Sample records for nanoparticles surface modified

  1. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid modified nanoparticles

    PubMed Central

    Hayden, Patrick; Singh, Mandip

    2013-01-01

    Purpose The aim of the current study was to investigate the percutaneous permeation pathways of cell penetrating peptide modified lipid nanoparticles and oleic acid modified polymeric nanoparticles. Methods Confocal microscopy was performed on skin cultures (EpiDermFT™) for modified and un-modified nanoparticles. Differential stripping was performed following in vitro skin permeation of Ibuprofen (Ibu) encapsulated nanoparticles to estimate Ibu levels in different skin layers and receiver compartment. The hair follicles (HF) were blocked and in vitro skin permeation of nanoparticles was then compared with unblocked HF. The surface modified nanoparticles were investigated for response on allergic contact dermatitis (ACD). Results Surface modified nanoparticles showed a significant higher (p < 0.05) in fluorescence in EpiDermFT™ cultures compared to controls. The HF play less than 5% role in total nanoparticle permeation into the skin. The Ibu levels were significantly high (p<0.05) for surface modified nanoparticles compared to controls. The Ibu levels in skin and receiver compartment were not significantly different when HF were open or closed. Modified nanoparticles showed significant improvement in treatment of ACD compared to solution. Conclusions Our studies demonstrate that increased skin permeation of surface modified nanoparticles is not only dependent on a follicular pathway but also occur through non-follicular pathway(s). PMID:23187866

  2. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Luebben, Silvia DeVito (Inventor); Cook, Ronald Lee (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  3. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee [Lakewood, CO; Luebben, Silvia DeVito [Golden, CO; Myers, Andrew William [Arvada, CO; Smith, Bryan Matthew [Boulder, CO; Elliott, Brian John [Superior, CO; Kreutzer, Cory [Brighton, CO; Wilson, Carolina [Arvada, CO; Meiser, Manfred [Aurora, CO

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  4. A single-step aerosol process for in-situ surface modification of nanoparticles: Preparation of stable aqueous nanoparticle suspensions.

    PubMed

    Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra

    2016-02-15

    Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea.

    PubMed

    Attama, A A; Reichl, S; Müller-Goymann, C C

    2009-08-01

    The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.

  6. Effect of Surface-Modified TiO2 Nanoparticles on the Anti-Ultraviolet Aging Performance of Foamed Wheat Straw Fiber/Polypropylene Composites

    PubMed Central

    Xuan, Lihui; Han, Guangping; Wang, Dong; Cheng, Wanli; Gao, Xun; Chen, Feng; Li, Qingde

    2017-01-01

    Surface modification and characterization of titanium dioxide (TiO2) nanoparticles and their roles in thermal, mechanical, and accelerated aging behavior of foamed wheat straw fiber/polypropylene (PP) composites are investigated. To improve the dispersion of nanoparticles and increase the possible interactions between wheat straw fiber and the PP matrix, the surface of the TiO2 nanoparticles was modified with ethenyltrimethoxy silane (A171), a silane coupling agent. The grafting of A171 on the TiO2 nanoparticles’ surface was characterized by Fourier transform infrared spectroscopy (FTIR). The wheat straw fibers treated with A171 and modified TiO2 nanoparticles were characterized by FTIR and thermogravimetric analysis (TGA). FTIR spectra confirmed that the organic functional groups of A171 were successfully grafted onto the TiO2 nanoparticles and wheat straw fibers, and the modified TiO2 nanoparticles were adsorbed onto the wheat straw fibers. Thermogravimetric analysis showed that a higher thermal stability of the wheat straw fiber was obtained with the modified TiO2 nanoparticles. The flexural, tensile, and impact properties were improved. A higher ultraviolet (UV) stability of the samples treated with modified TiO2 nanoparticles was exhibited by the study of the color change and loss in mechanical properties. PMID:28772816

  7. Oral Delivery of DMAB-Modified Docetaxel-Loaded PLGA-TPGS Nanoparticles for Cancer Chemotherapy

    NASA Astrophysics Data System (ADS)

    Chen, Hongbo; Zheng, Yi; Tian, Ge; Tian, Yan; Zeng, Xiaowei; Liu, Gan; Liu, Kexin; Li, Lei; Li, Zhen; Mei, Lin; Huang, Laiqiang

    2011-12-01

    Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retention time at the cell surface, thus increasing the chances of particle uptake and improving oral drug bioavailability. Nanoparticles were found to be of spherical shape with an average particle diameter of around 250 nm. The surface charge of PLGA-TPGS nanoparticles was changed to positive after DMAB modification. The results also showed that the DMAB-modified PLGA-TPGS nanoparticles have significantly higher level of the cellular uptake than that of DMAB-modified PLGA nanoparticles and unmodified PLGA-TPGS nanoparticles. In vitro, cytotoxicity experiment showed advantages of the DMAB-modified PLGA-TPGS nanoparticle formulation over commercial Taxotere® in terms of cytotoxicity against MCF-7 cells. In conclusion, oral chemotherapy by DMAB-modified PLGA-TPGS nanoparticle formulation is an attractive and promising treatment option for patients.

  8. Fiber Surface Modification Technology for Fiber-Optic Localized Surface Plasmon Resonance Biosensors

    PubMed Central

    Zhang, Qiang; Xue, Chenyang; Yuan, Yanling; Lee, Junyang; Sun, Dong; Xiong, Jijun

    2012-01-01

    Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS. PMID:22736974

  9. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    PubMed

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  10. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles.

    PubMed

    Yang, Tingting; Qian, Shi; Qiao, Yuqing; Liu, Xuanyong

    2016-09-01

    TiO2 nanotubes prepared by electrochemical anodization have received considerable attention in the biomedical field. In this work, different amounts of gold nanoparticles were immobilized onto TiO2 nanotubes using 3-aminopropyltrimethoxysilane as coupling agent. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition. Photoluminescence spectra and surface zeta potential were also measured. The obtained results indicate that the surface modified gold nanoparticles can significantly enhance the electron storage capability and reduce the surface zeta potential compared to pristine TiO2 nanotubes. Moreover, the surface modified gold nanoparticles can stimulate initial adhesion and spreading of rat bone mesenchymal stem cells as well as proliferation, while the osteogenous performance of TiO2 nanotubes will not be reduced. The gold-modified surface presents moderate antibacterial effect on both Staphylococcus aureus and Escherichia coli. It should be noted that the surface modified fewer gold nanoparticles has better antibacterial effect compared to the surface of substantial modification of gold nanoparticles. Our study illustrates a composite surface with favorable cytocompatibility and antibacterial effect and provides a promising candidate for orthopedic and dental implant. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Study of Perfluorophosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles.

    PubMed

    Quiñones, Rosalynn; Shoup, Deben; Behnke, Grayce; Peck, Cynthia; Agarwal, Sushant; Gupta, Rakesh K; Fagan, Jonathan W; Mueller, Karl T; Iuliucci, Robbie J; Wang, Qiang

    2017-11-28

    In this study, perfluorinated phosphonic acid modifications were utilized to modify zinc oxide (ZnO) nanoparticles because they create a more stable surface due to the electronegativity of the perfluoro head group. Specifically, 12-pentafluorophenoxydodecylphosphonic acid, 2,3,4,5,6-pentafluorobenzylphosphonic acid, and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid have been used to form thin films on the nanoparticle surfaces. The modified nanoparticles were then characterized using infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy were utilized to determine the particle size of the nanoparticles before and after modification, and to analyze the film coverage on the ZnO surfaces, respectively. Zeta potential measurements were obtained to determine the stability of the ZnO nanoparticles. It was shown that the surface charge increased as the alkyl chain length increases. This study shows that modifying the ZnO nanoparticles with perfluorinated groups increases the stability of the phosphonic acids adsorbed on the surfaces. Thermogravimetric analysis was used to distinguish between chemically and physically bound films on the modified nanoparticles. The higher weight loss for 12-pentafluorophenoxydodecylphosphonic acid and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid modifications corresponds to a higher surface concentration of the modifications, and, ideally, higher surface coverage. While previous studies have shown how phosphonic acids interact with the surfaces of ZnO, the aim of this study was to understand how the perfluorinated groups can tune the surface properties of the nanoparticles.

  12. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior.

    PubMed

    Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K

    2011-08-01

    The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.

  13. Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.

    DOEpatents

    Pipino, Andrew C. R.

    2003-02-04

    A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

  14. Self-assembly of silica nanoparticles by tuning substrate-adsorbate interaction

    NASA Astrophysics Data System (ADS)

    Utsav, Khanna, Sakshum; Mukhopadhayay, Indrajit; Banerjee, Rupak

    2018-05-01

    We report on self-assembled nanodisc formations of silica nanoparticles on a surface modified silicon substrate using modified Langmuir-Schafer deposition technique (stamping). The size, inter-particle separation as well as the packing of the silica nanoparticles within the nanodiscs formed spontaneously can be tuned by the surface pressure applied on the water surface. We obtain self-assembled nanodiscs of silica nanoparticle arranged in a hexagonal symmetry. We also observe that by varying the surface pressure of deposition at the water-molecule-air interface we obtain such 2D disc-shaped structure with varying sizes and a packing ratio of the silica nanoparticle.

  15. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    PubMed

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity

    PubMed Central

    Zhao, Zongya; Gong, Ruxue; Zheng, Liang; Wang, Jue

    2016-01-01

    In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μVrms from 34.1 μVrms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording. PMID:27827893

  17. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    NASA Astrophysics Data System (ADS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  18. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

    PubMed

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Rehman, Aziz Ur; Khan, Arifullah; Ullah, Sadeeq; Yuan, Qipeng

    2017-01-01

    Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate.

    PubMed

    Kim, Hyung Hwan; Park, Jong Bo; Kang, Min Ji; Park, Young Hwan

    2014-09-01

    Silk fibroin/hydroxyapatite (SF/HAp) composite hydrogels were fabricated in this study, having different HAp contents (0-33 wt%) in SF matrix hydrogel. Surface modification of HAp nanoparticle with hyaluronic acid (HA)-dopamine (DA) conjugate improved a dispersibility of HAp in aqueous SF solution due to its negatively charged surface and therefore, fabrication of the SF composite hydrogel having HAp nanoparticles inside could be possible. Zeta potential of surface-modified HAP was examined by ELS. It demonstrates that surface of HAp was well modified to a negative charge with HA-DA. Morphological structure of SF hydrogel containing surface-modified HAp was examined by FE-SEM for analyzing pore structure of hydrogel and deposition of HAp nanoparticle in SF hydrogel. It was found that HAp nanoparticles were uniformly deposited on the pore wall of SF hydrogel. Structural characteristics of SF/HAp composite hydrogel was performed using X-ray diffraction and FT-IR analysis. It was found that β-sheet crystal conformation of SF was significantly influenced by the HAp content during gelation of a mixture of SF and HAp. As a result of MTT assay, the SF/HAp composite hydrogel showed excellent cell proliferation ability. Therefore, it is expected that SF hydrogel containing HAp nanoparticles has a high potential as bone regeneration scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Identification of the functional groups on the surface of nanoparticles formed in photonucleation of aldehydes generated during forest fire events

    NASA Astrophysics Data System (ADS)

    Dultsev, Fedor N.; Mik, Ivan A.; Dubtsov, Sergei N.; Dultseva, Galina G.

    2014-11-01

    We describe the new procedure developed to determine the functional groups on the surface of nanoparticles formed in photonucleation of furfural, one of the aldehydes generated during forest fire events. The procedure is based on the detection of nanoparticle rupture from chemically modified surface of the quartz crystal microbalance oscillating in the thickness shear mode under voltage sweep. The rupture force is determined from the voltage at which the rupture occurs. It depends on particle mass and on the affinity of the surface functional groups of the particle to the groups that are present on the modified QCM surface. It was demonstrated with the amine modification of the surface that the nanoparticles formed in furfural photonucleation contain carbonyl and carboxyl groups. The applicability of the method for the investigation of functional groups on the surface of the nanoparticles of atmospheric aerosol is demonstrated.

  1. Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms.

    PubMed

    Koju, Neel Kamal; Song, Xin; Wang, Qing; Hu, Zhihao; Colombo, Claudio

    2018-05-07

    Cadmium (Cd), one of the most toxic contaminants in groundwater, can cause a severe threat to human health and ecological systems. In this study, alumina nanoparticles were synthesized and tested for high-efficiency Cd removal from simulated groundwater. Furthermore, the synthesized alumina nanoparticles were successfully modified using negatively charged glycerol, to alleviate the challenge of its low mobility in groundwater for the Cd removal. The maximum removal efficiency of both synthesized and glycerol-modified alumina nanoparticles were more than 99%. The sorption isotherm and kinetic data of both synthesized and glycerol-modified alumina nanoparticles were best fitted to the Freundlich model and the pseudo-second-order model, respectively, indicating that the sorption of Cd ions occurs on heterogeneous surfaces of both alumina nanoparticles via the chemisorption mechanism. X-ray photoelectron spectroscopy and energy dispersive X-ray analysis revealed the presence of Cd peak in both sorbents after contact with Cd. In addition, the FTIR analyses demonstrated that hydroxyl group participated in the sorption of Cd on both synthesized and glycerol-modified alumina nanoparticles, while other glycerol associated groups contributed to the removal of Cd ions by the glycerol-modified alumina nanoparticles. It was concluded that Cd removal by synthesized and glycerol-modified alumina nanoparticles were mainly due to ion exchange and electrostatic attraction, respectively. Desorption experiment suggested that both alumina nanoparticles are effective and practically significant sorbents to remediate Cd from contaminated groundwater. However, the stronger bond between Cd and glycerol-modified alumina, plus its potential of higher mobility due to the negative charge on the surface, warrant glycerol-modified alumina nanoparticles a better performance in remediating Cd contaminated groundwater than that of the synthesized alumina nanoparticles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  3. Novel one-pot facile technique for preparing nanoparticles modified with hydrophilic polymers on the surface via block polymer-assisted emulsification/evaporation process.

    PubMed

    Kanakubo, Yurie; Ito, Fuminori; Murakami, Yoshihiko

    2010-06-15

    In this paper, we describe the novel facile technique for preparing surface-modified nanoparticles via newly developed amphiphilic block polymer-assisted emulsification/evaporation process. The effects of both organic solvents (the dispersed phase) and stabilizer in the external continuous phase on the stability of o/w emulsion was firstly investigated to clarify the optimal conditions for stable emulsification/evaporation processes. We found that the organic solvent mixture having a density adjusted to be 1.00 g/cm(3) gave the highly stable o/w emulsion. Under the optimal conditions, the relatively monodisperse poly(ethylene glycol) (PEG)-modified poly(lactide-co-glycolide) (PLGA) nanoparticle was obtained and characterized. The introduction of PEG to the particle surface was suggested by the fact that the diameter and zeta potential of the particle increased as the amount of added block polymer increased. The facile method presented in this paper can be a universal tool for modifying the surface of nanoparticles, even though reactive groups are not present on the surface. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  5. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    PubMed Central

    Chen, Liang; Mccrate, Joseph M.; Lee, James C-M.; Li, Hao

    2011-01-01

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles surface charge was varied by the surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FTIR) confirmed the adsorption and binding of the carboxylic acids on HAP nanoparticle surface; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate cell membrane due to the larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of the HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles shows strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influence the behavior of cells. These in-vitro results may also provide useful information for investigations of HAP nanoparticles applications in the gene delivery and intracellular drug delivery. PMID:21289408

  6. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  7. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  8. Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications

    PubMed Central

    Xing, Zhi-Cai; Chang, Yongmin; Kang, Inn-Kyu

    2010-01-01

    Various inorganic nanoparticles have been used for drug delivery, magnetic resonance and fluorescence imaging, and cell targeting owing to their unique properties, such as large surface area and efficient contrasting effect. In this review, we focus on the surface functionalization of inorganic nanoparticles via immobilization of biomolecules and the corresponding surface interactions with biocomponents. Applications of surface-modified inorganic nanoparticles in biomedical fields are also outlined. PMID:27877316

  9. Synthesis and immobilization of Ag(0) nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry studies of the modified interfaces.

    PubMed

    Noël, Jean-Marc; Zigah, Dodzi; Simonet, Jacques; Hapiot, Philippe

    2010-05-18

    A versatile method was used to prepare modified surfaces on which metallic silver nanoparticles are immobilized on an organic layer. The preparation method takes advantage, on one hand, of the activated reactivity of some alkyl halides with Ag-Pd alloys to produce metallic silver nanoparticles and, on the other hand, of the facile production of an anchoring polyphenyl acetate layer by the electrografting of substituted diazonium salts on carbon surfaces. Transport properties inside such modified layers were investigated by cyclic voltammetry, scanning electrochemical microscopy (SECM) in feedback mode, and conducting AFM imaging for characterizing the presence and nature of the conducting pathways. The modification of the blocking properties of the surface (or its conductivity) was found to vary to a large extent on the solvents used for surface examination (H(2)O, CH(2)Cl(2), and DMF).

  10. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  11. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.

    PubMed

    Treuel, Lennart; Brandholt, Stefan; Maffre, Pauline; Wiegele, Sarah; Shang, Li; Nienhaus, G Ulrich

    2014-01-28

    Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses.

  12. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  13. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    PubMed

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  14. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery

    NASA Astrophysics Data System (ADS)

    Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N.

    2005-01-01

    This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface functionalized by cationic-amino groups, are produced by micellar nanochemistry. Gel-electrophoresis studies reveal that the particles efficiently complex with DNA and protect it from enzymatic digestion of DNase 1. The electrostatic binding of DNA onto the surface of the nanoparticles, due to positively charged amino groups, is also shown by intercalating an appropriate dye into the DNA and observing the Förster (fluorescence) resonance energy transfer between the dye (energy donor) intercalated in DNA on the surface of nanoparticles and a second dye (energy acceptor) inside the nanoparticles. Imaging by fluorescence confocal microscopy shows that cells efficiently take up the nanoparticles in vitro in the cytoplasm, and the nanoparticles deliver DNA to the nucleus. The use of plasmid encoding enhanced GFP allowed us to demonstrate the process of gene transfection in cultured cells. Our work shows that the nanomedicine approach, with nanoparticles acting as a drug-delivery platform combining multiple optical and other types of probes, provides a promising direction for targeted therapy with enhanced efficacy as well as for real-time monitoring of drug action. nonviral vector | ORMOSIL nanoparticles | confocal microscopy

  15. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Zhang, Zhijun

    2011-02-01

    Tetraethyl orthosilicate (TEOS) and dimethyldiethoxysilane (DEDMS) were used as co-precursors to prepare organically modified silica (ormosil) via sol-gel process. The resultant ormosil was adopted for surface-capping of ZnO nanoparticle, where methyl (organic functional group) and silica (inorganic component) were simultaneously introduced onto the surface of the nanoparticles for realizing dual surface-modification. The ormosil-capped ZnO nanoparticle showed strong hydrophobicity and good compatibility with organic phases, as well as effectively decreased photocatalytic activity and almost unchanged ultraviolet (UV)-shielding ability. More importantly, the comprehensive properties of ormosil-capped ZnO nanoparticle could be manipulated by adjusting the molar ratio of TEOS to DEDMS during sol-gel process. This should help to open a wider window to better utilizing the unique and highly attractive properties such as high UV-shielding ability and high-visible light transparency of ZnO nanoparticle in sunscreen cosmetics.

  16. In Vivo Biodistribution and Pharmacokinetics of Silica Nanoparticles as a Function of Geometry, Porosity and Surface Characteristics

    PubMed Central

    Yu, Tian; Hubbard, Dallin; Ray, Abhijit; Ghandehari, Hamidreza

    2012-01-01

    The in vivo biodistribution and pharmacokinetics of silica nanoparticles (SiO2) with systematically varied geometries, porosities, and surface characteristics were investigated in immune-competent CD-1 mice via the intravenous injection. The nanoparticles were taken up extensively by the liver and spleen. Mesoporous SiO2 exhibited higher accumulation in the lung than nonporous SiO2 of similar size. This accumulation was reduced by primary amine modification of the nanoparticles. High aspect ratio, amine-modified mesoporous nanorods showed enhanced lung accumulation compared to amine-modified mesoporous nanospheres. Accumulation of the nanoparticles was mainly caused by passive entrapment in the discontinuous openings in the endothelium of the liver and spleen or in the pulmonary capillaries, and was highly dependent on nanoparticle hydrodynamic size in circulation. The SiO2 were likely internalized by the reticulo-endothelial system (RES) following physical sequestration in the liver and spleen. The nanoparticles that were transiently associated with the lung were re-distributed out of this organ without significant internalization. Pharmacokinetic analysis showed that all SiO2 were rapidly cleared from systemic circulation. Amine-modified or nonporous nanoparticles possessed a higher volume of distribution at steady state than their pristine counterparts or mesoporous SiO2. In all, surface characteristics and porosity played important roles in influencing SiO2 biodistribution and pharmacokinetics. Increasing the aspect ratio of amine-modified mesoporous SiO2 from 1 to 8 resulted in increased accumulation in the lung. PMID:22684119

  17. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system

    NASA Astrophysics Data System (ADS)

    Tang, Erjun; Cheng, Guoxiang; Ma, Xiaolu; Pang, Xingshou; Zhao, Qiang

    2006-05-01

    Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.

  18. A simple method to synthesize modified Fe3O4 for the removal of organic pollutants on water surface

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Li, Chuanhao; Wang, Juan; Zhang, Hui; Zhang, Jian; Shen, Yuhua; Li, Cun; Wang, Cuiping; Xie, Anjian

    2012-06-01

    In this article, a simple, economic and environment-friendly approach is explored to prepare Fe3O4 nanoparticles by using air oxidation at room temperature. Furthermore, the Fe3O4 magnetic nanoparticles (MNPs) have been modified with sodium oleate successfully to form super-hydrophobic surfaces. The alkali source played an important role in controlling the morphologies of Fe3O4 MNPs. Either Fe3O4 MNPs or sodium oleate modified Fe3O4 MNPs possessed good magnetic property, and the as-prepared modified Fe3O4 nanoparticles are both hydrophobic and lipophilic. Therefore, Fe3O4/sodium oleate could be dispersed stable in the oil medium and have been applied in the cleanup engine oil from the water surface. It will open up a potential and broad application in wastewater treatment.

  19. Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent and its application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y.Z., E-mail: singyuanzhi@sina.com; Zhou, J.F.; Song, Y., E-mail: songyang@mail.buct.edu.cn

    Graphical abstract: Electrochemical deposition of netlike gold nanoparticles (GNPs) on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The catalytic properties of netlike gold nanoparticles on the glassy carbon electrode for dopamine were demonstrated. The results indicate that the netlike gold nanoparticle modified electrode has an excellent repeatability and reproducibility. Display Omitted Highlights: ► Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent. ► Excellent repeatability and reproducibility of netlike gold nanoparticle modified glassy carbon electrode. ► The catalytic properties of netlike gold nanoparticlemore » for dopamine. -- Abstract: Electrochemical deposition of netlike gold nanoparticles on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The netlike gold nanoparticles were characterized by scanning electron microscope, transmission electron microscope, infrared spectrometer, UV spectrophotometer, powder X-ray diffractometer and electrochemical analyzer. The catalysis of the netlike gold nanoparticles on the glassy carbon electrode for dopamine was demonstrated. The results indicate that the gold nanoparticle modified electrode has an excellent repeatability and reproducibility.« less

  20. Production of nearly monodisperse Fe3O4 and Fe@Fe3O4 nanoparticles in aqueous medium and their surface modification for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tegafaw, Tirusew; Xu, Wenlong; Lee, Sang Hyup; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2017-02-01

    Iron (Fe)-based nanoparticles are extremely valuable in biomedical applications owing to their low toxicity and high magnetization values at room temperature. In this study, we synthesized nearly monodisperse iron oxide (Fe3O4) and Fe@Fe3O4 (core: Fe, shell: Fe3O4) nanoparticles in aqueous medium under argon flow and then, coated them with various biocompatible ligands and silica. In this study, eight types of surface-modified nanoparticles were investigated, namely, Fe3O4@PAA (PAA = polyacrylic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PAA-FA (FA = folic acid; Mw of PAA = 5100 amu and 15,000 amu), Fe3O4@PEI-fluorescein (PEI = polyethylenimine; Mw of PEI = 1300 amu), Fe@Fe3O4@PEI (Mw of PEI = 10,000 amu), Fe3O4@SiO2 and Fe@Fe3O4@SiO2 nanoparticles. We characterized the prepared surface-modified nanoparticles using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) absorption spectroscopy, a superconducting quantum interference device (SQUID), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and confocal microscopy. Finally, we measured the cytotoxicity of the samples. The results indicate that the surface-modified nanoparticles are biocompatible and are potential candidates for various biomedical applications.

  1. Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane

    NASA Astrophysics Data System (ADS)

    Lin, SHEN; Lei, GONG; Shuhua, CHEN; Shiping, ZHAN; Cheng, ZHANG; Tao, SHAO

    2018-04-01

    In this paper, low temperature plasma is used to modify the surface of barium titanate (BaTiO3) nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly(vinylidene fluoride) (PVDF) and BaTiO3 nanoparticles. The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface, and the quantity of the functional groups increases with the treatment voltage. Furthermore, the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated. The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma. It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted, which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix. Besides, the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 kV exhibits a lower water contact angle (≈68.4°) compared with the unmodified one (≈86.7°). Meanwhile, the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.

  2. Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces.

    PubMed

    González, M C R; Orive, A G; Salvarezza, R C; Creus, A H

    2016-01-21

    Gold nanoparticle electrodeposition on a modified HOPG surface with a monolayer organic film based on aryl diazonium chemistry has been studied. This organic monolayer is electrochemically grown with the use of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a radical scavenger. The electrodeposition of gold on this modified surface is highly favored resulting in an AuNP surface density comparable to that found on glassy carbon. AuNPs grow only in the areas covered by the organic monolayer leaving free clean HOPG zones. A progressive mechanism for the nucleation and growth is followed giving hemispherical AuNPs, homogeneously distributed on the surface and their sizes can be well controlled by the applied electrodeposition potential. By using AFM, C-AFM and electrochemical measurements with the aid of two redox probes, namely Fe(CN)6(4-)/Fe(CN)6(3-) and dopamine, relevant results about the electrochemical modified surface as well as the gold nanoparticles electrodeposited on them are obtained.

  3. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.

    PubMed

    Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter

    2008-05-01

    The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.

  4. Effects of Particle Hydrophobicity, Surface Charge, Media pH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles

    PubMed Central

    Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping

    2015-01-01

    We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259

  5. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    NASA Astrophysics Data System (ADS)

    Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-02-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  6. Surface Analysis of Gold Nanoparticles Functionalized with Thiol-Modified Glucose SAMs for Biosensor Applications

    PubMed Central

    Spampinato, Valentina; Parracino, Maria Antonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-01-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behavior of the glucose-modified particles in the presence of the maltose binding protein. PMID:26973830

  7. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Uzun, K.; Çevik, E.; Şenel, M.; Sözeri, H.; Baykal, A.; Abasıyanık, M. F.; Toprak, M. S.

    2010-10-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate ( V max) and Michaelis-Menten constant ( K m) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  8. Surface modification of hydroxyapatite nanoparticles by poly( L-phenylalanine) via ROP of L-phenylalanine N-carboxyanhydride (Pha-NCA)

    NASA Astrophysics Data System (ADS)

    Dai, Yanfeng; Xu, Min; Wei, Junchao; Zhang, Haobin; Chen, Yiwang

    2012-01-01

    The surface of hydroxyapatite nanoparticles was modified by poly(L-phenylalanine) via the ring opening polymerization (ROP) of L-phenylalanine N-carboxyanhydride. The preparation procedure was monitored by Fourier transform infrared spectroscopy (FTIR), and the modified hydroxyapatite was characterized by thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that the surface grafting amounts of poly(L-phenylalanine) on HA ranging from 20.26% to 38.92% can be achieved by tuning the reaction condition. The XRD patterns demonstrated that the crystalline structure of the modified hydroxyapatite was nearly the same with that of HA, implying that the ROP was an efficient surface modification method. The MTT assay proved that the biocompatibility of modified HA was very good, which showed the potential application of modified HA in bone tissue engineering.

  9. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  10. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver

    PubMed Central

    Wang, Jiaxing; Li, Jinhua; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Zhao, Yaochao; Qin, Hui; Wahafu, Tuerhongjiang; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong

    2016-01-01

    Titanium implants are widely used clinically, but postoperative implant infection remains a potential severe complication. The purpose of this study was to investigate the antibacterial activity of nano-silver(Ag)-functionalized Ti surfaces against epidemic Staphylococcus from the perspective of the regulation of biofilm-related genes and based on a bacteria-cell co-culture study. To achieve this goal, two representative epidemic Staphylococcus strains, Staphylococcus epidermidis (S. epidermidis, RP62A) and Staphylococcus aureus (S. aureus, USA 300), were used, and it was found that an Ag-nanoparticle-modified Ti surface could regulate the expression levels of biofilm-related genes (icaA and icaR for S. epidermidis; fnbA and fnbB for S. aureus) to inhibit bacterial adhesion and biofilm formation. Moreover, a novel bacteria-fibroblast co-culture study revealed that the incorporation of Ag nanoparticles on such a surface can help mammalian cells to survive, adhere and spread more successfully than Staphylococcus. Therefore, the modified surface was demonstrated to possess a good anti-infective capability against both sessile bacteria and planktonic bacteria through synergy between the effects of Ag nanoparticles and ion release. This work provides new insight into the antimicrobial action and mechanism of Ag-nanoparticle-functionalized Ti surfaces with bacteria-killing and cell-assisting capabilities and paves the way towards better satisfying the clinical needs. PMID:27599568

  11. Thermal dewetting behavior of polystyrene composite thin films with organic-modified inorganic nanoparticles.

    PubMed

    Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi

    2014-07-29

    The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

  12. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    PubMed Central

    Ekkapongpisit, Maneerat; Giovia, Antonino; Follo, Carlo; Caputo, Giuseppe; Isidoro, Ciro

    2012-01-01

    Background and methods Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalization (none, amine groups, or carboxyl groups) on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles. Results We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles. Conclusion These data highlight the importance of considering both the physicochemical characteristics (ie, material, size and surface charge on chemical groups) of nanoparticles and the biochemical composition of the cell membrane when choosing the most suitable nanotheranostics for targeting cancer cells. PMID:22904626

  13. Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates.

    PubMed

    Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai

    2018-04-18

    We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

  14. Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyan; He, Zhenghong; Mao, Hong; Zhang, Ting; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Meng, Xiangshen; Li, Jian

    2017-11-01

    Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3ṡ6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent "dead layer", which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which "awakened" the "dead layer" on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.

  15. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.

    PubMed

    Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2016-02-01

    In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.

  16. Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell.

    PubMed

    Pareek, Alka; Paik, Pradip; Borse, Pramod H

    2014-12-30

    Herein we report the surface modification of a CdS film by niobia nanoparticles via thioglycerol as an organic linker and thus fabricate an efficient and a stable photoanode for a photoelectrochemical (PEC) cell. We have synthesized three differenly sized (∼3, ∼6 ,and ∼9 nm) niobia nanoparticles by a hydrothermal synthesis approach and have further investigated the particle-size-dependent PEC performance of the nanoparticle-modified CdS photoanode. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirm the formation of Nb2O5 nanoparticles that are prepared via decomposition of the niobium peroxo complex during the hydrothermal reaction and reveal the presence of surface OH(-) groups over niobia nanoparticles that impart a high catalytic property to a material. The nano-Nb2O5-modified photoanode displayed a 23-fold higher power conversion efficiency compared to that of CdS. This modified structure increases the open circuit voltage (OCV) from 0.65 to 0.77 V, which is attributed to the nano-Nb2O5-induced surface passivation effect over bare CdS. Linking of nanoparticles on the CdS surface improves the photocorrosion stability of the CdS photoanode for even longer than 4 h in contrast to the tens of minutes for the base CdS surface. The uniform coverage of the CdS photoanode surface by niobia nanoparticles is thus found to be the controlling parameter for achieving a higher PEC performance and stability of the photoanode. This finding directed us to design an improved CdS photoanode for efficient and prolonged PEC hydrogen generation from a PEC cell.

  17. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes

    PubMed Central

    Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825

  18. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    NASA Astrophysics Data System (ADS)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.

    2012-11-01

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  19. Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins.

    PubMed

    Henry, James; Anand, Ashish; Chowdhury, Mustafa; Coté, Gerard; Moreira, Rosana; Good, Theresa

    2004-11-01

    A nanoparticle-based immunoassay for the detection of recombinant bovine prion protein (PrP) was developed as a step in the development of screening tools for the prevention of the spread of transmissible spongiform encephalopathies. The assay is based on the competitive binding between PrP and a peptide-fluorophore to a nanoparticle-labeled antibody which is specific for a conserved prion sequence. The fluorophore, when bound to the antibody, is subject to surfaced-modified fluorescence, enabling detection of changes in the concentration of bound fluorophore in the presence of prion protein. Important factors considered during the development of the assay were ease of use, robustness, and detection level. The effects of pH and nanoparticle conjugation chemistry on surface-modified fluorescence observed in the assay were explored. Effects of concentrations of antibody and fluorophore on reproducibility and detection limits were examined. At present, the detection limits of the system are approximately equal to the antibody-peptide fluorophore equilibrium dissociation constant, which is near one nanomolar concentration. Improved assay performance could be obtained by optimization of the nanoparticle surface resonance effects. The simplicity of the assay and ease of use may make the type of assay described in this report attractive for screening purposes in the food industry.

  20. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    PubMed

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Surface-modified nanoparticles as anti-biofilm filler for dental polymers

    PubMed Central

    Zaltsman, Nathan; Ionescu, Andrei C.; Weiss, Ervin I.; Brambilla, Eugenio; Beyth, Shaul

    2017-01-01

    The objective of the study was to synthesis silica nanoparticles modified with (i) a tertiary amine bearing two t-cinnamaldehyde substituents or (ii) dimethyl-octyl ammonium, alongside the well-studied quaternary ammonium polyethyleneimine nanoparticles. These were to be evaluated for their chemical and mechanical properties, as well for antibacterial and antibiofilm activity. Samples were incorporated in commercial dental resin material and the degree of monomer conversion, mechanical strength, and water contact angle were tested to characterize the effect of the nanoparticles on resin material. Antibacterial activity was evaluated with the direct contact test and the biofilm inhibition test against Streptococcus mutans. Addition of cinnamaldehyde-modified particles preserved the degree of conversion and compressive strength of the base material and increased surface hydrophobicity. Quaternary ammonium functional groups led to a decrease in the degree of conversion and to low compressive strength, without altering the hydrophilic nature of the base material. In the direct contact test and the anti-biofilm test, the polyethyleneimine particles exhibited the strongest antibacterial effect. The cinnamaldehyde-modified particles displayed antibiofilm activity, silica particles with quaternary ammonium were ineffective. Immobilization of t-cinnamaldehyde onto a solid surface via amine linkers provided a better alternative to the well-known quaternary ammonium bactericides. PMID:29244848

  2. Reinforcement effect of soy protein nanoparticles in amine-modified natural rubber latex

    USDA-ARS?s Scientific Manuscript database

    Mechanical properties of natural rubber reinforced with soy protein nanoparticles are useful for various rubber applications. However, the properties is further improved by improving interactions between soy protein and rubber. A novel method is used to modify particle surface of natural rubber late...

  3. Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.

    PubMed

    Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B

    2016-09-14

    We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.

  4. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst.

    PubMed

    Wu, Chien-Chen; Chen, Dong-Hwang

    2012-06-19

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles.

  5. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst

    PubMed Central

    2012-01-01

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles. PMID:22713480

  6. Surface-Engineered Multifunctional Eu:Gd2O3 Nanoplates for Targeted and pH-Responsive Drug Delivery and Imaging Applications.

    PubMed

    Saha, Arindam; Mohanta, Subas Chandra; Deka, Kashmiri; Deb, Pritam; Devi, Parukuttyamma Sujatha

    2017-02-01

    In this paper, we report the synthesis of surface-engineered multifunctional Eu:Gd 2 O 3 triangular nanoplates with small size and uniform shape via a high-temperature solvothermal technique. Surface engineering has been performed by a one-step polyacrylate coating, followed by controlled conjugation chemistry. This creates the desired number of surface functional groups that can be used to attach folic acid as a targeting ligand on the nanoparticle surface. To specifically deliver the drug molecules in the nucleus, the folate density on the nanoparticle surface has been kept low. We have also modified the drug molecules with terminal double bond and ester linkage for the easy conjugation of nanoparticles. The nanoparticle surface was further modified with free thiols to specifically attach the modified drug molecules with a pH-responsive feature. High drug loading has been encountered for both hydrophilic drug daunorubicin (∼69% loading) and hydrophobic drug curcumin (∼75% loading) with excellent pH-responsive drug release. These nanoparticles have also been used as imaging probes in fluorescence imaging. Some preliminary experiments to evaluate their application in magnetic resonance imaging have also been explored. A detailed fluorescence imaging study has confirmed the efficient delivery of drugs to the nuclei of cancer cells with a high cytotoxic effect. Synthesized surface-engineered nanomaterials having small hydrodynamic size, excellent colloidal stability, and high drug-loading capacity, along with targeted and pH-responsive delivery of dual drugs to the cancer cells, will be potential nanobiomaterials for various biomedical applications.

  7. Hydrophobically Modified Glycol Chitosan Nanoparticles for Targeting Breast Cancer Microcalcification Using Alendronate Probes

    NASA Astrophysics Data System (ADS)

    Vishnu, Kamalakannan

    In 2016, invasive breast cancer was diagnosed in about 246,660 women and 2,600 men. An additional 61,000 new cases of in situ breast cancer was diagnosed in women. Microcalcifications are most common abnormalities detected by mammography for breast cancer, present in about 30% of all malignant breast lesions. Tumor specific biomarkers are used for targeting these abnormalities. Nanoparticles with multimodal and combinatorial therapies and conjunction of bio-ligands for specific molecular targeting using surface modifications effectually deliver a variety of drugs and are simultaneously used to image tumor progression. Alendronate, a germinal bisphosphonate conjugation as a targeting ligand would improve the nanoparticle's direct binding to hydroxyapatite (HA) mimicking calcified spots in breast cancer lesions. In this study, the hydrophobically modified glycol chitosan (HGC) micelle was modified with alendronate surface functionalization using a biotin-avidin interaction to improve the nanomicelle's calcification targeting ability. Biotinylated, avidinlyated hydrophobically modified iv glycol chitosan particles were linked to biotinylated alendronate via a strong biotin-avidin linkage. Cyanine 3, a red fluorescent dye was conjugated to the amine groups on HGC for visualization of micelles. The size of the nanoparticles measured was 254.0 +/- 0.43 nm and 209.7 +/- 1.0 nm for Cy3- BHGCA and Cy3-BHGCA-BALN nanoparticles respectively. The average surface charge was measured to be +26.9 +/- 0.19 mV and +27.68 +/- 0.20 mV for Cy3-BHGCA and Cy3-BHGCA- BALN nanoparticles respectively. Binding affinity using hydroxyapatite (HA) revealed that both Cy3 BHGCA BALN and Cy3 BHGCA nanoparticles displayed 95% binding in 24 hours. However, the biotin quenched nanoparticle Cy3 BHGCAB displayed 68% binding in 24 hours. The synthesis and binding chemistry was verified using Fourier transform infrared spectroscopy (FTIR).

  8. Water-repellent coatings prepared by modification of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Chakradhar, R. P. S.; Dinesh Kumar, V.

    Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.

  9. Dye-doped silica-based nanoparticles for bioapplications

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong

    2013-12-01

    This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.

  10. Block Copolymer as a Surface Modifier to Monodisperse Patchy Silica Nanoparticles for Superhydrophobic Surfaces.

    PubMed

    Lou, Shuo; Wang, Junzheng; Yin, Xiaohong; Qu, Wenxiu; Song, Yuexiao; Xin, Feng; Qaraah, Fahim Abdo Ali

    2018-06-18

    Monodisperse patchy silica nanoparticles (PSNPs) less than 100 nm are prepared based on the seed-regrowth method using a poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO-type block copolymer as a surface modifier. Well-defined patches are controllably synthesized through area-selective deposition of silica onto the surface of seeds. After colloidal PSNPs are further modified with trimethylchlorosilane, the advancing and receding contact angles of water for PSNPs are 168 ± 2° and 167 ± 2°, respectively. The superhydrophobic and transparent coatings on the various types of substrates are obtained by a simple drop-casting procedure. Additionally, almost the same superhydrophobicity can be achieved by using colloidal PSNPs via redispersing the powder of superhydrophobic PSNPs in ethanol.

  11. Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand

    USDA-ARS?s Scientific Manuscript database

    The transport of polyacrylic acid capped cadmium telluride (CdTe) quantum dots (QDs) and carboxylate-modified latex (CML) nanoparticles (NPs) was studied in packed columns at various electrolyte concentrations and cation types. The breakthrough curves (BTCs) of QDs and CML NPs in acid-treated Accus...

  12. Interaction and cellular uptake of surface-modified carbon dot nanoparticles by J774.1 macrophages

    PubMed Central

    Thoo, Lester; Fahmi, Mochamad Z; Zulkipli, Ihsan N; Keasberry, Natasha

    2017-01-01

    Carbon dot (Cdot) nanoparticles are an emerging class of carbon nanomaterials with a promising potential for drug delivery and bio imaging applications. Although the interaction between Cdots and non-immune cell types has been well studied, Cdot interactions with macrophages have not been investigated. Exposure of Cdot nanoparticles to J774.1 cells, a murine macrophage cell line, resulted in minimal toxicity, where notable toxicity was only seen with Cdot concentrations higher than 0.5 mg/ml. Flow cytometric analysis revealed that Cdots prepared from citric acid were internalized at significantly higher levels by macrophages compared with those prepared from bamboo leaves. Interestingly, macrophages preferentially took up phenylboronic acid (PB)-modified nanoparticles. By fluorescence microscopy, strong blue light-specific punctate Cdot fluorescence resembling Cdot structures in the cytosolic space was mostly observed in J774.1 macrophages exposed to PB-modified nanoparticles and not unmodified Cdot nanoparticles. PB binds to sialic acid residues that are overexpressed on diseased cell surfaces. Our findings demonstrate that PB-conjugated Cdots can be taken up by macrophages with low toxicity and high efficiency. These modified Cdots can be used to deliver drugs to suppress or eliminate aberrant immune cells such as macrophages associated with tumors such as tumor-associated macrophages. PMID:29204100

  13. Synthesis, surface modifications, and size-sorting of mixed nickel-zinc ferrite colloidal magnetic nanoparticles.

    PubMed

    Majewski, P; Krysiński, P

    2008-01-01

    We report on the spontaneous covalent growth of monomolecular adlayers on mixed nickel-zinc nanoferrite colloidal suspensions (ferrofluids). Synthesized nanoparticles were subjected to surface modification by means of acid chloride chemistry, leading to the formation of covalent bonds between the hydroxy groups at the nanoparticle surface and the acid chloride molecules. This procedure can be easily tailored to allow for the formation of adlayers containing both hydrophobic and hydrophilic regions stacked at predetermined distances from the magnetic core, and also providing the nanoferrites with functional carboxy groups capable of further modifications with, for example, drug molecules. Here, fluorophore aminopyrene molecules were bound to such modified nanoferrites through amide bonds. We also used the same chemistry to modify the surface with covalently bound long-chain palmitoyl moieties, and for comparison we also modified the nanoferrite surface by simple adsorption of oleic acid. Both procedures made the surface highly hydrophobic. These hydrophobic colloids were subsequently spread on an aqueous surface to form Langmuir monolayers with different characteristics. Moreover, since uniformity of size is crucial in a number of applications, we propose an efficient way of sorting the magnetic nanoparticles by size in their colloidal suspension. The suspension is centrifuged at increasing rotational speed and the fractions are collected after each run. The mean size of nanoferrite in each fraction was measured by the powder X-ray diffraction (PXRD) technique.

  14. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A.

    PubMed

    Jose, S; Sowmya, S; Cinu, T A; Aleykutty, N A; Thomas, S; Souto, E B

    2014-10-15

    The present paper focuses on the development and in vitro/in vivo characterization of nanoparticles composed of poly-(D,L)-Lactide-co-Glycolide (PLGA) loading Bacoside-A, as a new approach for the brain delivery of the neuroprotective drug for the treatment of neurodegenerative disorders (e.g. Alzheimer Disease). Bacoside-A-loaded PLGA nanoparticles were prepared via o/w emulsion solvent evaporation technique. Surface of the nanoparticles were modified by coating with polysorbate 80 to facilitate the crossing of the blood brain barrier (BBB), and the processing parameters (i.e. sonication time, the concentration of polymer (PLGA) and surfactant (polysorbate 80), and drug-polymer ratio) were optimized with the aim to achieve a high production yield. Brain targeting potential of the nanoparticles was evaluated by in vivo studies using Wistar albino rats. The nanoparticles produced by optimal formulation were within the nanosized range (70-200 nm) with relatively low polydispersity index (0.391 ± 1.2). The encapsulation efficiency of Bacoside-A in PLGA nanoparticles was 57.11 ± 7.11%, with a drug loading capacity of 20.5 ± 1.98%. SEM images showed the spherical shape of the PLGA nanoparticles, whereas their low crystallinity was demonstrated by X-ray studies, which also confirmed no chemical interactions between the drug and polymer molecules. The in vitro release of Bacoside-A from the PLGA nanoparticles followed a sustained release pattern with a maximum release of up to 83.04 ± 2.55% in 48 h. When compared to pure drug solution (2.56 ± 1.23 μg/g tissue), in vivo study demonstrated higher brain concentration of Bacoside-A (23.94 ± 1.74 μg/g tissue) suggesting a significant role of surface coated nanoparticles on brain targeting. The results indicate the potential of surface modified PLGA nanoparticles for the delivery of Bacoside-A to the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-01

    Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  16. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    PubMed Central

    2013-01-01

    Oral chemotherapy is a key step towards ‘chemotherapy at home’, a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588

  17. Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya

    2018-04-01

    Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.

  18. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

    2014-06-01

    Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  19. Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce

    Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less

  20. Fabrication of phosphonic acid films on nitinol nanoparticles by dynamic covalent assembly

    DOE PAGES

    Quinones, Rosalynn; Garretson, Samantha; Behnke, Grayce; ...

    2017-09-25

    Nitinol (NiTi) nanoparticles are a valuable metal alloy due to many unique properties that allow for medical applications. NiTi nanoparticles have the potential to form nanofluids, which can advance the thermal conductivity of fluids by controlling the surface functionalization through chemical attachment of organic acids to the surface to form self-assembled alkylphosphonate films. In this study, phosphonic functional head groups such as 16-phosphonohexadecanoic acid, octadecylphosphonic acid, and 12-aminododecylphosphonic acid were used to form an ordered and strongly chemically bounded film on the NiTi nanopowder. The surface of the NiTi nanoparticles was modified in order to tailor the chemical and physicalmore » properties to the desired application. The modified NiTi nanoparticles were characterized using infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and 31P solid-state nuclear magnetic resonance. The interfacial bonding was identified by spectroscopic data suggesting the phosphonic head group adsorbs in a mixed bidentate/monodentate binding motif on the NiTi nanoparticles. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy revealed the particle sizes. Differential scanning calorimetry was used to examine the phase transitions. Zeta potential determination as a function of pH was examined to investigate the surface properties of charged nanoparticles. In conclusion, the influence of environmental stability of the surface modifications was also assessed.« less

  1. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  2. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  3. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    NASA Astrophysics Data System (ADS)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-12-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.

  4. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.

    PubMed

    Wei, Yaochi; Chen, Shaohua

    2015-12-01

    The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.

  5. pH-Switchable Interaction of a Carboxybetaine Ester-Based SAM with DNA and Gold Nanoparticles.

    PubMed

    Filip, Jaroslav; Popelka, Anton; Bertok, Tomas; Holazova, Alena; Osicka, Josef; Kollar, Jozef; Ilcikova, Marketa; Tkac, Jan; Kasak, Peter

    2017-07-11

    We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples.

  6. Synthesis and Characterization of Poly (styrene-co-butyl acrylate)/Silica Aerogel Nanocomposites by in situ AGET ATRP: Investigating Thermal Properties

    NASA Astrophysics Data System (ADS)

    Khezri, Khezrollah; Fazli, Yousef

    2017-10-01

    Hydrophilic silica aerogel nanoparticles surface was modified with hexamethyldisilazane. Then, the resultant modified nanoparticles were used in random copolymerization of styrene and butyl acrylate via activators generated by electron transfer for atom transfer radical polymerization. Conversion and molecular weight determinations were performed using gas and size exclusion chromatography respectively. Addition of modified nanoparticles by 3 wt% results in a decrease of conversion from 68 to 46 %. Molecular weight of copolymer chains decreases from 12,500 to 7,500 g.mol-1 by addition of 3 wt% modified nanoparticles; however, PDI values increase from 1.1 to 1.4. Proton nuclear magnetic resonance spectroscopy results indicate that the molar ratio of each monomer in the copolymer chains is approximately similar to the initial selected mole ratio of them. Increasing thermal stability of the nanocomposites is demonstrated by thermal gravimetric analysis. Differential scanning calorimetry also shows a decrease in glass transition temperature by increasing modified silica aerogel nanoparticles.

  7. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  8. Enhanced Cyanate Ester Nanocomposites through Improved Nanoparticle Surface Interactions

    DTIC Science & Technology

    2013-05-01

    and a chemically active 3- aminopropyl surface. The cure behavior and thermal properties of the cyanate ester/modified silica nanocomposites were...area of 150 m 2 /g. Nanoparticles with a chemically active 3- aminopropyl surface were prepared by treating Aerosil 200 particles with 3...however, was visibly observed to severely undercure the nanocomposites with octyl and 3- aminopropyl surface moieties, providing a good initial

  9. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  10. Nanoparticles affect PCR primarily via surface interactions with PCR components: using amino-modified silica-coated magnetic nanoparticles as a main model

    USDA-ARS?s Scientific Manuscript database

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic n...

  11. Detection of squamous carcinoma cells using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Wei-Yun; Lee, Sze-tsen; Hsu, Yih-Chih

    2015-03-01

    The goal of this study is to use gold nanoparticle as a diagnostic agent to detect human squamous carcinoma cells. Gold nanoparticles were synthesized and the gold nanoparticle size was 34.3 ± 6.2 nm. Based on the over-expression of epidermal growth factor receptor (EGFR) biomarkers in squamous carcinoma cells, we hypothesized that EGFR could be a feasible biomarker with a target moiety for detection. We further modified polyclonal antibodies of EGFR on the surface of gold nanoparticles. We found selected squamous carcinoma cells can be selectively detected using EGFR antibody-modified gold nanoparticles via receptor-mediated endocytosis. Cell death was also examined to determine the survival status of squamous carcinoma cells with respect to gold nanoparticle treatment and EGFR polyclonal antibody modification.

  12. Appropriate salt concentration of nanodiamond colloids for electrostatic self-assembly seeding of monosized individual diamond nanoparticles on silicon dioxide surfaces.

    PubMed

    Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim

    2015-05-19

    Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.

  13. Surface-mode-assisted amplification of radiative heat transfer between nanoparticles

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2018-04-01

    We show that the radiative heat flux between two nanoparticles can be significantly amplified when they are placed in proximity of a planar substrate supporting a surface resonance. The amplification factor goes beyond two orders of magnitude in the case of dielectric nanoparticles, whereas it is lower in the case of metallic nanoparticles. We analyze how this effect depends on the frequency and on the particle-surface distance by clearly identifying the signature of the surface mode producing the amplification. Finally, we show how the presence of a graphene sheet on top of the substrate can modify the effect by making an amplification of two orders of magnitude possible also in the case of metallic nanoparticles. This long-range amplification effect should play an important role in the thermal relaxation dynamics of nanoparticle networks.

  14. Surface functionalization of WS2 fullerene-like nanoparticles.

    PubMed

    Shahar, Chen; Zbaida, David; Rapoport, Lev; Cohen, Hagai; Bendikov, Tatyana; Tannous, Johny; Dassenoy, Fabrice; Tenne, Reshef

    2010-03-16

    WS(2) belongs to a family of layered metal dichalcogenide compounds that are known to form cylindrical (inorganic nanotubes-INT) and polyhedral nanostructures--onion or nested fullerene-like (IF) particles. The outermost layers of these IF nanoparticles can be peeled under shear stress, thus IF nanoparticles have been studied for their use as solid lubricants. However, the IF nanoparticles tend to agglomerate, presumably because of surface structural defects induced by elastic strain and curvature, a fact that has a deleterious effect on their tribological properties. In the present work, chemical modification of the IF-WS(2) surface with alkyl-silane molecules is reported. The surface-modified IF nanoparticles display improved dispersion in oil-based suspensions. The alkyl-silane coating reduces the IF-WS(2) nanoparticles' tendency to agglomerate and consequently improves the long-term tribological behavior of oil formulated with the IF additive.

  15. Wall slipping behavior of foam with nanoparticle-armored bubbles and its flow resistance factor in cracks.

    PubMed

    Lv, Qichao; Li, Zhaomin; Li, Binfei; Husein, Maen; Shi, Dashan; Zhang, Chao; Zhou, Tongke

    2017-07-11

    In this work, wall slipping behavior of foam with nanoparticle-armored bubbles was first studied in a capillary tube and the novel multiphase foam was characterized by a slipping law. A crack model with a cuboid geometry was then used to compare with the foam slipping results from the capillary tube and also to evaluate the flow resistance factor of the foam. The results showed that the slipping friction force F FR in the capillary tube significantly increased by addition of modified SiO 2 nanoparticles, and an appropriate power law exponents by fitting F FR vs. Capillary number, Ca, was 1/2. The modified nanoparticles at the surface were bridged together and formed a dense particle "armor" surrounding the bubble, and the interconnected structures of the "armor" with strong steric integrity made the surface solid-like, which was in agreement with the slip regime associated with rigid surface. Moreover, as confirmed by 3D microscopy, the roughness of the bubble surface increased with nanoparticle concentration, which in turn increased the slipping friction force. Compared with pure SDBS foam, SDBS/SiO 2 foam shows excellent stability and high flow resistance in visual crack. The resistance factor of SiO 2 /SDBS foam increased as the wall surface roughness increased in core cracks.

  16. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery

    PubMed Central

    Shenoy, Dinesh; Fu, Wei; Li, Jane; Crasto, Curtis; Jones, Graham; DiMarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2006-01-01

    For the development of surface-functionalized gold nanoparticles as cellular probes and delivery agents, we have synthesized hetero-bifunctional poly(ethylene glycol) (PEG, MW 1500) having a thiol group on one terminus and a reactive functional group on the other for use as a flexible spacer. Coumarin, a model fluorescent dye, was conjugated to one end of the PEG spacer and gold nanoparticles were modified with coumarin-PEG-thiol. Surface attachment of coumarin through the PEG spacer decreased the fluorescence quenching effect of gold nanoparticles. The results of cellular cytotoxicity and fluorescence confocal analyses showed that the PEG spacer-modified nanoparticles were essentially non-toxic and could be efficiently internalized in the cells within 1 hour of incubation. Intracellular particle tracking using a Keck 3-D Fusion Microscope System showed that the functionalized gold nanoparticles were rapidly internalized in the cells and localized in the peri-nuclear region. Using the PEG spacer, the gold nano-platform can be conjugated with a variety of biologically relevant ligands such as fluorescent dyes, antibodies, etc in order to target, probe, and induce a stimulus at the target site. PMID:16467923

  17. Elastomeric nanoparticle composites covalently bound to Al2O3/GaAs surfaces.

    PubMed

    Song, Hyon Min; Ye, Peide D; Ivanisevic, Albena

    2007-08-28

    This article reports the modification of Al2O3/GaAs surfaces with multifunctional soft materials. Siloxane elastomers were covalently bound to dopamine-modified Al2O3/GaAs semiconductor surfaces using MPt (M = Fe, Ni) nanoparticles. The sizes of the monodisperse FePt and NiPt nanoparticles were less than 5 nm. The surfaces of the nanoparticles as well as the Al2O3/GaAs substrates were modified with allyl-functionalized dopamine that utilized a dihydroxy group as a strong ligand. The immobilization of the elastomers was performed via a hydrosilation reaction of the allyl-functionalized dopamines with the siloxane backbones. X-ray photoelectron spectroscopy (XPS) experiments confirmed the covalent bonding of the siloxane elastomers to the oxide layer on the semiconductor surface. Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS) measurements revealed that the allyl functional groups are bonded to the siloxane backbones. The FT-IRRAS data also showed that the density of the allyl groups on the surface was lower than that of the siloxane backbones. The mechanical properties of the surface-bound nanocomposites were tested using nanoindentation experiments. The nanoindentation data showed that the soft matrix composed of the elastomeric coating on the surfaces behaves differently from the inner, hard Al2O3/GaAs substrate.

  18. Smart Nanoparticles Undergo Phase Transition for Enhanced Cellular Uptake and Subsequent Intracellular Drug Release in a Tumor Microenvironment.

    PubMed

    Ye, Guihua; Jiang, Yajun; Yang, Xiaoying; Hu, Hongxiang; Wang, Beibei; Sun, Lu; Yang, Victor C; Sun, Duxin; Gao, Wei

    2018-01-10

    Inefficient cellular uptake and intracellular drug release at the tumor site are two major obstacles limiting the antitumor efficacy of nanoparticle delivery systems. To overcome both problems, we designed a smart nanoparticle that undergoes phase transition in a tumor microenvironment (TME). The smart nanoparticle is generated using a lipid-polypetide hybrid nanoparticle, which comprises a PEGylated lipid monolayer shell and a pH-sensitive hydrophobic poly-l-histidine core and is loaded with the antitumor drug doxorubicin (DOX). The smart nanoparticle undergoes a two-step phase transition at two different pH values in the TME: (i) At the TME (pH e : 7.0-6.5), the smart nanoparticle swells, and its surface potential turns from negative to neutral, facilitating the cellular uptake; (ii) After internalization, at the acid endolysosome (pH endo : 6.5-4.5), the smart nanoparticle dissociates and induces endolysosome escape to release DOX into the cytoplasm. In addition, a tumor-penetrating peptide iNRG was modified on the surface of the smart nanoparticle as a tumor target moiety. The in vitro studies demonstrated that the iNGR-modified smart nanoparticles promoted cellular uptake in the acidic environment (pH 6.8). The in vivo studies showed that the iNGR-modified smart nanoparticles exerted more potent antitumor efficacy against late-stage aggressive breast carcinoma than free DOX. These data suggest that the smart nanoparticles may serve as a promising delivery system for sequential uptake and intracellular drug release of antitumor agents. The easy preparation of these smart nanoparticles may also have advantages in the future manufacture for clinical trials and clinical use.

  19. Cytochrome c conjugated to ZnO-MAA nanoparticles: the study of interaction and influence on protein structure.

    PubMed

    Simšíková, Michaela; Antalík, Marián; Kaňuchová, Mária; Skvarla, Jiří

    2013-08-01

    Nanoparticle-protein conjugates have potential for numerous applications due to the combination of the properties of both components. In this paper we studied the conjugation of horse heart cytochrome c with ZnO nanoparticles modified by mercaptoacetic acid (MAA) which may be a material with great potential in anticancer therapy as a consequence of synergic effect of both components. Cyt c adsorption to the ZnO-MAA NPs surface was studied by UV-vis spectroscopy and by a dynamic light scattering in various pH. The results indicate that the optimal pH for the association of protein with modified nanoparticles is in range 5.8-8.5 where 90-96% of cytochrome c was assembled on ZnO-MAA nanoparticles. The interaction of proteins with nanoparticles often results in denaturation or loss of protein function. Our observations from UV-vis spectroscopy and circular dichroism performed preserved protein structure after the interaction with modified nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Au-nanoparticles grafted on plasma treated PE

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  1. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  2. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    PubMed Central

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier. PMID:22396775

  3. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    PubMed

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  4. Physicochemical properties and in vitro cytotoxicity of iron oxide-based nanoparticles modified with antiangiogenic and antitumor peptide A7R

    NASA Astrophysics Data System (ADS)

    Niescioruk, Anna; Nieciecka, Dorota; Puszko, Anna K.; Królikowska, Agata; Kosson, Piotr; Perret, Gerard Y.; Krysinski, Pawel; Misicka, Aleksandra

    2017-05-01

    Superparamagnetic iron oxide-based nanoparticles (SPIONs) are promising carriers as targeted drug delivery vehicles, because they can be guided to their target with the help of an external magnetic field. Functionalization of nanoparticles' surface with molecules, which bind with high affinity to receptors on target tissue significantly facilitates delivery of coated nanoparticles to their targeted site. Here, we demonstrate conjugation of an antiangiogenic and antitumor peptide ATWLPPR (A7R) to SPIONs modified with sebacic acid (SPIONs-SA). Successful conjugation was confirmed by various analytical techniques (FTIR, SERS, SEM-EDS, TEM, TGA). Cell cytotoxicity studies, against two cell lines (HUVEC and MDA-MB-231) indicated that SPIONs modified with A7R reduced HUVEC cell viability at concentrations higher than 0.01 mg Fe/mL, in comparison to cells that were exposed to either the nanoparticles modified with sebacic acid or A7R peptide solely, what might be partially caused by a process of internalization.

  5. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules

    PubMed Central

    Wen, Xingxing; Ding, Shan; Cai, Hui; Wang, Junyi; Wen, Lu; Yang, Fan; Chen, Gang

    2016-01-01

    Targeted drug delivery to outer hair cells (OHCs) in the cochlea by nanomedicine strategies forms an effective therapeutic approach for treating hearing loss. Surface chemistry plays a deciding role in nanoparticle (NP) biodistribution, but its influence on such distribution in the cochlea remains largely unknown. Herein, we report the first systematic comparison of poly(lactic/glycolic acid) nanoparticles (PLGA NPs) with or without surface modification of hydrophilic molecules for optimizing the delivery to OHCs both in vitro and in vivo. NPs that were surface modified with poloxamer 407 (P407), chitosan, or methoxy poly(ethylene glycol) and the unmodified NPs were highly biocompatible with L929 and House Ear Institute-organ of Corti 1 cells as well as cochlear tissues. Interestingly, among all the examined NPs, P407-PLGA NPs showed the greatest cellular uptake and prominent fluorescence in cochlear imaging. More importantly, we provide novel evidence that the surface-modified NPs reached the organ of Corti and were transported into the OHCs at a higher level. Together, these observations suggest that surface modification with hydrophilic molecules will allow future clinical applications of PLGA NPs, especially P407-PLGA NPs, in efficient hearing loss therapy. PMID:27877041

  6. Nano-particle modified stationary phases for high-performance liquid chromatography.

    PubMed

    Nesterenko, Ekaterina P; Nesterenko, Pavel N; Connolly, Damian; He, Xiaoyun; Floris, Patrick; Duffy, Emer; Paull, Brett

    2013-08-07

    This review covers the latest developments and applications of nano-materials in stationary phase development for various modes of high-performance liquid chromatography. Specific attention is placed upon the development of new composite phases, including the synthetic and immobilisation strategies used, to produce either encapsulated nano-particles, or surface attached nano-particles, layers, coatings and other structures. The resultant chromatographic applications, where applicable, are discussed with comment upon enhanced selectivity and/or efficiency of the nano-particle modified phases, where such effects have been identified. In the main this review covers developments over the past five years and is structured according to the nature of the nano-particles themselves, including carbonaceous, metallic, inorganic, and organopolymer based materials.

  7. Gold and Iron-Gold Nanoparticles for Intracellular Tracking and in Vivo Medical Applicatons

    NASA Astrophysics Data System (ADS)

    Fu, Wei

    2005-03-01

    We have fabricated Au and Fe-Au nanoparticles for potential use in ex vivo experiments such as intracellular tracking, as well as a variety of in vivo medical applications. In order to improve their targeting potential, circulation time and flexibility, gold NPs were surface modified using a hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500) spacers. A coumarin-PEG-gold NP complex was formed and cell viability studies and optical fluorescence experiments were carried out demonstrating the use of these surface-modified gold NPs for drug delivery, gene therapy and cell trafficking experiments. Fe-Au nanoparticles were also fabricated and show significant contrast enhancement in MRI studies through a substantial reduction of the T2 relaxation time.

  8. Aliphatic hyperbranched polyester: A new building block in the construction of multifunctional nanoparticles and nanocomposites**

    PubMed Central

    Santra, Santimukul; Kaittanis, Charalambos; Perez, J. Manuel

    2009-01-01

    Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethylmalonate. The polymer’s globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymer’s interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics and material applications. PMID:19957939

  9. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization

    NASA Astrophysics Data System (ADS)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban

    2017-11-01

    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  10. Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles

    PubMed Central

    Huo, Lijuan; Zeng, Xibai; Su, Shiming; Bai, Lingyu; Wang, Yanan

    2017-01-01

    Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g−1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5–10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature. PMID:28098196

  11. Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Huo, Lijuan; Zeng, Xibai; Su, Shiming; Bai, Lingyu; Wang, Yanan

    2017-01-01

    Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g-1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5-10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature.

  12. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    PubMed

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Novel ferrocene-anchored ZnO nanoparticle/carbon nanotube assembly for glucose oxidase wiring: application to a glucose/air fuel cell.

    PubMed

    Haddad, Raoudha; Mattei, Jean-Gabriel; Thery, Jessica; Auger, Aurélien

    2015-06-28

    Glucose oxidase (GOx) is immobilized on ZnO nanoparticle-modified electrodes. The immobilized glucose oxidase shows efficient mediated electron transfer with ZnO nanoparticles to which the ferrocenyl moiety is π-stacked into a supramolecular architecture. The constructed ZnO-Fc/CNT modified electrode exhibits high ferrocene surface coverage, preventing any leakage of the π-stacked ferrocene from the newly described ZnO hybrid nanoparticles. The use of the new architecture of ZnO supported electron mediators to shuttle electrons from the redox centre of the enzyme to the surface of the working electrode can effectively bring about successful glucose oxidation. These modified electrodes evaluated as a highly efficient architecture provide a catalytic current for glucose oxidation and are integrated in a specially designed glucose/air fuel cell prototype using a conventional platinum-carbon (Pt/C) cathode at physiological pH (7.0). The obtained architecture leads to a peak power density of 53 μW cm(-2) at 300 mV for the Nafion® based biofuel cell under "air breathing" conditions at room temperature.

  14. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging.

    PubMed

    Ratanajanchai, Montri; Lee, Don Haeng; Sunintaboon, Panya; Yang, Su-Geun

    2014-02-01

    Herein, we introduced amine-functionalized core-shell nanoparticles (Polymethyl methacrylate/Polyethyleneimine; PMMA/PEI) with surface primary amines (3.15×10(5) groups/particle) and uniform size distribution (150-200nm) that were prepared by one-step photo-induced emulsion polymerization. Further PEI-surface was modified with diethylenetriamine pentaacetic acid (DTPA) and introduced with Gd(III). The modified particles possessing DTPA can entrap a high content of Gd(III) ions of over 5.5×10(4)Gd/particle with stable chelation (no release of free Gd) at least 7h. The Gd-DTPA-conjugated core-shell nanoparticles (PMMA/PEI-DTPA-Gd NPs) enhanced the MRI intensity more than Primovist (a commercial hepatic contrast agent). Moreover, the PMMA/PEI-DTPA-Gd NPs showed non-cytotoxicity up to 250μM in normal liver cells. Thus, in vitro data suggested the PMMA/PEI-DTPA-Gd NPs is promising delivery system as a superior MRI contrast agent, especially for hepatic lesion targeted MR imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.

    PubMed

    Mistry, Alpesh; Stolnik, Snjezana; Illum, Lisbeth

    2015-08-03

    The ability to deliver therapeutically relevant amounts of drugs directly from the nasal cavity to the central nervous system to treat neurological diseases is dependent on the availability of efficient drug delivery systems. Increased delivery and/or therapeutic effect has been shown for drugs encapsulated in nanoparticles; however, the factors governing the transport of the drugs and/or the nanoparticles from the nasal cavity to the brain are not clear. The present study evaluates the potential transport of nanoparticles across the olfactory epithelium in relation to nanoparticle characteristics. Model systems, 20, 100, and 200 nm fluorescent carboxylated polystyrene (PS) nanoparticles that were nonmodified or surface modified with polysorbate 80 (P80-PS) or chitosan (C-PS), were assessed for transport across excised porcine olfactory epithelium mounted in a vertical Franz diffusion cell. Assessment of the nanoparticle content in the donor chamber of the diffusion cell, accompanied by fluorescence microscopy of dismounted tissues, revealed a loss of nanoparticle content from the donor suspension and their association with the excised tissue, depending on the surface properties and particle size. Chitosan surface modification of PS nanoparticles resulted in the highest tissue association among the tested systems, with the associated nanoparticles primarily located in the mucus, whereas the polysorbate 80-modified nanoparticles showed some penetration into the epithelial cell layer. Assessment of the bioelectrical properties, metabolic activity, and histology of the excised olfactory epithelium showed that C-PS nanoparticles applied in pH 6.0 buffer produced a damaging effect on the epithelial cell layer in a size-dependent manner, with fine 20 nm sized nanoparticles causing substantial tissue damage relative to that with the 100 and 200 nm counterparts. Although histology showed that the olfactory tissue was affected by the application of citrate buffer that was augmented by addition of chitosan in solution, this was not reflected in the bioelectrical parameters and the metabolic activity of the tissue. Regarding transport across the excised olfactory tissue, none of the nanoparticle systems tested, irrespective of particle size or surface modification, was transported across the epithelium to appear in measurable amounts in the receiver chamber.

  16. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy, E-mail: drkvgobi@gmail.com, E-mail: satyam.nitw@gmail.com

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ∼35 nm and are well distributed on the surface ofmore » carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.« less

  17. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    PubMed

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  18. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  19. Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite.

    PubMed

    Roushani, Mahmoud; Shahdost-Fard, Faezeh

    2018-03-12

    The authors describe a highly sensitive method for the aptamer (Apt) based impedimetric determination of cocaine. The surface of a screen-printed electrode (SPE) was modified with a nanocomposite of dendrimer and silver nanoparticles (AgNPs). The cocaine-binding Apt was attached to a dendrimer/AgNP/SPE surface, forming a sensitive layer for the determination of cocaine. The incubation with the analyte resulted in the formation of a cocaine/Apt complex on the electrode surface. As a consequence, folding and conformational change in the aptamer structure was induced, this resulting in a change in the impedimetric signal. The aptaassay exhibits highly efficient sensing characteristics with a good linearity of 1 fmol L -1 to 100 nmol L -1 (with two linear ranges) and a limit of detection (LOD) of 333 amol L -1 . Its excellent specificity and high sensitivity suggest that this kind of aptamer-based assay may be applied to detect other targets in this field. Graphical Abstract Designing of an aptaassay via immobilization of a functionalized aptamer with silver nanoparticle (AgNPs-Apt) on the modified screen-printed electrode (SPE) with dendrimer/silver nanoparticle nanocomposite (Den-AgNPs) for impedimetric detection of cocaine.

  20. Dynamics of laser-induced damage of spherical nanoparticles by high-intensity ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Komolov, Vladimir L.; Gruzdev, Vitaly E.; Przhibelskii, Sergey G.; Smirnov, Dmitry S.

    2012-12-01

    Damage of a metal spherical nanoparticle by femtosecond laser pulses is analyzed by splitting the overall process into two steps. The fast step includes electron photoemission from a nanoparticle. It takes place during direct action of a laser pulse and its rate is evaluated as a function of laser and particle parameters by two approaches. Obtained results suggest the formation of significant positive charge of the nanoparticles due to the photoemission. The next step includes ion emission that removes the excessive positive charge and modifies particle structure. It is delayed with respect to the photo-emission and is analyzed by a simple analytical model and modified molecular dynamics. Obtained energy distribution suggests generation of fast ions capable of penetrating into surrounding material and generating defects next to the nanoparticle. The modeling is extended to the case of a nanoparticle on a solid surface to understand the basic mechanism of surface laser damage initiated by nano-contamination. Simulations predict embedding the emitted ions into substrate within a spot with size significantly exceeding the original particle size. We discuss the relation of those effects to the problem of bulk and surface laser-induced damage of optical materials by single and multiple ultrashort laser pulses.

  1. Modification of Ag nanoparticles on the surface of SrTiO3 particles and resultant influence on photoreduction of CO2

    NASA Astrophysics Data System (ADS)

    Shao, Kunjuan; Wang, Yanjie; Iqbal, Muzaffar; Lin, Lin; Wang, Kai; Zhang, Xuehua; He, Meng; He, Tao

    2018-03-01

    Modification of a wide-bandgap semiconductor with noble metals that can exhibit surface plasmon effect is an effective approach to make it responsive to the visible light. In this work, a series of cubic and all-edge-truncated SrTiO3 with and without thermal pretreatment in air are modified by Ag nanoparticles via photodeposition method. The crystal structure, morphology, loading amount of Ag nanoparticles, and optical properties of the obtained Ag-SrTiO3 nanomaterials are well characterized by powder X-ray diffraction, scanning microscope, transmission electron microscope, energy disperse X-ray spectroscopy, ICP-MS and UV-vis diffuse-reflection spectroscopy. The loading amount and size of the Ag nanoparticles can be controlled to some extent by tuning the photodeposition time via growth-dissolution mechanism. The Ag nanoparticles are inclined to deposit on different locations on the surface of cubic and truncated SrTiO3 with and without thermal pretreatment. The resultant SrTiO3 modified by Ag nanoparticles exhibits visible light activity for photocatalytic reduction of CO2, which is closely related to the oxygen vacancy induced by thermal pretreatment, size and amount of Ag nanoparticles. Accordingly, there is an optimized photodeposition time for the synthesis of the photocatalyst that exhibits the highest photocatalytic activity.

  2. Nanoparticles Affect PCR Primarily via Surface Interactions with PCR Components: Using Amino-Modified Silica-Coated Magnetic Nanoparticles as a Main Model.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Shi, Xianming

    2015-06-24

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic nanoparticles (ASMNPs, which can be collected very easily using an external magnetic field) as a model and compared them with gold nanoparticles (AuNPs, which have been studied extensively) to reveal the mechanisms by which nanoparticles affect PCR. We found that nanoparticles affect PCR primarily by binding to PCR components: (1) inhibition, (2) specifity, and (3) efficiency and yield of PCR are impacted. (1) Excess nanomaterials inhibit PCR by adsorbing to DNA polymerase, Mg(2+), oligonucleotide primers, or DNA templates. Nanoparticle surface-active groups are particularly important to this effect. (2, a) Nanomaterials do not inhibit nonspecific amplification products caused by false priming as previously surmised. It was shown that relatively low concentrations of nanoparticles inhibited the amplification of long amplicons, and increasing the amount of nanoparticles inhibited the amplification of short amplicons. This concentration phenomenon appears to be the result of the formation of "joints" upon the adsorption of ASMNPs to DNA templates. (b) Nanomaterials are able to inhibit nonspecific amplification products due to incomplete amplification by preferably adsorbing single-stranded incomplete amplification products. (3) Some types of nanomaterials, such as AuNPs, enhance the efficiency and yield of PCR because these types of nanoparticles can adsorb to single-stranded DNA more strongly than to double-stranded DNA. This behavior assists in the rapid and thorough denaturation of double-stranded DNA templates. Therefore, the interaction between the surface of nanoparticles and PCR components is sufficient to explain most of the effects of nanoparticles on PCR.

  3. Packing the silica colloidal crystal beads: a facile route to superhydrophobic surfaces.

    PubMed

    Sun, Cheng; Gu, Zhong-Ze; Xu, Hua

    2009-11-03

    To mimic the structure of the lotus leaf, we present a facile route to prepare superhydrophobic surfaces by depositing nanoparticle clusters onto a solid surface. These clusters were fabricated via solidification of an emulsion droplet containing a nanoparticle in silicone oil. Thus, the microsized clusters and nanoparticles form dual-scale roughness structures. The surface is modified by fluoroalkylsilane and exhibits superhydrophobicity, with a contact angle greater than 165 degrees as well as a sliding angle less than 1 degrees . On the basis of size tuning of the nano/microstructures, various contact angles and sliding angles were investigated. Furthermore, the influence of micro/nanostructures on superhydrophobicity is discussed.

  4. A gold nanoparticle coated porcine cholecyst-derived bioscaffold for cardiac tissue engineering.

    PubMed

    Nair, Reshma S; Ameer, Jimna Mohamed; Alison, Malcolm R; Anilkumar, Thapasimuthu V

    2017-09-01

    Extracellular matrices of xenogeneic origin have been extensively used for biomedical applications, despite the possibility of heterogeneity in structure. Surface modification of biologically derived biomaterials using nanoparticles is an emerging strategy for improving topographical homogeneity when employing these scaffolds for sophisticated tissue engineering applications. Recently, as a tissue engineering scaffold, cholecyst derived extracellular matrix (C-ECM) has been shown to have several advantages over extracellular matrices derived from other organs such as jejunum and urinary bladder. This study explored the possibility of adding gold nanoparticles, which have a large surface area to volume ratio on C-ECM for achieving homogeneity in surface architecture, a requirement for cardiac tissue engineering. In the current study, gold nanoparticles (AuNPs) were synthesized and functionalised for conjugating with a porcine cholecystic extracellular matrix scaffold. The conjugation of nanoparticles to C-ECM was achieved by 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide/N-hydroxysuccinimide chemistry and further characterized by Fourier transform infrared spectroscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy and thermogravimetric analysis. The physical properties of the modified scaffold were similar to the original C-ECM. Biological properties were evaluated by using H9c2 cells, a cardiomyoblast cell line commonly used for cellular and molecular studies of cardiac cells. The modified scaffold was found to be a suitable substrate for the growth and proliferation of the cardiomyoblasts. Further, the non-cytotoxic nature of the modified scaffold was established by direct contact cytotoxicity testing and live/dead staining. Thus, the modified C-ECM appears to be a potential biomaterial for cardiac tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bifunctional redox tagging of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Poon, Jeffrey; Batchelor-McAuley, Christopher; Tschulik, Kristina; Palgrave, Robert G.; Compton, Richard G.

    2015-01-01

    Despite extensive work on the controlled surface modification of carbon with redox moieties, to date almost all available methodologies involve complex chemistry and are prone to the formation of polymerized multi-layer surface structures. Herein, the facile bifunctional redox tagging of carbon nanoparticles (diameter 27 nm) and its characterization is undertaken using the industrial dye Reactive Blue 2. The modification route is demonstrated to be via exceptionally strong physisorption. The modified carbon is found to exhibit both well-defined oxidative and reductive voltammetric redox features which are quantitatively interpreted. The method provides a generic approach to monolayer modifications of carbon and carbon nanoparticle surfaces.

  6. Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid.

    PubMed

    Ma, Ying; Sadoqi, Mostafa; Shao, Jun

    2012-10-15

    To establish the biodistribution profile of the PLGA nanoparticles with dual surface modifications of PEG and folic acid (FA) in mice xenografted with MDA-MB-231 human breast cancer cells with high expression of folate receptor (FR); and to illustrate that the modified nanoparticles can target the loaded indocyanine green (ICG) to the tumor with high FR expression. ICG-loaded nanoparticles were prepared with PLGA (non-modified nanoparticles, NM-NP) or mPEG-PLGA and FA-PLGA (dual modified nanoparticles, DM-NP). Biodistribution of the ICG-loaded nanoparticles (1.25 mg/kg) after i.v. injection was investigated on athymic mice transplanted with MDA-MB-231 tumor. ICG concentration in plasma from the DM-NP group was significantly (p<0.05) higher than the NM-NP group from 90 min to the end of the study (12 h). After 4 h, the drug concentration in the tumor tissue from the DM-NP started to be significantly (p<0.05) higher than the NM-NP until 12 h. Compared to the NM-NP, the DM-NP increased the AUC(0-12 h) in plasma by 245% and the AUC(0-12 h) in tumor by 194%, while decreased the AUC(0-12 h) in liver by 13%. The accumulation of DM-NP into the tumor was significantly higher than NM-NP due to the long circulation and FR-mediated uptake. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization.

    PubMed

    Surassmo, Suvimol; Saengkrit, Nattika; Ruktanonchai, Uracha Rungsardthong; Suktham, Kunat; Woramongkolchai, Noppawan; Wutikhun, Tuksadon; Puttipipatkhachorn, Satit

    2015-06-01

    Mucoadhesive poly (lactic-co-glycolic acid) (PLGA) nanoparticles having a modified shell-matrix derived from polyvinyl alcohol (PVA) and Carbopol (CP), a biodegradable polymer coating, to improve the adhesion and cell transfection properties were developed. The optimum formulations utilized a CP concentration in the range of 0.05-0.2%w/v, and were formed using modified emulsion-solvent evaporation technique. The resulting CP-PLGA nanoparticles were characterized in terms of their physical and chemical properties. The absorbed CP on the PLGA shell-matrix was found to affect the particle size and surface charge, with 0.05% CP giving rise to smooth spherical particles (0.05CP-PLGA) with the smallest size (285.90 nm), and strong negative surface charge (-25.70 mV). The introduction of CP results in an enhancement of the mucoadhesion between CP-PLGA nanoparticles and mucin particles. In vitro cell internalization studies highlighted the potential of 0.05CP-PLGA nanoparticles for transfection into SiHa cells, with uptake being time dependent. Additionally, cytotoxicity studies of CP-PLGA nanoparticles against SiHa cancer cells indicated that low concentrations of the nanoparticles were non-toxic to cells (cell viability >80%). From the various formulations studied, 0.05CP-PLGA nanoparticles proved to be the optimum model carrier having the required mucoadhesive profile and could be an alternative therapeutic efficacy carrier for targeted mucosal drug delivery systems with biodegradable polymer. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A generalized model on the effects of nanoparticles on fluorophore fluorescence in solution

    USDA-ARS?s Scientific Manuscript database

    Nanoparticles (NP) can modify fluorophore fluorescence in solution through multiple pathways that include fluorescence inner filter effect (IFE), dynamic and static quenching, surface enhancement, and fluorophore quantum yield variation associated with structural and conformational modifications ind...

  9. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    PubMed

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  10. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate exogenous contrast agent for efficient Raman spectroscopy from molecules.

  11. Immobilization of PMIDA on Fe3O4 magnetic nanoparticles surface: Mechanism of bonding

    NASA Astrophysics Data System (ADS)

    Demin, Alexander M.; Mekhaev, Alexander V.; Esin, Alexander A.; Kuznetsov, Dmitry K.; Zelenovskiy, Pavel S.; Shur, Vladimir Ya.; Krasnov, Victor P.

    2018-05-01

    The mechanism of N-phosphonomethyl iminodiacetic acid (PMIDA) binding with the Fe3O4 magnetic nanoparticle (MNPs) surface by Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetry was comprehensive studied. To study of microstructure, size and core structure of synthesized nanoparticles the scanning electron microscopy, X-ray diffraction analysis and Raman spectroscopy were carried out. A new scheme for the tridentate bonding of the phosphonomethyl derivative with surface Fe atoms involving unequal Psbnd Osbnd Fe bonds was proposed. The mechanism of thermal decomposition of PMIDA molecules on the MNP surface was studied using a thermogravimetric analyzer combined with infrared spectrometer. It was shown for the first time that during the thermal treatment of phosphonomethyl-modified MNPs, PMIDA molecules are not desorbed from the surface of MNPs but gradually decompose. We believe that obtained in this work data will be useful for a deeper understanding of the mechanisms of phosphonic acid derivatives interaction with MNPs, as well as in the design of new biomedical materials, in which the conjugation of biomolecules with carboxyl groups of PMIDA-modified MNPs is assumed.

  12. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles.

    PubMed

    Wang, Shunzhi; McGuirk, C Michael; Ross, Michael B; Wang, Shuya; Chen, Pengcheng; Xing, Hang; Liu, Yuan; Mirkin, Chad A

    2017-07-26

    Metal-organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle-inorganic particle core-satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid-nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes.

  13. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets.

    PubMed

    Meng, Fanli; Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-06-22

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge.

  14. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets

    PubMed Central

    Zheng, Hanxiong; Sun, Yufeng; Li, Minqiang; Liu, Jinhuai

    2017-01-01

    It is of great significance for dynamic monitoring of foods in storage or during the transportation process through on-line detecting trimethylamine (TMA). Here, TMA were sensitively detected by Au-modified hierarchical porous single-crystalline ZnO nanosheets (HPSCZNs)-based sensors. The HPSCZNs were synthesized through a one-pot wet-chemical method followed by an annealing treatment. Polyethyleneimine (PEI) was used to modify the surface of the HPSCZNs, and then the PEI-modified samples were mixed with Au nanoparticles (NPs) sol solution. Electrostatic interactions drive Au nanoparticles loading onto the surface of the HPSCZNs. The Au-modified HPSCZNs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrum (EDS), respectively. The results show that Au-modified HPSCZNs-based sensors exhibit a high response to TMA. The linear range is from 10 to 300 ppb; while the detection limit is 10 ppb, which is the lowest value to our knowledge. PMID:28640226

  15. On the adsorption properties of magnetic fluids: Impact of bulk structure

    NASA Astrophysics Data System (ADS)

    Kubovcikova, Martina; Gapon, Igor V.; Zavisova, Vlasta; Koneracka, Martina; Petrenko, Viktor I.; Soltwedel, Olaf; Almasy, László; Avdeev, Mikhail V.; Kopcansky, Peter

    2017-04-01

    Adsorption of nanoparticles from magnetic fluids (MFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR) and related to the bulk structural organization of MFs concluded from small-angle neutron scattering (SANS). The initial aqueous MF with nanomagnetite (co-precipitation reaction) stabilized by sodium oleate and MF modified by a biocompatible polymer, poly(ethylene glycol) (PEG), were considered. Regarding the bulk structure it was confirmed in the SANS experiment that comparatively small and compact (size 30 nm) aggregates of nanoparticle in the initial sample transfer to large and developed (size>130 nm, fractal dimension 2.7) associates in the PEG modified MF. This reorganization in the aggregates correlates with the changes in the neutron reflectivity that showed that a single adsorption layer of individual nanoparticles on the oxidized silicon surface for the initial MF disappears after the PEG modification. It is concluded that all particles in the modified fluid are in the aggregates that are not adsorbed by silicon.

  16. Reflectometric measurement of n-hexane adsorption on ZnO2 nanohybrid film modified by hydrophobic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sebők, Dániel; Csapó, Edit; Ábrahám, Nóra; Dékány, Imre

    2015-04-01

    Zinc-peroxide/poly(styrenesulfonate) nanohybrid thin films (containing 20 bilayers: [ZnO2/PSS]20, d ∼ 500 nm) were prepared using layer-by-layer (LbL) method. The thin film surface was functionalized by different surface modifying agents (silanes, alkylthiols and hydrophobized nanoparticles). Based on the experimental results of quartz crystal microbalance (QCM) and contact angle measurements (as prequalifications) the octanethiol covered gold nanoparticles (OT-AuNPs) were selected for further vapour adsorption studies. Reflectometric interference spectroscopy (RIfS) was used to measure n-hexane vapour adsorption on the original and modified nanohybrid films in a gas flow platform. The thin film provides only the principle of the measurement (by interference phenomenon), the selectivity and hydrophobicity is controlled and enhanced by surface functionalization (by dispersion interaction between the alkyl chains). The interference pattern shift (Δλ) caused by the increase of the optical thickness of the thin film due to vapour adsorption was investigated. It was found that due to the surface functionalization by hydrophobic nanoparticles the effect of water vapour adsorption decreased significantly, while for n-hexane opposite tendency was observed (the effective refractive index and thus the interference pattern shift increased drastically). The correlation between QCM technique and optical method (RIfS) was specified: linear specific adsorbed amount vs. wavelength shift calibration curves were determined in the pr = 0-0.4 relative vapour pressure range. The thin film is suitable for sensorial application (e.g. volatile organic compound/VOC sensor).

  17. An improved soft-chemistry approach to the preparation of spinel powders

    NASA Astrophysics Data System (ADS)

    Cook, Ronald

    2007-04-01

    Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. In previous work, the spinel powders were prepared by the reaction of surface-modified boehmite nanoparticles with magnesium acetylacetonate. While the magnesium acetylacetonate can produce small quantities of high quality spinel powders, it use for large scale production of spinel powders is problematic. Through a thermodynamic analysis we have identified a new high-purity, low-cost, low-toxicity organomagnesium compound that reacts the with surface modified boehmite nanoparticles to produce a spinel precursor. The magnesium doped precursor readily transforms into pure phase spinel at temperature between 900°C and 1200°C.

  18. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-10-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated.

  19. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.

    PubMed

    Yu, Lan; Xue, Weihua; Cui, Lei; Xing, Wen; Cao, Xinli; Li, Hongyu

    2014-03-01

    Fe3O4 nanoparticles were modified with Hydroxypropyl-β-cyclodextrin (HP-β-CD) and Polyethylene glycol 400 (PEG400) by a facile one-pot homogeneous precipitation method, and were used as a novel nano-adsorbent for the removal of congo red (CR) from aqueous solutions. The polymer-modified composites were characterized by FTIR, TEM, TGA, XRD and VSM, and showed excellent adsorption efficiency for CR. The value of the maximum adsorption capacity calculated according to the Langmuir isotherm model were 1.895g/g, which are much high and about 19 times that of Fe3O4 nanoparticles. Desorption study further indicates the good regeneration ability of the nanocomposites. The results suggest that the HP-β-CD/PEG400-modified Fe3O4 nanoparticles is a promising adsorbent for CR removal from aqueous solutions, and it is easily recycled owing to its large specific surface area and unique magnetic responsiveness. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. The Impact of Nanoparticle Surface Chemistry on Biological Systems

    NASA Astrophysics Data System (ADS)

    Thorn, Angie Sue Morris

    The unique properties of nanomaterials, such as their small size and large surface area-to-volume ratios, have attracted tremendous interest in the scientific community over the last few decades. Thus, the synthesis and characterization of many different types of nanoparticles has been well defined and reported on in the literature. Current research efforts have redirected from the basic study of nanomaterial synthesis and their properties to more application-based studies where the development of functionally active materials is necessary. Today such nanoparticle-based systems exist for a range of biomedical applications including imaging, drug delivery and sensors. The inherent properties of the nanomaterial, although important, aren't always ideal for specific applications. In order to optimize nanoparticles for biomedical applications it is often desirable to tune their surface properties. Researchers have shown that these surface properties (such as charge, hydrophobicity, or reactivity) play a direct role in the interactions between nanoparticles and biological systems can be altered by attaching molecules to the surface of nanoparticles. In this work, the effects of physicochemical properties of a wide variety of nanoparticles was investigated using in vitro and in vivo models. For example, copper oxide (CuO) nanoparticles were of interest due to their instability in biological media. These nanoparticles undergo dissolution when in an aqueous environment and tend to aggregate. Therefore, the cytotoxicity of two sizes of CuO NPs was evaluated in cultured cells to develop a better understanding of how these propertied effect toxicity outcomes in biological systems. From these studies, it was determined that CuO NPs are cytotoxic to lung cells in a size-dependent manner and that dissolved copper ions contribute to the cytotoxicity however it is not solely responsible for cell death. Moreover, silica nanoparticles are one of the most commonly used nanomaterials because they are easy to synthesize and their properties (such as size, porosity and surface chemistry) can be fine-tuned. Silica nanoparticles can be found in thousands of commercially available products such as toothpastes, cosmetics and detergents and are currently being developed for biomedical applications such as drug delivery and biomedical imaging. Our findings herein indicate that the surface chemistry of silica nanoparticles can have an effect on lung inflammation after exposure. Specifically, amine-modified silica NPs are considered to be less toxic compared to bare silica nanoparticles. Together, these studies provide insight into the role that material properties have on toxicity and allow for a better understanding of their impact on human and environmental health. The final aim of this thesis was to develop surface-modified nanoparticles for drug delivery applications. For this, biodegradable, polymeric NPs were used due to their inert nature and biocompatibility. Furthermore, polymeric NPs are excellent for loading drugs and using them as drug delivery vehicles. In this work, poly (lactic-co-glycolic acid) (PLGA) NPs were loaded with a therapeutic peptide. These NPs were then coated with chitosan (a mucoadhesive polymer) for the treatment of allergic asthma or coated with a small cationic mitochondrial targeting agent for the treatment of ischemia/reperfusion injury. Taken as a whole, this thesis sheds light on the impact of NPs on human health. First by providing useful toxological data for CuO and silica NPs as well as highlighting the potential of surface-modified polymeric NPs to be used in drug delivery-based applications.

  1. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  2. Characterization of the modified nickel-zinc ferrite nanoparticles coated with APTES by salinization reaction

    NASA Astrophysics Data System (ADS)

    Zainal, Israa G.; Al-Shammari, Ahmed Majeed; Kachi, Wjeah

    2018-05-01

    Surface functionalization of magnetic iron oxide nanoparticles (NPs) is a kind of functional materials, which have been widely used in the biotechnology and catalysis. In this study, Nickel-Zinc ferrite nanoparticles was functionalized with amino propyl triethoxy silane (APTES) by silanization reaction and both non coated and organosilane-coated magnetite characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy. Basic groups of amino anchored on the external surface of the coated magnetite were observed. Our study procedure nanoparticles which have surface with free - NH2 groups which can carry out ionic interaction with carboxylic groups and act as a carrier of biological molecules, drugs and metals.

  3. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles.

    PubMed

    Pokhrel, Lok R; Dubey, Brajesh; Scheuerman, Phillip R

    2013-11-19

    Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.

  4. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Yao; Zhang, Man; Liu, Zhe-Peng; Wang, Ke; Yu, Deng-Guang

    2018-03-01

    Almost all electrospraying processes are carried out under an air-solution interface, thereby overlooking the potential influence of an additional solvent surface modification between air and the working solution. A pure solvent was explored to temporarily and dynamically surround the solutions utilized for blending electrospraying, which contained a guest drug meletin and a protein drug carrier gliadin. The new modified processes created protein-based medicated nanoparticles (P2) with higher quality than their counterparts (P1) from blending processes, as demonstrated by the SEM and TEM images. Although the particles from the two processes were similar (nanocomposites), and the particles P1 were larger than P2, the later provided a better meletin sustained-release profile than the former. This finding was verified by the smaller initial burst release, longer sustained-release time period, and shorter late leveling-off stage. These unanticipated results were attributed to the rounder surface, the more uniform size distribution, and the smaller total surface area of particles P2 than P1. The microformation mechanism of the modified coaxial process was suggested. The protocols reported here paved a new way for the development of new kinds of functional nanoparticles by modifying the interfaces of working fluids during electrospraying.

  5. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Macková, Hana; Horák, Daniel; Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2015-04-01

    Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin.

  6. Highly stable multi-anchored magnetic nanoparticles for optical imaging within biofilms

    DOE PAGES

    Stone, R. C.; Fellows, B. D.; Qi, B.; ...

    2015-08-05

    Magnetic nanoparticles are the next tool in medical diagnoses and treatment in many different biomedical applications, including magnetic hyperthermia as alternative treatment for cancer and bacterial infections, as well as the disruption of biofilms. The colloidal stability of the magnetic nanoparticles in a biological environment is crucial for efficient delivery. A surface that can be easily modifiable can also improve the delivery and imaging properties of the magnetic nanoparticle by adding targeting and imaging moieties, providing a platform for additional modification. The strategy presented in this paper includes multiple nitroDOPA anchors for robust binding to the surface tied to themore » same polymer backbone as multiple poly(ethylene oxide) chains for steric stability. This approach provides biocompatibility and enhanced stability in fetal bovine serum (FBS) and phosphate buffer saline (PBS). As a proof of concept, these polymer-particles complexes were then modified with a near infrared dye and utilized in characterizing the integration of magnetic nanoparticles in biofilms. Finally, the work presented in this manuscript describes the synthesis and characterization of a nontoxic platform for the labeling of near IR-dyes for bioimaging.« less

  7. Characterization of a Self-Assembled Monolayer of 1-Thio-β-D-Glucose with Electrochemical Surface Enhanced Raman Spectroscopy Using a Nanoparticle Modified Gold Electrode.

    PubMed

    Smith, Scott R; Seenath, Ryan; Kulak, Monika R; Lipkowski, Jacek

    2015-09-15

    Preparation of a nanoparticle modified gold substrate designed for characterization of hydrophilic self-assembled monolayers (SAMs) of 1-thio-β-D-glucose (TG) with electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is presented. Citrate stabilized gold nanoparticles were deposited on a polycrystalline gold electrode and subjected to an electrochemical desorption procedure to completely remove all traces of adsorbed citrate. Complete desorption of citrate was confirmed by recording cyclic voltammetry curves and SERS spectra. The citrate-free nanoparticle modified gold electrode was then incubated in a 1 mg mL(-1) aqueous solution of TG for 16 h prior to being characterized by EC-SERS. The SERS spectra confirmed that at potentials more negative than -0.10 V vs SCE thioglucose forms a monolayer in which the majority of the molecules preserve their lactol ring structure and only a small fraction of molecules appear to be oxidized. At potentials more positive than -0.10 V, the oxidation of TG molecules becomes prominent, and at potentials more positive than 0.20 V vs SCE, the monolayer of TG consists chiefly of oxidized product. The SERS spectra collected in the double layer region suggest the SAM of TG is well hydrated and hence can be used for hydrophilic modifications of a gold surface.

  8. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

    PubMed

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A

    2015-01-28

    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.

  9. Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127

    PubMed Central

    Gonzales, Marcela; Mitsumori, Lee M.; Kushleika, John V.; Rosenfeld, Michael E.; Krishnan, Kannan M.

    2010-01-01

    Magnetic nanoparticles are promising molecular imaging agents due to their relative high relaxivity and the potential to modify surface functionality to tailor biodistribution. In this work we describe the synthesis of magnetic nanoparticles using organic solvents with organometallic precursors. This method results in nanoparticles that are highly crystalline, and have uniform size and shape. The ability to create a monodispersion of particles of the same size and shape results in unique magnetic properties that can be useful for biomedical applications with MR imaging. Before these nanoparticles can be used in biological applications, however, means are needed to make the nanoparticles soluble in aqueous solutions and the toxicity of these nanoparticles needs to be studied. We have developed two methods to surface modify and transfer these nanoparticles to the aqueous phase using the biocompatible co-polymer, Pluronic F127. Cytotoxicity was found to be dependent on the coating procedure used. Nanoparticle effects on a cell-culture model was quantified using concurrent assaying; a LDH assay to determine cytotoxicity and an MTS assay to determine viability for a 24 hour incubation period. Concurrent assaying was done to insure that nanoparticles did not interfere with the colorimetric assay results. This report demonstrates that a monodispersion of nanoparticles of uniform size and shape can be manufactured. Initial cytotoxicity testing of new molecular imaging agents need to be carefully constructed to avoid interference and erroneous results. PMID:20623517

  10. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain.

    PubMed

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Büchel, Claudia; Kreuter, Jörg

    2010-12-01

    Nanoparticles made of human serum albumin (HSA) and modified with apolipoproteins have previously been shown to transport drugs, which normally do not enter the brain, across the blood-brain barrier (BBB). However the precise mechanism by which nanoparticles with different apolipoproteins on their surface can target to the brain, as yet, has not been totally elucidated. In the present study, HSA nanoparticles with covalently bound apolipoprotein A-I (Apo A-I) as a targetor for brain capillary endothelial cells were injected intravenously into SV 129 mice and Wistar rats. The rodents were sacrificed after 15 or 30 min, and their brains were examined by transmission electron microscopy. Apo A-I nanoparticles could be found inside the endothelial cells of brain capillaries as well as within parenchymal brain tissue of both, mice and rats, whereas control particles without Apo A-I on their surface did not cross the BBB during our experiments. The maintenance of tight junction integrity and barrier function during treatment with nanoparticles was demonstrated by perfusion with a fixative containing lanthanum nitrate as an electron dense marker for the permeability of tight junctions.

  11. In vitro and in vivo impact of silica nanoparticle design on biocompatibility

    NASA Astrophysics Data System (ADS)

    Yu, Tian

    Silica nanoparticles (SiO2) have utility in a wide range of applications, such as biologic delivery platforms, imaging and diagnostic agents, and targeted therapeutic carriers. Recent improvements in regulating the geometry, porosity, and surface characteristics of SiO2 have further facilitated their biomedical applications. Concerns however remain about the toxic effects of SiO2 upon exposure to biological systems. The impacts of geometry, porosity, and surface characteristics of SiO 2 on cellular toxicity and hemolytic activity were explored. It was shown that surface characteristics and porosity govern cellular toxicity. The cellular association of SiO2 increased in the following order: mesoporous SiO2 (aspect ratio 1, 2, 4, 8) < amine-modified mesoporous SiO2 (aspect ratio 1, 2, 4, 8) < amine-modified nonporous Stober SiO2 < nonporous Stober SiO2. Geometry did not seem to influence the extent of SiO2 cellular association. Hemolysis assay showed that the hemolytic activity was porosity- and geometry-dependent for pristine SiO2 and surface charge-dependent for amine-modified SiO2. The acute toxicity, biodistribution, and pharmacokinetics of SiO 2 of systematically varied geometry, porosity, and surface characteristics were evaluated in immune-competent mice when administered intravenously. Results suggest that in vivo toxicity, biodistribution and pharmacokinetics of SiO2 were mainly influenced by nanoparticle porosity and surface characteristics. The maximum tolerated dose (MTD) increased in the following order: Mesoporous SiO2 (aspect ratio 1, 2, 8) at 30 -- 65 mg/kg < amine-modified mesoporous SiO2 (aspect ratio 1, 2, 8) at 100 -- 150 mg/kg < unmodified or amine-modified nonporous SiO2 at 450 mg/kg. The adverse reactions above MTDs were primarily caused by the mechanical obstruction of SiO2 in the vasculature that led to congestion in multiple vital organs and subsequent organ failure. The nanoparticles were taken up extensively by the liver and spleen. Mesoporous SiO2 exhibited higher accumulation in the lung than nonporous SiO 2 of similar size. This accumulation was reduced by primary amine modification. Increasing the aspect ratio of amine-modified mesoporous SiO2 from 1 to 8 resulted in increased accumulation in the lung. These studies provide critical guidelines in rational design of SiO 2 for nanomedicine applications.

  12. Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles.

    PubMed

    Esparza-González, S C; Sánchez-Valdés, S; Ramírez-Barrón, S N; Loera-Arias, M J; Bernal, J; Meléndez-Ortiz, H Iván; Betancourt-Galindo, R

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Preparation of glucose sensors using gold nanoparticles modified diamond electrode

    NASA Astrophysics Data System (ADS)

    Fachrurrazie; Ivandini, T. A.; Wibowo, W.

    2017-04-01

    A glucose sensor was successfully developed by immobilizing glucose oxidase (GOx) at boron-doped diamond (BDD) electrodes. Prior to GOx immobilization, the BDD was modified with gold nanoparticles (AuNPs). To immobilize AuNPs, the gold surface was modified to nitrogen termination. The characterization of the electrode surface was performed using an X-ray photoelectron spectroscopy and a scanning electron microscope, while the electrochemical properties of the enzyme electrode were characterized using cyclic voltammetry. Cyclic voltammograms of the prepared electrode for D-glucose in phosphate buffer solution pH 7 showed a new reduction peak at +0.16 V. The currents of the peak were linear in the concentration range of 0.1 M to 0.9 M, indicated that the GOx-AuNP-BDD can be applied for electrochemical glucose detection.

  14. Enzymes immobilization on Fe 3O 4-gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szymański, K.

    2012-01-01

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  15. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules.

    PubMed

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-26

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans -1,2-bis(4-pyridyl)ethylene (BPE).

  16. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis

    PubMed Central

    Rodríguez-Robledo, M. Concepción; González-Lozano, M. Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; López-Martínez, Rubén; Ramírez-Galicia, Guillermo

    2018-01-01

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications. PMID:29642522

  17. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis.

    PubMed

    Rodríguez-Robledo, M Concepción; González-Lozano, M Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; Bazán-Mora, Elva; López-Martínez, Rubén; Ramírez-Galicia, Guillermo; Poisot, Martha

    2018-04-09

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.

  18. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites.

    PubMed

    Siqueira, Gilberto; Bras, Julien; Dufresne, Alain

    2009-02-09

    In the present work, nanowhiskers and microfibrillated cellulose (MFC) both extracted from sisal were used to reinforce polycaprolactone (PCL). We report the influence of the nanoparticle's nature on the mechanical and thermal properties of the ensuing nanocomposites. The surface of both the nanoparticles was chemically modified to improve their compatibilization with the polymeric matrix. N-Octadecyl isocyanate (C18H37NCO) was used as the grafting agent. PCL nanocomposite films reinforced with sisal whiskers or MFC (raw or chemically modified) were prepared by film casting. The thermal behavior (Tg, Tm, Tc, and degree of crystallinity) and the mechanical properties of the nanocomposites in both the linear and the nonlinear range were determined using differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and tensile tests, respectively. Significant differences were reported according to the nature of the nanoparticle and amount of nanofillers used as reinforcement. It was also proved that the chemical treatment clearly improves the ultimate properties of the nanocomposites.

  19. Application of surface modified nano ferrite nickel in catalytic reaction (epoxidation of alkenes) and investigation on its antibacterial and antifungal activities.

    PubMed

    Golkhatmi, Faezeh Mahdinejad; Bahramian, Bahram; Mamarabadi, Mojtaba

    2017-09-01

    Newly, magnetic nanoparticles have extensively been used as alternative catalyst supports, in the view of their high surface area which results in high catalyst loading capacity, high dispersion, low toxicity, environmental preservation, distinguished stability, and suitable catalyst reusing. In the present study, the magnetite nanoparticles, NiFe 2 O 4 @Ag and NiFe 2 O 4 @Mo, were synthesized and characterized. The antimicrobial activities and catalytic properties of synthesized nanoparticles were tested afterwards. For synthetizing the nanoparticle NiFe 2 O 4 @Ag, silver ions were loaded onto the surface of the modified NiFe 2 O 4 and reduced to silver crystal by adding NaBH 4 . The antibacterial effects of NiFe 2 O 4 @Ag were examined against two species of soil and plant related bacteria named Bacillus subtilis (gram positive) and Pseudomonas syringae (gram negative), respectively. The antifungal activity of this nanoparticle was evaluated against two species of plant pathogenic fungi called Alternaria solani and Fusarium oxysporum. Biological results indicated that the synthesized material has shown an excellent antibacterial and antifungal activity against all examined bacteria and fungi so that, their growth were completely inhibited 24h after treatment with NiFe 2 O 4 @Ag. For the synthesis of a heterogeneous catalyst NiFe 2 O 4 @Mo, complex Mo(CO) 6 was loaded onto the surface of the modified NiFe 2 O 4 nanoparticle. This catalyst was found as an efficient catalyst for epoxidation of cis-cyclooctene and a wide variety of alkenes, including aromatic and aliphatic terminal ones using tert-butyl hydroperoxide as oxidant. This new heterogenized catalyst could easily be recovered by using a magnetic separator and reused four consecutive and loss only 13% of its catalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    The field of nanotechnology is rapidly expanding across disciplines as each new development is realized. New exciting technologies are being driven by advances in the application of nanotechnology; including biochemical, optical, and semiconductors research. This thesis will focus on the use of silver nanoparticles as optical labels on cells, methods of forming different small structures of silver nanoparticles, as well as the use of silver nanoparticles in the development of a photovoltaic cell. Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry and biotinylated antibodies targeting cell surface receptors were bound to the nanoparticle surface. The nanoparticle labels exhibited long-term stability under physiological conditions without aggregation or silver ion leaching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared to unlabeled cells. Dimers of silver nanoparticles have been fabricated by first immobilizing a monolayer of single silver nanoparticles onto poly(4-vinylpyridine) covered glass slides. The monolayer was then exposed to adenine, which has two amines which will bind to silver. The nanoparticle monolayer, now modified with adenine, is exposed to a second suspension of nanoparticles which will bind with the amine modified monolayer. Finally, a thin silica shell is formed about the structure via solgel chemistry to prevent dissolution or aggregation upon sonication/striping. Circular arrays of silver nanoparticels are developed using a template base self assembly. A 1.5 micron silica sphere is bound to poly(4-vinylpyridine) coated glass and used as a template. a mask of silica monoxide is vacuum deposited atop the spheres/glass leaving a ring just below the sphere untouched and able to bind silver nanoparticles. Optical microscopy reveal interesting results under depolarized light conditions, but ultimate structural analysis has proven elusive. Semiconducting p-type cuprous oxide was electrochemically deposited on both silver and indium tin oxide electrodes. Silver nanoparticles were incorporated into the architecture either atop the cuprous oxide or sandwiched between cuprous oxide and n-type material. Increases in photocurrent were observed in both cases and further work must be conducted to optimize a solid state device for photovoltaic applications.

  1. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.

    PubMed

    Tao, Qing-Lan; Li, Yue; Shi, Ying; Liu, Rui-Jiang; Zhang, Ye-Wang; Guo, Jianyong

    2016-06-01

    Magnetic Fe3O4@SiO2 nanoparticles were prepared with molecular imprinting method using cellulase as the template. And the surface of the nanoparticles was chemically modified with arginine. The prepared nanoparticles were used as support for specific immobilization of cellulase. SDS-PAGE results indicated that the adsorption of cellulase onto the modified imprinted nanoparticles was selective. The immobilization yield and efficiency were obtained more than 70% after the optimization. Characterization of the immobilized cellulase revealed that the immobilization didn't change the optimal pH and temperature. The half-life of the immobilized cellulase was 2-fold higher than that of the free enzyme at 50 degrees C. After 7 cycles reusing, the immobilized enzyme still retained 77% of the original activity. These results suggest that the prepared imprinted nanoparticles have the potential industrial applications for the purification or immobilization of enzymes.

  2. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.

    PubMed

    Carnal, Fabrice; Stoll, Serge

    2011-10-27

    Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticle presence significantly modifies chain acid/base and polyelectrolyte conformational properties. The importance of the attractive electrostatic interactions between the chain and the nanoparticle clearly promotes the chain deprotonation leading, at high pH and nanoparticle charge density, to fully wrapped polyelectrolyte at the nanoparticle surface. When the nanoparticle bare charge is overcompensated by the polyelectrolyte charges, counterions and salt particles condense at the surface of the polyelectrolyte-nanoparticle complex to compensate for the excess of charges providing from the adsorbed polyelectrolyte chain. It is also shown that the complex formation is significantly affected by the salt valency. Indeed, with the presence of trivalent salt cations, competition is observed between the nanoparticle and the trivalent cations. As a result, the amount of adsorbed monomers is less important than in the monovalent and divalent case and chain conformations are different due to the collapse of polyelectrolyte segments around trivalent cations out of the nanoparticle adsorption layer.

  3. Synthesis of Monodispersed Ag-Doped Bioactive Glass Nanoparticles via Surface Modification

    PubMed Central

    Kozon, Dominika; Zheng, Kai; Boccardi, Elena; Liu, Yufang; Liverani, Liliana; Boccaccini, Aldo R.

    2016-01-01

    Monodispersed spherical Ag-doped bioactive glass nanoparticles (Ag-BGNs) were synthesized by a modified Stöber method combined with surface modification. The surface modification was carried out at 25, 60, and 80 °C, respectively, to investigate the influence of processing temperature on particle properties. Energy-dispersive X-ray spectroscopy (EDS) results indicated that higher temperatures facilitate the incorporation of Ag. Hydroxyapatite (HA) formation on Ag-BGNs was detected upon immersion of the particles in simulated body fluid for 7 days, which indicated that Ag-BGNs maintained high bioactivity after surface modification. The conducted antibacterial assay confirmed that Ag-BGNs had an antibacterial effect on E. coli. The above results thereby suggest that surface modification is an effective way to incorporate Ag into BGNs and that the modified BGNs can remain monodispersed as well as exhibit bioactivity and antibacterial capability for biomedical applications. PMID:28773349

  4. Quantitative analysis by UV-Vis absorption spectroscopy of amino groups attached to the surface of carbon-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Saraswati, T. E.; Astuti, A. R.; Rismana, N.

    2018-03-01

    Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.

  5. In vitro evaluation of the L-peptide modified magnetic lipid nanoparticles as targeted magnetic resonance imaging contrast agent for the nasopharyngeal cancer.

    PubMed

    Chen, Yung-Chu; Min, Chia-Na; Wu, Han-Chung; Lin, Chin-Tarng; Hsieh, Wen-Yuan

    2013-11-01

    The purpose of this study was to analyze the encapsulation of superparamagnetic iron oxide nanoparticles (SPION) by the lipid nanoparticle conjugated with the 12-mer peptides (RLLDTNRPLLPY, L-peptide), and the delivery of this complex into living cells. The lipid nanoparticles employed in this work were highly hydrophilic, stable, and contained poly(ethylene-glycol) for conjugation to the bioactive L-peptide. The particle sizes of two different magnetic lipid nanoparticles, L-peptide modified (LML) and non-L-peptide modified (ML), were both around 170 nm with a narrow range of size disparity. The transversal relaxivity, r2, for both LML and ML nanoparticles were found to be significantly higher than the longitudinal relaxivity r1 (r2/r1 > 20). The in vitro tumor cell targeting efficacy of the LML nanoparticles were evaluated and compared to the ML nanoparticles, upon observing cellular uptake of magnetic lipid nanoparticles by the nasopharyngeal carcinoma cells, which express cell surface specific protein for the L-peptide binding revealed. In the Prussian blue staining experiment, cells incubated with LML nanoparticles indicated much higher intracellular iron density than cells incubated with only the ML and SPION nanoparticles. In addition, the MTT assay showed the negligible cell cytotoxicity for LML, ML and SPION nanoparticles. The MR imaging studies demonstrate the better T2-weighted images for the LML-nanoparticle-loaded nasopharyngeal carcinoma cells than the ML- and SPION-loaded cells.

  6. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  7. Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.

    2013-10-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems. Electronic supplementary information (ESI) available: Cell culture preparation for dose/response imaging experiments. See DOI: 10.1039/c3nr02639f

  8. Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinhua; Zhou, Huaijuan; Qian, Shi

    Close-packed TiO{sub 2} nanotube arrays are prepared on metallic Ti surface by electrochemical anodization. Subsequently, by magnetron sputtering, Au nanoparticles are coated onto the top sidewall and tube inwall. The Au@TiO{sub 2} systems can effectively kill Staphylococcus aureus and Escherichia coli in darkness due to the existence of Au nanoparticles. On the basis of classical optical theories, the antibacterial mechanism is proposed from the perspective of localized surface plasmon resonance. Respiratory electrons of bacterial membrane transfer to Au nanoparticles and then to TiO{sub 2}, which makes bacteria steadily lose electrons until death. This work provides insights for the better understandingmore » and designing of noble metal nanoparticles-based plasmonic heterostructures for antibacterial application.« less

  9. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki

    2014-08-01

    This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

  10. Effect of chitosan and thiolated chitosan coating on the inhibition behaviour of PIBCA nanoparticles against intestinal metallopeptidases

    NASA Astrophysics Data System (ADS)

    Bravo-Osuna, Irene; Vauthier, Christine; Farabollini, Alessandra; Millotti, Gioconda; Ponchel, Gilles

    2008-12-01

    Surface modified nanoparticles composed of poly(isobutylcyanoacrylate) (PIBCA) cores surrounded by a chitosan and thiolated chitosan gel layer were prepared and characterized in previous works. The presence of such biopolymers on the nanoparticle surface conferred those nanosystems interesting characteristics that might partially overcome the gastrointestinal enzymatic barrier, improving the oral administration of pharmacologically active peptides. In the present work, the antiprotease behaviour of this family of core-shell nanoparticles was in vitro tested against two model metallopeptidases present in the gastrointestinal tract (GIT): Carboxypeptidase A -CP A- (luminal protease) and Leucine Aminopeptidase M -LAP M- (membrane protease). As previous step, the zinc-binding capacity of these nanoparticles was evaluated. Interestingly, an improvement of both the zinc-binding capacity and the antiprotease effect of chitosan was observed when the biopolymers (chitosan and thiolated chitosan) were used as coating component of the core-shell nanoparticles, in comparison with their behaviour in solution, thanks to the different biopolymer chains rearrangement. The presence of amino, hydroxyl and thiol groups on the nanoparticle surface promoted zinc binding and hence the inhibition of the metallopeptidases analysed. On the contrary, the occurrence of a cross-linked structure in the gel layer surrounding the PIBCA cores of thiolated formulations, due to the formation of interchain and intrachain disulphide bonds, partially limited the inhibition of the proteases. The low accessibility of cations to the active groups of the cross-linked polymeric shell was postulated as a possible explanation of this behaviour. Results obtained in this work make this family of surface-modified nanocarriers promising candidates for the successfull administration of pharmacologically active peptides and proteins by the oral route.

  11. Evaluation of folate conjugated superparamagnetic iron oxide nanoparticles for scintigraphic/magnetic resonance imaging.

    PubMed

    Chauhan, Ram Prakash; Mathur, Rashi; Singh, Gurjaspreet; Kaul, Ankur; Bag, Narmada; Singh, Sweta; Kumar, Hemanth; Patra, Manoj; Mishra, Anil K

    2013-03-01

    The physical and chemical properties of the nanoparticles influence their pharmacokinetics and ability to accumulate in tumors. In this paper we report a facile method to conjugate folic acid molecule to iron oxide nanoparticles to increase the specific uptake of these nanoparticles by the tumor, which will be useful in targeted imaging of the tumor. The iron oxide nanoparticles were synthesized by alkaline co precipitation method and were surface modified with dextranto make them stable. The folic acid is conjugated to the dextran modified iron oxide nanoparticles by reductive amination process after the oxidation of the dextran with periodate. The synthesized folic acid conjugated nanoparticles were characterized for size, phase, morphology and magnetization by using various physicochemical characterization techniques such as transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy, vibrating sample magnetometry, dynamic light scattering and zetasizer etc. The quantification of the generated carbonyl groups and folic acid conjugated to the surface of the magnetic nanoparticles was done by colorimetric estimations using UV-Visible spectroscopy. The in vitro MR studies were carried out over a range of concentrations and showed significant shortening of the transverse relaxation rate, showing the ability of the nanoconjugate to act as an efficient probe for MR imaging. The biodistribution studies and the scintigraphy done by radiolabeling the nanoconjugate with 99mTc show the enhanced uptake at the tumor site showing its enhanced specificity.

  12. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  13. General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles

    PubMed Central

    2017-01-01

    Metal–organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical functionality onto the particle surface that is independent of the bulk MOF structure. Moreover, the use of a chemically programmable ligand, such as DNA, would allow for the manipulation of interparticle interactions. Herein, we report a coordination chemistry-based strategy for the surface functionalization of the external metal nodes of MOF nanoparticles with terminal phosphate-modified oligonucleotides. The external surfaces of nine distinct archetypical MOF particles containing four different metal species (Zr, Cr, Fe, and Al) were successfully functionalized with oligonucleotides, illustrating the generality of this strategy. By taking advantage of the programmable and specific interactions of DNA, 11 distinct MOF particle–inorganic particle core–satellite clusters were synthesized. In these hybrid nanoclusters, the relative stoichiometry, size, shape, and composition of the building blocks can all be independently controlled. This work provides access to a new set of nucleic acid–nanoparticle conjugates, which may be useful as programmable material building blocks and as probes for measuring and manipulating intracellular processes. PMID:28718644

  14. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.

    2017-02-01

    The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  15. A Genetically Modified Tobacco Mosaic Virus that can Produce Gold Nanoparticles from a Metal Salt Precursor

    PubMed Central

    Love, Andrew J.; Makarov, Valentine V.; Sinitsyna, Olga V.; Shaw, Jane; Yaminsky, Igor V.; Kalinina, Natalia O.; Taliansky, Michael E.

    2015-01-01

    We genetically modified tobacco mosaic virus (TMV) to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV), and demonstrate that unlike wild type TMV, this construct can lead to the formation of discrete 10–40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials. PMID:26617624

  16. Red fluorescent chitosan nanoparticles grafted with poly(2-methacryloyloxyethyl phosphorylcholine) for live cell imaging.

    PubMed

    Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen

    2016-08-01

    Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Charge reversible gold nanoparticles for high efficient absorption and desorption of DNA

    NASA Astrophysics Data System (ADS)

    Wang, Can; Zhuang, Jiaqi; Jiang, Shan; Li, Jun; Yang, Wensheng

    2012-10-01

    Mercaptoundecylamine and mercaptoundecanoic acid co-modified Au nanoparticles were prepared by two-step ligand exchange of 6-mercaptohexanoic acid modified gold nanoparticles. Such particles terminated by appropriate ratios of the amine and carboxyl groups ( R N/C) were identified to show reversible charge on their surface, which were switchable by pH of the solution. The isoelectric point (IEP) of the particles is tunable by changing the ratios of the amine and carboxyl groups on the particle surfaces. The particles can absorb DNA effectively at pH lower than the IEP driven by the direct electrostatic interactions between DNA and the particle surface. When pH of the solutions was elevated to be higher than the IEP, the absorbed DNA can be released almost completely due to the electrostatic repulsion between the particle surface and DNA. With appropriate R N/C ratios of 0.8, the absorption and desorption efficiencies of DNA were 97 and 98 %, respectively, corresponding an extraction efficiency of 95 %. Such particles with reversible surface charges allow the high efficient extraction of DNA by simply changing pH instead of by changing salt concentration in the conventional salt bridge method.

  18. A new powder production route for transparent spinel windows: powder synthesis and window properties

    NASA Astrophysics Data System (ADS)

    Cook, Ronald; Kochis, Michael; Reimanis, Ivar; Kleebe, Hans-Joachim

    2005-05-01

    Spinel powders for the production of transparent polycrystalline ceramic windows have been produced using a number of traditional ceramic and sol-gel methods. We have demonstrated that magnesium aluminate spinel powders produced from the reaction of organo-magnesium compounds with surface modified boehmite precursors can be used to produce high quality transparent spinel parts. The new powder production method allows fine control over the starting particle size, size distribution, purity and stoichiometry. The new process involves formation of a boehmite sol-gel from the hydrolysis of aluminum alkoxides followed by surface modification of the boehmite nanoparticles using carboxylic acids. The resulting surface modified boehmite nanoparticles can then be metal exchanged at room temperature with magnesium acetylacetonate to make a precursor powder that is readily transformed into pure phase spinel.

  19. Development of a Portable Fiberoptic Surface Enhanced Raman Sensor for In-Situ Detection and Monitoring of Perchlorate and Energetics

    DTIC Science & Technology

    2012-01-01

    spectroscopic analysis of ClO4- at concentrations of a: 0, b: 10-10, c: 10-9, d: 10-8, e: 10-7, and f: 10-6 M using DMAE -modified Au nanoparticles...M) obtained from six randomly selected spots (inset) on a substrate made of DMAE -modified Au nanoparticles. Each spectrum was offseted for the...trimethylammonium bromide DI Deionized DMAE 2-(dimethylamino)-ethanethiol hydrochloride DO Dissolved oxygen DOE Department of Energy DoD

  20. Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles.

    PubMed

    Gao, Jingyao; Yuan, Qilong; Ye, Chen; Guo, Pei; Du, Shiyu; Lai, Guosong; Yu, Aimin; Jiang, Nan; Fu, Li; Lin, Cheng-Te; Chee, Kuan W A

    2018-03-25

    Graphene is an excellent modifier for the surface modification of electrochemical electrodes due to its exceptional physical properties and, for the development of graphene-based chemical and biosensors, is usually coated on glassy carbon electrodes (GCEs) via drop casting. However, the ease of aggregation and high defect content of reduced graphene oxides degrade the electrical properties. Here, we fabricated low-defect graphene electrodes by catalytically thermal treatment of HPHT diamond substrate, followed by the electrodeposition of Au nanoparticles (AuNPs) with an average size of ≈60 nm on the electrode surface using cyclic voltammetry. The Au nanoparticle-decorated graphene electrodes show a wide linear response range to vanillin from 0.2 to 40 µM with a low limit of detection of 10 nM. This work demonstrates the potential applications of graphene-based hybrid electrodes for highly sensitive chemical detection.

  1. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases

    PubMed Central

    Ko, Young Tag; Choi, Dong-Kug

    2018-01-01

    Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases. PMID:29588585

  2. Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates.

    PubMed

    Pena-Pereira, Francisco; Duarte, Regina M B O; Trindade, Tito; Duarte, Armando C

    2013-07-19

    The development of a novel methodology for extraction and preconcentration of the most commonly used anionic surface active agents (SAAs), linear alkylbenzene sulfonates (LAS), is presented herein. The present method, based on the use of silica-magnetite nanoparticles modified with cationic surfactant aggregates, was developed for determination of C10-C13 LAS homologues. The proposed methodology allowed quantitative recoveries of C10-C13 LAS homologues by using a reduced amount of magnetic nanoparticles. Limits of detection were in the range 0.8-1.9μgL(-1) for C10-C13 LAS homologues, while the repeatability, expressed as relative standard deviation (RSD), ranged from 2.0 to 3.9% (N=6). Finally, the proposed method was successfully applied to the analysis of a variety of natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    NASA Astrophysics Data System (ADS)

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using hydroboration, to make the nanoparticles into water-dispersible boron carriers that also have potential boron neutron capture therapy (BNCT) applications. Lastly, Chapter 4 provides a general description of NCT, specifically that involving boron-10 and gadolinium-157. It further describes the synthetic methodology used in producing fatty acid coated boron nanoparticles (BNPs). The BNPs are encapsulated with silica to add a hydrophilic shell so that they can potentially be used in biological systems as BNCT agents. The silica shell is also modified with a fluorophore, dansyl chloride, so that the particle hybrid could be imaged during cell studies.

  4. Polythioether Particles Armored with Modifiable Graphene Oxide Nanosheets.

    PubMed

    Rodier, Bradley J; Mosher, Eric P; Burton, Spencer T; Matthews, Rachael; Pentzer, Emily

    2016-06-01

    Facile and scalable fabrication methods are attractive to prepare materials for diverse applications. Herein, a method is presented to prepare cross-linked polymeric nanoparticles with graphene oxide (GO) nanosheets covalently attached to the surface. Alkene-modified GO serves as a surfactant in a miniemulsion polymerization, and the alkene functionalities of GO exposed to the oil-phase are incorporated into the polymer particle through thiol-ene reactions, leaving the unreacted alkene functional groups of the other face of GO available for further functionalization. The surface of GO-armored polymer particles is then modified with a small molecule fluorophore or carboxylic acid functional groups that bind to Fe2 O3 and TiO2 nanoparticles. This methodology provides a facile route to preparing complex hybrid composite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    PubMed Central

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-01-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated. PMID:24126604

  6. Interferometric detection of nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, Karen

    Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.

  7. Synthesis of transparent nanocomposite monoliths for gamma scintillation

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Hajagos, Tibor J.; Kishpaugh, David; Jin, Yunxia; Hu, Wei; Chen, Qi; Pei, Qibing

    2015-08-01

    During the past decade, inorganic nanoparticles/polymer nanocomposites have been intensively studied to provide a low cost, high performance alternative for gamma scintillation. However, the aggregation of nanoparticles often occurs even at low nanoparticle concentrations and thus deteriorates the transparency and performance of these nanocomposite scintillators. Here we report an efficient fabrication protocol of transparent nanocomposite monoliths based on surface modified hafnium oxide nanoparticles. Using hafnium oxide nanoparticles with surface-grafted methacrylate groups, highly transparent bulk-size nanocomposite monoliths (2 mm thick, transmittance at 550 nm >75%) are fabricated with nanoparticle loadings up to 40 wt% (net hafnium wt% up to 28.5%). These nanocomposite monoliths of 1 cm diameter and 2 mm thickness are capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution reaching 8%.

  8. Silica coating of nanoparticles by the sonogel process.

    PubMed

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  9. Preparation, characterization and application of dispersible and spherical Nano-SiO2@Copolymer nanocomposite in leather tanning

    NASA Astrophysics Data System (ADS)

    Pan, Hui; Li, Guang-Long; Liu, Rui-Qi; Wang, Su-Xia; Wang, Xiao-Dong

    2017-12-01

    Dispersible and spherical silica nanoparticles (nano-SiO2) were prepared with tetraethyl silicate and different surface-modifiers via a simple method. The silica nanoparticles surface-modified with methacryloxy (propyl) trimethoxysilane (denoted as MPS-SiO2), dimethyl diallyl ammoniumchloride (denoted as DMDAAC-SiO2) and poly (methacrylic acid) (denoted as PMAA-SiO2) which are known as hydrophobic, amphiphilic and hydrophilic modifiers, respectively, exhibited excellent dispersibility in various solvents or polymer matrix. The obtained bare silica nanoparticles, MPS-SiO2, DMDAAC-SiO2 and PMAA-SiO2 were characterized by Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA), transmission electron microscope (TEM) and scanning electron microscope (SEM). A series of nanocomposites (denoted as SiO2/P, MPS-SiO2/P, DMDAAC-SiO2/P and PMAA-SiO2/P, respectively) were also prepared with the bare or surface-modified silica nanoparticles and methacrylic acid-co-acrylamide-co-acrylonitrile-co-salicylic acid tetrabasic copolymer (denoted as PMAAS) and applied in leather tanning. Compared with those of the leather tanned with the commercial acrylic resin (CHINATAN OM) and pure tetrabasic copolymer tanning agents, the physical and mechanical properties, rheological properties and thermal stabilities of the leather treated with SiO2/P, MPS-SiO2/P, DMDAAC-SiO2/P or PMAA-SiO2/P founded to be improved in a significant way. Moreover, the highest shrinkage temperature of the wet-white sheepskin tanned with PMAA-SiO2/P reached to 76 °C and the thickness increase reached to 105%.

  10. Silicon nanoparticles: applications in cell biology and medicine

    PubMed Central

    O’Farrell, Norah; Houlton, Andrew; Horrocks, Benjamin R

    2006-01-01

    In this review, we describe the synthesis, physical properties, surface functionalization, and biological applications of silicon nanoparticles (also known as quantum dots). We compare them against current technologies, such as fluorescent organic dyes and heavy metal chalcogenide-based quantum dots. In particular, we examine the many different methods that can be used to both create and modify these nanoparticles and the advantages they may have over current technologies that have stimulated research into designing silicon nanoparticles for in vitro and in vivo applications. PMID:17722279

  11. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    NASA Astrophysics Data System (ADS)

    Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei

    2013-10-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.

  12. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    PubMed

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  13. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure

    NASA Astrophysics Data System (ADS)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-10-01

    Degradation of epoxy coatings with and without Carbon Black (CB) nanoparticles under ultraviolet (UV) radiation were investigated using electrochemical impedance spectroscopy (EIS). Sodium dodecyl sulfate (SDS) was used to obtain a good dispersion of CB nanoparticles in a polymer matrix. TEM analysis proved a uniform dispersion of modified CB nanoparticles in epoxy coating. The coatings were subjected to UV radiation to study the degradation behavior and then immersed in 3.5 wt% NaCl. The results showed that the electrochemical behavior of neat epoxy coating was related to the formation and development of microcracks on the surface. The occurrence of microcracks on the surface of the coatings and consequently the penetration of ionic species reduced by adding CB nanoparticles into the formulation of the coatings. CB nanoparticles decreased degradation of CB coatings by absorbing UV irradiation. The ATR-FTIR results showed that decrease in the intensity of methyl group as main peak in presence of 2.5 wt% CB was lower than neat epoxy. In addition, the reduction in impedance of neat epoxy coating under corrosive environment was larger than CB coatings. The CB coating with 2.5 wt% nanoparticles had the highest impedance to corrosive media after 2000 h UV irradiation and 24 h immersion in 3.5 wt% NaCl.

  14. Multifunctional PEG modified DOX loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment

    NASA Astrophysics Data System (ADS)

    Wu, Lingjie; Wu, Ming; Zeng, Yongyi; Zhang, Da; Zheng, Aixian; Liu, Xiaolong; Liu, Jingfeng

    2015-01-01

    The combination of a multi-therapeutic mode with a controlled fashion is a key improvement in nanomedicine. Here, we synthesized polyethylene glycol (PEG)-modified doxorubicin (DOX)-loaded mesoporous silica nanoparticle (MSN) @CuS nanohybrids as efficient drug delivery carriers, combined with photothermal therapy and chemotherapy to enhance the therapeutic efficacy on hepatocellular carcinoma (HCC). The physical properties of the nanohybrids were characterized by transmission electron microscopy (TEM), N2 adsorption and desorption experiments and by the Vis-NIR absorption spectra. The results showed that the doxorubicin could be stored in the inner pores of mesoporous silica nanoparticles; the CuS nanoparticles, which are coated on the surface of a mesoporous silica nanoparticle, could serve as efficient photothermal therapy (PTT) agents; the loaded drug release could be easily triggered by NIR irradiation. The combination of the PTT treatment with controlled chemotherapy could further enhance the cancer ablation ability compared to any of the single approaches alone. Hence, the reported PEG-modified DOX-loaded mesoporous silica nanoparticle@CuS nanohybrids might be very promising therapeutic agents for HCC treatment.

  15. Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor.

    PubMed

    Bukar, Natalia; Zhao, Sandy Shuo; Charbonneau, David M; Pelletier, Joelle N; Masson, Jean-Francois

    2014-05-18

    We report that a shorter Debye length and, as a consequence, decreased colloidal stability are required for the molecular interaction of folic acid-modified Au nanoparticles (Au NPs) to occur on a surface-bound receptor, human dihydrofolate reductase (hDHFR). The interaction measured using surface plasmon resonance (SPR) sensing was optimal in a phosphate buffer at pH 6 and ionic strength exceeding 300 mM. Under these conditions, the aggregation constant of the Au NPs was approximately 10(4) M(-1) s(-1) and the Debye length was below 1 nm, on the same length scale as the size of the folate anion (approximately 0.8 nm). Longer Debye lengths led to poorer SPR responses, revealing a reduced affinity of the folic acid-modified Au NPs for hDHFR. While high colloidal stability of Au NPs is desired in most applications, these conditions may hinder molecular interactions due to Debye lengths exceeding the size of the ligand and thus preventing close interactions with the surface-bound molecular receptor.

  16. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces.

    PubMed

    Mahouche-Chergui, Samia; Gam-Derouich, Sarra; Mangeney, Claire; Chehimi, Mohamed M

    2011-07-01

    This critical review summarizes existing knowledge on the use of diazonium salts as a new generation of surface modifiers and coupling agents for binding synthetic polymers, biomacromolecules, and nanoparticles to surfaces. Polymer grafts can be directly grown at surfaces through the so-called grafting from approaches based on several polymerization methods but can also be pre-formed in solution and then grafted to surfaces through grafting onto strategies including "click" reactions. Several routes are also described for binding biomacromolecules through aryl layers in view of developing biosensors and protein arrays, while the use of aryl diazonium coupling agents is extended to the attachment of nanoparticles. Patents and industrial applications of the surface chemistry of diazonium compounds are covered. This review stresses the paramount role of aryl diazonium coupling agents in adhesion, surface and materials sciences (114 references).

  17. Surface modification of the TiO2 nanoparticle surface enables fluorescence monitoring of aggregation and enhanced photoreactivity.

    PubMed

    Kamps, Kara; Leek, Rachael; Luebke, Lanette; Price, Race; Nelson, Megan; Simonet, Stephanie; Eggert, David Joeseph; Ateşin, Tülay Aygan; Brown, Eric Michael Bratsolias

    2013-01-01

    Chemically and biologically modified nanoparticles are increasingly considered as viable and multifunctional tools to be used in cancer theranostics. Herein, we demonstrate that coordination of alizarin blue black B (ABBB) to the TiO(2) nanoparticle surface enhances the resulting nanoparticles by (1) creating distinct fluorescence emission spectra that differentiate smaller TiO(2) nanoparticles from larger TiO(2) nanoparticle aggregates (both in vitro and intracellular) and (2) enhancing visible light activation of TiO(2) nanoparticles above previously described methods to induce in vitro and intracellular damage to DNA and other targets. ABBB-TiO(2) nanoparticles are characterized through sedimentation, spectral absorbance, and gel electrophoresis. The possible coordination modes of ABBB to the TiO(2) nanoparticle surface are modeled by computational methods. Fluorescence emission spectroscopy studies indicate that ABBB coordination on TiO(2) nanoparticles enables discernment between nanoparticles and nanoparticle aggregates both in vitro and intracellular through fluorescence confocal microscopy. Visible light activated ABBB-TiO(2) nanoparticles are capable of inflicting increased DNA cleavage through localized production of reactive oxygen species as visualized by plasmid DNA damage detected through gel electrophoresis and atomic force microscopy. Finally, visible light excited ABBB-TiO(2) nanoparticles are capable of inflicting damage upon HeLa (cervical cancer) cells by inducing alterations in DNA structure and membrane associated proteins. The multifunctional abilities of these ABBB-TiO(2) nanoparticles to visualize and monitor aggregation in real time, as well as inflict visible light triggered damage upon cancer targets will enhance the use of TiO(2) nanoparticles in cancer theranostics.

  18. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  19. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.

    PubMed

    Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir

    2016-09-28

    Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Interaction of PLGA and trimethyl chitosan modified PLGA nanoparticles with mixed anionic/zwitterionic phospholipid bilayers studied using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Novak, Brian; Astete, Carlos; Sabliov, Cristina; Moldovan, Dorel

    2012-02-01

    Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer. Nanoparticles of PLGA are commonly used for drug delivery applications. The interaction of the nanoparticles with the cell membrane may influence the rate of their uptake by cells. Both PLGA and cell membranes are negatively charged, so adding positively charged polymers such as trimethyl chitosan (TMC) which adheres to the PLGA particles improves their cellular uptake. The interaction of 3 nm PLGA and TMC-modified-PLGA nanoparticles with lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine lipids was studied using molecular dynamics simulations. The free energy profiles as function of nanoparticles position along the normal direction to the bilayers were calculated, the distribution of phosphatidylserine lipids as a function of distance of the particle from the bilayer was calculated, and the time scale for particle motion in the directions parallel to the bilayer surface was estimated.

  1. In situ hydrothermal synthesis of a novel hierarchically porous TS-1/modified-diatomite composite for methylene blue (MB) removal by the synergistic effect of adsorption and photocatalysis.

    PubMed

    Yuan, Weiwei; Yuan, Peng; Liu, Dong; Yu, Wenbin; Laipan, Minwang; Deng, Liangliang; Chen, Fanrong

    2016-01-15

    Hierarchically porous TS-1/modified-diatomite composites with high removal efficiency for methylene blue (MB) were prepared via a facile in situ hydrothermal route. The surface charge state of the diatomite was modified to enhance the electrostatic interactions, followed by in situ hydrothermal coating with TS-1 nanoparticles. The zeolite loading amount in the composites could be adjusted by changing the hydrothermal time. The highest specific surface area and micropore volume of the obtained composites were 521.3m(2)/g and 0.254cm(3)/g, respectively, with an optimized zeolite loading amount of 96.8%. Based on the synergistic effect of efficient adsorption and photocatalysis resulting from the newly formed hierarchically porous structure and improved dispersion of TS-1 nanoparticles onto diatomite, the composites' removal efficiency for MB reached 99.1% after 2h of photocatalytic reaction, even higher than that observed using pure TS-1 nanoparticles. Moreover, the superior MB removal kinetics of the composites were well represented by a pseudo-first-order model, with a rate constant (5.28×10(-2)min(-1)) more than twice as high as that of pure TS-1 nanoparticles (2.43×10(-2)min(-1)). The significant dye removal performance of this novel TS-1/modified-diatomite composite indicates that it is a promising candidate for use in waste water treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires.

    PubMed

    Lu, Jennifer Q; Yi, Sung Soo

    2006-04-25

    A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.

  3. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules

    PubMed Central

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-01

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans-1,2-bis(4-pyridyl)ethylene (BPE). PMID:28134754

  4. Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces

    PubMed Central

    Williams, Sophie E.; Davies, Philip R.; Bowen, Jenna L.; Allender, Chris J.

    2013-01-01

    This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects. PMID:28348330

  5. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    EPA Science Inventory

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  6. Photosensitizer conjugated iron oxide nanoparticles for simultaneous in vitro magneto-fluorescent imaging guided photodynamic therapy.

    PubMed

    Nafiujjaman, Md; Revuri, Vishnu; Nurunnabi, Md; Cho, Kwang Jae; Lee, Yong-Kyu

    2015-04-04

    In this study, photosensitizer conjugated iron oxide nanoparticles were strategically designed and prepared for simultaneous PDT and dual-mode fluorescence/MR imaging. The MRI contrast agent Fe3O4 was modified by APTES to functionalize the surface and further to link with heparin-pheophorbide-A conjugates.

  7. Fluorescent silica nanoparticles containing covalently bound dyes for reporter, marker, and sensor applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sidney

    2016-03-01

    Silica nanoparticles have proven to be useful in many bioanalytical and medical applications and have been used in numerous applications during the last decade. Combining the properties of silica nanoparticles and fluorescent dyes that may be used as chemical probes or labels can be relatively easy by simply soaking porous silica nanoparticles in a solution of the dye of interest. Under proper conditions the entrapped dye can stay inside the silica nanoparticle for several hours resulting in a useful probe. In spite of the relative durability of these probes, leaching can still occur. A much better approach is to synthesize silica nanoparticles that have the fluorescent dye covalently attached to the backbone structure of the silica nanoparticle. This can be achieved by using appropriately modified tetraethyl orthosilicate (TEOS) analogues during the silica nanoparticle synthesis. The molar ratio of TEOS and modified TEOS will determine the fluorescent dye load in the silica nanoparticle. Dependent on the chemical stability of the reporting dye either reverse micellar (RM) or Stöber method can be used for silica nanoparticle synthesis. If dye stability allows RM procedure is preferred as it results in a much easier control of the silica nanoparticle reaction itself. Also controlling the size and uniformity of the silica nanoparticles are much easier using RM method. Dependent on the functional groups present in the reporting dye used in preparation of the modified TEOS, the silica nanoparticles can be utilized in many applications such as pH sensor, metal ion sensors, labels, etc. In addition surface activated silica nanoparticles with reactive moieties are also excellent reporters or they can be used as bright fluorescent labels. Many different fluorescent dyes can be used to synthesize silica nanoparticles including visible and NIR dyes. Several bioanalytical applications are discussed including studying amoeba phagocytosis.

  8. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode

    NASA Astrophysics Data System (ADS)

    Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou

    2017-07-01

    In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.

  9. Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes.

    PubMed

    Lin, Shi-Tsung; Thirumavalavan, Munusamy; Jiang, Ting-Yan; Lee, Jiunn-Fwu

    2014-05-25

    A complete set of experiments in two aspects of studies combining the various factors affecting both the preparation and photocatalytic activity of ZnO/Zn nanocomposite obtained using corn starch and cellulose (native and modified) as chelating agents for the photodegradation of methylene blue, and congo red was carried out and discussed. The resulting ZnO/Zn nanoparticles obtained using modified polysaccharides exhibited super catalytic capability. The ZnO/Zn nanoparticles possessed favored surface area (11.8443-15.7100m(2)/g) and pore size (12.3473-13.7453nm). The photocatalytic degradation of nano ZnO/Zn was directly proportional to the surface area of nano ZnO/Zn. Regardless of the dye pollutants, nano ZnO/Zn obtained using modified corn starch showed enhanced catalytic activity than that of cellulose and methylene blue had comparatively faster degradation rate. Our findings shed light on the optimization of both preparation conditions of photocatalysts and their photocatalytic experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Critical assessment of Pt surface energy - An atomistic study

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  11. Assessment of morphology, topography and chemical composition of water-repellent films based on polystyrene/titanium dioxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Bolvardi, Beleta; Seyfi, Javad; Hejazi, Iman; Otadi, Maryam; Khonakdar, Hossein Ali; Drechsler, Astrid; Holzschuh, Matthias

    2017-02-01

    In this study, polystyrene (PS)/titanium dioxide (TiO2) films were fabricated through simple solution casting technique via a modified phase separation process. The presented approach resulted in a remarkable reduction in the required amount of nanoparticles for achieving superhydrophobicity. Scanning electron microscopy (SEM) and 3D confocal microscopy were utilized to characterize surface morphology and topography of samples, respectively. An attempt was made to give an in-depth analysis on the surface rough structure using 3D roughness profiles. It was found that high inclusions of non-solvent and nanoparticles resulted in a stable self-cleaning behavior due to the strong presence of hydrophobic TiO2 nanoparticles on the surface. Quite unexpectedly, low inclusions of nanoparticles and non-solvent also resulted in superhydrophobic property mainly due to the proper level of induced surface roughness. XPS analysis was also utilized to determine the chemical composition of the films' surfaces. The results of falling drop experiments showed that the sample containing a higher level of nanoparticles had a much lower mechanical resistance against the induced harsh conditions. All in all, the presented method has shown promising potential in fabrication of superhydrophobic surfaces with self-cleaning behavior using the lowest content of nanoparticles.

  12. Aptamer based label free thrombin assay based on the use of silver nanoparticles incorporated into self-polymerized dopamine.

    PubMed

    Xu, Qingjun; Wang, Guixiang; Zhang, Mingming; Xu, Guiyun; Lin, Jiehua; Luo, Xiliang

    2018-04-13

    The authors describe an electrochemical aptasensor for thrombin that is based on the use of a glassy carbon electrode (GCE) modified with polydopamine that is loaded with silver nanoparticles (PDA/AgNPs). The use of AgNPs improves the conductivity of the film and increases the surface area of the GCE. PDA was deposited on the GCE via self-polymerization, and the thrombin binding aptamer was grafted onto the PDA-modified GCE by a single step reaction. Residual electrode surface was blocked with 6-mercapto-1-hexanol. On exposure to thrombin, the electrochemical impedance of the modified electrode increases gradually. Response is linear in the 0.1 pM to 5.0 nM thrombin concentration range, and the limit of detection is as low as 36 fM. The method is selective and capable of detecting thrombin in diluted human serum. In our perception, such a GCE modified with AgNP in a PDA matrix may be applied to many other analytes for which appropriate aptamers are available. Graphical abstract Schematic of an electrochemical aptasensor for sensitive and selective thrombin detection based on the use of a self-polymerized polydopamine film loaded with silver nanoparticles.

  13. Antibacterial properties of modified biodegradable PHB non-woven fabric.

    PubMed

    Slepička, P; Malá, Z; Rimpelová, S; Švorčík, V

    2016-08-01

    The antibacterial properties of poly(hydroxybutyrate) (PHB) non-woven fabric were explored in this study. The PHB was activated by plasma modification and subsequently processed with either immersion into a solution of nanoparticles or direct metallization. The wettability and surface chemistry of the PHB surface was determined. The thickness of the sputtered nanolayer on PHB fabric was characterized. It was found that plasma modification led to a formation of strongly hydrophilic surface, while the subsequent metallization by silver or gold resulted in a significantly increased water contact angle. Further, it was found that antibacterial activity may be controlled by the type of a metal and deposition method used. The immersion of plasma modified fabric into Ag nanoparticle solution led to enhanced antibacterial efficiency of PHB against Escherichia coli (E. coli). Direct silver sputtering on PHB fabric was proved to be a simple method for construction of a surface with strong antibacterial potency against both Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). We demonstrated the antibacterial activity of PHB fabric modified by plasma activation and consecutive selection of a treatment method for an effective antibacterial surface construction. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of cytarabine.

    PubMed

    Khan, Huda; Shukla, R N; Bajpai, A K

    2016-04-01

    The aim of the present investigation was to design biocompatible gelatin nanoparticles, capable of releasing the cytarabine drug in a controllable way by regulating the extent of swelling of nanoparticles. In order to achieve the proposed objectives, gelatin (Type A, derived from acid cured tissue) was modified by crosslinking with genipin and nanoparticles of crosslinked gelatin were prepared using single water in oil (W/O) emulsion technique. The nanoparticles were characterized by techniques like FTIR, SEM, TEM, particles size analysis, and surface potential measurements. The nanoparticle chemical architecture was found to influence drug-releasing capacity. The influence of experimental conditions such as pH and simulated physiological fluids as the release medium was also investigated on the release profiles of cytarabine. It is possible to fabricate high-performance materials, by designing of controlled size gelatin nanoparticles with good biocompatible properties along with desired drug release profiles. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Lyutakov, Oleksiy; Polívková, Markéta; Staszek, Marek; Hubáček, Tomáš; Švorčík, Václav

    2017-10-01

    Immobilization of nanoobjects on the surface of underlying material belongs to current issues of material science. Such altered materials exhibits completely exceptional properties exploitable in a broad spectrum of industrially important applications ranging from catalysts up to health-care industry. Here we present unique approach for immobilization of electrochemically synthesized silver nanoparticles on polyethyleneterephthalate (PET) foil whose essence lies in physical incorporation of particles into thin polymer surface layer induced by polarized excimer laser light. Changes in chemical composition and surface structure of polymer after particle immobilization were recorded by wide range of analytical techniques such as ARXPS, EDX, RBS, AAS, Raman, ICP-MS, DLS, UV-vis, SEM, TEM, and AFM. Thorough analysis of both nanoparticles entering the immobilization step as well as modified PET surface allowed revealing the mechanism of immobilization process itself. Silver nanoparticles were physically embedded into a thin surface layer of polymer reaching several nanometers beneath the surface rather than chemically bonded to PET macromolecules. Laser-implanted nanoparticles open up new possibilities especially in the development of the next generation cell-conform antimicrobial coatings of polymeric materials, namely due to the considerable immobilization strength which is strong enough to prevent particle release into the surrounding environment.

  16. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    PubMed

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Sustainable steric stabilization of colloidal titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.

  18. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    PubMed

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dithiothreitol-Regulated Coverage of Oligonucleotide-Modified Gold Nanoparticles To Achieve Optimized Biosensor Performance.

    PubMed

    Liang, Pingping; Canoura, Juan; Yu, Haixiang; Alkhamis, Obtin; Xiao, Yi

    2018-01-31

    DNA-modified gold nanoparticles (AuNPs) are useful signal-reporters for detecting diverse molecules through various hybridization- and enzyme-based assays. However, their performance is heavily dependent on the probe DNA surface coverage, which can influence both target binding and enzymatic processing of the bound probes. Current methods used to adjust the surface coverage of DNA-modified AuNPs require the production of multiple batches of AuNPs under different conditions, which is costly and laborious. We here develop a single-step assay utilizing dithiothreitol (DTT) to fine-tune the surface coverage of DNA-modified AuNPs. DTT is superior to the commonly used surface diluent, mercaptohexanol, as it is less volatile, allowing for the rapid and reproducible controlling of surface coverage on AuNPs with only micromolar concentrations of DTT. Upon adsorption, DTT forms a dense monolayer on gold surfaces, which provides antifouling capabilities. Furthermore, surface-bound DTT adopts a cyclic conformation, which reorients DNA probes into an upright position and provides ample space to promote DNA hybridization, aptamer assembly, and nuclease digestion. We demonstrate the effects of surface coverage on AuNP-based sensors using DTT-regulated DNA-modified AuNPs. We then use these AuNPs to visually detect DNA and cocaine in colorimetric assays based on enzyme-mediated AuNP aggregation. We determine that DTT-regulated AuNPs with lower surface coverage achieve shorter reaction times and lower detection limits relative to those for assays using untreated AuNPs or DTT-regulated AuNPs with high surface coverage. Additionally, we demonstrate that our DTT-regulated AuNPs can perform cocaine detection in 50% urine without any significant matrix effects. We believe that DTT regulation of surface coverage can be broadly employed for optimizing DNA-modified AuNP performance for use in biosensors as well as drug delivery and therapeutic applications.

  20. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  1. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    PubMed

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  2. Visual and light scattering spectrometric method for the detection of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Liang, Lijiao; Zhen, Shujun; Huang, Chengzhi

    2017-02-01

    A highly selective method was presented for colorimetric determination of melamine using uracil 5‧-triphosphate sodium modified gold nanoparticles (UTP-Au NPs) in this paper. Specific hydrogen-bonding interaction between uracil base (U) and melamine resulted in the aggregation of AuNPs, displaying variations of localized surface plasmon resonance (LSPR) features such as color change from red to blue and enhanced localized surface plasmon resonance light scattering (LSPR-LS) signals. Accordingly, the concentration of melamine could be quantified based on naked eye or a spectrometric method. This method was simple, inexpensive, environmental friendly and highly selective, which has been successfully used for the detection of melamine in pretreated liquid milk products with high recoveries.

  3. Removal of Rhodamine B from aqueous solution using magnetic NiFe nanoparticles.

    PubMed

    Liu, Yan; Liu, Kaige; Zhang, Lin; Zhang, Zhaowen

    2015-01-01

    Surface-modified magnetic nano alloy particles Ni2.33Fe were prepared using a hydrothermal method and they were utilized for removing Rhodamine B (RhB) from aqueous solution. The magnetic nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy, which confirmed that the surface of the magnetic product with a face-centered cubic-type structure was successfully modified by sodium citrate. Kinetics studies were conducted. The pseudo-second-order kinetic model was used for fitting the kinetic data successfully. The Freundlich and Langmuir adsorption models were employed for the mathematical description of adsorption equilibrium. It was found that the adsorption isotherm can be very satisfactorily fitted by the Freundlich model.

  4. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 range, 0.94-0.965, 0.934-0.972, and 0.874-0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  5. Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging.

    PubMed

    Nagesetti, Abhignyan; McGoron, Anthony J

    2016-11-01

    We report a novel system of organically modified silica nanoparticles (Ormosil) capable of near infrared fluorescence and chemotherapy with adjuvant hyperthermia for image guided cancer therapy. Ormosil nanoparticles were loaded with a chemotherapeutic, Doxorubicin (DOX) and cyanine dye, IR820. Ormosil particles had a mean diameter of 51.2±2.4 nanometers and surface charge of -40.5±0.8mV. DOX was loaded onto Ormosil particles via physical adsorption (FDSIR820) or covalent linkage (CDSIR820) to the silanol groups on the Ormosil surface. Both formulations retained DOX and IR820 over a period of 2 days in aqueous buffer, though CDSIR820 retained more DOX (93.2%) compared to FDSIR820 (77.0%) nanoparticles. Exposure to near infrared laser triggered DOX release from CDSIR820. Uptake of nanoparticles was determined by deconvolution microscopy in ovarian carcinoma cells (Skov-3). CDSIR820 localized in the cell lysosomes whereas cells incubated with FDSIR820 showed DOX fluorescence from the nucleus indicating leakage of DOX from the nanoparticle matrix. FDSIR820 nanoparticles showed severe toxicity in Skov-3 cells whereas CDSIR820 particles had the same cytotoxicity profile as bare (No DOX and IR820) Ormosil particles. Furthermore, exposure of CDSIR820 nanoparticles to Near Infrared laser at 808 nanometers resulted in generation of heat (to 43°C from 37°C) and resulted in enhanced cell killing compared to Free DOX treatment. Bio-distribution studies showed that CDSIR820 nanoparticles were primarily present in the organs of Reticuloendothelial (RES) system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [Chemical modification on the surface of nano-particles of ZnO and its characterization].

    PubMed

    Yu, Hai-yin; Du, Jun; Gu, Jia-shan; Guan, Ming-yun; Wu, Zheng-cui; Ling, Qing; Sun, Yi-min

    2004-02-01

    After nano-particles (ZnO) had been encapsulated by a kind of water-soluble cellulose Hydoxyl-Propyl-Methyl Cellulose (HPMC), then methyl methacrylate was grafted onto the surface of them. Thus the surface of nano-ZnO had been successfully modified. FTIR, DTA and TEM were utilized to confirm the results. FTIR shows that HPMC was adsorbed onto the surface of ZnO, and PMMA was also grafted onto its surface, DTA says that the heat stability of HPMC, HPMC-g-PMMA and ZnO/HPMC-g-PMMA increased greatly, TEM photo demonstrates that polymer adhered onto the surface of nano-ZnO which was encapsulated by a layer of film-like polymer.

  7. Heterogeneous enantioselective hydrogenation of beta-keto esters using chirally modified supported Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Acharya, Sushma

    Enantioselective heterogeneous catalysis is an important and rapidly expanding research area. The two most heavily researched examples of this type of catalysis are the enantioselective hydrogenation of α-keto-esters over Pt-based catalysts and the enantioselective hydrogenation of β-keto-esters over Ni-based catalysts. These enantioselective surface reactions are controlled by the presence of adsorbed chiral molecules i.e. tartaric acid on the surface of the metal component of the catalyst. The work presented in this thesis focuses on two parts, the synthesis of pure nickel nanoparticles and enantioselective behavior of the modified nickel nanoparticles. The works on the synthesis of pure nickel nanoparticles were carried out using two methods, the reverse microemulsion and the reduction method. It was discovered that the reverse microemulsion method produced nickel oxide nanoparticles, whereas the reduction method produced pure nickel nanoparticles. Chiral modifications of Raney nickel (RNi) and C-supported catalysts were studied. The catalysts were employed in enantioselective hydrogenation of methyl acetoacetate (MAA) to (R) - and (S)-enantiomers of methyl 3-hydroxybutyrate (MHB). The effects of modification and hydrogenation parameters such as concentration of modifier temperature, pressure and solvent on the enantioselectivity of MAA hydrogenation were discussed. For RNi methanol was found to be the best solvent, with tartaric acid concentration 0.2 mol/L for achieving the highest enantiomeric excess under 8 bar at 70 oC. Characteristic features of the in-situ modification of Raney nickel and C-supported Ni were also evaluated and the results obtained were compared with the conventional (pre-modification) approach. Parameters for the conventional and in-situ methods were optimised in a series of experiments for both types of catalysts. The in-situ modified catalyst was found more active for both RNi and C-supported catalysts with 98 % and 42% enantiomeric excess, respectively.

  8. Physicochemical properties of protein-modified silver nanoparticles in seawater

    NASA Astrophysics Data System (ADS)

    Zhong, Hangyue

    2013-10-01

    This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.

  9. Solvent free tin oxide nanoparticle for gas sensing application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Pranay, E-mail: pranjan@iitp.ac.in; Thakur, Ajay D.; Centre for Energy and Environment, Indian Institute of Technology Patna, Patliputra, Patna 800013 India

    2016-05-06

    A new modified technique of synthesizing tin oxide nanoparticles with crystallite size of 2 nm to 6 nm has been developed. Surface area of the nanoparticle has been increased as we approached towards the Debye length. Such a techniques for approaching the Debye length is expected to bring remarkable changes in the properties of resistive based gas sensors. The technique used here is less toxic, economical and has high yield. Phase purity, size, shape and composition has been investigated using x-ray diffraction, micro Raman, scanning electron microscopy and energy dispersive x ray spectroscopy. While surface area has been calculated through Brunaur-Emmett-Teller (BET).

  10. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    NASA Astrophysics Data System (ADS)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  11. Synthesis of monodispersed ZnAl{sub 2}O{sub 4} nanoparticles and their tribology properties as lubricant additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xiaoyun; Zheng, Shaohua; Zhang, Jun

    Graphical abstract: Display Omitted Highlights: ► The preparation of ZnAl{sub 2}O{sub 4} nanoparticles was realized by hydrothermal method. ► After surface modification, ZnAl{sub 2}O{sub 4} nanoparticles of narrow size distribution can disperse in lubricating oil stably. ► The modified ZnAl{sub 2}O{sub 4} nanoparticles as lubricating oil additives exhibit good tribology properties. -- Abstract: Monodispersed spherical zinc aluminate spinel (ZnAl{sub 2}O{sub 4}) nanoparticles were synthesized via a solvothermal method and modified by oleic acid in cyclohexanol solution. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and infrared spectrum (IR). The dispersion ability of nanoparticles in lubricant oilmore » was measured with optical absorbance spectrum. The results show that the modified nanoparticles are nearly monodispersed and can stably disperse in lubricant oil. The tribological properties of the ZnAl{sub 2}O{sub 4} nanoparticles as an additive in lubricant oil were evaluated with four-ball test and thrust-ring test. For comparison, ZnO and Al{sub 2}O{sub 3} nanoparticles as additive in lubricant oil were also tested respectively. The results show that ZnAl{sub 2}O{sub 4} nanoparticles exhibit better tribology properties in terms of anti-wear and anti-friction than ZnO or Al{sub 2}O{sub 3} nanoparticles. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of ZnAl{sub 2}O{sub 4} nanoparticles can be attributed to nano-bearings effect and tribo-sintering mechanism.« less

  12. Fabrication of highly hydrophobic two-component thermosetting polyurethane surfaces with silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Song, Jialu; Hou, Xianghui

    2018-05-01

    Highly hydrophobic thermosetting polyurethane (TSU) surfaces with micro-nano hierarchical structures were developed by a simple process combined with sandpaper templates and nano-silica embellishment. Sandpapers with grit sizes varying from 240 to 7000 grit were used to obtain micro-scale roughness on an intrinsic hydrophilic TSU surface. The surface wettability was investigated by contact angle measurement. It was found that the largest contact angle of the TSU surface without nanoparticles at 102 ± 3° was obtained when the template was 240-grit sandpaper and the molding progress started after 45 min curing of TSU. Silica nanoparticles modified with polydimethylsiloxane were scattered onto the surfaces of both the polymer and the template to construct the desirable nanostructures. The influences of the morphology, surface composition and the silica content on the TSU surface wettability were studied by scanning electron microscopy (SEM), attenuated total reflection (ATR) infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The surface of the TSU/SiO2 nanocomposites containing 4 wt% silica nanoparticles exhibited a distinctive dual-scale structure and excellent hydrophobicity with the contact angle above 150°. The mechanism of wettability was also discussed by Wenzel model and Cassie-Baxter model.

  13. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose.

    PubMed

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol-gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Surfactant adsorption and aggregate structure of silica nanoparticles: a versatile stratagem for the regulation of particle size and surface modification

    NASA Astrophysics Data System (ADS)

    Chaudhary, Savita; Rohilla, Deepak; Mehta, S. K.

    2014-03-01

    The area of silica nanoparticles is incredibly polygonal. Silica particles have aroused exceptional deliberation in bio-analysis due to great progress in particular arenas, for instance, biocompatibility, unique properties of modifiable pore size and organization, huge facade areas and pore volumes, manageable morphology and amendable surfaces, elevated chemical and thermal stability. Currently, silica nanoparticles participate in crucial utilities in daily trade rationales such as power storage, chemical and genetic sensors, groceries dispensation and catalysis. Herein, the size-dependent interfacial relation of anionic silica nanoparticles with twelve altered categories of cationic surfactants has been carried out in terms of the physical chemical facets of colloid and interface science. The current analysis endeavours to investigate the virtual consequences of different surfactants through the development of the objective composite materials. The nanoparticle size controls, the surface-to-volume ratio and surface bend relating to its interaction with surfactant will also be addressed in this work. More importantly, the simulated stratagem developed in this work can be lengthened to formulate core-shell nanostructures with functional nanoparticles encapsulated in silica particles, making this approach valuable and extensively pertinent for employing sophisticated materials for catalysis and drug delivery.

  15. X-ray detection capabilities of plastic scintillators incorporated with hafnium oxide nanoparticles surface-modified with phenyl propionic acid

    NASA Astrophysics Data System (ADS)

    Hiyama, Fumiyuki; Noguchi, Takio; Koshimizu, Masanori; Kishimoto, Shunji; Haruki, Rie; Nishikido, Fumihiko; Yanagida, Takayuki; Fujimoto, Yutaka; Aida, Tsutomu; Takami, Seiichi; Adschiri, Tadafumi; Asai, Keisuke

    2018-01-01

    We synthesized plastic scintillators incorporated with HfO2 nanoparticles as detectors for X-ray synchrotron radiation. Nanoparticles with sizes of less than 10 nm were synthesized with the subcritical hydrothermal method. The detection efficiency of high-energy X-ray photons improved by up to 3.3 times because of the addition of the nanoparticles. Nanosecond time resolution was successfully achieved for all the scintillators. These results indicate that this method is applicable for the preparation of plastic scintillators to detect X-ray synchrotron radiation.

  16. Preparation and characterization of APTES modified magnetic MMT capable of using as anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yingjun; Chen, Hua; Wu, Jie; He, Qin; Li, Yintao; Yang, Wenbin; Zhou, Yuanlin

    2018-07-01

    Montmorillonite (MMT) based anisotropic magnetic nanoparticles (Fe3O4/APTES/MMT) with high anisotropy and reliable magnetism were prepared by using Fe3O4 as magnetic nanoparticles and γ-aminopropyltriethoxysilane (ATPES) as modifier. The characterization indicated that the interactions between Fe3O4 nanoparticles and MMT in Fe3O4/APTES/MMT were stronger than that of directly deposited on to MMT (Fe3O4-MMT) because APTES was chemically bonded to both Fe3O4 and MMT. Fe3O4/APTES/MMT had a greater Ms value (25.16 emu/g) than Fe3O4-MMT (23.71 emu/g). Also, ultrasonication was used to test the interactions between Fe3O4 and MMT. With 30 min of ultrasonication, the amount of Fe3O4 nanoparticles on the surface of Fe3O4/APTES/MMT was more than that of Fe3O4-MMT, and Fe3O4/APTES/MMT had a faster magnetic response to a magnetic field than that of Fe3O4-MMT because of enhanced interactions between Fe3O4 and MMT in Fe3O4/APTES/MMT. In addition, Fe3O4 nanoparticles were densely immobilized onto Fe3O4/APTES/MMT with a smaller average diameter, and the distribution of Fe3O4 nanoparticles on the surface of MMT was more uniform than that of Fe3O4-MMT. Fe3O4/APTES/MMT possessed stable and high magnetism, in ease of orientation and recycling in the magnetic field, and this makes it a promising candidate as anisotropic nanoparticles for use in preparing anisotropic inorganic/polymer composites and anisotropic adsorbents used in wastewater treatment. Finally, the mechanism of ATPES-modified magnetic MMT was investigated.

  17. Volume Labeling with Alexa-Fluor Dyes and Surface Functionalization of Highly Sensitive Fluorescent SiO2 Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Foster, Carmen M; Morrell-Falvey, Jennifer L

    2013-01-01

    A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and amore » polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or free surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.« less

  18. Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization.

    PubMed

    Steinbach, Jill M; Seo, Young-Eun; Saltzman, W Mark

    2016-01-01

    The surface modification of nanoparticles (NPs) can enhance the intracellular delivery of drugs, proteins, and genetic agents. Here we studied the effect of different surface ligands, including cell penetrating peptides (CPPs), on the cell binding and internalization of poly(lactic-co-glycolic) (PLGA) NPs. Relative to unmodified NPs, we observed that surface-modified NPs greatly enhanced cell internalization. Using one CPP, MPG (unabbreviated notation), that achieved the highest degree of internalization at both low and high surface modification densities, we evaluated the effect of two different NP surface chemistries on cell internalization. After 2h, avidin-MPG NPs enhanced cellular internalization by 5 to 26-fold relative to DSPE-MPG NP formulations. Yet, despite a 5-fold increase in MPG density on DSPE compared to Avidin NPs, both formulations resulted in similar internalization levels (48 and 64-fold, respectively) after 24h. Regardless of surface modification, all NPs were internalized through an energy-dependent, clathrin-mediated process, and became dispersed throughout the cell. Overall both Avidin- and DSPE-CPP modified NPs significantly increased internalization and offer promising delivery options for applications in which internalization presents challenges to efficacious delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin.

    PubMed

    Cui, Yan-Na; Xu, Qing-Xing; Davoodi, Pooya; Wang, De-Ping; Wang, Chi-Hwa

    2017-06-01

    Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors.

  20. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin

    PubMed Central

    Cui, Yan-na; Xu, Qing-xing; Davoodi, Pooya; Wang, De-ping; Wang, Chi-Hwa

    2017-01-01

    Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors. PMID:28552909

  1. Heavy-metal detectors based on modified ferrite nanoparticles

    PubMed Central

    Klekotka, Urszula; Wińska, Ewelina; Zambrzycka-Szelewa, Elżbieta; Satuła, Dariusz

    2018-01-01

    In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption efficiency on the composition of the inorganic core has been observed. Ferrites surfaces were modified by phthalic anhydride (PA), succinic anhydride (SA), acetic anhydride (AA), 3-phosphonopropionic acid (3-PPA), or 16-phosphohexadecanoic acid (16-PHDA) to compare the adsorption capability of the heavy metals Cd, Cu and Pb. The obtained nanoparticles were structurally characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Mössbauer spectroscopy. The amounts of Cd, Cu and Pb were measured out by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) as comparative techniques. The performed study shows that SA linker appears to be the most effective in the adsorption of heavy metals. Moreover, regarding the influence of the composition of the inorganic core on the detection ability, the most effective ferrite Mn0.5Fe2.5O4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier. PMID:29600137

  2. Heavy-metal detectors based on modified ferrite nanoparticles.

    PubMed

    Klekotka, Urszula; Wińska, Ewelina; Zambrzycka-Szelewa, Elżbieta; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-01-01

    In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption efficiency on the composition of the inorganic core has been observed. Ferrites surfaces were modified by phthalic anhydride (PA), succinic anhydride (SA), acetic anhydride (AA), 3-phosphonopropionic acid (3-PPA), or 16-phosphohexadecanoic acid (16-PHDA) to compare the adsorption capability of the heavy metals Cd, Cu and Pb. The obtained nanoparticles were structurally characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Mössbauer spectroscopy. The amounts of Cd, Cu and Pb were measured out by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) as comparative techniques. The performed study shows that SA linker appears to be the most effective in the adsorption of heavy metals. Moreover, regarding the influence of the composition of the inorganic core on the detection ability, the most effective ferrite Mn 0.5 Fe 2.5 O 4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi

    Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less

  4. Non-specific cellular uptake of surface-functionalized quantum dots

    NASA Astrophysics Data System (ADS)

    Kelf, T. A.; Sreenivasan, V. K. A.; Sun, J.; Kim, E. J.; Goldys, E. M.; Zvyagin, A. V.

    2010-07-01

    We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.

  5. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Tsoufis, T.; Syrgiannis, Z.; Akhtar, N.; Prato, M.; Katsaros, F.; Sideratou, Z.; Kouloumpis, A.; Gournis, D.; Rudolf, P.

    2015-05-01

    We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature.We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00765h

  6. Long Distance Enhancement of Nonlinear Optical Properties Using Low Concentration of Plasmonic Nanostructures in Dye Doped Monolithic SolGel Materials (Postprint)

    DTIC Science & Technology

    2016-05-31

    www.MaterialsViews.com Synthesis of the Gold Nanoparticles : The Au nanospheres were prepared according to previously reported procedure using the...Au Nanoparticles Using Specifi c Silicone : The synthesis of the functional silicone was previously reported as well as the surface modifi cation of...types of gold nanoparticles (AuNPs) are prepared and polished to high optical quality. Their photophysical properties are investigated. The glass

  7. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  8. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Su, Wen; Fu, Yingyi; Hu, Jingbo

    2016-12-01

    In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments' characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm-2 mM-1 with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  9. Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells.

    PubMed

    Correia, Alexandra; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Almeida, Sérgio; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2015-10-21

    Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.

  10. Sensitive Adsorptive Voltammetric Method for Determination of Bisphenol A by Gold Nanoparticle/Polyvinylpyrrolidone-Modified Pencil Graphite Electrode

    PubMed Central

    Yaman, Yesim Tugce; Abaci, Serdar

    2016-01-01

    A novel electrochemical sensor gold nanoparticle (AuNP)/polyvinylpyrrolidone (PVP) modified pencil graphite electrode (PGE) was developed for the ultrasensitive determination of Bisphenol A (BPA). The gold nanoparticles were electrodeposited by constant potential electrolysis and PVP was attached by passive adsorption onto the electrode surface. The electrode surfaces were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The parameters that affected the experimental conditions were researched and optimized. The AuNP/PVP/PGE sensor provided high sensitivity and selectivity for BPA recognition by using square wave adsorptive stripping voltammetry (SWAdSV). Under optimized conditions, the detection limit was found to be 1.0 nM. This new sensor system offered the advantages of simple fabrication which aided the expeditious replication, low cost, fast response, high sensitivity and low background current for BPA. This new sensor system was successfully tested for the detection of the amount of BPA in bottled drinking water with high reliability. PMID:27231912

  11. Surface-functionalized cockle shell–based calcium carbonate aragonite polymorph as a drug nanocarrier

    PubMed Central

    Mohd Abd Ghafar, Syairah Liyana; Hussein, Mohd Zobir; Rukayadi, Yaya; Abu Bakar Zakaria, Md Zuki

    2017-01-01

    Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges <100 nm, which specifically favored drug-delivery applications. The purity of the aragonite phase and their chemical analyses were verified by X-ray powder diffraction and Fourier transform infrared spectrometry studies. In vitro biological response of hFOB 1.19 osteoblast cells showed that surface functionalization could improve the cytotoxicity of cockle shell–based calcium carbonate aragonite nanocarrier. The sample was also sensitive to pH changes and demonstrated good abilities to load and sustain in vitro drug. This study thus indicates that calcium carbonate aragonite polymorph nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery. PMID:28572724

  12. Modifications of nano-titania surface for in vitro evaluations of hemolysis, cytotoxicity, and nonspecific protein binding

    NASA Astrophysics Data System (ADS)

    Datta, Aparna; Dasgupta, Sayantan; Mukherjee, Siddhartha

    2017-04-01

    In the past decade, a variety of drug carriers based on mesoporous silica nanoparticles has been extensively reported. However, their biocompatibility still remains debatable, which motivated us to explore the porous nanostructures of other metal oxides, for example titanium dioxide (TiO2), as potential drug delivery vehicles. Herein, we report the in vitro hemolysis, cytotoxicity, and protein binding of TiO2 nanoparticles, synthesized by a sol-gel method. The surface of the TiO2 nanoparticles was modified with hydroxyl, amine, or thiol containing moieties to examine the influence of surface functional groups on the toxicity and protein binding aspects of the nanoparticles. Our study revealed the superior hemocompatibility of pristine, as well as functionalized TiO2 nanoparticles, compared to that of mesoporous silica, the present gold standard. Among the functional groups studied, aminosilane moieties on the TiO2 surface substantially reduced the degree of hemolysis (down to 5%). Further, cytotoxicity studies by MTT assay suggested that surface functional moieties play a crucial role in determining the biocompatibility of the nanoparticles. The presence of NH2- functional groups on the TiO2 nanoparticle surface enhanced the cell viability by almost 28% as compared to its native counterpart (at 100 μg/ml), which was in agreement with the hemolysis assay. Finally, nonspecific protein adsorption on functionalized TiO2 surfaces was examined using human serum albumin and it was found that negatively charged surface moieties, like -OH and -SH, could mitigate protein adsorption to a significant extent.

  13. Effects of Surface-Modified MgO Nanoparticles on Inclusion Characteristics and Microstructure in Carbon Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Yang, Shufeng; Li, Jingshe; Zhao, Mengjing; Chen, Zhengyang; Zhang, Xueliang; Li, Jikang

    2018-05-01

    An innovative approach involving chemical modification of the surface of MgO nanoparticles (NPs) for steelmaking and application of NPs to carbon structural steel has been investigated. The results show that the inclusions in the test steels were completely converted to MgAl2O4 spinel or MnS complex inclusions. The mean inclusion size decreased with increasing NP content from 0.01% to 0.03%, but increased at 0.05% because of NP aggregation. Addition of NPs increased the amount of intragranular ferrite and prevented polygonal ferrite formation, thereby enhancing the impact toughness. Impact tests showed that the dimple fractures in steel with 0.05% NP content were deeper than those in the other samples because the MgAl2O4 inclusions were larger. The surface-modified MgO NPs had a major effect on the inclusion characteristics and microstructure of carbon structural steel.

  14. Organic/Inorganic Nano-hybrids with High Dielectric Constant for Organic Thin Film Transistor Applications

    NASA Astrophysics Data System (ADS)

    Yu, Yang-Yen; Jiang, Ai-Hua; Lee, Wen-Ya

    2016-11-01

    The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore, pentacene-based organic thin film transistors (OTFTs) with PI-BaTiO3/polymethylmethacrylate or cyclic olefin copolymer (COC)-modified gate dielectrics were fabricated and examined. The hybrid materials showed effective dispersion of BaTiO3 nanoparticles in the PI matrix and favorable thermal properties. X-ray diffraction patterns revealed that the BaTiO3 nanoparticles had a perovskite structure. The hybrid films exhibited high formability and planarity. The IBX hybrid dielectric films exhibited tunable insulating properties such as the dielectric constant value and capacitance in ranges of 4.0-8.6 and 9.2-17.5 nF cm-2, respectively. Adding the modified layer caused the decrease of dielectric constant values and capacitances. The modified dielectric layer without cross-linking displayed a hydrophobic surface. The electrical characteristics of the pentacene-based OTFTs were enhanced after the surface modification. The optimal condition for the dielectric layer was 10 wt% hybrid film with the COC-modified layer; moreover, the device exhibited a threshold voltage of 0.12 V, field-effect mobility of 4.32 × 10-1 cm2 V-1 s-1, and on/off current of 8.4 × 107.

  15. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    PubMed

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused.

  16. Determination of morphological characteristics of metallic nanoparticles based on modified Maxwell-Garnett fitting of optical responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battie, Y., E-mail: yann.battie@univ-lorraine.fr; Resano-Garcia, A.; En Naciri, A.

    2015-10-05

    A modified effective medium theory (MEMT) is introduced to determine morphological characteristics and the volume fraction of colloidal metallic nanoparticles. By analyzing the optical absorption spectra of gold nanoparticles (NPs), this model is used to determine the distribution of prolate and oblate NPs and to demonstrate the presence of spherical NPs. In addition to interband transition, the model takes into account the longitudinal and transversal surface plasmon resonances. The results predicted by the MEMT theory were found to be in very good agreement with the shape distributions obtained by transmission electron microscopy. We found that fitting optical absorption spectra usingmore » MEMT provides a robust tool for measuring the shape and concentration of metallic NPs.« less

  17. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    PubMed

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  18. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zielińska-Jurek, Anna; Wei, Zhishun; Wysocka, Izabela; Szweda, Piotr; Kowalska, Ewa

    2015-10-01

    Ag-Pt-modified TiO2 nanocomposites were synthesized using the sol-gel method. Bimetallic modified TiO2 nanoparticles exhibited improved photocatalytic activity under visible-light irradiation, better than monometallic Ag/TiO2 and Pt/TiO2 nanoparticles (NPs). All modified powders showed localized surface plasmon resonance (LSPR) in visible region. The photocatalysts' characteristics by X-ray diffractometry (XRD), scanning transmission electron microscopy (STEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption (BET method for specific surface area) showed that sample with the highest photocatalytic activity had anatase structure, about 93 m2/g specific surface area, maximum plasmon absorption at ca. 420 nm and contained small NPs of silver of 6 nm and very fine platinum NPs of 3 nm. The photocatalytic activity was estimated by measuring the decomposition rate of phenol in 0.2 mM aqueous solution under Vis and UV/vis light irradiation. It was found that size of platinum was decisive for the photocatalytic activity under visible light irradiation, i.e., the smaller Pt NPs were, the higher was photocatalytic activity. While, antimicrobial activities, estimated for bacteria Escherichia coli and Staphylococcus aureus, and pathogenic fungi belonging to Candida family, were only observed for photocatalysts containing silver, i.e., Ag/TiO2 and Ag-Pt/TiO2 nanocomposites.

  19. Towards potential nanoparticle contrast agents: Synthesis of new functionalized PEG bisphosphonates.

    PubMed

    Kachbi-Khelfallah, Souad; Monteil, Maelle; Cortes-Clerget, Margery; Migianu-Griffoni, Evelyne; Pirat, Jean-Luc; Gager, Olivier; Deschamp, Julia; Lecouvey, Marc

    2016-01-01

    The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step.

  20. Nanocluster-based white-light-emitting material employing surface tuning

    DOEpatents

    Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM; Thoma, Steven G [Albuquerque, NM

    2007-06-26

    A method for making a nanocrystal-based material capable of emitting light over a sufficiently broad spectral range to appear white. Surface-modifying ligands are used to shift and broaden the emission of semiconductor nanocrystals to produce nanoparticle-based materials that emit white light.

  1. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  2. High reactive sulphide chemically supported on silica surface to prepare functional nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Guo, Xiaohui; Jia, Zhixin; Tang, Yuhan; Wu, Lianghui; Luo, Yuanfang; Jia, Demin

    2018-06-01

    A solid-phase preparation method was applied to obtain a novel, green and effective functional nanoparticle, silica-supported sulfur monochloride (silica-s-S2Cl2), by the chemical reaction between chlorine atom and silicon hydroxyl on the silica surface. Through this chemical reaction, silica surface supported with high content of sulfur, and the functional nanoparticles can not only vulcanize the rubber instead of sulfur or other vulcanizing agent with high performance, but also improve the filler-rubber interaction as a modifier due to the improved modification effect. 29Si NMR, Raman spectroscopy, Element analysis and TGA confirm that the sulfur monochloride is chemically bonded on the silica surface. Cure properties measurement, morphology of filler dispersion, mechanical properties measurement, immobilized polymer layer and oxidation induction time increment together show that the novel vulcanizing agent silica-s-S2Cl2 instead of sulfur in rubber vulcanization gives rise to significant improvement in the crosslinking density and the interfacial adhesion between silica particles and the rubber matrix, which is on account of the promoted vulcanizing on the functional silica nanoparticles surface with the supported sulfur.

  3. An Electrochemical DNA Sensing System Using Modified Nanoparticle Probes for Detecting Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Sakamoto, Hiroaki; Amano, Yoshihisa; Satomura, Takenori; Suye, Shin-Ichiro

    2017-01-01

    We have developed a novel, highly sensitive, biosensing system for detecting methicillin-resistant Staphylococcus aureus (MRSA). The system employs gold nanoparticles (AuNPs), magnetic nanoparticles (mNPs), and an electrochemical detection method. We have designed and synthesized ferrocene- and single-stranded DNA-conjugated nanoparticles that hybridize to MRSA DNA. Hybridized complexes are easily separated by taking advantage of mNPs. A current response could be obtained through the oxidation of ferrocene on the AuNP surface when a constant potential of +250 mV vs. Ag/AgCl is applied. The enzymatic reaction of L-proline dehydrogenase provides high signal amplification. This sensing system, using a nanoparticle-modified probe, has the ability to detect 10 pM of genomic DNA from MRSA without amplification by the polymerase chain reaction. Current responses are linearly related to the amount of genomic DNA in the range of 10-166 pM. Selectivity is confirmed by demonstrating that this sensing system could distinguish MRSA from Staphylococcus aureus (SA) DNA.

  4. Preparation of lisinopril-capped gold nanoparticles for molecular imaging of angiotensin-converting enzyme

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Baeta, Cesar; Aras, Omer; Daniel, Marie-Christine

    2009-05-01

    Overexpression of angiotensin-converting enzyme (ACE) has been associated with the pathophysiology of cardiac and pulmonary fibrosis. Moreover, the prescription of ACE inhibitors, such as lisinopril, has shown a favorable effect on patient outcome for patients with heart failure or systemic hypertension. Thus targeted imaging of the ACE would be of crucial importance for monitoring tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-coated gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. The preparation involved non-modified lisinopril, using its primary amine group as the anchoring function on the gold nanoparticles surface. The stable lisinopril-coated gold nanoparticles obtained were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM). Their zeta potential was also measured in order to assess the charge density on the modified gold nanoparticles (GNPs).

  5. Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites.

    PubMed

    Zheng, H R; Li, Z; You, C; Liu, D B; Chen, M F

    2017-03-01

    The mechanical properties and corrosion resistance of magnesium alloy composites were improved by the addition of MgO surface modified tricalcium phosphate ceramic nanoparticles (m-β-TCP). Mg-3Zn-0.8Zr composites with unmodified (MZZT) and modified (MZZMT) nanoparticles were produced by high shear mixing technology. Effects of MgO m-β-TCP nanoparticles on the microstructure, mechanical properties, electrochemical corrosion properties and cytocompatibility of Mg-Zn-Zr/β-TCP composites were investigated. After hot extrusion deformation and dynamic recrystallization, the grain size of MZZMT was the half size of MZZT and the distribution of m-β-TCP particles in the matrix was more uniform than β-TCP particles. The yield tensile strength (YTS), ultimate tensile strength (UTS), and corrosion potential (Ecorr) of MZZMT were higher than MZZT; the corrosion current density (I corr ) of MZZMT was lower than MZZT. Cell proliferation of co-cultured MZZMT and MZZT composite samples were roughly the same and the cell number at each time point is higher for MZZMT than for MZZT samples.

  6. Sol-Gel assembly of CdSe nanoparticles to form porous aerogel networks.

    PubMed

    Arachchige, Indika U; Brock, Stephanie L

    2006-06-21

    A detailed study of CdSe aerogels prepared by oxidative aggregation of primary nanoparticles (prepared at room temperature and high temperature conditions, >250 degrees C), followed by CO2 supercritical drying, is described. The resultant materials are mesoporous, with an interconnected network of colloidal nanoparticles, and exhibit BET surface areas up to 224 m2/g and BJH average pore diameters in the range of 16-32 nm. Powder X-ray diffraction studies indicate that these materials retain the crystal structure of the primary nanoparticles, with a slight increase in primary particle size upon gelation and aerogel formation. Optical band gap measurements and photoluminescence studies show that the as-prepared aerogels retain the quantum-confined optical properties of the nanoparticle building blocks despite being connected into a 3-D network. The specific optical characteristics of the aerogel can be further modified by surface ligand exchange at the wet-gel stage, without destroying the gel network.

  7. Silica nanoparticles carrying boron-containing polymer brushes

    NASA Astrophysics Data System (ADS)

    Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya

    2014-05-01

    A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.

  8. SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion.

    PubMed

    Sloufová, Ivana; Sisková, Karolína; Vlcková, Blanka; Stepánek, Josef

    2008-04-28

    Changes in morphology, surface reactivity and surface-enhancement of Raman scattering induced by modification of borate-stabilized Ag nanoparticles by adsorbed chlorides have been explored using TEM, EDX analysis and SERS spectra of probing adsorbate 2,2'-bipyridine (bpy) excited at 514.5 nm and evaluated by factor analysis. At fractional coverages of the parent Ag nanoparticles by adsorbed chlorides <0.6, the Ag colloid/Cl(-)/bpy systems were found to be constituted by fractal aggregates of Ag nanoparticles fairly uniform in size (10 +/- 2 nm) and SERS spectra of Ag(+)-bpy surface species were detected. The latter result was interpreted in terms of the presence of oxidized Ag(+) and/or Ag(n)(+) adsorption sites, which have been encountered also in systems with the chemically untreated Ag nanoparticles. At chloride coverages >0.6, a fusion of fractal aggregates into the compact aggregates of touching and/or interpenetrating Ag nanoparticles has been observed and found to be accompanied by the formation of another surface species, Ag-bpy, as well as by the increase of the overall SERS enhancement of bpy by factor of 40. The same Ag-bpy surface species has been detected under the strongly reducing conditions of reduction of silver nitrate by sodium borohydride in the presence of bpy. The formation of Ag-bpy is thus interpreted in terms of the stabilization of reduced Ag(0) adsorption sites by adsorbed bpy. The formation of reduced adsorption sites on Ag nanoparticle surfaces at chloride coverages >0.6 is discussed in terms of local changes in the work function of Ag. Finally, the SERS spectral detection of Ag-bpy species is proposed as a tool for probing the presence of reduced Ag(0) adsorption sites in systems with chemically modified Ag nanoparticles.

  9. The study of poly(L-lactide) grafted silica nanoparticles on the film blowing of poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Liu, Zhengying; Yang, Mingbo

    2015-05-01

    PLA nanocomposites are prepared by us, and to better develop the function of silica nanoparticle, the surface of silica nanoparticles are modified by introducing PLA chains via "grafting to" method in our research. According to the results of 1H NMR and TGA, it shows that the PLA grafted Silica nanoparticles are successfully synthesized by controlling the reaction condition, and the molecular weight of the grafted PLA chains is relatively as high as 22 400 g/mol. PLA Nanocomposites with modified nanoparticles are prepared using a convenient melt blending method to guarantee well-distribution of the particles. The well-dispersion state of silica nanospheres is confirmed by Scan Electrical Micrograph (SEM) technology. From the dynamic shear rheology tests, the strain and time sweep both reveal that stability networks are formed in these nanocomposites. And the frequency sweep shows that the nanoparticles with long grafted chains dramatically enhanced the storage and viscosity of the pure PLA. The rheology testing suggests that strong particle-matrix interactions between molecularly/nano-level dispersed grafted silica and PLA chains formed; and the elongational viscosity of PLA has been markedly improved with the addition of the nanoparticle. The effect of modified nanoparticles on the thermal properties of PLA has also been studied by us using Differential Scanning Calorimetry (DSC). It reveals that the crystallization rate of PLA has been improved as the long grafted chains play as the nucleation sites for PLA. Finally based on these rheology and crystallization researches, the nanocomposites are used to prepare PLA blowing films. Compared to pure PLA and PLA/unmodified silica nanocomposites, the results show that the stability of the film blowing has been greatly improved and the blow-up ratio has been increased with the addition of PLA grafted nanoparticles. The modified nanoparticles hold significant candidates to improve the thermal stability and the processability of pure PLA, especially used as special processing agent in the field of PLA stretch shaping process.

  10. Two-dimensional TiO2-based nanosheets co-modified by surface-enriched carbon dots and Gd2O3 nanoparticles for efficient visible-light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Lu, Dingze; Fang, Pengfei; Ding, Junqian; Yang, Minchen; Cao, Yufei; Zhou, Yawei; Peng, Kui; Kondamareddy, Kiran Kumar; Liu, Min

    2017-02-01

    Two-dimensional TiO2-based nanosheets (TNSs) co-modified by surface-enriched carbon dots (CDs) and Gd2O3 nanoparticles: (Gd-C-TNSs), capable of exhibiting visible-light-driven photo catalysis were synthesized using a two-pot hydrothermal route. The samples had a sheet-like structure, thickness of approximately 3.6 nm, large specific surface area of 240-350 cm2/g. The CDs (2-3 nm) and Gd2O3 nanoparticles (1-2 nm) were highly dispersed over the surface of the nanosheets. The co-modification by Gd2O3 nanoparticles and CDs influenced the crystallinity, crystal structure, and surface area of the TNSs, and improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be improved by an appropriate amount of modification. A very high efficiency was obtained using 0.5 at% Gd/Ti and 3.0 g/L of CDs. The visible-light-induced photocatalytic activity is enhanced under the isolated Cr(VI) system, isolated Rhodamin B (RhB) system, and the synergism between RhB degradation and Cr(VI) reduction for the Gd-C-TNSs photocatalysts. Initially, the photocatalytic activity gradually increased with an increase in the amount of CDs, and then decreased after attaining a maximum, in the case where 0.5 at% Gd/Ti and 3.0 g/L of CDs were used. The enhancement in the photocatalytic activity was attributed to the synergetic effect of the Gd2O3 nanoparticles, TNSs, and CDs in the Gd-C-TNSs composites. The effect led to a fast separation and slow recombination of photo-induced electron-hole pairs. An alternate mechanism for enhanced visible-light photocatalytic activity was also considered.

  11. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1

    NASA Astrophysics Data System (ADS)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-01

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL-1 with the limit of detection (LOD) of 0.48 pg mL-1. The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08372a

  12. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials.

    PubMed

    Punnoose, Alex; Dodge, Kelsey; Rasmussen, John W; Chess, Jordan; Wingett, Denise; Anders, Catherine

    2014-07-07

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP.

  13. Biocompatible polyurethane/thiacalix[4]arenes functionalized Fe3O4 magnetic nanocomposites: Synthesis and properties.

    PubMed

    Mohammadi, Abbas; Barikani, Mehdi; Lakouraj, Moslem Mansour

    2016-09-01

    In this study, a series of magnetic polyurethane/Fe3O4 elastomer nanocomposites were prepared by covalently embedding novel thiacalix[4]arenes (TC4As) functionalized Fe3O4 nanoparticles (TC4As-Fe3O4) which contain macrocycles with reactive hydroxyl groups. Surface functionalization of Fe3O4 nanoparticles with TC4As macrocycles as unique reactive surface modifier not only gives specific characteristics to Fe3O4 nanoparticles but also improves the interphase interaction between nanoparticles and the polyurethane matrices through covalent attachment of polymer chains to nanoparticle surfaces. The novel synthesized TC4As-Fe3O4 nanoparticles were characterized by FTIR, XRD, TGA, VSM and SEM analysis. Furthermore, the effect of functionalization of Fe3O4 nanoparticles on the various properties of resulting nanocomposites was studied by XRD, TGA, DMTA, SEM, and a universal tensile tester. It was found that the functionalization of nanoparticles with TC4As affords better mechanical and thermal properties to polyurethane nanocomposites in comparison with unmodified nanoparticles. The SEM analysis showed finer dispersion of TC4As-Fe3O4 nanoparticles than unmodified Fe3O4 nanoparticles within the polyurethane matrices, which arising from formation of covalent bonding between TC4As functionalized Fe3O4 nanoparticles and polyurethane matrices. Moreover, the investigation of in vitro biocompatibility of novel nanocomposites showed that these samples are excellent candidate for biomedical use. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gac, Wojciech, E-mail: wojciech.gac@umcs.lublin.pl; Zawadzki, Witold; Słowik, Grzegorz

    Highlights: • Synthesis of novel ZnO−Al{sub 2}O{sub 3} oxides in the presence of CTAB surfactant. • Determination of the structural, surface and optical properties. • Nanocrystalline, high-surface area ZnO−Al{sub 2}O{sub 3} oxides. • ZnO-Al{sub 2}O{sub 3} materials of different gap energy. - Abstract: Novel alumina modified zinc oxide materials were prepared by co-precipitation method in the presence of different amounts of cetyltrimethylammonium bromide (CTAB) surfactant. X-ray diffraction, {sup 27}Al magic-angle spinning Nuclear Magnetic Resonance Spectroscopy, and transmission electron microscopy studies evidenced formation of 10–15 nm zinc oxide nanoparticles in the presence of the small amounts of surfactant. Amorphous alumina andmore » zinc aluminate phases of different coordination environment of Al sites were identified. An increase of surfactant concentration led to the elongation of nanoparticles and changes of the nature of hydroxyl groups. Precipitation in the high CTAB concentration conditions facilitated formation of mesoporous materials of high specific surface area. The materials were composed of very small (2–3 nm) zinc aluminate spinel nanoparticles. High concentration of CTAB induced widening of band gap energy.« less

  15. Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Fan, Lin; Yang, Zhen; Zhang, Runnan; Liu, Ya-nan; He, Mingrui; Su, Yanlei; Jiang, Zhongyi

    2017-07-01

    In this study, a high flux nanofiltration (NF) membrane with hybrid polymer-nanoparticle active layer was fabricated by chemical crosslinking of piperazine (PIP) and 1, 3, 5-benzene tricarbonyl trichloride (TMC). An in-situ generated method was applied to deposit titanium dioxide (TiO2) nanoparticles uniformly on the membrane surface, leading to the enhancement of the surface hydrophilicity, roughness and relative surface area of the polyamide (PA) layer. The morphology of the modified membrane was investigated by scanning electron microscopy (SEM) and Atomic force microscopy (AFM), also energy dispersive X-ray microanalysis (EDX) was used to analyze the distribution of Ti element. Chemical structure was observed by Fourier transmission infrared attenuated total reflectance (FTIR-ATR) spectroscopy. Remarkably, the optimal water flux of the loose NF membrane was 65.0 Lm-2 h-1 bar-1 nearly 5 times as much as the pure PA membrane flux. The rejections of the loose NF membranes for dyes were almost all greater than 95.0%, while the rejection for sodium sulfate (Na2SO4) was only about 17.0%, which indicated that the modified membrane had an impressive potential application for dye desalination and purification.

  16. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki

    2015-01-01

    In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.

  17. Morphological Effect of Non-targeted Biomolecule-Modified MNPs on Reticuloendothelial System

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Hu, Yan; Xiao, Jie; Cheng, Dengfeng; Xiu, Yan; Shi, Hongcheng

    2015-09-01

    Magnetic nanoparticles (MNPs) with special morphology were commonly used as biomaterials, while morphological effects of non-targeted biomolecule-modified MNPs on biological behaviors were still unclear. In this research, spherical and rod-like Fe3O4 in a comparable size were synthesized and then surface-modified by bovine serum albumin (BSA) as a model of non-targeted biomolecule-modified MNPs. Morphological effects were featured by TEM and quantification of in vitro phagocytic uptake, as well as the in vivo quantification of particles in reticuloendothelial system (RES)-related organs of normal Kunming mice. For these non-targeted BSA-modified MNPs, intracellular distributions were the same, but the rod-like MNPs were more likely to be uptake by macrophages; furthermore, the BSA-modified MNPs gathered in RES-related organs soon after intravenous injection, but the rod-like ones were expelled from the lung more quickly and expelled from the spleen more slowly. These preliminary results may be referable if MNPs or other similar biomolecule-modified nanoparticles were used.

  18. The effect of oil-water partition coefficient on the distribution and cellular uptake of liposome-encapsulated gold nanoparticles.

    PubMed

    Bao, Quan-Ying; Liu, Ai-Yun; Ma, Yu; Chen, Huan; Hong, Jin; Shen, Wen-Bin; Zhang, Can; Ding, Ya

    2016-10-01

    The shape, size, and surface features of nanoparticles greatly influence the structure and properties of resulting hybrid nanosystems. In this work, gold nanoparticles (GNPs) were modified via S-Au covalent bonding by glycol monomethyl ether thioctate with poly(ethylene glycol) methyl ether of different molecular weights (i.e., 350, 550, and 750Da). These modified GNPs (i.e., GNP350, GNP550, and GNP750) showed different oil-water partition coefficients (Kp), as detected using inductively coupled plasma-atomic emission spectroscopy. The different Kp values of the gold conjugates (i.e., 13.98, 2.11, and 0.036 for GNP350, GNP550, and GNP750, respectively) resulted in different conjugate localization within liposomes, as observed by transmission electron microscopy. In addition, the cellular uptake of hybrid liposomes co-encapsulating gold conjugates and Nile red was evaluated using intracellular fluorescence intensity. The results indicated that precise GNP localization in the hydrophilic or hydrophobic liposome cavity could be achieved by regulating the GNP oil-water partition coefficient via surface modification; such localization could further affect the properties and functions of hybrid liposomes, including their cellular uptake profiles. This study furthers the understanding not only of the interaction between liposomes and inorganic nanoparticles but also of adjusting liposome-gold hybrid nanostructure properties via the surface chemistry of gold materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Direct electron transfer of Phanerochaete chrysosporium cellobiose dehydrogenase at platinum and palladium nanoparticles decorated carbon nanotubes modified electrodes.

    PubMed

    Bozorgzadeh, Somayyeh; Hamidi, Hassan; Ortiz, Roberto; Ludwig, Roland; Gorton, Lo

    2015-10-07

    In the present work, platinum and palladium nanoparticles (PtNPs and PdNPs) were decorated on the surface of multi-walled carbon nanotubes (MWCNTs) by a simple thermal decomposition method. The prepared nanohybrids, PtNPs-MWCNTs and PdNPs-MWCNTs, were cast on the surface of spectrographic graphite electrodes and then Phanerochaete chrysosporium cellobiose dehydrogenase (PcCDH) was adsorbed on the modified layer. Direct electron transfer between PcCDH and the nanostructured modified electrodes was studied using flow injection amperometry and cyclic voltammetry. The maximum current responses (Imax) and the apparent Michaelis-Menten constants (K) for the different PcCDH modified electrodes were calculated by fitting the data to the Michaelis-Menten equation and compared. The sensitivity towards lactose was 3.07 and 3.28 μA mM(-1) at the PcCDH/PtNPs-MWCNTs/SPGE and PcCDH/PdNPs-MWCNTs/SPGE electrodes, respectively, which were higher than those measured at the PcCDH/MWCNTs/SPGE (2.60 μA mM(-1)) and PcCDH/SPGE (0.92 μA mM(-1)). The modified electrodes were additionally tested as bioanodes for biofuel cell applications.

  20. Enhanced conductivity of tunnel junctions employing semimetallic nanoparticles through variation in growth temperature and deposition

    NASA Astrophysics Data System (ADS)

    Nair, Hari P.; Crook, Adam M.; Bank, Seth R.

    2010-05-01

    We report ErAs nanoparticle-enhanced tunnel junctions grown on GaAs with low specific resistances (<2×10-4 Ω cm-2), approximately tenfold lower than previous reports. A reduction in specific resistance was achieved by modifying the ErAs nanoparticle morphology through the molecular beam epitaxial growth conditions, particularly lower growth temperatures. A further investigation of the variation in tunnel junction resistance with the amount of ErAs deposited and growth temperature shows that nanoparticle surface coverage may not be the only factor determining tunnel junction resistance.

  1. Regulation of the catalytic behavior of pullulanases chelated onto nickel (II)-modified magnetic nanoparticles.

    PubMed

    Wang, Jianfeng; Liu, Zhongmei; Zhou, Zhemin

    2017-06-01

    Chelating of pullulanases onto nickel (II)-modified magnetic nanoparticles results in one-step purification and immobilization of pullulanase, and facilitates the commercial application of pullulanase in industrial scale. To improve the catalytic behavior, especially the operational stability, of the nanocatalyst in consecutive batch reactions, we prepared various iminodiacetic acid-modified magnetic nanoparticles differed in surface polarity and spacer length, on which the His6-tagged pullulanases were chelated via nickel ions, and then studied the correlation between the MNPs surface property and the corresponding catalyst behavior. When pullulanases were chelated onto the surface-modified MNPs, the thermostability of all pullulanase derivatives were lower than that of free counterpart, being not relevant to the protein orientation guided by the locality of the His6-tag, but related to the MNPs basal surface polarity and the grafted spacer length. After chelating of pullulanases onto MNPs, there were changes observed in the pH-activity profile and the apparent Michaelis constant toward pullulan. The changing tendencies were mainly dependent on the His6-tagged pullulanase orientation, and the changing extents were tuned by the spacer length. The reusability of pullulanase immobilized by N-terminal His6-tag was higher than that of pullulanase immobilized by C-terminal His6-tag. Moreover, the reusability of the immobilized pullulanase tested increased till grafting polyether amine-400 as spacer-arm, therefore the N-terminal His6-tagged pullulanase chelating MNPs grafted polyether amine-400 gave the best reusability, which retained 60% of initial activity after 18 consecutive cycles with a total reaction time of 9h. Additionally, the correlation analysis of the catalyst behaviors indicated that the reusability was independent from other catalytic properties such as thermostability and substrate affinity. All the results revealed that the catalyst behavior can be mainly controlled by the His6-tagged pullulanase orientation than by the MNPs surface property which can tune the catalyst function. Copyright © 2017. Published by Elsevier Inc.

  2. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates.

    PubMed

    Figueroa-Lara, José de Jesús; Torres-Rodríguez, Miguel; Gutiérrez-Arzaluz, Mirella; Romero-Romo, Mario

    2017-09-27

    This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO₂) nanoparticles plus zirconia (ZrO₂) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO₂ nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO₂ nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS). The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM), and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS) detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR).

  3. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    PubMed Central

    Figueroa-Lara, José de Jesús; Torres-Rodríguez, Miguel

    2017-01-01

    This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO2) nanoparticles plus zirconia (ZrO2) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS). The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM), and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS) detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR). PMID:28953243

  4. Mercury removal in wastewater by iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Vélez, E.; Campillo, G. E.; Morales, G.; Hincapié, C.; Osorio, J.; Arnache, O.; Uribe, J. I.; Jaramillo, F.

    2016-02-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements.

  5. Charge-transfer complex formation between TiO2 nanoparticles and thiosalicylic acid: A comprehensive experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Milićević, Bojana; Đorđević, Vesna; Lončarević, Davor; Dostanić, Jasmina M.; Ahrenkiel, S. Phillip; Dramićanin, Miroslav D.; Sredojević, Dušan; Švrakić, Nenad M.; Nedeljković, Jovan M.

    2017-11-01

    Under normal conditions, titanium dioxide does not absorb visible light photons due to large band gap. Nevertheless, when titanium dioxide nanoparticles (TiO2 NPs) are surface-modified with thiosalicylic acid (TSA), their optical properties are altered owing to the formation of charge transfer complex that initiates absorption in the visible spectral range. Colloidal and sol-gel techniques were used to synthesize uniform TiO2 NPs of different sizes (average diameters in the range 4-15 nm), and effects of their subsequent modification by TSA molecules were compared with effect of modification of commercial Degussa TiO2 powder. Thorough microstructural characterization of TiO2 nanoparticulates was performed including transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis, as well as nitrogen adsorption-desorption isotherms. Optical measurements revealed that all surface-modified TiO2 samples with TSA have similar spectral features independent of their morphological differences, and, more importantly, absorption onset of modified TiO2 samples was found to be red-shifted by 1.0 eV compared to the unmodified ones. The mode of binding between TSA and surface Ti atoms was analyzed by infrared spectroscopy. Finally, the quantum chemical calculations, based on density functional theory, were performed to support optical characterization of surface-modified TiO2 with TSA.

  6. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles.

    PubMed

    Asadian, Elham; Iraji Zad, Azam; Shahrokhian, Saeed

    2016-01-01

    By using graphene nanosheets decorated with Ag nanoparticles (AgNPs-G) as an effective approach for the surface modification of pyrolytic graphite electrode (PGE), a sensing platform was fabricated for the sensitive voltammetric determination of Azathioprine (Aza). The prepared AgNPs-G nanosheets were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-vis and Raman spectroscopy techniques. The electrochemical behavior of Aza was investigated by means of cyclic voltammetry. Comparing to the bare PGE, a remarkable enhancement was observed in the response characteristics of Aza on the surface of the modified electrode (AgNPs-G/PGE) as well as a noticeable decrease in its reduction overpotential. These results can be attributed to the incredible enlargement in the microscopic surface area of the electrode due to the presence of graphene nanosheets together with strong adsorption of Aza on its surface. The effect of experimental parameters such as accumulation time, the amount of modifier suspension and pH of the supporting electrolyte were also optimized toward obtaining the maximum sensitivity. Under the optimum conditions, the calibration curve studies demonstrated that the peak current increased linearly with Aza concentrations in the range of 7 × 10(-7) to 1 × 10(-4)mol L(-1) with the detection limit of 68 nM. Further experiments revealed that the modified electrode can be successfully applied for the accurate determination of Aza in pharmaceutical preparations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine

    PubMed Central

    Bhattarai, Shanta Raj; Muthuswamy, Elayaraja; Wani, Amit; Brichacek, Michal; Castañeda, Antonio L.; Brock, Stephanie L.

    2014-01-01

    Purpose To prepare mesoporous silica-based delivery systems capable of simultaneous delivery of drugs and nucleic acids. Methods The surface of mesoporous silica nanoparticles (MSN) was modified with poly(ethylene glycol) (PEG) and poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) or poly (2-(diethylamino)ethylmethacrylate) (PDEAEMA). The particles were then loaded with a lysosomotropic agent chloroquine (CQ) and complexed with plasmid DNA or siRNA. The ability of the synthesized particles to deliver combinations of CQ and nucleic acids was evaluated using luciferase plasmid DNA and siRNA targeting luciferase and GAPDH. Results The results show a slow partial MSN dissolution to form hollow silica nanoparticles in aqueous solution. The biological studies show that polycation-modified MSN are able to simultaneously deliver CQ with DNA and siRNA. The co-delivery of CQ and the nucleic acids leads to a significantly increased transfection and silencing activity of the complexes compared with MSN not loaded with CQ. Conclusion PEGylated MSN modified with polycations are promising delivery vectors for combination drug/nucleic acid therapies. PMID:20730557

  8. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.

    PubMed

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-02-16

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.

  9. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors

    PubMed Central

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-01-01

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878

  10. Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol

    DOE PAGES

    Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi; ...

    2017-01-06

    Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less

  11. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.

    PubMed

    Zhang, Hui-zhu; Li, Xue-min; Gao, Fu-ping; Liu, Ling-rong; Zhou, Zhi-min; Zhang, Qi-qing

    2010-01-01

    The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (¹H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.

  12. Adsorption of bovine serum albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle-protein interactions.

    PubMed

    Givens, Brittany E; Diklich, Nina D; Fiegel, Jennifer; Grassian, Vicki H

    2017-05-03

    Bovine serum albumin (BSA) adsorbed on amorphous silicon dioxide (SiO 2 ) nanoparticles was studied as a function of pH across the range of 2 to 8. Aggregation, surface charge, surface coverage, and protein structure were investigated over this entire pH range. SiO 2 nanoparticle aggregation is found to depend upon pH and differs in the presence of adsorbed BSA. For SiO 2 nanoparticles truncated with hydroxyl groups, the largest aggregates were observed at pH 3, close to the isoelectric point of SiO 2 nanoparticles, whereas for SiO 2 nanoparticles with adsorbed BSA, the aggregate size was the greatest at pH 3.7, close to the isoelectric point of the BSA-SiO 2 complex. Surface coverage of BSA was also the greatest at the isoelectric point of the BSA-SiO 2 complex with a value of ca. 3 ±   1 × 10 11 molecules cm -2 . Furthermore, the secondary protein structure was modified when compared to the solution phase at all pH values, but the most significant differences were seen at pH 7.4 and below. It is concluded that protein-nanoparticle interactions vary with solution pH, which may have implications for nanoparticles in different biological fluids (e.g., blood, stomach, and lungs).

  13. The effect of cyclodextrin on both the agglomeration and the in vitro characteristics of drug loaded and targeted silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Khattabi, Areen M.; Alqdeimat, Diala A.

    2018-02-01

    One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.

  14. Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.

    PubMed

    Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C

    2014-01-21

    Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.

  15. Towards potential nanoparticle contrast agents: Synthesis of new functionalized PEG bisphosphonates

    PubMed Central

    Kachbi-Khelfallah, Souad; Monteil, Maelle; Cortes-Clerget, Margery; Migianu-Griffoni, Evelyne; Pirat, Jean-Luc; Gager, Olivier; Deschamp, Julia

    2016-01-01

    Summary The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step. PMID:27559386

  16. Modulation of the operational characteristics of amorphous In-Ga-Zn-O thin-film transistors by In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Min-Jung; Lee, Tae Il; Park, Jee Ho; Kim, Jung Han; Chae, Gee Sung; Jun, Myung Chul; Hwang, Yong Kee; Baik, Hong Koo; Lee, Woong; Myoung, Jae-Min

    2012-05-01

    The structure of thin-film transistors (TFTs) based on amorphous In-Ga-Zn-O (a-IGZO) was modified by spin coating a suspension of In2O3 nanoparticles on a SiO2/p++ Si layered wafer surface prior to the deposition of IGZO layer by room-temperature sputtering. The number of particles per unit area (surface density) of the In2O3 nanoparticles could be controlled by applying multiple spin coatings of the nanoparticle suspension. During the deposition of IGZO, the In2O3 nanoparticles initially located on the substrate surface migrated to the top of the IGZO layer indicating that they were not embedded within the IGZO layer, but they supplied In to the IGZO layer to increase the In concentration in the channel layer. As a result, the channel characteristics of the a-IGZO TFT were modulated so that the device showed an enhanced performance as compared with the reference device prepared without the nanoparticle treatment. Such an improved device performance is attributed to the nano-scale changes in the structure of (InO)n ordering assisted by increased In concentration in the amorphous channel layer.

  17. Development of Surface-Variable Polymeric Nanoparticles for Drug Delivery to Tumors.

    PubMed

    Han, Ning; Pang, Liang; Xu, Jun; Hyun, Hyesun; Park, Jinho; Yeo, Yoon

    2017-05-01

    To develop nanoparticle drug carriers that interact with cells specifically in the mildly acidic tumor microenvironment, we produced polymeric nanoparticles modified with amidated TAT peptide via a simple surface modification method. Two types of core poly(lactic-co-glycolic acid) nanoparticles (NL and NP) were prepared with a phospholipid shell as an optional feature and covered with polydopamine that enabled the conjugation of TAT peptide on the surface. Subsequent treatment with acid anhydrides such as cis-aconitic anhydride (CA) and succinic anhydride (SA) converted amines of lysine residues in TAT peptide to β-carboxylic amides, introducing carboxylic groups that undergo pH-dependent protonation and deprotonation. The nanoparticles modified with amidated TAT peptide (NLpT-CA and NPpT-CA) avoided interactions with LS174T colon cancer cells and J774A.1 macrophages at pH 7.4 but restored the ability to interact with LS174T cells at pH 6.5, delivering paclitaxel efficiently to the cells following a brief contact time. In LS174T tumor-bearing nude mice, NPpT-CA showed less accumulation in the lung than NPpT, reflecting the shielding effect of amidation, but tumor accumulation of NPpT and NPpT-CA was equally minimal. Comparison of particle stability and protein corona formation in media containing sera from different species suggests that NPpT-CA has been activated and opsonized in mouse blood to a greater extent than those in bovine serum-containing medium, thus losing the benefits of pH-sensitivity expected from in vitro experiments.

  18. Nickel hydroxide nanoparticles-reduced graphene oxide nanosheets film: layer-by-layer electrochemical preparation, characterization and rifampicin sensory application.

    PubMed

    Rastgar, Shokoufeh; Shahrokhian, Saeed

    2014-02-01

    Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of nickel hydroxide nanoparticle-reduced graphene oxide nanosheets (Ni(OH)2-RGO) on a graphene oxide (GO) film pre-cast on a glassy carbon electrode surface. The surface morphology and nature of the nano-hybrid film (Ni(OH)2-RGO) was thoroughly characterized by scanning electron and atomic force microscopy, spectroscopy and electrochemical techniques. The modified electrode appeared as an effective electro-catalytic model for analysis of rifampicin (RIF) by using linear sweep voltammetry (LSV). The prepared modified electrode exhibited a distinctly higher activity for electro-oxidation of RIF than either GO, RGO nanosheets or Ni(OH)2 nanoparticles. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of RGO nanosheets (such as high density of edge plane sites, subtle electronic characteristics and attractive π-π interaction) and unique properties of metal nanoparticles. Under the optimized analysis conditions, the modified electrode showed two oxidation processes for rifampicin at potentials about 0.08 V (peak I) and 0.69 V (peak II) in buffer solution of pH 7.0 with a wide linear dynamic range of 0.006-10.0 µmol L(-1) and 0.04-10 µmol L(-1) with a detection limit of 4.16 nmol L(-1) and 2.34 nmol L(-1) considering peaks I and II as an analytical signal, respectively. The results proved the efficacy of the fabricated modified electrode for simple, low cost and highly sensitive medicine sensor well suited for the accurate determinations of trace amounts of rifampicin in the pharmaceutical and clinical preparations. © 2013 Elsevier B.V. All rights reserved.

  19. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    PubMed

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  20. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria

    PubMed Central

    Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis. PMID:29520142

  1. Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity

    NASA Astrophysics Data System (ADS)

    Chen, Shaoyi; Florinas, Stelios; Teitgen, Abigail; Xu, Ze-Qi; Gao, Changshou; Wu, Herren; Kataoka, Kazunori; Cabral, Horacio; Christie, R. James

    2017-12-01

    Antibodies and antigen-binding fragments (Fabs) can be used to modify the surface of nanoparticles for enhanced target binding. In our previous work, site-specific conjugation of Fabs to polymeric micelles using conventional methods was limited to approximately 30% efficiency, possibly due to steric hindrance related to macromolecular reactants. Here, we report a new method that enables conjugation of Fabs onto a micelle surface in a controlled manner with up to quantitative conversion of nanoparticle reactive groups. Variation of (i) PEG spacer length in a heterofunctionalized cross-linker and (ii) Fab/polymer feed ratios resulted in production of nanoparticles with a range of Fab densities on the surface up to the theoretical maximum value. The biological impact of variable Fab density was evaluated in vitro with respect to cell uptake and cytotoxicity of a drug-loaded (SN38) targeted polymeric micelle bearing anti-EphA2 Fabs. Fab conjugation increased cell uptake and potency compared with non-targeted micelles, although a Fab density of 60% resulted in decreased uptake and potency of the targeted micelles. Altogether, our findings demonstrate that conjugation strategies can be optimized to allow control of Fab density on the surface of nanoparticles and also that Fab density may need to be optimized for a given cell-surface target to achieve the highest bioactivity.

  2. Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier - from Targeting to Safe Administration.

    PubMed

    Gomes, Maria João; Fernandes, Carlos; Martins, Susana; Borges, Fernanda; Sarmento, Bruno

    2017-03-01

    Blood-brain barrier is a tightly packed layer of endothelial cells surrounding the brain that acts as the main obstacle for drugs enter the central nervous system (CNS), due to its unique features, as tight junctions and drug efflux systems. Therefore, since the incidence of CNS disorders is increasing worldwide, medical therapeutics need to be improved. Consequently, aiming to surpass blood-brain barrier and overcome CNS disabilities, silencing P-glycoprotein as a drug efflux transporter at brain endothelial cells through siRNA is considered a promising approach. For siRNA enzymatic protection and efficient delivery to its target, two different nanoparticles platforms, solid lipid (SLN) and poly-lactic-co-glycolic (PLGA) nanoparticles were used in this study. Polymeric PLGA nanoparticles were around 115 nm in size and had 50 % of siRNA association efficiency, while SLN presented 150 nm and association efficiency close to 52 %. Their surface was functionalized with a peptide-binding transferrin receptor, in a site-oriented manner confirmed by NMR, and their targeting ability against human brain endothelial cells was successfully demonstrated by fluorescence microscopy and flow cytometry. The interaction of modified nanoparticles with brain endothelial cells increased 3-fold compared to non-modified lipid nanoparticles, and 4-fold compared to non-modified PLGA nanoparticles, respectively. These nanosystems, which were also demonstrated to be safe for human brain endothelial cells, without significant cytotoxicity, bring a new hopeful breath to the future of brain diseases therapies.

  3. Raman gas sensing of modified Ag nanoparticle SERS

    NASA Astrophysics Data System (ADS)

    Myoung, NoSoung; Yoo, Hyung Keun; Hwang, In-Wook

    2014-03-01

    Recent progress in modified Surface Enhanced Raman Scattering (SERS) using Ag nanoparticles makes them promising optical technique for direct gas sensing of interest. However, SERS has been shown to provide sub ppb level detection of the compounds in the vapor phase. The major problem with the sensitivity scaling-up was in the development of fabrication technology for stability and reproducibility of SERS substrates. We report an optimization of 1-propanethiol coated multiple Ag nanoparticle layers on SiO2 substrate as well as new records of real-time, simultaneous vapor phase detection of toluene and 1-2 dichlorobenzene by the radiation of fiber optic coupled 785 nm diode laser and spectrograph. Multiple depositions of Ag NPs were loaded on SiO2 and soaked in 1-propanethiol solution for 24 hours to modify the surface into hydrophobic due to the characteristics of vapor phase of our interests. Raman bands at 1003 cm-1 and 1130 cm-1 for toluene and 12DCB, respectively were compared to 1089 cm-1 and each gas concentration in 1000 mL flask were calculated as a function of each vapor phase ratio. The saturation of toluene and 12DCB were limited only by 800 ppm and the detectable range was 0.6-800 ppm.

  4. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  5. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-12-01

    Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.

  6. Design and preparation of bi-functionalized short-chain modified zwitterionic nanoparticles.

    PubMed

    Hu, Fenglin; Chen, Kaimin; Xu, Hong; Gu, Hongchen

    2018-05-01

    An ideal nanomaterial for use in the bio-medical field should have a distinctive surface capable of effectively preventing nonspecific protein adsorption and identifying target bio-molecules. Recently, the short-chain zwitterion strategy has been suggested as a simple and novel approach to create outstanding anti-fouling surfaces. In this paper, the carboxyl end group of short-chain zwitterion-coated silica nanoparticles (SiO 2 -ZWS) was found to be difficult to functionalize via a conventional EDC/NHS strategy due to its rapid hydrolysis side-reactions. Hence, a series of bi-functionalized silica nanoparticles (SiO 2 -ZWS/COOH) were designed and prepared by controlling the molar ratio of 3-aminopropyltriethoxysilane (APTES) to short-chain zwitterionic organosiloxane (ZWS) in order to achieve above goal. The synthesized SiO 2 -ZWS/COOH had similar excellent anti-fouling properties compared with SiO 2 -ZWS, even in 50% fetal bovine serum characterized by DLS and turbidimetric titration. Subsequently, SiO 2 -ZWS/COOH 5/1 was chosen as a representative and then demonstrated higher detection signal intensity and more superior signal-to-noise ratios compare with the pure SiO 2 -COOH when they were used as a bio-carrier for chemiluminescence enzyme immunoassay (CLEIA). These unique bi-functionalized silica nanoparticles have many potential applications in the diagnostic and therapeutic fields. Reducing nonspecific protein adsorption and enhancing the immobilized efficiency of specific bio-probes are two of the most important issues for bio-carriers, particularly for a nanoparticle based bio-carrier. Herein, we designed and prepared a bi-functional nanoparticle with anti-fouling property and bio conjugation capacity for further bioassay by improving the short-chain zwitterionic modification strategy we have proposed previously. The heterogeneous surface of this nanoparticle showed effective anti-fouling properties both in model protein solutions and fetal bovine serum (FBS). The modified nanoparticles can also be successfully functionalized with a specific antibody for CLEIA assay with a prominent bio-detection performance even in 50% FBS. In this paper, we also investigated an unexpectedly fast hydrolysis behavior of NHS-activated carboxylic groups within the pure short-chain zwitterionic molecule that led to no protein binding in the short-chain zwitterion modified nanoparticle. Our findings pave a new way for the designing of high performance bio-carriers, demonstrating their strong potential as a robust platform for diagnosis and therapy. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.

    PubMed

    Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun

    2005-12-01

    We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.

  8. Implications of protein- and Peptide-based nanoparticles as potential vehicles for anticancer drugs.

    PubMed

    Elzoghby, Ahmed O; Elgohary, Mayada M; Kamel, Nayra M

    2015-01-01

    Protein-based nanocarriers have gained considerable attention as colloidal carrier systems for the delivery of anticancer drugs. Protein nanocarriers possess various advantages including their low cytotoxicity, abundant renewable sources, high drug-binding capacity, and significant uptake into the targeted tumor cells. Moreover, the unique protein structure offers the possibility of site-specific drug conjugation and tumor targeting using various ligands modifying the surface of protein nanocarriers. In this chapter, we highlight the most important applications of protein nanoparticles (NPs) for the delivery of anticancer drugs. We examine the various techniques that have been utilized for the preparation of anticancer drug-loaded protein NPs. Finally, the current chapter also reviews the major outcomes of the in vitro and in vivo investigations of surface-modified tumor-targeted protein NPs. © 2015 Elsevier Inc. All rights reserved.

  9. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    NASA Astrophysics Data System (ADS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  10. Effective reduction in the nanoparticle sizes of NiO obtained via the pyrolysis of nickel malonate precursor modified using oleylamine surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lontio Fomekong, Roussin, E-mail: lonforou@yahoo.fr; Institut de la Matière Condensée et des Nanosciences, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-La-Neuve; Ngolui Lambi, John

    2016-09-15

    Nickel oxide nanoparticles were synthesized via thermal decomposition of two precursors, the first, a simple nickel malonate and the second, a nickel malonate modified by oleylamine, a surfactant, both having been synthesized by precipitation. While FTIR, TGA and ToF-SIMS were used to characterize the two precursors and to show the presence of oleylamine in the modified precursor, XRD, SEM, TEM and BET were employed to investigate the structure, the morphology and the specific surface area of the decomposition products obtained after pyrolysis. The results showed that the modification of nickel malonate by oleylamine was effective. The XRD results, which showedmore » a cubic structure for the NiO obtained, suggest with SEM an important particle size reduction (at least 54%) when oleylamine was used to modify the nickel malonate precursor. The SEM images also showed a well-defined spherical nanoparticle morphology in both cases, not affected by the presence of oleylamine. The TEM also confirmed the reduction of particle size and their spherical nature but at the same time showed that, in the presence of oleylamine, there was no agglomeration resulting in a more uniform particle size distribution. The specific surface area of the NiO obtained by the oleylamine-modified precursor was 4.7 times larger than that obtained with the regular precursor. This again confirms the particle size reduction. - Highlights: • Nickel malonate precursor has been synthesized by precipitation method. • This precursor was successfully modified by a surfactant (oleylamine). • NiO was identified as the decomposition products of the previous precursors. • Oleylamine has provoked around 54% of particle size reduction of the NiO.« less

  11. Structure of Hydrophobically Modified Phytoglycogen Nanoparticles

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Dutcher, John; Katsaras, John

    Phytoglycogen is a highly branched, polysaccharide nanoparticle produced by some varieties of plants including sweet corn. These particles are attractive candidates for cosmetic, industrial and biomedical applications. Many of these applications result from phytoglycogen's unique interaction with water: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Neutron scattering measurements of native phytoglycogen revealed that the particles have uniform size, uniform radial particle density, and a high level of hydration. Hydrophobically modifying the outer surface of the hydrophilic nanoparticles opens up new applications in food and biomedicine, such as solubilizing and stabilizing bioactive compounds. One such modification is octenyl succinate anhydride (OSA), where the hydrophobicity can be tuned by adjusting the degree of substitution. I will present the results of small angle neutron scattering (SANS) measurements of aqueous dispersions of OSA-modified phytoglycogen with two different degrees of modification. Contrast series SANS measurements have yielded information about the radial density profile, providing insight into the nature of the chemical modification of the particles.

  12. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Surender, E-mail: surender40@gmail.com; Sahare, P.D.

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} dopedmore » ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.« less

  13. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice.

    PubMed

    Kommareddy, Sushma; Amiji, Mansoor

    2007-02-01

    The objective of the present study was to modify thiolated gelatin nanoparticles with poly(ethylene glycol) (PEG) chains and examine their long circulating and tumor-targeting properties in vivo in an orthotopic a human breast adenocarcinoma xenograft model. The crosslinked nanoparticle systems were characterized to have a size of 150-250 nm with rapid payload release properties in a highly reducing environment. Upon PEG modification, the nanoparticle size increased to 300-350 nm in diameter. The presence of PEG chains on the surface was confirmed by characterization with electron spectroscopy for chemical analysis. The in vivo long-circulating potential, biodistribution and passive tumor targeting of the controls, and PEG-modified thiolated gelatin nanoparticles were evaluated by injecting indium-111 (111In)-labeled nanoparticles into breast tumor (MDA-MB-435)-bearing nude mice. Upon modification with PEG, the nanoparticles were found to have longer circulation times, with the plasma and tumor half-lives of 15.3 and 37.8 h, respectively. The results also showed preferential localization of thiolated nanoparticles in the tumor mass. The resulting nanoparticulate systems with long circulation properties could be used to target encapsulated drugs and genes to tumors passively by utilizing the enhanced permeability and retention effect of the tumor vasculature. Copyright (c) 2006 Wiley-Liss, Inc.

  14. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.

    PubMed

    Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2017-10-20

    Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.

  15. Three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) photonic crystals modified electrodes for hydrogen peroxide biosensor.

    PubMed

    Li, Jianlin; Han, Tao; Wei, Nannan; Du, Jiangyan; Zhao, Xiangwei

    2009-12-15

    Gold nanoparticles have been introduced into the wall framework of titanium dioxide photonic crystals by the colloidal crystal template technique. The three-dimensionally ordered macroporous gold-nanoparticle-doped titanium dioxide (3DOM GTD) film was modified on the indium-tin oxide (ITO) electrode surface and used for the hydrogen peroxide biosensor. The direct electron transfer and electrocatalysis of horseradish peroxidase (HRP) immobilized on this film have been investigated. The 3DOM GTD film could provide a good microenvironment for retaining the biological bioactivity, large internal area, and superior conductivity. The HRP/3DOM GTD/ITO electrode exhibited two couples of redox peaks corresponding to the HRP intercalated in the mesopores and adsorbed on the external surface of the film with the formal potential of -0.19 and -0.52V in 0.1M PBS (pH 7.4), respectively. The HRP intercalated in the mesopores showed a surface-controlled process with a single proton transfer. The direct electron transfer between the adsorbed HRP and the electrode is achieved without the aid of an electron mediator. The H(2)O(2) biosensor displayed a rapid eletrocatalytic response (less than 3s), a wide linear range from 0.5 microM to 1.4mM with a detection limit of 0.2 microM, high sensitivity (179.9 microAmM(-1)), good stability and reproducibility. Compared with the free-Au doped titanium dioxide photonic crystals modified electrode, the GTD modified electrode could greatly enhance the response current signal, linear detection range and higher sensitivity. The 3DOM GTD provided a new matrix for protein immobilization and direct transfer study and opened a way for low conductivity electrode biosensor.

  16. Hemispherical platinum : silver core : shell nanoparticles for miRNA detection.

    PubMed

    Spain, Elaine; Adamson, Kellie; Elshahawy, Mohammad; Bray, Isabella; Keyes, Tia E; Stallings, Raymond L; Forster, Robert J

    2017-02-27

    Defects within a self-assembled monolayer (SAM) of dodecanethiol on gold have been used as nucleation sites for the electrodeposition of mushroom shaped platinum nanoparticles (PtNPs). The top surfaces of these PtNPs were then decorated with a layer of silver creating a hemispherical - platinum : silver core : shell nanoparticle (Pt-AgNP). Thiolated probe strand miRNA was then immobilised onto the upper silver surface. These regioselectively modified particles were desorbed by applying a current jump to yield nanoparticles capable of hybridising to a complementary miRNA target with electrocatalysis occurring on the non-functionalized lower surface. A second electrode was functionalized with single stranded capture miRNA that has a sequence that is complementary to an miRNA, miR-132, associated with the childhood cancer, Neuroblastoma but leaves a section of the target available to bind the nucleic acid sequence on the core : shell Pt-AgNPs. Following hybridization of the target and capture strands the surface was exposed to the miRNA labelled electrocatalytic Pt-AgNPs. The concentration of the target was then determined by monitoring the current associated with the reduction of hydrogen peroxide in a solution of H 2 SO 4 . Calibration plots of the log[miRNA] vs. faradaic current were linear from 1 aM to 1 μM and aM concentrations could be detected without the need for chemical amplification of the target, e.g., using PCR or NASBA. The regioselectively modified particles were also immobilised within the interior of gold microcavity arrays via miRNA hybridisation and their Raman properties investigated.

  17. Optical, thermal and combustion properties of self-colored polyamide nanocomposites reinforced with azo dye surface modified ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hajibeygi, Mohsen; Shabanian, Meisam; Omidi-Ghallemohamadi, Mehrdad; Khonakdar, Hossein Ali

    2017-09-01

    New self-colored aromatic-polyamide (PA) nanocomposites containing azo and naphthalene chromophores were prepared with azo-dye surface-modified ZnO nanoparticles (SMZnO) using solution method in dimethylformamide. The X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results showed the uniform distribution for ZnO nanoparticles in the PA matrix. The UV-vis spectra of PA/ZnO nanocomposites (PANC) showed a blue shift as well as reduction in absorbance intensities and the photoluminescence studies revealed that the increasing intensities of the violet emission in SMZnO loading. From thermo gravimetric analysis (TGA), the temperature at 10% mass loss (T10) increased from 291.8 °C to 387.6 °C for PANC containing 8 mass% of SMZnO, as well as the char yield enhanced significantly, which was about 23.5% higher than the neat PA. The peak heat release rate resulted from microscale combustion calorimeter (MCC), by 8 mass% loading of SMZnO, decreased about 56.9% lower than the neat PA.

  18. Spectroscopic Characterization and Nanosafety of Ag-Modified Antibacterial Leather and Leatherette.

    PubMed

    Sportelli, Maria Chiara; Picca, Rosaria Anna; Paladini, Federica; Mangone, Annarosa; Giannossa, Lorena Carla; Franco, Cinzia Di; Gallo, Anna Lucia; Valentini, Antonio; Sannino, Alessandro; Pollini, Mauro; Cioffi, Nicola

    2017-07-29

    The development of antibacterial coatings is of great interest from both industry and the consumer's point of view. In this study, we characterized tanned leather and polyurethane leatherette, typically employed in the automotive and footwear industries, which were modified by photo-deposition of antibacterial silver nanoparticles (AgNPs). Material surface chemical composition was investigated in detail by X-ray photoelectron spectroscopy (XPS). The material's antibacterial capability was checked against Escherichia coli and Staphylococcus aureus , as representative microorganisms in cross transmissions. Due to the presence of silver in a nanostructured form, nanosafety issues were considered, as well. Ionic release in contact media, as well as whole nanoparticle release from treated materials, were quantitatively evaluated, thus providing specific information on potential product nanotoxicity, which was further investigated through cytocompatibility MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, also after surface abrasion of the materials. The proved negligible nanoparticle release, as well as the controlled release of antibacterial ions, shed light on the materials' potentialities, in terms of both high activity and safety.

  19. Spectroscopic Characterization and Nanosafety of Ag-Modified Antibacterial Leather and Leatherette

    PubMed Central

    Mangone, Annarosa; Di Franco, Cinzia; Gallo, Anna Lucia; Valentini, Antonio; Sannino, Alessandro

    2017-01-01

    The development of antibacterial coatings is of great interest from both industry and the consumer’s point of view. In this study, we characterized tanned leather and polyurethane leatherette, typically employed in the automotive and footwear industries, which were modified by photo-deposition of antibacterial silver nanoparticles (AgNPs). Material surface chemical composition was investigated in detail by X-ray photoelectron spectroscopy (XPS). The material’s antibacterial capability was checked against Escherichia coli and Staphylococcus aureus, as representative microorganisms in cross transmissions. Due to the presence of silver in a nanostructured form, nanosafety issues were considered, as well. Ionic release in contact media, as well as whole nanoparticle release from treated materials, were quantitatively evaluated, thus providing specific information on potential product nanotoxicity, which was further investigated through cytocompatibility MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, also after surface abrasion of the materials. The proved negligible nanoparticle release, as well as the controlled release of antibacterial ions, shed light on the materials’ potentialities, in terms of both high activity and safety. PMID:28758912

  20. Highly-branched anisotropic hybrid nanoparticles at surfaces.

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir

    2009-03-01

    We present a brief overview of our recent studies on combined hybrid anisotropic structures composed of inorganic nanoparticles and highly branched molecules such as modified silsesquioxanes polyhedra cores (POSS) with mixed hydrophobic-hydrophilic tails and silver nanowires with functionalized star block copolymer with embedded gold nanoparticles (nanocobs). We demonstrate two-stage melting of that branched POSS and their ability to form monolayer and multilayered LB structures. On the other hand, we observed that silver-BCP-gold nanocobs display extremely bright Raman scattering caused by surface enhanced Raman effect with very different longitudinal and transversal optical properties as revealed by high-resolution confocal Raman microscopy. To study these hybrid nanostructures we applied combined AFM, SEM, TEM, XPS, SERS, UV-vis, and XR techniques.

  1. Mechanical properties of PEO-coatings on the surface of magnesium alloy MA8 modified by TiN nanoparticles

    NASA Astrophysics Data System (ADS)

    Imshinetsky, Igor M.; Mashtalyar, Dmitriy V.; Sunebryukhov, Sergey L.; Gnedenkov, Sergey V.

    2017-09-01

    The methods to form protective coatings by the plasma electrolytic oxidation method (PEO) in the electrolytic system containing nanosized particles of titanium nitride has been develoted. Tribological and morfological studies of the composite coatings have been carried out. It has been established that the microhardness of the coating with nanoparticles concentration of 3 g/l increases by 2 folds, while the wear resistance - by 2.2 fold, as compared to respective values for the PEO-coating formed in the electrolyte without nanoparticles.

  2. Structural and dielectric properties of CTAB modified ZrO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sidhu, Gaganpreet Kaur; Tripathi, S. K.; Kumar, Rajesh

    2016-05-01

    Zirconia (ZrO2) has been considered as one of the most investigated materials among various metal oxides due its outstanding dielectric properties and ionic conduction properties, which is mainly due to its high oxygen ion conduction. ZrO2 nanoparticles were synthesized using surfactant (CTAB) to study the variation of its dielectric behavior at room temperature. Surfactants form a unique class of chemical compounds, because of their remarkable ability to influence the properties of surfaces and interfaces of nanostructures. The dielectric properties of prepared nanoparticles were studied using LCR meter.

  3. "Click" on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging.

    PubMed

    Gao, Ming Xuan; Yang, Lin; Zheng, Yi; Yang, Xiao Xi; Zou, Hong Yan; Han, Jing; Liu, Ze Xi; Li, Yuan Fang; Huang, Cheng Zhi

    2017-02-10

    Surface functionalization is an essential pre requisite for wide and specific applications of nanoparticles such as photoluminescent (PL) carbon quantum dots (CQDs), but it remains a major challenge. In this report, alkynylated CQDs, prepared from carboxyl-rich CQDs through amidation with propargylamine in the presence of 1,1'-carbonyldiimidazole, were modified efficiently with azido molecular beacon DNA through a copper(I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC). As a proof-of-concept, the DNA-modified CQDs are then bonded with gold nanoparticles (AuNPs, 5 nm) through a gold-sulfur bond. Owing to the emission enhancement, this complex can then be applied to the recognition of a single-base- mismatched target. The same functionalizing strategy applied to click the alkynylated CQDs with a nuclear localization sequence (NLS) peptide showed that the NLS-modified CQDs could target the nuclei specifically. These results indicate that surface functionalization of CQDs through a nonstoichiometric copper chalcogenide nanocrystal- (nsCuCNC-) catalyzed click reaction is efficient, and has significant potential in the fields of biosensing and bioimaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multifunctional Surface Modification of Nanodiamonds Based on Dopamine Polymerization.

    PubMed

    Zeng, Yun; Liu, Wenyan; Wang, Zheyu; Singamaneni, Srikanth; Wang, Risheng

    2018-04-03

    Surface functionalization of nanodiamonds (NDs), which is of great interest in advanced material and therapeutic applications, requires the immobilization of functional species, such as nucleic acids, bioprobes, drugs, and metal nanoparticles, onto NDs' surfaces to form stable nanoconjugates. However, it is still challenging to modify the surface of NDs due to the complexity of their surface chemistry and the low density of each functional group on the surfaces of NDs. In this work, we demonstrate a general applicable surface functionalization approach for the preparation of ND-based core-shell nanoconjugates using dopamine polymerization. By taking advantage of the universal adhesion and versatile reactivity of polydopamine, we have effectively conjugated DNA and silver nanoparticles onto NDs. Moreover, the catalytic activity of ND-supported silver nanoparticle was characterized by the reduction of 4-nitrophenol, and the addressability of NDs was tested through DNA hybridization that formed satellite ND-gold nanorod conjugation. This simple and robust method we have presented may significantly improve the capability for attaching various functionalities onto NDs and open up new platforms for applications of NDs.

  5. Surface Functionalization of Diamond Films by Photoreaction of Elemental Sulfur and Their Surface Properties

    NASA Astrophysics Data System (ADS)

    Nakamura, Takako; Ohana, Tsuguyori

    2012-08-01

    A useful method for direct sulfurization of diamond film surfaces by photoreaction of elemental sulfur was developed. The introduction of thiol groups onto the diamond films was confirmed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM) analyses. The sulfur-modified diamond films attached to gold nanoparticles by self-assembly. The degrees of thiol group introduction and gold attachment were found to depend on photoirradiation time by monitoring by XPS. The gold-modified diamond film was observed to act as a surface-enhanced Raman scattering substrate for measurement of picric acid.

  6. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials

    PubMed Central

    2015-01-01

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096

  7. Nanoparticle-Reinforced Associative Network Hydrogels

    PubMed Central

    Agrawal, Sarvesh K.; Sanabria-DeLong, Naomi; Tew, Gregory N.; Bhatia, Surita R.

    2009-01-01

    ABA triblock copolymers in solvents selective for the midblock are known to form associative micellar gels. We have modified the structure and rheology of ABA triblock copolymer gels comprising poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) through addition of a clay nanoparticle, laponite. Addition of laponite particles resulted in additional junction points in the gel via adsorption of the PEO corona chains onto the clay surfaces. Rheological measurements showed that this strategy led to a significant enhancement of the gel elastic modulus with small amounts of nanoparticles. Further characterization using SAXS and DLS confirmed that nanoparticles increase the intermicellar attraction and result in aggregation of PLA-PEO-PLA micelles. PMID:18947244

  8. Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; McNatt, Jeremiah

    2010-01-01

    A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.

  9. Formic acid electrooxidation on thallium-decorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity.

    PubMed

    Busó-Rogero, Carlos; Perales-Rondón, Juan V; Farias, Manuel J S; Vidal-Iglesias, Francisco J; Solla-Gullon, Jose; Herrero, Enrique; Feliu, Juan M

    2014-07-21

    Thallium modified shape-controlled Pt nanoparticles were prepared and their electrocatalytic activity towards formic acid electrooxidation was evaluated in 0.5 M sulfuric acid. The electrochemical and in situ FTIR spectroscopic results show a remarkable improvement in the electrocatalytic activity, especially in the low potential region (around 0.1-0.2 V vs. RHE). Cubic Pt nanoparticles modified with Tl were found to be more active than the octahedral Pt ones in the entire range of Tl coverages and potential windows. In situ FTIR spectra indicate that the promotional effect produced by Tl results in the inhibition of the poisoning step leading to COads, thus improving the onset potential for the complete formic acid oxidation to CO2. Chronoamperometric experiments were also performed at 0.2 V to evaluate the stability of the electrocatalysts at constant potential. Finally, experiments with different concentrations of formic acid (0.05-1 M) were also carried out. In all cases, Tl-modified cubic Pt nanoparticles result to be the most active. All these facts reinforce the importance of controlling the surface structure of the electrocatalysts to optimize their electrocatalytic properties.

  10. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Modification of Ag nanoparticles with mixed thiols for improved SERS detection of poorly adsorbing target molecules: detection of MDMA.

    PubMed

    Stewart, Alan; Bell, Steven E J

    2011-04-21

    Here we report an example of a mixed thiol monolayer on the surface of Ag nanoparticles which promotes adsorption and quantitative SERS detection of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"); the thiols in the mixed monolayers act synergistically since MDMA does not adsorb onto colloids modified with either of the thiols separately. © The Royal Society of Chemistry 2011

  12. Acid-Sensitive Sheddable PEGylated, Mannose-Modified Nanoparticles Increase the Delivery of Betamethasone to Chronic Inflammation Sites in a Mouse Model.

    PubMed

    O'Mary, Hannah L; Aldayel, Abdulaziz M; Valdes, Solange A; Naguib, Youssef W; Li, Xu; Salvady, Karun; Cui, Zhengrong

    2017-06-05

    Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions.

  13. The structure and properties of the carbon non-wovens modified with bioactive nanoceramics for medical applications.

    PubMed

    Fraczek-Szczypta, A; Rabiej, S; Szparaga, G; Pabjanczyk-Wlazlo, E; Krol, P; Brzezinska, M; Blazewicz, S; Bogun, M

    2015-06-01

    The paper presents the results of the manufacture of carbon fibers (CF) from polyacrylonitrile fiber precursor containing bioactive ceramic nanoparticles. In order to modify the precursor fibers two types of bio-glasses and wollastonite in the form of nanoparticles were used. The processing variables of the thermal conversion of polyacrylonitrile (PAN) precursor fibers into carbon fibers were determined using the FTIR method. The carbonization process of oxidized PAN fibers was carried out up to 1000°C. The carbon fibers were characterized by a low ordered crystalline structure. The bioactivity tests of carbon fibers modified with a ceramic nanocomponent carried out in the artificial serum (SBF) revealed the apatite precipitation on the fibers' surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Hg(2+) detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles.

    PubMed

    Cinti, Stefano; Santella, Francesco; Moscone, Danila; Arduini, Fabiana

    2016-05-01

    A miniaturized screen-printed electrode (SPE) modified with a carbon black-gold nanoparticle (CBNP-AuNP) nanocomposite has been developed as an electrochemical sensor for the detection of inorganic mercury ions (Hg(2+)). The working electrode surface has been modified with nanocomposite constituted of CBNPs and AuNPs by an easy drop casting procedure that makes this approach extendible to an automatable mass production of modified SPEs. Square wave anodic stripping voltammetry (SWASV) was adopted to perform Hg(2+) detection, revealing satisfactory sensitivity and detection limit, equal to 14 μA ppb(-1) cm(-2) and 3 ppb, respectively. The applicability of the CBNP-AuNP-SPE for the determination of inorganic mercury has been assessed in river water by a simple filtration and acidification of the sample as well as in soil by means of a facile acidic extraction procedure assisted by ultrasound.

  15. Approach to Rapid Synthesis and Functionalization of Iron Oxide Nanoparticles for High Gene Transfection.

    PubMed

    Stephen, Zachary R; Dayringer, Christopher J; Lim, Josh J; Revia, Richard A; Halbert, Mackenzie V; Jeon, Mike; Bakthavatsalam, Arvind; Ellenbogen, Richard G; Zhang, Miqin

    2016-03-01

    Surface functionalization of theranostic nanoparticles (NPs) typically relies on lengthy, aqueous postsynthesis labeling chemistries that have limited ability to fine-tune surface properties and can lead to NP heterogeneity. The need for a rapid, simple synthesis approach that can provide great control over the display of functional moieties on NP surfaces has led to increased use of highly selective bioorthoganol chemistries including metal-affinity coordination. Here we report a simple approach for rapid production of a superparamagnetic iron oxide NPs (SPIONs) with tunable functionality and high reproducibility under aqueous conditions. We utilize the high affinity complex formed between catechol and Fe((III)) as a means to dock well-defined catechol modified polymer modules on the surface of SPIONs during sonochemical coprecipitation synthesis. Polymer modules consisted of chitosan and poly(ethylene glycol) (PEG) copolymer (CP) modified with catechol (CCP), and CCP functionalized with cationic polyethylenimine (CCP-PEI) to facilitate binding and delivery of DNA for gene therapy. This rapid synthesis/functionalization approach provided excellent control over the extent of PEI labeling, improved SPION magnetic resonance imaging (MRI) contrast enhancement and produced an efficient transfection agent.

  16. Enhanced preferential cytotoxicity through surface modification: synthesis, characterization and comparative in vitro evaluation of TritonX-100 modified and unmodified zinc oxide nanoparticles in human breast cancer cell (MDA-MB-231).

    PubMed

    Kc, Biplab; Paudel, Siddhi Nath; Rayamajhi, Sagar; Karna, Deepak; Adhikari, Sandeep; Shrestha, Bhupal G; Bisht, Gunjan

    2016-01-01

    Nanoparticles (NPs) are receiving increasing interest in biomedical research owing to their comparable size with biomolecules, novel properties and easy surface engineering for targeted therapy, drug delivery and selective treatment making them a better substituent against traditional therapeutic agents. ZnO NPs, despite other applications, also show selective anticancer property which makes it good option over other metal oxide NPs. ZnO NPs were synthesized by chemical precipitation technique, and then surface modified using Triton X-100. Comparative study of cytotoxicity of these modified and unmodified NPs on breast cancer cell line (MDA-MB-231) and normal cell line (NIH 3T3) were carried out. ZnO NPsof average size 18.67 ± 2.2 nm and Triton-X modified ZnO NPs of size 13.45 ± 1.42 nm were synthesized and successful characterization of synthesized NPs was done by Fourier transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), transmission electron microscopy (TEM) analysis. Surface modification of NPs was proved by FT-IR analysis whereas structure and size by XRD analysis. Morphological analysis was done by TEM. Cell viability assay showed concentration dependent cytotoxicity of ZnO NPs in breast cancer cell line (MDA-MB-231) whereas no positive correlation was found between cytotoxicity and increasing concentration of stress in normal cell line (NIH 3T3) within given concentration range. Half maximum effective concentration (EC50) value for ZnO NPs was found to be 38.44 µg/ml and that of modified ZnO NPs to be 55.24 µg/ml for MDA-MB-231. Crystal violet (CV) staining image showed reduction in number of viable cells in NPs treated cell lines further supporting this result. DNA fragmentation assay showed fragmented bands indicating that the mechanism of cytotoxicity is through apoptosis. Although use of surfactant decreases particle size, toxicity of modified ZnO NPs were still less than unmodified NPs on MDA-MB-231 contributed by biocompatible surface coating. Both samples show significantly less toxicity towards NIH 3T3 in concentration independent manner. But use of Triton-X, a biocompatible polymer, enhances this preferentiality effect. Since therapeutic significance should be analyzed through its comparative effect on both normal and cancer cells, possible application of biocompatible polymer modified nanoparticles as therapeutic agent holds better promise.Graphical abstractSurface coating, characterization and comparative in vitro cytotoxicity study on MDA-MB 231 and NIH 3T3 of ZnO NPs showing enhanced preferentiality by biocompatible surface modification.

  17. Synthesis, stabilization, and characterization of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    White, Gregory Von, II

    Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.

  18. Novel lectin-modified poly(ethylene-co-vinyl acetate) mucoadhesive nanoparticles of carvedilol: preparation and in vitro optimization using a two-level factorial design.

    PubMed

    Varshosaz, Jaleh; Moazen, Ellaheh

    2014-08-01

    Carvedilol used in cardiovascular diseases has systemic bioavailability of 25-35%. The objective of this study was production of lectin-modified poly(ethylene-co-vinyl acetate) (PEVA) as mucoadhesive nanoparticles to enhance low oral bioavailability of carvedilol. Nanoparticles were prepared by the emulsification-solvent evaporation method using a two-level factorial design. The studied variables included the vinyl acetate content of the polymer, drug and polymer content. Surface modification of PEVA nanoparticles with lectin was carried out by the adsorption method and coupling efficiency was determined using the Bradford assay. Mucoadhesion of nanoparticles was studied on mucin. The particle size, polydispersity index, zeta potential, drug loading and drug release from nanoparticles were studied. The morphology of nanoparticles and crystalline status of the entrapped drug were studied by SEM, DSC and XRD tests, respectively. Results showed the most effective factor on particle size and zeta potential was the interaction of polymer and drug content while, drug loading efficiency and mucoadhesion were more affected by the interaction of polymer type and drug content. Drug concentration was the most effective variable on the drug release rate. The drug was in amorphous state in nanoparticles. The optimum nanoparticles obtained by 45 mg of copolymer contained 12% vinyl acetate/4.3 ml of organic phase and drug concentration of 37.5 wt% of polymer.

  19. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  20. Synthesis and surface modification of magnetic nanoparticles for potential applications in sarcomas

    NASA Astrophysics Data System (ADS)

    Shahbazi, S.; Wang, X.; Yang, J.-L.; Jiang, X. C.; Ryan, R.; Yu, A. B.

    2015-06-01

    The application of nano-science in cancer therapy has become one of the most attractive tools in scientific research because of its versatility in diagnosis and treatment. Among the different types of nanoparticles, iron oxide nanoparticles (IONPs) are renowned for their low toxicity and suitability for therapeutic and diagnostic, or `theragnostic,' approach against different types of cancers. Research investigating the effect of IONPs with different physiochemical characteristics in sarcoma is limited. In this study, we initially prepared IONPs of different sizes (200, 100, 20, and 10 nm) and modified their surface with different types of coatings (polyethylene glycol, d-glucose, and silica) under mild conditions. Various methods were used to illustrate and quantify cellular uptake of magnetic nanoparticles in sarcoma cell lines. Finally, the safety of the uptaken nanoparticles on diverse human sarcoma cell lines was investigated and found that the readily available IONPs can be taken up by synovial sarcoma and liposarcoma cell lines in the selective histological tumor types; however, they seem highly toxic for fibrous histiocytoma and fibrosarcoma.

  1. Hierarchically structured graphene-carbon nanotube-cobalt hybrid electrocatalyst for seawater battery

    NASA Astrophysics Data System (ADS)

    Suh, Dong Hoon; Park, Sul Ki; Nakhanivej, Puritut; Kim, Youngsik; Hwang, Soo Min; Park, Ho Seok

    2017-12-01

    The design of cost-effective and highly active catalysts is a critical challenge. Inspired by the strong points of stability and conductivity of carbon nanotubes (CNTs), high catalytic activity of Co nanoparticles, and rapid ion diffusion and large accessible area of three-dimensional (3D) graphene, we demonstrate a novel strategy to construct a hierarchical hybrid structure consisting of Co/CoOx nanoparticles-incorporated CNT branches onto the 3D reduced graphene oxide (rGO) architecture. The surface-modified 3D rGO by steam activation process has a large surface area and abundant defect sites, which serve as active sites to uniformly grow Co/CoOx nanoparticles. Furthermore, the CNTs preserve their performance stably by encapsulating Co nanoparticles, while the uniformly decorated Co/CoOx nanoparticles exhibit superior electrocatalytic activity toward oxygen evolution/reduction reaction due to highly exposed active sites. Employing the hybrid particle electrocatalyst, the seawater battery operates stably at 0.01 mA cm-2 during 50 cycles, owing to the good electrocatalytic ability.

  2. Grafting of allylimidazole and n-vinylcaprolactam as a thermosensitive polymer onto magnetic nano-particles for the extraction and determination of celecoxib in biological samples.

    PubMed

    Morovati, Atefeh; Ahmad Panahi, Homayon; Yazdani, Farzaneh

    2016-11-20

    In this research, a novel method is reported for the surface grafting of n-vinylcaprolactam as a thermosensitive agent and allylimidazole with affinity toward celecoxib onto magnetic nano-particles. The grafted nano-particles were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The surface morphology was studied using Scanning Electron Microscopy. The resulting grafted nano-particles were used for the determination of trace celecoxib in biological human fluids and pharmaceutical samples. The profile of celecoxib uptake by the modified magnetic nano-particles indicated good accessibility of the active sites in the grafted copolymer. It was found that the adsorption behavior could be fitted by the Langmuir adsorption isotherm model. Solid phase extraction for biological fluids such as urine and serum were investigated. In this study, urine extraction recovery of more than 95% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels

    NASA Astrophysics Data System (ADS)

    Toghraie, Davood; Mokhtari, Majid; Afrand, Masoud

    2016-10-01

    In this paper, simulation of Poiseuille flow within nanochannel containing Copper and Platinum particles has been performed using molecular dynamic (MD). In this simulation LAMMPS code is used to simulate three-dimensional Poiseuille flow. The atomic interaction is governed by the modified Lennard-Jones potential. To study the wall effects on the surface tension and density profile, we placed two solid walls, one at the bottom boundary and the other at the top boundary. For solid-liquid interactions, the modified Lennard-Jones potential function was used. Velocity profiles and distribution of temperature and density have been obtained, and agglutination of nanoparticles has been discussed. It has also shown that with more particles, less time is required for the particles to fuse or agglutinate. Also, we can conclude that the agglutination time in nanochannel with Copper particles is faster that in Platinum nanoparticles. Finally, it is demonstrated that using nanoparticles raises thermal conduction in the channel.

  4. Ligand Size and Conformation Affect the Behavior of Nanoparticles Coated with in Vitro and in Vivo Protein Corona.

    PubMed

    Zhang, Huajin; Wu, Tianmu; Yu, Wenqi; Ruan, Shaobo; He, Qin; Gao, Huile

    2018-03-14

    Protein corona is immediately established on the surface of nanoparticles upon their introduction into biological milieu. Several studies have shown that the targeting efficiency of ligand-modified nanoparticles is attenuated or abolished owing to the protein adsorption. Here, transferrin receptor-targeting ligands, including LT7 (CHAIYPRH), DT7 (hrpyiahc, all d-form amino acids), and transferrin, were used to identify the influence of the ligand size and conformation on protein corona formation. The results showed that the targeting capacity of ligand-modified nanoparticles was lost after incubation with plasma in vitro, whereas it was partially retained after in vivo corona formation. Results from sodium dodecyl sulfate polyacrylamide gel electrophoresis and liquid chromatography-mass spectrometry revealed the difference in the composition of in vitro and in vivo corona, wherein the ligand size and conformation played a critical role. Differences were observed in cellular internalization and exocytosis profiles on the basis of the ligand and corona source.

  5. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications

    PubMed Central

    Wu, Wei; Wu, Zhaohui; Yu, Taekyung; Jiang, Changzhong; Kim, Woo-Sik

    2015-01-01

    This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed. PMID:27877761

  6. Nanoparticles Formed Onto/Into Halloysite Clay Tubules: Architectural Synthesis and Applications.

    PubMed

    Vinokurov, Vladimir A; Stavitskaya, Anna V; Glotov, Aleksandr P; Novikov, Andrei A; Zolotukhina, Anna V; Kotelev, Mikhail S; Gushchin, Pawel A; Ivanov, Evgenii V; Darrat, Yusuf; Lvov, Yuri M

    2018-01-04

    Nanoparticles, being objects with high surface area are prone to agglomeration. Immobilization onto solid supports is a promising method to increase their stability and it allows for scalable industrial applications, such as metal nanoparticles adsorbed to mesoporous ceramic carriers. Tubular nanoclay - halloysite - can be an efficient solid support, enabling the fast and practical architectural (inside / outside) synthesis of stable metal nanoparticles. The obtained halloysite-nanoparticle composites can be employed as advanced catalysts, ion-conducting membrane modifiers, inorganic pigments, and optical markers for biomedical studies. Here, we discuss the possibilities to synthesize halloysite decorated with metal, metal chalcogenide, and carbon nanoparticles, and to use these materials in various fields, especially in catalysis and petroleum refinery. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG

    NASA Astrophysics Data System (ADS)

    Swarna; Pattanayek, Sudip Kumar; Ghosh, Anup Kumar

    2018-03-01

    The present work illustrates the effect of surface modification of silica nanoparticles (500 nm) with 3-(glycidoxypropyl)trimethoxy silane which was carried out at different reaction times. The suspensions prepared from modified and unmodified silica nanoparticles were evaluated for their shear rate-dependent viscosity and strain-frequency-dependent modulus. The linear viscoelastic moduli, viz., storage modulus and loss modulus, were compared with those of nonlinear moduli. The shear-thickened suspensions displayed strain thinning at low-frequency smaller strains and a strong strain overshoot at higher strains, characteristics of a continuous shear thickening fluids. The shear-thinned suspension, conversely, exhibited a strong elastic dominance at smaller strains, but at higher strains, its strain softened observed in the steady shear viscosity plot indicating characteristics of yielding material. Considering higher order harmonic components, the decomposed elastic and viscous stress revealed a pronounced elastic response up to 10% strain and a high viscous damping at larger strains. The current work is one of a kind in demonstrating the effect of silica surface functionalization on the linear and nonlinear viscoelasticity of suspensions showing a unique rheological fingerprint. The suspensions can thus be predicted through rheological studies for their applicability in energy absorbing and damping materials with respect to their mechanical properties.

  8. Controlled preparation of carbon nanotube-iron oxide nanoparticle hybrid materials by a modified wet impregnation method

    NASA Astrophysics Data System (ADS)

    Tsoufis, Τheodoros; Douvalis, Alexios P.; Lekka, Christina E.; Trikalitis, Pantelis N.; Bakas, Thomas; Gournis, Dimitrios

    2013-09-01

    We report a novel, simple, versatile, and reproducible approach for the in situ synthesis of iron oxide nanoparticles (NP) on the surface of carbon nanotubes (CNT). Chemically functionalized single- or multi-wall CNT were used as nanotemplates for the synthesis of a range of very small (<10 nm) ferrimagnetic and/or anti-ferromagnetic iron oxide NP on their surface. For the synthesis of the hybrid materials, we employed for the first time a modified wet impregnation method involving the adsorption of ferric cations (as nanoparticle's precursor) on the functionalized nanotube surface and the subsequent interaction with acetic acid vapors followed by calcination at 400 °C under different atmospheres (air, argon, and oxygen). X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and magnetization measurements were used to study in-detail the morphology, size, and type of crystalline phases in the resulting hybrid materials. In addition, Raman measurements were used to monitor possible structural changes of the nanotubes during the synthetic approach. The experimental results were further supported by density functional theory calculations. These calculations were also used to disclose, how the type of the carbon nanotube template affects the nature and the size of the resulting NP in the final hybrids.

  9. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process.

    PubMed

    Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus

    2015-06-14

    In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.

  10. "Mixed-charge self-assembled monolayers" as a facile method to design pH-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy.

    PubMed

    Li, Huan; Liu, Xiangsheng; Huang, Nan; Ren, Kefeng; Jin, Qiao; Ji, Jian

    2014-01-01

    The acidic microenvironment of tumor tissues has proven to be one of the major differences from other normal tissues. The near-infrared (NIR) light irradiation of aggregated gold nanoparticles in a tumor acidic pH-induced manner could then provide an effect approach to treat solid tumors with the advantage of minimizing the undesired damage to normal tissues. Although it is well-known the aggregation of larger nanoparticles will result in a better NIR photothermal effect, the preparation of pH-sensitive gold nanoparticles in large sizes remains a big challenge because of their worse dispersive stability. In this paper, we introduce a facile way to endow large gold nanoparticles with tunable pH-aggregation behaviors by modifying the nanoparticle surface with mixed-charge self-assembly monolayers compromising positively and negatively charged thiol ligands. Four different size nanoparticles were used to study the general principle of tailoring the pH-induced aggregation behaviors of mixed-charge gold nanoparticles (MC-GNPs) by adjusting the surface ligand composition. With proper surface ligand composition, the MC-GNPs in four different sizes that all exhibited aggregation at tumor acidic pH were obtained. The biggest MC-GNPs showed the most encouraging aggregation-enhanced photothermal efficacy in vitro when they formed aggregates. The mixed-charge self-assembled monolayers were then proved as a facile method to design pH-induced aggregation of large gold nanoparticles for better NIR photothermal cancer therapy.

  11. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  12. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  13. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  14. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  15. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  16. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun

    2018-06-01

    Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.

  17. Surface nucleation and independent growth of Ce(OH)4 within confinement space on modified carbon black surface to prepare nano-CeO2 without agglomeration

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Xia, Chunhui; Li, Kaitao; Lin, Yanjun

    2018-04-01

    Highly dispersed negative carboxyl groups can be formed on carbon black (CB) surface modified with strong nitric acid. Therefore positive cations can be uniformly absorbed by carboxyl groups and precipitated within a confinement space on modified CB surface to prepare highly dispersed nanomaterials. In this paper, the formation and dispersion status of surface negative carboxyl groups, adsorption status of Ce3+, surface confinement nucleation, crystallization and calcination process were studied by EDS, SEM, and laser particle size analysis. The results show that the carboxyl groups formed on modified CB surface are highly dispersed, and Ce3+ cations can be uniformly anchored by carboxyl groups. Therefore, highly dispersed Ce3+ can react with OH- within a confinement surface region to form positive nano-Ce(OH)4 nuclei which also can be adsorbed by electrostatic attraction. After independent growth of Ce(OH)4 without agglomeration, highly dispersed CeO2 nanoparticles without agglomeration can be prepared together with the help of effectively isolates by CO2 released in the combustion of CB.

  18. Impacts of Cation Type and Clay on Transport of Surface-modified Nanoparticles through Saturated Sand Columns

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Wan, J.; Tokunaga, T. K.

    2010-12-01

    Transport of three different nanoparticles (NPs) was studied in columns packed with different sands (unwashed Accusand, washed Accusand, and ultrapure quartz) at different ionic strengths (IS) and cation types. The NPs were functionalized (polyacrylic acid) quantum dots (QDs), carboxylic-modified latex, and bare silica. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis showed there were regions on the unwashed Accusand grains covered with clay particles. The SEM images of washed Accusand showed that the sand surfaces contained significantly less clay coatings. The breakthrough curves (BTCs) of QDs and latex NPs from unwashed Accusand columns showed minute deposition at 50 and 100 mM Na+. However, significant NP deposition occurred in unwashed Accusand columns at 0.5, 1, and 2 mM Ca2+. The amount of deposition increased as the Ca2+ concentration was increased. These results suggest that, in contrast to monovalent Na+, divalent Ca2+ enhanced deposition of the NPs. The BTCs of QDs and latex NPs in washed Accusand exhibited a similar trend as those of unwashed Accusand, however, much less deposition occurred at any given IS. The BTCs from the ultrapure quartz sand column showed negligible QD deposition at 2 mM Ca2+. Following completion of column experiments, a few Accusand sand grains were analyzed with SEM and the images showed that most of QDs were deposited on the clay surfaces. In contrast with our results from surface-modified NPs, the column experiments using bare silica NPs at 5 mM Ca2+ in unwashed Accusand showed negligible deposition. The enhanced deposition of surface-modified NPs may be attributed to cation bridging in which Ca2+ cations serve as a bridge between the NP, which contain carboxyl group on its surface, and negatively charged clay surfaces at 7. Because Ca2+ is commonly a major cation in groundwater, our results suggest that transport of carboxylic ligand-modified NPs may be very limited in subsurface environments.

  19. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  20. Biodesulfurization of Dibenzothiophene by Microbial Cells Coated with Magnetite Nanoparticles

    PubMed Central

    Shan, GuoBin; Xing, JianMin; Zhang, HuaiYing; Liu, HuiZhou

    2005-01-01

    Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (δs) was 8.39 emu · g−1. The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability. PMID:16085841

  1. Modifications in nanoparticle-protein interactions by varying the protein conformation

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Yadav, I.; Aswal, V. K.; Kohlbrecher, J.

    2017-05-01

    Small-angle neutron scattering has been used to study the interaction of silica nanoparticle with Bovine Serum Albumin (BSA) protein without and with a protein denaturing agent urea. The measurements have been carried out at pH 7 where both the components (nanoparticle and protein) are similarly charged. We show that the interactions in nanoparticle-protein system can be modified by changing the conformation of protein through the presence of urea. In the absence of urea, the strong electrostatic repulsion between the nanoparticle and protein prevents protein adsorption on nanoparticle surface. This non-adsorption, in turn gives rise to depletion attraction between nanoparticles. However, with addition of urea the depletion attraction is completely suppressed. Urea driven denaturation of protein is utilized to expose the positively charged patched of the BSA molecules which eventually leads to adsorption of BSA on nanoparticles eliminating the depletion interaction.

  2. A Mixed Stimuli-Responsive Magnetic and Gold Nanoparticle System for Rapid Purification, Enrichment, and Detection of Biomarkers

    PubMed Central

    Nash, Michael A.; Yager, Paul; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A new diagnostic system for the enrichment and detection of protein biomarkers from human plasma is presented. Gold nanoparticles (AuNPs) were surface-modified with a diblock copolymer synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer contained a thermally-responsive poly(N-isopropylacrylamide) (pNIPAAm) block, a cationic amine-containing block, and a semi-telechelic PEG2-biotin end group. When a mixed suspension of 23 nm pNIPAAm-modified AuNPs was heated with pNIPAAm-coated 10 nm iron oxide magnetic nanoparticles (mNPs) in human plasma, the thermally-responsive pNIPAAm directed the formation of mixed AuNP/mNP aggregates that could be separated efficiently with a magnet. Model studies showed that this mixed nanoparticle system could efficiently purify and strongly enrich the model biomarker protein streptavidin in spiked human plasma. A 10 ng/mL streptavidin sample was mixed with the biotinylated and pNIPAAm modified AuNP and magnetically separated in the mixed nanoparticle system with pNIPAAm mNPs. The aggregates were concentrated into a 50-fold smaller fluid volume at room temperature where the gold nanoparticle reagent redissolved with the streptavidin target still bound. The concentrated gold-labeled streptavidin could be subsequently analyzed directly using lateral flow immunochromatography. This rapid capture and enrichment module thus utilizes the mixed stimuli-responsive nanoparticle system to achieve direct concentration of a gold-labeled biomarker that can be directly analyzed using lateral flow or other rapid diagnostic strategies. PMID:21070026

  3. Synthesis and surface functionalization of silica nanoparticles for nanomedicine

    PubMed Central

    Liberman, Alexander; Mendez, Natalie; Trogler, William C.; Kummel, Andrew C.

    2014-01-01

    There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications. PMID:25364083

  4. Anionic 11-mercaptoundecanoic acid capped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Šimšíková, Michaela; Antalík, Marián; Kaňuchová, Mária; Škvarla, Jiří

    2013-10-01

    The anionic zinc oxide nanoparticles have been prepared at room temperature by a precipitation method using ZnCl2 and NaOH and surface modification with 11-mercaptoundecanoic acid (MUA). Atomic force microscopy (AFM) was used for definition of morphology and size of prepared nanoparticles which was proved by measurements of particle size distribution using Zetasizer. Successful coating with MUA as surfactant was acknowledged by X-ray photoelectron spectroscopy and ATR FT-IR spectroscopy. The isoelectric point (IEP) of ZnO-MUA nanoparticles was obtained by measurements of zeta potential and FT-IR dependence on pH; the obtained value was approximately 3.58. The value of exchanged protons was 2.88 which indicates a positive binding cooperativity of modified nanoparticles.

  5. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    PubMed Central

    Lee, Haisung; Sung, Dongkyung; Kim, Jinhoon; Kim, Byung-Tae; Wang, Tuntun; An, Seong Soo A; Seo, Soo-Won; Yi, Dong Kee

    2015-01-01

    In this study, fluorescent dye-conjugated magnetic resonance (MR) imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. PMID:26357472

  6. AND logic-like pH- and light-dual controlled drug delivery by surface modified mesoporous silica nanoparticles.

    PubMed

    Zhao, Junwei; He, Zhaoshuai; Li, Biao; Cheng, Tanyu; Liu, Guohua

    2017-04-01

    Recently, the controlled drug delivery system has become a potential platform for biomedical application. Herein, we developed a pH and light-dual controlled cargo release system exhibiting AND logic based on MCM-41 mesoporous silica nanoparticles, which was surface modified using β-cyclodextrin (β-CD) with imine bond and azobenzene derivative. The complex of β-CD and azobenzene derivative effectively blocked the cargo delivery in pH=7.0 phosphate buffered saline (PBS) solution without 365nm UV light irradiation. The cargo was fully released when both factors of acidic environment (pH=5.0 PBS) and 365nm UV light irradiation were satisfied, meanwhile only very little cargo was delivered if one factor was satisfied. The result also demonstrates that the opening/closing of the gate and the release of the cargo in small portions can be controlled. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    PubMed

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  8. Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone.

    PubMed

    Wu, Fan; Xu, Tingting; Zhao, Guangyao; Meng, Shuangshuang; Wan, Mimi; Chi, Bo; Mao, Chun; Shen, Jian

    2017-05-30

    Silicone catheter has been widely used in peritoneal dialysis. The research missions of improving blood compatibility and the ability of resisting bacterial adhesion of silicone catheter have been implemented for the biomedical requirements. However, most of modification methods of surface modification were only able to develop the blood-contacting biomaterials with good hemocompatibility. It is difficult for the biomaterials to resist bacterial adhesion. Here, agarose was selected to resist bacterial adhesion, and heparin was chosen to improve hemocompatibility of materials. Both of them were loaded into mesoporous silica nanoparticles (MSNs), which were successfully modified on the silicone film surface via electrostatic interaction. Structures of the mesoporous coatings were characterized in detail by dynamic light scattering, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscope, and water contact angle. Platelet adhesion and aggregation, whole blood contact test, hemolysis and related morphology test of red blood cells, in vitro clotting time tests, and bacterial adhesion assay were performed to evaluate the anticoagulant effect and the ability of resisting bacterial adhesion of the modified silicone films. Results indicated that silicone films modified by MSNs had a good anticoagulant effect and could resist bacterial adhesion. The modified silicone films have potential as blood-contacting biomaterials that were attributed to their biomedical properties.

  9. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution

    NASA Astrophysics Data System (ADS)

    Fan, Tao; Hu, Ruimin; Zhao, Zhenyun; Liu, Yiping; Lu, Ming

    2017-04-01

    A simple and economical micro-dissolved process of embedding titanium dioxide (TiO2) nanoparticles into surface zone of cotton fabrics was developed. TiO2 was coated on cotton fabrics in 7% wt NaOH/12% wt urea aqueous solution at low temperature. Photocatalytic efficiency of cotton fabrics treated with TiO2 nanoparticles was studied upon measuring the photocatalytic decoloration of Rhodamine B (RhB) under ultraviolet irradiation. Self-cleaning property of cotton fabric coated with TiO2 was evaluated with color depth of samples (K/S value). The treated fabrics were characterized using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FITR), tensile strength, stiffness and whiteness. The results indicated, TiO2 nanoparticles could be embedded on the surface layer of cotton fabrics throuth surface micro-dissolve method. Treated cotton fabrics possessed distinct photocatalytic efficiency and self-cleaning properties. Tensile strength and whiteness of modified cotton fabrics appeared moderately increasement.

  10. Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

    PubMed Central

    Venugopal, Adith; Muthuchamy, Nallal; Tejani, Harsh; Gopalan, Anantha-Iyengar; Lee, Kwang-Pill; Lee, Heon-Jin

    2017-01-01

    Objective Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial. PMID:28127534

  11. Synthesis and characterization of SiO2/(PMMA/Fe3O4) magnetic nanocomposites.

    PubMed

    Wang, Zhifei; Guo, Yafei; Li, Song; Sun, Yueming; He, Nongyue

    2008-04-01

    Magnetic silica nanocomposites (magnetic nanoparticles core coated by silica shell) have the wide promising applications in the biomedical field and usually been prepared based on the famous Stöber process. However, the flocculation of Fe3O4 nanoparticles easily occurs during the silica coating, which limits the amount of magnetic silica particles produced in the Stöber process. In this paper, PMMA/Fe3O4 nanoparticles were used in the Stöber process instead of the "nude" Fe3O4 nanoparticles. And coating Fe3O4 with PMMA polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. The results show that the critical concentration of magnetic nanoparticles can increase from 12 mg/L for "nude" Fe3O4 nanoparticles to 3 g/L for PMMA/Fe3O4 nanoparticles during the Stöber process. And before the deposition of silica shell, the surface of PMMA/FeO4 nanoparticles had to be further modified by hydrolyzing them in CH3OH/NH3 x H2O mixture solution, which provides the carboxyl groups on their surface to react further with the silanol groups of silicic acid.

  12. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances.

    PubMed

    Desai, Kashappa Goud

    2016-01-01

    The objective of this review is to summarize recent advances in chitosan nanoparticles prepared by ionotropic gelation. Significant progress has occurred in this area since the method was first reported. The gelation technique has been improved through a number of creative methodological modifications. Ionotropic gelation via electrospraying and spinning disc processing produces nanoparticles with a more uniform size distribution. Large-scale manufacturing of the nanoparticles can be achieved with the latter approach. Hydrophobic and hydrophilic drugs can be simultaneously encapsulated with high efficiency by emulsification followed by ionic gelation. The turbulent mixing approach facilitates nanoparticle formation at a relatively high polymer concentration (5 mg/mL). The technique can be easily tuned to achieve the desired polymer/surface modifications (e.g., blending, coating, and surface conjugation). Using factorial-design-based approaches, optimal conditions for nanoparticle formation can be determined with a minimum number of experiments. New insights have been gained into the mechanism of chitosan-tripolyphosphate nanoparticle formation. Chitosan nanoparticles prepared by ionotropic gelation tend to aggregate/agglomerate in unfavorable environments. Factors influencing this phenomenon and strategies that can be adopted to minimize the instability are discussed. Ionically cross-linked nanoparticles based on native chitosan and modified chitosan have shown excellent efficacy for controlled and targeted drug-delivery applications.

  13. Superparamagnetic nanoparticles for cancer diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Kohler, Nathan

    2005-11-01

    This dissertation describes the development of a magnetic nanoparticle conjugate that can potentially serve as both a contrast enhancement agent in magnetic resonance imaging (MRI) and as a drug carrier in controlled drug release, targeted for cancer diagnostics and therapeutics. In this work, we developed a unique method to synthesize well-dispersed 10-nm superparamagnetic iron oxide nanoparticles (SPION) without using chemical surfactants. This approach is especially advantageous for subsequent surface modification of nanoparticles with functional coatings. To target the SPION for cancer cells in vivo to facilitate MRI contrast enhancement of tumors, we immobilized folic acid on the particle surface. Folic acid is a low molecular weight growth factor over-expressed on many forms of cancer. The covalent immobilization of folic acid to the nanoparticle surface was characterized with FTIR and the intracellular uptake of the folic acid nanoparticles was visualized with scanning confocal microscopy. To use SPION for controlled drug release, we immobilized methotrexate (MTX), a chemotherapeutic drug, to the nanoparticle surface. MTX-modified nanoparticles have several combined advantages including real-time monitoring of drug delivery using MRI, higher intracellular concentrations of methotrexate that increase cellular cytotoxicity, and reduced non-specific uptake by healthy cells within the body. We successfully conducted drug release experiments demonstrating that MTX was released under low pH conditions that mimic the intracellular conditions in the lysozome. To assess cellular cytotoxicity, we tested MTX-nanoparticle conjugates in human breast cancer cells (MCF-7), human cervical cancer cells (HeLa), and glioma cells (9L), and showed that the drug efficacy of MTX-nanoparticle conjugates was similar to that of free MTX. To improve nanoparticle circulation time and intracellular uptake, we developed a novel bifunctional poly(ethylene glycol) (PEG) SAM capable of reducing protein adsorption and particle agglomeration in vivo. The trifluoroethylester-terminal PEG SAM is compatible with oxide surfaces through silanization and ligand functionalization of the chain terminus through amidation. The structure of the silane was characterized by FTIR and NMR. Immobilization of the SAM on the particle surface and ligand grafting of folic acid was confirmed by FTIR and visualized with TEM.

  14. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    PubMed

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  16. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties

    NASA Astrophysics Data System (ADS)

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-01

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.

  17. Dielectric Properties and Electrodynamic Process of Natural Ester-Based Insulating Nanofluid

    NASA Astrophysics Data System (ADS)

    Zou, Ping; Li, Jian; Sun, Cai-Xin; Zhang, Zhao-Tao; Liao, Rui-Jin

    Natural ester is currently used as an insulating oil and coolant for medium-power transformers. The biodegradability of insulating natural ester makes it a preferable insulation liquid to mineral oils. In this work, Fe3O4 nanoparticles were used along with oleic acid to improve the performance of insulating natural ester. The micro-morphology of Fe3O4 nanoparticles before and after surface modification was observed through transmission electron microscopy. Attenuated total reflection-Fourier transform infrared spectroscopy, thermal gravimetric analysis, and differential thermal analysis were employed to investigate functional groups and their thermal stability on the surface-modified Fe3O4 nanoparticles. Basic dielectric properties of natural ester-based insulating nanofluid were measured. The electrodynamic process in the natural ester-based insulating nanofluid is also presented.

  18. A simple and sensitive methodology for voltammetric determination of valproic acid in human blood plasma samples using 3-aminopropyletriethoxy silane coated magnetic nanoparticles modified pencil graphite electrode.

    PubMed

    Zabardasti, Abedin; Afrouzi, Hossein; Talemi, Rasoul Pourtaghavi

    2017-07-01

    In this work, we have prepared a nano-material modified pencil graphite electrode for the sensing of valproic acid (VA) by immobilization 3-aminopropyletriethoxy silane coated magnetic nanoparticles (APTES-MNPs) on the pencil graphite surface (PGE). Electrochemical studies indicated that the APTES-MNPs efficiently increased the electron transfer kinetics between VA and the electrode and the free NH 2 groups of the APTES on the outer surface of magnetic nanoparticles can interact with carboxyl groups of VA. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for VA determination. Under the optimized conditions, the reduction peak current of VA is found to be proportional to its concentration in the range of 1.0 (±0.2) to 100.0 (±0.3) ppm with a detection limit of 0.4 (±0.1) ppm. The whole sensor fabrication process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods with using [Fe(CN) 6 ] 3-/4- as an electrochemical redox indicator. The prepared modified electrode showed several advantages such as high sensitivity, selectivity, ease of preparation and good repeatability, reproducibility and stability. The proposed method was applied to determination of valproic acid in blood plasma samples and the obtained results were satisfactory accurate. Copyright © 2017. Published by Elsevier B.V.

  19. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    PubMed

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-05

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Targeted delivery of peptide-conjugated biocompatible gold nanoparticles into cancer cell nucleus

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Curry, Taeyjuana; Che, Yong; Kopelman, Raoul

    2013-02-01

    Nucleus remains a significant target for nanoparticles with diagnostic and therapeutic applications because both genetic information of the cell and transcription machinery reside there. Novel therapeutic strategies (for example, gene therapy), enabled by safe and efficient delivery of nanoparticles and drug molecules into the nucleus, are heralded by many as the ultimate treatment for severe and intractable diseases. However, most nanomaterials and macromolecules are incapable of reaching the cell nucleus on their own, because of biological barriers carefully honed by evolution including cellular membrane and nuclear envelope. In this paper, we have demonstrated an approach of fabrication of biocompatible gold nanoparticle (Au NP)-based vehicles which can entering into cancer cell nucleus by modifying Au NPs with both PEG 5000 and two different peptides (RGD and nuclear localization signal (NLS) peptide). The Au NPs used were fabricated via femtosecond laser ablation of Au bulk target in deionized water. The Au NPs produced by this method provide chemical free, virgin surface, which allows us to carry out "Sequential Conjugation" to modify their surface with PEG 5000, RGD, and NLS. "Sequential Conjugation" described in this presentation is very critical for the fabrication of Au NP-based vehicles capable of entering into cancer cell nucleus as it enables the engineering and tuning surface chemistries of Au NPs by independently adjusting amounts of PEG and peptides bound onto surface of Au NPs so as to maximize their nuclear targeting performance and biocompatibility regarding the cell line of interest. Both optical microscopy and transmission electron microscopy (TEM) are used to confirm the in vitro targeted nuclear delivery of peptide-conjugated biocompatible Au NPs by showing their presence in the cancer cell nucleus.

  1. The Role of Citric Acid in the Stabilization of Nanoparticles and Colloidal Particles in the Environment: Measurement of Surface Forces between Hafnium Oxide Surfaces in the Presence of Citric Acid.

    PubMed

    Shinohara, Shuhei; Eom, Namsoon; Teh, E-Jen; Tamada, Kaoru; Parsons, Drew; Craig, Vincent S J

    2018-02-27

    The interactions between colloidal particles and nanoparticles determine solution stability and the structures formed when the particles are unstable to flocculation. Therefore, knowledge of the interparticle interactions is important for understanding the transport, dissolution, and fate of particles in the environment. The interactions between particles are governed by the surface properties of the particles, which are altered when species adsorb to the surface. The important interactions in the environment are almost never those between the bare particles but rather those between particles that have been modified by the adsorption of natural organic materials. Citric acid is important in this regard not only because it is present in soil but also as a model of humic and fulvic acids. Here we have studied the surface forces between the model metal oxide surface hafnia in the presence of citric acid in order to understand the stability of colloidal particles and nanoparticles. We find that citric acid stabilizes the particles over a wide range of pH at low to moderate ionic strength. At high ionic strength, colloidal particles will flocculate due to a secondary minimum, resulting in aggregates that are dense and easily redispersed. In contrast, nanoparticles stabilized by citric acid remain stable at high ionic strengths and therefore exist in solution as individual particles; this will contribute to their dispersion in the environment and the uptake of nanoparticles by mammalian cells.

  2. Green synthesis and characterization of size tunable silica-capped gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Shekhawat, Gajendra; Wu, Jin-Song; Bhasin, Aman K. K.; Suri, C. R.; Bhasin, K. K.; Dravid, Vinayak

    2012-08-01

    Silica-coated gold nanoparticles (Au@SiO2) with controlled silica-shell thickness were prepared by a modified Stober's method using 10-nm gold nanoparticles (AuNPs) as seeds. The AuNPs were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source and ammonia as a catalyst. An increase in TEOS concentration resulted in an increase in shell thickness. The NPs were characterized by transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, scanning near-field ultrasound holography and scanning transmission electron microscopy. The method required no surface modification and the synthesized core shell nanoparticles can be used for various types of biological applications.

  3. Nanomaterial strategies for immunodetection

    NASA Astrophysics Data System (ADS)

    Porter, M. D.; Granger, M. C.; Siperko, L. M.; Lipert, R. J.

    2011-06-01

    Metallic nanoparticles are playing increasingly important roles in biodiagnostic platforms. This emergence reflects the need to detect disease indicating entities at increasingly lower levels in human and veterinary diagnostics, homeland security, and food and water safety. To establish this perspective, this paper overviews our recent work using surface enhanced Raman scattering for detection of proteins, viruses, and microorganisms in heterogeneous immunoassays. It describes the assay platform, which is comprised of an antibody-modified capture substrate and gold nanoparticle-based label. The latter draws on the ability to reproducibly construct gold nanoparticles modified with a monolayer of an intrinsically strong Raman scatterer that is then coated with a layer of antibodies. This construct, referred to as an extrinsic Raman label, takes advantage of the signal enhancement of scatterers when coated on nanometer-sized gold particles and the antigenic binding specificity of the immobilized antibody layer. Challenges related to nonspecific adsorption, particle stability, and measurement reproducibility are also briefly examined.

  4. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    PubMed Central

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  5. Selective binding and magnetic separation of His-tagged proteins using Fe3O4/PAM/NTA-Ni2+ Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guo, Huiling; Li, Mengyun; Tu, Shu; Sun, Honghao

    2018-03-01

    Fe3O4 nanoparticles coated with polyacrylamide (PAM) were synthesized. The magnetic core, with an average hydrodynamic size of 235.5 nm, allowed the magnetic nanoparticles (MNPs) rapid separation from solutions under an external magnetic field. NTA-Ni2+ was modified on the surface of Fe3O4/PAM MNPs to selectively trap his-tagged green fluorescent protein (GFP). The results showed that Fe3O4/PAM/NTA-Ni2+ MNPs exhibited remarkable capability of selective binding and separating his-tagged GFP. The adsorption efficiency was 93.37%.

  6. [Properties of synthesized CdS nanoparticles by reverse micelle method].

    PubMed

    Li, Heng-Da; Wang, Qing-Wei; Zhai, Hong-Ju; Li, Wen-Lian

    2008-07-01

    Micelle system with reverse phase (water/CTAB/n-hexyl alcohol/n-heptane) is a weenie liquid-globelet of surface active agent molecule which can be stably and uniformly dispersed in continuous oil medium. The micelle system with reverse phase can work as a "micro-reactor" to synthesize CdS nano-particle with excellent performance. In the present article considering the effects of W value (W= [water]/[surface agent]) of the micelle system with reverse phase, we observed that the ratio of [Cd2+] and [S2-] ions to the original concentrations of the Cd2+ and S2- ions can affect the luminescent properties of CdS nano-particle. Using regurgitant treatment process the surface of CdS nano-particle can be modified, and as a result the defect emission was reduced and even disappeared, but exciton emissions markedly increased. On the other hand, a red-shift of the exciton emission peak with the increase in the particle size was observed, indicating considerable quantum confinement effect. A maximum quantum efficiency of 11% for the synthesized CdS nano-material was achieved.

  7. Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra

    PubMed Central

    Tortiglione, Claudia; Quarta, Alessandra; Malvindi, Maria Ada; Tino, Angela; Pellegrino, Teresa

    2009-01-01

    Initially viewed as innovative carriers for biomedical applications, with unique photophysical properties and great versatility to be decorated at their surface with suitable molecules, nanoparticles can also play active roles in mediating biological effects, suggesting the need to deeply investigate the mechanisms underlying cell-nanoparticle interaction and to identify the molecular players. Here we show that the cell uptake of fluorescent CdSe/CdS quantum rods (QRs) by Hydra vulgaris, a simple model organism at the base of metazoan evolution, can be tuned by modifying nanoparticle surface charge. At acidic pH, amino-PEG coated QRs, showing positive surface charge, are actively internalized by tentacle and body ectodermal cells, while negatively charged nanoparticles are not uptaken. In order to identify the molecular factors underlying QR uptake at acidic pH, we provide functional evidence of annexins involvement and explain the QR uptake as the combined result of QR positive charge and annexin membrane insertion. Moreover, tracking QR labelled cells during development and regeneration allowed us to uncover novel intercellular trafficking and cell dynamics underlying the remarkable plasticity of this ancient organism. PMID:19888325

  8. Effect of stearic acid modified HAp nanoparticles in different solvents on the properties of Pickering emulsions and HAp/PLLA composites.

    PubMed

    Zhang, Ming; Wang, Ai-Juan; Li, Jun-Ming; Song, Na

    2017-10-01

    Stearic acid (Sa) was used to modify the surface properties of hydroxyapatite (HAp) in different solvents (water, ethanol or dichloromethane(CH 2 Cl 2 )). Effect of different solvents on the properties of HAp particles (activation ratio, grafting ratio, chemical properties), emulsion properties (emulsion stability, emulsion type, droplet morphology) as well as the cured materials (morphology, average pore size) were studied. FT-IR and XPS results confirmed the interaction occurred between stearic acid and HAp particles. Stable O/W and W/O type Pickering emulsions were prepared using unmodified and Sa modified HAp nanoparticles respectively, which indicated a catastrophic inversion of the Pickering emulsion happened possibly because of the enhanced hydrophobicity of HAp particles after surface modification. Porous materials with different structures and pore sizes were obtained using Pickering emulsion as the template via in situ evaporation solvent method. The results indicated the microstructures of cured samples are different form each other when HAp was surface modified in different solvents. HAp particles fabricated using ethanol as solvent has higher activation ratio and grafting ratio. Pickering emulsion with higher stability and cured porous materials with uniform morphology were obtained compared with samples prepared using water and CH 2 Cl 2 as solvents. In conclusion, surface modification of HAp in different solvents played a very important role for its stabilized Pickering emulsion as well as the microstructure of cured samples. It is better to use ethanol as the solvent for Sa modified HAp particles, which could increase the stability of Pickering emulsion and obtain cured samples with uniform pore size. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnisch, Jennifer Anne

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performancemore » both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.« less

  10. Attenuation of encrustation by self-assembled inorganic fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Ron, Racheli; Zbaida, David; Kafka, Ilan Z.; Rosentsveig, Rita; Leibovitch, Ilan; Tenne, Reshef

    2014-04-01

    Ureteral stents and urethral catheters are commonly used medical devices for maintaining urinary flow. However, long-term placement (>30 days) of these devices in the urinary tracts is limited by the development of encrustation, a phenomenon that holds a prevalence of 50% within this patient population, resulting in a great deal of morbidity to the patients. Here we report the influence of surface coating of an all-silicone catheter with rhenium-doped fullerene-like molybdenum disulfide (Re:IF-MoS2) nanoparticles on the growth and attachment of in vitro encrustation stones. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) analyses indicated a remarkable attenuation in encrustation occupation on the Re:IF-MoS2-coated catheter surfaces compared to neat catheters. The doped nanoparticles displayed a unique tendency to self-assemble into mosaic-like arrangements, modifying the surface to be encrustation-repellent. The mechanism of encrustation retardation on the surface coated catheters is discussed in some detail. The ramification of these results for the clogging of other body indwelling devices is briefly discussed.Ureteral stents and urethral catheters are commonly used medical devices for maintaining urinary flow. However, long-term placement (>30 days) of these devices in the urinary tracts is limited by the development of encrustation, a phenomenon that holds a prevalence of 50% within this patient population, resulting in a great deal of morbidity to the patients. Here we report the influence of surface coating of an all-silicone catheter with rhenium-doped fullerene-like molybdenum disulfide (Re:IF-MoS2) nanoparticles on the growth and attachment of in vitro encrustation stones. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) analyses indicated a remarkable attenuation in encrustation occupation on the Re:IF-MoS2-coated catheter surfaces compared to neat catheters. The doped nanoparticles displayed a unique tendency to self-assemble into mosaic-like arrangements, modifying the surface to be encrustation-repellent. The mechanism of encrustation retardation on the surface coated catheters is discussed in some detail. The ramification of these results for the clogging of other body indwelling devices is briefly discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06231g

  11. Functionalized boron nitride nanotubes

    DOEpatents

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  12. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles.

    PubMed

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-04-01

    Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.

  13. Biomarkers of cigarette smoking and DNA methylating agents: Raman, SERS and DFT study of 3-methyladenine and 7-methyladenine

    NASA Astrophysics Data System (ADS)

    Harroun, Scott G.; Zhang, Yaoting; Chen, Tzu-Heng; Ku, Ching-Rong; Chang, Huan-Tsung

    2017-04-01

    3-Methyladenine and 7-methyladenine are biomarkers of DNA damage from exposure to methylating agents. For example, the concentration of 3-methyladenine increases significantly in the urine of cigarette smokers. Surface-enhanced Raman spectroscopy (SERS) has shown much potential for detection of biomolecules, including DNA. Much work has been dedicated to the canonical nucleobases, with comparatively fewer investigations of modified DNA and modified DNA nucleobases. Herein, Raman spectroscopy and SERS are used to examine the adsorption orientations of 3-methyladenine and 7-methyladenine on Ag nanoparticles. Density functional theory (DFT) calculations at the B3LYP level are used to support the conclusions via simulated spectra of the nucleobases and of Ag+/nucleobase complexes. The results herein show that 7-methyladenine adsorbs upright via its N3 and N9 atoms side, similarly to adenine. 3-Methyladenine adsorbs in a very tilted or flat orientation on the Ag nanoparticles. These findings will be useful for future SERS or other nanoparticle-based bioanalytical assays for detection of these methyladenines or other modified nucleobases.

  14. Pretargeting with bispecific fusion proteins facilitates delivery of nanoparticles to tumor cells with distinct surface antigens.

    PubMed

    Yang, Qi; Parker, Christina L; Lin, Yukang; Press, Oliver W; Park, Steven I; Lai, Samuel K

    2017-06-10

    Tumor heterogeneity, which describes the genetically and phenotypically distinct subpopulations of tumor cells present within the same tumor or patient, presents a major challenge to targeted delivery of diagnostic and/or therapeutic agents. An ideal targeting strategy should deliver a given nanocarrier to the full diversity of cancer cells, which is difficult to achieve with conventional ligand-conjugated nanoparticles. We evaluated pretargeting (i.e., multistep targeting) as a strategy to facilitate nanoparticle delivery to multiple target cells by measuring the uptake of biotinylated nanoparticles by lymphoma cells with distinct surface antigens pretreated with different bispecific streptavidin-scFv fusion proteins. Fusion proteins targeting CD20 or tumor-associated glycoprotein 72 (TAG-72) mediated the specific in vitro uptake of 100nm biotin-functionalized nanoparticles by Raji and Jurkat lymphoma cells (CD20-positive and TAG-72-positive cells, respectively). Greater uptake was observed for pretargeted nanoparticles with increasing amounts of surface biotin, with 6- to 18-fold higher uptake vs. non-biotinylated nanoparticle and fusion protein controls. Fully biotin-modified particles remained resistant to cultured macrophage cell uptake, although they were still quickly cleared from systemic circulation in vivo (t 1/2 <1h). For single Raji tumor-bearing mice, pretargeting with CD20-specific FP significantly increased nanoparticle tumor targeting. In mice bearing both Raji and Jurkat tumors, pretargeting with both fusion proteins markedly increased nanoparticle targeting to both tumor types, compared to animals dosed with nanoparticles alone. These in vitro and in vivo observations support further evaluations of pretargeting fusion protein cocktails as a strategy to enhance nanoparticle delivery to a diverse array of molecularly distinct target cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    PubMed Central

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-01-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently. PMID:26955791

  16. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T.; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F.; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W.

    2016-03-01

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  17. Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties.

    PubMed

    Gorzelanny, Christian; Kmeth, Ralf; Obermeier, Andreas; Bauer, Alexander T; Halter, Natalia; Kümpel, Katharina; Schneider, Matthias F; Wixforth, Achim; Gollwitzer, Hans; Burgkart, Rainer; Stritzker, Bernd; Schneider, Stefan W

    2016-03-09

    The implant-bone interface is the scene of competition between microorganisms and distinct types of tissue cells. In the past, various strategies have been followed to support bony integration and to prevent bacterial implant-associated infections. In the present study we investigated the biological properties of diamond-like carbon (DLC) surfaces containing silver nanoparticles. DLC is a promising material for the modification of medical implants providing high mechanical and chemical stability and a high degree of biocompatibility. DLC surface modifications with varying silver concentrations were generated on medical-grade titanium discs, using plasma immersion ion implantation-induced densification of silver nanoparticle-containing polyvinylpyrrolidone polymer solutions. Immersion of implants in aqueous liquids resulted in a rapid silver release reducing the growth of surface-bound and planktonic Staphylococcus aureus and Staphylococcus epidermidis. Due to the fast and transient release of silver ions from the modified implants, the surfaces became biocompatible, ensuring growth of mammalian cells. Human endothelial cells retained their cellular differentiation as indicated by the intracellular formation of Weibel-Palade bodies and a high responsiveness towards histamine. Our findings indicate that the integration of silver nanoparticles into DLC prevents bacterial colonization due to a fast initial release of silver ions, facilitating the growth of silver susceptible mammalian cells subsequently.

  18. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  19. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  20. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  1. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  2. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  3. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    PubMed Central

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity. PMID:26333629

  4. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  5. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies.

    PubMed

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-03

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  6. Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles.

    PubMed

    Xu, Deqiu; Su, Yuling; Zhao, Lili; Meng, Fancui; Liu, Chang; Guan, Yayuan; Zhang, Jiya; Luo, Jianbin

    2017-02-01

    Inspired by mussel-adhesion phenomena in nature, a simple, mild surface modification process was elaborated to endow the polyurethane (PU) substrate with antibacterial/antifouling properties. In the present study, polydopamine was coated directly onto polyurethane surfaces. AgNO 3 was then added and absorbed onto the surface by the active catechol and amine groups of the polydopamine coating. Meanwhile, the adsorbed Ag + ions were reduced in situ into metallic silver nanoparticles by the "bridge" of the polydopamine coating which yielded a coating with good antimicrobial properties. Finally, 1H, 1H, 2H, 2H-perfluorodecanethiol (CF 3 (CF 2 ) 7 CH 2 CH 2 SH, F-SH) was attached on the PDA coating via the Michael addition reaction. The hydrophobic F-SH layer above the antibacterial layer yielded a surface with excellent antifouling properties. Preliminary antibacterial assays indicate that the coated surfaces show enhanced antibacterial activity against Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). Platelet adhesion was significantly reduced for the F-SH-coated PU film. These results suggest that the modified PU could be used as an antibacterial material for future biomedical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 531-538, 2017. © 2016 Wiley Periodicals, Inc.

  7. Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide).

    PubMed

    Vandorpe, J; Schacht, E; Stolnik, S; Garnett, M C; Davies, M C; Illum, L; Davis, S S

    1996-10-05

    The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.

  8. Effective preparation of magnetic superhydrophobic Fe3O4/PU sponge for oil-water separation

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Tian; Lin, Bo; Jiang, Li-Wang; Lin, En-Chao; Chen, Jian; Zhang, Shi-Jie; Tang, Yi-Wen; He, Fu-An; Li, De-Hao

    2018-01-01

    Fe3O4 nanoparticles were modified by tetraethoxysilane and different amounts of trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane in sequence to obtain the magnetic nanoparticles with low surface energy, which could be used to construct the superhydrophobic surfaces for PU sponge, cotton fabric, and filter paper by a simple drop-coating method. Particularly, all the resultant Fe3O4/PU sponges containing different fluoroalkylsilane-modified Fe3O4 nanoparticles possessed both high water repellency with contact angle in the range of 150.2-154.7° and good oil affinity, which could not only effectively remove oil from water followed by convenient magnetic recovery but also easily realize the oil-water separation as a filter only driven by gravity. The Fe3O4/PU sponges showed high absorption capability of peanut oil, pump oil, and silicone oil with the maximum absorptive capacities of 40.3, 39.3, and 46.3 g/g, respectively. Such novel sponges might be a potential candidate for oil-water separation as well as oil absorption and transportation accompanied by the advantages of simple process, remote control by magnetic field, and low energy consumption.

  9. Microwave-assisted synthesis of gold, silver, platinum and palladium nanostructures and their use in electrocatalytic applications.

    PubMed

    Safavi, Afsaneh; Tohidi, Maryam

    2014-09-01

    Microwave-assisted ionic liquid method was used for synthesis of various noble metals, such as gold, silver, platinum and palladium nanomaterials. This route does not employ any template agent, surface capping agents or reducing agents. The process is fast, simple and of high yield. Different metal precursors in various ionic liquids media (1-butyl-3-methylimidazolium tetrafluoroborate, octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate) were applied to produce metal nanomaterials. Silver, platinium and palladium nanoparticles exhibit spherical morphology while nanosheets with high aspect ratio were obtained for gold. These metal nanostructures were incorporated into a carbon ionic liquid electrode to investigate their electrocatalytic properties. It was found that synthesis in different ionic liquids result in different activity. Excellent electrocatalytic effects toward adenine, hydrazine, formaldehyde and ethanol were observed for the modified electrodes with different nanoparticles synthesized in 1-butyl-3-methylimidazolium tetrafluoroborate. The high conductivity, large surface-to-volume ratio and active sites of nanosized metal particles are responsible for their electrocatalytic activity. In contrast, the carbon ionic liquid electrode modified with synthesized metal nanoparticles in octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate showed negligible activity for detection of these probes.

  10. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    NASA Astrophysics Data System (ADS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  11. Nanoparticle-based strategy for personalized B-cell lymphoma therapy

    PubMed Central

    Martucci, Nicola M; Migliaccio, Nunzia; Ruggiero, Immacolata; Albano, Francesco; Calì, Gaetano; Romano, Simona; Terracciano, Monica; Rea, Ilaria; Arcari, Paolo; Lamberti, Annalisa

    2016-01-01

    B-cell lymphoma is associated with incomplete response to treatment, and the development of effective strategies targeting this disease remains challenging. A new personalized B-cell lymphoma therapy, based on a site-specific receptor-mediated drug delivery system, was developed in this study. Specifically, natural silica-based nanoparticles (diatomite) were modified to actively target the antiapoptotic factor B-cell lymphoma/leukemia 2 (Bcl2) with small interfering RNA (siRNA). An idiotype-specific peptide (Id-peptide) specifically recognized by the hypervariable region of surface immunoglobulin B-cell receptor was exploited as a homing device to ensure specific targeting of lymphoma cells. Specific nanoparticle uptake, driven by the Id-peptide, was evaluated by flow cytometry and confocal microscopy and was increased by approximately threefold in target cells compared with nonspecific myeloma cells and when a random control peptide was used instead of Id-peptide. The specific internalization efficiency was increased by fourfold when siRNA was also added to the modified nanoparticles. The modified diatomite particles were not cytotoxic and their effectiveness in downregulation of gene expression was explored using siRNA targeting Bcl2 and evaluated by quantitative real-time polymerase chain reaction and Western blot analyses. The resulting gene silencing observed is of significant biological importance and opens new possibilities for the personalized treatment of lymphomas. PMID:27895482

  12. Synthesis, structural characterization and antibacterial activity of cotton fabric modified with a hydrogel containing barium hexaferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Staneva, Desislava; Koutzarova, Tatyana; Vertruyen, Benedicte; Vasileva-Tonkova, Evgenia; Grabchev, Ivo

    2017-01-01

    Barium hexaferrite nanoparticles were synthesized by co-precipitation of Ba2+ and Fe3+ cations with NaOH under of high-power ultrasound. The nanoparticles were dispersed in an aqueous solution of the hydrogel precursors. This solution was used to impregnate the cotton fabric dyed with a photoinitiator. The composite material BaFe12O19 nanoparticles-hydrogel-cotton fabric was prepared by surface initiate photopolymerization under visible light. The modification of the cotton fabric and uniform distribution of the nanoparticles in the structure of the hydrogel were analyzed by scanning electron microscopy (SEM), IR spectroscopy, X-ray diffraction analysis (XRD), fluorescence and colourimetric analyses. The antibacterial efficacy of the material was evaluated against Gram-negative Escherichia coli and Pseudomonas aeruginosa.

  13. Fiber-optic particle plasmon resonance sensor for detection of interleukin-1β in synovial fluids.

    PubMed

    Chiang, Chang-Yue; Hsieh, Ming-Lung; Huang, Kuo-Wei; Chau, Lai-Kwan; Chang, Chia-Ming; Lyu, Shaw-Ruey

    2010-11-15

    A facile and label-free biosensing method has been developed for determining an osteoarthritis concerned cytokine, interleukin-1β (IL-1β), in synovial fluids. The biosensing technique, fiber-optic particle plasmon resonance (FOPPR), is based on gold nanoparticles-modified optical fiber where the gold nanoparticle surface has been modified by a mixed self-assembled monolayer for further conjugation of anti-IL-1β antibody and minimization of nonspecific adsorption. Upon binding of IL-1β to anti-IL-1β on the gold nanoparticle surface, the absorbance of the gold nanoparticle layer on the optical fiber changes and the signal change is enhanced through multiple total internal reflections along the optical fiber. Results show that the detection of IL-1β in synovial fluid by this sensor agrees quantitatively with the clinically accepted enzyme-linked immunosorbent assay (ELISA) method but a much shorter analysis time is required (<10 min). The sensor response versus log concentration of IL-1β was linear (r=0.9947) over the concentration range of 0.050-10 ng/mL and a limit of detection (LOD) of 21 pg/mL (1.2 pM) was achieved. Such a LOD for IL-1β (17 kDa) represents a major advancement in the field of real-time monitoring of low molecular weight proteins in complex biological fluids. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    PubMed

    Delplanque, Aleksandra; Wawrzynczyk, Dominika; Jaworski, Pawel; Matczyszyn, Katarzyna; Pawlik, Krzysztof; Buckle, Malcolm; Nyk, Marcin; Nogues, Claude; Samoc, Marek

    2015-01-01

    Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm) NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA) by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5) modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+) and the acceptor (Cy5) with sensitivity at a nanometre scale.

  15. Acid-sensitive sheddable PEGylated, mannose-modified nanoparticles increase the delivery of betamethasone to chronic inflammation sites in a mouse model

    PubMed Central

    O’Mary, Hannah L.; Aldayel, Abdulaziz M.; Valdes, Solange A.; Naguib, Youssef W.; Li, Xu; Salvady, Karun; Cui, Zhengrong

    2017-01-01

    Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions. PMID:28463518

  16. Enhanced photocatalytic activity of wool fibers having titanium dioxide nanoparticles formed inside their cortex

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Sun, Runjun; Wu, Hailiang; Mao, Ningtao

    2018-07-01

    A wool-TiO2 nanoparticle composite material having TiO2 nanoparticles both infiltrated in the matrix between macrofibrils inside cortical cells of wool fibers and grafted on the fiber surface is obtained in this study, and the wool-nanoparticle composite material is found to have highly photocatalytic activities with an extremely narrow band gap of 2.8 eV. The wool fibers are obtained using three successive technical steps: wool fibers are swollen by using lithium bromide, then saturated with tetrabutyl titanate ethanol solution and subsequently treated in boiling water. It was demonstrated that the chemical bonds formed between the as-synthesized TiO2 nanoparticles and the wool fibers swollen by lithium bromide include C‑Ti4+(Ti3+), N‑Ti4+(Ti3+), O‑Ti3+, and S‑Ti4+(Ti3+) bonds. The modified wool fibers have shown markedly improved photocatalytic efficiency due to their enhanced visible light absorption capability, which is much better than the (N-doped) TiO2 coated wool fibers. In contrast, TiO2 modified wool fibers swollen by using formic acid have poorer photoactivity, this might be due to the elimination of trivalent titanium between TiO2 nanoparticles and the wool fibers.

  17. Enhanced photocatalytic activity of wool fibers having titanium dioxide nanoparticles formed inside their cortex.

    PubMed

    Zhang, Hui; Sun, Runjun; Wu, Hailiang; Mao, Ningtao

    2018-05-01

    A wool-TiO2 nanoparticle composite material having TiO2 nanoparticles both infiltrated in the matrix between macrofibrils inside cortical cells of wool fibers and grafted on the fiber surface is obtained in this study, and the wool-nanoparticle composite material is found to have highly photocatalytic activities with an extremely narrow band gap of 2.8 eV. The wool fibers are obtained using three successive technical steps: wool fibers are swollen by using lithium bromide, then saturated with tetrabutyl titanate ethanol solution and subsequently treated in boiling water. It was demonstrated that the chemical bonds formed between the as-synthesized TiO2 nanoparticles and the wool fibers swollen by lithium bromide include C-Ti4+(Ti3+), N-Ti4+(Ti3+), O-Ti3+, and S-Ti4+(Ti3+) bonds. The modified wool fibers have shown markedly improved photocatalytic efficiency due to their enhanced visible light absorption capability, which is much better than the (N-doped) TiO2 coated wool fibers. In contrast, TiO2 modified wool fibers swollen by using formic acid have poorer photoactivity, this might be due to the elimination of trivalent titanium between TiO2 nanoparticles and the wool fibers. © 2018 IOP Publishing Ltd.

  18. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  19. Simple Approach for the Rapid Detection of Alternariol in Pear Fruit by Surface-Enhanced Raman Scattering with Pyridine-Modified Silver Nanoparticles.

    PubMed

    Pan, Ting-Tiao; Sun, Da-Wen; Pu, Hongbin; Wei, Qingyi

    2018-03-07

    A simple method based on surface-enhanced Raman scattering (SERS) was developed for the rapid determination of alternariol (AOH) in pear fruits using an easily prepared silver-nanoparticle (AgNP) substrate. The AgNP substrate was modified by pyridine to circumvent the weak affinity of the AOH molecules to the silver surface and to improve the sensitivity of detection. Quantitative analysis was performed in AOH solutions at concentrations ranging from 3.16 to 316.0 μg/L, and the limit of detection was 1.30 μg/L. The novel method was also applied to the detection of AOH residues in pear fruits purchased from the market and in pear fruits that were artificially inoculated with Alternaria alternata. AOH was not found in any of the fresh fruit, whereas it resided in the rotten and inoculated fruits. Finally, the SERS method was cross validated against HPLC. It was revealed that the SERS method has great potential utility in the rapid detection of AOH in pear fruits and other agricultural products.

  20. A magnetically drivable nanovehicle for curcumin with antioxidant capacity and MRI relaxation properties.

    PubMed

    Magro, Massimiliano; Campos, René; Baratella, Davide; Lima, Giuseppina; Holà, Katerina; Divoky, Clemens; Stollberger, Rudolf; Malina, Ondrej; Aparicio, Claudia; Zoppellaro, Giorgio; Zbořil, Radek; Vianello, Fabio

    2014-09-08

    Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (γ-Fe2 O3 ), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe(III) atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13±4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mössbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  2. Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent

    NASA Astrophysics Data System (ADS)

    Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André

    2018-04-01

    One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast ( Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.

  3. Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent.

    PubMed

    Jaworski, Sławomir; Wierzbicki, Mateusz; Sawosz, Ewa; Jung, Anna; Gielerak, Grzegorz; Biernat, Joanna; Jaremek, Henryk; Łojkowski, Witold; Woźniak, Bartosz; Wojnarowicz, Jacek; Stobiński, Leszek; Małolepszy, Artur; Mazurkiewicz-Pawlicka, Marta; Łojkowski, Maciej; Kurantowicz, Natalia; Chwalibog, André

    2018-04-23

    One of the most promising methods against drug-resistant bacteria can be surface-modified materials with biocidal nanoparticles and nanocomposites. Herein, we present a nanocomposite with silver nanoparticles (Ag-NPs) on the surface of graphene oxide (GO) as a novel multifunctional antibacterial and antifungal material. Ultrasonic technologies have been used as an effective method of coating polyurethane foils. Toxicity on gram-negative bacteria (Escherichia coli), gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), and pathogenic yeast (Candida albicans) was evaluated by analysis of cell morphology, assessment of cell viability using the PrestoBlue assay, analysis of cell membrane integrity using the lactate dehydrogenase assay, and reactive oxygen species production. Compared to Ag-NPs and GO, which have been widely used as antibacterial agents, our nanocomposite shows much higher antimicrobial efficiency toward bacteria and yeast cells.

  4. Formation of grafted surface layers on silicon dioxide particles and their investigation by means of thermoprogrammed oxidation

    NASA Astrophysics Data System (ADS)

    Aleksandrova, E. O.; Novichkov, R. V.; Olenin, A. Yu.; Zuev, B. K.

    2017-03-01

    Silica nanoparticles are obtained according to the Stober-Fink-Bohn method, and their surfaces are chemically modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. It is estimated that sols of porous silica nanoparticles (average sizes, 50-200 nm) form during primary chemical process; the average size of the particles can be increased to 400-500 nm by consecutive growth. Oxythermography (thermoprogrammed oxidation) measurements reveal a stepped dependence between the content of organic substance of nanoparticles and the duration of chemical modification reaction exists. It is concluded that this could be due to the formation of dense shell (or shells) as a result of sols aging between the cycles of growth; such shells impose diffusive restrictions when molecules penetrate into the pores of the internal volume of the particles.

  5. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    PubMed

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances.

    PubMed

    Hola, Katerina; Markova, Zdenka; Zoppellaro, Giorgio; Tucek, Jiri; Zboril, Radek

    2015-11-01

    In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    PubMed

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  8. On the state of Mn in Mn{sub x}Zn{sub 1−x}O nanoparticles and their surface modification with isonipecotic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez-Hernández, L.; Estévez-Hernández, O.; Instituto de Ciencia y Tecnología de Materiales

    Mn-doped ZnO (Mn{sub x}Zn{sub 1−x}O) nanoparticles were synthesized by the co-precipitation method and coated with isonipecotic acid as capping ligand. The structure, composition and morphology of the resulting nanomaterial were investigated by energy disperse X-ray analysis, X-ray diffraction, and transmission electron microscopy data. Such measurements showed that the solid obtained contains 6 at% of Mn and it is formed by a highly crystalline material with 3–5 nm range of crystallite size, and only a small elongation of its cell parameter with respect to undoped ZnO wurtzite unit cell. Information on the state of manganese atom in the Mn{sub x}Zn{sub 1−x}Omore » nanostructures formed was obtained from X-ray photoelectron (XPS) and electron energy loss (EELS) spectroscopies. XPS and EELS spectra are composed of four peaks, corresponding to two species of Mn(II) and signals from Mn(III) and Mn(IV). Such spectral data on the state of Mn in the material studied is consistent with the mapping of Mn distribution observed in recorded transmission electron microscopy images, which reveal presence of clusters of Mn atoms. Only a fraction of doping Mn atoms were found forming a solid solution with the host ZnO structure. The functionalization of the nanoparticles system with Isonipecotic acid shows that this molecule remains anchored to the nanoparticles surface mainly through its N basic site. The availability of free carboxylate groups in the capping molecule was tested by conjugation to type IV horseradish peroxidase. - Graphical abstract: State of Mn atoms in Mn-doped ZnO nanostructures prepared by the precipitation method, their capping with isonipecotic acid and subsequent conjugation to peroxidase. - Highlights: • State of manganese in manganese-doped zinc oxide nanoparticles. • Isonipecotic acid as surface modifier of ZnO nanoparticles. • Peroxidase conjugation to ZnO nanoparticles modified with isonipecotic acid.« less

  9. Chitosan nanoparticles as a modified diclofenac drug release system

    NASA Astrophysics Data System (ADS)

    Duarte Junior, Anivaldo Pereira; Tavares, Eraldo José Madureira; Alves, Taís Vanessa Gabbay; de Moura, Márcia Regina; da Costa, Carlos Emmerson Ferreira; Silva Júnior, José Otávio Carréra; Ribeiro Costa, Roseane Maria

    2017-08-01

    This study evaluated a modified nanostructured release system employing diclofenac as a drug model. Biodegradable chitosan nanoparticles were prepared with chitosan concentrations between 0.5 and 0.8% ( w/ v) by template polymerization method using methacrylic acid in aqueous solution. Chitosan-poly(methacrylic acid) (CS-PMAA) nanoparticles showed uniform size around 50-100 nm, homogeneous morphology, and spherical shape. Raw material and chitosan nanoparticles were characterized by thermal analysis, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM), confirming the interaction between chitosan and methacrylic acid during nanoparticles preparation. Diclofenac sorption on the chitosan nanoparticles surface was achieved by incubation in water/ethanol (1:1) drug solution in concentrations of 0.5 and 0.8 mg/mL. The diclofenac amount sorbed per gram of CS-PMAA nanoparticles, when in a 0.5 mg/mL sodium diclofenac solution, was as follows: 12.93, 15, 20.87, and 29.63 mg/g for CS-PMAA nanoparticles 0.5, 0.6, 0.7, and 0.8% ( w/ v), respectively. When a 0.8 mg/mL sodium diclofenac solution was used, higher sorption efficiencies were obtained: For CS-PMAA nanoparticles with chitosan concentrations of 0.5, 0.6, 0.7, and 0.8% ( w/ v), the sorption efficiencies were 33.39, 49.58, 55.23, and 67.2 mg/g, respectively. Diclofenac sorption kinetics followed a second-order kinetics. Drug release from nanoparticles occurred in a period of up to 48 h and obeyed Korsmeyer-Peppas model, which was characterized mainly by Fickian diffusion transport. [Figure not available: see fulltext.

  10. Interaction of multi-functional silver nanoparticles with living cells

    NASA Astrophysics Data System (ADS)

    Sur, Ilknur; Cam, Dilek; Kahraman, Mehmet; Baysal, Asli; Culha, Mustafa

    2010-04-01

    Silver nanoparticles (AgNPs) are widely used in household products and in medicine due to their antibacterial and to wound healing properties. In recent years, there is also an effort for their use in biomedical imaging and photothermal therapy. The primary reason behind the effort for their utility in biomedicine and therapy is their unique plasmonic properties and easy surface chemistry for a variety of functionalizations. In this study, AgNPs modified with glucose, lactose, oligonucleotides and combinations of these ligands are investigated for their cytotoxicity and cellular uptake in living non-cancer (L929) and cancer (A549) cells. It is found that the chemical nature of the ligand strongly influences the toxicity and cellular uptake into the model cells. While the lactose-and glucose-modified AgNPs enter the L929 cells at about the same rate, a significant increase in the rate of lactose-modified AgNPs into the A549 cells is observed. The binding of oligonucleotides along with the carbohydrate on the AgNP surfaces influences the differential uptake rate pattern into the cells. The cytotoxicity study with the modified AgNPs reveals that only naked AgNPs influence the viability of the A549 cells. The findings of this study may provide the key to developing effective applications in medicine such as cancer therapy.

  11. Investigation of oxygen reduction and methanol oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nanocarbon supports

    NASA Astrophysics Data System (ADS)

    Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara

    2016-09-01

    We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.

  12. Construction of an electrochemical sensor based on the electrodeposition of Au-Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime.

    PubMed

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-06-07

    Mixtures of gold-platinum nanoparticles (Au-PtNPs) are fabricated consecutively on a multi-walled carbon nanotubes (MWNT) coated glassy carbon electrode (GCE) by the electrodeposition method. The surface morphology and nature of the hybrid film (Au-PtNPs/MWCNT) deposited on glassy carbon electrodes is characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode is used as a new and sensitive electrochemical sensor for the voltammetric determination of cefotaxime (CFX). The electrochemical behavior of CFX is investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable improvement in the oxidation peak current of CFX compared to glassy carbon electrodes individually coated with MWCNT or Au-PtNPs. Under the optimized conditions, the modified electrode showed a wide linear dynamic range of 0.004-10.0 μM with a detection limit of 1.0 nM for the voltammetric determination of CFX. The modified electrode was successfully applied for the accurate determination of trace amounts of CFX in pharmaceutical and clinical preparations.

  13. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine

    PubMed Central

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-01-01

    Several neurological disorders such as Alzheimer’s disease and Parkinson’s disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations. PMID:29186040

  14. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine.

    PubMed

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-11-29

    Several neurological disorders such as Alzheimer's disease and Parkinson's disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations.

  15. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone

    PubMed Central

    Ban, Junfeng; Zhang, Yan; Huang, Xin; Deng, Guanghan; Hou, Dongzhi; Chen, Yanzhong; Lu, Zhufen

    2017-01-01

    Drug delivery carriers can maintain effective therapeutic concentrations in the eye. To this end, we developed lipid nanoparticles (L/NPs) in which the surface was modified with positively charged chitosan, which engaged in hydrogen bonding with the phospholipid membrane. We evaluated in vitro corneal permeability and release characteristics, ocular irritation, and drug dynamics of modified and unmodified L/NPs in aqueous humor. The size of L/NPs was uniform and showed a narrow distribution. Corneal permeation was altered by the presence of chitosan and was dependent on particle size; the apparent permeability coefficient of dexamethasone increased by 2.7 and 1.8 times for chitosan-modified and unmodified L/NPs, respectively. In conclusion, a chitosan-modified system could be a promising method for increasing the ocular bioavailability of unmodified L/NPs by enhancing their retention time and permeation into the cornea. These findings provide a theoretical basis for the development of effective drug delivery systems in the treatment of ocular disease. PMID:28243093

  16. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone.

    PubMed

    Ban, Junfeng; Zhang, Yan; Huang, Xin; Deng, Guanghan; Hou, Dongzhi; Chen, Yanzhong; Lu, Zhufen

    2017-01-01

    Drug delivery carriers can maintain effective therapeutic concentrations in the eye. To this end, we developed lipid nanoparticles (L/NPs) in which the surface was modified with positively charged chitosan, which engaged in hydrogen bonding with the phospholipid membrane. We evaluated in vitro corneal permeability and release characteristics, ocular irritation, and drug dynamics of modified and unmodified L/NPs in aqueous humor. The size of L/NPs was uniform and showed a narrow distribution. Corneal permeation was altered by the presence of chitosan and was dependent on particle size; the apparent permeability coefficient of dexamethasone increased by 2.7 and 1.8 times for chitosan-modified and unmodified L/NPs, respectively. In conclusion, a chitosan-modified system could be a promising method for increasing the ocular bioavailability of unmodified L/NPs by enhancing their retention time and permeation into the cornea. These findings provide a theoretical basis for the development of effective drug delivery systems in the treatment of ocular disease.

  17. Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method

    NASA Astrophysics Data System (ADS)

    Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan

    Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.

  18. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties.

    PubMed

    Qin, Xin-Sheng; Luo, Zhi-Gang; Peng, Xi-Chun

    2018-05-02

    The natural quinoa protein isolate (QPI) was largely reflected in the nanoparticle form at pH 7.0 (∼401 nm), and the ultrasound at 20 min progressively improved the contact angle (wettability) and surface hydrophobicity of the nanoparticles. Ultrasound process also modified the type of intraparticle interaction, and the internal forces of sonicated particles were largely maintained by both disulfide bonds and hydrophobic interaction forces. In emulsion system, the ultrasound progressively increased the emulsification efficiency of the QPI nanoparticles, particularly at high protein concentration ( c > 1%, w/ v) and higher emulsion stability against coalescence. As compared with the natural QPI-stabilized emulsions, the 20 min sonicated emulsions exhibited higher packing and adsorption at the protein interface. The microstructure of emulsions that occurs is bridging flocculation of droplets at low c (≤1%, w/ v), while the amount of protein particles could be high enough to cover the droplet surface at high c ( >1%, w/ v) with hexagonal array model arrangement. Thus these results illustrated that both natural and sonicated QPI nanoparticles could be performed as effective food-grade stabilizer for Pickering emulsion; however, the sonicated QPI nanoparticles exhibited much better emulsifying and interfacial properties.

  19. Selective Amplification of SPR Biosensor Signal for Recognition of rpoB Gene Fragments by Use of Gold Nanoparticles Modified by Thiolated DNA

    NASA Astrophysics Data System (ADS)

    Matsishin, M.; Rachkov, A.; Lopatynskyi, A.; Chegel, V.; Soldatkin, A.; El'skaya, A.

    2017-04-01

    An experimental approach for improving the sensitivity of the surface plasmon resonance (SPR) DNA hybridization sensor using gold nanoparticles (GNPs), modified by specific oligonucleotides, was elaborated. An influence of the ionic strength on the aggregation stability of unmodified GNPs and GNPs modified by the thiolated oligonucleotides was investigated by monitoring a value of light extinction at 520 nm that can be considered as a measure of a quantity of the non-aggregated GNPs. While the unmodified GNPs started to aggregate in 0.2 × saline-sodium citrate (SSC), GNPs modified by the negatively charged oligonucleotides were more stable at increasing ionic strength up to 0.5 × SSC. A bioselective element of the SPR DNA hybridization sensor was formed by immobilization on the gold sensor surface of the thiolated oligonucleotides P2, the sequence of which is a fragment of the rpoB gene of Mycobacterium tuberculosis. The injections into the measuring flow cell of the SPR spectrometer of various concentrations of GNPs modified by the complementary oligonucleotides T2-18m caused the pronounced concentration-dependent sequence-specific sensor responses. The magnitude of the sensor responses was much higher than in the case of the free standing complementary oligonucleotides. According to the obtained experimental data, the usage of GNPs modified by specific oligonucleotides can amplify the sensor response of the SPR DNA hybridization sensor in 1200 times.

  20. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties.

    PubMed

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-15

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy.

    PubMed

    Thamake, S I; Raut, S L; Ranjan, A P; Gryczynski, Z; Vishwanatha, J K

    2011-01-21

    This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.

  2. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy

    NASA Astrophysics Data System (ADS)

    Thamake, S. I.; Raut, S. L.; Ranjan, A. P.; Gryczynski, Z.; Vishwanatha, J. K.

    2011-01-01

    This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.

  3. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Remes, Z.; Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A.; Girard, H. A.; Arnault, J.-C.; Bergonzo, P.

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000-1500 cm-1 spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  4. Preparation and characterization of chondroitin-sulfate-A-coated magnetite nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tóth, Ildikó Y.; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka

    2015-04-01

    Polysaccharides are promising candidates for manufacturing biocompatible core-shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core-shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl.

  5. Use of Nuclepore filters for ambient and workplace nanoparticle exposure assessment-Spherical particles

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Chieh; Wang, Jing; Fissan, Heinz; Pui, David Y. H.

    2013-10-01

    Nuclepore filter collection with subsequent electron microscopy analysis for nanoparticles was carried out to examine the feasibility of the method to assess the nanoparticle exposure. The number distribution of nanoparticles collected on the filter surface was counted visually and converted to the distribution in the air using existing filtration models for Nuclepore filters. To search for a proper model, this paper studied the overall penetrations of three different nanoparticles (PSL, Ag and NaCl), covering a wide range of particle sizes (20-800 nm) and densities (1.05-10.5 g cm-3), through Nuclepore filters with two different pore diameters (1 and 3 μm) and different face velocities (2-15 cm s-1). The data were compared with existing particle deposition models and modified models proposed by this study, which delivered different results because of different deposition processes considered. It was found that a parameter associated with flow condition and filter geometry (density of fluid medium, particle density, filtration face velocity, filter porosity and pore diameter) should be taken into account to verify the applicability of the models. The data of the overall penetration were in very good agreement with the properly applied models. A good agreement of filter surface collection between the validated model and the SEM analysis was obtained, indicating a correct nanoparticle number distribution in the air can be converted from the Nuclepore filter surface collection and this method can be applied for nanoparticle exposure assessment.

  6. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR,more » specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.« less

  7. Spontaneous grafting: a novel approach to graft diazonium cations on gold nanoparticles in aqueous medium and their self-assembly on electrodes.

    PubMed

    Kesavan, Srinivasan; John, S Abraham

    2014-08-15

    The spontaneous grafting of aminophenyl groups on gold nanoparticles (AuNPs) by reaction with in situ generated 4-aminophenyl diazonium cations (APD) in an aqueous medium was described. The spontaneous grafting was likely to proceed by transfer of electrons from AuNPs to the APD cations to form an aminophenyl radical and subsequent attachment with AuNPs. The aminophenyl (AP) functionalized gold nanoparticles (AP-AuNPs) were characterized by UV-visible spectroscopy, high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman spectroscopy (SERS). The absence of characteristic vibrational bands corresponding to diazonium group in the FT-IR spectrum confirmed the reduction of the aminophenyl diazonium cations at the surface of AuNPs. The spontaneous attachment of AP on AuNPs was confirmed by XPS from the observed binding energy values for -NH2 at 399.4 eV and -N=N- at 400.2 eV. The SERS spectrum reveals the presence Au-C (437 cm(-1)) bond on AP-AuNPs. Further, the AP-AuNPs were self-assembled on GC/ITO electrode (AP-AuNPs modified electrode) with the aid of free amine groups present on the surface of AP-AuNPs via Michael's nucleophilic addition reaction. The AP-AuNPs modified electrode was characterized by cyclic voltammetry, impedance spectroscopy, UV-visible spectroscopy and scanning electron microscopy. Impedance studies show that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the AP-AuNPs modified electrode (1.81×10(-4) cm s(-1)) than at bare (3.77×10(-5) cm s(-1)) GC electrode. Finally, the electrocatalytic activity of the AP-AuNPs modified electrode was demonstrated by studying the oxidation of dopamine (DA). Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Clearance Properties of Nano-sized Particles and Molecules as Imaging Agents: Considerations and Caveats

    PubMed Central

    Longmire, Michelle; Choyke, Peter L.; Kobayashi, Hisataka

    2009-01-01

    Summary Nanoparticles possess enormous potential as diagnostic imaging agents and hold promise for the development of multimodality agents with both imaging and therapeutic capabilities. Yet, some of the most promising nanoparticles demonstrate prolonged tissue retention and contain heavy metals. This presents serious concerns for toxicity. The creation of nanoparticles with optimal clearance characteristics will minimize toxicity risks by reducing the duration of exposure to these agents. Given that many nanoparticles possess easily modifiable surface and interior chemistry, if nanoparticle characteristics associated with optimal clearance from the body were well established, it would be feasible to design and create agents with more favorable clearance properties. This paper presents a thorough discussion of the physiologic aspects of nanoparticle clearance, focusing on renal mechanisms, as well as provides an overview of current research investigating clearance of specific types of nanoparticles and nano-sized macromolecules, including dendrimers, quantum dots, liposomes and carbon, gold, and silica-based nanoparticles. PMID:18817471

  9. Magnetic nanoparticles for bio-analytical applications

    NASA Astrophysics Data System (ADS)

    Yedlapalli, Sri Lakshmi

    Magnetic nanoparticles are widely being used in various fields of medicine, biology and separations. This dissertation focuses on the synthesis and use of magnetic nanoparticles for targeted drug delivery and analytical separations. The goals of this research include synthesis of biocompatible surface modified monodisperse superparamagnetic iron oxide nanoparticles (SPIONs) by novel techniques for targeted drug delivery and use of SPIONs as analytical sensing tools. Surface modification of SPIONs was performed with two different co-polymers: tri block co-polymer Pluronics and octylamine modified polyacrylic acid. Samples of SPIONs were subsequently modified with 4 different commercially available, FDA approved tri-block copolymers (Pluronics), covering a wide range of molecular weights (5.75-14.6 kDa). A novel, technically simpler and faster phase transfer approach was developed to surface modify the SPIONs with Pluronics for drug delivery and other biomedical applications. The hydrodynamic diameter and aggregation properties of the Pluronic modified SPIONs were studied by dynamic light scattering (DLS). The coverage of SPIONs with Pluronics was supported with IR Spectroscopy and characterized by Thermo gravimetric Analysis (TGA). The drug entrapment capacity of SPIONs was studied by UV-VIS spectroscopy using a hydrophobic carbocyanine dye, which serves as a model for hydrophobic drugs. These studies resulted in a comparison of physical properties and their implications for drug loading capacities of the four types of Pluronic coated SPIONs for drug delivery assessment. These drug delivery systems could be used for passive drug targeting. However, Pluronics lack the functional group necessary for bioconjugation and hence cannot achieve active targeting. SPIONs were functionalized with octylamine modified polyacrylic acid-based copolymer, providing water solubility and facile biomolecular conjugation. Epirubicin was loaded onto SPIONs and the drug entrapment was studied by UVVIS spectrophotometry. In this study, the antisense oligonucleotide sequence to the anti-apoptopic protein survivin was coupled to SPIONs to provide molecular targeting and potential therapy for cancer cells. Successful coupling of antisense survivin to SPIONs was demonstrated by circular dichroism studies of the conjugate and its complementary sequence. Such multifunctional SPIONs can be used as active targeting agents for cancer cells, producing enhanced magnetic resonance imaging contrast and releasing chemotherapeutic agents to targeted cells. SPIONs also serve as an excellent platform for analytical sensing. Streptavidin modified SPIONs were used as substrates to immobilize biotinylated aptamers (single-stranded DNA). The binding affinity of such aptamers to its target was achieved by quantifying the amount of target released from the aptamer. This quantification was achieved using pH-mediated stacking capillary electrophoresis. SPIONs were shown to be more efficient compared to magnetic microbeads as the sensing elements. The binding affinity constant of the aptamer determined was almost 8-fold better than that obtained using magnetic microbeads.

  10. Mesoporous Aluminosilicate Catalysts for the Selective Isomerization of n-Hexane: The Roles of Surface Acidity and Platinum Metal.

    PubMed

    Musselwhite, Nathan; Na, Kyungsu; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2015-08-19

    Several types of mesoporous aluminosilicates were synthesized and evaluated in the catalytic isomerization of n-hexane, both with and without Pt nanoparticles loaded into the mesopores. The materials investigated included mesoporous MFI and BEA type zeolites, MCF-17 mesoporous silica, and an aluminum modified MCF-17. The acidity of the materials was investigated through pyridine adsorption and Fourier Transform-Infrared Spectroscopy (FT-IR). It was found that the strong Brönsted acid sites in the micropores of the zeolite catalysts facilitated the cracking of hexane. However, the medium strength acid sites on the Al modified MCF-17 mesoporous silica greatly enhanced the isomerization reaction. Through the loading of different amounts of Pt into the mesopores of the Al modified MCF-17, the relationship between the metal nanoparticles and acidic sites on the support was revealed.

  11. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    PubMed

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    PubMed

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  13. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape

    PubMed Central

    2016-01-01

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing. PMID:27223478

  14. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape.

    PubMed

    Benz, Felix; Chikkaraddy, Rohit; Salmon, Andrew; Ohadi, Hamid; de Nijs, Bart; Mertens, Jan; Carnegie, Cloudy; Bowman, Richard W; Baumberg, Jeremy J

    2016-06-16

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.

  15. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    NASA Astrophysics Data System (ADS)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  16. The use of solid lipid nanoparticles to target a lipophilic molecule to the liver after intravenous administration to mice.

    PubMed

    Lu, Wen; He, Lang Chong; Wang, Chang He; Li, Yan Hua; Zhang, San Qi

    2008-10-01

    Taspine solid lipid nanoparticles (Ta-SLN) and taspine solid lipid nanoparticles modified by galactoside (Ta-G2SLN) were prepared by the film evaporation-extrusion method. The nanoparticles were spherical or near-spherical particles with smooth surface, small size and high encapsulation efficiency. Ta-G2SLN and Ta-SLN showed significant inhibition on 7721 cell growth. Intravenous injection of either Ta-SLN or Ta-G2SLN resulted in a higher plasma and liver concentration and a longer retention time in mice compared with the administration of Ta. These results suggested that SLN tended to be preferentially delivered to the liver and Ta-G2SLN may further enhance liver targeting.

  17. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode.

    PubMed

    Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat

    2016-08-02

    Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl₄ solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO₂(-) solution and in sausage sample solution, to which different concentrations of NO₂(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.

  18. Modification of the internal surface of photonic crystal fibers with Ag and Au nanoparticles for application as sensor elements

    NASA Astrophysics Data System (ADS)

    Pidenko, Pavel S.; Borzov, Victor M.; Savenko, Olga A.; Skaptsov, Alexander A.; Skibina, Yulia S.; Goryacheva, Irina Yu.; Rusanova, Tatiana Yu.

    2017-03-01

    Photonic crystal fibers (PCFs) are one of the most promising materials for biosensors construction due to their unique optical properties. The modification of PCF by noble metal nanoparticles (NPs) provides the SPR and SERS signal detection where as the application amino group-containing compounds allows efficient binding of biomolecules. In this work the internal surface of glass hollow core photonic crystal fibers (HC-PCFs) has been modified Ag and Au nanoparticles using three different approaches. PCFs were treated by: 1) mixture of NPs and precursors for silanization (tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES)); 2) alternately deposition of polyelectrolytes and NPs, 3) mixture of chitosan with NPs. The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of NPs on the HC-PCF inner surface. The most efficient techniques were the chitosan application for Ag NPs and silanization for Au NPs. The obtaining PCFs could be useful for creating biosensitive elements.

  19. Molecular Imprinting of Silica Nanoparticle Surfaces via Reversible Addition-Fragmentation Polymerization for Optical Biosensing Applications

    NASA Astrophysics Data System (ADS)

    Oluz, Zehra; Nayab, Sana; Kursun, Talya Tugana; Caykara, Tuncer; Yameen, Basit; Duran, Hatice

    Azo initiator modified surface of silica nanoparticles were coated via reversible addition-fragmentation polymerization (RAFT) of methacrylic acid and ethylene glycol dimethacrylate using 2-phenylprop 2-yl dithobenzoate as chain transfer agent. Using L-phenylalanine anilide as template during polymerization led molecularly imprinted nanoparticles. RAFT polymerization offers an efficient control of grafting process, while molecularly imprinted polymers shows enhanced capacity as sensor. L-phenylalanine anilide imprinted silica particles were characterized by X-Ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM). Performances of the particles were followed by surface plasmon resonance spectroscopy (SPR) after coating the final product on gold deposited glass substrate against four different analogous of analyte molecules: D-henylalanine anilide, L-tyrosine, L-tryptophan and L-phenylalanine. Characterizations indicated that silica particles coated with polymer layer do contain binding sites for L-phenylalanine anilide, and are highly selective for the molecule of interest. This project was supported by TUBITAK (Project No:112M804).

  20. Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent

    NASA Astrophysics Data System (ADS)

    Jahandar, Marzieh; Zarrabi, Ali; Shokrgozar, Mohammad Ali; Mousavi, Hajar

    2015-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) with an average size of 10 nm have been successfully synthesized by the polyol method. Then, hyperbranched polyglycerol (HPG) branches have been introduced on the surface of SPIONs through ring opening polymerization of glycidol as a biocompatible surface modifier with a more hydrophilic nature than other biomedical polymers. The as-synthesized SPION-HPGs were analyzed by FT-IR, CHNS and TGA analysis which all exhibited the successful HPG grafting onto the SPION surface. The anticancer herbal drug, curcumin, was loaded on the resultant nanocarrier. The MTT assay demonstrated the non-cytotoxicity effect of SPION-HPGs and the low cytotoxicity effect of curcumin at low concentrations on L929 and MCF-7 cell lines as normal and cancerous cells, respectively. Moreover, these nanoparticles exhibited an improved effect as a contrast agent in magnetic resonance imaging. Thus, it is concluded that SPION-HPG has the potential to be used in theranostics applications due to its simultaneous drug delivery and imaging capabilities.

  1. Block Copolymer Patterns as Templates for the Electrocatalyzed Deposition of Nanostructures on Electrodes and for the Generation of Surfaces of Controlled Wettability.

    PubMed

    Chandaluri, Chanchayya Gupta; Pelossof, Gilad; Tel-Vered, Ran; Shenhar, Roy; Willner, Itamar

    2016-01-20

    ITO electrodes modified with a nanopatterned film of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, where the P2VP domains are quaternized with iodomethane, are used for selective deposition of redox-active materials. Electrochemical studies (cyclic voltammetry, Faradaic impedance measurements) indicate that the PS domains insulate the conductive surface toward redox labels in solution. In turn, the quaternized P2VP domains electrostatically attract negatively charged redox labels solubilized in the electrolyte solution, resulting in an effective electron transfer between the electrode and the redox label. This phenomenon is implemented for the selective deposition of the electroactive Prussian blue on the nanopatterned surface and for the electrochemical deposition of Au nanoparticles, modified with a monolayer of p-aminothiophenol/2-mercaptoethanesulfonic acid, on the quaternized P2VP domains. The patterned Prussian blue-modified surface enables controlling the wettability properties by the content of the electrochemically deposited Prussian blue. Controlled wettability is unattainable with the homopolymer-modified surface, attesting to the role of the nanopattern.

  2. Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing

    2017-12-01

    The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.

  3. Attenuation of encrustation by self-assembled inorganic fullerene-like nanoparticles.

    PubMed

    Ron, Racheli; Zbaida, David; Kafka, Ilan Z; Rosentsveig, Rita; Leibovitch, Ilan; Tenne, Reshef

    2014-05-21

    Ureteral stents and urethral catheters are commonly used medical devices for maintaining urinary flow. However, long-term placement (>30 days) of these devices in the urinary tracts is limited by the development of encrustation, a phenomenon that holds a prevalence of 50% within this patient population, resulting in a great deal of morbidity to the patients. Here we report the influence of surface coating of an all-silicone catheter with rhenium-doped fullerene-like molybdenum disulfide (Re:IF-MoS2) nanoparticles on the growth and attachment of in vitro encrustation stones. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) analyses indicated a remarkable attenuation in encrustation occupation on the Re:IF-MoS2-coated catheter surfaces compared to neat catheters. The doped nanoparticles displayed a unique tendency to self-assemble into mosaic-like arrangements, modifying the surface to be encrustation-repellent. The mechanism of encrustation retardation on the surface coated catheters is discussed in some detail. The ramification of these results for the clogging of other body indwelling devices is briefly discussed.

  4. Size-dependent reactivity of diamond nanoparticles.

    PubMed

    Williams, Oliver A; Hees, Jakob; Dieker, Christel; Jäger, Wolfgang; Kirste, Lutz; Nebel, Christoph E

    2010-08-24

    Photonic active diamond nanoparticles attract increasing attention from a wide community for applications in drug delivery and monitoring experiments as they do not bleach or blink over extended periods of time. To be utilized, the size of these diamond nanoparticles needs to be around 4 nm. Cluster formation is therefore the major problem. In this paper we introduce a new technique to modify the surface of particles with hydrogen, which prevents cluster formation in buffer solution and which is a perfect starting condition for chemical surface modifications. By annealing aggregated nanodiamond powder in hydrogen gas, the large (>100 nm) aggregates are broken down into their core ( approximately 4 nm) particles. Dispersion of these particles into water via high power ultrasound and high speed centrifugation, results in a monodisperse nanodiamond colloid, with exceptional long time stability in a wide range of pH, and with high positive zeta potential (>60 mV). The large change in zeta potential resulting from this gas treatment demonstrates that nanodiamond particle surfaces are able to react with molecular hydrogen at relatively low temperatures, a phenomenon not witnessed with larger (20 nm) diamond particles or bulk diamond surfaces.

  5. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina

    2014-07-01

    Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI. Electronic supplementary information (ESI) available: A detailed description of the synthesis of the ligands as well as the preparation and functionalization of the iron oxide nanoparticles including their physico-chemical characterization are presented. Further, details of the cell experiments and the SPR experiments are given. Two representative movies are provided showing leukocyte rolling on the ligand coated surface of the flow chamber. See DOI: 10.1039/c3nr04793h

  6. Dexamethasone acetate encapsulation into Trojan particles.

    PubMed

    Gómez-Gaete, Carolina; Fattal, Elias; Silva, Lídia; Besnard, Madeleine; Tsapis, Nicolas

    2008-05-22

    We have combined the therapeutic potential of nanoparticles systems with the ease of manipulation of microparticles by developing a hybrid vector named Trojan particles. We aim to use this new delivery vehicle for intravitreal administration of dexamethasone. Initialy, dexamethasone acetate (DXA) encapsulation into biodegradable poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles was optimized. Then, Trojan particles were formulated by spray drying 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC), hyaluronic acid (HA) and different concentrations of nanoparticle suspensions. The effect of nanoparticles concentration on Trojan particle physical characteristics was investigated as well as the effect of the spray drying process on nanoparticles size. Finally, DXA in vitro release from nanoparticles and Trojan particles was evaluated under sink condition. SEM and confocal microscopy show that most of Trojan particles are spherical, hollow and possess an irregular surface due to the presence of nanoparticles. Neither Trojan particle tap density nor size distribution are significantly modified as a function of nanoparticles concentration. The mean nanoparticles size increase significantly after spray drying. Finally, the in vitro release of DXA shows that the excipient matrix provides protection to encapsulated nanoparticles by slowing drug release.

  7. PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy.

    PubMed

    Wang, Fang; Yuan, Jian; Zhang, Qian; Yang, Siqian; Jiang, Shaohua; Huang, Chaobo

    2018-05-17

    Poly (lactic-co-glycolic acid) (PLGA) nanoparticles are an ideal paclitaxel (PTX)-carrying system due to its biocompatibility and biodegradability. But it possessed disadvantage of drug burst release. In this research, a layer-by-layer deposition of chitosan (CS) and sodium alginate (ALG) was applied to modify the PLGA nanoparticles. The surface charges and morphology of the PLGA, PLGA/CS and PLGA/CS/ALG particles was measured by capillary electrophoresis and SEM and TEM, respectively. The drug encapsulation and loading efficiency were confirmed by ultraviolet spectrophotometer. The nanoparticles were stable and exhibited controlled drug release performance, with good cytotoxicity to human lung carcinoma cells (HepG 2). Cumulatively, our research suggests that this kind of three-layer nanoparticle with LbL-coated shield has great properties to act as a novel drug-loaded system.

  8. Interfacial surfactant competition and its impact on poly(ethylene oxide)/Au and poly(ethylene oxide)/Ag nanocomposite properties

    PubMed Central

    Seyhan, Merve; Kucharczyk, William; Yarar, U Ecem; Rickard, Katherine; Rende, Deniz; Baysal, Nihat; Bucak, Seyda; Ozisik, Rahmi

    2017-01-01

    The structure and properties of nanocomposites of poly(ethylene oxide), with Ag and Au nanoparticles, surface modified with a 1:1 (by volume) oleylamine/oleic acid mixture, were investigated via transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared spectroscopy, dynamic mechanical analysis, and static mechanical testing. Results indicated that there was more oleylamine on Ag nanoparticles but more oleic acid on Au nanoparticles. This difference in surfactant populations on each nanoparticle led to different interfacial interactions with poly(ethylene oxide) and drastically influenced the glass transition temperature of these two nanocomposite systems. Almost all other properties were found to correlate strongly with dispersion and distribution state of Au and Ag nanoparticles, such that the property in question changed direction at the onset of agglomeration. PMID:28461744

  9. Fabrication of Refractive Index Tunable Coating with Moisture-Resistant Function for High-Power Laser Systems Based on Homogeneous Embedding of Surface-Modified Nanoparticles.

    PubMed

    Yang, Wei; Lei, Xiangyang; Hui, Haohao; Zhang, Qinghua; Deng, Xueran

    2018-05-07

    Moisture-resistant silicone coatings were prepared on the surface of potassium dihydrogen phosphate (KDP) crystal by means of spin-coating, in which hydrophobic-modified SiO₂ nanoparticles were embedded in a certain proportion. The refractive index of such coating can be tuned arbitrarily in the range of 1.21⁻1.44, which endows the KDP optical component with excellent transmission capability as well as the moisture proof effect. A dual-layer anti-reflective coating system was obtained by covering this silicone coating with a porous SiO₂ coating which is specially treated to enhance the moisture resistance. Transmittance of such a dual-layer coating system could reach 99.60% and 99.62% at 1064 nm and 532 nm, respectively, by precisely matching the refractive index of both layers. Furthermore, the long-term stability of this coating system has been verified at high humidity ambient of 80% RH for 27 weeks.

  10. Interstitial modification of palladium nanoparticles with boron atoms as a green catalyst for selective hydrogenation

    NASA Astrophysics Data System (ADS)

    Chan, Chun Wong Aaron; Mahadi, Abdul Hanif; Li, Molly Meng-Jung; Corbos, Elena Cristina; Tang, Chiu; Jones, Glenn; Kuo, Winson Chun Hsin; Cookson, James; Brown, Christopher Michael; Bishop, Peter Trenton; Tsang, Shik Chi Edman

    2014-12-01

    Lindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases. Here we report that a non-surface modification of palladium gives rise to the formation of an ultra-selective nanocatalyst. Boron atoms are found to take residence in palladium interstitial lattice sites with good chemical and thermal stability. This is favoured due to a strong host-guest electronic interaction when supported palladium nanoparticles are treated with a borane tetrahydrofuran solution. The adsorptive properties of palladium are modified by the subsurface boron atoms and display ultra-selectivity in a number of challenging alkyne hydrogenation reactions, which outclass the performance of Lindlar catalysts.

  11. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  12. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  13. Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles.

    PubMed

    Shoaie, Nahid; Forouzandeh, Mehdi; Omidfar, Kobra

    2018-03-12

    The authors describe an electrochemical assay for fast detection of Escherichia coli (E. coli). It is based on a dual signal amplification strategy and the use of a screen-printed carbon electrode (SPCE) whose surface was modified with a polyaniline (PANI) film and gold nanoparticles (AuNPs) via cyclic voltammetry (CV). In the next step, avidin was covalently immobilized on the PANI/AuNP composite on the SPCE surface. Subsequently, the biotinylated DNA capture probe was immobilized onto the PANI/AuNP/avidin-modified SPCE by biotin-avidin interaction. Then, DNA of E.coli, digoxigenin-labeled DNA detector probe and anti-digoxigenin-labeled horseradish peroxidase (HRP) were placed on the electrode. 3,3',5,5'-Tetramethylbenzidine (TMB) and H 2 O 2 solution were added and the CV electrochemical signal was generated at a potential of -0.1 V (vs. Ag/AgCl) and a scan rate 50 mV.s -1 . The assay can detect 4 × 10 6 to 4 CFU of E. coli without DNA amplification. The biosensor is highly specific over other pathogens including Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis, Staphylococcus haemolyticus and Pseudomonas aeruginosa. It can be concluded that this genosensor has an excellent potential for rapid and accurate diagnosis of E.coli inflicted infections. Graphical Abstract Schematic of an electrochemical E. coli genosensor based on sandwich assay on a polyaniline/gold nanoparticle-modified screen printed carbon electrode (SPCE). The biosensor can detect 4 × 10 6 to 4 CFU of E. coli without DNA amplification.

  14. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    PubMed

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  15. Spherical Nucleic Acids: A New Form of DNA

    NASA Astrophysics Data System (ADS)

    Cutler, Joshua Isaac

    Spherical Nucleic Acids (SNAs) are a new class of nucleic acid-based nanomaterials that exhibit unique properties currently being explored in the contexts of gene-based cancer therapies and in the design of programmable nanoparticle-based materials. The properties of SNAs differ from canonical, linear nucleic acids by virtue of their dense packing into an oriented 3-dimensional array. SNAs can be synthesized from a number of useful nanoparticle templates, such as plasmonic gold and silver, magnetic oxides, luminescent semi-conductor quantum dots, and silica. In addition, by crosslinking the oligonucleotides and dissolving the core, they can be made in a hollow form as well. This dissertation describes the evolution of SNAs from initial studies of inorganic nanoparticle-based materials densely functionalized with oligonucleotides to the proving of a hypothesis that their unique properties can be observed in a core-less structure if the nucleic acids are densely packed and highly oriented. Chapter two describes the synthesis of densely functionalized polyvalent oligonucleotide superparamagnetic iron oxide nanoparticles using the copper-catalyzed azide-alkyne cycloaddition reaction. These particles are shown to exhibit cooperative binding in a density- and salt concentration-dependent fashion, with nearly identical behaviors to those of SNA-functionalized gold nanoparticles. Importantly, these particles are the first non-gold particles shown to be capable of entering cells in high numbers via the SNA-mediated cellular uptake pathway, and provided the first evidence that SNA-mediated cellular uptake is core-independent. In the third chapter, a gold nanoparticle catalyzed alkyne cross-linking reaction is described that is capable of forming hollow organic nanoparticles using polymers with alkyne-functionalized backbones. With this method, the alkyne-modified polymers adsorb to the particle surfaces, cross-link on the surface, allowing the gold nanoparticle to be subsequently dissolved oxidatively with KCN or Iodine. The reaction pathway is analyzed through characterization of the reaction progression and resulting products, and a mechanistic pathway is proposed. This is the first report of a gold nanoparticle catalyzed reaction involving the conversion of propargyl ethers to terminal alcohols, which can subsequently cross-link if densely arranged on a gold nanoparticle surface. Importantly, these structures can be synthesized using gold nanoparticles of a range of sizes, thereby providing control over the size and properties of the resulting crosslinked particle. Chapter four returns to the topic of SNAs and builds upon the chemistry of chapter three culminating in the synthesis of cross-linked hollow SNA nanoparticles. These structures are formed by the cross-linking of synthetically modified alkyne-bearing oligonucleotides through the pathway described in chapter three. When the gold core is dissolved, the resulting hollow SNAs exhibit nearly identical binding, nuclease resistance, cellular uptake, and gene regulation properties of SNA-gold nanoparticle conjugates. Indeed, this chapter demonstrates that the unique properties of SNA-nanoparticle conjugates are core-independent and stem solely from the dense ensemble of oligonucleotides arranged on their surfaces. The fifth chapter further asserts the synthetic achievements made in chapter four by showing how hollow SNAs can be substituted for SNA-gold nanoparticles in the context of DNA-programmable assembly. In this case, they can be used as building blocks within binary synthetic schemes to synthesize unique nanoparticle superlattices. It bolsters the design rules of DNA-programmable assembly by showing that the predicted structures form based on the behavior of SNA hybridization, and are universal for any SNA-functionalized nanoparticle.

  16. Nanoengineered Plasmonic Hybrid Systems for Bio-nanotechnology

    NASA Astrophysics Data System (ADS)

    Leong, Kirsty

    Plasmonic hybrid systems are fabricated using a combination of lithography and layer-by-layer directed self-assembly approaches to serve as highly sensitive nanosensing devices. This layer-by-layer directed self-assembly approach is utilized as a hybrid methodology to control the organization of quantum dots (QDs), nanoparticles, and biomolecules onto inorganic nanostructures with site-specific attachment and functionality. Here, surface plasmon-enhanced nanoarrays are fabricated where the photoluminescence of quantum dots and conjugated polymer nanoarrays are studied. This study was performed by tuning the localized surface plasmon resonance and the distance between the emitter and the metal surface using genetically engineered polypeptides as binding agents and biotin-streptavidin binding as linker molecules. In addition, these nanoarrays were also chemically modified to support the immobilization and label-free detection of DNA using surface enhanced Raman scattering. The surface of the nanoarrays was chemically modified using an acridine containing molecule which can act as an intercalating agent for DNA. The self-assembled monolayer (SAM) showed the ability to immobilize and intercalate DNA onto the surface. This SAM system using surface enhanced Raman scattering (SERS) serves as a highly sensitive methodology for the immobilization and label-free detection of DNA applicable into a wide range of bio-diagnostic platforms. Other micropatterned arrays were also fabricated using a combination of soft lithography and surface engineering. Selective single cell patterning and adhesion was achieved through chemical modifications and surface engineering of poly(dimethylsiloxane) surface. The surface of each microwell was functionally engineered with a SAM which contained an aldehyde terminated fused-ring aromatic thiolated molecule. Cells were found to be attracted and adherent to the chemically modified microwells. By combining soft lithography and surface engineering, a simple methodology produced single cell arrays on biocompatible substrates. Thus the design of plasmonic devices relies heavily on the nature of the plasmonic interactions between nanoparticles in the devices which can potentially be fabricated into lab-on-a-chip devices for multiplex sensing capabilities.

  17. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  18. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Žáková, Pavlína; Slepičková Kasálková, Nikola; Slepička, Petr; Kolská, Zdeňka; Karpíšková, Jana; Stibor, Ivan; Švorčík, Václav

    2017-11-01

    Various carbon nanostructures are widely researched as scaffolds for tissue engineering. We evaluated the surface properties and cell-substrate interactions of carbon nanoparticles functionalized with triethylenetetramine (CNPs) grafted polymer film. Two forms of polyethylene (HDPE, LDPE) were treated in an inert argon plasma discharge and, subsequently, grafted with CNPs. The surface properties were studied using multiple methods, including Raman spectroscopy, goniometry, atomic force microscopy, X-ray photoelectron spectroscopy and electrokinetic analysis. Cell-substrate interactions were determined in vitro by studying adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs) from the aorta of a rat. Cell-substrate interactions on pristine and modified substrates were compared to standard tissue culture polystyrene. Our results show that CNPs affect surface morphology and wettability and therefore adhesion, proliferation and viability of cultured muscle cells.

  19. Size distributions and exposure concentrations of nanoparticles associated with the emissions of oil mists from fastener manufacturing processes.

    PubMed

    Wang, Ying-Fang; Tsai, Perng-Jy; Chen, Chun-Wan; Chen, Da-Ren; Dai, Yu-Tung

    2011-12-30

    The aims of the present study were set out to measure size distributions and estimate workers' exposure concentrations of oil mist nanoparticles in three selected workplaces of the forming, threading, and heat treating areas in a fastener manufacturing plant by using a modified electrical aerosol detector (MEAD). The results were further compared with those simultaneously obtained from a nanoparticle surface area monitor (NSAM) and a scanning mobility particle sizer (SMPS) for the validation purpose. Results show that oil mist nanoparticles in the three selected process areas were formed mainly through the evaporation and condensation processes. The measured size distributions of nanoparticles were consistently in the form of uni-modal. The estimated fraction of nanoparticles deposited on the alveolar (AV) region was consistently much higher than that on the head airway (HD) and tracheobronchial (TB) regions in both number and surface area concentration bases. However, a significant difference was found in the estimated fraction of nanoparticles deposited on each individual region while different exposure metrics were used. Comparable results were found between results obtained from both NSAM and MEAD. After normalization, no significant difference can be found between the results obtained from SMPS and MEAD. It is concluded that the obtained MEAD results are suitable for assessing oil mist nanoparticle exposures. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Silica-iron oxide magnetic nanoparticles modified for gene delivery: a search for optimum and quantitative criteria.

    PubMed

    Mykhaylyk, Olga; Sobisch, Titus; Almstätter, Isabella; Sanchez-Antequera, Yolanda; Brandt, Sabine; Anton, Martina; Döblinger, Markus; Eberbeck, Dietmar; Settles, Marcus; Braren, Rickmer; Lerche, Dietmar; Plank, Christian

    2012-05-01

    To optimize silica-iron oxide magnetic nanoparticles with surface phosphonate groups decorated with 25-kD branched polyethylenimine (PEI) for gene delivery. Surface composition, charge, colloidal stabilities, associations with adenovirus, magneto-tranduction efficiencies, cell internalizations, in vitro toxicities and MRI relaxivities were tested for the particles decorated with varying amounts of PEI. Moderate PEI-decoration of MNPs results in charge reversal and destabilization. Analysis of space and time resolved concentration changes during centrifugation clearly revealed that at >5% PEI loading flocculation gradually decreases and sufficient stabilization is achieved at >10%. The association with adenovirus occurred efficiently at levels over 5% PEI, resulting in the complexes stable in 50% FCS at a PEI-to-iron w/w ratio of ≥7%; the maximum magneto-transduction efficiency was achieved at 9-12% PEI. Primary silica iron oxide nanoparticles and those with 11.5% PEI demonstrated excellent r(2)* relaxivity values (>600 s(-1)(mM Fe)(-1)) for the free and cell-internalized particles. Surface decoration of the silica-iron oxide nanoparticles with a PEI-to-iron w/w ratio of 10-12% yields stable aqueous suspensions, allows for efficient viral gene delivery and labeled cell detection by MRI.

  1. Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode.

    PubMed

    Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao

    2013-11-01

    Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effective degradation of rhodamine B by electro-Fenton process, using ferromagnetic nanoparticles loaded on modified graphite felt electrode as reusable catalyst: in neutral pH condition and without external aeration.

    PubMed

    Tian, Jiangnan; Zhao, Jixiang; Olajuyin, Ayobami Matthew; Sharshar, Moustafa Mohamed; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin

    2016-08-01

    Polytetrafluoroethylene/ferromagnetic nanoparticle/carbon black (PTFE/MNP/CB)-modified graphite felt (GF) was successfully applied as cathode for the mineralization of rhodamine B (RhB) in electro-Fenton (EF) process. The modified cathode showed high decolorization efficiency for RhB solution even in neutral pH condition and without external aeration, achieving nearly complete decolorization and 89.52 % total organic carbon (TOC) removal after 270-min oxidation with the MNP load 1.2 g at 50 A/m(2). Moreover, the operational parameters (current density, MNP load, initial pH, and airflow rate) were optimized. After that, adsorption isotherm was also conducted to compare the absorption quantity of CB and carbon nanotube (CNT). Then, the surface morphologies of MNPs were characterized by transmission electron microscope (TEM), energy-dispersive X-ray detector (EDX), and Fourier transform infrared spectroscopy (FTIR); and the modified cathode was characterized by SEM and contact angle. Finally, the stability and reusability of modified cathode were tested. Result uncovered that the PTFE/MNP/CB-modified cathode has the potential for industrial application and the solution after treatment was easily biodegradable.

  3. Light-induced switching of 1,3-diazabicyclo-[3.1.0]hex-3-enes on gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoodi, Nosrat O.; Ahmadi, Narges Khatoon; Ghavidast, Atefeh

    2018-05-01

    The fabrication of hybrid nanoassemblies involving sulfure-modified photochromic derivatives (SMPDs) on the gold nanoparticles (AuNPs) was carried out to investigate the influence of AuNPs surface plasmons on the SMPDs photoisomerization. The size of the AuNPs obtained was <30 nm in average diameter. Upon irradiation by alternating UV and Vis light, a reversible photochemical isomerization along with bathochromic shift in the absorption band takes place on the surface of the AuNPs in analogy with free SMPDs in solutions. Furthermore, in some cases a significant quenching of photochromic reactivity was observed due to the excited energy transfer from the photochromic molecules to the AuNPs core.

  4. Enhanced vapour sensing using silicon nanowire devices coated with Pt nanoparticle functionalized porous organic frameworks.

    PubMed

    Cao, Anping; Shan, Meixia; Paltrinieri, Laura; Evers, Wiel H; Chu, Liangyong; Poltorak, Lukasz; Klootwijk, Johan H; Seoane, Beatriz; Gascon, Jorge; Sudhölter, Ernst J R; de Smet, Louis C P M

    2018-04-19

    Recently various porous organic frameworks (POFs, crystalline or amorphous materials) have been discovered, and used for a wide range of applications, including molecular separations and catalysis. Silicon nanowires (SiNWs) have been extensively studied for diverse applications, including as transistors, solar cells, lithium ion batteries and sensors. Here we demonstrate the functionalization of SiNW surfaces with POFs and explore its effect on the electrical sensing properties of SiNW-based devices. The surface modification by POFs was easily achieved by polycondensation on amine-modified SiNWs. Platinum nanoparticles were formed in these POFs by impregnation with chloroplatinic acid followed by chemical reduction. The final hybrid system showed highly enhanced sensitivity for methanol vapour detection. We envisage that the integration of SiNWs with POF selector layers, loaded with different metal nanoparticles will open up new avenues, not only in chemical and biosensing, but also in separations and catalysis.

  5. Surface-modified multifunctional MIP nanoparticles.

    PubMed

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey

    2013-05-07

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.

  6. Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: coupling experimental and computational works

    NASA Astrophysics Data System (ADS)

    Lahouij, I.; Bucholz, E. W.; Vacher, B.; Sinnott, S. B.; Martin, J. M.; Dassenoy, F.

    2012-09-01

    Inorganic fullerene-like (IF) nanoparticles made of metal dichalcogenides have previously been recognized to be good friction modifiers and anti-wear additives under boundary lubrication conditions. The tribological performance of these particles appears to be a result of their size, structure and morphology, along with the test conditions. However, the very small scale of the IF nanoparticles makes distinguishing the properties which affect the lubrication mechanism exceedingly difficult. In this work, a high resolution transmission electron microscope equipped with a nanoindentation holder is used to manipulate individual hollow IF-WS2 nanoparticles and to investigate their responses to compression. Additional atomistic molecular dynamics (MD) simulations of similarly structured, individual hollow IF-MoS2 nanoparticles are performed for compression studies between molybdenum surfaces on their major and minor axis diameters. MD simulations of these structures allows for characterization of the influence of structural orientation on the mechanical behavior and nano-sheet exfoliation of hollow-core IF nanoparticles. The experimental and theoretical results for these similar nanoparticles are qualitatively compared.

  7. Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: coupling experimental and computational works.

    PubMed

    Lahouij, I; Bucholz, E W; Vacher, B; Sinnott, S B; Martin, J M; Dassenoy, F

    2012-09-21

    Inorganic fullerene-like (IF) nanoparticles made of metal dichalcogenides have previously been recognized to be good friction modifiers and anti-wear additives under boundary lubrication conditions. The tribological performance of these particles appears to be a result of their size, structure and morphology, along with the test conditions. However, the very small scale of the IF nanoparticles makes distinguishing the properties which affect the lubrication mechanism exceedingly difficult. In this work, a high resolution transmission electron microscope equipped with a nanoindentation holder is used to manipulate individual hollow IF-WS(2) nanoparticles and to investigate their responses to compression. Additional atomistic molecular dynamics (MD) simulations of similarly structured, individual hollow IF-MoS(2) nanoparticles are performed for compression studies between molybdenum surfaces on their major and minor axis diameters. MD simulations of these structures allows for characterization of the influence of structural orientation on the mechanical behavior and nano-sheet exfoliation of hollow-core IF nanoparticles. The experimental and theoretical results for these similar nanoparticles are qualitatively compared.

  8. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier.

    PubMed

    Tosi, G; Bortot, B; Ruozi, B; Dolcetta, D; Vandelli, M A; Forni, F; Severini, G M

    2013-01-01

    Nanomedicine is certainly one of the scientific and technological challenges of the coming years. In particular, biodegradable nanoparticles formulated from poly (D,L-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted delivery of different agents, including recombinant proteins, plasmid DNA, and low molecular weight compounds. PLGA NPs present some very attractive properties such as biodegradability and biocompatibility, protection of drug from degradation, possibility of sustained release, and the possibility to modify surface properties to target nanoparticles to specific organs or cells. Moreover, PLGA NPs have received the FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, thus reducing the time for human clinical applications. This review in particular deals on surface modification of PLGA NPs and their possibility of clinical applications, including treatment for brain pathologies such as brain tumors and Lysosomal Storage Disorders with neurological involvement. Since a great number of pharmacologically active molecules are not able to cross the Blood-Brain Barrier (BBB) and reach the Central Nervous System (CNS), new brain targeted polymeric PLGA NPs modified with glycopeptides (g7- NPs) have been recently produced. In this review several in vivo biodistribution studies and pharmacological proof-of evidence of brain delivery of model drugs are reported, demonstrating the ability of g7-NPs to create BBB interaction and trigger an efficacious BBB crossing. Moreover, another relevant development of NPs surface engineering was achieved by conjugating to the surface of g7-NPs, some specific and selective antibodies to drive NPs directly to a specific cell type once inside the CNS parenchyma.

  9. Stabilization of electrogenerated copper species on electrodes modified with quantum dots.

    PubMed

    Martín-Yerga, Daniel; Costa-García, Agustín

    2017-02-15

    Quantum dots (QDs) have special optical, surface, and electronic properties that make them useful for electrochemical applications. In this work, the electrochemical behavior of copper in ammonia medium is described using bare screen-printed carbon electrodes and the same modified with CdSe/ZnS QDs. At the bare electrodes, the electrogenerated Cu(i) and Cu(0) species are oxidized by dissolved oxygen in a fast coupled chemical reaction, while at the QDs-modified electrode, the re-oxidation of Cu(i) and Cu(0) species can be observed, which indicates that they are stabilized by the nanocrystals present on the electrode surface. A weak adsorption is proposed as the main cause for this stabilization. The electrodeposition on electrodes modified with QDs allows the generation of random nanostructures with copper nanoparticles, avoiding the preferential nucleation onto the most active electrode areas.

  10. Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles.

    PubMed

    Rhouati, Amina; Hayat, Akhtar; Mishra, Rupesh K; Bueno, Diana; Shahid, Shakir Ahmad; Muñoz, Roberto; Marty, Jean Louis

    2016-07-01

    This work reports on the ligand assisted stabilization of Fluospheres® carboxylate modified nanoparticles (FCMNPs), and subsequently investigation on the DNA loading capacity and fluorescence response of the modified particles. The designed fluorescence bioconjugate was characterized with enhanced fluorescence characteristics, good stability and large surface area with high DNA loading efficiency. For comparison purpose, bovine serum albumin (BSA) and polyethylene glycol (PEG) with three different length strands were used as cross linkers to modify the particles, and their DNA loading capacity and fluorescence characteristics were investigated. By comparing the performance of the particles, we found that the most improved fluorescence characteristics, enhanced DNA loading and high dispersion stability were obtained, when employing PEG of long spacer arm length. The designed fluorescence bioconjugate was observed to maintain all its characteristics under varying pH over an extended period of time. These types of bioconjugates are in great demand for fluorescence imaging and in vivo fluorescence biomedical application, especially when most of the as synthesized fluorescence particles cannot withstand to varying in vivo physiological conditions with decreases in fluorescence response and DNA loading efficiency.

  11. Activated carbon/Fe(3)O(4) nanoparticle composite: fabrication, methyl orange removal and regeneration by hydrogen peroxide.

    PubMed

    Do, Manh Huy; Phan, Ngoc Hoa; Nguyen, Thi Dung; Pham, Thi Thu Suong; Nguyen, Van Khoa; Vu, Thi Thuy Trang; Nguyen, Thi Kim Phuong

    2011-11-01

    In the water treatment field, activated carbons (ACs) have wide applications in adsorptions. However, the applications are limited by difficulties encountered in separation and regeneration processes. Here, activated carbon/Fe(3)O(4) nanoparticle composites, which combine the adsorption features of powdered activated carbon (PAC) with the magnetic and excellent catalytic properties of Fe(3)O(4) nanoparticles, were fabricated by a modified impregnation method using HNO(3) as the carbon modifying agent. The obtained composites were characterized by X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption isotherms and vibrating sample magnetometer. Their performance for methyl orange (MO) removal by adsorption was evaluated. The regeneration of the composite and PAC-HNO(3) (powdered activated carbon modified by HNO(3)) adsorbed MO by hydrogen peroxide was investigated. The composites had a high specific surface area and porosity and a superparamagnetic property that shows they can be manipulated by an external magnetic field. Adsorption experiments showed that the MO sorption process on the composites followed pseudo-second order kinetic model and the adsorption isotherm date could be simulated with both the Freundlich and Langmuir models. The regeneration indicated that the presence of the Fe(3)O(4) nanoparticles is important for a achieving high regeneration efficiency by hydrogen peroxide. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    NASA Astrophysics Data System (ADS)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  13. Surface modified gold nanoparticles for SERS based detection of vulnerable plaque formations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Matthäus, Christian; Dugandžić, Vera; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2017-02-01

    Cardiovascular diseases are the leading cause of death worldwide. Atherosclerosis is closely related to the majority of these diseases, as a process of thickening and stiffening of the arterial walls through accumulation of lipids, which is a consequence of aging and life style. Atherosclerosis affects all people in some extent, but not all arterial plaques will necessarily lead to the complications, such as thrombosis, stroke and heart attack. One of the greatest challenges in the risk assessment of atherosclerotic depositions is the detection and recognition of plaques which are unstable and prone to rupture. These vulnerable plaques usually consist of a lipid core that attracts macrophages, a type of white blood cells that are responsible for the degradation of lipids. It has been hypothesized that the amount of macrophages relates to the overall plaque stability. As phagocytes, macrophages also act as recipients for nanoscale particles or structures. Administered gold nanoparticles are usually rabidly taken up by macrophages residing within arterial walls and can therefore be indirectly detected. A very sensitive strategy for probing gold nanoparticles is by utilizing surface enhanced Raman scattering (SERS). By modifying the surface of these particles with SERS active labels it is possible to generate highly specific signals that exhibit sensitivity comparable to fluorescence. SERS labeled gold nanoparticles have been synthesized and the uptake dynamics and efficiency on macrophages in cell cultures was investigated using Raman microscopic imaging. The results clearly show that nanoparticles are taken up by macrophages and support the potential of SERS spectroscopy for the detection of vulnerable plaques. Acknowledgements: Financial support from the Carl Zeiss Foundation is highly acknowledged. The project "Jenaer Biochip Initiative 2.0" (03IPT513Y) within the framework "InnoProfile Transfer - Unternehmen Region" is supported by the Federal Ministry of Education and Research, Germany (BMBF).

  14. Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface.

    PubMed

    Lee, Minwoo; Oh, Kyudeok; Choi, Han-Kyu; Lee, Sung Gun; Youn, Hye Jung; Lee, Hak Lae; Jeong, Dae Hong

    2018-01-26

    As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.

  15. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  16. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  17. Electrocatalytic simultaneous determination of ascorbic acid, uric acid and L-Cysteine in real samples using quercetin silver nanoparticles-graphene nanosheets modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Zare, Hamid R.; Jahangiri-Dehaghani, Fahime; Shekari, Zahra; Benvidi, Ali

    2016-07-01

    By immobilizing of quercetin at the surface of a glassy carbon electrode modified with silver nanoparticles and graphene nanosheets (Q-AgNPs-GNs-GCE) a new sensor has been fabricated. The cyclic voltammogram of Q-AgNPs-GNs-GCE shows a stable redox couple with surface confined characteristics. Q-AgNPs-GNs-GCE demonstrated a high catalytic activity for L-Cysteine (L-Cys) oxidation. Results indicated that L-Cys peak potential at Q-AgNPs-GNs-GCE shifted to less positive values compared to GNs-GCE or AgNPs-GCE. Also, the kinetic parameters such as the electron transfer coefficient,, and the heterogeneous electron transfer rate constant, k‧, for the oxidation of L-Cys at the Q-AgNPs-GNs-GCE surface were estimated. In differential pulse voltammetric determination, the detection limit of L-Cys was obtained 0.28 μM, and the calibration plots were linear within two ranges of 0.9-12.4 μM and 12.4-538.5 μM of L-Cys. Also, the proposed modified electrode is used for the simultaneous determinations of ascorbic acid (AA), uric acid (UA), and L-Cys. Finally, this study has demonstrated the practical analytical utility of the sensor for determination of AA in vitamin C tablet, L-Cys in a milk sample and UA in a human urine sample.

  18. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells.

    PubMed

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2017-07-01

    This study aimed at development of poly (lactic-co-glycolic acid) (PLGA) nanoparticles embedded with paclitaxel and coated with hyaluronic acid (HA-PTX-PLGA) to actively target the drug to a triple negative breast cancer cells. Nanoparticles were successfully fabricated using a modified oil-in-water emulsion method. The effect of various formulations parameters on the physicochemical properties of the nanoparticles was investigated. SEM imaging confirmed the spherical shape and nano-scale size of the nanoparticles. A sustained drug release profile was obtained and enhanced PTX cytotoxicity was observed when MDA-MB-231 cells were incubated with the HA-PTX-PLGA formulation compared to cells incubated with the non-HA coated nanoparticles. Moreover, HA-PLGA nanoparticles exhibited improved cellular uptake, based on a possible receptor mediated endocytosis due to interaction of HA with CD44 receptors when compared to non-coated PLGA nanoparticles. The non-haemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Flower-Like Nanoparticles of Pt-BiIII Assembled on Agmatine Sulfate Modified Glassy Carbon Electrode and Their Electrocatalysis of H2O2

    NASA Astrophysics Data System (ADS)

    Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing

    2015-04-01

    A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.

  20. Wear resistance of WC/Co HVOF-coatings and galvanic Cr coatings modified by diamond nanoparticles

    NASA Astrophysics Data System (ADS)

    Kandeva, M.; Grozdanova, T.; Karastoyanov, D.; Assenova, E.

    2017-02-01

    The efforts in the recent 20 years are related to search of ecological solutions in the tribotechnologies for the replacement of galvanic Cr coatings in the contact systems operating under extreme conditions: abrasion, erosion, cavitation, corrosion, shock and vibration loads. One of the solutions is in the composite coatings deposited by high velocity gas-flame process (HVOF). The present paper presents comparative study results for mechanical and tribological characteristics of galvanic Cr coatings without nanoparticles, galvanic Cr coatings modified by diamond nanoparticles NDDS of various concentration 0.6; 10; 15 и 20% obtained under three technological regimes, and composite WC-12Co coating. Comparative results about hardness, wear, wear resistance and friction coefficient are obtained for galvanic Cr-NDDS and WC-12Co coatings operating at equal friction conditions of dry friction on abrasive surface. The WC-12Co coating shows 5.4 to 7 times higher wear resistance compared to the galvanic Cr-NDDS coatings.

Top