-loaded nanoparticles were prepared by a nanoprecipitation technique and characterized in terms of physicochemical properties, such as particle size, zeta potential, morphology, encapsulation efficiency, in vitro drug release behavior and physical state of the entrapped drug. The ORI-Gal-PT NPs were found to have the highest antitumor efficacy in comparison with the oridonin solution and non-galactosylated nanoparticles and induced a higher apoptotic rate of tumor cells. The targeting nanoparticles could enhance the therapeutic effect of oridonin by increasing uptake of the nanoparticles through asialoglycoprotein receptor-mediated endocytosis. The ORI-Gal-PT NPs system could be a highly promising drug delivery system to be used in liver cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta
2016-08-01
The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.
Lai, Yungchieh; Rutigliano, Michael N; Veser, Götz
2015-09-29
We report a straightforward and transferrable synthesis strategy to encapsulate metal oxide nanoparticles (NPs) in mesoporous ZSM-5 via the encapsulation of NPs into silica followed by conversion of the NP@silica precursor to NP@ZSM-5. The systematic bottom-up approach allows for straightforward, precise control of both the metal weight loading and size of the embedded NP and yields uniform NP@ZSM-5 microspheres composed of stacked ZSM-5 nanorods with substantial mesoporosity. Key to the synthesis is the timed release of the embedded NPs during dissolution of the silica matrix in the hydrothermal conversion step, which finely balances the rate of NP release with the rate of SiO2 dissolution and the subsequent nucleation of aluminosilicate. The synthesis approach is demonstrated for Zn, Fe, and Ni oxide encapsulation in ZSM-5 but can be expected to be broadly transferrable for the encapsulation of metal and metal oxide nanoparticles into other zeolite structures.
Gold Nanoparticles of Diameter 13 nm Induce Apoptosis in Rabbit Articular Chondrocytes
NASA Astrophysics Data System (ADS)
Huang, Hao; Quan, Ying-yao; Wang, Xiao-ping; Chen, Tong-sheng
2016-05-01
Gold nanoparticles (AuNPs) have been widely used in biomedical science including antiarthritic agents, drug loading, and photothermal therapy. In this report, we studied the effects of AuNPs with diameters of 3, 13, and 45 nm, respectively, on rabbit articular chondrocytes. AuNPs were capped with citrate and their diameter and zeta potential were measured by dynamic light scattering (DLS). Cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay after the rabbit articular chondrocytes were pre-incubated with 3, 13, and 45 nm AuNPs, respectively, for 24 h. Flow cytometry (FCM) analysis with annexin V/propidium iodide (PI) double staining and fluorescence imaging with Hoechst 33258 staining were used to determine the fashion of AuNPs-induced chondrocyte death. Further, 13 nm AuNPs (2 nM) significantly induced chondrocyte death accompanying apoptotic characteristics including mitochondrial damage, externalization of phosphatidylserine and nuclear concentration. However, 3 nm AuNPs (2 nM) and 45 nm (0.02 nM) AuNPs did not induce cytotoxicity in chondrocytes. Although 13 nm AuNPs (2 nM) increased the intracellular reactive oxygen species (ROS) level, pretreatment with Nacetyl cysteine (NAC), a ROS scavenger, did not prevent the cytotoxicity induced by 13 nm AuNPs, indicating that 13 nm AuNPs (2 nM) induced ROS-independent apoptosis in chondrocytes. These results demonstrate the size-dependent cytotoxicity of AuNPs in chondrocytes, which must be seriously considered when using AuNPs for treatment of osteoarthritis (OA).
Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles
Alvisi, Marco; Rossi, Riccardo; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa
2017-01-01
Multiwalled carbon nanotube (MWCNT)-based chemiresistors were electrochemically decorated with Au and Pd nanoparticles (NPs), resulting in an improvement in the detection of gaseous pollutants as compared to sensors based on pristine MWCNTs. Electrophoresis was used to decorate MWCNTs with preformed Au or Pd NPs, thus preserving their nanometer-sized dimensions and allowing the metal content to be tuned by simply varying the deposition time. The sensing response of unmodified and metal-decorated MWCNTs was evaluated towards different gaseous pollutants (e.g., NO2, H2S, NH3 and C4H10) at a wide range of concentrations in the operating temperature range of 45–200 °C. The gas sensing results were related to the presence, type and loading of metal NPs used in the MWCNT functionalization. Compared to pristine MWCNTs, metal-decorated MWCNTs revealed a higher gas sensitivity, a faster response, a better stability, reversibility and repeatability, and a low detection limit, where all of these sensing properties were controlled by the type and loading of the deposited metal catalytic NPs. Specifically, in the NO2 gas sensing experiments, MWCNTs decorated with the lowest Au content revealed the highest sensitivity at 150 °C, while MWCNTs with the highest Pd loading showed the highest sensitivity when operated at 100 °C. Finally, considering the reported gas sensing results, sensing mechanisms have been proposed, correlating the chemical composition and gas sensing responses. PMID:28382249
NASA Astrophysics Data System (ADS)
Xiao, Bo; Han, Moon Kwon; Viennois, Emilie; Wang, Lixin; Zhang, Mingzhen; Si, Xiaoying; Merlin, Didier
2015-10-01
Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy.Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy. Electronic supplementary information (ESI) available: Representative flow cytometry plots of cells incubated with or without cationic CPT/CUR-NPs (1 : 1) for 3 h; Cytotoxicity of blank chitosan-coated NPs and blank HA-functionalized NPs at different concentrations against Colon-26 cells after 48 h of co-incubation. See DOI: 10.1039/c5nr04831a
das Neves, José; Araújo, Francisca; Andrade, Fernanda; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno
2013-07-01
Prevention strategies such as the development of microbicides are thought to be valuable in the fight against HIV/AIDS. Despite recent achievements, there is still a long road ahead in the field, particularly at the level of drug formulation. Drug nanocarriers based on polymers may be useful in enhancing local drug delivery while limiting systemic exposure. We prepared differently surface-engineered poly(ε-caprolactone) (PCL) nanoparticles (NPs) and tested their ability to modulate the permeability and retention of dapivirine in cell monolayers and pig vaginal and rectal mucosa. NPs coated with poly(ethylene oxide) (PEO) were shown able to reduce permeability across monolayers/tissues, while modification of nanosystems with cetyl trimethylammonium bromide (CTAB) enhanced transport. In the case of coating NPs with sodium lauryl sulfate (SLS), dapivirine permeability was unchanged. All NPs increased monolayer/tissue drug retention as compared to unformulated dapivirine. This fact was associated, at least partially, to the ability of NPs to be taken up by cells or penetrate mucosal tissue. Cell and tissue toxicity was also affected differently by NPs: PEO modification decreased the in vitro (but not ex vivo) toxicity of dapivirine, while higher toxicity was generally observed for NPs coated with SLS or CTAB. Overall, presented results support that PCL nanoparticles are capable of modulating drug permeability and retention in cell monolayers and mucosal tissues relevant for vaginal and rectal delivery of microbicides. In particular, PEO-modified dapivirine-loaded PCL NPs may be advantageous in increasing drug residence at epithelial cell lines/mucosal tissues, which may potentially increase the efficacy of microbicide drugs.
Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing
2013-04-01
Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.
NASA Astrophysics Data System (ADS)
Jin, Hua; Pi, Jiang; Yang, Fen; Jiang, Jinhuan; Wang, Xiaoping; Bai, Haihua; Shao, Mingtao; Huang, Lei; Zhu, Haiyan; Yang, Peihui; Li, Lihua; Li, Ting; Cai, Jiye; Chen, Zheng W.
2016-07-01
Ursolic acid (UA) has proved to have broad-spectrum anti-tumor effects, but its poor water solubility and incompetent targeting property largely limit its clinical application and efficiency. Here, we synthesized a nanoparticle-based drug carrier composed of chitosan, UA and folate (FA-CS-UA-NPs) and demonstrated that FA-CS-UA-NPs could effectively diminish off-target effects and increase local drug concentrations of UA. Using MCF-7 cells as in vitro model for anti-cancer mechanistic studies, we found that FA-CS-UA-NPs could be easily internalized by cancer cells through a folate receptor-mediated endocytic pathway. FA-CS-UA-NPs entered into lysosome, destructed the permeability of lysosomal membrane, and then got released from lysosomes. Subsequently, FA-CS-UA-NPs localized into mitochondria but not nuclei. The prolonged retention of FA-CS-UA-NPs in mitochondria induced overproduction of ROS and destruction of mitochondrial membrane potential, and resulted in the irreversible apoptosis in cancer cells. In vivo experiments showed that FA-CS-UA-NPs could significantly reduce breast cancer burden in MCF-7 xenograft mouse model. These results suggested that FA-CS-UA-NPs could further be explored as an anti-cancer drug candidate and that our approach might provide a platform to develop novel anti-cancer drug delivery system.
Ortiz de Solorzano, Isabel; Uson, Laura; Larrea, Ane; Miana, Mario; Sebastian, Victor; Arruebo, Manuel
2016-01-01
By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification–evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates. PMID:27524896
Ortiz de Solorzano, Isabel; Uson, Laura; Larrea, Ane; Miana, Mario; Sebastian, Victor; Arruebo, Manuel
2016-01-01
By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification-evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates.
Dale, Amy L; Lowry, Gregory V; Casman, Elizabeth A
2015-06-16
Mathematical models are needed to estimate environmental concentrations of engineered nanoparticles (NPs), which enter the environment upon the use and disposal of consumer goods and other products. We present a spatially resolved environmental fate model for the James River Basin, Virginia, that explores the influence of daily variation in streamflow, sediment transport, and stream loads from point and nonpoint sources on water column and sediment concentrations of zinc oxide (ZnO) and silver (Ag) NPs and their reaction byproducts over 20 simulation years. Spatial and temporal variability in sediment transport rates led to high NP transport such that less than 6% of NP-derived metals were retained in the river and sediments. Chemical transformations entirely eliminated ZnO NPs and doubled Zn mobility in the stream relative to Ag. Agricultural runoff accounted for 23% of total metal stream loads from NPs. Average NP-derived metal concentrations in the sediment varied spatially up to 9 orders of magnitude, highlighting the need for high-resolution models. Overall, our results suggest that "first generation" NP risk models have probably misrepresented NP fate in freshwater rivers due to low model resolutions and the simplification of NP chemistry and sediment transport.
NASA Astrophysics Data System (ADS)
Agrawal, Madhunika; Yadav, Sanjeev Kumar; Agrawal, Satyam Kumar; Karmakar, Surajit
2017-08-01
To enhance the therapeutic efficacy of chemotherapy on glioblastoma U87MG cell line, paclitaxel-loaded phycocyanin nanoparticles (PTX-PcNPs) were prepared by modified desolvation process. PTX-PcNPs were characterised in terms of size, zeta potential, drug loading efficiency and drug release. Confocal laser scanning microscopy showed PTX-PcNPs could be internalised by U87MG cells. The anti-cancer activity was investigated in vitro by 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with and without photodynamic therapy. It was observed that formulation could significantly inhibit growth of U87MG cells as compared to PTX alone and also induced apoptosis, which was evidenced by presence of apoptotic bodies and nuclear fragmentation in treated cells. The present study suggests that PTX-PcNPs can act as a promising drug delivery system for cancer treatment. [Figure not available: see fulltext.
Youssef, A M; Abdel-Aziz, M E; El-Sayed, E S A; Abdel-Aziz, M S; Abd El-Hakim, A A; Kamel, S; Turky, G
2018-09-15
Bionanocomposites hydrogel based on conducting polymers were successfully fabricated from chitosan/polyacrylic acid/polypyrrole (CS/PAA/PPy) as well as the magnetite nanoparticle (Fe 3 O 4 -NPs) was prepared via co-precipitation method. In addition, different ratios of Fe 3 O 4 -NPs were added to the prepared bionanocomposites to enhance the antimicrobial and the electrical conductivity of the prepared conductive hydrogel. Furthermore, the morphology, the swelling percent, antimicrobial activity and the dielectric properties of the prepared conducting bionanocomposites hydrogel were investigated. The antibacterial activities of the experienced microbes were improved with the increasing the loading of Fe 3 O 4 -NPs in conducting Bio-nanocomposites hydrogel. Moreover, the DC-conductivity was examined and our resulted indicated that the DC-conductivity was enhanced by increasing the loadings of Fe 3 O 4 -NPs compared to that of the pure CS/PAA as well as CS/PAA/PPy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates
NASA Astrophysics Data System (ADS)
Ibrahim, Nabil A.; Eid, Basma M.; Abdel-Aziz, Mohamed S.
2016-12-01
In this research work, extracellular biosynthesis of gold nanoparticles (AuNPs) using marine bacterial isolates (Streptomyces sp.) as a reducing/capping/stabilizing bio-agent and chlolauric acid (HAuCl4) as a precursor has been investigated. Surface modification of cotton and viscose knitted fabrics using O2-plasma followed by subsequent treatment with bio-synthesized AuNPs alone and in combination with TiO2NPs or ZnONPs to impart new functional properties namely antibacterial and UV-blocking were studied. The results show that loading of nominated nanomaterials onto the activated fabric samples results in a significant improvement in antibacterial activity against both G+ve (S. aureus) and G-ve (E. coli) along with a remarkable enhancement in the UV-protection functionality of the treated fabrics. The highest antibacterial and anti-UV values were obtained when O2-plasma treated fabrics were loaded with AuNPs/ZnONPs combination, irrespective of the used substrate. The imparted functional properties demonstrated remarkable retention even after 15 washings.
NASA Astrophysics Data System (ADS)
Geng, Tao; Zhao, Xia; Ma, Meng; Zhu, Gang; Yin, Ling
2017-06-01
Human serum albumin (HSA) is an intrinsic protein and important carrier that transports endogenous as well as exogenous substances across cell membranes. Herein, we have designed and prepared resveratrol (RV)-loaded HSA nanoparticles conjugating RGD (arginine-glycine-aspartate) via a polyethylene glycol (PEG) "bridge" (HRP-RGD NPs) for highly effective targeted pancreatic tumor therapy. HRP-RGD NPs possess an average size of 120 ± 2.6 nm with a narrow distribution, a homodisperse spherical shape, a RV encapsulation efficiency of 62.5 ± 4.21%, and a maximum RV release ratio of 58.4.2 ± 2.8% at pH 5.0 and 37 °C. In vitro biocompatibility of RV is improved after coating with HSA and PEG. Confocal fluorescence images show that HRP-RGD NPs have the highest cellular uptake ratio of 47.3 ± 4.6% compared to HRP NPs and HRP-RGD NPs with free RGD blocking, attributing to an RGD-mediated effect. A cell counting kit-8 (CCK-8) assay indicates that HRP-RGD NPs without RV (HP-RGD NPs) have nearly no cytotoxicity, but HRP-RGD NPs are significantly more cytotoxic to PANC-1 cells compared to free RV and HRP NPs in a concentration dependent manner, showing apoptotic morphology. Furthermore, with a formulated PEG and HSA coating, HRP-RGD NPs prolong the blood circulation of RV, increasing approximately 5.43-fold (t1/2). After intravenous injection into tumor-bearing mice, the content of HRP-RGD NPs in tumor tissue was proven to be approximately 3.01- and 8.1-fold higher than that of HRP NPs and free RV, respectively. Based on these results, HRP-RGD NPs were used in an in vivo anti-cancer study and demonstrated the best tumor growth suppression effect of all tested drugs with no relapse, high in vivo biocompatibility, and no significant systemic toxicity over 35 days treatment. These results demonstrate that HRP-RGD NPs with prolonged blood circulation and improved biocompatibility have high anti-cancer effects with promising future applications in cancer therapy.
A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.
Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong
2018-04-03
In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.
NASA Astrophysics Data System (ADS)
Ganguly, Soumya; Gaonkar, Raghuvir H.; Sinha, Samarendu; Gupta, Amit; Chattopadhyay, Dipankar; Chattopadhyay, Sankha; Sachdeva, Satbir S.; Ganguly, Shantanu; Debnath, Mita C.
2016-07-01
The purpose of this study was to develop surfactant-free quercetin-loaded PLGA nanoparticles (Qr-NPs) and investigate the hepatoprotective efficacy of the product non-invasively by nuclear scintigraphy. The nanoparticles were prepared using PLGA by dialysis method and ranged in size between 50 and 250 nm with a narrow range of distribution. They were found to arrive at the fenestra of liver sinusoidal epithelium for accumulation. The sizes of nanoparticles (batch S1) were optimal to reach the target and offer enough protection of the hepatocytes degenerated by CCl4 intoxication as determined by various biochemical and histopathological tests. In vitro studies exhibited the cytotoxic effect of the formulation against HepG2 cell line. The hepatoprotective efficacy of Qr-NPs evaluated non-invasively by nuclear scintigraphic technique using 99mTc-labelled sulphur colloid revealed abnormality in liver at the area of decreased uptake in rats of CCl4-treated group, which disappeared in Qr-NP-treated group. In dynamic studies with 99mTc-mebrofenin, excretion was severely impaired in CCl4-treated group but was moderate in drug-treated group, proving the recovery of animals from damage.
Patel, Sulabh P.; Vaishya, Ravi; Patel, Ashaben; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K.
2016-01-01
This manuscript is focused on the development of pentablock (PB) copolymer based sustained release formulation for the treatment of posterior segment ocular diseases. We have successfully synthesized biodegradable and biocompatible PB copolymers for the preparation of nanoparticles (NPs) and thermosensitive gel. Achieving high drug loading with hydrophilic biotherapeutics (peptides /proteins) is a challenging task. Moreover, small intravitreal injection volume (≤100 μL) requires high loading to develop a long term (6 months) sustained release formulation. We have successfully investigated various formulation parameters to achieve maximum peptide/protein (octreotide, insulin, lysozyme, IgG-Fab, IgG, and catalase) loading in PB NPs. Improvement in drug loading can facilitate delivery of larger doses of therapeutic proteins via limited injection volume. A composite formulation comprised of NPs in gel system exhibited sustained release (without burst effect) of peptides and proteins, may serve as a platform technology for the treatment of posterior segment ocular diseases. PMID:26964498
NASA Astrophysics Data System (ADS)
Marukhyan, Seda S.; Gasparyan, Vardan K.
2017-02-01
Quantitative determination of HSA was conducted by competitive immunoassay. Inhibition of aggregation of antibody conjugated quantum dots (QD) with albumin conjugated silver nanoparticles (AgNPs) in the presence of HSA was conducted. If antibody-loaded CdSe QDs aggregate with HSA-coated silver nanoparticles the distance between the two kinds of nanoparticles will be reduced enough to cause fluorescence resonance energy transfer (FRET). In this case the yellow fluorescence of the Ab-QDs is quenched. However if HSA (antigen) is added to the Ab-QDs their surface will be blocked and they cannot aggregate any longer with the HSA-AgNPs. Hence, fluorescence will not be quenched. The drop of the intensity of fluorescence (peaking at 570 nm) is inversely correlated with the concentration of HSA in the sample. The method allows to determine HSA in the 30-600 ng·mL-1 concentration range.
Naeem, Muhammad; Bae, Junhwan; Oshi, Murtada A; Kim, Min-Soo; Moon, Hyung Ryong; Lee, Bok Luel; Im, Eunok; Jung, Yunjin; Yoo, Jin-Wook
2018-01-01
Colon-targeted oral nanoparticles (NPs) have emerged as an ideal, safe, and effective therapy for ulcerative colitis (UC) owing to their ability to selectively accumulate in inflamed colonic mucosa. Cyclosporine A (CSA), an immunosuppressive agent, has long been used as rescue therapy in severe steroid-refractory UC. In this study, we developed CSA-loaded dual-functional polymeric NPs composed of Eudragit ® FS30D as a pH-sensitive polymer for targeted delivery to the inflamed colon, and poly(lactic-co-glycolic acid) (PLGA) as a sustained-release polymer. CSA-loaded Eudragit FS30D nanoparticles (ENPs), PLGA nanoparticles (PNPs), and Eudragit FS30D/PLGA nanoparticles (E/PNPs) were prepared using the oil-in-water emulsion method. Scanning electron microscope images and zeta size data showed successful preparation of CSA-loaded NPs. PNPs exhibited a burst drug release of >60% at pH 1.2 (stomach pH) in 0.5 h, which can lead to unwanted systemic absorption and side effects. ENPs effectively inhibited the burst drug release at pH 1.2 and 6.8 (proximal small intestine pH); however, nearly 100% of the CSA in ENPs was released rapidly at pH 7.4 (ileum-colon pH) owing to complete NP dissolution. In contrast to single-functional PNPs and ENPs, the dual-functional E/PNPs minimized burst drug release (only 18%) at pH 1.2 and 6.8, and generated a sustained release at pH 7.4 thereafter. Importantly, in distribution studies in the gastrointestinal tracts of mice, E/PNPs significantly improved CSA distribution to the colon compared with PNPs or ENPs. In a mouse model of colitis, E/PNP treatment improved weight loss and colon length, and decreased rectal bleeding, spleen weight, histological scoring, myeloperoxidase activity, macrophage infiltration, and expression of proinflammatory cytokines compared with PNPs or ENPs. Overall, this work confirms the benefits of CSA-loaded E/PNPs for efficiently delivering CSA to the colon, suggesting their potential for UC therapy.
Amin, Faiz Ul; Shah, Shahid Ali; Badshah, Haroon; Khan, Mehtab; Kim, Myeong Ok
2017-02-07
In order to increase the bioavailability of hydrophilic unstable drugs like anthocyanins, we employed a polymer-based nanoparticles approach due to its unique properties such as high stability, improved bioavailability and high water-soluble drug loading efficiency. Anthocyanins constitute a subfamily of flavonoids that possess anti-oxidative, anti-inflammatory and neuroprotective properties. However, anthocyanins are unstable because their phenolic hydroxyl groups are easily oxidized into quinones, causing a reduced biological activity. To overcome this drawback and improve the free radical scavenging capabilities of anthocyanins, in the current study we for the first time encapsulated the anthocyanins in biodegradable nanoparticle formulation based on poly (lactide-co-glycolide) (PLGA) and a stabilizer polyethylene glycol (PEG)-2000. The biological activity and neuroprotective effect of anthocyanin loaded nanoparticles (An-NPs) were investigated in SH-SY5Y cell lines. Morphological examination under transmission electron microscopy (TEM) showed the formation of smooth spherically shaped nanoparticles. The average particle size and zeta potential of An-NPs were in the range of 120-165 nm and -12 mV respectively, with a low polydispersity index (0.4) and displayed a biphasic release profile in vitro. Anthocyanins encapsulation in PLGA@PEG nanoparticles (NPs) did not destroy its inherent properties and exhibit more potent neuroprotective properties. An-NPs were nontoxic to SH-SY5Y cells and increased their cell viability against Aβ 1-42 by its free radical scavenging characteristics and abrogated ROS generation via the p38-MAPK/JNK pathways accompanied by induction of endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Comparative to native bulk anthocyanins, An-NPs effectively attenuated Alzheimer's markers like APP (amyloid precursor protein), BACE-1 (beta-site amyloid precursor protein cleaving enzyme 1), neuroinflammatory markers such as p-NF-kB (phospho-nuclear factor kappa B), TNF-α (tumor necrosis factor) and iNOS (inducible nitric oxide synthase) and neuroapoptotic markers including Bax, Bcl 2 , and Caspase-3 protein expressions accompanied by neurodegeneration against Aβ 1-42 in SH-SY5Y cell lines. Overall, this data not only confirmed the therapeutic potential of anthocyanins in reducing AD pathology but also offer an effective way to improve the efficiency of anthocyanins through the use of nanodrug delivery systems.
Unctuous ZrO2 nanoparticles with improved functional attributes as lubricant additives
NASA Astrophysics Data System (ADS)
Espina Casado, Jorge; Fernández González, Alfonso; José del Reguero Huerga, Ángel; Rodríguez-Solla, Humberto; Díaz-García, Marta Elena; Badía-Laíño, Rosana
2017-12-01
One of the main drawbacks in the application of metal-oxide nanoparticles as lubricant additives is their poor stability in organic media, despite the good anti-wear, friction-reducing and high-load capacity properties described for these materials. In this work, we present a novel procedure to chemically cap the surface of ZrO2 nanoparticles (ZrO2NPs) with long hydrocarbon chains in order to obtain stable dispersions of ZrO2NPs in non-aqueous media without disrupting their attributes as lubricant additives. C-8, C-10 and C-16 saturated flexible chains were attached to the ZrO2NP surface and their physical and chemical characterization was performed by transmission electron microscopy, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and solid-state nuclear magnetic resonance. The dispersion stability of the modified ZrO2NPs in non-aqueous media was studied using static multiple light scattering. Tribological tests demonstrated that dispersions of the long-chain capped ZrO2NPs in base lubricating oils exhibited low friction coefficients and improved the anti-wear properties of the base oil when compared with the raw lubricating oil.
Implications of protein- and Peptide-based nanoparticles as potential vehicles for anticancer drugs.
Elzoghby, Ahmed O; Elgohary, Mayada M; Kamel, Nayra M
2015-01-01
Protein-based nanocarriers have gained considerable attention as colloidal carrier systems for the delivery of anticancer drugs. Protein nanocarriers possess various advantages including their low cytotoxicity, abundant renewable sources, high drug-binding capacity, and significant uptake into the targeted tumor cells. Moreover, the unique protein structure offers the possibility of site-specific drug conjugation and tumor targeting using various ligands modifying the surface of protein nanocarriers. In this chapter, we highlight the most important applications of protein nanoparticles (NPs) for the delivery of anticancer drugs. We examine the various techniques that have been utilized for the preparation of anticancer drug-loaded protein NPs. Finally, the current chapter also reviews the major outcomes of the in vitro and in vivo investigations of surface-modified tumor-targeted protein NPs. © 2015 Elsevier Inc. All rights reserved.
El-Nahas, Amira E; Allam, Ahmed N; El-Kamel, Amal H
2017-08-01
Eudragit-loaded silymarin nanoparticles (SNPs) and their formulation into buccal mucoadhesive tablets were investigated to improve the low bioavailability of silymarin through buccal delivery. Characterisation of SNPs and silymarin buccal tablets (SBTs) containing the optimised NPs were performed. Ex vivo permeability of nominated SBTs were assessed using chicken pouch mucosa compared to SNPs and drug suspension followed by histopathological examination. Selected SNPs had a small size (<150 nm), encapsulation effciency (>77%) with drug release of about 90% after 6 h. For STBs, all physicochemical parameters were satisfactory for different polymers used. DSC and FT-IR studies suggested the presence of silymarin in an amorphous state. Ex vivo permeation significantly emphasised the great enhancement of silymarin permeation after NPs formation and much more increase after formulating into BTs relative to the corresponding drug dispersion with confirmed membrane integrity. Incorporation of SNPs into BTs could be an efficient vehicle for delivery of silymarin.
Rauta, Pradipta Ranjan; Nayak, Bismita
2015-05-01
Advanced vaccine research approaches needs to explore on biodegradable nanoparticles (NPs) based vaccine carrier that can serve as antigen delivery systems as well as immuno-stimulatory action to induce both innate and adaptive immune response in fish. Immunogenicity of PLA and PLGA NPs encapsulating outer membrane protein (Omp) antigen of Aeromonas hydrophila were evaluated through intra-peritoneal injection in fish, Labeo rohita. Antigen loaded PLA-Omp (223.5 ± 13.19 nm) and PLGA-Omp (166.4 ± 21.23 nm) NPs were prepared using double emulsion method by efficiently encapsulating the antigen reaching the encapsulation efficiency 44 ± 4.58% and 59.33 ± 5.13% respectively. Our formulated PLA Omp and PLGA-Omp NPs were in nanometer range (<500 nm) and could be successfully endocyted in the body. Despite low antigen loading in PLA-Omp, it showed considerably slower antigen release in vitro than PLGA-Omp NPs. Other physical properties like zetapotential values and poly dispersity index (PDI) confirmed the stability as well as monodisperse nature of the formulated nanoparticles. The spherical and isolated nature of PLA-Omp and PLGA-Omp NPs were revealed by SEM analysis. Upon immunization of all antigenic formulations (PLA-Omp NP, PLGA-Omp NP, FIA-Omp, PLA NP, PLGA NP, PBS as control), significant higher bacterial agglutination titre and haemolytic activity were observed in case of PLA-Omp and PLGA-Omp immunized groups than rest groups at both 21 days and 42 days. The specific antibody response was significantly increased and persisted up to 42 days of post immunization by PLA-Omp, PLGA-Omp, FIA-Omp. PLA-Omp NPs showed better immune response (higher bacterial agglutination titre, haemolytic activity, specific antibody titre, higher percent survival upon A. hydrophila challenge) than PLGA-Omp in L. rohita confirming its better efficacy. Comparable antibody response of PLA-Omp and PLGA-Omp with FIA-Omp treated groups suggested that PLA and PLGA could be replacement for Freund's adjuvant (for stimulating antibody response) to overcome many side effects offering long lasting immunity. Our encouraging results suggest that PLA/PLGA nanoparticles based delivery system could be a novel antigen carrier for parenteral immunization in fish. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shang, Qing; Huang, Sijin; Zhang, Aixin; Feng, Jia; Yang, Song
2017-11-01
To improve the bioavailability of ibuprofen (IBU), we developed a novel binary complex of poly(PEGMA-co-MAA) hydrogel and IBU-loaded PLGA nanoparticles (IBU-PLGA NPs@hydrogels) as an oral intestinal targeting drug delivery system (OIDDS). The IBU-loaded PLGA NPs and pH-sensitive hydrogels were obtained via the solvent evaporation method and radical polymerization, respectively. The final OIDDS was obtained by immersing the hydrogel chips in the IBU-loaded PLGA NPs solutions (pH 7.4) for 3 d. The size distribution and morphology of cargo-free NPs were studied by laser granularity analyzer and transmission electron microscope (TEM). The inner structures of the pH-sensitive hydrogel chips were observed with an S-4800 scanning electron microscope (SEM). The distribution states of IBU in the OIDDS were also studied with X-ray diffraction (XRD) and differential scanning calorimetry (DSC). TEM photographs illustrated that the PLGA NPs had a round shape with an average diameter about 100 nm. Fourier transform infrared spectrum (FTIR) confirmed the synthesis of poly(PEGMA-co-MAA) hydrogel. The SEM picture showed that the final hydrogel had 3D net-work structures. Moreover, the poly(PEGMA-co-MAA) hydrogel showed an excellent pH-sensitivity. The XRD and DSC curves suggested that IBU distributed in the OIDDS with an amorphous state. The cumulated release profiles indicated that the final OIDDS could release IBU in alkaline environment (e.g. intestinal tract) at a sustained manner. Therefore, the novel OIDDS could improve the oral bioavailability of IBU, and had a potential application in drug delivery.
Novel Nanocomposites of Poly(lauryl methacrylate)-Grafted Al2O3 Nanoparticles in LDPE.
Cobo Sánchez, Carmen; Wåhlander, Martin; Taylor, Nathaniel; Fogelström, Linda; Malmström, Eva
2015-11-25
Aluminum oxide nanoparticles (NPs) were surface-modified by poly(lauryl methacrylate) (PLMA) using surface-initiated atom-transfer radical polymerization (SI-ATRP) of lauryl methacrylate. Nanocomposites were obtained by mixing the grafted NPs in a low-density polyethylene (LDPE) matrix in different ratios. First, the NPs were silanized with different aminosilanes, (3-aminopropyl)triethoxysilane, and 3-aminopropyl(diethoxy)methylsilane (APDMS). Subsequently, α-BiB, an initiator for SI-ATRP, was attached to the amino groups, showing higher immobilization ratios for APDMS and confirming that fewer self-condensation reactions between silanes took place. In a third step SI-ATRP of LMA at different times was performed to render PLMA-grafted NPs (NP-PLMAs), showing good control of the polymerization. Reactions were conducted for 20 to 60 min, obtaining a range of molecular weights between 23 000 and 83 000 g/mol, as confirmed by size-exclusion chromoatography of the cleaved grafts. Nanocomposites of NP-PLMAs at low loadings in LDPE were prepared by extrusion. At low loadings, 0.5 wt % of inorganic content, the second yield point, storage, and loss moduli increased significantly, suggesting an improved interphase as an effect of the PLMA grafts. These observations were also confirmed by an increase in transparency of the nanocomposite films. At higher loadings, 1 wt % of inorganics, the increasing amount of PLMA gave rise to the formation of small aggregates, which may explain the loss of mechanical properties. Finally, dielectric measurements were performed, showing a decrease in tan δ values for LDPE-NP-PLMAs, as compared to the nanocomposites containing unmodified NP, thus indicating an improved interphase between the NPs and LDPE.
Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo
2013-10-01
Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.
Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping
2018-05-02
A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.
Nanoparticle-assisted high photoconductive gain in polymer/fullerene matrix
Chen, Hsiang-Yu; Lo, Michael K. F.; Yang, Guanwen; Monbouquette, Harold G.; Yang, Yang
2014-01-01
Polymer/inorganic nanocrystal composites1–10 offer an attractive means to combine the merits of organic and inorganic materials into novel electronic and photonic systems. However, many applications of these composites are limited by the solubility11 and distribution of nanocrystals (NCs) in polymer matrices. Here, a high photoconductive gain has been achieved by blending cadmium telluride (CdTe) nanoparticles (NPs) into a polymer/fullerene matrix followed by a solvent annealing12 process. The NP surface capping ligand, N-phenyl-N’-methyldithiocarbamate, renders the NPs highly soluble in the polymer blend thereby enabling high nanocrystal loadings. An external quantum efficiency (EQE) as high as ~8000% (at 350nm) is reached at −4.5V. Hole-dominant devices coupled with AFM images are studied to uncover the probable mechanism. We observe a higher concentration of CdTe NPs is located near the cathode/polymer interface. These NPs with trapped electrons assist hole injection into the polymer under reverse bias, which contributes to greater than 100% EQE. PMID:18772915
Scheeren, Laís E; Nogueira, Daniele R; Macedo, Letícia B; Vinardell, M Pilar; Mitjans, Montserrat; Infante, M Rosa; Rolim, Clarice M B
2016-02-01
The growing demand for efficient chemotherapy in many cancers requires novel approaches in target-delivery technologies. Nanomaterials with pH-responsive behavior appear to have potential ability to selectively release the encapsulated molecules by sensing the acidic tumor microenvironment or the low pH found in endosomes. Likewise, polyethylene glycol (PEG)- and poloxamer-modified nanocarriers have been gaining attention regarding their potential to improve the effectiveness of cancer therapy. In this context, DOX-loaded pH-responsive nanoparticles (NPs) modified with PEG or poloxamer were prepared and the effects of these modifiers were evaluated on the overall characteristics of these nanostructures. Chitosan and tripolyphosphate were selected to form NPs by the interaction of oppositely charged compounds. A pH-sensitive lysine-based amphiphile (77KS) was used as a bioactive adjuvant. The strong dependence of 77KS ionization with pH makes this compound an interesting candidate to be used for the design of pH-sensitive devices. The physicochemical characterization of all NPs has been performed, and it was shown that the presence of 77KS clearly promotes a pH-triggered DOX release. Accelerated and continuous release patterns of DOX from CS-NPs under acidic conditions were observed regardless of the presence of PEG or poloxamer. Moreover, photodegradation studies have indicated that the lyophilization of NPs improved DOX stability under UVA radiation. Finally, cytotoxicity experiments have shown the ability of DOX-loaded CS-NPs to kill HeLa tumor cells. Hence, the overall results suggest that these pH-responsive CS-NPs are highly potent delivery systems to target tumor and intracellular environments, rendering them promising DOX carrier systems for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Shaikh, Muhammad Vaseem; Kala, Manika; Nivsarkar, Manish
2017-03-30
Biodegradable nanoparticles (NPs) have gained tremendous interest for targeting chemotherapeutic drugs to the tumor environment. Inspite of several advances sufficient encapsulation along with the controlled release and desired size range have remained as considerable challenges. Hence, the present study examines the formulation optimization of doxorubicin loaded PLGA NPs (DOX-PLGA-NPs), prepared by single emulsion method for cancer targeting. Critical process parameters (CPP) were selected by initial screening. Later, Box-Behnken design (BBD) was used for analyzing the effect of the selected CPP on critical quality attributes (CQA) and to generate a design space. The optimized formulation was stabilized by lyophilization and was used for in-vitro drug release and in-vitro activity on A549 cell line. Moreover, colloidal stability of the NPs in the biological milieu was assessed. Amount of PLGA and PVA, oil:water ratio and sonication time were the selected independent factors for BBD. The statistical data showed that a quadratic model was fitted to the data obtained. Additionally, the lack of fit values for the models was not significant. The delivery system showed sustained release behavior over a period of 120h and was governed by Fickian diffusion. The multipoint analysis at 24, 48 and 72h showed gradual reduction in IC50 value of DOX-PLGA-NPs (p<0.05, Fig. 9). DOX-PLGA-NPs were found to be stable in the biological fluids indicating their in-vivo applicability. In conclusion, optimization of the DOX-PLGA-NPs by BBD yielded in a promising drug carrier for doxorubicin that could provide a novel treatment modality for cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Tao, Ran; Wang, Chengzhang; Zhang, Changwei; Li, WenJun; Zhou, Hao; Chen, Hongxia; Ye, Jianzhong
2018-07-01
The structure and bioactivity of Ginkgo biloba leaves polyprenol (GBP) are similar to that of dolichol which widely exists in human and mammalian organs. GBP possesses potential pharmacological activities against cancer. This study involved oil-in-water type nanoemulsion (NE) loading GBP was prepared by dissolving polyprenol in nanoemulsion of sodium tripolyphosphate (TPP)/TiO 2 solution, Triton X-100, and 1-octanol by inversed-phase emulsification (EIP) and ultrasonic emulsification (UE) method. Folic acid (FA)-coupled chitosan (CS) nanoparticles (NPs), GBP-FA-CS-NPs and GBP-TiO 2 -FA-CS-NPs, were fabricated by ionic cross-linking of positively charged FA-CS conjugates and negatively charged nanoemulsion with TPP/TiO 2 . And characterizations of them were investigated by TEM, SEM, FTIR, particle size, and zeta potential. The cytotoxic and genotoxic effects of GBP-TiO 2 -FA-CS-NP treatment were higher than GBP-NE, GBP-FA-CS-NPs, TiO 2 -NE, GBP-TiO 2 -NE, TiO 2 -FA-CS-NPs, and GBP-TiO 2 -FA-CS-NP treatment at the same tested concentrations in HepG2 cells. GBP-TiO 2 -FA-CS-NPs at low TiO 2 concentration (from 1 to 2.5 μg/ml) showed good inhibition capacity on HepG2 cells and low cytotoxic and genotoxic effects on HL-7702 cells. The possible mechanism of cytotoxicity on GBP-TiO 2 -FA-CS-NPs against HepG2 cells is by preventing excessive intracellular Ca 2+ into extracellular spaces via inhibiting Ca 2+ -ATPase and Ca 2+ /Mg 2+ -ATPase.
Design of poly(mPEGMA-co-MAA) hydrogel-based mPEG-b-PCL nanoparticles for oral meloxicam delivery.
Shi, Yongli; Liu, Zhaomin; Yang, Yaxing; Xu, Xiaojie; Li, Yan; Li, Tong
2017-07-01
To enhance the therapeutic effects of meloxicam (MLX), we developed an oral MLX-loaded poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles@hydrogel (MLX-NPs@hydrogel) preparation. The MLX-NPs were fabricated via a solvent evaporation method, and their morphologies were observed by a JEM-1011 transmission electron microscope (TEM). The poly(mPEGMA-co-MAA) hydrogels were synthesized, and studies on their pH sensibilities were carried out in pH1.2, 6.8, and 7.4 buffers. The final MLX-NPs@hydrogel preparation was obtained by immersing the hydrogels in the MLX-NPs suspensions (pH7.4) for 48h. The thermodynamic properties and cytotoxicity of the MLX-NPs@hydrogel preparation were also studied. TEM images illustrated that mPEG-b-PCL NPs had a uniform size distribution. The poly(mPEGMA-co-MAA) hydrogels showed an excellent pH-sensibility. Thermal gravity analysis (TGA) data suggested that the protection of hydrogels improved the stability of mPEG-b-PCL NPs. The release studies revealed that MLX-NPs@hydrogel could deliver the MLX-NPs into alkalescent environment (e.g. intestinal tract). Then, the medicated NPs released MLX at a sustained release profile. Such preparation could overcome the drawbacks of oral MLX, and enhance its therapeutic effects. Therefore, the NPs@hydrogel was a promising sustained-controlled release matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yongqiang; Huang, Guanbo, E-mail: gbhuang2007@hotmail.com; Pan, Zeng
2015-10-15
Highlights: • A simple route for the in situ preparation of Ag nanoparticles has been developed. • The Ag loaded hydrogel showed catalytic activity for reduction of 4-nitrophenol. • The catalyst can be recovered by simple separation and showed good recyclability. - Abstract: A simple route for the in situ preparation of catalytically active Ag nanoparticles (NPs) in hydrogel networks has been developed. The electronegativity of the amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains caused strong binding of the Ag{sup +} ions which made the ions distribute uniformly inside the hydrogels. When the Ag{sup +} loaded hydrogels weremore » immersed in NaBH{sub 4} solution, the Ag{sup +} ions on the polymer networks were reduced to Ag NPs. The resultant hydrogel showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with sodium borohydride. A kinetic study of the catalytic reaction was carried out and a possible reason for the decline of the catalytic performance with reuse is proposed.« less
Conte, Claudia; Costabile, Gabriella; d'Angelo, Ivana; Pannico, Marianna; Musto, Pellegrino; Grassia, Gianluca; Ialenti, Armando; Tirino, Pasquale; Miro, Agnese; Ungaro, Francesca; Quaglia, Fabiana
2015-09-15
The aim of this work was to investigate the potential of small nanoparticles (NPs) made of a poly(ethylene glycol)-poly(ε-caprolactone)-amphiphilic diblock copolymer (PEG-b-PCL, PEG=2kDa and PCL=4.2kDa) as drug carrier system through the skin. Zinc(II) phthalocyanine (ZnPc), selected as lipophilic and fluorescent model molecule, was loaded inside NPs by a melting/sonication procedure. Loaded NPs with a hydrodynamic diameter around 60nm, a slightly negative zeta potential and a ZnPc entrapment dependent on polymer/ZnPc ratio were obtained. Spectroscopic investigations evidenced that ZnPc was entrapped in monomeric form maintaining its emission properties. The transport of ZnPc through porcine ear skin was evaluated on Franz-type diffusion cells after treatment with different vehicles (water or PEG 0.4kDa) containing free ZnPc or ZnPc-loaded NPs without and with (2-hydroxypropyl)-β-cyclodextrin (HPβCD) as permeation enhancer. Independently of the sample tested, ZnPc was transported in the skin without reaching receptor compartment. On the other hand, ZnPc was found in the skin in large amount and also in the viable epidermis when delivered through NPs associated with HPβCD, especially in conditions limiting water evaporation. Fluorescence images of skin samples after 24h of permeation were in line with ZnPc dosage in the skin and demonstrated the ability of NPs covalently tagged with rhodamine to penetrate the skin and to locate in the intercellular spaces. Insight into skin chemical properties upon application of NPs by confocal Raman spectroscopy demonstrated that HPβCD caused an alteration of water profile in the skin, highly reducing the degree of hydration at stratum corneum/viable epidermis interface which can promote NP transport. Taken together, these results highlight PEG-b-PCL NPs coupled with HPβCD as a novel vehicle for the skin delivery of highly lipophilic compounds paving the way to several applications. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Jianbo; Yang, Yang; Lu, Likang; Ma, Qiujin; Zhang, Jinjie
2018-01-01
Background Morin, one of the most widely distributed flavonoids in plants, has been identified as a potent antihyperuricemic agent. Its poor water solubility and fast in vivo clearance, however, have limited its application in the treatment of hyperuricemia. In this study, a novel amphiphilic polymer (hydroxyethyl starch-deoxycholic acid [HES-DOCA]) was synthesized to overcome these limitations. Methods HES-DOCA conjugates with various substitution degrees were prepared by chemical grafting DOCA to HES through ester formation. The structures of the conjugates were confirmed by infrared spectroscopy and 1H-NMR. Physicochemical characterizations of HES-DOCA nanoparticles-loaded Morin (Morin/HES-DOCA-NPs) were studied using dynamic light scattering and transmission electron microscopy (TEM). In vitro release studies were performed to evaluate the release properties of Morin from the NPs. Subsequently, in vivo pharmacokinetic parameters of Morin/HES-DOCA-NPs were investigated in Wistar rats through intravenous administration (2 mg/kg, equivalent to Morin). Antihyperuricemic efficacy of the NPs was evaluated in a rat hyperuricemic model. Results The optimized HES-based amphiphilic polymer contained approximately 10 DOCA groups per 100 anhydroglucose units of HES, which can spontaneously self-assemble to form spherical NPs as demonstrated by TEM images. Morin/HES-DOCA-NPs were monodispersed (polydispersity index = 0.05) with a mean diameter of 197 nm and exhibited a zeta potential of −14 mV. The use of DOCA as the polymer’s hydrophobic segment enabled high drug loading efficiency (15.6%). After systemic administration, Morin/HES-DOCA-NPs exhibited significantly longer half-life and higher systemic exposure (elimination half-life and area under the plasma concentration–time curve) compared with free drug Morin. In a rat hyperuricemic model, treatment with Morin/HES-DOCA-NPs demonstrated superior therapeutic efficacy over Morin in decreasing serum uric acid level, increasing the uricosuric action, as well as attenuating hyperuricemia-associated inflammation in kidney of rats. Conclusion Collectively, these findings suggest that the novel HES-based NP formulation of Morin may have great potential for clinical treatment of hyperuricemia. PMID:29692610
PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles.
Rescignano, N; Fortunati, E; Montesano, S; Emiliani, C; Kenny, J M; Martino, S; Armentano, I
2014-01-01
The formation of a new generation of hybrid bio-nanocomposites is reported: these are intended at modulating the mechanical, thermal and biocompatibility properties of the poly(vinyl alcohol) (PVA) by the combination of cellulose nanocrystals (CNC) and poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) loaded with bovine serum albumin fluorescein isothiocynate conjugate (FITC-BSA). CNC were synthesized from microcrystalline cellulose by hydrolysis, while PLGA nanoparticles were produced by a double emulsion with subsequent solvent evaporation. Firstly, binary bio-nanocomposites with different CNC amounts were developed in order to select the right content of CNC. Next, ternary PVA/CNC/NPs bio-nanocomposites were developed. The addition of CNC increased the elongation properties without compromising the other mechanical responses. Thermal analysis underlined the nucleation effect of the synergic presence of cellulose and nanoparticles. Remarkably, bio-nanocomposite films are suitable to vehiculate biopolymeric nanoparticles to adult bone marrow mesenchymal stem cells successfully, thus representing a new tool for drug delivery strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Khan, Abrar M; Ahmad, Farhan Jalees; Panda, Amulya K; Talegaonkar, Sushama
2016-06-30
Overexpression of P-glycoprotein (P-gp) efflux transporter in glioma cells thwarts the build-up of therapeutic concentration of drugs usually resulting into poor therapeutic outcome. To surmount aforesaid challenge, Imatinib (IMM) loaded Poly-lactide-co-glycolic acid nanoparticles (IMM-PLGA-NPs) were developed and optimized by Box Behnken Design as a new treatment stratagem in malignant glioma. Optimized NPs were functionalized with Pluronic(®) P84, P-gp inhibitor (IMM-PLGA-P84-NPs) which showed size, PDI, zeta potential, drug loading, 182.63±13.56nm, 0.196±0.021, -15.2±1.49mV, 40.63±2.04μg/mg, respectively. Intracellular uptake study conducted on A172, U251MG and C6 glioma cells demonstrated significantly high uptake of IMM through NPs when compared with IMM solution (IMM-S), p<0.001. IMM-PLGA-P84-NPs showed better uptake in P-gp expressing cell line (U251MG and C6) while uncoated NPs showed higher uptake in non-P-gp expressing cell line (A-172). Cytotoxicity studies demonstrated significantly low IC50 for both IMM-PLGA-NPs and IMM-PLGA-P84-NPs when compared with IC50 of IMM-S. IMM-PLGA-P84-NPs showed a significantly low IC50 against P-gp overexpressing cell lines when compared with IC50 of IMM-PLGA-NPs. In contrary, IMM-PLGA-NPs showed lower IC50 against non P-gp expressing cell line. This study demonstrated the feasibility of targeting surface decorated NPs to multidrug resistant gliomas. However, to address its clinical utility extensive in vivo studies are required. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanoplasmonic imaging of latent fingerprints and identification of cocaine.
Li, Kun; Qin, Weiwei; Li, Fan; Zhao, Xingchun; Jiang, Bowei; Wang, Kun; Deng, Suhui; Fan, Chunhai; Li, Di
2013-10-25
Search for traces: Aptamer-bound Au nanoparticles (Au NPs) were used to provide high-resolution dark-field microscopy images of latent fingerprints (LFPs) with level 2 and level 3 details. Furthermore, the cocaine-induced aggregation of Au NPs results in a true green-to-red color change of the scattered light, providing a quasi-quantative method to identify cocaine loadings in LFPs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid
2016-09-20
Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (<200nm) as determined by dynamic light scattering technique and transmission electron microscopy, assured transcellular transport across olfactory axons whose diameter was ≈200nm and then paving a direct path to brain. TFB-NPs and TFB-SLNs resulted in 64.11±2.21% and 57.81±5.32% entrapment efficiencies respectively which again asserted protection of drug from chemical and biological degradation in nasal cavity. In vitro release studies proved the sustained release of TFB from TFB-NPs and TFB-SLNs in comparison with pure drug, indicating prolonged residence times of drug at targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.
Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A
2017-08-01
RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b TfR-mediated transcytosis of nanoparticles across the epithelial cells. c B2R-mediated endocytosis of nanoparticles in astrocytes. d The molecular interactions between HIV-1 Tat protein and Cyclin T1 and Tip110 cellular proteins. e A schematic representation of chitosan nanoparticles with its components. RNAPII RNA polymerase II, TAR transactivation response RNA element, LTR long terminal repeat, Ab antibody, CS chitosan, TPP tripolyphosphate.
NASA Astrophysics Data System (ADS)
Venugopal, Indu; Pernal, Sebastian; Duproz, Alexandra; Bentley, Jeromy; Engelhard, Herbert; Linninger, Andreas
2016-09-01
Cancer remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. In recent years, several varieties of nanoparticles (NPs) have been synthesized with the intent of being utilized as tumor drug delivery vehicles. We have produced superparamagnetic, gold-coated magnetite (Fe3O4@Au) NPs and loaded them with the chemotherapeutic drug doxorubicin (DOX) for magnetic drug targeting (MDT) of tumors. The synthetic strategy uses the food thickening agent gellan gum (Phytagel) as a negatively charged shell around the Fe3O4@Au NP onto which the positively charged DOX molecules are loaded via electrostatic attraction. The resulting DOX-loaded magnetic nanoparticles (DOX-MNPs) were characterized using transmission electron microscopy, energy dispersive x-ray spectroscopy, superconducting quantum interference device magnetometry, surface area electron diffraction, zeta potential measurements, fourier transform infrared spectroscopy as well as UV/Vis and fluorescence spectroscopy. Cytotoxicity of the DOX-MNPs was demonstrated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on C6 glioma cells. Cellular uptake of DOX-MNPs was enhanced with magnetic fields, which was quantitatively determined using flow cytometry. This improved uptake also led to greater tumor cell death, which was measured using MTT assay. These MDT results are promising for a new therapy for cancer.
Chen, Jingyuan; Xu, Qin; Shu, Yun; Hu, Xiaoya
2018-07-01
A nonenzymatic glucose electrochemical sensor was constructed based on Au nanoparticles (AuNPs) decorated Ni metal-organic-framework (MOF)/Ni/NiO nanocomposite. Ni-MOF/Ni/NiO nanocomposite was synthesized by one-step calcination of Ni-MOF. Then AuNPs were loaded onto the Ni-based nanocomposites' surface through electrostatic adsorption. Through characterization by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and energy disperse spectroscopy (EDS) mapping, it is found that the AuNPs were well distributed on the surface of Ni-based nanocomposite. Cyclic voltammetric (CV) study showed the electrocatalytic activity of Au-Ni nanocomposite was highly improved after loading AuNPs onto it. Amperometric study demonstrated that the Au-Ni nanocomposites modified glassy carbon electrode (GCE) exhibited a high sensitivity of 2133.5 mA M -1 cm -2 and a wide linear range (0.4-900 μM) toward the oxidation of glucose with a detection limit as low as 0.1 μM. Moreover, the reproducibility, selectivity and stability of the sensor all exhibited outstanding performance. We applied the as-fabricated high performance sensor to measure the glucose levels in human serum and obtained satisfactory results. It is believed that AuNPs decorated Ni MOF/Ni/NiO nanocomposite provides a new platform for developing highly performance electrochemical sensors in practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Sadighi, Armin; Ostad, S N; Rezayat, S M; Foroutan, M; Faramarzi, M A; Dorkoosh, F A
2012-01-17
Chitosan nanoparticles (CS-NPs) have been used to enhance the permeability of furosemide and ranitidine hydrochloride (ranitidine HCl) which were selected as candidates for two different biopharmaceutical drug classes having low permeability across Caco-2 cell monolayers. Drugs loaded CS-NPs were prepared by ionic gelation of CS and pentasodium tripolyphosphate (TPP) which added to the drugs inclusion complexes with hydroxypropyl-β-cyclodextrin (HP-βCD). The stability constants for furosemide/HP-βCD and ranitidine HCl/HP-βCD were calculated as 335 M(-1) and 410 M(-1), whereas the association efficiencies (AE%) of the drugs/HP-βCD inclusion complexes with CS-NPs were determined to be 23.0 and 19.5%, respectively. Zetasizer and scanning electron microscopy (SEM) were used to characterise drugs/HP-βCD-NPs size and morphology. Transport of both nano and non-nano formulations of drugs/HP-βCD complexes across a Caco-2 cell monolayer was assessed and fitted to mathematical models. Furosemide/HP-βCD-NPs demonstrated transport kinetics best suited for the Higuchi model, whereas other drug formulations demonstrated power law transportation behaviour. Permeability experiments revealed that furosemide/HP-βCD and ranitidine HCl/HP-βCD nano formulations greatly induce the opening of tight junctions and enhance drug transition through Caco-2 monolayers. Copyright © 2011 Elsevier B.V. All rights reserved.
Methyl trypsin loaded poly(D,L-lactide-coglycolide) nanoparticles for contact lens care.
Jimenez, N; Galan, J; Vallet, A; Egea, M A; Garcia, M L
2010-03-01
The need of an enzymatic cleaner for soft contact lens care with an improved ocular safety and stability profile led us to evaluate the use of nanoparticles (NPs) of poly(D,L-lactide-coglycolide) (PLGA) and methyl trypsin (MT). NPs were prepared by double emulsion-solvent evaporation technique. A factorial design was performed to select the lactic acid proportion in the copolymer and conditions of the second sonication. The increment in proportion of lactic acid provided higher particle size results. When the time of second sonication was decreased, the entrapment efficiency (EE) increased. PLGA 50:50 NPs were chosen for further development since PLGA 50:50H NPs settled fast with different particle size in the sediment and PLGA 75:25 NPs led to form aggregates. The addition of glycerol to the NPs provided the highest EE of MT (>90%) while the addition of Tetronic 1304 promoted the fast release of enzyme initially and decreased the zeta potential (zeta) up to neutral values after gamma irradiation. NPs are expected to be effective as a lens care cleaner after 3 days or even longer with a very low quantity of enzyme released. Formulations showed an acceptable irritation ocular tolerance after in vitro HET-CAM test and in vivo Draize test. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Trivedi, Ruchit; Redente, Elizabeth F.; Thakur, Ashish; Riches, David W. H.; Kompella, Uday B.
2012-12-01
Our purpose was to assess sustained delivery and enhanced efficacy of pirfenidone-loaded nanoparticles after intratracheal instillation. Poly(lactide-co-glycolide) nanoparticles containing pirfenidone (NPs) were prepared and characterized. Biodistribution of NPs and solution was assessed using LC-MS after intratracheal administration in C57Bl/6 mice at 3 and 24 h and 1 week post-administration. Efficacy was tested in C57Bl/6 mice in a bleomycin-induced pulmonary fibrosis model. Mice received 10 μg pirfenidone intratracheally in solution or NPs, once a week, for 3 weeks after bleomycin administration. Drug effects were monitored on day 28. Lung hydroxyproline content, total number of cells, and numbers of macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage (BAL) were assessed. Numbers of macrophages, lymphocytes, and neutrophils were assessed in the lung as well. NPs sustained significantly higher levels of pirfenidone in the lungs and BAL at 24 h and 1 week, compared to the solution group. Pirfenidone solution and NPs significantly reduced hydroxyproline levels by 57 and 81%, respectively, compared to bleomycin alone. At the end of 4 weeks, BAL cellularity was reduced by 25.4% and 56% with solution and NP treatment, respectively. The numbers of lymphocytes and neutrophils in the BAL were also reduced by 58.9 and 82.4% for solution and 74.5% and 89.7% for NPs, respectively. The number of inflammatory macrophages in the lung was reduced by 62.8% and the number of neutrophils was reduced by 59.1% in the NP group and by 37.7% and 44.5%, respectively, in the solution group, compared to bleomycin alone. In conclusion, nanoparticles sustain lung pirfenidone delivery and enhance its anti-fibrotic efficacy.
Patel, Deepa; Naik, Sachin; Chuttani, Krishna; Mathur, Rashi; Mishra, Anil K; Misra, Ambikanandan
2013-09-01
The purpose of present investigation was to formulate and characterize the cyclobenzaprine HCl (CBZ)-loaded thiolated chitosan nanoparticles and assessment of in-vitro cell viability, trans-mucosal permeability on RPMI2650 cell monolayer, in-vivo pharmacokinetic and pharmacodynamic study of thiolated chitosan nanoparticles on Swiss albino mice after intranasal administration. A significant high permeation of drug was observed from thiolated chitosan nanoparticles with less toxicity on nasal epithelial cells. Brain uptake of the drug after (99m)Tc labeling was significantly enhanced after thiolation of chitosan. CBZ-loaded thiolated chitosan NPs significantly reverse the N-Methyl-.-Aspartate (NMDA)-induced hyperalgesia by intranasal administration than the CBZ solution. The studies of present investigation revealed that thiolation of chitosan significantly reduce trans-mucosal toxicity with enhanced trans-mucosal permeability via paracellular pathway and brain uptake of a hydrophilic drug (normally impermeable across blood brain barrier) and pain alleviation activity via intranasal route.
Zheng, Guangchao; Kaefer, Katharina; Mourdikoudis, Stefanos; Polavarapu, Lakshminarayana; Vaz, Belén; Cartmell, Samantha E; Bouleghlimat, Azzedine; Buurma, Niklaas J; Yate, Luis; de Lera, Ángel R; Liz-Marzán, Luis M; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge
2015-01-15
We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.
Mandal, Subhra; Prathipati, Pavan K.; Kang, Guobin; Zhao, You; Yuan, Zhe; Fan, Wejlin; Li, Qingsheng; Destache, Christopher J.
2016-01-01
Objective This report presents tenofovir alafenamide (TAF) and elvitegravir (EVG) fabricated into nanoparticles (NPs) for subcutaneous (SubQ) delivery as prevention strategy. Design Prospective prevention study in hu-BLT mice. Methods Using an oil-in-water emulsion solvent evaporation technique, TAF+EVG drugs were entrapped together into NPs containing poly(lactic-co-glycolic acid) (PLGA). In vitro prophylaxis studies (IC90) compared NPs to drugs in solution. Humanized-BLT (n=5/group) mice were given 200 mg/kg SubQ, and vaginally challenged with HIV-1 (5×105 TCID50) 4 and 14 days (d) post-NP administration (PI). Control mice (n=5) were challenged at 4 d. Weekly plasma viral load (pVL) was performed using RT-PCR. Hu-BLT mice were sacrificed and lymph nodes were harvested for HIV-1 viral RNA detection by in situ hybridization (ISH). In parallel, CD34+ humanized mice (3/time point) compared tenofovir (TFV) and EVG drug levels in vaginal tissues from NPs and solution. TFV and EVG were analyzed from tissue using LC-MS/MS. Results TAF+EVG NPs were < 200 nm in size. In-vitro prophylaxis indicates TAF+EVG NPs IC90 was 0.002 μg/mL and TAF+EVG solution was 0.78 μg/mL. TAF+EVG NPs demonstrated detectable drugs for 14 days and 72 h for solution, respectively. All Hu-BLT control mice became infected within 14 d after HIV-1 challenge. In contrast, hu-BLT mice that received NPs and challenged at 4 d PI, 100% were uninfected, and 60% challenged at 14 d PI were uninfected (p = 0.007; Mantel-Cox test). ISH confirmed these results. Conclusions This proof-of-concept study demonstrated sustained protection for TAF+EVG NPs in a hu-BLT mouse model of HIV vaginal transmission. PMID:28121666
DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection.
Qi, Lin; Xiao, Mingshu; Wang, Xiwei; Wang, Cheng; Wang, Lihua; Song, Shiping; Qu, Xiangmeng; Li, Li; Shi, Jiye; Pei, Hao
2017-09-19
The development of highly sensitive and selective methods for the detection of microRNA (miRNA) has attracted tremendous attention because of its importance in fundamental biological studies and diagnostic applications. In this work, we develop DNA-encoded Raman-active anisotropic nanoparticles modified origami paper analytical devices (oPADs) for rapid, highly sensitive, and specific miRNA detection. The Raman-active anisotropic nanoparticles were prepared using 10-mer oligo-A, -T, -C, and -G to mediate the growth of Ag cubic seeds into Ag nanoparticles (AgNPs) with different morphologies. The resulting AgNPs were further encoded with DNA probes to serve as effective surface-enhanced Raman scattering (SERS) probes. The analytical device was then fabricated on a single piece of SERS probes loaded paper-based substrate and assembled based on the principles of origami. The addition of the target analyte amplifies the Raman signals on DNA-encoded AgNPs through a target-dependent, sequence specific DNA hybridization assembly. This simple and low-cost analytical device is generic and applicable to a variety of miRNAs, allowing detection sensitivity down to 1 pM and assay time within 15 min, and therefore holds promising applications in point-of-care diagnostics.
NASA Astrophysics Data System (ADS)
Wang, Zhen-Ling; Hao, Jianhua; Chan, Helen L. W.; Law, Ga-Lai; Wong, Wing-Tak; Wong, Ka-Leung; Murphy, Margaret B.; Su, T.; Zhang, Z. H.; Zeng, S. Q.
2011-05-01
Water-solubility and biocompatibility are prerequisites for rare-earth up-converting nanophosphors applied to biological imaging. In this work, we have developed a facile and one-step synthesis technique, through which water-soluble NaYF4: Yb3+, Er3+ nanoparticles (NPs) with functional groups including 3-mercaptopropionic acid, 6-aminocaproic acid and poly(ethylene glycol)methyl ether on their surface can be directly prepared without any further surface treatment. Some inorganic salts will be selected as starting materials, water and some low toxic organic agents have been used as reaction media, which differs from earlier works. Structural and up-converting fluorescence are characterized by a variety of techniques. Cell uptake and in-vitro imaging of the as-synthesized NPs have been investigated using a multiphoton con-focal laser scanning microscope with a near-infrared excitation source. Internalization of the bare and functionalized NPs in human lung carcinoma A549 and human cervical carcinoma HeLa cells are studied at a nanoparticle loading of 10 µg mL-1 over an exposure period from 30 min to 24 h. The cytotoxicity of modified NPs in HeLa cells is found to be low. In addition, the feasibility of the NPs in animal imaging has been demonstrated by subcutaneously injecting these NPs into nude mouse. The results indicated that our directly synthesized NPs coated with various functional groups are promising as bio-imaging agents due to their easy uptake, long lasting, low cytotoxicity, emissive in various human carcinoma cell lines and small animals through up-conversion with near-infrared excitation.
Toxicity of polymeric nanoparticles in vivo and in vitro
NASA Astrophysics Data System (ADS)
Voigt, Nadine; Henrich-Noack, Petra; Kockentiedt, Sarah; Hintz, Werner; Tomas, Jürgen; Sabel, Bernhard A.
2014-06-01
Polybutylcyanoacrylate nanoparticles (PBCA NPs) are candidates for a drug delivery system, which can cross the blood-brain barrier (BBB). Because little is known about their toxicity, we exposed cells to PBCA NPs in vitro and in vivo and monitored their life and death assays. PBCA NPs were fabricated with different surfactants according to the mini-emulsion technique. Viabilities of HeLa and HEK293 cells after NP incubation were quantified by analysing cellular metabolic activity (MTT-test). We then repetitively injected i.v. rhodamine-labelled PBCA NP variations into rats and monitored the survival and morphology of retrogradely labelled neurons by in vivo confocal neuroimaging (ICON) for five weeks. To test for carrier-efficacy and safety, PBCA NPs loaded with Kyotorphin were injected in rats, and a hot plate test was used to quantify analgesic effects. In vitro, we found dose-dependent cell death which was, however, only detectable at very high doses and mainly seen in the cultures incubated with NPs fabricated with the tensids SDS and Tween. However, the in vivo experiments did not show any NP-induced neuronal death, even with particles which were toxic at high dose in vitro, i.e. NPs with Tween and SDS. The increased pain threshold at the hot plate test demonstrated that PBCA NPs are able to cross the BBB and thus comprise a useful tool for drug delivery into the central nervous system (CNS). Our findings showing that different nanoparticle formulations are non-toxic have important implications for the value of NP engineering approaches in medicine.
Huang, Ke; Boerhan, Rena; Liu, Changming; Jiang, Guoqiang
2017-12-04
Nanoparticles (NPs) are widely studied as tumor targeted vehicles. The penetration of NPs into the tumor is considered as a major barrier for delivery of NPs into tumor cell and a big challenge to translate NPs from lab to the clinic. The objective of this study is to know how the surface charge of NPs, the protein corona surrounding the NPs, and the fluid flow around the tumor surface affect the penetration and accumulation of NPs into the tumor, through in vitro penetration study based on a spheroid-on-chip system. Surface decorated polystyrene (PS) NPs (100 nm) carrying positive and negative surface charge were loaded to the multicellular spheroids under static and flow conditions, in the presence or absence of serum proteins. NP penetration was investigated by confocal laser microscopy scanning followed with quantitative image analysis. The results reveal that negatively charged NPs are attached more on the spheroid surface and easier to penetrate into the spheroids. Protein corona, which is formed surrounding the NPs in the presence of serum protein, changes the surface properties of the NPs, weakens the NP-cell affinity, and, therefore, results in lower NP concentration on the spheroid surface but might facilitate deeper penetration. The exterior fluid flow enhances the interstitial flow into the spheroid, which benefits the penetration but also strips the NPs (especially the NPs with protein corona) on the spheroid surface, which decreases the penetration flux significantly. The maximal penetration was obtained by applying negatively charged NPs without protein corona under the flow condition. We hope the present study will help to understand the spatiotemporal performance of drug delivery NPs and inform the rational design of NPs with highly defined drug accumulation localized at a target site.
Liu, Ying; Wu, Xin; Mi, Yushuai; Zhang, Bimeng; Gu, Shengying; Liu, Gaolin; Li, Xiaoyu
2017-11-01
This article reports a promising approach to enhance the oral delivery of nuciferine (NUC), improve its aqueous solubility and bioavailability, and allow its controlled release as well as inhibiting lipid accumulation. NUC-loaded poly lactic-co-glycolic acid nanoparticles (NUC-PLGA-NPs) were prepared according to a solid/oil/water (s/o/w) emulsion technique due to the water-insolubility of NUC. PLGA exhibited excellent loading capacity for NUC with adjustable dosing ratios. The drug loading and encapsulation efficiency of optimized formulation were 8.89 ± 0.71 and 88.54 ± 7.08%, respectively. NUC-PLGA-NPs exhibited a spherical morphology with average size of 150.83 ± 5.72 nm and negative charge of -22.73 ± 1.63 mV, which are suitable for oral administration. A sustained NUC released from NUC-PLGA-NPs with an initial exponential release owing to the surface associated drug followed by a slower release of NUC, which was entrapped in the core. In addition, ∼77 ± 6.67% was released in simulating intestinal juice, while only about 45.95 ± 5.2% in simulating gastric juice. NUC-PLGA-NPs are more efficient against oleic acid (OA)-induced hepatic steatosis in HepG 2 cells when compared to naked NUC (n-NUC, *p < 0.05). The oral bioavailability of NUC-PLGA-NPs group was significantly higher (**p < 0.01) and a significantly decreased serum levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), as well as a higher concentration of high-density lipoprotein cholesterol (HDL-C) was observed, compared with that of n-NUC treated group. These findings suggest that NUC-PLGA-NPs hold great promise for sustained and controlled drug delivery with improved bioavailability to alleviating lipogenesis.
Hanafy, Amira S; Farid, Ragwa M; ElGamal, Safaa S
2015-01-01
Complexation was investigated as an approach to enhance the entrapment of the cationic neurotherapeutic drug, galantamine hydrobromide (GH) into cationic chitosan nanoparticles (CS-NPs) for Alzheimer's disease management intranasally. Biodegradable CS-NPs were selected due to their low production cost and simple preparation. The effects of complexation on CS-NPs physicochemical properties and uptake in rat brain were examined. Placebo CS-NPs were prepared by ionic gelation, and the parameters affecting their physicochemical properties were screened. The complex formed between GH and chitosan was detected by the FT-IR study. GH/chitosan complex nanoparticles (GH-CX-NPs) were prepared by ionic gelation, and characterized in terms of particle size, zeta potential, entrapment efficiency, in vitro release and stability for 4 and 25 °C for 3 months. Both placebo CS-NPs and GH-CX-NPs were visualized by transmission electron microscopy. Rhodamine-labeled GH-CX-NPs were prepared, administered to male Wistar rats intranasally, and their delivery to different brain regions was detected 1 h after administration using fluorescence microscopy and software-aided image processing. Optimized placebo CS-NPs and GH-CX-NPs had a diameter 182 and 190 nm, and a zeta potential of +40.4 and +31.6 mV, respectively. GH encapsulation efficiency and loading capacity were 23.34 and 9.86%, respectively. GH/chitosan complexation prolonged GH release (58.07% ± 6.67 after 72 h), improved formulation stability at 4 °C in terms of drug leakage and particle size, and showed insignificant effects on the physicochemical properties of the optimized placebo CS-NPs (p > 0.05). Rhodamine-labeled GH-CX-NPs were detected in the olfactory bulb, hippocampus, orbitofrontal and parietal cortices. Complexation is a promising approach to enhance the entrapment of cationic GH into the CS-NPs. It has insignificant effect on the physicochemical properties of CS-NPs. GH-CX-NPs were successfully delivered to different brain regions shortly after intranasal administration suggesting their potential as a delivery system for Alzheimer's disease management.
Amato, Dahlia N; Amato, Douglas V; Mavrodi, Olga V; Braasch, Dwaine A; Walley, Susan E; Douglas, Jessica R; Mavrodi, Dmitri V; Patton, Derek L
2016-05-01
The synthesis of antimicrobial thymol/carvacrol-loaded polythioether nanoparticles (NPs) via a one-pot, solvent-free miniemulsion thiol-ene photopolymerization process is reported. The active antimicrobial agents, thymol and carvacrol, are employed as "solvents" for the thiol-ene monomer phase in the miniemulsion to enable facile high capacity loading (≈50% w/w), excellent encapsulation efficiencies (>95%), and elimination of all postpolymerization purification processes. The NPs serve as high capacity reservoirs for slow-release and delivery of thymol/carvacrol-combination payloads that exhibit inhibitory and bactericidal activity (>99.9% kill efficiency at 24 h) against gram-positive and gram-negative bacteria, including both saprophytic (Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 25922) and pathogenic species (E. coli ATCC 43895, Staphylococcus aureus RN6390, and Burkholderia cenocepacia K56-2). This report is among the first to demonstrate antimicrobial efficacy of essential oil-loaded nanoparticles against B. cenocepacia - an innately resistant opportunistic pathogen commonly associated with debilitating respiratory infections in cystic fibrosis. Although a model platform, these results point to promising pathways to particle-based delivery of plant-derived extracts for a range of antimicrobial applications, including active packaging materials, topical antiseptics, and innovative therapeutics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hou, Lin; Shan, Xiaoning; Hao, Lisha; Feng, Qianhua; Zhang, Zhenzhong
2017-05-01
Localized cancer treatment with combination therapy has attracted increasing attention for effective inhibition of tumor growth. In this work, we introduced diffusion molecular retention (DMR) tumor targeting effect, a new strategy that employed transferrin (Tf) modified hollow mesoporous CuS nanoparticles (HMCuS NPs) to undergo extensive diffuse through the interstitium and tumor retention after a peritumoral (PT) injection. Herein, HMCuS NPs with strong near-infrared (NIR) absorption and photothermal conversion efficiency could serve as not only a drug carrier but also a powerful contrast agent for photoacoustic imaging to guide chemo-phototherapy. The iron-dependent artesunate (AS), which possessed profound cytotoxicity against tumor cell, was used as model drug. As a result, this AS loaded Tf-HMCuS NPs (AS/Tf-HMCuS NPs) system could specially target to tumor cells and synchronously deliver AS as well as irons into tumor to achieve enhanced antitumor activity. It was found that AS/Tf-HMCuS NPs was taken up by MCF-7 cells via Tf-mediated endocytosis, and could effectively convert NIR light into heat for photothermal therapy as well as generated high levels of reactive oxygen species (ROS) for photodynamic therapy. In addition, in vivo antitumor efficacy studies showed that tumor-bearing mice treated with AS/Tf-HMCuS NPs through peritumoral (PT) injection under NIR laser irradiation displayed the strongest inhibition rate of about 74.8%, even with the reduced frequency of administration. Furthermore, to demonstrate DMR, the optical imaging, photoacoustic tomography and immunofluorescence after PT injection were adopted to track the behavior of AS/Tf-HMCuS NPs in vivo. The results exhibited that Tf-HMCuS NPs prolonged the local accumulation and retention together with slow vascular uptake and extensive interstitial diffusion, which was consistent with the biodistribution studies of AS/Tf-HMCuS NPs. Therefore, the approach of localized delivery through DMR combined with multi-mechanism therapy may be a promising method for cancer treatment. In recent years, localized cancer treatment using different biomaterials has attracted increasing attention for effective inhibition of tumor growth. However, it is still challenging for this kind of system to achieve a high drug loading, overcome biological barriers from the site of injection to the site of action, and combine synergetic therapy with diagnosis without adversely affecting the formation process. This study provides a localized diffusion molecular retention (DMR) tumor targeting drug delivery system based on hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) entrapment of anticancer drug for the first time, which can achieve high drug loading, improve local drug accumulation and retention, accomplish synergistic combination of chemo-phototherapy, and finally enhance antitumor effect. In addition, HMCuS NPs also possesses the property suitable for photoacoustic imaging, which could offer us a theranostic platform. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Iyer, R Indira; Panda, Tapobrata
2018-08-01
The potential of callus cultures and field-grown organs of pumpkin (Cucurbita maxima) for the biosynthesis of nanoparticles of the noble metals gold and silver has been investigated. Biosynthesis of AuNPs (gold nanoparticles) and AgNPs (silver nanoparticles) was obtained with flowers of C. maxima but not with pulp and seeds. With callus cultures established in MS-based medium the biogenesis of both AuNPs and AgNPs could be obtained. At 65 °C the biogenesis of AuNPs and AgNPs by callus extracts was enhanced. The AuNPs and AgNPs have been characterized by UV-visible spectroscopy, TEM, DLS and XRD. Well-dispersed nanoparticles, which exhibited a remarkable diversity in size and shape, could be visualized by TEM. Gold nanoparticles were found to be of various shapes, viz., rods, triangles, star-shaped particles, spheres, hexagons, bipyramids, discoid particles, nanotrapezoids, prisms, cuboids. Silver nanoparticles were also of diverse shapes, viz., discoid, spherical, elliptical, triangle-like, belt-like, rod-shaped forms and cuboids. EDX analysis indicated that the AuNPs and AgNPs had a high degree of purity. The surface charges of the generated AuNPs and AgNPs were highly negative as indicated by zeta potential measurements. The AuNPs and AgNPs exhibited remarkable stability in solution for more than four months. FTIR studies indicated that biomolecules in the callus extracts were associated with the biosynthesis and stabilisation of the nanoparticles. The synthesized AgNPs could catalyse degradation of methylene blue and exhibited anti-bacterial activity against E. coli DH5α. There is no earlier report of the biosynthesis of nanoparticles by this plant species. Callus cultures of Cucurbita maxima are effective alternative resources of biomass for synthesis of nanoparticles.
Kundu, Paromita; Mohanty, Chandana; Sahoo, Sanjeeb K
2012-07-01
Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fabrication of environmentally biodegradable lignin nanoparticles.
Frangville, Camille; Rutkevičius, Marius; Richter, Alexander P; Velev, Orlin D; Stoyanov, Simeon D; Paunov, Vesselin N
2012-12-21
We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The first method is based on precipitation of low-sulfonated lignin from an ethylene glycol solution by using diluted acidic aqueous solutions, which yields lignin NPs that are stable over a wide range of pH. The second approach is based on the acidic precipitation of lignin from a high-pH aqueous solution which produces NPs stable only at low pH. Our study reveals that lignin NPs from the ethylene glycol-based precipitation contain densely packed lignin domains which explain the stability of the NPs even at high pH. We characterised the properties of the produced lignin NPs and determined their loading capacities with hydrophilic actives. The results suggest that these NPs are highly porous and consist of smaller lignin domains. Tests with microalgae like Chlamydomonas reinhardtii and yeast incubated in lignin NP dispersions indicated that these NPs lack measurable effect on the viability of these microorganisms. Such biodegradable and environmentally compatible NPs can find applications as drug delivery vehicles, stabilisers of cosmetic and pharmaceutical formulations, or in other areas where they may replace more expensive and potentially toxic nanomaterials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Oingfa; Li, Xiaolu; Yang, Yi; Wei, Jing; Zhao, Qian; Luo, Feng; Qian, Zhiyong
2014-02-01
Use of single chemotherapy agents has shown some limitations in anti-tumor treatment, such as development of drug resistance, severe adverse reactions and limited regime for therapeutic use. Combination of two or more therapeutic drugs is a feasible strategy to overcome these limitations. This paper reports study of co-delivery by core-shell nanoparticles (NPs) with hydrophobic PLLA core loaded with curcumin (Cur) and hydrophilic heparin shell adsorbing Doxorubicin (DOX). Characterizations of Cur-PEA NPs, Cur-PEA/heparin NPs and DOX adsorbing into Cur-PEA/heparin NPs (DOX-Cur NPs) were also investigated by transmission electron microscope (TEM) and Malvern Zetasizer. Studies on cellular uptake of DOX-Cur NPs demonstrated that both drugs were effectively taken up by 4T1 tumor cells. Furthermore, DOX-Cur NPs suppressed 4T1 tumor cells growth more efficiently than either DOX or Cur alone at the same concentrations, as measured by flow cytometry (FCM). We found out that intravenous injection of DOX-Cur NPs efficiently inhibited growth of subcutaneous 4T1 breast carcinoma in vivo (p < 0.01) and prolonged survival of the treated 4T1 breast carcinoma mice. Moreover, the pathological damage to the cardiac tissue in mice treated with DOX-Cur NPs was significantly less severe than that of mice treated with free DOX. This study suggested that DOX-Cur NPs may have promising applications in breast carcinoma therapy.
Das, Manasi; Sahoo, Sanjeeb K.
2012-01-01
Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP) is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR) by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs) surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined) and single or dual drug loaded nanoparticles (unconjugated/folate conjugated). The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs) over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype. PMID:22470431
Preparation of core-shell Ag@CeO2 nanocomposite by LSPR photothermal induced interface reaction
NASA Astrophysics Data System (ADS)
Zhong, H. X.; Wei, Y.; Yue, Y. Z.; Zhang, L. H.; Liu, Y.
2016-04-01
The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.
Liu, Jian-ping; Wang, Ting-ting; Wang, Dang-ge; Dong, An-jie; Li, Ya-ping; Yu, Hai-jun
2017-01-01
The therapeutic outcome of chemotherapy is severely limited by intrinsic or acquired drug resistance, the most common causes of chemotherapy failure. In the past few decades, advancements in nanotechnology have provided alternative strategies for combating tumor drug resistance. Drug-loaded nanoparticles (NPs) have several advantages over the free drug forms, including reduced cytotoxicity, prolonged circulation in the blood and increased accumulation in tumors. Currently, however, nanoparticulate drugs have only marginally improved the overall survival rate in clinical trials because of the various pathophysiological barriers that exist in the tumor microenvironment, such as intratumoral distribution, penetration and intracellular trafficking, etc. Smart NPs with stimulus-adaptable physico-chemical properties have been extensively developed to improve the therapeutic efficacy of nanomedicine. In this review, we summarize the recent advances of employing smart NPs to treat the drug-resistant tumors by overcoming the pathophysiological barriers in the tumor microenvironment. PMID:27569390
Liu, Jian-Ping; Wang, Ting-Ting; Wang, Dang-Ge; Dong, An-Jie; Li, Ya-Ping; Yu, Hai-Jun
2017-01-01
The therapeutic outcome of chemotherapy is severely limited by intrinsic or acquired drug resistance, the most common causes of chemotherapy failure. In the past few decades, advancements in nanotechnology have provided alternative strategies for combating tumor drug resistance. Drug-loaded nanoparticles (NPs) have several advantages over the free drug forms, including reduced cytotoxicity, prolonged circulation in the blood and increased accumulation in tumors. Currently, however, nanoparticulate drugs have only marginally improved the overall survival rate in clinical trials because of the various pathophysiological barriers that exist in the tumor microenvironment, such as intratumoral distribution, penetration and intracellular trafficking, etc. Smart NPs with stimulus-adaptable physico-chemical properties have been extensively developed to improve the therapeutic efficacy of nanomedicine. In this review, we summarize the recent advances of employing smart NPs to treat the drug-resistant tumors by overcoming the pathophysiological barriers in the tumor microenvironment.
Electrochemical sensor for rutin detection based on Au nanoparticle-loaded helical carbon nanotubes
NASA Astrophysics Data System (ADS)
Yang, Haitang; Li, Bingyue; Cui, Rongjing; Xing, Ruimin; Liu, Shanhu
2017-10-01
The key step in the fabrication of highly active electrochemical sensors is seeking multifunctional nanocomposites as electrode modified materials. In this study, the gold nanoparticle-decorated helical carbon nanotube nanocomposites (AuNPs-HCNTs) were fabricated for rutin detection because of its superior sensitivity, the chemical stability of AuNPs, and the superior conductivity and unique 3D-helical structure of helical carbon nanotubes. Results showed the prepared nanocomposites exhibited superior electrocatalytic activity towards rutin due to the synergetic effects of AuNPs and HCNTs. Under the optimized conditions, the developed sensor exhibited a linear response range from 0.1 to 31 μmol/L for rutin with a low detectable limit of 81 nmol/L. The proposed method might offer a possibility for electrochemical analysis of rutin in Chinese medical analysis or serum monitoring owing to its low cost, simplicity, high sensitivity, good stability, and few interferences against common coexisting ions in real samples.
Tian, Jing; Xu, Shasha; Deng, Hongbing; Song, Xinxing; Li, Xiujuan; Chen, Jiajia; Cao, Feng; Li, Bin
2017-01-30
Self-assembled nanoparticles (NPs) composed of chitosan (CS) and low density lipoprotein (LDL) of hen eggs were prepared by a one-step green synthesis of mixing CS solution and LDL suspension. The formulated CS-LDL NPs were then applied to encapsulate doxorubicin hydrochloride (DOX) with the encapsulation efficiency of 51.7%. The average particle size and ζ-potential of DOX-loaded CS-LDL NPs (CS-LDL-DOX NPs) were 179nm and +48.3mV, respectively. The encapsulated DOX showed less cytotoxicity than free DOX after 24-h incubation with gastric cancer SGC7901 cells, which may be due to extended release. Cellular uptake of CS-LDL-DOX NPs was significant higher than that of free DOX due to the endocytosis of tumor cells. Thus CS-LDL-DOX NPs showed a potential in reducing cytotoxicity of DOX by extended release behavior and preferential uptake compared to free DOX. In addition, flow cytometry and terminal-deoxynucleotidyl-transferase-mediated dUTP nick-end labeling assay demonstrated that CS-LDL-DOX NPs induced the apoptosis of cancer cells. Autophagy was involved in effects caused by CS-LDL-DOX NPs through blocking AKT/mTOR signaling, which was demonstrated by the analyses of the expression of LC3, p62, AKT, p-AKT, mTOR and p-mTOR. Copyright © 2016 Elsevier B.V. All rights reserved.
Short- and long-term stability of lyophilised melatonin-loaded lecithin/chitosan nanoparticles.
Hafner, Anita; Dürrigl, Marjana; Pepić, Ivan; Filipović-Grčić, Jelena
2011-01-01
The aim of this study was to establish a freeze-drying process for melatonin-loaded lecithin/chitosan nanoparticles (NPs) to preserve their chemical and physical stability for a longer time period that what is possible in an aqueous suspension. Glucose and trehalose were investigated as potential excipients during freeze-drying of NP suspensions. Lecithin/chitosan NPs were characterised by mean diameter and zeta potential, ranging between 117.4 and 328.5 nm and 6.7 and 30.2 mV, respectively, depending on the lecithin type and chitosan content in the preparation. Melatonin loadings were up to 7.1%. For all lecithin/chitosan NPs, no notable differences in the mean particle size, size distribution, zeta potential or melatonin content were observed before or immediately after the lyophilisation process or after 7 months of storage at 4 °C. The residual moisture contents of lyophilisates with glucose and trehalose immediately after the lyophilisation process varied between 4.0-4.8% and 2.4-3.0%, respectively. All lecithin/chitosan NPs had a fully amorphous nature after the freeze-drying process, as indicated by modulated differential scanning calorimetry. NP lyophilisates with glucose had a low glass transition temperature (ca. 5 °C), confirming that lyophilisation with glucose as a cryoprotectant was not appropriate. All lyophilisates with trehalose had a glass transition temperature above the room temperature, allowing formation of the cake without a collapse of the structure, which was capable of preserving its characteristics and appearance following 7 months of storage at 4 °C.
Pradhan, Roshan; Ramasamy, Thiruganesh; Choi, Ju Yeon; Kim, Jeong Hwan; Poudel, Bijay Kumar; Tak, Jin Wook; Nukolova, Natalia; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh
2015-06-05
Multiple-drug combination therapy is becoming more common in the treatment of advanced cancers because this approach can decrease side effects and delay or prevent drug resistance. In the present study, we developed hyaluronic acid (HA)-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (HA-PLGA NPs) for co-delivery of docetaxel (DTX) and tanespimycin (17-AAG). DTX and 17-AAG were simultaneously loaded into HA-PLGA NPs using an oil-in-water emulsification/solvent evaporation method. Several formulations were tested. HA-PLGA NPs loaded with DTX and 17-AAG at a molar ratio of 2:1 produced the smallest particle size (173.3±2.2nm), polydispersity index (0.151±0.026), and zeta potential (-12.4±0.4mV). Approximately 60% and 40% of DTX and 17-AAG, respectively, were released over 168h in vitro. Cytotoxicity assays performed in vitro using MCF-7, MDA-MB-231, and SCC-7 cells showed that dual drug-loaded HA-PLGA NPs at a DTX:17-AAG molar ratio of 2:1 exhibited the highest synergistic effect, with combination index values of 0.051, 0.036, and 0.032, respectively, at the median effective dose. Furthermore, synergistic antitumor activity was demonstrated in vivo in a CD44 and RHAMM (CD168) - overexpressing squamous cell carcinoma (SCC-7) xenograft in nude mice. These findings indicated that nanosystem-based co-delivery of DTX and 17-AAG could provide a promising combined therapeutic strategy for enhanced antitumor therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yu, Yiseul; Jung, Hyeon Jin; Je, Mingyu; Choi, Hyun Chul; Choi, Myong Yong
2016-07-01
In this work, the zero valent Fe (ZVI) and graphite-encapsulated Fe (Fe@C) nanoparticles (NPs) were easily and selectively prepared by a pulsed laser ablation (PLA) method in an aqueous sodium borohydride solution and ascorbic acid dissolved in methanol, respectively. Here, the Fe@C NPs were uniquely synthesized by PLA in methanol, where the solvent is used as both a carbon source for the graphitic layers and solvent, which is very unique. Furthermore, Pd NPs were loaded onto the surface of the Fe@C NPs to prepare bimetallic (Fe@C/Pd) NPs for the enhancement of the degradation efficiency of m-dichlorobenzene (m-DCB). The morphology, crystallinity, and surface composition of the prepared NPs were carefully characterized by high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The degradation rate of m-DCB using single (Fe and Pd) or bimetallic (Fe/Pd and Fe@C/Pd) NPs were compared by using gas chromatography. Among these NPs produced in this work, the Fe@C/Pd NPs with 1.71 wt % of Pd showed an excellent dechlorination efficiency for m-DCB with 100% degradation within 75 min. The graphitic layer on the Fe NPs played as not only an oxidation resistant for the Fe NPs to surroundings, but also a supporter of the Pd NPs for the enhanced degradation efficiency of m-DCB. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dalpiaz, Alessandro; Contado, Catia; Mari, Lara; Perrone, Daniela; Pavan, Barbara; Paganetto, Guglielmo; Hanuskovà, Miriam; Vighi, Eleonora; Leo, Eliana
2014-05-01
Zidovudine (AZT) is employed against AIDS and hepatitis; its use is limited by active efflux transporters (AETs) that induce multidrug resistance for intracellular therapies and hamper AZT to reach the brain. Ursodeoxycholic acid (UDCA) conjugation with AZT (prodrug UDCA-AZT) allows to elude the AET systems. To investigate the effect of the Pluronic F68 coating on the loading, release and stability of poly(D,L lactide-co-glicolide) nanoparticles (NPs) embedded with UDCA-AZT. The mean diameter of the NP prepared by nanoprecipitation or emulsion/solvent evaporation methods was determined using both photon correlation spectroscopy and sedimentation field-flow fractionation; particle morphology was detected by scanning electron microscope. The stability of the free and encapsulated UDCA-AZT was evaluated in rat liver homogenates by high-performance liquid chromatography analysis. The mean diameter of the NPs was found to be ∼ 600 nm with a relatively high polydispersity. The NPs obtained by emulsion/solvent evaporation were not able to control the prodrug release, differently from NPs obtained by nanoprecipitation. The presence of the Pluronic coating did not substantially modify the kinetics of the drug release, or the extent of the burst effect that were instead only influenced by the preparation parameters. UDCA-AZT incorporated in the NPs was more stable in the rat liver homogenates than the free prodrug and no influence of the Pluronic coating was observed. Considering the different potential applications of nanoparticles coated and uncoated with Pluronic (brain and macrophage targeting, respectively), both of these nanoparticle systems could be useful in the therapies against HIV.
Melguizo, Consolación; Cabeza, Laura; Prados, Jose; Ortiz, Raúl; Caba, Octavio; Rama, Ana R; Delgado, Ángel V; Arias, José L
2015-01-01
Doxorubicin (Dox) is widely used for the combined chemotherapy of solid tumors. However, the use of these drug associations in lung cancer has low antitumor efficacy. To improve its efficacious delivery and activity in lung adenocarcinoma cells, we developed a biodegradable and noncytotoxic nanoplatform based on biodegradable poly(butylcyanoacrylate) (PBCA). The reproducible formulation method was based on an anionic polymerization process of the PBCA monomer, with the antitumor drug being entrapped within the nanoparticle (NP) matrix during its formation. Improved drug-entrapment efficiencies and sustained (biphasic) drug-release properties were made possible by taking advantage of the synthesis conditions (drug, monomer, and surfactant-agent concentrations). Dox-loaded NPs significantly enhanced cellular uptake of the drug in the A549 and LL/2 lung cancer cell lines, leading to a significant improvement of the drug’s antitumoral activity. In vivo studies demonstrated that Dox-loaded NPs clearly reduced tumor volumes and increased mouse-survival rates compared to the free drug. These results demonstrated that PBCA NPs may be used to optimize the antitumor activity of Dox, thus exhibiting a potential application in chemotherapy against lung adenocarcinoma. PMID:26715840
Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films
NASA Astrophysics Data System (ADS)
Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.
2014-03-01
Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.
NASA Astrophysics Data System (ADS)
Zhang, Lingyan; Han, Fei
2018-04-01
Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.
Hashad, Rania A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar
2016-10-01
The aim of this study was to assess the feasibility of employing a novel but critical formulation pH (6.2) to encapsulate an anionic model drug (methotrexate, MTX) into chitosan(Cs)-tripolyphosphate nanoparticles(NPs). A response surface methodology using a three-level full factorial design was applied studying the effects of two independent variables namely; Cs concentration and MTX concentration. The responses investigated were the entrapment efficiency (EE%), mean hydrodynamic particle size (PS), polydispersity index (PDI) and zeta potential (ZP). In order to simultaneously optimize the series of models obtained, the desirability function approach was applied with a goal to produce high percent of MTX encapsulated into highly charged Cs-TPP NPs of homogenous optimum PS. MTX-loaded CsNPs were successfully prepared at the novel pH applied. The suggested significant models were found quadratic for EE, PS and ZP responses, while 2-factor interaction model for PDI. The optimization overlay graph showed that the maximum global desirability, D=0.856, was reached when the conditions were set at high Cs and MTX concentration. Thus, the use of such optimized conditions, at this novel pH, achieved a maximum drug EE% (73.38%) into NPs characterized by optimum PS (232.6nm), small PDI value (0.195) and highly surface charged (+18.4mV). Copyright © 2016 Elsevier B.V. All rights reserved.
Kumar, Hitesh; Gothwal, Avinash; Khan, Iliyas; Nakhate, Kartik T; Alexander, Amit; Ajazuddin; Singh, Vineeta; Gupta, Umesh
2017-10-02
Primaquine phosphate (PQ) is mainly used as a radical cure therapy to eradicate relapse of malaria at the liver stage, which is particularly caused by P. falciparum and P. vivax. In the present study, PQ-loaded galactosylated gelatin nanoparticles (Gel-LA-PQ-NPs) were formulated using a one-step desolvation technique. The mean particle size of Gel-LA-PQ-NPs was found to be 93.48 ± 6.36 nm with a zeta potential of 4.80 ± 0.20 mV having 69.90 ± 1.53% encapsulation efficiency. Electron microscopy demonstrated that the NPs were spherical in shape and uniformly distributed without any cluster formation. The in vitro release of PQ from Gel-LA-PQ-NPs has been facilitated in sustained manner, and the release was three times slower than the naïve drug. The prepared nanoparticles (Gel-LA-PQ-NPs) were significantly (p < 0.0001) less hemolytic than the pure drug PQ. The hematological ex vivo study further supported that the developed Gel-LA-PQ-NPs were safer than PQ. The in vitro antiplasmodium assay revealed that the IC 50 value against the blood stage of asexual P. falciparum 3D7 strains was significantly (p < 0.01) less (2.862 ± 0.103 μM) for Gel-LA-PQ-NPs than naïve PQ (3.879 ± 0.655 μM). In vivo pharmacokinetic parameters of Gel-LA-PQ-NPs such as half-life and AUC were significantly higher for Gel-LA-PQ-NPs, i.e., with higher bioavailability. Galactosylation of the NPs led to liver targeting of the PQ in animal studies. Approximately eight-fold higher accumulation of PQ was observed in liver compared to pure drug (i.e., PQ). Conclusively, the prepared galactosylated gelatin nanocarrier holds the promising potential and hepatic targetability of an antimalarial, maintaining its safety and biocompatibility.
Das, Manasi; Duan, Wei; Sahoo, Sanjeeb K
2015-02-01
The promising proposition of multifunctional nanoparticles for cancer diagnostics and therapeutics has inspired the development of theranostic approach for improved cancer therapy. Moreover, active targeting of drug carrier to specific target site is crucial for providing efficient delivery of therapeutics and imaging agents. In this regard, the present study investigates the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles, functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. A wide spectrum of in vitro analysis (cellular uptake study, cytotoxicity assay, cell cycle and apoptosis analysis, apoptosis associated proteins study) revealed superior therapeutic potentiality of targeted NPs over other formulations in EpCAM expressing cells. Moreover, our nanotheranostic system served as a superlative bio-imaging modality both in 2D monolayer culture and tumor spheroid model. Our result suggests that, these aptamer-guided multifunctional NPs may act as indispensable nanotheranostic approach toward cancer therapy. This study investigated the theranostic capabilities of nutlin-3a loaded poly (lactide-co-glycolide) nanoparticles functionalized with a targeting ligand (EpCAM aptamer) and an imaging agent (quantum dots) for cancer therapy and bioimaging. It was concluded that the studied multifunctional targeted nanoparticle may become a viable and efficient approach in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kausar, Ayesha; Siddiq, Muhammad
2017-06-01
The matrix material for nanofiltration membranes was prepared through chemical grafting of poly(styrene- co-chloromethylstyrene) (PSCMS) to DGEBA using hexamethylenediamine as linker. The phase inversion technique was used to form PSCMS- g-DGEBA membranes. This effort also involves the designing of gold nanoparticles and its composite nanoparticles with polystyrene microspheres as matrix reinforcement. The nanoporous morphology was observed at lower filler content and there was formation of nanopattern at increased nanofiller content. The tensile strength was improved from 32.5 to 35.2 MPa with the increase in AuNPs-PSNPs loading from 0.1 to 1 wt%. The glass transition temperature was also enhanced from 132 to 159 °C. The membrane properties were measured via nanofiltration set-up. Higher pure water permeation flux, recovery, and salt rejection were measured for novel membranes. PSCMS- g-DGEBA/AuNPs-PSNPs membrane with 1 wt% loading showed flux of 2.01 mL cm-2 min-1 and salt rejection ratio of 70.4 %. Efficiency of the gold/polystyrene nanoparticles reinforced membranes for the removal of Hg2+ and Pb2 was found to be 99 %. Novel hybrid membranes possess fine characteristics to be utilized in industrial water treatment units.
Nguyen, Dai Hai; Lee, Jung Seok; Choi, Jong Hoon; Park, Kyung Min; Lee, Yunki; Park, Ki Dong
2016-04-15
Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be readily controlled by varying the SPIO/PEG ratio in the assemblies, and also demonstrated significant improvement of the functional nanoparticles for theranostic systems; enhanced magnetic resonance, improved cellular uptake, and efficient PTX loading and sustained release at the desired time point. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Chaturvedi, Mayank; Molino, Yves; Sreedhar, Bojja; Khrestchatisky, Michel; Kaczmarek, Leszek
2014-01-01
Aim The aim of this study was to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) for delivery of a protein – tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) – across the blood–brain barrier (BBB) to inhibit deleterious matrix metalloproteinases (MMPs). Materials and methods The NPs were formulated by multiple-emulsion solvent-evaporation, and for enhancing BBB penetration, they were coated with polysorbate 80 (Ps80). We compared Ps80-coated and uncoated NPs for their toxicity, binding, and BBB penetration on primary rat brain capillary endothelial cell cultures and the rat brain endothelial 4 cell line. These studies were followed by in vivo studies for brain delivery of these NPs. Results Results showed that neither Ps80-coated nor uncoated NPs caused significant opening of the BBB, and essentially they were nontoxic. NPs without Ps80 coating had more binding to endothelial cells compared to Ps80-coated NPs. Penetration studies showed that TIMP-1 NPs + Ps80 had 11.21%±1.35% penetration, whereas TIMP-1 alone and TIMP-1 NPs without Ps80 coating did not cross the endothelial monolayer. In vivo studies indicated BBB penetration of intravenously injected TIMP-1 NPs + Ps80. Conclusion The study demonstrated that Ps80 coating of NPs does not cause significant toxic effects to endothelial cells and that it can be used to enhance the delivery of protein across endothelial cell barriers, both in vitro and in vivo. PMID:24531257
NASA Astrophysics Data System (ADS)
Song, Dongpo; Lin, Ying; Qian, Gang; Wang, Xinyu; Liu, Xiaohui; Li, Cheng; Watkins, James
2014-03-01
The preparation of well-ordered nanocomposites using block copolymers and nanoparticles (NPs) with precise control over their spatial organization at different length scales remains challenging, especially for NP cores up to 10 nm in diameter and for domain spacings greater than 100 nm. In this work, these challenges have been overcome using amphiphilic bottle brush block copolymers as templates for the self-assembly of ordered, periodic hybrid materials with domain spacings more than 130 nm using functionalized NPs with core diameters up to 15 nm. CdSe NPs of 10 nm or gold NPs of 15 nm bearing 11-mercaptoundecyl-hydroquinone or poly(4-vinylphenol) ligands were selectively incorporated within (polynorbornene-g-polystyrene)-b- (polynorbornene-g-polyethylene oxide) copolymers by taking advantage of hydrogen bonding between the ligand and PEO domain. Well-ordered composites with cylindrical and lamellar morphologies and NP loadings of up to 30 wt% in the target domains were achieved. This strategy provides a simple and robust means to create ordered hybrid materials of large domain spacings allowing for relatively large functional nanoparticles. This work was supported by the NSF Center for Hierarchical Manufacturing at the University of Massachusetts (CMMI-1025020).
Zhang, Meihe; Yuan, Ruo; Chai, Yaqin; Chen, Shihong; Zhong, Huaan; Wang, Cun; Cheng, Yinfeng
2012-02-15
A novel cholesterol biosensor was prepared based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence (ECL). Firstly, l-cysteine-reduced graphene oxide composites were modified on the surface of a glassy carbon electrode. Then, gold nanoparticles (AuNPs) were self-assembled on it. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the surface of AuNPs to construct a cholesterol biosensor. The stepwise fabrication processes were characterized with cyclic voltammetry and atomic force microscopy. The ECL behaviors of the biosensor were also investigated. It was found that AuNPs not only provided larger surface area for higher ChOx loading but also formed the nano-structured interface on the electrode surface to improve the analytical performance of the ECL biosensor for cholesterol. Besides, based on the efficient catalytic ability of AuNPs to luminol ECL, the response of the biosensor to cholesterol was linear range from 3.3 μM to 1.0 mM with a detection limit of 1.1 μM (S/N=3). In addition, the prepared ECL biosensor exhibited satisfying reproducibility, stability and selectivity. Taking into account the advantages of ECL, we confidently expect that ECL would have potential applications in biotechnology and clinical diagnosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Roy, Kislay; Patel, Yogesh S; Kanwar, Rupinder K; Rajkhowa, Rangam; Wang, Xungai; Kanwar, Jagat R
2016-01-01
This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR−) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. PMID:26730188
NASA Astrophysics Data System (ADS)
Yu, Caitong; Zhou, Mengjiao; Zhang, Xiujuan; Wei, Weijia; Chen, Xianfeng; Zhang, Xiaohong
2015-03-01
Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance.Considering the obvious advantages in efficacy and price, doxorubicin (DOX) has been widely used for a range of cancers, which is usually encapsulated in various nanocarriers for drug delivery. Although effective, in most nanocarrier-based delivery systems, the drug loading capacity of DOX is rather low; this can lead to undesired systemic toxicity and excretion concern. Herein, we report for the first time the usage of pure doxorubicin nanoparticles (DOX NPs) without addition of any carriers for enhanced chemotherapy against drug-resistance. The drug payload reaches as high as 90.47%, which largely surpassed those in previous reports. These PEG stabilized DOX NPs exhibit good biocompatibility and stability, long blood circulation time, fast release in an acidic environment and high accumulation in tumors. Compared with free DOX, DOX NPs display a dramatically enhanced anticancer therapeutic efficacy in the inhibition of cell and tumor growth. Moreover, they can also be readily incorporated with other anticancer drugs for synergistic chemotherapy to overcome the drug resistance of cancers. The fluorescence properties of DOX also endow these NPs with imaging capabilities, thus making it a multifunctional system for diagnosis and treatment. This work demonstrates great potential of DOX NPs for cancer diagnosis, therapy and overcoming drug tolerance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00290g
Synthesis of gold and silver nanoparticles using purified URAK.
Deepak, Venkataraman; Umamaheshwaran, Paneer Selvam; Guhan, Kandasamy; Nanthini, Raja Amrisa; Krithiga, Bhaskar; Jaithoon, Nagoor Meeran Hasika; Gurunathan, Sangiliyandi
2011-09-01
This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.
Antimicrobial cellulosic hydrogel from olive oil industrial residue.
Dacrory, Sawsan; Abou-Yousef, Hussein; Abouzeid, Ragab E; Kamel, Samir; Abdel-Aziz, Mohamed S; El-Badry, Mohamed
2018-05-25
The cellulose-based antimicrobial hydrogel was prepared from seed and husk cellulosic fibers of olive industry residues by load silver nanoparticles (AgNPs) onto grafted acrylamide monomer (Am) cellulosic fibers. The grafting approach was the free radical mechanism by utilizing ceric ammonium nitrate (CAN) as initiator in aqueous medium and N,N methylene bisacrylamide (MBAm) as a cross linker. The effect of different grafting conditions on the properties of produced hydrogels has been studied by determining the grafting parameters, i.e. concentration of Am, MBAm, grafting time and temperature to optimize grafting yield (G %), grafting efficiency (GE %), and swelling %. Characterizations of the obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, and EDX. AgNPs were grown into the prepared hydrogel. Hydrogel/AgNPs were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The hydrogel loaded AgNPs exhibit high efficient antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ram Prasad, S.; Sampath Kumar, T. S.; Jayakrishnan, A.
2018-01-01
For the treatment of metastatic bone cancer, local delivery of therapeutic agents is preferred compared to systemic administration. Delivery of an anti-cancer drug and a protein that helps in bone regeneration simultaneously is a challenging approach. In this study, a nanoparticulate carrier which delivers a protein and an anti-cancer drug is reported. Bovine serum albumin (BSA) as a model protein was loaded into hydroxyapatite (HA) nanoparticles (NPs) and methotrexate (MTX) conjugated to poly(vinyl alcohol) was coated onto BSA-loaded HA NPs. Coating efficiency was in the range of 10-17 wt%. In vitro drug release showed that there was a steady increase in the release of both BSA and MTX with 76% of BSA and 88% of MTX being released in 13 days. Cytotoxicity studies of the NPs performed using human osteosarcoma (OMG-63) cell line showed the NPs were highly biocompatible and exhibited anti-proliferative activity in a concentration-dependent manner.
Biodegradable nanoparticles as theranostics of ovarian cancer: an overview.
Chaurasiya, Swati; Mishra, Vijay
2018-04-01
Above 10 million people are suffering from cancers every year. As per American Cancer Society, more than 22 440 new cases and 14 080 deaths were reported from ovarian cancer yearly worldwide. This review explores the current status, challenges and future perspectives of tumour-targeted theranostic nanoparticles (NPs). Most of the ovarian malignancy cases are uncovered after the disease is in a difficult state due to poor screening techniques and non-specific symptoms. In this manner, forceful and fruitful treatment is required that will indicate insignificant lethal impacts to solid tissue. In the current research, stealth biodegradable NPs are produced as vehicles for imaging and treatment of ovarian cancer as the controlled and targeted delivery of chemotherapeutic as well as imaging agents. To enhance the dependability of the colloidal suspension as well as to increase their circulation lifetime, NPs are introduced by incorporating the functional poly(ethylene glycol) on their surface, which also provides a site to conjugation of focusing on agents to ovarian tissue. Biodegradable theranostic NPs can be fabricated and surface engineered without any alteration in drug-loading capacity, safety and efficacy. These NPs have shown promising results in imaging as well as treatment of ovarian cancer. © 2018 Royal Pharmaceutical Society.
Katagiri, Kiyofumi; Takabatake, Ryuichi; Inumaru, Kei
2013-10-23
Robust infrared (IR)-shielding coating films were prepared by dispersing indium tin oxide (ITO) nanoparticles (NPs) in a silica matrix. Hydrophobized ITO NPs were synthesized via a liquid phase process. The surface plasmon resonance (SPR) absorption of the ITO NPs could be tuned by varying the concentration of Sn doping from 3 to 30 mol %. The shortest SPR wavelength and strongest SPR absorption were obtained for the ITO NPs doped with 10% Sn because they possessed the highest electron carrier density. Coating films composed of a continuous silica matrix homogeneously dispersed with ITO NPs were obtained using perhydropolysilazane (PHPS) as a precursor. PHPS was completely converted to silica by exposure to the vapor from aqueous ammonia at 50 °C. The prepared coating films can efficiently shield IR radiation even though they are more than 80% transparent in the visible range. The coating film with the greatest IR-shielding ability completely blocked IR light at wavelengths longer than 1400 nm. The pencil hardness of this coating film was 9H at a load of 750 g, which is sufficiently robust for applications such as automotive glass.
Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farooq, Muhammad U.; Novosad, Valentyn; Rozhkova, Elena A.
Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy ofmore » the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.« less
Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S
2016-11-01
Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. KS is polycationic, a property responsible for KS poor oral absorption half-life (2.5 h) and rapid renal clearance, which results in serious nephrotoxicity/ototoxicity. The current study aimed to develop KS-loaded PLGA vitamin-E-TPGS microparticles (MPs) and nanoparticles (NPs) to reduce the dosing frequency and dose-related adverse effect. In vitro release was sustained up to 10 days for KS PLGA-TPGS MPs and 13 days for KS PLGA-TPGS NPs in phosphate-buffered saline (PBS) pH 7.4. The in vivo pharmacokinetic test in Wistar rats showed that the AUC 0-∞ of KS PLGA-TPGS NPs (280.58 μg/mL*min) was about 1.62-fold higher than that of KS PLGA-TPGS MPs (172.30 μg/mL*min). Further, in vivo protein-binding assay ascribed 1.20-fold increase in the uptake of KS PLGA-TPGS NPs through the alveolar macrophage (AM). The studies, therefore, could provide another useful tool for successful development of KS MPs and NPs.
Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells
Farooq, Muhammad U.; Novosad, Valentyn; Rozhkova, Elena A.; ...
2018-02-13
Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy ofmore » the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.« less
NASA Astrophysics Data System (ADS)
Sanna, Vanna; Singh, Chandra K.; Jashari, Rahime; Adhami, Vaqar M.; Chamcheu, Jean Christopher; Rady, Islam; Sechi, Mario; Mukhtar, Hasan; Siddiqui, Imtiaz A.
2017-02-01
Earlier we introduced the concept of ‘nanochemoprevention’ i.e. the use of nanotechnology to improve the outcome of cancer chemoprevention. Here, we extended our work and developed polymeric EGCG-encapsulated nanoparticles (NPs) targeted with small molecular entities, able to bind to prostate specific membrane antigen (PSMA), a transmembrane protein that is overexpressed in prostate cancer (PCa), and evaluated their efficacy in preclinical studies. First, we performed a molecular recognition of DCL- and AG-PEGylation on ligand binding on PSMA active site. Next, the biocompatible polymers PLGA-PEG-A were synthesized and used as base to conjugate DCL or AG to obtain the respective copolymers, needed for the preparation of targeted NPs. The resulting EGCG encapsulating NPs led to an enhanced anti-proliferative activity in PCa cell lines compared to the free EGCG. The behavior of EGCG encapsulated in NPs in modulating apoptosis and cell-cycle, was also determined. Then, in vivo experiments, in mouse xenograft model of prostatic tumor, using EGCG-loaded NPs, with a model of targeted nanosystems, were conducted. The obtained data supported our hypothesis of target-specific enhanced bioavailability and limited unwanted toxicity, thus leading to a significant potential for probable clinical outcome.
Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.
Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S
2016-12-10
Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.
Daman, Zahra; Faghihi, Homa; Montazeri, Hamed
2018-05-02
Recently, salinomycin (SAL) has been reported to inhibit proliferation and induce apoptosis in various tumors. The aim of this study was to deliver SAL to orthotopic model of pancreatic cancer by the aid of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). The NPs were physico-chemically characterized and evaluated for cytotoxicity on luciferase-transduced AsPC-1 cells in vitro as well as implanted orthotopically into the pancreas of nude mice. SAL (3.5 mg/kg every other day) blocked tumor growth by 52% compared to the control group after 3 weeks of therapy. Western blotting of tumor protein extracts indicated that SAL treatment leads to up-regulation of E-cadherin, β-catenin, and transforming growth factor beta receptor (TGFβR) expressions in AsPC-1 orthotopic tumor. Noteworthy, immunofluorescence staining of adjacent tumor sections showed that treatment with SAL NPs cause significant apoptosis in the tumor cells rather than the stroma. Further investigations also revealed that TGFβR2 over-expression was induced in stroma cells after treatment with SAL NPs. These results highlight SAL-loaded PLGA NPs as a promising system for pancreatic cancer treatment, while the mechanistic questions need to be subsequently tested.
RF heating of nanoclusters for cancer therapy
NASA Astrophysics Data System (ADS)
Letfullin, Renat R.; Letfullin, Alla R.; George, Thomas F.
2015-03-01
Nanodrugs selectively delivered to a tumor site can be activated by radiation for drug release, or nanoparticles (NPs) can be used as a drug themselves by producing biological damage in cancer cells through thermal, mechanical ablations or charged particle emission. Radio-frequency (RF) waves have an excellent ability to penetrate into the human body without causing healthy tissue damage, which provides a great opportunity to activate/heat NPs delivered inside the body as a contrast agent for diagnosis and treatment purposes. However the heating of NPs in the RF range of the spectrum is controversial in the research community because of the low power load of RF waves and low absorption of NPs in the RF range. To resolve these weaknesses in the RF activation of NPs and dramatically increase absorption of contrast agents in tumor, we suggest aggregating the nanoclusters inside or on the surface of the cancer cells. We simulate space distribution of temperature changes inside and outside metal and dielectric nanopraticles/nanoclusters, determine the number of nanoparticles needed to form a cluster, and estimate the thermal damage area produced in surrounding medium by nanopraticles/nanoclusters heated in the RF field.