Sample records for nanoparticulate polymeric vectors

  1. Multifunctional nanoparticulate polyelectrolyte complexes.

    PubMed

    Hartig, Sean M; Greene, Rachel R; DasGupta, Jayasri; Carlesso, Gianluca; Dikov, Mikhail M; Prokop, Ales; Davidson, Jeffrey M

    2007-12-01

    Water-soluble, biodegradable, polymeric, polyelectrolyte complex dispersions (PECs) have evolved because of the limitations, in terms of toxicity, of the currently available systems. These aqueous nanoparticulate architectures offer a significant advantage for products that may be used as drug delivery systems in humans. PECs are created by mixing oppositely charged polyions. Their hydrodynamic diameter, surface charge, and polydispersity are highly dependent on concentration, ionic strength, pH, and molecular parameters of the polymers that are used. In particular, the complexation between polyelectrolytes with significantly different molecular weights leads to the formation of water-insoluble aggregates. Several PEC characteristics are favorable for cellular uptake and colloidal stability, including hydrodynamic diameter less than 200 nm, surface charge of >30 mV or <-30 mV, spherical morphology, and polydispersity index (PDI) indicative of a homogeneous distribution. Maintenance of these properties is critical for a successful delivery vehicle. This review focuses on the development and potential applications of PECs as multi-functional, site-specific nanoparticulate drug/gene delivery and imaging devices.

  2. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    PubMed Central

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with

  3. Development and characterization of polymeric nanoparticulate delivery system for hydrophillic drug: Gemcitabine

    NASA Astrophysics Data System (ADS)

    Khurana, Jatin

    Gemcitabine is a nucleoside analogue, used in various carcinomas such as non small cell lung cancer, pancreatic cancer, ovarian cancer and breast cancer. The major setbacks to the conventional therapy with gemcitabine include its short half-life and highly hydrophilic nature. The objectives of this investigation were to develop and evaluate the physiochemical properties, drug loading and entrapment efficiency, in vitro release, cytotoxicity, and cellular uptake of polymeric nano-particulate formulations containing gemcitabine hydrochloride. The study also entailed development and validation of a high performance liquid chromatography (HPLC) method for the analysis of gemcitabine hydrochloride. A reverse phase HPLC method using a C18 Luna column was developed and validated. Alginate and Poly lactide co glycolide/Poly-epsilon-caprolactone (PLGA:PCL 80:20) nanoparticles were prepared by multiple emulsion-solvent evaporation methodology. An aqueous solution of low viscosity alginate containing gemcitabine was emulsified into 10% solution of dioctyl-sulfosuccinate in dichloro methane (DCM) by sonication. The primary emulsion was then emulsified in 0.5% (w/v) aqueous solution of polyvinyl alcohol (PVA). Calcium chloride solution (60% w/v) was used to cause cross linking of the polymer. For PLGA:PCL system, the polymer mix was dissolved in dichloromethane (DCM) and an aqueous gemcitabine (with and without sodium chloride) was emulsified under ultrasonic conditions (12-watts; 1-min). This primary emulsion was further emulsified in 2% (w/v) PVA under ultrasonic conditions (24-watts; 3-min) to prepare a multiple-emulsion (w/o/w). In both cases DCM, the organic solvent was evaporated (20- hours, magnetic-stirrer) prior to ultracentrifugation (10000-rpm for PLGA:PCL; 25000-rpm for alginate). The pellet obtained was washed thrice with de-ionized water to remove PVA and any free drug and re-centrifuged. The particles were re-suspended in de-ionized water and then lyophilized to

  4. Nanoparticulate drug delivery platforms for advancing bone infection therapies

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A

    2015-01-01

    Introduction The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition. Areas covered Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same. Expert opinion Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment. PMID:25109804

  5. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering.

    PubMed

    Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E

    2015-01-09

    Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.

  6. Concepts and practices used to develop functional PLGA-based nanoparticulate systems.

    PubMed

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell-type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.

  7. Concepts and practices used to develop functional PLGA-based nanoparticulate systems

    PubMed Central

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner. PMID:23459088

  8. Polymeric nanoparticulate system augmented the anticancer therapeutic efficacy of gemcitabine.

    PubMed

    Arias, José L; Reddy, L Harivardhan; Couvreur, Patrick

    2009-09-01

    Gemcitabine hydrochloride is an anticancer nucleoside analogue indicated in clinic for the treatment of various solid tumors. Although this drug has been demonstrated to display anticancer activity against a wide variety of tumors, it is needed to be administered at high doses to elicit the required therapeutic response, simultaneously leading to severe adverse effects. We hypothesized that the efficient delivery of gemcitabine to tumors using a biodegradable carrier system could reduce the dose required to elicit sufficient therapeutic response. Thus, we have developed a nanoparticle formulation of gemcitabine suitable for parenteral administration based on the biodegradable polymer poly(octylcyanoacrylate) (POCA). The nanoparticles were synthesized by anionic polymerization of the corresponding monomer. Two drug loading methods were analyzed: the first one based on gemcitabine surface adsorption onto the preformed nanoparticles, and the second method being gemcitabine addition before the polymerization process leading to drug entrapment in the polymeric network. A detailed investigation of the capabilities of the polymer particles to load this drug is described. Gemcitabine entrapment into the polymer matrix yielded a higher drug loading and a slower drug release profile as compared with drug adsorption procedure. The main factors determining the gemcitabine incorporation to the polymer network were the nanoparticles preparation procedure, the monomer concentration, the surfactant concentration, the pH, and the drug concentration. The release kinetic of gemcitabine was found to be controlled by the pH and the type of drug incorporation. The cytotoxicity studies performed on L1210 tumor cells revealed a similar anticancer activity of the gemcitabine-loaded POCA (GPOCA) nanoparticle as free gemcitabine. Following intravenous administration into the mice bearing L1210 wt subcutaneous tumor, the GPOCA nanoparticles displayed significantly greater anticancer activity

  9. Bioinspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair.

    PubMed

    Lee, Yuhan; Xu, Chenjie; Sebastin, Monisha; Lee, Albert; Holwell, Nathan; Xu, Calvin; Miranda Nieves, David; Mu, Luye; Langer, Robert S; Lin, Charles; Karp, Jeffrey M

    2015-11-18

    Delivery of tissue glues through small-bore needles or trocars is critical for sealing holes, affixing medical devices, or attaching tissues together during minimally invasive surgeries. Inspired by the granule-packaged glue delivery system of sandcastle worms, a nanoparticulate formulation of a viscous hydrophobic light-activated adhesive based on poly(glycerol sebacate)-acrylate is developed. Negatively charged alginate is used to stabilize the nanoparticulate surface to significantly reduce its viscosity and to maximize injectability through small-bore needles. The nanoparticulate glues can be concentrated to ≈30 w/v% dispersions in water that remain localized following injection. With the trigger of a positively charged polymer (e.g., protamine), the nanoparticulate glues can quickly assemble into a viscous glue that exhibits rheological, mechanical, and adhesive properties resembling the native poly(glycerol sebacate)-acrylate based glues. This platform should be useful to enable the delivery of viscous glues to augment or replace sutures and staples during minimally invasive procedures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bio-inspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair

    PubMed Central

    Lee, Yuhan; Xu, Chenjie; Sebastin, Monisha; Lee, Albert; Holwell, Nathan; Xu, Calvin; Miranda-Nieves, David; Mu, Luye; Lin, Charles

    2015-01-01

    Delivery of tissue glues through small-bore needles or trocars is critical for sealing holes, affixing medical devices, or attaching tissues together during minimally invasive surgeries. Inspired by the granule-packaged glue delivery system of sandcastle worms, we have developed a nanoparticulate formulation of a viscous hydrophobic light-activated adhesive based on poly(glycerol sebacate)-acrylate. Negatively charged alginate was used to stabilize the nanoparticulate surface to significantly reduce its viscosity and to maximize injectability through small-bore needles. The nanoparticulate glues can be concentrated to ~30w/v% dispersions in water that remain localized following injection. With the trigger of a positively charged polymer (e.g., protamine), the nanoparticulate glues can quickly assemble into a viscous glue that exhibits rheological, mechanical and adhesive properties resembling the native poly(glycerol sebacate)-acrylate based glues. This platform should be useful to enable the delivery of viscous glues to augment or replace sutures and staples during minimally invasive procedures. PMID:26227833

  11. Comparative cytotoxicity assessments of some manufactured and anthropogenic nanoparticulate materials

    NASA Astrophysics Data System (ADS)

    Soto, Karla Fabiola

    Due to increasing diversity of newly engineered nanoparticles, it is important to consider the hazards of these materials. Very little is known regarding the potential toxicity of relatively new nanomaterials. However, beginning with several historical accounts of nanomaterials applications---chrysotile asbestos and silver---it was assumed that these examples would provide some awareness and guidelines for future nanomaterial and nanotechnology applications, especially health effects. In this study in vitro assays were performed on a murine alveolar macrophage cell line (RAW 264.7), human alveolar macrophage cell line (THB-1), and human epithelial lung cell line (A549) to assess the comparative cytotoxicity of a wide range of manufactured (Ag, TiO2, Fe2O3, Al2O3, ZrO2, black carbon, two different types of multiwall structures and chrysotile asbestos as the toxicity standard) and anthropogenic nanoparticulates. There are several parameters of nanoparticulates that are considered to trigger an inflammatory response (particularly respiratory) or cause toxicity. These parameters include: particle size, shape, specific surface area, transition metals in particulates, and organic compounds. Therefore, a wide variety of manufactured and anthropogenic nanoparticulates having different morphologies, sizes, specific surface area and chemistries as noted were tested. To determine the nanoparticulates' size and morphology, they were characterized by transmission electron microscopy, where it was observed that the commercial multiwall carbon nanotube aggregate had an identical morphology to chrysotile asbestos and combustion-formed carbon nanotubes, i.e.; those that form from natural gas combustion. Light optical microscopy was used to determine cell morphology upon exposure to nanoparticulates as an indication of cell death. Also, the polycyclic aromatic hydrocarbon (PAH) content of the collected nanoparticulates was analyzed and correlated with cytotoxic responses. For

  12. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications

    PubMed Central

    Zhao, Fuli; Yao, Dan; Guo, Ruiwei; Deng, Liandong; Dong, Anjie; Zhang, Jianhua

    2015-01-01

    Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed. PMID:28347111

  13. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction

    DOE PAGES

    Jung, Suho; McCrory, Charles C. L.; Ferrer, Ivonne M.; ...

    2016-11-27

    Nanoparticulate metal-oxide catalysts are among the most prevalent systems for alkaline water oxidation. However, comparisons of the electrochemical performance of these materials have been challenging due to the different methods of attachment, catalyst loadings, and electrochemical test conditions reported in the literature. Here in this paper, we have leveraged a conventional drop-casting method that allows for the successful adhesion of a wide range of nanoparticulate catalysts to glassy-carbon electrode surfaces. We have applied this adhesion method to prepare catalyst films from 16 crystalline metal-oxide nanoparticles with a constant loading of 0.8 mg cm -2, and evaluated the resulting nanoparticulate filmsmore » for the oxygen evolution reaction under conditions relevant to an integrated solar fuels device. In general, the activities of the adhered nanoparticulate films are similar to those of thin-film catalysts prepared by electrodeposition or sputtering, achieving 10 mA cm -2 current densities per geometric area at overpotentials of ~0.35–0.5 V.« less

  14. Attachment of nanoparticulate drug-release systems on poly(ε-caprolactone) nanofibers via a graftpolymer as interlayer.

    PubMed

    de Cassan, Dominik; Sydow, Steffen; Schmidt, Nadeschda; Behrens, Peter; Roger, Yvonne; Hoffmann, Andrea; Hoheisel, Anna Lena; Glasmacher, Birgit; Hänsch, Robert; Menzel, Henning

    2018-03-01

    Electrospun poly(ε-caprolactone) (PCL) fiber mats are modified using a chitosan grafted with PCL (CS-g-PCL), to improve the biological performance and to enable further modifications. The graft copolymer is immobilized by the crystallization of the PCL grafts on the PCL fiber surface as binding mechanism. In this way, the surface of the fibers is covered with chitosan bearing cationic amino groups, which allow adsorption of oppositely charged nanoparticulate drug-delivery systems. The modification of the fiber mats and the attachment of the drug delivery systems are easy and scalable dip processes. The process is also versatile; it is possible to attach different polymeric and inorganic nanoparticulate drug-release systems of cationic or anionic nature. The modifications are verified using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). As proof of principle, the release of ciprofloxacin from silica nanoparticles attached to the modified fiber mats is shown; however, the method is also suited for other biologically active substances including growth factors. The initial cellular attachment and proliferation as well as vitality of the cells is improved by the modification with CS-g-PCL and is further influenced by the type of the drug delivery system attached. Hence, this method can be used to transfer PCL fiber mats into bioactive implants for in-situ tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation

    PubMed Central

    Mills, Nicholas L.; Miller, Mark R.; Lucking, Andrew J.; Beveridge, Jon; Flint, Laura; Boere, A. John F.; Fokkens, Paul H.; Boon, Nicholas A.; Sandstrom, Thomas; Blomberg, Anders; Duffin, Rodger; Donaldson, Ken; Hadoke, Patrick W.F.; Cassee, Flemming R.; Newby, David E.

    2011-01-01

    Aim Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions. PMID:21753226

  16. The use of nanoparticulates to treat breast cancer.

    PubMed

    Tang, Xiaomeng; Loc, Welley S; Dong, Cheng; Matters, Gail L; Butler, Peter J; Kester, Mark; Meyers, Craig; Jiang, Yixing; Adair, James H

    2017-10-01

    Breast cancer is a major ongoing public health issue among women in both developing and developed countries. Significant progress has been made to improve the breast cancer treatment in the past decades. However, the current clinical approaches are invasive, of low specificity and can generate severe side effects. As a rapidly developing field, nanotechnology brings promising opportunities to human cancer diagnosis and treatment. The use of nanoparticulate-based platforms overcomes biological barriers and allows prolonged blood circulation time, simultaneous tumor targeting and enhanced accumulation of drugs in tumors. Currently available and clinically applicable innovative nanoparticulate-based systems for breast cancer nanotherapies are discussed in this review.

  17. Nanoparticulate delivery systems for antiviral drugs.

    PubMed

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  18. Nanoparticules d'or: De l'imagerie par resonance magnetique a la radiosensibilisation

    NASA Astrophysics Data System (ADS)

    Hebert, Etienne M.

    Cette thèse approfondit l'étude de nanoparticules d'or de 5 nm de diamètre recouvertes de diamideéthanethioldiethylènetriaminepentacétate de gadolinium (DTDTPA:Gd), un agent de contraste pour l'imagerie par résonance magnétique (IRM). En guise de ciblage passif, la taille des nanoparticules a été contrôlée afin d'utiliser le réseau de néovaisseaux poreux et perméable des tumeurs. De plus les tumeurs ont un drainage lymphatique déficient qui permet aux nanoparticules de demeurer plus longtemps dans le milieu interstitiel de la tumeur. Les expériences ont été effectuées sur des souris Balb/c femelles portant des tumeurs MC7-L1. La concentration de nanoparticules a pu être mesurée à l'IRM in vivo. La concentration maximale se retrouvait à la fin de l'infusion de 10 min. La concentration s'élevait à 0.3 mM dans la tumeur et de 0.12 mM dans le muscle environnant. Les nanoparticules étaient éliminées avec une demi-vie de 22 min pour les tumeurs et de 20 min pour le muscle environnant. Les nanoparticules ont été fonctionnalisées avec le peptide Tat afin de leur conférer des propriétés de ciblage actif La rétention de ces nanoparticules a ainsi été augmentée de 1600 %, passant d'une demi-vie d'élimination de 22 min à 350 min. La survie des souris a été mesurée à l'aide de courbes Kaplan-Meier et d'un modèle mathématique évalue l'efficacité de traitements. Le modèle nous permet, à l'aide de la vitesse de croissance des tumeurs et de l'efficacité des traitements, de calculer la courbe de survie des spécimens. Un effet antagoniste a été observé au lieu de l'effet synergétique attendu entre une infusion de Au@DTDTPA:Gd et l'irradiation aux rayons X. L'absence d'effet synergétique a été attribuée à l'épaisseur du recouvrement de DTDTPA:Gd qui fait écran aux électrons produits par l'or. De plus, le moyen d'ancrage du recouvrement utilise des thiols qui peuvent s'avérer être des capteurs de radicaux. De plus

  19. Modeles numeriques de la stimulation optique de neurones assistee par nanoparticules plasmoniques

    NASA Astrophysics Data System (ADS)

    Le Hir, Nicolas

    La stimulation de neurones par laser emerge depuis plusieurs annees comme une alternative aux techniques plus traditionnelles de stimulation artificielle. Contrairement a celles-ci, la stimulation lumineuse ne necessite pas d'interagir directement avec le tissu organique, comme c'est le cas pour une stimulation par electrodes, et ne necessite pas de manipulation genetique comme c'est le cas pour les methodes optogenetiques. Plus recemment, la stimulation lumineuse de neurones assistee par nanoparticules a emerge comme un complement a la stimulation simplement lumineuse. L'utilisation de nanoparticules complementaires permet d'augmenter la precision spatiale du procede et de diminuer la fluence necessaire pour observer le phenomene. Ceci vient des proprietes d'interaction entre les nanoparticules et le faisceau laser, comme par exemple les proprietes d'absorption des nanoparticules. Deux phenomenes princpaux sont observes. Dans certains cas, il s'agit d'une depolarisation de la membrane, ou d'un potentiel d'action. Dans d'autres experiences, un influx de calcium vers l'interieur du neurone est detecte par une augmentation de la fluorescence d'une proteine sensible a la concentration calcique. Certaines stimulations sont globales, c'est a dire qu'une perturbation se propage a l'ensemble du neurone : c'est le cas d'un potentiel d'action. D'autres sont, au contraire, locales et ne se propagent pas a l'ensemble de la cellule. Si une stimulation lumineuse globale est rendue possible par des techniques relativement bien maitrisees a l'heure actuelle, comme l'optogenetique, une stimulation uniquement locale est plus difficile a realiser. Or, il semblerait que les methodes de stimulation lumineuse assistees par nanoparticules puissent, dans certaines conditions, offrir cette possibilite. Cela serait d'une grande aide pour conduire de nouvelles etudes sur le fonctionnement des neurones, en offrant de nouvelles possibilites experimentales en complement des possibilites

  20. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.

    PubMed

    Niazi, Nabeel Khan; Burton, Edward D

    2016-11-01

    Nanoparticulate mackinawite (FeS) can be an important host-phase for arsenic (As) in sulfidic, subsurface environments. Although not previously investigated, phosphate (PO 4 3- ) may compete with As for available sorption sites on FeS, thereby enhancing As mobility in FeS-bearing soils, sediments and groundwater systems. In this study, we examine the effect of PO 4 3- on sorption of arsenate (As(V)) and arsenite (As(III)) to nanoparticulate FeS at pH 6, 7 and 9. Results show that PO 4 3- (at 0.01-1.0 mM P) did not significantly affect sorption of either As(V) or As(III) to nanoparticulate FeS at initial aqueous As concentrations ranging from 0.01 to 1.0 mM. At pH 9 and 7, sorption of both As(III) and As(V) to nanoparticulate FeS was similar, with distribution coefficient (K d ) values spanning 0.76-15 L g -1 (which corresponds to removal of 87-98% of initial aqueous As(III) and As(V) concentrations). Conversely, at pH 6, the sorption of As(III) was characterized by substantially higher K d values (6.3-93.4 L g -1 ) than those for As(V) (K d  = 0.21-0.96 L g -1 ). Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that up to 52% of the added As(V) was reduced to As(III) in As(V) sorption experiments, as well as the formation of minor amounts of an As 2 S 3 -like species. In As(III) sorption experiments, XANES spectroscopy also demonstrated the formation of an As 2 S 3 -like species and the partial oxidation of As(III) to As(V) (despite the strictly O 2 -free experimental conditions). Overall, the XANES data indicate that As sorption to nanoparticulate FeS involves several redox transformations and various sorbed species, which display a complex dependency on pH and As loading but that are not influenced by the co-occurrence of PO 4 3- . This study shows that nanoparticulate FeS can help to immobilize As(III) and As(V) in sulfidic subsurface environments where As co-exists with PO 4 3- . Copyright © 2016 Elsevier Ltd. All

  1. Equilibrium polymerization on the equivalent-neighbor lattice

    NASA Technical Reports Server (NTRS)

    Kaufman, Miron

    1989-01-01

    The equilibrium polymerization problem is solved exactly on the equivalent-neighbor lattice. The Flory-Huggins (Flory, 1986) entropy of mixing is exact for this lattice. The discrete version of the n-vector model is verified when n approaches 0 is equivalent to the equal reactivity polymerization process in the whole parameter space, including the polymerized phase. The polymerization processes for polymers satisfying the Schulz (1939) distribution exhibit nonuniversal critical behavior. A close analogy is found between the polymerization problem of index the Schulz r and the Bose-Einstein ideal gas in d = -2r dimensions, with the critical polymerization corresponding to the Bose-Einstein condensation.

  2. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation.

    PubMed

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K; Mitra, Ashim K

    2011-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.

  3. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation

    PubMed Central

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K.; Mitra, Ashim K.

    2015-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine–valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins. PMID:20939702

  4. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors.

    PubMed

    Bacalocostantis, Irene; Mane, Viraj P; Kang, Michael S; Goodley, Addison S; Muro, Silvia; Kofinas, Peter

    2012-05-14

    Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand

  5. Ingenierie de nanoparticules plasmoniques robustes pour la generation de bulles par laser en vue d'applications biomedicales

    NASA Astrophysics Data System (ADS)

    Lachaine, Remi

    Les chirurgiens generent des bulles dans le corps humain a l'aide d'irradiation laser depuis plusieurs decennies. Ils utilisent ces bulles comme de petits scalpels, leur permettant de faire des incisions precises et localisees. Une des applications de cet outil chirurgical est la perforation cellulaire. Au lieu d'utiliser une aiguille pour perforer la membrane des cellules, il est possible de focaliser des impulsions laser en surface d'une cellule, formant un plasma au point focal du laser et generant une bulle qui perfore la membrane cellulaire. Toutefois, ce procede est assez lent et la perforation massive de cellules in-vivo n'est pas envisageable. Pour accelerer le processus, il est possible d'utiliser des nanoparticules plasmoniques. Ces dernieres agissent comme des nano-antennes qui permettent de concentrer la lumiere sur une echelle nanometrique. La possibilite d'irradier un grand nombre de nanoparticules simultanement a donne un nouvel elan a la generation de bulle comme outil de perforation cellulaire. L'utilisation de nanoparticules dans un contexte biomedical comporte toutefois certains risques. En particulier, la fragmentation de nanoparticules peut augmenter la toxicite du traitement. Dans un cas ideal, il est preferable d'utiliser des nanoparticules qui ne sont pas endommagees par l'irradiation laser. Cette these a pour but de developper une methode d'ingenierie de nanoparticules robustes permettant la generation efficace de bulles a des fins biomedicales. Il est tout d'abord demontre experimentalement que la formation de plasma est bel et bien le mecanisme physique principal menant a la generation de bulles lors de l'irradiation infrarouge (longueur d'onde de 800 nm) et ultrarapide (temps d'impulsion entre 45 fs et 1 ps) de nanoparticules d'or de 100 nm. Pour realiser cette demonstration, une methode pompe-sonde de detection de bulles d'environ 1 mum a ete elaboree. Cette methode a permis de mettre en evidence une difference de taille de 18% entre

  6. Dielectrophoretic Isolation and Detection of cfc-DNA Nanoparticulate Biomarkers and Virus from Blood

    PubMed Central

    Sonnenberg, Avery; Marciniak, Jennifer Y.; McCanna, James; Krishnan, Rajaram; Rassenti, Laura; Kipps, Thomas J.; Heller, Michael J.

    2015-01-01

    Dielectrophoretic (DEP) microarray devices allow important cellular nanoparticulate biomarkers and virus to be rapidly isolated, concentrated and detected directly from clinical and biological samples. A variety of sub-micron nanoparticulate entities including cell free circulating (cfc) DNA, mitochondria and virus can be isolated into DEP high-field areas on microelectrodes, while blood cells and other micron-size entities become isolated into DEP low-field areas between the microelectrodes. The nanoparticulate entities are held in the DEP high-field areas while cells are washed away along with proteins and other small molecules which are not affected by the DEP electric fields. DEP carried out on 20 µL of whole blood obtained from Chronic Lymphocytic Leukemia (CLL) patients showed a considerable amount of SYBR Green stained DNA fluorescent material concentrated in the DEP high-field regions. Whole blood obtained from healthy individuals showed little or no fluorescent DNA materials in the DEP high-field regions. Fluorescent T7 bacteriophage virus could be isolated directly from blood samples, and fluorescently stained mitochondria could be isolated from biological buffer samples. Using newer DEP microarray devices, high molecular weight (hmw) DNA could be isolated from serum and detected at levels as low as 8–16 ng/mL. PMID:23436471

  7. Study of an ultrasound-based process analytical tool for homogenization of nanoparticulate pharmaceutical vehicles.

    PubMed

    Cavegn, Martin; Douglas, Ryan; Akkermans, Guy; Kuentz, Martin

    2011-08-01

    There are currently no adequate process analyzers for nanoparticulate viscosity enhancers. This article aims to evaluate ultrasonic resonator technology as a monitoring tool for homogenization of nanoparticulate gels. Aqueous dispersions of colloidal microcrystalline cellulose (MCC) and a mixture of clay particles with xanthan gum were compared with colloidal silicon dioxide in oil. The processing was conducted using a laboratory-scale homogenizing vessel. The study investigated first the homogenization kinetics of the different systems to focus then on process factors in the case of colloidal MCC. Moreover, rheological properties were analyzed offline to assess the structure of the resulting gels. Results showed the suitability of ultrasound velocimetry to monitor the homogenization process. The obtained data were fitted using a novel heuristic model. It was possible to identify characteristic homogenization times for each formulation. The subsequent study of the process factors demonstrated that ultrasonic process analysis was equally sensitive as offline rheological measurements in detecting subtle manufacturing changes. It can be concluded that the ultrasonic method was able to successfully assess homogenization of nanoparticulate viscosity enhancers. This novel technique can become a vital tool for development and production of pharmaceutical suspensions in the future. Copyright © 2011 Wiley-Liss, Inc.

  8. Nanoparticulate strategies for effective delivery of poorly soluble therapeutics.

    PubMed

    Gokce, Evren H; Ozyazici, Mine; Souto, Eliana B

    2010-07-01

    The pharmacological activity of a drug molecule depends on its ability to dissolve and interact with its biological target, either through dissolution and absorption, or through dissolution and receptor interaction. The low bioavailability that characterizes poorly water-soluble drugs is usually attributed to the dissolution kinetic profile. Novel strategies to effectively deliver these drugs include nanoparticulate approaches that either increase the surface area of the drug or improve the solubility characteristics of the drug. Nanosizing approaches are based on the production of drug nanocrytals dispersed in an aqueous surfactant solution, whereas other possibilities include drug loading in nanoparticles. Promising nanoparticulate approaches include the development of lipid-based nanocarriers to increase drug solubility followed by enhanced bioavailability. To select the best approach there are, however, some critical considerations to take into account, for example the physicochemical properties of the drug, the possibility to scale-up the production process, the toxicological considerations of the use of solvents and cosolvents, the selection of an environmentally sustainable methodology and the development of a more patient-friendly dosage form. This article addresses these relevant questions and provides feasible examples of novel strategies with respect to relevant administration routes.

  9. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  10. Ionically fixed polymeric nanoparticles as a novel drug carrier.

    PubMed

    Lee, Sa-Won; Chang, Dong-Hoon; Shim, Myung-Seop; Kim, Bong-Oh; Kim, Sun-Ok; Seo, Min-Hyo

    2007-08-01

    . The results suggests that the IFPN were retained in the circulation long enough to play a significant role as a drug carrier in the bloodstream, possibly resulting in improved therapeutic efficiency. Therefore, the IFPN are expected to be a promising novel polymeric nanoparticulate system for passive tumor targeting of water-insoluble anticancer drugs including paclitaxel.

  11. Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control.

    PubMed

    Balaji, A P B; Mishra, Prabhakar; Suresh Kumar, R S; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    The utilization of increased dosage of insect repellents to overcome mosquito resistance has raised environmental concerns globally. In accord to this, we have formulated an efficacious, water-dispersive, nanometric formulation of a poor water-soluble insect repellent, diethylphenylacetamide (DEPA) by poly(ethylene glycol) (PEG) polymerization followed by PIT emulsification method. The critical micelle concentration of PEG in the spontaneously emulsified conventional DEPA droplets was determined, based on the droplets physical stability. Subjecting them to PIT emulsification yielded monodispersed polymeric nanomicelles of DEPA (Nano DEPA) with hydrodynamic mean diameter of 153.74 nm. The high-resolution scanning and transmission electron microscopic studies revealed the characteristic core-shell structure of micelle. The comparative efficacy of Bulk DEPA and Nano DEPA was evaluated by larvicidal and WHO cone bioassay against the Japanese encephalitis vector Culex tritaeniorhynchus. The median lethal concentrations (48 h) for 3rd instars C. tritaeniorhynchus larvae were found to be 0.416 mg/L for Bulk DEPA and 0.052 mg/L for Nano DEPA, respectively. The median knockdown concentrations (60 min) for the two to three-day-old, sucrose-fed, female adult mosquitoes were 5.372% (v/v) and 3.471% (v/v) for Bulk and Nano DEPA, respectively. Further investigation by histopathological and biochemical studies propound that Nano DEPA exerted better bioefficacy as comparative to its bulk form even at minimal exposure concentrations. Hence, Nano DEPA will serve as an effective alternate in controlling the vector expansion with reduced dosage. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma.

    PubMed

    Zamboni, Camila G; Kozielski, Kristen L; Vaughan, Hannah J; Nakata, Maisa M; Kim, Jayoung; Higgins, Luke J; Pomper, Martin G; Green, Jordan J

    2017-10-10

    Hepatocellular carcinoma (HCC) is the third most deadly cancer in the US, with a meager 5-year survival rate of <20%. Such unfavorable numbers are closely related to the heterogeneity of the disease and the unsatisfactory therapies currently used to manage patients with invasive HCC. Outside of the clinic, gene therapy research is evolving to overcome the poor responses and toxicity associated with standard treatments. The inadequacy of gene delivery vectors, including poor intracellular delivery and cell specificity, are major barriers in the gene therapy field. Herein, we described a non-viral strategy for effective and cancer-specific DNA delivery to human HCC using biodegradable poly(beta-amino ester) (PBAE) nanoparticles (NPs). Varied PBAE NP formulations were evaluated for transfection efficacy and cytotoxicity to a range of human HCC cells as well as healthy human hepatocytes. To address HCC heterogeneity, nine different sources of human HCC cells were utilized. The polymeric NPs composed of 2-((3-aminopropyl)amino) ethanol end-modified poly(1,5-pentanediol diacrylate-co-3-amino-1-propanol) ('536') at a 25 polymer-to-DNA weight-to-weight ratio led to high transfection efficacy to all of the liver cancer lines, but not to hepatocytes. Each individual HCC line had a significantly higher percentage of exogenous gene expression than the healthy liver cells (P<0.01). Notably, this biodegradable end-modified PBAE gene delivery vector was not cytotoxic and maintained the viability of hepatocytes above 80%. In a HCC/hepatocyte co-culture model, in which cancerous and healthy cells share the same micro-environment, 536 25 w/w NPs specifically transfected cancer cells. PBAE NP administration to a subcutaneous HCC mouse model, established with one of the human lines tested in vitro, confirmed effective DNA transfection in vivo. PBAE-based NPs enabled high and preferential DNA delivery to HCC cells, sparing healthy hepatocytes. These biodegradable and liver cancer

  13. Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release

    PubMed Central

    Sun, Huanli; Cheng, Ru; Deng, Chao

    2014-01-01

    Abstract Significance: The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. Recent Advances: Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. Critical Issues: Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. Future Directions: Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo. Antioxid. Redox Signal. 21, 755–767. PMID:24279980

  14. Effect of blue and violet light on polymerization shrinkage vectors of a CQ/TPO-containing composite.

    PubMed

    Sampaio, Camila S; Atria, Pablo J; Rueggeberg, Frederick A; Yamaguchi, Satoshi; Giannini, Marcelo; Coelho, Paulo G; Hirata, Ronaldo; Puppin-Rontani, Regina M

    2017-07-01

    To evaluate the effect of light-curing wavelengths on composite filler particle displacement, and thus to visualize localized polymerization shrinkage in a resin-based composite (RBC) containing camphorquinone (CQ) and Lucirin TPO (TPO). Three light-curing units (LCUs) were used to light-cure a RBC containing CQ and TPO: a violet-only, a blue-only, and a dual-wavelength, conventional (Polywave ® , emitting violet and blue wavelengths simultaneously). Zirconia fillers were added to the RBC to act as filler particle displacement tracers. LCUs were characterized for total emitted power (mW) and spectral irradiant output (mW/cm 2 /nm). 2-mm high, 7-mm diameter silanized glass cylindrical specimens were filled in a single increment with the RBC, and micro-computed tomography (μ-CT) scans were obtained before and after light-curing, according to each LCU (n=6). Filler particle movement identified polymerization shrinkage vectors, traced using software, at five depths (from 0 up to 2mm): top, top-middle, middle, middle-bottom and bottom. Considering different RBC depths within the same LCU, use of violet-only and conventional LCUs showed filler particle movement decreased with increased depth. Blue-only LCU showed homogeneous filler particle movement along the depths. Considering the effect of different LCUs within the same depth, filler particle movement within LCUs was not statistically different until the middle of the samples (P>.05). However, at the middle-bottom and bottom depths (1.5 and 2mm, respectively), blue-only LCU compared to violet-only LCU showed higher magnitude of displacement vector values (P<.05). Use of the conventional LCU showed filler displacement magnitudes that were not significantly different than blue-only and violet-only LCUs at any depth (P>.05). With respect to the direction of particle movement vectors, use of violet-only LCU showed a greater displacement when close to the incident violet LED; blue-only LCU showed equally distributed

  15. Functional Materials from Polymeric Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Segalman, Rachel; Sanoja, Gabriel; Michenfelder-Schauser, Nicole; Mitragotri, Samir; Seshadri, Ram

    Ionic liquids (IL's) have been suggested for applications as diverse as solubilizing cellulose, antimicrobial treatments, and electrolytes in batteries due to their molten salt properties. A polymeric cation (such as imidazolium) is an excellent host for any associated anion. As a result, polymerized ionic liquids are not just solid counterparts to IL's, but are shown to be vectors for the inclusion of a wide variety of functionalities ranging from multi-valent ions to magnetic anions. Moreover, PIL block copolymers allow orthogonal control over mechanical and morphological properties, ultimately leading to a conceptual framework for processable, tunable, multifunctional materials.

  16. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  17. Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Kandanapitiye, Murthi S.

    The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X

  18. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  19. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  20. Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field.

    PubMed

    Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik

    2008-02-01

    Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.

  1. Nanoparticulate-catalyzed oxygen transfer processes

    DOEpatents

    Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  2. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery.

    PubMed

    Cirpanli, Yasemin; Bilensoy, Erem; Lale Doğan, A; Caliş, Sema

    2009-09-01

    Camptothecin (CPT) is a potent anticancer agent. The clinical application of CPT is restricted by poor water solubility and instability under physiological conditions. Solubilization and stabilization of CPT were realized through nanoparticulate systems of amphiphilic cyclodextrins, poly(lactide-co-glycolide) (PLGA) or poly-epsilon-caprolactone (PCL). Nanoparticles were prepared with nanoprecipitation technique, whereas cyclodextrin nanoparticles were prepared from preformed inclusion complexes of CPT with amphiphilic cyclodextrins. Polymeric nanoparticles, on the other hand, were loaded with CPT:HP-beta-CD inclusion complex to solubilize and stabilize the drug. Mean particle sizes were under 275 nm, and polydispersity indices were lower than 0.2 for all formulations. Drug-loading values were significantly higher for amphiphilic cyclodextrin nanoparticles when compared with those for PLGA and PCL nanoparticles. Nanoparticle formulations showed a significant controlled release profile extended up to 12 days for amphiphilic cyclodextrin nanoparticles and 48h for polymeric nanoparticles. Anticancer efficacy of the nanoparticles was evaluated in comparison with CPT solution in dimethyl sulfoxide (DMSO) on MCF-7 breast adenocarcinoma cells. Amphiphilic cyclodextrin nanoparticles showed higher anticancer efficacy than PLGA or PCL nanoparticles loaded with CPT and the CPT solution in DMSO. These results indicated that CPT-loaded amphiphilic cyclodextrin nanoparticles might provide a promising carrier system for the effective delivery of this anticancer drug having bioavailability problems.

  3. Switchable Ionic Liquids: An Environmentally Friendly Medium to Synthesise Nanoparticulate Green Rust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, David; Kukkadapu, Ravi; Kovarik, Libor

    Under anoxic conditions, a novel nanoparticulate green rust with carbonate (nano GR) was synthesized by addition of methanol to degassed switchable ionic liquid (SWIL) solution comprised of 1-hexanol, diazabicycloundec-7-ene (DBU), CO2 and Fe(C2H3O2)2 (Fe(OAc)2). Variable temperature Mössbauer spectroscopy studies indicated the product to be predominantly GR while TEM-SAED method confirmed it be nanoparticulate in nature. Experiments with and without methanol in the SWIL medium suggest that methanol may be responsible for Fe(II) oxidation to Fe(III) necessary for GR formation. Studies with Ar instead of CO2 trigger gas indicated that CO2 is essential for GR formation. Conditions to generate CO32- anionmore » was most likely provided by basic environment of the medium. The nano GR suspension was very reactive and instantaneously oxidized completely to a reddish-brown precipitate upon exposure to ambient atmosphere. The nature of the oxidized sample is not certain. The oxidized product, however, appears to be a mix of ferric green rust- [GR(CO32-]*; major] and ferrihydrite-like minerals. To our knowledge, this is first report of use of environmentally-friendly SWIL reagents to synthesize very reactive nano GR materials.« less

  4. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice

    PubMed Central

    Aslam, Mohamad F.; Frazer, David M.; Faria, Nuno; Bruggraber, Sylvaine F. A.; Wilkins, Sarah J.; Mirciov, Cornel; Powell, Jonathan J.; Anderson, Greg J.; Pereira, Dora I. A.

    2014-01-01

    The ferritin core is composed of fine nanoparticulate Fe3+ oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe3+ polyoxohydroxide (nanoFe3+). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe2+ sulfate (FeSO4), nanoFe3+, or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe3+ was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe3+ are equally bioavailable in WT mice, and at wk 8 the mean ± sem hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe3+ group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe3+ is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.—Aslam, M. F., Frazer, D. M., Faria, N., Bruggraber, S. F. A., Wilkins, S. J., Mirciov, C., Powell, J. J., Anderson, G. J., Pereira, D. I. A. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. PMID:24776745

  5. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel.

    PubMed

    Bansal, Amit; Wu, Xianfu; Olson, Victoria; D'Souza, Martin J

    2018-07-10

    Plasmid DNA (pDNA) vaccines have the potential for protection against a wide range of diseases including rabies but are rapid in degradation and poor in uptake by antigen-presenting cells. To overcome the limitations, we fabricated a pDNA nanoparticulate vaccine. The negatively charged pDNA was adsorbed onto the surface of cationic PLGA (poly (d, l-lactide-co-glycolide))-chitosan nanoparticles and were used as a delivery vehicle. To create a hydrogel for sustainable vaccine release, we dispersed the pDNA nanoparticles in poloxamer 407 gel which is liquid at 4 °C and turns into soft gels at 37 °C, providing ease of administration and preventing burst release of pDNA. Complete immobilization of pDNA to cationic nanoparticles was achieved at a pDNA to nanoparticles ratio (P/N) of 1/50. Cellular uptake of nanoparticles was both time and concentration dependent and followed a saturation kinetics with V max of 11.389 µg/mL h and K m of 139.48 µg/mL. The in vitro release studies showed the nanoparticulate vaccine has a sustained release for up to 24 days. In summary, pDNA PLGA-chitosan nanoparticles were non-cytotoxic, their buffering capacity and cell uptake were enhanced, and sustained the release of pDNA. We expect our pDNA vaccine's potency will be greatly improved in the animal studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization.

    PubMed

    Moraes, John; Ohno, Kohji; Maschmeyer, Thomas; Perrier, Sébastien

    2013-10-14

    Hybrid nanoparticles hold great promise for a range of applications such as drug-delivery vectors or colloidal crystal self-assemblies. The challenge of preparing highly monodisperse particles for these applications has recently been overcome by using living radical polymerization techniques. In particular, the use of reversible addition-fragmentation chain transfer (RAFT), initiated from silica surfaces, yields well-defined particles from a range of precursor monomers resulting in nanoparticles of tailored sizes that are accessible via the rational selection of polymerization conditions. Furthermore, using RAFT allows post-polymerization modification to afford multifunctional, monodisperse, nanostructures under mild and non-stringent reaction conditions.

  7. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    NASA Astrophysics Data System (ADS)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  8. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems.

    PubMed

    Yan, Jing-Jun; Liao, Jia-Zhi; Lin, Ju-Sheng; He, Xing-Xing

    2015-01-01

    Patients with hepatocellular carcinoma (HCC) usually present at advanced stages and do not benefit from surgical resection, so drug therapy should deserve a prominent place in unresectable HCC treatment. But chemotherapy agents, such as doxorubicin, cisplatin, and paclitaxel, frequently encounter important problems such as low specificity and non-selective biodistribution. Recently, the development of nanotechnology led to significant breakthroughs to overcome these problems. Decorating the surfaces of nanoparticulate-based drug carriers with homing devices has demonstrated its potential in concentrating chemotherapy agents specifically to HCC cells. In this paper, we reviewed the current status of active targeting strategies for nanoparticulate systems based on various receptors such as asialoglycoprotein receptor, transferrin receptor, epidermal growth factor receptor, folate receptor, integrin, and CD44, which are abundantly expressed on the surfaces of hepatocytes or liver cancer cells. Furthermore, we pointed out their merits and defects and provided theoretical references for further research.

  9. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    NASA Astrophysics Data System (ADS)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  10. Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.

    PubMed

    Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur

    2017-01-01

    Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization.

    PubMed

    Colzani, Barbara; Speranza, Giovanna; Dorati, Rossella; Conti, Bice; Modena, Tiziana; Bruni, Giovanna; Zagato, Elisa; Vermeulen, Lotte; Dakwar, George R; Braeckmans, Kevin; Genta, Ida

    2016-09-25

    Active drug targeting and controlled release of hydrophilic macromolecular drugs represent crucial points in designing efficient polymeric drug delivery nanoplatforms. In the present work EGFR-targeted polylactide-co-glycolide (PLGA) nanoparticles were made by a blend of two different PLGA-based polymers. The first, GE11-PLGA, in which PLGA was functionalized with GE11, a small peptide and EGFR allosteric ligand, able to give nanoparticles selective targeting features. The second polymer was a PEGylated PLGA (PEG-PLGA) aimed at improving nanoparticles hydrophilicity and stealth features. GE11 and GE11-PLGA were custom synthetized through a simple and inexpensive method. The nanoprecipitation technique was exploited for the preparation of polymeric nanoparticles composed by a 1:1weight ratio between GE11-PLGA and PEG-PLGA, obtaining smart nanoplatforms with proper size for parenteral administration (143.9±5.0nm). In vitro cellular uptake in EGFR-overexpressing cell line (A549) demonstrated an active internalization of GE11-functionalized nanoparticles. GE11-PLGA/PEG-PLGA blend nanoparticles were loaded with Myoglobin, a model hydrophilic macromolecule, reaching a good loading (2.42% respect to the theoretical 4.00% w/w) and a prolonged release over 60days. GE11-PLGA/PEG-PLGA blend nanoparticles showed good in vitro stability for 30days in physiological saline solution at 4°C and for 24h in pH 7.4 or pH 5.0 buffer at 37°C respectively, giving indications about potential storage and administration conditions. Furthermore ex vivo stability study in human plasma using fluorescence Single Particle Tracking (fSPT) assessed good GE11-PLGA/PEG-PLGA nanoparticles dimensional stability after 1 and 4h. Thanks to the versatility in polymeric composition and relative tunable nanoparticles features in terms of drug incorporation and release, GE11-PLGA/PEG-PLGA blend NPs can be considered highly promising as smart nanoparticulate platforms for the treatment of diseases

  12. Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects.

    PubMed

    Joseph, Emil; Reddi, Satish; Rinwa, Vibhu; Balwani, Garima; Saha, Ranendra

    2017-06-15

    The present paper discusses the design, characterization and in vivo evaluation of glyceryl monostearate nanoparticles of Olanzapine, an atypical antipsychotic drug for acute schizophrenia treatment, during which hospitalization is mandatory and adverse effects are at its peak. The solid lipid nanoparticulate system was obtained by emulsification-ultra sonication technique wherein three factors such as solid lipid content, concentration of surfactant and drug: solid lipid ratio were selected at three different levels in order to study their influence on significant characteristic responses such as particle size, encapsulation efficiency and drug content. A Box Behnken design with 17 runs involving whole factors at three levels was employed for the study. The optimized formulation was further coated with Polysorbate 80 in order to enhance its brain targeting potential through endocytosis transport process via blood brain barrier. The designed formulations were pre-clinically tested successfully in Wistar rat model for in vivo antipsychotic efficacy (apomorphine induced psychosis) and adverse effects (weight gain study for 28days). The results obtained indicated that solid lipid nanoparticles had very narrow size distribution (151.29±3.36nm) with very high encapsulation efficiency (74.51±1.75%). Morphological studies by SEM have shown that solid lipid nanoparticles were spherical in shape with smooth surface. Olanzapine-loaded nanoparticles prepared from solid lipid, extended the release of drug for 48h, as found by the in vitro release studies. The formulations also exhibited high redispersibility after freeze-drying and stability study results demonstrated good stability, with no significant change for a period of 6months. In vivo evaluation and adverse effects studies of Olanzapine-loaded nanoparticulate systems in animal model have demonstrated an improved therapeutic efficacy than pure Olanzapine. The antipsychotic effect of drug loaded nanoparticulate systems

  13. Investigations on pharmacokinetics and biodistribution of polymeric and solid lipid nanoparticulate systems of atypical antipsychotic drug: effect of material used and surface modification.

    PubMed

    Joseph, Emil; Saha, Ranendra N

    2017-04-01

    The present study focuses on the effect of material used for the preparation of nanoparticulate (NP) systems and surface modification on the pharmacokinetics and biodistribution of atypical antipsychotic, olanzapine (OLN). NP carriers of OLN were prepared from two different materials such as polymer (polycaprolactone) and solid lipid (Glyceryl monostearate). These systems were further surface modified with surfactant, Polysorbate 80 and studied for pharmacokinetics-biodistribution in Wistar rats using in-house developed bioanalytical methods. The pharmacokinetics and biodistribution studies resulted in a modified and varied distribution of NP systems with higher area under curve (AUC) values along with prolonged residence time of OLN in the rat blood circulation. The distribution of OLN to the brain was significantly enhanced with surfactant surface-modified NP systems, followed by nonsurface-modified NP formulations as compared with pure OLN solution. Biodistribution study demonstrated a low uptake of obtained NP systems by kidney and heart, thereby decreasing the nephrotoxicity and adverse cardiovascular effects. By coating the NP with surfactant, uptake of macrophage was found to be reduced. Thus, our studies confirmed that the biodistribution OLN could be modified effectively by incorporating in NP drug delivery systems prepared from different materials and surface modifications. A judicious selection of materials used for the preparation of delivery carriers and surface modifications would help to design a most efficient drug delivery system with better therapeutic efficacy.

  14. A TEM analysis of nanoparticulates in a Polar ice core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esquivel, E.V.; Murr, L.E

    2004-03-15

    This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less

  15. Nanoparticulate mackinawite formation; a stopped and continuous flow XANES and EXAFS investigation

    NASA Astrophysics Data System (ADS)

    Butler, I. B.; Bell, A. M.; Charnock, J. M.; Rickard, D.; Vaughan, D. J.; Oldroyd, A.

    2009-12-01

    The sequestration of sulfur and iron within sedimentary iron sulfides, and ultimately as pyrite, is a major sink in global biogeochemical cycles of those elements and has impacts on global carbon and oxygen cycles. The formation of the metastable black iron (II) monosulfide mackinawite is a key process because mackinawite forms in aqueous solutions where the Fe(II) and S(-II) IAP exceeds mackinawite’s Ksp. Mackinawite is the first formed iron sulfide phase, a consequence of Ostwald’s step rule and is a reactant phase during the formation of thermodynamically stable sedimentary iron sulfide minerals such as pyrite. The reaction of dissolved Fe(II) and sulfide is extremely fast and reactions in the environmentally significant near-neutral pH range tend to completion in <1 second. We have combined stopped and continuous flow techniques with X-ray absorption spectroscopy to evaluate the products of the fast precipitation kinetics of mackinawite over millisecond timescales. EXAFS spectra and data collected during flow experiments were compared with those from a well characterised freeze-dried nanoparticulate mackinawite standard and with published data. Published work has used Rietveld crystal structure refinement to determine bond distances of 2.2558 and 2.5976Å for Fe-S and Fe-Fe respectively. In our experiments Fe K edge XANES is consistent with tetrahedrally coordinated Fe in the precipitated sulfide phase. EXAFS data show that local Fe-S and Fe-Fe coordination and interatomic distances (Fe-S = 2.24Å; Fe-Fe = 2.57Å) are consistent with those determined for the standard mackinawite and published data. The coordination and spacing are developed in the precipitated phase after <10ms reaction at pH5, and considerably faster in experiments at near neutral to alkaline pH. No evidence for phases structurally intermediate between hexaqua Fe(II) and precipitated mackinawite was observed. Aqueous FeS° cluster complexes previously identified as intermediates during

  16. Connexin 43 expression of foreign body giant cells after implantation of nanoparticulate hydroxyapatite.

    PubMed

    Herde, Katja; Hartmann, Sonja; Brehm, Ralph; Kilian, Olaf; Heiss, Christian; Hild, Anne; Alt, Volker; Bergmann, Martin; Schnettler, Reinhard; Wenisch, Sabine

    2007-11-01

    In bone a role of connexin 43 has been implicated with the fusion of mononuclear precursors of the monocyte/macrophage lineage into multinucleated cells. In order to investigate the putative role of connexin 43 in formation of bone osteoclast-like foreign body giant cells which are formed in response to implantation of biomaterials, nanoparticulate hydroxyapatite had been implanted into defects of minipig femura. After 20 days the defect areas were harvested and connexin 43 expression and synthesis were investigated by using immunohistochemistry, Western Blot, and in situ hybridization within macrophages and osteoclast-like foreign body giant cells. Morphological analysis of gap junctions is performed ultrastructurally. As shown on protein and mRNA level numerous connexin 43 positive macrophages and foreign body giant cells (FBGC) were localized within the granulation tissue and along the surfaces of the implanted hydroxyapatite (HA). Besides, the formation of FBGC by fusion of macrophages could be shown ultrastructurally. Connexin 43 labeling observed on the protein and mRNA level could be attributed to gap junctions identified ultrastructurally between macrophages, between FBGC, and between FBGC and macrophages. Annular gap junctions in the cytoplasm of FBGC pointed to degradation of the channels, and the ubiquination that had occurred in the course of degradation was confirmed by Western blot analysis. All in all, the presently observed pattern of connexin 43 labeling refers to an functional role of gap junctional communication in the formation of osteoclast-like foreign body giant cells formed in response to implantation of the nanoparticulate HA.

  17. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  18. Nanoparticulation improves bioavailability of Erlotinib.

    PubMed

    Yang, Kyung Mi; Shin, In Chul; Park, Joo Won; Kim, Kab-Sig; Kim, Dae Kyong; Park, Kyungmoon; Kim, Kunhong

    2017-09-01

    Nanoparticulation using fat and supercritical fluid (NUFS TM ) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva ® . In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva ® . The relative bioavailability of NUFS-Ert compared with that of Tarceva ® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva ® . NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva ® .

  19. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  20. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle

    NASA Astrophysics Data System (ADS)

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N.

    2015-11-01

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU

  1. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs.

    PubMed

    Choi, Jinhyang; Ko, Eunjung; Chung, Hye-Kyung; Lee, Jae Hee; Ju, Eun Jin; Lim, Hyun Kyung; Park, Intae; Kim, Kab-Sig; Lee, Joo-Hwan; Son, Woo-Chan; Lee, Jung Shin; Jung, Joohee; Jeong, Seong-Yun; Song, Si Yeol; Choi, Eun Kyung

    2015-01-01

    Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX), under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™) technology enabled successful nanoscale particulation of DTX (Nufs-DTX). Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR) effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in edema, paralysis, and paw-withdrawal latency on a hot plate analysis that are regarded as indicators of fluid retention, peripheral neuropathy, and thermal threshold, respectively, for toxicological tests. In summary, compared with Taxotere™, Nufs-DTX, which was generated by our new platform technology using lipid, supercritical fluid, and carbon dioxide (CO2), maintained its biochemical properties as a cytotoxic agent and had better tumor targeting ability, better in vivo therapeutic effect, and less toxicity, thereby overcoming the current hurdles of traditional drugs.

  2. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials

    PubMed Central

    Xie, Jingwei; Jiang, Jiang; Davoodi, Pooya; Srinivasan, M. P.; Wang, Chi-Hwa

    2014-01-01

    Electrohydrodynamic atomization (EHDA), also called electrospray technique, has been studied for more than one century. However, since 1990s it has begun to be used to produce and process micro-/nanostructured materials. Owing to the simplicity and flexibility in EHDA experimental setup, it has been successfully employed to generate particulate materials with controllable compositions, structures, sizes, morphologies, and shapes. EHDA has also been used to deposit micro- and nanoparticulate materials on surfaces in a well-controlled manner. All these attributes make EHDA a fascinating tool for preparing and assembling a wide range of micro- and nanostructured materials which have been exploited for use in pharmaceutics, food, and healthcare to name a few. Our goal is to review this field, which allows scientists and engineers to learn about the EHDA technique and how it might be used to create, process, and assemble micro-/nanoparticulate materials with unique and intriguing properties. We begin with a brief introduction to the mechanism and setup of EHDA technique. We then discuss issues critical to successful application of EHDA technique, including control of composition, size, shape, morphology, structure of particulate materials and their assembly. We also illustrate a few of the many potential applications of particulate materials, especially in the area of drug delivery and regenerative medicine. Next, we review the simulation and modeling of Taylor cone-jet formation for a single and co-axial nozzle. The mathematical modeling of particle transport and deposition is presented to provide a deeper understanding of the effective parameters in the preparation, collection and pattering processes. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25684778

  3. Use of a nanoparticulate carboxymethyl cellulose film containing sinigrin as an antimicrobial precursor to kill Escherichia coli O157:H7 on fresh beef.

    PubMed

    Herzallah, S; Holley, R

    2015-08-01

    Nanocomposite carboxymethyl cellulose films containing sinigrin (SNG) were prepared by stirring 2% (w/v) carboxymethyl cellulose (CMC) and 2% (w/v) glycerol (as a plasticizer) in distilled water with or without SNG (an antimicrobial precursor) as a 99% pure reagent (pSNG) or as a crude extract (cSNG). These films plus normal CMC film with or without SNG were tested on Escherichia coli O157:H7- inoculated beef for antimicrobial activity. Beef pieces measuring 6 × 5 × 2 cm(3) (L × W × H) were dipped in an E. coli O157:H7 broth suspension containing >8 log10 CFU ml(-1) and were drained for 3 min over a sterile cloth. They were wrapped in CMC or NCMC films, placed in a high oxygen barrier film (Deli *1), vacuum-packaged and stored at 8°C for 5, 8, 12 and 18 days. The CMC and NCMC films without SNG were not antimicrobial against E. coli O157:H7; however, NCMC and CMC films with SNG were highly antimicrobial. After 5 days at 8°C, E. coli O157:H7 was reduced more than 4 log10 by the NCMC•pSNG film and this reduction remained almost the same until 18 days at 8°C when E. coli O157:H7 was reduced >5 log10  CFU g(-1) meat. Transparent nanoparticulate carboxymethyl cellulose (CMC) films containing sinigrin (SNG), an antimicrobial precursor, controlled surface contamination of packaged fresh beef by the pathogen Escherichia coli O157:H7 when stored at 8°C. Films with nanoparticulation that carried pure SNG or the naturally occurring SNG in Oriental mustard were significantly more antimicrobial than similar films without nanoparticulation. As films without sinigrin were not antimicrobial, the combinations studied showed that nanoparticulation of the packaging film enhanced delivery of the antimicrobial incorporated within the film. © 2015 The Society for Applied Microbiology.

  4. Exploration of ethyl anthranilate-loaded monolithic matrix-type prophylactic polymeric patch.

    PubMed

    Islam, Johirul; Zaman, Kamaruz; Chakrabarti, Srijita; Bora, Nilutpal Sharma; Pathak, Manash Pratim; Mandal, Santa; Junejo, Julfikar Ali; Chattopadhyay, Pronobesh

    2017-10-01

    Compromised stability of pharmaceutical formulations loaded with volatiles is a serious problem associated with devices designed to deliver volatile compounds. The present study has been focused to evaluate the stability potential of matrix-type polymeric patches composed of volatile ethyl anthranilate for prophylaxis against vector-borne diseases. Ethyl anthranilate-loaded matrix-type polymeric patches were fabricated by solvent evaporation method on an impermeable backing membrane and attached to temporary release liners. Stability testing of the polymeric patches was performed as per the International Conference on Harmonization (ICH) guidelines for 6 months under accelerated conditions. In addition, the quantification of residual solvents was also performed as per the ICH guidelines. After conducting the stability studies for 6 months, the optimized patches showed the best possible results with respect to uniformity of drug content, physical appearance, and other analytical parameters. Furthermore, the amount of residual solvent was found well below the accepted limit. Thus, the present report outlined the analytical parameters to be evaluated to ensure the stability of a certain devices consisting of volatile compounds. Copyright © 2016. Published by Elsevier B.V.

  5. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    PubMed

    Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  6. Combustion-Generated Nanoparticulates in the El Paso, TX, USA / Juarez, Mexico Metroplex: Their Comparative Characterization and Potential for Adverse Health Effects

    PubMed Central

    Murr, L. E.; Soto, K. F.; Garza, K. M.; Guerrero, P. A.; Martinez, F.; Esquivel, E. V.; Ramirez, D. A.; Shi, Y.; Bang, J. J.; Venzor, J.

    2006-01-01

    In this paper we report on the collection of fine (PM1) and ultrafine (PM0.1), or nanoparticulate, carbonaceous materials using thermophoretic precipitation onto silicon monoxide/formvar-coated 3 mm grids which were examined in the transmission electron microscope (TEM). We characterize and compare diesel particulate matter (DPM), tire particulate matter (TPM), wood burning particulate matter, and other soot (or black carbons (BC)) along with carbon nanotube and related fullerene nanoparticle aggregates in the outdoor air, as well as carbon nanotube aggregates in the indoor air; and with reference to specific gas combustion sources. These TEM investigations include detailed microstructural and microdiffraction observations and comparisons as they relate to the aggregate morphologies as well as their component (primary) nanoparticles. We have also conducted both clinical surveys regarding asthma incidence and the use of gas cooking stoves as well as random surveys by zip code throughout the city of El Paso. In addition, we report on short term (2 day) and longer term (2 week) in vitro assays for black carbon and a commercial multiwall carbon nanotube aggregate sample using a murine macrophage cell line, which demonstrate significant cytotoxicity; comparable to a chrysotile asbestos nanoparticulate reference. The multi-wall carbon nanotube aggregate material is identical to those collected in the indoor and outdoor air, and may serve as a surrogate. Taken together with the plethora of toxic responses reported for DPM, these findings prompt concerns for airborne carbonaceous nanoparticulates in general. The implications of these preliminary findings and their potential health effects, as well as directions for related studies addressing these complex issues, will also be examined. PMID:16823077

  7. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  8. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  9. Photo-responsive polymeric micelles.

    PubMed

    Huang, Yu; Dong, Ruijiao; Zhu, Xinyuan; Yan, Deyue

    2014-09-07

    Photo-responsive polymeric micelles have received increasing attention in both academic and industrial fields due to their efficient photo-sensitive nature and unique nanostructure. In view of the photo-reaction mechanism, photo-responsive polymeric micelles can be divided into five major types: (1) photoisomerization polymeric micelles, (2) photo-induced rearrangement polymeric micelles, (3) photocleavage polymeric micelles, (4) photo-induced crosslinkable polymeric micelles, and (5) photo-induced energy conversion polymeric micelles. This review highlights the recent advances of photo-responsive polymeric micelles, including the design, synthesis and applications in various biomedical fields. Especially, the influence of different photo-reaction mechanisms on the morphology, structure and properties of the polymeric micelles is emphasized. Finally, the possible future directions and perspectives in this emerging area are briefly discussed.

  10. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less

  11. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  12. Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated "Click-Radical" Concurrent Polymerization.

    PubMed

    Xue, Wentao; Wang, Jie; Wen, Ming; Chen, Gaojian; Zhang, Weidong

    2017-03-01

    The successful chain-growth copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization employing Cu(0)/pentamethyldiethylenetriamine (PMDETA) and alkyl halide as catalyst is first investigated by a combination of nuclear magnetic resonance, gel-permeation chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In addition, the electron transfer mediated "click-radical" concurrent polymerization utilizing Cu(0)/PMDETA as catalyst is successfully employed to generate well-defined copolymers, where controlled CuAAC polymerization of clickable ester monomer is progressed in the main chain acting as the polymer backbone, the controlled radical polymerization (CRP) of acrylic monomer is carried out in the side chain. Furthermore, it is found that there is strong collaborative effect and compatibility between CRP and CuAAC polymerization to improve the controllability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  14. Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems.

    PubMed

    Doroud, Delaram; Rafati, Sima

    2012-01-01

    Although mass vaccination of the entire population of an endemic area would be the most cost-effective tool to diminish Leishmania burden, an effective vaccine is not yet commercially available. Practically, vaccines have failed to achieve the required level of protection, possibly owing to the lack of an appropriate adjuvant and/or delivery system. Therefore, there is still an imperative demand for an improved, safe and efficient delivery system to enhance the immunogenicity of available vaccine candidates. Nanoparticles are proficient in boosting the quality and magnitude of immune responses in a predictable fashion. Herein, we discuss how nanoparticulate vaccine delivery systems can be used to induce appropriate immune responses against leishmaniasis by controlling physicochemical properties of the vaccine. Stability, production reproducibility, low cost per dose and low risk-benefit ratios are desirable characteristics of an ideal vaccine formulation and solid lipid nanoparticles may serve as one of the most promising practical strategies to help to achieve such a leishmanial vaccine, at least in canine species in the developing world.

  15. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  16. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  17. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  18. Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA

    PubMed Central

    Muniyappa, Kalappa; Yan, Jie

    2013-01-01

    The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo. PMID:23825559

  19. Nanoparticulate, sub-micron and micron sized particles emanating from hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Gartman, A.; Findlay, A.; Yucel, M.; Chan, C. S. Y.

    2015-12-01

    Recent data from Geotraces cruises over the MAR and SEPR indicate dissolved and particulate Fe enrichment in waters 1000 and 4000 km from their vent sources, respectively. Deep-sea hydrothermal vents and the waters in the reactive mixing zone above vent orifices have been suggested to be an important source of fine material that can pass through normal filters (0.2 and 0.4 μm). In this work, nanoparticles are defined operationally as that which can pass through a 0.2 μm filter. We investigated two vent sites (Lau Basin and the MAR). Chimneys from both vent sites have fluids that can be sulfide rich or metal rich. We also present chemical and physical chemical data (SEM-EDS, TEM, XRD, EELS) showing some of the materials found in these (nano)particulate phases including pyrite, metal sulfides, silicate and aluminosilicate material. Enrichment of Mg and K in the latter suggest that reverse weathering may occur in the waters within 1-2 meters of the vent orifice where vent waters mix with cold oxygenated bottom waters.

  20. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    PubMed

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Absence of systemic toxicity in mouse model towards BaTiO3 nanoparticulate based eluate treatment.

    PubMed

    Dubey, Ashutosh Kumar; Thrivikraman, Greeshma; Basu, Bikramjit

    2015-02-01

    One of the existing issues in implant failure of orthopedic biomaterials is the toxicity induced by the fine particles released during long term use in vivo, leading to acute inflammatory response. In developing a new class of piezobiocomposite to mimic the integrated electrical and mechanical properties of bone, bone-mimicking physical properties as well as in vitro cytocompatibility properties have been achieved with spark plasma sintered hydroxyapatite (HA)-barium titanate (BaTiO3) composites. However, the presence of BaTiO3 remains a concern towards the potential toxicity effect. To address this issue, present work reports the first result to conclusively confirm the non-toxic effect of HA-BaTiO3 piezobiocomposite nanoparticulates, in vivo. Twenty BALB/c mice were intra-articularly injected at their right knee joints with different concentrations of HA-BaTiO3 composite of up to 25 mg/ml. The histopathological examination confirmed the absence of any trace of injected particles or any sign of inflammatory reaction in the vital organs, such as heart, spleen, kidney and liver at 7 days post-exposure period. Rather, the injected nanoparticulates were found to be agglomerated in the vicinity of the knee joint, surrounded by macrophages. Importantly, the absence of any systemic toxicity response in any of the vital organs in the treated mouse model, other than a mild local response at the site of delivery, was recorded. The serum biochemical analyses using proinflammatory cytokines (TNF-α and IL-1β) also complimented to the non-immunogenic response to injected particulates. Altogether, the absence of any inflammatory/adverse reaction will open up myriad of opportunities for BaTiO3 based piezoelectric implantable devices in biomedical applications.

  2. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  3. Effects of the addition of nanoparticulate calcium carbonate on setting time, dimensional change, compressive strength, solubility and pH of MTA.

    PubMed

    Bernardi, A; Bortoluzzi, E A; Felippe, W T; Felippe, M C S; Wan, W S; Teixeira, C S

    2017-01-01

    To evaluate nanoparticulate calcium carbonate (NPCC) using transmission electron microscopy and the effects of NPCC addition to MTA in regard to the setting time, dimensional change, compressive strength, solubility and pH. The experimental groups were G1 (MTA), G2 (MTA with 5% NPCC) and G3 (MTA with 10% NPCC). The tests followed ISO and ADA standards. The specimens in the dimensional change and compressive strength tests were measured immediately after setting, after 24 h and after 30 days. In the solubility test, rings filled with cement were weighed after setting and after 30 days. The pH was measured after 24 h and 30 days. The data were analysed with the ANOVA, Tukey's and Kruskal-Wallis tests (α = 5%). The setting time was reduced (P < 0.05) in samples from G2 and G3 compared to G1. After 24 h, the dimensional change was similar amongst the groups, and after 30 days, G2 was associated with less alteration than G1 and G3. There was a difference in the compressive strength (P < 0.001) after 24 h and 30 days (G1 > G2 > G3). The solubility test revealed a difference amongst the groups when the specimens were hydrated: G2 > G1 > G3 and dehydrated: G3 > G2 > G1. The pH of the groups was similar at 24 h with higher values in each group after 30 days (P < 0.05), and G2 and G3 had similar mean pH values but both were higher than G1. Nanoparticulate calcium carbonate had a cubic morphology with few impurities. The addition of nanoparticulate calcium carbonate to MTA accelerated the setting time, decreased compressive strength and, after 30 days, resulted in lower dimensional change (G2), higher solubility and a higher pH. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Polymerization of perfluorobutadiene

    NASA Technical Reports Server (NTRS)

    Newman, J.; Toy, M. S.

    1970-01-01

    Diisopropyl peroxydicarbonate dissolved in liquid perfluorobutadiene is conducted in a sealed vessel at the autogenous pressure of polymerization. Reaction temperature, ratio of catalyst to monomer, and amount of agitation determine degree of polymerization and product yield.

  5. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-gamma-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector.

    PubMed

    Huang, Hongliang; Yu, Hai; Tang, Guping; Wang, Qingqing; Li, Jun

    2010-03-01

    Gene delivery is one of the critical steps for gene therapy. Non-viral vectors have many advantages but suffered from low gene transfection efficiency. Here, in order to develop new polymeric gene vectors with low cytotoxicity and high gene transfection efficiency, we synthesized a cationic polymer composed of low molecular weight polyethylenimine (PEI) of molecular weight of 600 Da cross-linked by 2-hydroxypropyl-gamma-cyclodextrin (HP gamma-CD) and then coupled to MC-10 oligopeptide containing a sequence of Met-Ala-Arg-Ala-Lys-Glu. The oligopeptide can target to HER2, the human epidermal growth factor receptor 2, which is often over expressed in many breast and ovary cancers. The new gene vector was expected to be able to target delivery of genes to HER2 positive cancer cells for gene therapy. The new gene vector was composed of chemically bonded HP gamma-CD, PEI (600 Da), and MC-10 peptide at a molar ratio of 1:3.3:1.2. The gene vector could condense plasmid DNA at an N/P ratio of 6 or above. The particle size of HP gamma-CD-PEI-P/DNA complexes at N/P ratios 40 was around 170-200 nm, with zeta potential of about 20 mV. The gene vector showed very low cytotoxicity, strong targeting specificity to HER2 receptor, and high efficiency of delivering DNA to target cells in vitro and in vivo with the reporter genes. The delivery of therapeutic IFN-alpha gene mediated by the new gene vector and the therapeutic efficiency were also studied in mice animal model. The animal study results showed that the new gene vector HP gamma-CD-PEI-P significantly enhanced the anti-tumor effect on tumor-bearing nude mice as compared to PEI (25 kDa), HP gamma-CD-PEI, and other controls, indicating that this new polymeric gene vector is a potential candidate for cancer gene therapy. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Thio-amide functionalized polymers via polymerization or post-polymerization modification

    NASA Astrophysics Data System (ADS)

    Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan

    2011-03-01

    Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.

  7. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  8. Photoinitiated polymerization of 1-vinylimidazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, M.G.; Rodriguez, F.

    1984-04-01

    The photoinitiated polymerization of 1-vinylimidazole (VI) does not follow the classical kinetic scheme for free radical polymerization. Kinetic results for VI suggest a degradative addition reaction between the macroradical and the monomer to produce a relatively stable, unreactive radical, which does not reinitiate polymerization, is low, 1.5 kcal/mol. Among the 3 photoinitiators used, the highest quantum efficiency was demonstrated by 2,2'-diethoxyacetophenone followed by bezoin methyl ether and benzoin isopropyl ether. Under the experimental conditions used, the polymerization of VI does not proceed to complete conversion, and the phenomenon of dead-end polymerization is observed.

  9. Investigation of a new pH-responsive nanoparticulate pore former for controlled release enteric coating with improved processability and stability.

    PubMed

    Chen, Kuan; Chang, Hao Han R; Shalviri, Alireza; Li, Jason; Lugtu-Pe, Jamie Anne; Kane, Anil; Wu, Xiao Yu

    2017-11-01

    Water-soluble polymers are often used as pore formers to tailor permeability of film-forming hydrophobic polymers on coated dosage forms. However, their addition to a coating formulation could significantly increase the viscosity thus making the coating process difficult. Moreover, the dissolution of pore formers after oral administration could compromise film integrity resulting in undesirable, inconsistent release profiles. Therefore, a non-leaching, pH-responsive nanoparticulate pore former is proposed herein to preserve film integrity and maintain pH-dependent permeability. Poly(methacrylic acid)-polysorbate 80-grafted-starch terpolymer nanoparticles (TPNs) were incorporated within an ethylcellulose (EC) film (TPN-EC) by casting or spray coating. TPNs at 10%wt (pore former level) only increased viscosity of EC coating suspension slightly while conventional pore formers increased the viscosity by 490-11,700%. Negligible leaching of TPNs led to superior mechanical properties of TPN-EC films compared to Eudragit® L-EC films. As pH increased from 1.2 to 6.8, TPN-EC films with 10% pore former level exhibited an 8-fold higher diltiazem permeability compared to Eudragit® L-EC films. The pH-dependent drug release kinetics of diltiazem HCl beads coated with TPN-EC films was tunable by adjusting the pore former level. These results suggest that the TPNs are promising pH-sensitive nanoparticulate pore formers in EC-coated dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Barry, Louse; Copley, Mark; Holmes, Justin D.; Otway, David J.; Kazakova, Olga; Morris, Michael A.

    2007-12-01

    Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO 2:MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas.

  11. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.

    PubMed

    Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K

    2012-04-01

    Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. <0.45 μm) iron. Since coagulation and sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH < 4.4, activities of Fe(iii) are strongly and negatively correlated with pH. Geochemical modelling suggests that the activity of Fe(iii) is controlled by the solubility of hydrous ferric oxides and oxyhydroxysulfates, supported by scanning and transmission electron microscopic analysis of solids. Nevertheless, the waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete

  12. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  13. Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite.

    PubMed

    Kilian, Olaf; Wenisch, Sabine; Karnati, Srikanth; Baumgart-Vogt, Eveline; Hild, Anne; Fuhrmann, Rosemarie; Jonuleit, Tarja; Dingeldein, Elvira; Schnettler, Reinhard; Franke, Ralf-Peter

    2008-01-01

    The microvascularization of metaphyseal bone defects filled with nanoparticulate, biodegradable hydroxyapatite biomaterial with and without platelet factors enrichment was investigated in a minipig model. Results from morphological analysis and PECAM-1 immunohistochemistry showed the formation of new blood vessels into the bone defects by sprouting and intussusception of pre-existing ones. However, no significant differences were observed in the microvascularization of the different biomaterials applied (pure versus platelet factors-enriched hydroxyapatite), concerning the number of vessels and their morphological structure at day 20 after operation. The appearance of VEGFR-2 positive endothelial progenitor cells in the connective tissue between hydroxyapatite particles was also found to be independent from platelet factors enrichment of the hydroxyapatite bone substitute. In both groups formation of lymphatic vessels was detected with a podoplanin antibody. No differences were noted between HA/PLF- and HA/PLF+ implants with respect to the podoplanin expression level, the staining pattern or number of lymphatic vessels. In conclusion, the present study demonstrates different mechanisms of blood and lymphatic vessel formation in hydroxyapatite implants in minipigs.

  14. Changes in chroma of two indirect composite materials polymerized with different polymerization systems.

    PubMed

    Ayano, Michiya

    2012-01-01

    This study evaluated chroma change in two composite materials (Sinfony and Pearleste) polymerized with two different systems. Disk specimens were prepared using a metal halide unit (Hyper LII) and an exposure time of 60 to 180 s. The proprietary polymerization systems (Visio and Pearlcure systems) were used as the reference polymerization modes. After storage at 37°C for 24 h, CIE 1976 L*a*b* values were measured by using a dental chroma meter (ShadeEye NCC) with a gray background. The specimens were then immersed in water or tea. Color change from baseline to 4 weeks was evaluated by measuring ΔL*, Δa*, and Δb*, after which ΔE*(ab) values were calculated. The brightness of Sinfony specimens was reduced by tea immersion. The color of both materials shifted to yellow after tea immersion, although color change in Sinfony specimens was greater than that in Pearleste specimens. For both materials, color change was less after polymerization with the metal halide unit. In conclusion, Sinfony polymerized with the Hyper LII unit, and Pearleste polymerized with either system, were stable against discoloration due to tea immersion.

  15. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  16. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Filters, microporous polymeric. 177.2250 Section... Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in... liquid food. (a) Microporous polymeric filters consist of a suitably permeable, continuous, polymeric...

  17. Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery.

    PubMed

    Zhang, Yi-Mei; Huang, Zheng; Zhang, Ji; Wu, Wan-Xia; Liu, Yan-Hong; Yu, Xiao-Qi

    2017-03-28

    Cationic liposomes and polymers are both important candidates for use as non-viral gene vectors. However, both of them have special shortcomings and application limits. This work is devoted to the combination of advantages of liposomes and polymers. The ring-opening polymerization strategy was used for the preparation of amphiphilic polymers from cyclen-based cationic small lipids. The non-hydrophobic polymer and the corresponding lipids were also prepared for performing structure-activity relationship studies. Gel electrophoresis results reveal that both the lipopolymers and liposomes could effectively condense DNA into nanoparticles and protect DNA from degradation. Compared to polymers, the DNA binding ability of liposomes is more affected by hydrophobic tails. Under the same dosage, the synthetic polymers have stronger DNA binding ability than the liposomes. In vitro transfection experiments show that the polymers could give better transfection efficiency, which was much higher than those of the corresponding liposomes and non-hydrophobic polymer. The oleyl moiety is suitable for lipidic vectors, but things were different for polymers. Under optimized conditions, up to 14.2 times higher transfection efficiency than that for 25 kDa bPEI could be obtained. More importantly, the lipopolymers showed much better serum tolerance, which was further confirmed by protein adsorption, gel electrophoresis, flow cytometry, and CLSM assays. The results indicate that ring-opening polymerization is a promising strategy for the enhancement of the gene delivery efficiency and biocompatibility of cationic lipids.

  18. Radiation-induced polymerization of glass-forming systems. V. Initial polymerization rate in binary glass-forming systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, Isao; Okubo, Hiroshi; Ito, Akihiko

    1973-06-01

    The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by T/sub g/ (glass transition temperature) and T/sub v/ of the system (30-50 deg C higher than T/sub g/), which are functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the T of the glass- forming solvent. The composition and temperature dependences in the glycidyl methacrylate --triacetin system as a typical homogeneous polymerization system were studied inmore » detail, and the polymerizations of hydroxyethyl methacrylate triacetln and hydroxyethyl methacrylate --isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower T/sub g/ monomer and higher T/sub g/ solvent and the latter typifies a system consisting of higher T/sub g/ monomer and lower T/sub g/ solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to T/sub v/ and T/sub g/ of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect. (auth)« less

  19. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  20. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  1. Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in vivo.

    PubMed

    Sieber, Sandro; Grossen, Philip; Detampel, Pascal; Siegfried, Salome; Witzigmann, Dominik; Huwyler, Jörg

    2017-10-28

    Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    PubMed

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.

  3. Supramolecular "Step Polymerization" of Preassembled Micelles: A Study of "Polymerization" Kinetics.

    PubMed

    Yang, Chaoying; Ma, Xiaodong; Lin, Jiaping; Wang, Liquan; Lu, Yingqing; Zhang, Liangshun; Cai, Chunhua; Gao, Liang

    2018-03-01

    In nature, sophisticated functional materials are created through hierarchical self-assembly of nanoscale motifs, which has inspired the fabrication of man-made materials with complex architectures for a variety of applications. Herein, a kinetic study on the self-assembly of spindle-like micelles preassembled from polypeptide graft copolymers is reported. The addition of dimethylformamide and, subsequently, a selective solvent (water) can generate a "reactive point" at both ends of the spindles as a result of the existence of structural defects, which induces the "polymerization" of the spindles into nanowires. Experimental results combined with dissipative particle dynamics simulations show that the polymerization of the micellar subunits follows a step-growth polymerization mechanism with a second-order reaction characteristic. The assembly rate of the micelles is dependent on the subunit concentration and on the activity of the reactive points. The present work reveals a law governing the self-assembly kinetics of micelles with structural defects and opens the door for the construction of hierarchical structures with a controllable size through supramolecular step polymerization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema.

    PubMed

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol Lg; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William Ka; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-10-05

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c(+) lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers.

  5. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    PubMed

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-05-21

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  6. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  7. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  8. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6]/hv.

  9. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1993-10-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  10. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  11. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    PubMed

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  12. Mechanical remodeling of normally sized mammalian cells under a gravity vector.

    PubMed

    Zhang, Chen; Zhou, Lüwen; Zhang, Fan; Lü, Dongyuan; Li, Ning; Zheng, Lu; Xu, Yanhong; Li, Zhan; Sun, Shujin; Long, Mian

    2017-02-01

    Translocation of the dense nucleus along a gravity vector initiates mechanical remodeling of a cell, but the underlying mechanisms of cytoskeletal network and focal adhesion complex (FAC) reorganization in a mammalian cell remain unclear. We quantified the remodeling of an MC3T3-E1 cell placed in upward-, downward-, or edge-on-orientated substrate. Nucleus longitudinal translocation presents a high value in downward orientation at 24 h or in edge-on orientation at 72 h, which is consistent with orientation-dependent distribution of perinuclear actin stress fibers and vimentin cords. Redistribution of total FAC area and fractionized super mature adhesion number coordinates this dependence at short duration. This orientation-dependent remodeling is associated with nucleus flattering and lamin A/C phosphorylation. Actin depolymerization or Rho-associated protein kinase signaling inhibition abolishes the orientation dependence of nucleus translocation, whereas tubulin polymerization inhibition or vimentin disruption reserves the dependence. A biomechanical model is therefore proposed for integrating the mechanosensing of nucleus translocation with cytoskeletal remodeling and FAC reorganization induced by a gravity vector.-Zhang, C., Zhou, L., Zhang, F., Lü, D., Li, N., Zheng, L., Xu, Y., Li, Z., Sun, S., Long, M. Mechanical remodeling of normally sized mammalian cells under a gravity vector. © FASEB.

  13. Acrylic esters in radiation polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.

    1988-03-01

    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  14. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants

    PubMed Central

    Hanson, Melissa C.; Crespo, Monica P.; Abraham, Wuhbet; Moynihan, Kelly D.; Szeto, Gregory L.; Chen, Stephanie H.; Melo, Mariane B.; Mueller, Stefanie; Irvine, Darrell J.

    2015-01-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy. PMID:25938786

  15. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants.

    PubMed

    Hanson, Melissa C; Crespo, Monica P; Abraham, Wuhbet; Moynihan, Kelly D; Szeto, Gregory L; Chen, Stephanie H; Melo, Mariane B; Mueller, Stefanie; Irvine, Darrell J

    2015-06-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.

  16. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.

  17. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review.

    PubMed

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin

    2015-06-02

    Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Self-assembled Lyotropic Liquid Crystalline Phase Behavior of Monoolein-Capric Acid-Phospholipid Nanoparticulate Systems.

    PubMed

    Zhai, Jiali; Tran, Nhiem; Sarkar, Sampa; Fong, Celesta; Mulet, Xavier; Drummond, Calum J

    2017-03-14

    We report here the lyotropic liquid crystalline phase behavior of two lipid nanoparticulate systems containing mixtures of monoolein, capric acid, and saturated diacyl phosphatidylcholines dispersed by the Pluronic F127 block copolymer. Synchrotron small-angle X-ray scattering (SAXS) was used to screen the phase behavior of a library of lipid nanoparticles in a high-throughput manner. It was found that adding capric acid and phosphatidylcholines had opposing effects on the spontaneous membrane curvature of the monoolein lipid layer and hence the internal mesophase of the final nanoparticles. By varying the relative concentration of the three lipid components, we were able to establish a library of nanoparticles with a wide range of mesophases including at least the inverse bicontinuous primitive and double diamond cubic phases, the inverse hexagonal phase, the fluid lamellar phase, and possibly other phases. Furthermore, the in vitro cytotoxicity assay showed that the endogenous phospholipid-containing nanoparticles were less toxic to cultured cell lines compared to monoolein-based counterparts, improving the potential of the nonlamellar lipid nanoparticles for biomedical applications.

  19. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema

    PubMed Central

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol LG; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William KA; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-01-01

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c+ lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers. DOI: http://dx.doi.org/10.7554/eLife.09623.001 PMID:26437452

  20. Polymeric membrane materials for artificial organs.

    PubMed

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  1. Polymeric Beads for Organic Coatings

    DTIC Science & Technology

    1982-10-31

    Clear Solid Polymeric Beads A solid polymeric bead is comprised of a sol id mass of polymerized unsaturated polyester/styrene resin mixture . 2. lear...than the current unsaturated polyester resin . For example, a bead male from acrylic resin could be more trans- - parent, more durable and provide more...0.44 Isopropyl Alcohol I 11.26 I 1 .73 60% Wt. Alkyd Resin - Volume I 251.26 i 30.52 " Sol ids 51% 1 I Anti.-Skinning Agent I 0.90 I 0.12 Mineral

  2. Adsorption, desorption, and removal of polymeric nanomedicine on and from cellulose surfaces: effect of size.

    PubMed

    Zhang, Ming; Akbulut, Mustafa

    2011-10-18

    The increased production and commercial use of nanoparticulate drug delivery systems combined with a lack of regulation to govern their disposal may result in their introduction to soils and ultimately into groundwater systems. To better understand how such particles interact with environmentally significant interfaces, we study the adsorption, desorption, and removal behavior of poly(ethylene glycol)-based nanoparticulate drug delivery systems on and from cellulose, which is the most common organic compound on Earth. It is shown that such an adsorption process is only partially reversible, and most of the adsorbate particles do not desorb from the cellulose surface even upon rinsing with a large amount of water. The rate constant of adsorption decreases with increasing particle size. Furthermore, hydrodynamic forces acting parallel to the surfaces are found to be of great importance in the context of particle dynamics near the cellulose surface, and ultimately responsible for the removal of some fraction of particles via rolling or sliding. As the particle size increases, the removal rates of the particles increase for a given hydrodynamical condition. © 2011 American Chemical Society

  3. Effects of organic solvents on drug incorporation into polymeric carriers and morphological analyses of drug-incorporated polymeric micelles.

    PubMed

    Harada, Yoshiko; Yamamoto, Tatsuhiro; Sakai, Masaru; Saiki, Toshiharu; Kawano, Kumi; Maitani, Yoshie; Yokoyama, Masayuki

    2011-02-14

    We incorporated an anticancer agent, camptothecin (CPT), into polymeric micelle carriers by using two different solvents (TFE and chloroform) in the solvent-evaporation drug incorporation process. We observed significant differences in the drug-incorporation behaviors, in the morphologies of the incorporated drug and the polymeric micelles, and in the pharmacokinetic behaviors between the two solvents' cases. In particular, the CPT-incorporated polymeric micelles prepared with TFE as the incorporation solvent exhibited more stable circulation in blood than those prepared with chloroform. This contrast indicates a novel technological perspective regarding the drug incorporation into polymeric micelle carriers. Morphological analyses of the inner core have revealed the presence of the directed alignment of the CPT molecules and CPT crystals in the micelle inner core. This is the first report of the morphologies of the drug incorporated into the polymeric micelle inner cores. We believe these analyses are very important for further pharmaceutical developments of polymeric micelle drug-carrier systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Dynamique de nanobulles et nanoplasmas generes autour de nanoparticules plasmoniques irradiees par des impulsions ultracourtes

    NASA Astrophysics Data System (ADS)

    Dagallier, Adrien

    L'emergence des lasers a impulsion ultrabreves et des nanotechnologies a revolutionne notre perception et notre maniere d'interagir avec l'infiniment petit. Les gigantesques intensites generees par ces impulsions plus courtes que les temps de relaxation ou de diffusion du milieu irradie induisent de nombreux phenomenes non-lineaires, du doublement de frequence a l'ablation, dans des volumes de dimension caracteristique de l'ordre de la longueur d'onde du laser. En biologie et en medecine, ces phenomenes sont utilises a des fins d'imagerie multiphotonique ou pour detruire des tissus vivants. L'introduction de nanoparticules plasmoniques, qui concentrent le champ electromagnetique incident dans des regions de dimensions nanometriques, jusqu'a une fraction de la longueur d'onde, amplifie les phenomenes non-lineaires tout en offrant un controle beaucoup plus precis de la deposition d'energie, ouvrant la voie a la detection de molecules individuelles en solution et a la nanochirurgie. La nanochirurgie repose principalement sur la formation d'une bulle de vapeur a proximite d'une membrane cellulaire. Cette bulle de vapeur perce la membrane de maniere irreversible,entrainant la cellule a sa mort, ou la perturbe temporairement, ce qui permet d'envisager de faire penetrer dans la cellule des medicaments ou des brins d'ADN pour de la therapie genique. C'est principalement la taille de la bulle qui va decider de l'issue de l'irradiation laser. Il est donc necessaire de controler finement les parametres du laser et la geometrie de la nanoparticule afin d'atteindre l'objectif fixe. Le moyen le plus direct a l'heure actuelle de valider un ensemble de conditions experimentales est de realiser l'experience en laboratoire,ce qui est long et couteux. Les modeles de dynamique de bulle existants ne prennent pas en compte les parametres de l'irradiation et ajustent souvent leurs conditions initiales a partir de leurs mesures experimentales, ce qui limite la portee du modele au cas pour

  5. Melting line of polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2013-05-01

    We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.

  6. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    USDA-ARS?s Scientific Manuscript database

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  7. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  8. Synthesis and polymerization of vinyl triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  9. Emerging Vector-Borne Diseases - Incidence through Vectors.

    PubMed

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples

  10. Production of monodisperse, polymeric microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chang, Manchium (Inventor)

    1990-01-01

    Very small, individual polymeric microspheres with very precise size and a wide variation in monomer type and properties are produced by deploying a precisely formed liquid monomer droplet, suitably an acrylic compound such as hydroxyethyl methacrylate into a containerless environment. The droplet which assumes a spheroid shape is subjected to polymerizing radiation such as ultraviolet or gamma radiation as it travels through the environment. Polymeric microspheres having precise diameters varying no more than plus or minus 5 percent from an average size are recovered. Many types of fillers including magnetic fillers may be dispersed in the liquid droplet.

  11. Radiation-induced polymerization of glass forming systems. VI. Polymerization rate at higher conversion in binary systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-08-01

    The effect of temperature and composition on the inflection point in the time-conversion curve and the saturated conversion was investigated in the gamma -radio-induced radical polymerization of binary systems consisting of a glass- forming monomer and a solvent. In the polymerization of completely homogeneous systems such as glycidyl methacrylate (GMA) -triacetin and hydroxyethyl methacrylate (HEMA) --propylene glycol systems, the time-conversion curve has an inflection point at polymerization temperatures between T/sub vm/(T/sub v/ of monomer system) and T/sub vp/ (T/sub v/ of polymer system). Such conversions at the inflection point changed monotonically between 0 and 100% in this temperature range. T/submore » v/ was found to be 30 to 50 deg C higher than T/sub g/ (glass transition temperature) and a monotonic function of composition (monomer -- polymer -- solvent). The acceleration effect continued to 100% conversion above T/sub vp/, and no acceleration effect was observed below T/sub vm/. The saturated conversion in homogeneous systems changed monotonically between 0 and 100% for polymerization temperatures between T/sub gm/ (T/sub g/ of monomer system) and T/sub gp/(T of polymer system). T/sub g/ was also a monotonic function of composition. No saturation in conversion was observed above T/sub gp/ , and no polymerization occurred below T/sub gm/. In the polymerization of completely heterogeneous systems such as HEMA-dioctyl phthalate, no acceleration effect was observed at any temperature and composition. The saturated conversion was 100% sbove T/sub g/ of pure HEMA, and no polymerization occurred below this temperature in this system. (auth)« less

  12. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  13. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  14. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  15. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the...

  16. VectorBase: a home for invertebrate vectors of human pathogens

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A.; Kennedy, Ryan C.; Lobo, Neil F.; MacCallum, M. Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Zdobnov, Evgeny M.; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2007-01-01

    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever. PMID:17145709

  17. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    PubMed

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A linear-dendritic cationic vector for efficient DNA grasp and delivery.

    PubMed

    Yang, Bin; Sun, Yun-xia; Yi, Wen-jie; Yang, Juan; Liu, Chen-wei; Cheng, Han; Feng, Jun; Zhang, Xian-zheng; Zhuo, Ren-xi

    2012-07-01

    This paper presents an attempt to design an efficient and biocompatible cationic gene vector via structural optimization that favors the efficient utilization of amine groups for DNA condensation. To this end, a linear-dendritic block copolymer of methoxyl-poly(ethylene glycol)-dendritic polyglycerol-graft-tris(2-aminoethyl)amine (mPEG-DPG-g-TAEA) was prepared with specially designed multiple functions including strong DNA affinity, endosomal buffering and expected serum-tolerance. Based on the transfection in serum-free and serum-conditioned media, the influences of the polymer structures including the degree of polymerization of DPG and TAEA substitution degree were explored. As compared to polyethylenimine (M(w)=5 kDa) (PEI5k) with similar molecular weight and higher amine density, mPEG-DPG-g-TAEA displayed comparably high DNA affinity due to the special linear-dendritic architecture. Consequently, at very low N/P ratio, mPEG-DPG-g-TAEA vectors could mediate efficient in vitro luciferase expression at levels that are comparable with or even superior to the commercially available Lipofectamine™ 2000, while being apparently higher than PEI5k. The designed vectors exhibit considerably higher cell biocompatibility and better resistance against bovine serum albumin adsorption than PEI5k. The stability of the complexes on coincubation with heparin was found to be largely dependent on the polymer structure. As concluded from the comparative transfection study in the absence/presence of chloroquine, it is likely that the polycation itself could produce endosomal buffering. This linear-dendritic vector shows promising potential for the application of gene delivery. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Structural basis of reverse nucleotide polymerization

    PubMed Central

    Nakamura, Akiyoshi; Nemoto, Taiki; Heinemann, Ilka U.; Yamashita, Keitaro; Sonoda, Tomoyo; Komoda, Keisuke; Tanaka, Isao; Söll, Dieter; Yao, Min

    2013-01-01

    Nucleotide polymerization proceeds in the forward (5′-3′) direction. This tenet of the central dogma of molecular biology is found in diverse processes including transcription, reverse transcription, DNA replication, and even in lagging strand synthesis where reverse polymerization (3′-5′) would present a “simpler” solution. Interestingly, reverse (3′-5′) nucleotide addition is catalyzed by the tRNA maturation enzyme tRNAHis guanylyltransferase, a structural homolog of canonical forward polymerases. We present a Candida albicans tRNAHis guanylyltransferase-tRNAHis complex structure that reveals the structural basis of reverse polymerization. The directionality of nucleotide polymerization is determined by the orientation of approach of the nucleotide substrate. The tRNA substrate enters the enzyme’s active site from the opposite direction (180° flip) compared with similar nucleotide substrates of canonical 5′-3′ polymerases, and the finger domains are on opposing sides of the core palm domain. Structural, biochemical, and phylogenetic data indicate that reverse polymerization appeared early in evolution and resembles a mirror image of the forward process. PMID:24324136

  20. Measurement and Analysis of in vitro Actin Polymerization

    PubMed Central

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  1. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  2. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    PubMed

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  3. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    NASA Astrophysics Data System (ADS)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  4. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  5. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  6. An RGD-Modified MRI-Visible Polymeric Vector for Targeted siRNA Delivery to Hepatocellular Carcinoma in Nude Mice

    PubMed Central

    Shen, Min; Zhu, Kangshun; Cheng, Du; Liu, Zhihao; Shan, Hong

    2013-01-01

    RNA interference (RNAi) has significant therapeutic promise for the genetic treatment of hepatocellular carcinoma (HCC). Targeted vectors are able to deliver small interfering RNA (siRNA) into HCC cells with high transfection efficiency and stability. The tripeptide arginine glycine aspartic acid (RGD)-modified non-viral vector, polyethylene glycol-grafted polyethylenimine functionalized with superparamagnetic iron oxide nanoparticles (RGD-PEG-g-PEI-SPION), was constructed as a magnetic resonance imaging (MRI)-visible nanocarrier for the delivery of Survivin siRNA targeting the human HCC cell line Bel-7402. The biophysical characterization of the RGD-PEG-g-PEI-SPION was performed. The RGD-modified complexes exhibited a higher transfection efficiency in transferring Survivin siRNA into Bel-7402 cells compared with a non-targeted delivery system, which resulted in more significant gene suppression at both the Survivin mRNA and protein expression levels. Then, the level of caspase-3 activation was significantly elevated, and a remarkable level of tumor cell apoptosis was induced. As a result, the tumor growth in the nude mice Bel-7402 hepatoma model was significantly inhibited. The targeting ability of the RGD-PEG-g-PEI-SPION was successfully imaged by MRI scans performed in vitro and in vivo. Our results strongly indicated that the RGD-PEG-g-PEI-SPION can potentially be used as a targeted non-viral vector for altering gene expression in the treatment of hepatocellular carcinoma and for detecting the tumor in vivo as an effective MRI probe. PMID:23922634

  7. Investigation of Solution Polymerizations in Microgravity and 1 G

    NASA Technical Reports Server (NTRS)

    Kennedy, Alvin P.

    1998-01-01

    The in-situ dielectric spectra for the solution polymerization of polydiacetylene has been successfully measured. The results show a distinct difference between the response for the bulk solution and surface polymerization. It also shows a low frequency peak in the dissipation factor which is present in both the bulk and surface polymerizations. These features may prove to be significant indicators for important polymerization processes. Future studies will investigate the mechanisms responsible for these dielectric responses. This technique will eventually be used to monitor microgravity polymerizations and provide in-situ data on how microgravity affects solution polymerization.

  8. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating

    PubMed Central

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2016-01-01

    The primary objective of this research was to evaluate the extent of mechanical degradation on TiO2 nanotubes on Ti with and without nano-particulate silver coating using two different lengths of TiO2 nanotubes- 300nm and ~ 1µm, which were fabricated on commercially pure Titanium (cp-Ti) rods using anodization method using two different electrolytic mediums - (1) deionized (DI) water with 1% HF, and (2) ethylene glycol with 1% HF, 0.5 wt%. NH4F and 10% DI water. Nanotubes fabricated rods were implanted into equine cadaver bone to evaluate mechanical damage at the surface. Silver was electrochemically deposited on these nanotubes and using a release study, silver ion concentrations were measured before and after implantation, followed by surface characterization using a Field Emission Scanning Electron Microscope (FESEM). In vitro cell-material interaction study was performed using human fetal osteoblast cells (hFOB) to understand the effect of silver coating using an MTT assay for proliferation and to determine any cytotoxic effect on the cells and to study its biocompatibility. No significant damage due to implantation was observed for nanotubes up to ~1 µm length under current experimental conditions. Cell-materials interaction showed no cytotoxic effects on the cells due to silver coating and anodization of samples. PMID:27017285

  9. In Vitro Analysis of Nanoparticulate Hydroxyapatite/Chitosan Composites as Potential Drug Delivery Platforms for the Sustained Release of Antibiotics in the Treatment of Osteomyelitis

    PubMed Central

    USKOKOVIĆ, VUK; DESAI, TEJAL A.

    2014-01-01

    Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic scale, surface charge, drug release properties, and combined antibacterial and osteogenic response. Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions the transition from the as-precipitated amorphous calcium phosphate phase to the most thermodynamically stable one—HAp. Embedment of 5–10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to HAp by physisorption, and promoted sustained-release kinetics throughout the 3 weeks of release time. The addition of chitosan to the particulate drug carrier formulation, however, reduced the antibacterial efficacy against S aureus. Excellent cell spreading and proliferation of osteoblastic MC3T3-E1 cells evidenced on microscopic conglomerates of HAp nanoparticles in vitro also markedly diminished on HAp/chitosan composites. Mitochondrial dehydrogenase activity exhibited normal values only for HAp/chitosan particle concentrations of up to 2 mg/cm2 and significantly dropped, by about 50%, at higher particle concentrations (4 and 8 mg/cm2). The gene expression of osteocalcin, a mineralization inductor, and the transcription factor Runx2 was downregulated in cells incubated in the presence of 3 mg/cm2 HAp/chitosan composite particles, whereas the expression of osteopontin, a potent mineralization inhibitor, was upregulated, further demonstrating the partially unfavorable osteoblastic cell response to the given particles. The peak in the expression of osteogenic markers paralleling the osteoblastic differentiation was also delayed most for the cell population incubated with HAp/chitosan particles

  10. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  11. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2017-01-24

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  12. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2015-05-26

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  13. VectorBase: a data resource for invertebrate vector genomics

    PubMed Central

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J.; Bruggner, Robert V.; Butler, Ryan; Campbell, Kathryn S.; Christophides, George K.; Christley, Scott; Dialynas, Emmanuel; Hammond, Martin; Hill, Catherine A.; Konopinski, Nathan; Lobo, Neil F.; MacCallum, Robert M.; Madey, Greg; Megy, Karine; Meyer, Jason; Redmond, Seth; Severson, David W.; Stinson, Eric O.; Topalis, Pantelis; Birney, Ewan; Gelbart, William M.; Kafatos, Fotis C.; Louis, Christos; Collins, Frank H.

    2009-01-01

    VectorBase (http://www.vectorbase.org) is an NIAID-funded Bioinformatic Resource Center focused on invertebrate vectors of human pathogens. VectorBase annotates and curates vector genomes providing a web accessible integrated resource for the research community. Currently, VectorBase contains genome information for three mosquito species: Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus, a body louse Pediculus humanus and a tick species Ixodes scapularis. Since our last report VectorBase has initiated a community annotation system, a microarray and gene expression repository and controlled vocabularies for anatomy and insecticide resistance. We have continued to develop both the software infrastructure and tools for interrogating the stored data. PMID:19028744

  14. Functional polycarbonates and their self-assemblies as promising non-viral vectors.

    PubMed

    Seow, Wei Yang; Yang, Yi Yan

    2009-10-01

    Polycarbonates are promising biomaterials due to their biocompatibility, degradability and low toxicity. In this study, a series of COOH-functionalized polycarbonates was synthesized via an organocatalytic ring opening polymerization pathway under mild conditions. The polymers displayed a range of molecular weights (M(w): 3.1, 5.5 and 9.7 kDa) and were very narrowly distributed (polydispersity index: 1.07, 1.07 and 1.15 respectively). Aliphatic amines with different chain lengths (triethylenetetramine, tetraethylenepentamine or pentaethylenehexamine) were then conjugated onto the polycarbonate backbone using DIC/NHS chemistry. These amine-functionalized polycarbonates could form nanoparticles upon simple dissolution in water and had CMC values ranging from 22 to 45 mg/L. It was found that a longer amine chain resulted in greater buffering capacity, more positive zeta potential and smaller hydrodynamic size of the polymeric nanoparticles. Results from gel retardation assays indicated that the polymers were able to condense DNA. In-vitro studies further demonstrated that selected amine-functionalized polycarbonates could mediate efficient luciferase expression in HEK293, HepG2 and 4T1 cell lines at levels that were comparable, or even superior, to the polyethylenimine (PEI) standard. Importantly, minimal cytotoxicty was induced in the cells. These functional polycarbonates therefore have the potential to be a useful non-viral vector for gene therapy.

  15. Emerging Vector-Borne Diseases – Incidence through Vectors

    PubMed Central

    Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica

    2014-01-01

    Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests – ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples

  16. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  17. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice.

    PubMed

    Haggag, Yusuf A; Osman, Mohamed A; El-Gizawy, Sanaa A; Goda, Ahmed E; Shamloula, Maha M; Faheem, Ahmed M; McCarron, Paul A

    2018-05-29

    Biodegradable PLGA nanoparticles, loaded with 5-fluorouracil (5FU), were prepared using a double emulsion method and characterised in terms of mean diameter, zeta potential, entrapment efficiency and in vitro release. Poly (vinyl alcohol) was used to modify both internal and external aqueous phases and shown have a significant effect on nanoparticulate size, encapsulation efficiency and the initial burst release. Addition of poly (ethylene glycol) to the particle matrix, as part of the polymeric backbone, improved significantly the encapsulation efficiency. 5FU-loaded NPs were spherical in shape and negatively charged with a size range of 185-350 nm. Biological evaluation was performed in vivo using a solid Ehrlich carcinoma (SEC) murine model. An optimised 5FU-loaded formulation containing PEG as part of a block copolymer induced a pronounced reduction in tumour volume and tumour weight, together with an improved percentage tumour growth inhibition. Drug-loaded nanoparticles showed no significant toxicity or associated changes on liver and kidney function in tested animals, whereas increased alanine aminotransferase, aspartate aminotransferase and serum creatinine were observed in animals treated with free 5FU. Histopathological examination demonstrated enhanced cytotoxic action of 5FU-loaded nanoparticles when compared to the free drug. Based on these findings, it was concluded that nano-encapsulation of 5FU using PEGylated PLGA improved encapsulation and sustained in vitro release. This leads to increased anti-tumour efficacy against SEC, with a reduction in adverse effects. Published by Elsevier Masson SAS.

  18. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet activator for polymerization. 872.6070 Section 872.6070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... polymerization. (a) Identification. An ultraviolet activator for polymerization is a device that produces...

  19. 21 CFR 872.6070 - Ultraviolet activator for polymerization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet activator for polymerization. 872.6070 Section 872.6070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... polymerization. (a) Identification. An ultraviolet activator for polymerization is a device that produces...

  20. Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.

    PubMed

    Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi

    2017-04-01

    Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.

  1. Spatial control of actin polymerization during neutrophil chemotaxis

    PubMed Central

    Weiner, Orion D.; Servant, Guy; Welch, Matthew D.; Mitchison, Timothy J.; Sedat, John W.; Bourne, Henry R.

    2010-01-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients. PMID:10559877

  2. Spatial control of actin polymerization during neutrophil chemotaxis.

    PubMed

    Weiner, O D; Servant, G; Welch, M D; Mitchison, T J; Sedat, J W; Bourne, H R

    1999-06-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.

  3. DNA compaction into new DNA vectors based on cyclodextrin polymer: surface enhanced Raman spectroscopy characterization.

    PubMed

    Burckbuchler, V; Wintgens, V; Lecomte, S; Percot, A; Leborgne, C; Danos, O; Kichler, A; Amiel, C

    2006-04-05

    The ability of DNA to bind polycation yielding polyplexes is widely used in nonviral gene delivery. The aim of the present study was to evaluate the DNA compaction with a new DNA vector using Raman spectroscopy. The polyplexes result from an association of a beta-cyclodextrin polymer (polybeta-CD), an amphiphilic cationic connector (DC-Chol or adamantane derivative Ada2), and DNA. The charge of the polymeric vector is effectively controlled by simple addition of cationic connector in the medium. We used surface enhanced Raman spectroscopy (SERS) to characterize this ternary complex, monitoring the accessibility of adenyl residues to silver colloids. The first experiments were performed using model systems based on polyA (polyadenosine monophosphate) well characterized by SERS. This model was then extended to plasmid DNA to study polybeta-CD/Ada2/DNA and polybeta-CD/DC-Chol/DNA polyplexes. The SERS spectra show a decrease of signal intensity when the vector/DNA charge ratio (Z+/-) increases. At the highest ratio (Z+/- = 10) the signal is 6-fold and 3-fold less intense than the DNA reference signal for Ada2 and DC-Chol polyplexes, respectively. Thus adenyl residues have a reduced accessibility as DNA is bound to the vector. Moreover, the SERS intensity variations are in agreement with gel electrophoresis and zeta potential experiments on the same systems. The overall study clearly demonstrates that the cationic charges neutralizing the negative charges of DNA result in the formation of stable polyplexes. In vitro transfection efficiency of those DNA vectors are also presented and compared to the classical DC-Chol lipoplexes (DC-Chol/DNA). The results show an increase of the transfection efficiency 2-fold higher with our vector based on polybeta-CD. Copyright 2005 Wiley Periodicals, Inc.

  4. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  5. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  6. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  7. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  8. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution.

    PubMed

    Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo

    2005-02-01

    To evaluate a new polymeric nanoparticulate drug delivery formulation that consists of two components: i) an amphiphilic diblock copolymer having tocopherol moiety at the end of the hydrophobic block in which the hydrophobic tocopherol moiety increases stability of hydrophobic core of the nanoparticle in aqueous medium; and ii) a biodegradable copolyester having carboxylate end group that is capable of forming ionic complex with positively charged compounds such as doxorubicin. A doxourubicin-loaded polymeric nanoparticle (Dox-PNP) was prepared by solvent evaporation method. The entrapment efficiency, size distribution, and in vitro release profile at various pH conditions were characterized. In vitro cellular uptake was investigated by confocal microscopy, flow cytometry, and MTT assay using drug-sensitive and drug-resistant cell lines. Pharmacokinetics and biodistribution were evaluated in rats and tumor-bearing mice. Doxorubicin (Dox) was efficiently loaded into the PNP (higher than 95% of entrapment efficiency), and the diameter of Dox-PNP was in the range 20-25 nm with a narrow size distribution. In Vitro study showed that Dox-PNP exhibited higher cellular uptake into both human breast cancer cell (MCF-7) and human uterine cancer cell (MES-SA) than free doxorubicin solution (Free-Dox), especially into drug-resistant cells (MCF-7/ADR and MES-SA/Dx-5). In pharmacokinetics and tissue distribution study, the bioavailability of Dox-PNP calculated from the area under the blood concentration-time curve (AUC) was 69.8 times higher than that of Free-Dox in rats, and Dox-PNP exhibited 2 times higher bioavailability in tumor tissue of tumor-bearing mice. Dox-PNP exhibited enhanced cellular uptake of the drug. In the cytotoxic activity study, this improved cellular uptake was proved to be more advantageous in drug-resistant cell. Dox-PNP exhibited much higher bioavailability in blood plasma and more drug accumulation in tumor tissue than conventional doxorubicin

  9. Glycine Polymerization on Oxide Minerals.

    PubMed

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  10. A polyethylenimine-mimetic biodegradable polycation gene vector and the effect of amine composition in transfection efficiency.

    PubMed

    Shen, J; Zhao, D J; Li, W; Hu, Q L; Wang, Q W; Xu, F J; Tang, G P

    2013-06-01

    The low toxicity and efficient gene delivery of polymeric vectors remain the major barrier to the clinical application of non-viral gene therapy. Here, we present a poly-D, L-succinimide (PSI)-based biodegradable cationic polymer which mimicked the golden standard, branched polyethylenimine (PEI, ~25 kDa). To investigate the influence of 1°, 2°, 3° amine group ratio in the polymer, a series of PSI-based vectors (PSI-NN'x-NNy) grafted with different amine side chains of N,N-dimethyldipropylenetriamine (NN') and bis(3-aminopropyl)amine (NN) were first characterized and contrasted by biophysical measurements. The in vitro and in vivo biological assay demonstrated that PSI-NN'0.85-NN1 exhibited better transfection ability and biocompatibility than PEI. The present results suggest that such PEI-mimic biodegradable PSI-NN'0.85-NN1 possesses a good potential application for clinical gene delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  12. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems.

    PubMed

    Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M

    2015-12-30

    Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  14. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  15. Frontal Polymerization of Dicyclopentadiene: A Numerical Study.

    PubMed

    Goli, Elyas; Robertson, Ian D; Geubelle, Philippe H; Moore, Jeffrey S

    2018-04-26

    As frontal polymerization is being considered as a faster and more energy efficient manufacturing technique for polymer-matrix fiber-reinforced composites, we perform a finite-element-based numerical study of the initiation and propagation of a polymerization front in dicyclopentadiene (DCPD). The transient thermochemical simulations are complemented by an analytical study of the steady-state propagation of the polymerization front, allowing to draw a direct link between the cure kinetics model and the key characteristics of the front, i.e., front velocity and characteristic length scales. The second part of this study focuses on the prediction of the temperature spike associated with the merger of two polymerization fronts. The thermal peak, which might be detrimental to the properties of the polymerized material, is due to the inability of the heat associated with the highly exothermic reaction to be dissipated when the two fronts merge. The analysis investigates how the amplitude of the thermal spike is affected by the degree of cure at the time of the front merger.

  16. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    PubMed

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  17. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J [Livermore, CA; Hatch, Anson V [Tracy, CA; Wang, Ying-Chih [Pleasanton, CA; Singh, Anup K [Danville, CA; Renzi, Ronald F [Tracy, CA; Claudnic, Mark R [Livermore, CA

    2011-11-01

    Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  18. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  19. Probing actin polymerization by intermolecular cross-linking.

    PubMed

    Millonig, R; Salvo, H; Aebi, U

    1988-03-01

    We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an apparent molecular mass of 86 kD by SDS-PAGE [LD]) is attenuated, while an actin filament dimer ("upper" dimer with an apparent molecular mass of 115 kD by SDS-PAGE [UD] as characterized [Elzinga, M., and J. J. Phelan. 1984. Proc. Natl. Acad. Sci. USA. 81:6599-6602]) is formed. This shift from LD to UD occurs concomitant with formation of filaments as assayed by N-(1-pyrenyl)iodoacetamide fluorescence enhancement and electron microscopy. Isolated cross-linked LD does not form filaments, while isolated cross-linked UD will assemble into filaments indistinguishable from those polymerized from unmodified G-actin under typical filament-forming conditions. The presence of cross-linked LD does not effect the kinetics of polymerization of actin monomer, whereas cross-linked UD shortens the "lag phase" of the polymerization reaction in a concentration-dependent fashion. Several converging lines of evidence suggest that, although accounting for a significant oligomeric species formed during early polymerization, the LD is incompatible with the helical symmetry defining the mature actin filament; however, it could represent the interfilament dimer found in paracrystalline arrays or filament bundles. Furthermore, the LD is compatible with the unit cell structure and symmetry common to various types of crystalline actin arrays (Aebi, U., W. E. Fowler, G. Isenberg, T. D. Pollard, and P. R. Smith. 1981. J. Cell Biol. 91:340-351) and might represent the major structural state in which a mutant

  20. Chemical Polymerization and Langmuir-Blodgett Techniques. 2. The Polymerization of Monolayers of 3-Substituted Pyrroles

    DTIC Science & Technology

    1993-09-12

    the liquid -air interface could be monitored by changes in the surface area. Deposition of monolayers by Langmuir - Blodgett technique is possible and...polymerization product from the LB trough in chloroform solution. Figure 10 Langmuir - Blodgett transfer of poly (3-hexadecyl pyrrole) onto hydrophobized glass... Langmuir - Blodgett Techniques, 2: The Polymerization of Monolayers of 3-Substituted Pyrroles by W.M. Sigmund, C. Marestin, S. Keil, H. Zhou and R.S

  1. Kunststoffe (Polymere)

    NASA Astrophysics Data System (ADS)

    Weißbach, Wolfgang

    Polymere bestehen aus Riesen- oder Makromolekülen, die durch chemische Reaktionen aus einfachen, niedermolekularen Verbindungen entstehen, den Monomeren. Ausgangsstoffe sind überwiegend Kohlenwasserstoffe (KW), die größte Gruppe der C-Verbindungen. Sie müssen reaktionsfähige Stellen besitzen, das sind OH-Gruppen oder Dopppelbindungen.

  2. Bactericidal Specificity and Resistance Profile of Poly(Quaternary Ammonium) Polymers and Protein-Poly(Quaternary Ammonium) Conjugates.

    PubMed

    Ji, Weihang; Koepsel, Richard R; Murata, Hironobu; Zadan, Sawyer; Campbell, Alan S; Russell, Alan J

    2017-08-14

    Antibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides. We designed and synthesized a series of poly(quaternary ammonium) polymers, with tailorable molecular structures and architectures, to engineer their antibacterial specificity and their ability to delay the development of bacterial resistance. These linear poly(quaternary ammonium) homopolymers and block copolymers, generated using atom transfer radical polymerization, had structure-dependent antibacterial specificity toward Gram positive and negative bacterial species. When single block copolymers contained two polymer segments of differing antibacterial specificity, the polymer combined the specificities of its two components. Nanoparticulate human serum albumin-poly(quaternary ammonium) conjugates of these same polymers, synthesized via "grafting from" atom transfer radical polymerization, were strongly biocidal and also exhibited a marked decrease in the rate of bacterial resistance development relative to linear polymers. These protein-biocide conjugates mimicked the behavior of surface-presented polycationic biocides rather than their nonproteinaceous counterparts.

  3. Polymerization of Conducting Polymers Confined to Free Surfaces: A comparison of the Langmuir-Blodgett Polymerization of 3-Alkyl Pyrroles and 2- Alkyl Anilines

    DTIC Science & Technology

    1992-05-19

    Confined to Free Surfaces: A Comparison of the Langmuir-Blodgett Polymerization of 3- Alkyl Pyrroles and 2- Alkyl Anilines Submitted for Publication in...Surfaces: A Comparison of the Langmuir Blodgett Polymerizations of 3- alkyl pyrroles and 2- alkyl anilines R. S. Duran and H.C. Zhou Dept. of Chemistry...polymerization reactions in more detail and compare them. To do this, the polymerization reactions were run under two conditions. In the first case

  4. Polymerization development of "low-shrink" resin composites: Reaction kinetics, polymerization stress and quality of network.

    PubMed

    Yamasaki, Lilyan C; De Vito Moraes, André G; Barros, Mathew; Lewis, Steven; Francci, Carlos; Stansbury, Jeffrey W; Pfeifer, Carmem S

    2013-09-01

    To evaluate "low-shrink" composites in terms of polymerization kinetics, stress development and mechanical properties. "Low-shrink" materials (Kalore/KAL, N'Durance/NDUR, and Filtek P90/P90) and one control (Esthet X HD/EHD) were tested. Polymerization stress (PS) was measured using the Instron 5565 tensometer. Volumetric shrinkage (VS) was determined by the ACTA linometer. Elastic modulus (E) and flexural strength (FS) were obtained by a three-point bending test. Degree of conversion (DC) and polymerization rate (Rp) were determined by NIR spectroscopy (6165cm(-1) for dimethacrylates; 4156 and 4071cm(-1) for P90). Photopolymerization was performed at 740mW/cm(2)×27s. Glass transition temperature (Tg), degree of heterogeneity and crosslink density were obtained in a DMA for the fully cured specimens. Analysis of extracts was done by (1)H NMR. Data were analyzed with one-way ANOVA/Tukey's test (α=0.05). The control presented the highest shrinkage and Tg. P90 showed the highest modulus, and NDUR demonstrated the highest conversion. The polymerization rates were comparable for all materials. NDUR and KAL had the highest and the lowest network homogeneity, respectively. The multifunctional P90 had the highest crosslink density, with no difference between other composites. The control had the greatest stress development, similar to NDUR. Crosslinking density and polymer network homogeneity were influenced by degree of conversion and monomer structure. Not all "low-shrink" composites reduced polymerization stress. P90 and NDUR had no leachable monomers, which was also a function of high crosslinking (P90) and high conversion (NDUR). Copyright © 2013 Academy of Dental Materials. All rights reserved.

  5. On-demand photoinitiated polymerization

    DOEpatents

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2015-01-13

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  6. On-demand photoinitiated polymerization

    DOEpatents

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  7. Vector Addition: Effect of the Context and Position of the Vectors

    NASA Astrophysics Data System (ADS)

    Barniol, Pablo; Zavala, Genaro

    2010-10-01

    In this article we investigate the effect of: 1) the context, and 2) the position of the vectors, on 2D vector addition tasks. We administered a test to 512 students completing introductory physics courses at a private Mexican university. In the first part, we analyze students' responses in three isomorphic problems: displacements, forces, and no physical context. Students were asked to draw two vectors and the vector sum. We analyzed students' procedures detecting the difficulties when drawing the vector addition and proved that the context matters, not only compared to the context-free case but also between the contexts. In the second part, we analyze students' responses with three different arrangements of the sum of two vectors: tail-to-tail, head-to-tail and separated vectors. We compared the frequencies of the errors in the three different positions to deduce students' conceptions in the addition of vectors.

  8. Molecular Probe Fluorescence Monitoring of Polymerization

    NASA Technical Reports Server (NTRS)

    Bunton, Patrick

    2002-01-01

    This project investigated the feasibility of using fluorescence spectroscopy to determine viscosity of polymer/monomer in support of Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS). This project will attempt to measure gradient induced flow at a miscible interface during and / or after in-flight polymerization of dodecyl acrylate (lauryl acrylate). Concentration and temperature gradients will be intentionally introduced during polymerization and the resultant fluid flow determined by Particle Imaging Velocimetry (PIV). This report describes an investigation of the feasibility of using fluorescence of a probe molecule to monitor viscosity and/or concentration during and after polymerization. The probe used was pyrene which has been shown to be sensitive to its local environment in methyl methacrylate.

  9. Two-Photon Polymerization of Defects in Photonic Crystals

    DTIC Science & Technology

    2006-01-01

    technique employs two-photon polymerization (TPP) (for description, see Section 2.2) to fabricate high-resolution 3D embedded polymer features within... polymer , and therefore does not influence the polymerization . The image contrast is from the different reflectivities of the interfaces in the system due...Spectroscopy also confirmed for the first time the successful polymerization of a uniform, dense polymer feature throughout the thickness of the

  10. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  11. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  12. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility

    PubMed Central

    Fairbanks, Benjamin D.; Schwartz, Michael P.; Bowman, Christopher N.; Anseth, Kristi S.

    2009-01-01

    Due to mild reaction conditions and temporal and spatial control over material formation, photopolymerization has become a valuable technique for the encapsulation of living cells in three dimensional, hydrated, biomimetic materials. For such applications,2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (I2959) is the most commonly used photoinitiator (by virtue of its moderate water solubility), yet this initiator has an absorption spectrum that is poorly matched with wavelengths of light generally regarded as benign to living cells, limiting the rate at which it may initiate polymerization in their presence. In contrast, acylphosphine oxide photoinitiators, generally exhibit absorption spectra at wavelengths suitable for cell encapsulation, yet commercially available initiators of this class have low water solubility. Here, a water soluble lithium acylphosphinate salt is evaluated for its ability to polymerize diacrylated poly(ethylene glycol) (PEGDA) monomers rapidly into hydrogels, while maintaining high viability during direct encapsulation of cells. Through rheometric measurements, the time to reach gelation of a PEGDA solution with the phosphinate initiator is one tenth the time for that using I2959 at similar concentrations, when exposed to 365 nm light. Further, polymerization with the phosphinate initiator at 405 nm visible light exposure is achieved with low initiator concentrations and light intensities, precluded in polymerizations initiated with I2959 by its absorbance profile. When examined 24 hours after encapsulation, survival rates of human neonatal fibroblasts encapsulated in hydrogels polymerized with the phosphinate initiator exceed 95%, demonstrating the cytocompatibility of this initiating system. PMID:19783300

  13. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.

    PubMed

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-02-01

    In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  15. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  16. Polymeric Carriers for Gene Delivery: Chitosan and Poly(amidoamine) Dendrimers

    PubMed Central

    Xu, Qingxing; Wang, Chi-Hwa; Pack, Daniel Wayne

    2012-01-01

    Gene therapy is a potential medical solution that promises new treatments and may hold the cure for many different types of diseases and disorders of the human race. However, gene therapy is still a growing medical field and the technology is still in its infancy. The main challenge for gene therapy is to find safe and effective vectors that are able to deliver genes to the specific cells and get them to express inside the cells. Due to safety concerns, synthetic delivery systems, rather than viral vectors, are preferred for gene delivery and significant efforts have been focused on the development of this field. However, we are faced with problems like low gene transfer efficiency, cytotoxicity and lack of cell-targeting capability for these synthetic delivery systems. Over the years, we have seen a variety of new and effective polymers which have been designed and synthesized specifically for gene delivery. Moreover, various strategies that aimed at enhancing their physicochemical properties, improving transfection efficiency, reducing cytotoxicity as well as incorporating functional groups that offer better targetability and higher cellular uptake are established. Here, we look at two potential polymeric carriers, chitosan and poly(amidoamine) dendrimers, which have been widely reported for gene delivery. For chitosan, the interest arises from their availability, excellent non-cytotoxicity profile, biodegradability and ease of modification. For poly(amidoamine) dendrimers, the interest arises from their ease of synthesis with controlled structure and size, minimal cytotoxicity, biodegradability and high transfection efficiencies. The latest developments on these polymers for gene delivery will be the main focus of this article. PMID:20618156

  17. Polymeric Coatings for Combating Biocorrosion

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  18. Polymersome nanoreactors for enzymatic ring-opening polymerization.

    PubMed

    Nallani, Madhavan; de Hoog, Hans-Peter M; Cornelissen, Jeroen J L M; Palmans, Anja R A; van Hest, Jan C M; Nolte, Roeland J M

    2007-12-01

    Polystyrene-polyisocyanopeptide (PS-PIAT) polymersomes containing CALB in two different locations, one in the aqueous inner compartment and one in the bilayer, were investigated for enzymatic ring-opening polymerization of lactones in water. It is shown that the monomers 8-octanolactone and dodecalactone yield oligomers with this polymersome system. It is also observed that the polymerization activity is dependent on the position of the enzyme in the polymersome. SEM investigations show that the polymersome structures were destabilized during the polymerization. Further investigations show that the vesicular morphology of the polymersomes was destabilized only in the case of polymer product formation.

  19. Shrinkage vectors of a flowable composite in artificial cavity models with different boundary conditions: Ceramic and Teflon.

    PubMed

    Kaisarly, Dalia; El Gezawi, Moataz; Xu, Xiaohui; Rösch, Peter; Kunzelmann, Karl-Heinz

    2018-01-01

    Polymerization shrinkage of dental resin composites leads to stress build-up at the tooth-restoration interface that predisposes the restoration to debonding. In contrast to the heterogeneity of enamel and dentin, this study investigated the effect of boundary conditions in artificial cavity models such as ceramic and Teflon. Ceramic serves as a homogenous substrate that provides optimal bonding conditions, which we presented in the form of etched and silanized ceramic in addition to an etched, silanized and bonded ceramic cavity. In contrast, the Teflon cavity presented a non-adhesive boundary condition that provided an exaggerated condition of poor bonding as in the case of contamination during the application procedure or a poor bonding substrate such as sclerotic or deep dentin. The greatest 3D shrinkage vectors and movement in the axial direction were observed in the ceramic cavity with the bonding agent followed by the silanized ceramic cavity, and smallest shrinkage vectors and axial movements were observed in the Teflon cavity. The shrinkage vectors in the ceramic cavities exhibited downward movement toward the cavity bottom with great downward shrinkage of the free surface. The shrinkage vectors in the Teflon cavity pointed towards the center of the restoration with lateral movement greater at one side denoting the site of first detachment from the cavity walls. These results proved that the boundary conditions, in terms of bonding substrates, significantly influenced the shrinkage direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Different types of degradable vectors from low-molecular-weight polycation-functionalized poly(aspartic acid) for efficient gene delivery.

    PubMed

    Dou, X B; Hu, Y; Zhao, N N; Xu, F J

    2014-03-01

    Poly(aspartic acid) (PAsp) has been employed as the potential backbone for the preparation of efficient gene carriers, due to its low cytotoxicity, good biodegradability and excellent biocompatibility. In this work, the degradable linear or star-shaped PBLA was first prepared via ring-opining polymerization of β-benzyl-L-aspartate N-carboxy anhydride (BLA-NCA) initiated by ethylenediamine (ED) or ED-functionalized cyclodextrin cores. Then, PBLA was functionalized via aminolysis reaction with low-molecular-weight poly(2-(dimethylamino)ethyl methacrylate) with one terminal primary amine group (PDMAEMA-NH2), followed by addition of excess ED or ethanolamine (EA) to complete the aminolysis process. The obtained different types of cationic PAsp-based vectors including linear or star PAsp-PDM-NH2 and PAsp-PDM-OH exhibited good condensation capability and degradability, benefiting gene delivery process. In comparison with gold standard polyethylenimine (PEI, ∼ 25 kDa), the cationic PAsp-based vectors, particularly star-shaped ones, exhibited much better transfection performances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Recent progress of atomic layer deposition on polymeric materials.

    PubMed

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    PubMed

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  3. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    PubMed

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  4. Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials.

    PubMed

    Doi, Knayo; Takeuchi, Yasuhiro

    2015-01-01

    Retrovirus vectors (gammaretroviral and lentiviral vectors) have been considered as promising tools to transfer therapeutic genes into patient cells because they can permanently integrate into host cellular genome. To treat monogenic, inherited diseases, retroviral vectors have been used to add correct genes into patient cells. Conventional gammaretroviral vectors achieved successful results in clinical trials: treated patients had therapeutic gene expression in target cells and had improved symptoms of diseases. However, serious side-effects of leukemia occurred, caused by retroviral insertional mutagenesis (IM). These incidences stressed the importance of monitoring vector integration sites in patient cells as well as of re-consideration on safer vectors. More recently lentiviral vectors which can deliver genes into non-dividing cells started to be used in clinical trials including neurological disorders, showing their efficacy. Vector integration site analysis revealed that lentiviruses integrate less likely to near promoter regions of oncogenes than gammaretroviruses and no adverse events have been reported in lentiviral vector-mediated gene therapy clinical trials. Therefore lentiviral vectors have promises to be applied to a wide range of common diseases in near future. For example, T cells from cancer patients were transduced to express chimeric T cell receptors recognizing their tumour cells enhancing patients' anti-cancer immunity.

  5. Insulated Foamy Viral Vectors

    PubMed Central

    Browning, Diana L.; Collins, Casey P.; Hocum, Jonah D.; Leap, David J.; Rae, Dustin T.; Trobridge, Grant D.

    2016-01-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34+ cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244

  6. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor); Ashcraft, A. C., Jr.; Wise, E. W.

    1971-01-01

    Various experimental factors were examined to determine the source of difficulty in an isoprene polymerization in the 5-gallon reactor which gave a non-uniform product of low functionality. It was concluded that process improvements relating to initiator and monomer purity were desirable, but that the main difficulty was in the initiator feed system. A new pumping system was installed and an analog simulation of the reactor, feed system and initiator decomposition kinetics was devised which permits the selection of initial initiator concentrations and feed rates to use to give a nearly uniform initiator concentration throughout a polymerization run. An isoprene polymerization was run in which the process improvements were implemented.

  7. Sequence-Controlled Polymerization on Facially Amphiphilic Templates at Interfaces

    DTIC Science & Technology

    2016-06-14

    controlled chain growth polymerization. We will synthesize a ?- conjugated “parent” polymer by iterative exponential growth (IEG), attach cyclic olefin...template that is programmed to direct sequence- controlled chain growth polymerization. We will synthesize a ?- conjugated “parent” polymer by iterative...polymerization. We will synthesize a π- conjugated “parent” polymer by organometallic iterative exponential growth (IEG),2 attach cyclic olefin “daughter

  8. An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.

    PubMed

    Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang

    2016-08-14

    Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.

  9. Vector independent transmission of the vector-borne bluetongue virus.

    PubMed

    van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M

    2016-01-01

    Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.

  10. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  11. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  12. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  13. Vectors and Rotations in 3-Dimensions: Vector Algebra for the C++ Programmer

    DTIC Science & Technology

    2016-12-01

    Proving Ground, MD 21005-5068 This report describes 2 C++ classes: a Vector class for performing vector algebra in 3-dimensional space ( 3D ) and a Rotation...class for performing rotations of vectors in 3D . Each class is self-contained in a single header file (Vector.h and Rotation.h) so that a C...vector, rotation, 3D , quaternion, C++ tools, rotation sequence, Euler angles, yaw, pitch, roll, orientation 98 Richard Saucier 410-278-6721Unclassified

  14. Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes

    NASA Astrophysics Data System (ADS)

    Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan

    2015-11-01

    Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.

  15. Metallocene Catalytic Insertion Polymerization of 1-Silene to Polycarbosilanes.

    PubMed

    Tian, Yuelong; Ge, Min; Zhang, Weigang; Lv, Xiaoxu; Yu, Shouquan

    2015-11-06

    Metallocene of zirconium were used as a catalyst for an insertion polymerization of 1-methylsilene directly into pre-ceramic precursor polyzirconocenecarbosilane (PZCS) during dechlorination of dichlorodimethylesilane by sodium, which exhibits high catalytic effectiveness with the maximum conversion ratio of polycarbosilane up to 91%. The average molecular weights of polymers synthesized are less than 1400, all with very narrow polymolecularities. The mechanism of catalytic polymerization was assumed to be similar to a coordination insertion polymerization of 1-olefins by metallocenes. The obtained PZCS show high ceramic yields with formation of composite ceramics of ZrC-SiC, which are novel polymeric precursors of ultra-high temperature ceramic (UHTC) fiber and composite.

  16. Degradable polyethylenimine derivate coupled to a bifunctional peptide R13 as a new gene-delivery vector

    PubMed Central

    Liu, Kehai; Wang, Xiaoyu; Fan, Wei; Zhu, Qing; Yang, Jingya; Gao, Jing; Gao, Shen

    2012-01-01

    Background To solve the efficiency versus cytotoxicity and tumor-targeting problems of polyethylenimine (PEI) used as a nonviral gene delivery vector, a degradable PEI derivate coupled to a bifunctional peptide R13 was developed. Methods First, we synthesized a degradable PEI derivate by crosslinking low-molecular-weight PEI with pluronic P123, then used tumor-targeting peptide arginine-glycine-aspartate-cysteine (RGDC), in conjunction with the cell-penetrating peptide Tat (49–57), to yield a bifunctional peptide RGDC-Tat (49–57) named R13, which can improve cell selection and increase cellular uptake, and, lastly, adopted R13 to modify the PEI derivates so as to prepare a new polymeric gene vector (P123-PEI-R13). The new gene vector was characterized in terms of its chemical structure and biophysical parameters. We also investigated the specificity, cytotoxicity, and gene transfection efficiency of this vector in αvβ3-positive human cervical carcinoma Hela cells and murine melanoma B16 cells in vitro. Results The vector showed controlled degradation, strong targeting specificity to αvβ3 receptor, and noncytotoxicity in Hela cells and B16 cells at higher doses, in contrast to PEI 25 KDa. The particle size of P123-PEI-R13/DNA complexes was around 100–250 nm, with proper zeta potential. The nanoparticles can protect plasmid DNA from being digested by DNase I at a concentration of 6 U DNase I/μg DNA. The nanoparticles were resistant to dissociation induced by 50% fetal bovine serum and 600 μg/mL sodium heparin. P123-PEI-R13 also revealed higher transfection efficiency in two cell lines as compared with PEI 25 KDa. Conclusion P123-PEI-R13 is a potential candidate as a safe and efficient gene-delivery carrier for gene therapy. PMID:22412301

  17. Self-Healing of biocompatible polymeric nanocomposities

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  18. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents.

    PubMed

    Wang, Zhengzhi; Landis, Forrest A; Giuseppetti, Anthony A M; Lin-Gibson, Sheng; Chiang, Martin Y M

    2014-12-01

    Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈80% (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites. Published by Elsevier Ltd.

  19. Simultaneous Measurement of Polymerization Stress and Curing Kinetics for Photo-polymerized Composites with High Filler Contents

    PubMed Central

    Wang, Zhengzhi; Landis, Forrest A.; Giuseppetti, Anthony A.M.; Lin-Gibson, Sheng; Chiang, Martin Y.M.

    2015-01-01

    Objectives Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). Methods Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. Results Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈ 80 % (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. Significance The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites. PMID:25443160

  20. Polymeric micelles for multi-drug delivery in cancer.

    PubMed

    Cho, Hyunah; Lai, Tsz Chung; Tomoda, Keishiro; Kwon, Glen S

    2015-02-01

    Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that "prime" solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.

  1. Chimeric protein identification of dystrophic, Pierson and other laminin polymerization residues

    PubMed Central

    McKee, Karen K.; Aleksandrova, Maya; Yurchenco, Peter D.

    2018-01-01

    Laminin polymerization is a key step of basement membrane self-assembly that depends on the binding of the three different N-terminal globular LN domains. Several mutations in the LN domains cause LAMA2-deficient muscular dystrophy and LAMB2-deficient Pierson syndrome. These mutations may affect polymerization. A novel approach to identify the amino acid residues required for polymerization has been applied to an analysis of these and other laminin LN mutations. The approach utilizes laminin-nidogen chimeric fusion proteins that bind to recombinant non-polymerizing laminins to provide a missing functional LN domain. Single amino acid substitutions introduced into these chimeras were tested to determine if polymerization activity and the ability to assemble on cell surfaces were lost. Several laminin-deficient muscular dystrophy mutations, renal Pierson syndrome mutations, and Drosophila mutations causing defects of heart development were identified as ones causing loss of laminin polymerization. In addition, two novel residues required for polymerization were identified in the laminin γ1 LN domain. PMID:29408412

  2. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  3. Capillary electrophoresis method to determine siRNA complexation with cationic liposomes.

    PubMed

    Furst, Tania; Bettonville, Virginie; Farcas, Elena; Frere, Antoine; Lechanteur, Anna; Evrard, Brigitte; Fillet, Marianne; Piel, Géraldine; Servais, Anne-Catherine

    2016-10-01

    Small interfering RNA (siRNA) inducing gene silencing has great potential to treat many human diseases. To ensure effective siRNA delivery, it must be complexed with an appropriate vector, generally nanoparticles. The nanoparticulate complex requires an optimal physiochemical characterization and the complexation efficiency has to be precisely determined. The methods usually used to measure complexation in gel electrophoresis and RiboGreen ® fluorescence-based assay. However, those approaches are not automated and present some drawbacks such as the low throughput and the use of carcinogenic reagents. The aim of this study is to develop a new simple and fast method to accurately quantify the complexation efficiency. In this study, capillary electrophoresis (CE) was used to determine the siRNA complexation with cationic liposomes. The short-end injection mode applied enabled siRNA detection in less than 5 min. Moreover, the CE technique offers many advantages compared with the other classical methods. It is automated, does not require sample preparation and expensive reagents. Moreover, no mutagenic risk is associated with the CE approach since no carcinogenic product is used. Finally, this methodology can also be extended for the characterization of other types of nanoparticles encapsulating siRNA, such as cationic polymeric nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Applications of polymeric micelles with tumor targeted in chemotherapy

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Wang, Xiaojun; Zhang, Song; Liu, Xinli

    2012-11-01

    Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core-shell structure (with diameters of 10 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles' surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

  5. Cooperative polymerization of α-helices induced by macromolecular architecture

    NASA Astrophysics Data System (ADS)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun

    2017-07-01

    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  6. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  7. Heterofunctional Glycopolypeptides by Combination of Thiol-Ene Chemistry and NCA Polymerization.

    PubMed

    Krannig, Kai-Steffen; Schlaad, Helmut

    2016-01-01

    Glycopolypeptides are prepared either by the polymerization of glycosylated amino acid N-carboxyanhydrides (NCAs) or by the post-polymerization functionalization of polypeptides with suitable functional groups. Here we present a method for the in-situ functionalization and (co-) polymerization of allylglycine N-carboxyanhydride in a facile one-pot procedure, combining radical thiol-ene photochemistry and nucleophilic ring-opening polymerization techniques, to yield well-defined heterofunctional glycopolypeptides.

  8. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  9. Hydroxyapatite induces spontaneous polymerization of model self-etch dental adhesives

    PubMed Central

    Zhang, Ying; Wu, Ningjing; Bai, Xinyan; Xu, Changqi; Liu, Yi; Wang, Yong

    2013-01-01

    The objective of this study is to report for the first time the spontaneous polymerization phenomenon of self-etch dental adhesives induced by hydroxylapatite (HAp). Model self-etch adhesives were prepared by using a monomer mixture of bis[2-(methacryloyloxy)ethyl] phosphate (2MP) with 2-hydroxyethyl methacrylate (HEMA). The initiator system consisted of camphorquinone (CQ, 0.022 mmol/g) and ethyl 4-dimethylaminobenzoate (4E, 0.022–0.088 mmol/g). HAp (2–8 wt.%) was added to the neat model adhesive. In a dark environment, the polymerization was monitored in-situ using ATR/FT-IR, and the mechanical properties of the polymerized adhesives were evaluated using nanoindentation technique. Results indicated that spontaneous polymerization was not observed in the absence of HAp. However, as different amounts of HAp were incorporated into the adhesives, spontaneous polymerization was induced. Higher HAp content led to higher degree of conversion (DC), higher rate of polymerization (RP) and shorter induction period (IP). In addition, higher 4E content also elevated DC and RP and reduced IP of the adhesives. Nanoindentation result suggested that the Young's modulus of the polymerized adhesives showed similar dependence on HAp and 4E contents. In summary, interaction with HAp could induce spontaneous polymerization of the model self-etch adhesives. This result provides important information for understanding the initiation mechanism of the self-etch adhesives, and may be of clinical significance to strengthen the adhesive/dentin interface based on the finding. PMID:23910263

  10. Vector-borne Infections

    PubMed Central

    Ben Beard, C.

    2011-01-01

    Infections with vector-borne pathogens are a major source of emerging diseases. The ability of vectors to bridge spatial and ecologic gaps between animals and humans increases opportunities for emergence. Small adaptations of a pathogen to a vector can have profound effects on the rate of transmission to humans. PMID:21529382

  11. Free heme and sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  12. Non-equilibrium supramolecular polymerization

    PubMed Central

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J.

    2017-01-01

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term “non-equilibrium self-assembly” by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization. PMID:28349143

  13. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly.

    PubMed

    Andreu, J M; Wagenknecht, T; Timasheff, S N

    1983-03-29

    The polymerization of purified tubulin-colchicine complex, which results in polymers different from microtubules under microtubule-promoting conditions, has been characterized. It proceeds as a nucleated condensation polymerization, requires Mg2+, and is inhibited by small concentrations of Ca2+. Polymerization requires GTP binding, but GDP is inhibitory. The GTPase activity proceeds, but it is unlinked to polymerization. The thermodynamic characteristics of the growth reaction, namely, the apparent changes of free energy, enthalpy, entropy, heat capacity, and preferential interaction with H+ and Mg2+, are very similar to those of microtubule assembly. It is proposed that the interactions responsible for the two types of polymerization are very similar and that the molecular mechanism of microtubule inhibition by colchicine may consist in a drug-induced distortion of the normal protomer bonding geometry.

  14. Unlocking the Structure and Dynamics of Thin Polymeric Films

    DTIC Science & Technology

    2016-11-13

    AFRL-AFOSR-JP-TR-2016-0092 Unlocking the Structure and Dynamics of Thin Polymeric Films Andrew Whittaker THE UNIVERSITY OF QUEENSLAND Final Report 11...Final 3. DATES COVERED (From - To)  15 Jun 2015 to 16 Jun 2016 4. TITLE AND SUBTITLE Unlocking the Structure and Dynamics of Thin Polymeric Films 5a...the interfacial structure that are inherent in thin films affects how polymers behave. A number of technically relevant polymeric systems were

  15. A comparison of in situ measurements of vector-E and - vector-V x vector-B from Dynamics Explorer 2

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Coley, W. R.; Heelis, R. A.; Maynard, N. C.; Aggson, T. L.

    1993-01-01

    Dynamics Explorer-2 provided the first opportunity to make a direct comparison of in situ measurements of the high-latitude convection electric field by two distinctly different techniques. The vector electric field instrument (VEFI) used antennae to measure the intrinsic electric fields and the ion drift meter (IDM) and retarding potential analyzer (RPA) measured the ion drift velocity vector, from which the convection electric field can be deduced. The data from three orbits having large electric fields at high latitude are presented, one at high, one at medium, and one at low altitudes. The general agreement between the two measurements of electric field is very good, with typical differences at high latitudes of the order of a few millivolts per meter, but there are some regions where the particle fluxes are extremely large (e.g., the cusp) and the disagreement is worse, probably because of IDM difficulties. The auroral zone potential patterns derived from the two devices are in excellent agreement for two of the cases, but not in the third, where bad attitude data may be the problem. At low latitudes there are persistent differences in the measurements of a few millivolts per meter, though these differences are quite constant from orbit to orbit. This problem seems to arise from some shortcoming in the VEFI measurments. Overall, however, these measurements confirm the concept of `frozen-in' plasma that drifts with velocity vector-E x vector-B/B(exp 2) within the measurement errors of the two techniques.

  16. Effects of Ti and TiB2 Nanoparticulates on Room Temperature Mechanical Properties and In Vitro Degradation of Pure Mg

    NASA Astrophysics Data System (ADS)

    Meenashisundaram, Ganesh Kumar; Nai, Mui Hoon; Gupta, Manoj

    Mg 1 vol.% Ti and Mg 1 vol.% TiB2 composites containing Ti (30-50 nm) and TiB2 ( 60 nm) nanoparticulates were successfully synthesized using disintegrated melt deposition technique followed by hot extrusion. In vitro degradation of synthesized pure magnesium and composites were assessed by immersion testing in Dulbecco's Modified Eagle's Medium (DMEM) + 10% Fetal Bovine Serum (FBS) solution for a maximum duration of 28 days. Determination of corrosion rates by weight loss technique reveals that after 28 days of immersion testing, Mg 1 vol.% Ti exhibited the best corrosion resistance followed by pure magnesium and finally by Mg 1 vol.% TiB2 composite. The room temperature mechanical properties of the synthesized composites were found to surpass those of pure magnesium. On tensile and compressive loading, substantial strengthening of pure magnesium was observed with 1 vol.% Ti addition whereas appreciable increase in tensile and compressive fracture strains of pure magnesium was observed with 1 vol.% TiB2 addition.

  17. Bioactive Polymeric Materials for Tissue Repair

    PubMed Central

    Bienek, Diane R.; Tutak, Wojtek; Skrtic, Drago

    2017-01-01

    Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP)-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field. PMID:28134776

  18. Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum.

    PubMed

    Benziman, M; Haigler, C H; Brown, R M; White, A R; Cooper, K M

    1980-11-01

    Calcofluor White ST, stilbene derivative used commerically as an optical brightener for cellulose, increased the rate of glucose polymerization into cellulose by resting cells of the gram-negative bacterium Acetobacter xylinum. This bacterium normally produces a ribbon of cellulose that is a composite of crystalline microfibrils. In concentrations above 0.1 mM, Calcofluor disrupts the assembly of crystalline cellulose I microfibrils and their integration into a composite ribbon by stoichiometric binding to glucose residues of newly polymerized glucan chains. Under these conditions, the rate of glucose polymerization increases up to 4 times the control rate, whereas oxygen uptake increases only 10-15%. These observed effects are readily reversible. If free Calcofluor is washed away or depleted below the threshold value by binding to cellulose as polymerization continues, ribbon production and the normal rate of polymerization resume. It is concluded that polymerization and crystallization are cell-directed, coupled processes and that the rate of crystallization determines the rate of polymerization. It is suggested that coupling must be maintained for biogenesis of crystalline cellulose I.

  19. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  20. Cyclopropenimine superbases: Competitive initiation processes in lactide polymerization

    DOE PAGES

    Stukenbroeker, Tyler S.; Bandar, Jeffrey S.; Zhang, Xiangyi; ...

    2015-07-30

    Cyclopropenimine superbases were employed in this study to catalyze the ring-opening polymerization of lactide. Polymerization occurred readily in the presence and absence of alcohol initiators. Polymerizations in the absence of alcohol initiators revealed a competitive initiation mechanism involving deprotonation of lactide by the cyclopropenimine to generate an enolate. NMR and MALDI-TOF analysis of the poly(lactides) generated from cyclopropenimines in the absence of alcohol initiators showed acylated lactide and hydroxyl end groups. Finally, model studies and comparative experiments with guanidine and phosphazene catalysts revealed the subtle influence of the nature of the superbase on competitive initiation processes.

  1. Hydroxyapatite induces spontaneous polymerization of model self-etch dental adhesives.

    PubMed

    Zhang, Ying; Wu, Ningjing; Bai, Xinyan; Xu, Changqi; Liu, Yi; Wang, Yong

    2013-10-01

    The objective of this study is to report for the first time the spontaneous polymerization phenomenon of self-etch dental adhesives induced by hydroxylapatite (HAp). Model self-etch adhesives were prepared by using a monomer mixture of bis[2-(methacryloyloxy)ethyl] phosphate (2MP) with 2-hydroxyethyl methacrylate (HEMA). The initiator system consisted of camphorquinone (CQ, 0.022 mmol/g) and ethyl 4-dimethylaminobenzoate (4E, 0.022-0.088 mmol/g). HAp (2-8 wt.%) was added to the neat model adhesive. In a dark environment, the polymerization was monitored in-situ using ATR/FT-IR, and the mechanical properties of the polymerized adhesives were evaluated using nanoindentation technique. Results indicated that spontaneous polymerization was not observed in the absence of HAp. However, as different amounts of HAp were incorporated into the adhesives, spontaneous polymerization was induced. Higher HAp content led to higher degree of conversion (DC), higher rate of polymerization (RP) and shorter induction period (IP). In addition, higher 4E content also elevated DC and RP and reduced IP of the adhesives. Nanoindentation result suggested that the Young's modulus of the polymerized adhesives showed similar dependence on HAp and 4E contents. In summary, interaction with HAp could induce spontaneous polymerization of the model self-etch adhesives. This result provides important information for understanding the initiation mechanism of the self-etch adhesives, and may be of clinical significance to strengthen the adhesive/dentin interface based on the finding. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Orthogonal vector algorithm to obtain the solar vector using the single-scattering Rayleigh model.

    PubMed

    Wang, Yinlong; Chu, Jinkui; Zhang, Ran; Shi, Chao

    2018-02-01

    Information obtained from a polarization pattern in the sky provides many animals like insects and birds with vital long-distance navigation cues. The solar vector can be derived from the polarization pattern using the single-scattering Rayleigh model. In this paper, an orthogonal vector algorithm, which utilizes the redundancy of the single-scattering Rayleigh model, is proposed. We use the intersection angles between the polarization vectors as the main criteria in our algorithm. The assumption that all polarization vectors can be considered coplanar is used to simplify the three-dimensional (3D) problem with respect to the polarization vectors in our simulation. The surface-normal vector of the plane, which is determined by the polarization vectors after translation, represents the solar vector. Unfortunately, the two-directionality of the polarization vectors makes the resulting solar vector ambiguous. One important result of this study is, however, that this apparent disadvantage has no effect on the complexity of the algorithm. Furthermore, two other universal least-squares algorithms were investigated and compared. A device was then constructed, which consists of five polarized-light sensors as well as a 3D attitude sensor. Both the simulation and experimental data indicate that the orthogonal vector algorithms, if used with a suitable threshold, perform equally well or better than the other two algorithms. Our experimental data reveal that if the intersection angles between the polarization vectors are close to 90°, the solar-vector angle deviations are small. The data also support the assumption of coplanarity. During the 51 min experiment, the mean of the measured solar-vector angle deviations was about 0.242°, as predicted by our theoretical model.

  3. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  4. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  5. Preparation of polymeric Janus particles by directional UV-induced reactions.

    PubMed

    Liu, Lianying; Ren, Mingwei; Yang, Wantai

    2009-09-15

    Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.

  6. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging.

    PubMed

    Shi, Yingge; Jiang, Ruming; Liu, Meiying; Fu, Lihua; Zeng, Guangjian; Wan, Qing; Mao, Liucheng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    Polymeric fluorescent organic nanoparticles (polymer-FONs) have raised considerable research attention for biomedical applications owing to their advantages as compared with fluorescent inorganic nanoparticles and small organic molecules. In this study, we presented an efficient, facile and environment-friendly strategy to produce polymer-FONs, which relied on the self-polymerization of dopamine and polyethyleneimine (PEI) in rather mild conditions. To obtain the final polymer-FONs, aldehyde group-containing copolymers (named as poly(UA-co-PEGMA)) were synthesized by reversible addition-fragmentation chain-transfer polymerization using polyethylene glycol methyl ether methacrylate (PEGMA) and 1-undecen-10-al (UA) as monomers. The dopamine was conjugated onto poly(UA-co-PEGMA) through a multicomponent reaction between UA and dopamine to obtain poly(UA-co-PEGMA)-DA, which was further utilized for preparation of polymer-FONs through self-polymerization of dopamine and PEI. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy and fluorescence spectroscopy were employed to characterize the structure, morphology, compositions and optical properties of these polymer-FONs. Cell viability and cell uptake behavior results suggested that these polymer-FONs possess good biocompatibility and can be potentially utilized for biomedical applications. More importantly, the method can be also applied to fabricate many other multifunctional polymer-FONs with great potential for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  8. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  9. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870.3650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric...

  10. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma.

    PubMed

    Bernal, Giovanna M; LaRiviere, Michael J; Mansour, Nassir; Pytel, Peter; Cahill, Kirk E; Voce, David J; Kang, Shijun; Spretz, Ruben; Welp, Ulrich; Noriega, Sandra E; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R; Yamini, Bakhtiar

    2014-01-01

    A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells was demonstrated. Convection-enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ-bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma. GBM remains one of the most notoriously treatment-unresponsive cancer types. In this study, a multifunctional nanoparticle-based temozolomide delivery system was demonstrated to possess enhanced treatment efficacy in a rodent xenograft GBM model, with the added benefit of MRI-based tracking via the incorporation of iron oxide as a T2* contrast material in the nanoparticles. © 2014.

  11. Living supramolecular polymerization realized through a biomimetic approach

    NASA Astrophysics Data System (ADS)

    Ogi, Soichiro; Sugiyasu, Kazunori; Manna, Swarup; Samitsu, Sadaki; Takeuchi, Masayuki

    2014-03-01

    Various conventional reactions in polymer chemistry have been translated to the supramolecular domain, yet it has remained challenging to devise living supramolecular polymerization. To achieve this, self-organization occurring far from thermodynamic equilibrium—ubiquitously observed in nature—must take place. Prion infection is one example that can be observed in biological systems. Here, we present an ‘artificial infection’ process in which porphyrin-based monomers assemble into nanoparticles, and are then converted into nanofibres in the presence of an aliquot of the nanofibre, which acts as a ‘pathogen’. We have investigated the assembly phenomenon using isodesmic and cooperative models and found that it occurs through a delicate interplay of these two aggregation pathways. Using this understanding of the mechanism taking place, we have designed a living supramolecular polymerization of the porphyrin-based monomers. Despite the fact that the polymerization is non-covalent, the reaction kinetics are analogous to that of conventional chain growth polymerization, and the supramolecular polymers were synthesized with controlled length and narrow polydispersity.

  12. Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers.

    PubMed

    Kuo, Yung-Chih; Kuo, Chan-Ying

    2008-03-03

    Transport of antiretroviral agents across the blood-brain barrier (BBB) is of key importance to the treatment for the acquired immunodeficiency syndrome (AIDS). In this study, impact of exposure to electromagnetic field (EMF) on the permeability of saquinavir (SQV) across BBB was investigated. The in vitro BBB model was based on human brain-microvascular endothelial cells (HBMEC), and the concentration of SQV in receiver chamber of the transport system was evaluated. Polybutylcyanoacrylate (PBCA), methylmethacrylate-sulfopropylmethacrylate (MMA-SPM), and solid lipid nanoparticle (SLN) were employed as carriers for the delivery systems. Cytotoxicity of SLN decreased as content of cacao butter increased. Power of 5mV was apposite for the study on HBMEC without obvious apoptosis. Square wave produced greater permeability than sine and triangle waves. The carrier order on permeability of SQV across HBMEC monolayer under exposure to EMF was SLN>PBCA>MMA-SPM. Also, a larger frequency, modulation or depth of amplitude modulation (AM), or modulation or deviation of frequency modulation (FM) yielded a greater permeability. Besides, enhancement of permeability by AM wave was more significant than that by FM wave. Transport behavior of SQV across BBB was strongly influenced by the combination of nanoparticulate PBCA, MMA-SPM, and SLN with EMF exposure. This combination would be beneficial to the clinical application to the therapy of AIDS and other brain-related diseases.

  13. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  14. The effect of environmental pH on polymeric transfection efficiency.

    PubMed

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2012-02-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6-7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1-2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Mechanism of Cdc42-induced actin polymerization in neutrophil extracts.

    PubMed

    Zigmond, S H; Joyce, M; Yang, C; Brown, K; Huang, M; Pring, M

    1998-08-24

    Cdc42, activated with GTPgammaS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 micron in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 micron. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends.

  16. Developments of the studies on the polymerization under microgravity

    NASA Astrophysics Data System (ADS)

    Li, Ping; Yi, Zongchun

    Microgravity has been recognized as a new and useful way of processing materials for pharmacology biology and microelectronic In microgravity there is no direction for gravity sensitive processes which take part in crystal growth convection sedimentation physical--chemical processes in biological objects The absent of gravity leads to the possibility of synthesis of new materials which cannot be prepared on Earth The perspective for possible biotechnological applications gave an impetus to a series of experiments on polymerization in space by NASA Rocket-Space Corporation RSC ENERGIYA the Institute of Bioorganic Chemistry Uzbekistan and so on The influence of microgravity on polymerization is based on the exclusion of convection and sedimentation processes in curing polymer Under microgravity condition a frontal polymerization process and creation of high homogeneous polyacrilamide gel were observed 1 Thus a much better resolution result of proteins by electrophoresis on orbital PAG matrices was obtained than that on terrestrial PAG matrices A deeper understanding of conditions responsible for generation of physical properties of PAG synthesized on the Earth was a strong motivation for seeking gravity-sensitive mechanisms of polymerization The polymerization under microgravity can potentially applied on functional polymer The conductive polymer such as polypyrrole is usually utilized especially for microelectronics The polymerization of pyrrole in microgravity conditions was made to prepare polymer particles having shapes

  17. Two Photon Polymerization of Microneedles for Transdermal Drug Delivery

    PubMed Central

    Gittard, Shaun D.; Ovsianikov, Aleksandr; Chichkov, Boris N.; Doraiswamy, Anand; Narayan, Roger J.

    2010-01-01

    Importance of the field Microneedles are small-scale devices that are finding use for transdermal delivery of protein-based pharmacologic agents and nucleic acid-based pharmacologic agents; however, microneedles prepared using conventional microelectronics-based technologies have several shortcomings, which have limited translation of these devices into widespread clinical use. Areas covered in this review Two photon polymerization is a laser-based rapid prototyping technique that has been recently used for direct fabrication of hollow microneedles with a wide variety of geometries. In addition, an indirect rapid prototyping method that involves two photon polymerization and polydimethyl siloxane micromolding has been used for fabrication of solid microneedles with exceptional mechanical properties. What the reader will gain In this review, the use of two photon polymerization for fabricating in-plane and out-of-plane hollow microneedle arrays is described. The use of two photon polymerization-micromolding for fabrication of solid microneedles is also reviewed. In addition, fabrication of microneedles with antimicrobial properties is discussed; antimicrobial microneedles may reduce the risk of infection associated with formation of channels through the stratum corneum. Take home message It is anticipated that the use of two photon polymerization as well as two photon polymerization-micromolding for fabrication of microneedles and other microstructured drug delivery devices will increase over the coming years. PMID:20205601

  18. Facile preparation of fluorescent layered double hydroxide polymeric composites through the photo-induced surface-initiated controlled living polymerization

    NASA Astrophysics Data System (ADS)

    Chen, Junyu; Liu, Meiying; Huang, Qiang; Jiang, Ruming; Huang, Hongye; Deng, Fengjie; Wen, Yuanqing; Tian, Jianwen; Zhang, Xiaoyong; Wei, Yen

    2018-05-01

    (Zn/Al) layered double hydroxide (LDH) based fluorescence probes have been facilely fabricated via photo-induced surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, which demonstrated green fluorescence, good biocompatibility and excellent dispersion performance in aqueous solution. The as prepared (Zn/Al)LDH polymeric composites were modified with 2-methacryloyloxyethyl phosphorylcholine (MPC), acrylic acid (AA) and diacroloyl-fluorescein (Ac-Fl). Among them, the comonomers MPC and AA were used to endow their water dispersibility, biocompatibility and potential drug carriers, while the Ac-Fl was served both as the fluorescence signal and photocatalyst for RAFT polymerization. A series of characterization methods, including 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, transmission electronic microscopy, thermogravimetric analyses, X-ray photoelectron spectroscopy were employed to conform the successful of surface modification of LDH through photo-induced surface-initiated RAFT polymerization. Besides, UV-vis absorption spectra and fluorescence spectra were adopted to evaluate the optical characteristics of as prepared (Zn/Al)LDH-co-Poly(MPC-AA-Fl) composites, which exhibited high intense green fluorescence. Furthermore, the endocytosis behavior indicates that (Zn/Al)LDH-co-Poly(MPC-AA-Fl) composites could be potentially used in cell imaging and even drug delivery application for their excellent biocompatibility and all advantages described above.

  19. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization

    PubMed Central

    2016-01-01

    The need for polymers for high-end applications, coupled with the desire to mimic nature’s macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design. PMID:26795940

  20. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    PubMed

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  1. Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization.

    PubMed

    Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien

    2017-10-01

    The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Vector 33: A reduce program for vector algebra and calculus in orthogonal curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Harper, David

    1989-06-01

    This paper describes a package with enables REDUCE 3.3 to perform algebra and calculus operations upon vectors. Basic algebraic operations between vectors and between scalars and vectors are provided, including scalar (dot) product and vector (cross) product. The vector differential operators curl, divergence, gradient and Laplacian are also defined, and are valid in any orthogonal curvilinear coordinate system. The package is written in RLISP to allow algebra and calculus to be performed using notation identical to that for operations. Scalars and vectors can be mixed quite freely in the same expression. The package will be of interest to mathematicians, engineers and scientists who need to perform vector calculations in orthogonal curvilinear coordinates.

  3. Emergence and Prevalence of Human Vector-Borne Diseases in Sink Vector Populations

    PubMed Central

    Rascalou, Guilhem; Pontier, Dominique; Menu, Frédéric; Gourbière, Sébastien

    2012-01-01

    Vector-borne diseases represent a major public health concern in most tropical and subtropical areas, and an emerging threat for more developed countries. Our understanding of the ecology, evolution and control of these diseases relies predominantly on theory and data on pathogen transmission in large self-sustaining ‘source’ populations of vectors representative of highly endemic areas. However, there are numerous places where environmental conditions are less favourable to vector populations, but where immigration allows them to persist. We built an epidemiological model to investigate the dynamics of six major human vector borne-diseases in such non self-sustaining ‘sink’ vector populations. The model was parameterized through a review of the literature, and we performed extensive sensitivity analysis to look at the emergence and prevalence of the pathogen that could be encountered in these populations. Despite the low vector abundance in typical sink populations, all six human diseases were able to spread in 15–55% of cases after accidental introduction. The rate of spread was much more strongly influenced by vector longevity, immigration and feeding rates, than by transmission and virulence of the pathogen. Prevalence in humans remained lower than 5% for dengue, leishmaniasis and Japanese encephalitis, but substantially higher for diseases with longer duration of infection; malaria and the American and African trypanosomiasis. Vector-related parameters were again the key factors, although their influence was lower than on pathogen emergence. Our results emphasize the need for ecology and evolution to be thought in the context of metapopulations made of a mosaic of sink and source habitats, and to design vector control program not only targeting areas of high vector density, but working at a larger spatial scale. PMID:22629337

  4. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    PubMed

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A simple method for determining polymeric IgA-containing immune complexes.

    PubMed

    Sancho, J; Egido, J; González, E

    1983-06-10

    A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.

  6. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoqun; Gao, Yisheng; Tian, Shuling; Dong, Xiangrui

    2018-03-01

    A vortex is intuitively recognized as the rotational/swirling motion of the fluids. However, an unambiguous and universally accepted definition for vortex is yet to be achieved in the field of fluid mechanics, which is probably one of the major obstacles causing considerable confusions and misunderstandings in turbulence research. In our previous work, a new vector quantity that is called vortex vector was proposed to accurately describe the local fluid rotation and clearly display vortical structures. In this paper, the definition of the vortex vector, named Rortex here, is revisited from the mathematical perspective. The existence of the possible rotational axis is proved through real Schur decomposition. Based on real Schur decomposition, a fast algorithm for calculating Rortex is also presented. In addition, new vorticity tensor and vector decompositions are introduced: the vorticity tensor is decomposed to a rigidly rotational part and a non-rotationally anti-symmetric part, and the vorticity vector is decomposed to a rigidly rotational vector which is called the Rortex vector and a non-rotational vector which is called the shear vector. Several cases, including the 2D Couette flow, 2D rigid rotational flow, and 3D boundary layer transition on a flat plate, are studied to demonstrate the justification of the definition of Rortex. It can be observed that Rortex identifies both the precise swirling strength and the rotational axis, and thus it can reasonably represent the local fluid rotation and provide a new powerful tool for vortex dynamics and turbulence research.

  7. Polymeric peptide pigments with sequence-encoded properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah

    Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties overmore » a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.« less

  8. Covalently bonded networks through surface-confined polymerization

    NASA Astrophysics Data System (ADS)

    El Garah, Mohamed; MacLeod, Jennifer M.; Rosei, Federico

    2013-07-01

    The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.

  9. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  10. Inhibition of the cancer-associated TASK 3 channels by magnetically induced thermal release of Tetrandrine from a polymeric drug carrier.

    PubMed

    Shi, Chen; Thum, Carolin; Zhang, Qian; Tu, Wei; Pelaz, Beatriz; Parak, Wolfgang J; Zhang, Yu; Schneider, Marc

    2016-09-10

    Two-pore domain (K2P) potassium channels have recently attracted growing interest in the field of cancer research. These channels play an important role in cancer biology specifically for cancer progression, including proliferation, migration, and apoptosis, which makes them an attractive target for novel cancer therapies. Here, we examined the effect of Tetrandrine (Tet), a natural compound known as a channel modulator, which is associated with anticancer activities, as potential drug in this regard. Xenopus oocyte with overexpression of K2P 9.1 (TASK 3) channels has been chosen as model system for this purpose. In order to release Tet and trigger the channels we developed a polymeric magnetic delivery system: Tetrandrine-Magnetite co-loaded poly (lactic-co-glycolic) acid particles. The embedded iron oxide magnetite (Fe3O4) nanoparticles (NPs) allow to inductively heat the particles by applying a high frequency alternating magnetic field, and thus trigger the release of the co-encapsulated Tet. As a proof of concept the nanoparticulate drug delivery system was heated by raising the suspension's temperature proving the temperature dependent release behaviour. Both heating approaches were then successfully applied for measuring the TASK 3 channels current in response to the released drug. It was found that the released Tet amount is sufficient to inhibit the TASK 3 channels in a dose dependent manner. Thus, such a stimulus responsive drug delivery system holds great promise as a novel approach for the treatment of various cancer types such as for the interaction with the two-pore domain potassium channels K2P 9.1. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    PubMed

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  12. Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization.

    PubMed

    Nai, Yi Heng; Jones, Roderick C; Breadmore, Michael C

    2013-12-01

    Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.

  13. Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design

    PubMed Central

    Meyer, Randall A.; Green, Jordan J.

    2015-01-01

    Nanofabrication and biomedical applications of polymeric nanoparticles have become important areas of research. Biocompatible polymeric nanoparticles have been investigated for their use as delivery vehicles for therapeutic and diagnostic agents. Although polymeric nanoconstructs have traditionally been fabricated as isotropic spheres, anisotropic, non-spherical nanoparticles have gained interest in the biomaterials community due to their unique interactions with biological systems. Polymeric nanoparticles with different forms of anisotropy have been manufactured utilizing a variety of novel methods in recent years. In addition, they have enhanced physical, chemical, and biological properties compared to spherical nanoparticles, including increased targeting avidity and decreased non-specific in vivo clearance. With these desirable properties, anisotropic nanoparticles have been successfully utilized in many biomedical settings and have performed superiorly to analogous spherical nanoparticles. We summarize the current state-of-the-art fabrication methods for anisotropic polymeric nanoparticles including top-down, bottom-up, and microfluidic design approaches. We also summarize the current and potential future applications of these nanoparticles, including drug delivery, biological targeting, immunoengineering, and tissue engineering. Ongoing research into the properties and utility of anisotropic polymeric nanoparticles will prove critical to realizing their potential in nanomedicine. PMID:25981390

  14. 49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable, evolving flammable vapor and Plastic...

  15. 49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable, evolving flammable vapor and Plastic...

  16. 49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable, evolving flammable vapor and Plastic...

  17. 49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable evolving flammable vapor and Plastic...

  18. 49 CFR 173.221 - Polymeric beads, expandable and Plastic molding compound.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Polymeric beads, expandable and Plastic molding... Than Class 1 and Class 7 § 173.221 Polymeric beads, expandable and Plastic molding compound. (a) Non-bulk shipments of Polymeric beads (or granules), expandable evolving flammable vapor and Plastic...

  19. Nanoparticulate delivery of agents for induced elastogenesis in three-dimensional collagenous matrices.

    PubMed

    Venkataraman, Lavanya; Sivaraman, Balakrishnan; Vaidya, Pratik; Ramamurthi, Anand

    2016-12-01

    The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms. It is mediated by the chronic overexpression of matrix metalloprotease (MMP)-2 and MMP-9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting abdominal aortic aneurysm growth. Previous studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells and inhibition of MMPs, following exogenous delivery of elastogenic factors such as transforming growth factor (TGF)-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in two-dimensional culture, poly(lactide-co-glycolide) nanoparticles were developed for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic smooth muscle cells within a three-dimensional gels of type I collagen, which closely simulate the arterial tissue microenvironment. DOX and TGF-β1 released from these nanoparticles influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ~20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled and sustained delivery from nanoparticles embedded within a three-dimensional scaffold is an efficient strategy for directed elastogenesis. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  1. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  2. Induction of HoxB Transcription by Retinoic Acid Requires Actin Polymerization

    PubMed Central

    Ferrai, Carmelo; Naum-Onganía, Gabriela; Longobardi, Elena; Palazzolo, Martina; Disanza, Andrea; Diaz, Victor M.; Crippa, Massimo P.; Scita, Giorgio

    2009-01-01

    We have analyzed the role of actin polymerization in retinoic acid (RA)-induced HoxB transcription, which is mediated by the HoxB regulator Prep1. RA induction of the HoxB genes can be prevented by the inhibition of actin polymerization. Importantly, inhibition of actin polymerization specifically affects the transcription of inducible Hox genes, but not that of their transcriptional regulators, the RARs, nor of constitutively expressed, nor of actively transcribed Hox genes. RA treatment induces the recruitment to the HoxB2 gene enhancer of a complex composed of “elongating” RNAPII, Prep1, β-actin, and N-WASP as well as the accessory splicing components p54Nrb and PSF. We show that inhibition of actin polymerization prevents such recruitment. We conclude that inducible Hox genes are selectively sensitive to the inhibition of actin polymerization and that actin polymerization is required for the assembly of a transcription complex on the regulatory region of the Hox genes. PMID:19477923

  3. Induction of HoxB transcription by retinoic acid requires actin polymerization.

    PubMed

    Ferrai, Carmelo; Naum-Onganía, Gabriela; Longobardi, Elena; Palazzolo, Martina; Disanza, Andrea; Diaz, Victor M; Crippa, Massimo P; Scita, Giorgio; Blasi, Francesco

    2009-08-01

    We have analyzed the role of actin polymerization in retinoic acid (RA)-induced HoxB transcription, which is mediated by the HoxB regulator Prep1. RA induction of the HoxB genes can be prevented by the inhibition of actin polymerization. Importantly, inhibition of actin polymerization specifically affects the transcription of inducible Hox genes, but not that of their transcriptional regulators, the RARs, nor of constitutively expressed, nor of actively transcribed Hox genes. RA treatment induces the recruitment to the HoxB2 gene enhancer of a complex composed of "elongating" RNAPII, Prep1, beta-actin, and N-WASP as well as the accessory splicing components p54Nrb and PSF. We show that inhibition of actin polymerization prevents such recruitment. We conclude that inducible Hox genes are selectively sensitive to the inhibition of actin polymerization and that actin polymerization is required for the assembly of a transcription complex on the regulatory region of the Hox genes.

  4. Vacuum stability requirements of polymeric material for spacecraft application

    NASA Technical Reports Server (NTRS)

    Craig, J. W.

    1984-01-01

    The purpose of this document is to establish outgassing requirements and test guidelines for polymeric materials used in the space thermal/vacuum environment around sensitive optical or thermal control surfaces. The scope of this document covers the control of polymeric materials used near or adjacent to optical or thermal control surfaces that are exposed to the thermal/vacuum environment of space. This document establishes the requirements and defines the test method to evaluate polymeric materials used in the vicinity of these surfaces in space applications.

  5. Porous Structure Design of Polymeric Membranes for Gas Separation

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...

    2017-04-04

    High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.

  6. Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control.

    PubMed

    Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M

    2016-10-01

    The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began <150 years ago and investigations into the virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.

  7. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    NASA Astrophysics Data System (ADS)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  8. Biaxially oriented film on flexible polymeric substrate

    DOEpatents

    Finkikoglu, Alp T [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  9. High-dimensional vector semantics

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    In this paper we explore the “vector semantics” problem from the perspective of “almost orthogonal” property of high-dimensional random vectors. We show that this intriguing property can be used to “memorize” random vectors by simply adding them, and we provide an efficient probabilistic solution to the set membership problem. Also, we discuss several applications to word context vector embeddings, document sentences similarity, and spam filtering.

  10. Custodial vector model

    NASA Astrophysics Data System (ADS)

    Becciolini, Diego; Franzosi, Diogo Buarque; Foadi, Roshan; Frandsen, Mads T.; Hapola, Tuomas; Sannino, Francesco

    2015-07-01

    We analyze the Large Hadron Collider (LHC) phenomenology of heavy vector resonances with a S U (2 )L×S U (2 )R spectral global symmetry. This symmetry partially protects the electroweak S parameter from large contributions of the vector resonances. The resulting custodial vector model spectrum and interactions with the standard model fields lead to distinct signatures at the LHC in the diboson, dilepton, and associated Higgs channels.

  11. Mechanism of Cdc42-induced Actin Polymerization in Neutrophil Extracts

    PubMed Central

    Zigmond, Sally H.; Joyce, Michael; Yang, Changsong; Brown, Kevin; Huang, Minzhou; Pring, Martin

    1998-01-01

    Cdc42, activated with GTPγS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 μm in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 μm. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends. PMID:9722612

  12. Polymeric matrix materials for infrared metamaterials

    DOEpatents

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  13. Helper-Free Foamy Virus Vectors

    PubMed Central

    TROBRIDGE, GRANT D.; RUSSELL, DAVID W.

    2010-01-01

    Retroviral vectors based on human foamy virus (HFV) have been developed and show promise as gene therapy vehicles. Here we describe a method for the production of HFV vector stocks free of detectable helper virus. The helper and vector plasmid constructs used both lack the HFV bel genes, so recombination between these constructs cannot create a wild-type virus. A fusion promoter that combines portions of the cytomegalovirus (CMV) immediate-early and HFV long terminal repeat (LTR) promoters was used to drive expression of both the helper and vector constructs. The CMV–LTR fusion promoter allows for HFV vector production in the absence of the Bel-1 trans-activator protein, which would otherwise be necessary for efficient transcription from the HFV LTR. Vector stocks containing either neomycin phosphotransferase or alkaline phosphatase reporter genes were produced by transient transfection at titers greater than 105 transducing units/ml. G418-resistant BHK-21 cells obtained by transduction with neo vectors contained randomly integrated HFV vector proviruses without detectable deletions or rearrangements. The vector stocks generated were free of replication-competent retrovirus (RCR), as determined by assays for LTR trans-activation and a marker rescue assay developed here for the detection of Bel-independent RCR. OVERVIEW SUMMARY Vectors based on human foamy virus have been developed but low titers and the presence of replication-competent retrovirus (RCR) in vector stocks have prevented their use in preclinical animal experiments. We have developed a transient transfection method that can be used to produce replication-incompetent HFV vector stocks at titers greater than 105/ml, and that does not produce contaminating RCR. The use of CMV-HFV LTR fusion promoters in the helper and vector constructs has circumvented the requirement for the HFV Bel-1 trans-activator protein. Consequently, the potential for generating wild-type HFV by recombination between helper and

  14. Polymerization and Structure of Bio-Based Plastics: A Computer Simulation

    NASA Astrophysics Data System (ADS)

    Khot, Shrikant N.; Wool, Richard P.

    2001-03-01

    We recently examined several hundred chemical pathways to convert chemically functionalized plant oil triglycerides, monoglycerides and reactive diluents into high performance plastics with a broad range of properties (US Patent No. 6,121,398). The resulting polymers had linear, branched, light- and highly-crosslinked chain architectures and could be used as pressure sensitive adhesives, elastomers and high performance rigid thermoset composite resins. To optimize the molecular design and minimize the number of chemical trials in this system with excess degrees of freedom, we developed a computer simulation of the free radical polymerization process. The triglyceride structure, degree of chemical substitution, mole fractions, fatty acid distribution function, and reaction kinetic parameters were used as initial inputs on a 3d lattice simulation. The evolution of the network fractal structure was computed and used to measure crosslink density, dangling ends, degree of reaction and defects in the lattice. The molecular connectivity was used to determine strength via a vector percolation model of fracture. The simulation permitted the optimal design of new bio-based materials with respect to monomer selection, cure reaction conditions and desired properties. Supported by the National Science Foundation

  15. Elliptic-symmetry vector optical fields.

    PubMed

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  16. Assessment of the removal of side nanoparticulated populations generated during one-pot synthesis by asymmetric flow field-flow fractionation coupled to elemental mass spectrometry.

    PubMed

    Bouzas-Ramos, Diego; García-Cortes, Marta; Sanz-Medel, Alfredo; Encinar, Jorge Ruiz; Costa-Fernández, José M

    2017-10-13

    Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  18. Barnacle cement: a polymerization model based on evolutionary concepts

    PubMed Central

    Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel

    2009-01-01

    Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892

  19. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  20. Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review.

    PubMed

    Xinming, Li; Yingde, Cui; Lloyd, Andrew W; Mikhalovsky, Sergey V; Sandeman, Susan R; Howel, Carol A; Liewen, Liao

    2008-04-01

    Only about 5% of drugs administrated by eye drops are bioavailable, and currently eye drops account for more than 90% of all ophthalmic formulations. The bioavailability of ophthalmic drugs can be improved by a soft contact lens-based ophthalmic drug delivery system. Several polymeric hydrogels have been investigated for soft contact lens-based ophthalmic drug delivery systems: (i) polymeric hydrogels for conventional contact lens to absorb and release ophthalmic drugs; (ii) polymeric hydrogels for piggyback contact lens combining with a drug plate or drug solution; (iii) surface-modified polymeric hydrogels to immobilize drugs on the surface of contact lenses; (iv) polymeric hydrogels for inclusion of drugs in a colloidal structure dispersed in the lens; (v) ion ligand-containing polymeric hydrogels; (vi) molecularly imprinted polymeric hydrogels which provide the contact lens with a high affinity and selectivity for a given drug. Polymeric hydrogels for these contact lens-based ophthalmic drug delivery systems, their advantages and drawbacks are critically analyzed in this review.

  1. Neutral Polymeric Micelles for RNA Delivery

    PubMed Central

    Lundy, Brittany B.; Convertine, Anthony; Miteva, Martina; Stayton, Patrick S.

    2013-01-01

    RNA interference (RNAi) drugs have significant therapeutic potential but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl) methacrylamide-co-N-(2-(pyridin-2- yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions, and a second ampholytic block composed of propyl acrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization with an overall molecular weight of 22,000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 μg/mL respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90 % mRNA knockdown and 65 % and protein knockdown of at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates

  2. Capsule-Like Safe Genetic Vectors - Cell-Penetrating Core-Shell Particles Selectively Release Functional Small RNA and Entrap its Encoding DNA.

    PubMed

    Yu, Han; Pan, Houwen Matthew; Evalin, Fnu; Trau, Dieter Wilhelm; Patzel, Volker

    2018-06-05

    The breakthrough of genetic therapy is set back by the lack of suitable genetic vector systems. We present the development of permeability-tunable, capsule-like, polymeric, micron-sized, core-shell particles for delivery of recombinant nucleic acids into target cells. These particles were demonstrated to effectively release rod-shaped small hairpin RNA and to selectively retain the RNA-encoding DNA template which was designed to form a bulky tripartite structure. Thus, they can serve as delivery vectors preloaded with cargo RNA or alternatively as RNA producing micro-bioreactors. The internalization of particles by human tissue culture cells inversely correlated with particle size and with the cell to particle ratio, though at a higher than stoichiometric excess of particles over cells, cell viability was impaired. Among primary human peripheral blood mononuclear cells, up to 50% of the monocytes displayed positive uptake of particles. Finally, these particles efficiently delivered siRNA into HEK293T cells triggering functional knockdown of the target gene lamin A/C. Particle-mediated knockdown was superior to that observed after conventional siRNA delivery via lipofection. Core-shell particles protect encapsulated nucleic acids from degradation and target cell genomes from direct contact with recombinant DNA, thus representing a promising delivery vector system that can be explored for genetic therapy and vaccination.

  3. [Effect of techniques of composite resin insertion and polymerization on microleakage and microhardness].

    PubMed

    Amaral, Cristiane Mariote; Castro, Ana Karina Barbieri Bedran de; Pimenta, Luiz André Freire; Ambrosano, Glaucia Maria Boni

    2002-01-01

    The aim of this study was to evaluate the influence of techniques of composite resin polymerization and insertion on microleakage and microhardness. One hundred and eighty class II cavities were prepared in bovine teeth and assigned to six groups: G1 - bulk filling + conventional polymerization; G2 - bucco-lingual increments + conventional polymerization; G3 - bulk filling + soft-start polymerization; G4 - bucco-lingual increments + soft-start polymerization; G5 - bulk filling + progressive polymerization; G6 - bucco-lingual increments + progressive polymerization. All cavities were restored with the Z100/Single Bond system (3M). After thermocycling, the samples were immersed in 2% methylene blue dye solution for 4 hours. Half of the samples were embedded in polystyrene resin, and Knoop microhardness was measured. The Kruskal-Wallis test did not reveal statistical differences (p > 0.05) between the polymerization and insertion techniques as to microleakage. Regarding microhardness, the two-way ANOVA and the Tukey test did not reveal statistical differences between the restorative techniques (p > 0.05), but progressive polymerization (G5 and G6) was associated with smaller Knoop microhardness values (p < 0.05): G = 144.11; G2 = 143.89; G3 = 141.14; G4 = 142.79; G5 = 132.15; G6 = 131.67. It was concluded that the evaluated polymerization and insertion techniques did not affect marginal microleakage, but a decrease in microhardness occurred when progressive polymerization was carried out.

  4. Sol-gel chemistry by ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-02-07

    Sol-gel processing of materials is plagued by shrinkage during polymerization of the alkoxide monomers and processing (aging and drying) of the resulting gels. The authors have developed a new class of hybrid organic-inorganic materials based on the solventless ring-opening polymerization (ROP) of monomers bearing the 2,2,5,5-tetramethyl-2,5-disilaoxacyclopentyl group, which permits them to drastically reduce shrinkage in sol-gel processed materials. Because the monomers are polymerized through a chain growth mechanism catalyzed by base rather than the step growth mechanism normally used in sol-gel systems, hydrolysis and condensation products are entirely eliminated. Furthermore, since water is not required for hydrolysis, an alcohol solventmore » is not necessary. Monomers with two disilaoxacyclopentyl groups, separated by a rigid phenylene group or a more flexible alkylene group, were prepared through disilylation of the corresponding diacetylenes, followed by ring closure and hydrogenation. Anionic polymerization of these materials, either neat or with 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a copolymer, affords thermally stable transparent gels with no visible shrinkage. These materials provide an easy route to the introduction of sol-gel type materials in encapsulation of microelectronics, which they have successfully demonstrated.« less

  5. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    PubMed

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (P<.005). Both FS and CC performed best with SU but had acceptable results with all of the bonding agents. CP only performed acceptably with MP (P=.023) and had poor results with both other agents. Dual-polymerizing composite resins can obtain equally good bond strengths as light-polymerizing alternatives. However, not all dual-polymerizing composite resins perform well with all bonding systems; some incompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  7. Photocontrol in Complex Polymeric Materials: Fact or Illusion?

    PubMed

    Jerca, Valentin Victor; Hoogenboom, Richard

    2018-06-04

    Photoswitches: Exciting recent progress realized in the field of light-controlled polymeric materials is highlighted. It is discussed how the rational choice of azobenzene molecules and their incorporation into complex materials by making use of physical interactions can lead to genuine photocontrollable polymeric systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Non-viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system cells.

    PubMed

    Villate-Beitia, Ilia; Puras, Gustavo; Soto-Sánchez, Cristina; Agirre, Mireia; Ojeda, Edilberto; Zarate, Jon; Fernández, Eduardo; Pedraz, José Luis

    2017-04-15

    Nanotechnology based non-viral vectors hold great promise to deliver therapeutic genes into the central nervous system (CNS) in a safe and controlled way. Vascular endothelial growth factor (VEGF) is a potential therapeutic gene candidate for CNS disorders due to its specific roles in brain angiogenesis and neuroprotection. In this work, we elaborated three different non-viral vectors based on magnetic, cationic lipid and polymeric nanoparticles complexed to the phVEGF165aIRESGFP plasmid, which codifies the VEGF protein -extracellular- and the green fluorescent protein (GFP) -intracellular-. Nanoparticles and corresponding nanoplexes -magnetoplexes, lipoplexes and polyplexes- were characterized in terms of size, zeta potential, polydispersity index, morphology and ability to bind, release and protect DNA. Transfection efficiencies of nanoplexes were measured in terms of percentage of GFP expressing cells, mean fluorescent intensity (MFI) and VEGF (ng/ml) production in HEK293, C6 and primary neuronal culture cells. Magnetoplexes showed the highest transfection efficiencies in C6, followed by lipoplexes, and in primary neuronal culture cells, followed by polyplexes. Lipoplexes were the most efficient in HEK293 cells, followed by magnetoplexes. The biological activity of VEGF was confirmed by its proliferative effect in HUVEC cells. Overall, these results provide new insights for VEGF gene delivery into CNS cells using non-viral vectors. Copyright © 2017. Published by Elsevier B.V.

  9. Transient inter-cellular polymeric linker.

    PubMed

    Ong, Siew-Min; He, Lijuan; Thuy Linh, Nguyen Thi; Tee, Yee-Han; Arooz, Talha; Tang, Guping; Tan, Choon-Hong; Yu, Hanry

    2007-09-01

    Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.

  10. Dispersion Polymerization of Polystyrene Particles Using Alcohol as Reaction Medium

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Shin, Cheol Hwan; Han, Sujin

    2016-02-01

    In this study, monodisperse polystyrene nanospheres were prepared by dispersion polymerization using alcohol as reaction medium to prepare colloidal clusters of the latex beads. Polyvinylpyrrolidone (PVP) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTC) were used as dispersion stabilizer and comonomer, respectively. The particle size could be controlled by adjusting the reactant compositions such as the amount of stabilizer, comonomer, and water in the reactant mixture. The size and monodispersity of the polymeric particles could be also controlled by changing the reaction medium with different alcohols other than ethanol or adjusting the polymerization temperature. The synthesized particles could be self-organized inside water-in-oil emulsion droplets by evaporation-driven self-assembly to produce colloidal clusters of the polymeric nanospheres.

  11. [Sendai virus vector: vector development and its application to health care and biotechnology].

    PubMed

    Iida, Akihiro

    2007-06-01

    Sendai virus (SeV) is an enveloped virus with a nonsegmented negative-strand RNA genome and a member of the paramyxovirus family. We have developed SeV vector which has shown a high efficiently of gene transfer and expression of foreign genes to a wide range of dividing and non-dividing mammalian cells and tissues. One of the characteristics of the vector is that the genome is located exclusively in the cytoplasm of infected cells and does not go through a DNA phase; thus there is no concern about unwanted integration of foreign sequences into chromosomal DNA. Therefore, this new class of "cytoplasmic RNA vector", an RNA vector with cytoplasmic expression, is expected to be a safer and more efficient viral vector than existing vectors for application to human therapy in various fields including gene therapy and vaccination. In this review, I describe development of Sendai virus vector, its application in the field of biotechnology and clinical application aiming to treat for a large number of diseases including cancer, cardiovascular disease, infectious diseases and neurologic disorders.

  12. Metastable Polymeric Nitrogen: The Ultimate Green High-Energy-Density Material

    NASA Astrophysics Data System (ADS)

    Ciezak, Jennifer

    2007-06-01

    High-energy-high-density materials offering increased stability, vulnerability, and environmental safety are being aggressively pursued to meet the requirements of the DoD Joint Visions and Future Force. Nearly two decades ago, it was proposed that polymeric nitrogen would exceed all of these requirements and possess nearly five times the energy of any conventional energetic material in use today. The present study details an investigation into nitrogen polymerization using a novel high-pressure approach utilizing sodium azide as the starting material. Due to the weaker bonding structure of the anionic azide chains in comparison to a N-N triple bond, one expects that the azide chains will create single-covalently bonded polymeric networks more easily than diatomic nitrogen. A polymeric form of sodium azide was synthesized at high pressures, but the material was not metastable at ambient conditions, which precluded performance testing. Quantum chemical calculations have indicated stabilization of the polymeric structure at ambient conditions may be possible with the addition of hydrogen. Vibrational spectroscopic characterization suggests that a meta-stable polymeric form of nitrogen has been synthesized under high-pressure using sodium azide/hydrogen as the starting materials. This material remains stable at ambient conditions upwards of two weeks depending on the storage conditions.

  13. Light scattering of rectangular slot antennas: parallel magnetic vector vs perpendicular electric vector

    NASA Astrophysics Data System (ADS)

    Lee, Dukhyung; Kim, Dai-Sik

    2016-01-01

    We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.

  14. Extended vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp

    Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Procamore » theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.« less

  15. "Analytical" vector-functions I

    NASA Astrophysics Data System (ADS)

    Todorov, Vladimir Todorov

    2017-12-01

    In this note we try to give a new (or different) approach to the investigation of analytical vector functions. More precisely a notion of a power xn; n ∈ ℕ+ of a vector x ∈ ℝ3 is introduced which allows to define an "analytical" function f : ℝ3 → ℝ3. Let furthermore f (ξ )= ∑n =0 ∞ anξn be an analytical function of the real variable ξ. Here we replace the power ξn of the number ξ with the power of a vector x ∈ ℝ3 to obtain a vector "power series" f (x )= ∑n =0 ∞ anxn . We research some properties of the vector series as well as some applications of this idea. Note that an "analytical" vector function does not depend of any basis, which may be used in research into some problems in physics.

  16. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  17. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  18. Polymerization in the gas phase, in clusters, and on nanoparticle surfaces.

    PubMed

    El-Shall, M Samy

    2008-07-01

    Gas phase and cluster experiments provide unique opportunities to quantitatively study the effects of initiators, solvents, chain transfer agents, and inhibitors on the mechanisms of polymerization. Furthermore, a number of important phenomena, unique structures, and novel properties may exist during gas-phase and cluster polymerization. In this regime, the structure of the growing polymer may change dramatically and the rate coefficient may vary significantly upon the addition of a single molecule of the monomer. These changes would be reflected in the properties of the oligomers deposited from the gas phase. At low pressures, cationic and radical cationic polymerizations may proceed in the gas phase through elimination reactions. In the same systems at high pressure, however, the ionic intermediates may be stabilized, and addition without elimination may occur. In isolated van der Waals clusters of monomer molecules, sequential polymerization with several condensation steps can occur on a time scale of a few microseconds following the ionization of the gas-phase cluster. The cluster reactions, which bridge gas-phase and condensed-phase chemistry, allow examination of the effects of controlled states of aggregation. This Account describes several examples of gas-phase and cluster polymerization studies where the most significant results can be summarized as follows: (1) The carbocation polymerization of isobutene shows slower rates with increasing polymerization steps resulting from entropy barriers, which could explain the need for low temperatures for the efficient propagation of high molecular weight polymers. (2) Radical cation polymerization of propene can be initiated by partial charge transfer from an ionized aromatic molecule such as benzene coupled with covalent condensation of the associated propene molecules. This novel mechanism leads exclusively to the formation of propene oligomer ions and avoids other competitive products. (3) Structural information

  19. Targeted adenoviral vectors

    NASA Astrophysics Data System (ADS)

    Douglas, Joanne T.

    The practical implementation of gene therapy in the clinical setting mandates gene delivery vehicles, or vectors, capable of efficient gene delivery selectively to the target disease cells. The utility of adenoviral vectors for gene therapy is restricted by their dependence on the native adenoviral primary cellular receptor for cell entry. Therefore, a number of strategies have been developed to allow CAR-independent infection of specific cell types, including the use of bispecific conjugates and genetic modifications to the adenoviral capsid proteins, in particular the fibre protein. These targeted adenoviral vectors have demonstrated efficient gene transfer in vitro , correlating with a therapeutic benefit in preclinical animal models. Such vectors are predicted to possess enhanced efficacy in human clinical studies, although anatomical barriers to their use must be circumvented.

  20. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each

  1. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields

    PubMed Central

    Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian

    2017-01-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469

  2. Validation of SplitVectors Encoding for Quantitative Visualization of Large-Magnitude-Range Vector Fields.

    PubMed

    Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen

    2017-06-01

    We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.

  3. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  4. Chemoselective, Stereospecific, and Living Polymerization of Polar Divinyl Monomers by Chiral Zirconocenium Catalysts.

    PubMed

    Vidal, Fernando; Gowda, Ravikumar R; Chen, Eugene Y-X

    2015-07-29

    This contribution reports the first chemoselective, stereospecific, and living polymerization of polar divinyl monomers, enabled by chiral ansa-zirconocenium catalysts through an enantiomorphic-site controlled coordination-addition polymerization mechanism. Silyl-bridged-ansa-zirconocenium ester enolate 2 has been synthesized and structurally characterized, but it exhibits low to negligible activity and stereospecificity in the polymerization of polar divinyl monomers including vinyl methacrylate (VMA), allyl methacrylate (AMA), 4-vinylbenzyl methacrylate (VBMA), and N,N-diallyl acrylamide (DAA). In contrast, ethylene-bridged-ansa-zirconocenium ester enolate 1 is highly active and stereospecific in the polymerization of such monomers including AMA, VBMA, and DAA. The polymerization by 1 is perfectly chemoselective for all four polar divinyl monomers, proceeding exclusively through conjugate addition across the methacrylic C═C bond, while leaving the pendant C═C bonds intact. The polymerization of DAA is most stereospecific and controlled, producing essentially stereoperfect isotactic PDAA with [mmmm] > 99%, M(n) matching the theoretical value (thus a quantitative initiation efficiency), and a narrow molecular weight distribution (Đ = 1.06-1.16). The stereospecificity is slightly lower for the AMA polymerization but still leading to highly isotactic poly(allyl methacrylate) (PAMA) with 95-97% [mm]. The polymerization of VBMA is further less stereospecific, affording PVBMA with 90-94% [mm], while the polymerization VMA is least stereospecific. Several lines of evidence from both homo- and block copolymerization results have demonstrated living characteristics of the AMA polymerization by 1. Mechanistic studies of this polymerization have yielded a monometallic coordination-addition polymerization mechanism involving the eight-membered chelating intermediate. Post-functionalization of isotactic polymers bearing the pendant vinyl group on every repeating unit via

  5. Self-assembled nano-balls released from multistage vector for cancer therapy

    NASA Astrophysics Data System (ADS)

    Qian, Jin; Xia, Xiaojun; Xie, Yan

    2017-03-01

    The efficacy of cancer drugs is often compromised due to the existence of biological barriers such as nonspecific distribution, hemorheological flow limitation and endothelial extravasation, impaired delivery across tumor cell membranes and tissue, and multidrug resistance. To overcome these obstacles, Xu et al developed an injectable nanoparticle generator platform to negotiate with the biological barriers and enable self-assembly of nano-balls in situ in order to maximize drug accumulation inside the tumor tissues and hence the therapeutic efficacy. This perspective aims to elaborate the designing strategy, and discuss the mechanism of action of the new drug and the potential for future development of nanoparticulate drugs.

  6. Polymeric Microcapsule Arrays.

    DTIC Science & Technology

    1995-03-24

    support, microencapsulation and entrapment within a membrane/film or gel. The ideal enzyme immobilization method would (1) Employ mild chemical...yields hollow polymeric microcapsules of uniform diameter and length. These microcapsules are arranged in a high density array in which the...individual capsules protrude from a surface like the bristles of a brush. We have developed procedures for filling these microcapsules with high

  7. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  8. Polymerized and functionalized triglycerides

    USDA-ARS?s Scientific Manuscript database

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  9. A theory for fracture of polymeric gels

    NASA Astrophysics Data System (ADS)

    Mao, Yunwei; Anand, Lallit

    2018-06-01

    A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.

  10. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  11. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  12. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control.

    PubMed

    Brand, Samuel P C; Rock, Kat S; Keeling, Matt J

    2016-04-01

    Epidemiological modelling has a vital role to play in policy planning and prediction for the control of vectors, and hence the subsequent control of vector-borne diseases. To decide between competing policies requires models that can generate accurate predictions, which in turn requires accurate knowledge of vector natural histories. Here we highlight the importance of the distribution of times between life-history events, using short-lived midge species as an example. In particular we focus on the distribution of the extrinsic incubation period (EIP) which determines the time between infection and becoming infectious, and the distribution of the length of the gonotrophic cycle which determines the time between successful bites. We show how different assumptions for these periods can radically change the basic reproductive ratio (R0) of an infection and additionally the impact of vector control on the infection. These findings highlight the need for detailed entomological data, based on laboratory experiments and field data, to correctly construct the next-generation of policy-informing models.

  13. Plasma polymerized high energy density dielectric films for capacitors

    NASA Technical Reports Server (NTRS)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  14. Vector systems for prenatal gene therapy: principles of retrovirus vector design and production.

    PubMed

    Howe, Steven J; Chandrashekran, Anil

    2012-01-01

    Vectors derived from the Retroviridae family have several attributes required for successful gene delivery. Retroviral vectors have an adequate payload size for the coding regions of most genes; they are safe to handle and simple to produce. These vectors can be manipulated to target different cell types with low immunogenicity and can permanently insert genetic information into the host cells' genome. Retroviral vectors have been used in gene therapy clinical trials and successfully applied experimentally in vitro, in vivo, and in utero.

  15. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  16. Processes for microemulsion polymerization employing novel microemulsion systems

    DOEpatents

    Beckman, Eric J.; Smith, Richard D.; Fulton, John L.

    1990-06-12

    This invention is directed to a microemulsion system comprising a first phase including a low-polarity fluid material which is a gas at standard temperature and pressure, and which has a cloud-point density. It also includes a second phase including a polar fluid, typically water, a monomer, preferably a monomer soluble in the polar fluid, and a microemulsion promoter for facilitating the formation of micelles including the monomer in the system. In the subject process, micelles including the monomer are formed in the first phase. A polymerization initiator is introduced into the micelles in the microemulsion system. The monomer is then polymerized in the micelles, preferably in the core of the micelle, to produce a polymeric material having a relatively high molecular weight.

  17. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  18. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa. © 2015 Blackwell Verlag GmbH.

  19. Reciprocity relationships in vector acoustics and their application to vector field calculations.

    PubMed

    Deal, Thomas J; Smith, Kevin B

    2017-08-01

    The reciprocity equation commonly stated in underwater acoustics relates pressure fields and monopole sources. It is often used to predict the pressure measured by a hydrophone for multiple source locations by placing a source at the hydrophone location and calculating the field everywhere for that source. A similar equation that governs the orthogonal components of the particle velocity field is needed to enable this computational method to be used for acoustic vector sensors. This paper derives a general reciprocity equation that accounts for both monopole and dipole sources. This vector-scalar reciprocity equation can be used to calculate individual components of the received vector field by altering the source type used in the propagation calculation. This enables a propagation model to calculate the received vector field components for an arbitrary number of source locations with a single model run for each vector field component instead of requiring one model run for each source location. Application of the vector-scalar reciprocity principle is demonstrated with analytic solutions for a range-independent environment and with numerical solutions for a range-dependent environment using a parabolic equation model.

  20. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  1. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  2. Phosphines bearing alkyne substituents: synthesis and hydrophosphination polymerization.

    PubMed

    Greenberg, Sharonna; Stephan, Douglas W

    2009-09-07

    A synthetic route is described for a series of phosphines bearing pendant alkyne substituents, from the conversion of BrC(6)H(2)R(2)C[triple bond]CR' (R = Me, i-Pr; R' = Ph, SiMe(3)) to [(mu-Br)Cu(Et(2)N)(2)PC(6)H(2)R(2)C[triple bond]CR'](2) and subsequently to Cl(2)PC(6)H(2)R(2)C[triple bond]CR' and H(2)PC(6)H(2)R(2)C[triple bond]CR'. Lithiation and subsequent alkylation yield the secondary phosphines R(H)PC(6)H(2)(i-Pr)(2)C[triple bond]CPh (R = CH(2)i-Pr, CH(2)Ph). Intermolecular hydrophosphination-polymerization is used to prepare the polymeric species [RPC(6)H(2)(i-Pr)(2)CH=CPh](n), which can then be sulfurized to give [RP(S)C(6)H(2)(i-Pr)(2)CH=CPh](n). The polymeric products were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and gel permeation chromatography. These data indicate a degree of polymerization (DP(n)) of up to 60. Discussion of the mechanism is augmented with gas-phase density functional theory calculations.

  3. Molecularly Oriented Polymeric Thin Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C.; Stoakley, Diane M.; St.Clair, Anne K.

    1997-01-01

    The increased commitment from NASA and private industry to the exploration of outer space and the use of orbital instrumentation to monitor the earth has focused attention on organic polymeric materials for a variety of applications in space. Some polymeric materials have exhibited short-term (3-5 yr) space environmental durability; however, future spacecraft are being designed with lifetimes projected to be 10-30 years. This gives rise to concern that material property change brought about during operation may result in unpredicted spacecraft performance. Because of their inherent toughness and flexibility, low density, thermal stability, radiation resistance and mechanical strength, aromatic polyimides have excellent potential use as advanced materials on large space structures. Also, there exists a need for high temperature (200-300 C) stable, flexible polymeric films that have high optical transparency in the 300-600nm range of the electromagnetic spectrum. Polymers suitable for these space applications were fabricated and characterized. Additionally, these polymers were molecularly oriented to further enhance their dimensional stability, stiffness, elongation and strength. Both unoriented and oriented polymeric thin films were also cryogenically treated to temperatures below -184 C to show their stability in cold environments and determine any changes in material properties.

  4. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  5. Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases.

    PubMed

    Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L

    2016-03-01

    Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences-consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest

  6. Integrating Transgenic Vector Manipulation with Clinical Interventions to Manage Vector-Borne Diseases

    PubMed Central

    Okamoto, Kenichi W.; Gould, Fred; Lloyd, Alun L.

    2016-01-01

    Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences—consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest

  7. Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications.

    PubMed

    Fan, Xiaoshan; Yang, Jing; Loh, Xian Jun; Li, Zibiao

    2018-06-13

    Polymeric Janus nanoparticles with two sides of incompatible chemistry have received increasing attention due to their tunable asymmetric structure and unique material characteristics. Recently, with the rapid progress in controlled polymerization combined with novel fabrication techniques, a large array of functional polymeric Janus particles are diversified with sophisticated architecture and applications. In this review, the most recently developed strategies for controlled synthesis of polymeric Janus nanoparticles with well-defined size and complex superstructures are summarized. In addition, the pros and cons of each approach in mediating the anisotropic shapes of polymeric Janus particles as well as their asymmetric spatial distribution of chemical compositions and functionalities are discussed and compared. Finally, these newly developed structural nanoparticles with specific shapes and surface functions orientated applications in different domains are also discussed, followed by the perspectives and challenges faced in the further advancement of polymeric Janus nanoparticles as high performance materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of nonhuman adenoviruses as vaccine vectors

    PubMed Central

    Bangari, Dinesh S.; Mittal, Suresh K.

    2006-01-01

    Human adenoviral (HAd) vectors have demonstrated great potential as vaccine vectors. Preclinical and clinical studies have demonstrated the feasibility of vector design, robust antigen expression and protective immunity using this system. However, clinical use of adenoviral vectors for vaccine purposes is anticipated to be limited by vector immunity that is either preexisting or develops rapidly following the first inoculation with adenoviral vectors. Vector immunity inactivates the vector particles and rapidly removes the transduced cells, thereby limiting the duration of transgene expression. Due to strong vector immunity, subsequent use of the same vector is usually less efficient. In order to circumvent this limitation, nonhuman adenoviral vectors have been proposed as alternative vectors. In addition to eluding HAd immunity, these vectors possess most of the attractive features of HAd vectors. Several replication-competent or replication-defective nonhuman adenoviral vectors have been developed and investigated for their potential as vaccine delivery vectors. Here, we review recent advances in the design and characterization of various nonhuman adenoviral vectors, and discuss their potential applications for human and animal vaccination. PMID:16297508

  9. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    PubMed Central

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  10. Tension modulates actin filament polymerization mediated by formin and profilin

    PubMed Central

    Courtemanche, Naomi; Lee, Ja Yil; Pollard, Thomas D.; Greene, Eric C.

    2013-01-01

    Formins promote processive elongation of actin filaments for cytokinetic contractile rings and other cellular structures. In vivo, these structures are exposed to tension, but the effect of tension on these processes was unknown. Here we used single-molecule imaging to investigate the effects of tension on actin polymerization mediated by yeast formin Bni1p. Small forces on the filaments dramatically slowed formin-mediated polymerization in the absence of profilin, but resulted in faster polymerization in the presence of profilin. We propose that force shifts the conformational equilibrium of the end of a filament associated with formin homology 2 domains toward the closed state that precludes polymerization, but that profilin–actin associated with formin homology 1 domains reverses this effect. Thus, physical forces strongly influence actin assembly by formin Bni1p. PMID:23716666

  11. Video Vectorization via Tetrahedral Remeshing.

    PubMed

    Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping

    2017-02-09

    We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.

  12. Integrating vector control across diseases.

    PubMed

    Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W

    2015-10-01

    Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross

  13. High-capacity 'gutless' adenoviral vectors.

    PubMed

    Kochanek, S; Schiedner, G; Volpers, C

    2001-10-01

    Adenoviral vectors are promising gene transfer vehicles for different gene therapy applications. High-capacity adenoviral (HC-Ad) vectors address some of the problems that have been observed with replication-defective, E1-deleted first-generation adenoviral vectors: toxicity and immunogenicity due to viral gene expression and 7 to 8 kb capacity limit for the transport of therapeutic DNA. This review summarizes HC-Ad vector-related publications from the past 18 months that are mainly concerned with vector design/production and in vivo applications in different murine models.

  14. An Interferometric Study of Epoxy Polymerization Kinetics

    NASA Astrophysics Data System (ADS)

    Page, Melissa A.; Tandy Grubbs, W.

    1999-05-01

    An interferometric method for monitoring polymerization kinetics is described. The experimental apparatus can be constructed from items commonly available in undergraduate laboratories. It consists of a low power helium-neon laser, a home-built Michelson interferometer, and a photodiode light detector. When a polymerizing sample is placed in one arm of the Michelson interferometer, the variation in refractive index will cause a corresponding shift in the phase of the coherent optical beam that passes through the sample, and the output of the interferometer will subsequently fluctuate between constructive and destructive interference. The oscillation in the interferometer output intensity is monitored as a function of time with the photodiode. The time between successive maxima (or minima) is used to calculate the change in refractive index with time (Dn/Dt), which is subsequently used as a phenomenological definition of polymerization rate. We have utilized this device to collect and compare curing profiles of commercially available epoxy glues.

  15. Pressure-induced polymerization of P(CN) 3

    DOE PAGES

    Gou, Huiyang; Yonke, Brendan L.; Epshteyn, Albert; ...

    2015-05-21

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN) 3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder Xray diffraction (PXRD) measurements taken during compression show that molecular P(CN) 3 is highly compressible with a bulk modulus of 10.0±0.3 GPa and polymerizes into an amorphous solid above ~10.0 GPa. Raman and infrared (IR) spectra, togethermore » with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp 2 character, similar to known carbon nitrides, resulting in a novel PCN polymeric phase, which is recoverable to ambient pressure.« less

  16. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinauskas, M.; Purlys, V.; Zukauskas, A.

    2010-11-10

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY--ALS130-100, Z--ALS130-50, Aerotech, Inc.). These stages guarantee anmore » overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software ''3D-Poli'' specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.« less

  17. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Malinauskas, M.; Purlys, V.; Žukauskas, A.; Rutkauskas, M.; Danilevičius, P.; Paipulas, D.; Bičkauskaitė, G.; Bukelskis, L.; Baltriukienė, D.; Širmenis, R.; Gaidukevičiutė, A.; Bukelskienė, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.

    2010-11-01

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY—ALS130-100, Z—ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software "3D-Poli" specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  18. Selection vector filter framework

    NASA Astrophysics Data System (ADS)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  19. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  20. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  1. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  2. Variable Effect during Polymerization

    ERIC Educational Resources Information Center

    Lunsford, S. K.

    2005-01-01

    An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.

  3. Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization

    NASA Astrophysics Data System (ADS)

    Edeleva, M. V.; Marque, S. R. A.; Bagryanskaya, E. G.

    2018-04-01

    Controlled, or pseudoliving, radical polymerization provides unique opportunities for the synthesis of structurally diverse polymers with a narrow molecular-weight distribution. These reactions occur under relatively mild conditions with broad tolerance to functional groups in the monomers. The nitroxide-mediated pseudoliving radical polymerization is of particular interest for the synthesis of polymers for biomedical applications. This review briefly describes one of the mechanisms of controlled radical polymerization. The studies dealing with the use of imidazoline and imidazolidine nitroxides as controlling agents for nitroxide-mediated pseudoliving radical polymerization of various monomers are summarized and analyzed. The publications addressing the key steps of the controlled radical polymerization in the presence of imidazoline and imidazolidine nitroxides and new approaches to nitroxide-mediated polymerization based on protonation of both nitroxides and monomers are considered. The bibliography includes 154 references.

  4. Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing.

    PubMed

    Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D

    2014-02-25

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  5. Self-assembly of block copolymers on topographically patterned polymeric substrates

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  6. Polymerization Simulator for Introductory Polymer and Material Science Courses

    ERIC Educational Resources Information Center

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  7. Symbolic computer vector analysis

    NASA Technical Reports Server (NTRS)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  8. The Production and Export of Bioavailable Iron from Ice Sheets - the Importance of Colloidal and Nanoparticulate Phases

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Wadham, J. L.; Tranter, M.; Raiswell, R.; Benning, L. G.; Statham, P. J.; Tedstone, A.; Nienow, P. W.; Telling, J.; Bagshaw, E.

    2013-12-01

    Glaciers cover approximately 10% of the world's land surface at present, but our knowledge of biogeochemical processes occurring beneath them is still limited, as is our understanding of their impact on downstream ecosystems via the export of nutrients in runoff. Recent work has suggested that glaciers are a primary source of nutrients to near coastal areas(1). For example, macronutrients, such as nitrogen and phosphorus, and micronutrients, such as iron, may support primary production(2,3). Nutrient limitation of primary producers is known to be prevalent in large sectors of the world's oceans and iron is a significant limiting nutrient in Polar waters(4,5). Significantly, large oceanic algal blooms have been observed in polar areas where glacial influence is large(6,7). Our knowledge of iron speciation, concentrations and export dynamics in glacial meltwater is limited due, in part, to problems associated with collecting trace measurements in remote field locations. For example, recent work has indicated large uncertainty in 'dissolved' meltwater iron concentrations (0.2 - 4000 μM(8,9)). There is currently a dearth of information about labile nanoparticulate iron in glacial meltwaters, as well as export dynamics from large ice sheet catchments. Existing research has focused on small catchment examples(8,10), which behave differently to larger catchments(11). Presented here is the first time series of daily variations in meltwater iron concentrations (dissolved, filterable colloidal/nanoparticulate and bioavailable suspended sediment bound) from two large contrasting glacial catchments in Greenland over the 2012 and 2013 summer melt seasons. We also present the first estimates of iron concentrations in Greenlandic icebergs, which have been identified as hot spots of biological activity in the open ocean(12,13). Budgets for ice sheets based on our data demonstrate the importance of glaciers in global nutrient cycles, and reveal a large and previously under

  9. Polymeric Nanofibers in Tissue Engineering

    PubMed Central

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  10. Vectorized Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Szymański, Grzegorz; Waszak, Michał

    2004-01-01

    This paper deals with vector hysteresis modeling. A vector model consisting of individual Jiles-Atherton components placed along principal axes is proposed. The cross-axis coupling ensures general vector model properties. Minor loops are obtained using scaling method. The model is intended for efficient finite element method computations defined in terms of magnetic vector potential. Numerical efficiency is ensured by differential susceptibility approach.

  11. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates.

    PubMed

    Wang, Bin-Bin; Liu, Xue-Ting; Chen, Jian-Meng; Peng, Dang-Cong; He, Feng

    2018-02-01

    Characteristics of extracellular polymeric substances (EPS) in activated sludge strongly depend on wastewater substrates. Proteinaceous substrates (ProS) present in heterogeneous polymeric form are intrinsic and important parts of wastewater substrates for microorganisms in activated sludge systems. However, correlations between ProS and characteristics of EPS are scarce. This study systematically explored the impacts of monomeric (Mono-), low polymeric (LoP-) and high polymeric (HiP-) ProS on compositions and functional groups of EPS in activated sludge. The results showed that the change of polymerization degree of ProS significantly altered the composition of EPS. Compared to EPS Mono-ProS , the proportion of proteins in EPS LoP-ProS and EPS HiP-ProS increased by 12.8% and 27.7%, respectively, while that of polysaccharides decreased by 22.9% and 63.6%, respectively. Moreover, the proportion of humic compounds in EPS LoP-ProS and EPS HiP-ProS were ∼6 and ∼16-fold higher than that in EPS Mono-ProS , respectively. The accumulation of humic compounds in EPS increased the unsaturation degree of EPS molecules, and thereby reduced the energy requirement for electrons transition of amide bonds and aromatic groups. Size exclusion chromatography (SEC) analyses detected more molecular clusters in EPS HiP-ProS , indicating more complex composition of EPS in HiP-ProS fed activated sludge. Spectroscopic characterization revealed the dominance of hydrocarbon, protein, polysaccharide and aromatic associated bonds in all three EPS. Nevertheless, with the increase of polymerization degree of ProS, the protein associated bonds (such as CONH, CO, NC, NH) increased, while the polysaccharide associated bonds (such as COC, COH, OCOH) decreased. This paper paves a path to understand the role of ProS in affecting the production and characteristics of EPS in biological wastewater treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases

    PubMed Central

    Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung

    2015-01-01

    Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits. PMID:25839217

  13. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases.

    PubMed

    Lin, Chi-Ying; Lin, Shih-Jie; Yang, Yi-Chen; Wang, Der-Yuan; Cheng, Hwei-Fang; Yeh, Ming-Kung

    2015-01-01

    Vaccination, which provides effective, safe infectious disease protection, is among the most important recent public health and immunological achievements. However, infectious disease remains the leading cause of death in developing countries because several vaccines require repeated administrations and children are often incompletely immunized. Microsphere-based systems, providing controlled release delivery, can obviate the need for repeat immunizations. Here, we review the function of sustained and pulsatile release of biodegradable polymeric microspheres in parenteral and mucosal single-dose vaccine administration. We also review the active-targeting function of polymeric particles. With their shield and co-delivery functions, polymeric particles are applied to develop single-dose and mucosally administered vaccines as well as to improve subunit vaccines. Because polymeric particles are easily surface-modified, they have been recently used in vaccine development for cancers and many infectious diseases without effective vaccines (e.g., human immunodeficiency virus infection). These polymeric particle functions yield important vaccine carriers and multiple benefits.

  14. The Cross Product of Two Vectors Is Not Just Another Vector--A Major Misconception Being Perpetuated in Calculus and Vector Analysis Textbooks.

    ERIC Educational Resources Information Center

    Elk, Seymour B.

    1997-01-01

    Suggests that the cross product of two vectors can be more easily and accurately explained by starting from the perspective of dyadics because then the concept of vector multiplication has a simple geometrical picture that encompasses both the dot and cross products in any number of dimensions in terms of orthogonal unit vector components. (AIM)

  15. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs.

    PubMed

    Gothwal, Avinash; Khan, Iliyas; Gupta, Umesh

    2016-01-01

    Nanotechnology, in health and medicine, extensively improves the safety and efficacy of different therapeutic agents, particularly the aspects related to drug delivery and targeting. Among various nano-carriers, polymer based macromolecular approaches have resulted in improved drug delivery for the diseases like cancers, diabetes, autoimmune disorders and many more. Polymeric micelles consisting of hydrophilic exterior and hydrophobic core have established a record of anticancer drug delivery from the laboratory to commercial reality. The nanometric size, tailor made functionality, multiple choices of polymeric micelle synthesis and stability are the unique properties, which have attracted scientists and researchers around the world to work upon in this opportunistic drug carrier. The capability of polymeric micelles as nano-carriers are nowhere less significant than nanoparticles, liposomes and other nanocarriers, as per as the commercial feasibility and presence is concerned. In fact polymeric micelles are among the most extensively studied delivery platforms for the effective treatment of different cancers as well as non-cancerous disorders. The present review highlights the sequential and recent developments in the design, synthesis, characterization and evaluation of polymeric micelles to achieve the effective anticancer drug delivery. The future possibilities and clinical outcome have also been discussed, briefly.

  16. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  17. Effect of heat polymerization conditions and microwave on the flexural strength of polymethyl methacrylate

    PubMed Central

    Ozkir, Serhat Emre; Yilmaz, Burak; Unal, Server Mutluay; Culhaoglu, Ahmet; Kurkcuoglu, Isin

    2018-01-01

    Objective: The objective of this study is the effect of different heat polymerization conditions on the strength of polymethyl methacrylate (PMMA) resin base is unknown. Distinguishing one method that provides improved mechanical properties may be beneficial to the clinical success of complete and partial dentures and overdentures. The purpose of this study was to evaluate the effect of different polymerization methods on the flexural strength of a dental PMMA resin. Materials and Methods: Forty PMMA specimens (64 mm × 10 mm × 4 mm) were prepared with 4 different polymerization methods (n = 10); heat polymerization at 74°C for 9 h, at 100°C for 40 min, and with 620 kPa pressure at 100°C for 20 min. The remaining group of specimens was microwave polymerized at 180 W for 6 min. All specimens were thermocycled at 5°C and 55°C for 5000 times. Three-point flexure test was used to measure the flexural strength of specimens. One-way ANOVA and Tukey Honestly Significant Difference were applied to analyze the differences in flexural strengths (α = 0.05). Results: The flexural strength of heat-polymerized groups was similar. The flexural strength of microwave polymerized group was significantly different and lower than the other groups (P < 0.05). Conclusion: Polymerizing conventional heat-polymerizing PMMA resin with microwave energy resulted in a significant decrease in flexural strength. The results of this study suggest that clinicians may benefit from using heat polymerization when processing PMMA denture bases instead of microvawe polymerization when tested brand is used. PMID:29657535

  18. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    PubMed Central

    Jentoft, Leif P.; Dollar, Aaron M.; Wagner, Christopher R.; Howe, Robert D.

    2014-01-01

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor. PMID:24573310

  19. An Efficient Wait-Free Vector

    DOE PAGES

    Feldman, Steven; Valera-Leon, Carlos; Dechev, Damian

    2016-03-01

    The vector is a fundamental data structure, which provides constant-time access to a dynamically-resizable range of elements. Currently, there exist no wait-free vectors. The only non-blocking version supports only a subset of the sequential vector API and exhibits significant synchronization overhead caused by supporting opposing operations. Since many applications operate in phases of execution, wherein each phase only a subset of operations are used, this overhead is unnecessary for the majority of the application. To address the limitations of the non-blocking version, we present a new design that is wait-free, supports more of the operations provided by the sequential vector,more » and provides alternative implementations of key operations. These alternatives allow the developer to balance the performance and functionality of the vector as requirements change throughout execution. Compared to the known non-blocking version and the concurrent vector found in Intel’s TBB library, our design outperforms or provides comparable performance in the majority of tested scenarios. Over all tested scenarios, the presented design performs an average of 4.97 times more operations per second than the non-blocking vector and 1.54 more than the TBB vector. In a scenario designed to simulate the filling of a vector, performance improvement increases to 13.38 and 1.16 times. This work presents the first ABA-free non-blocking vector. Finally, unlike the other non-blocking approach, all operations are wait-free and bounds-checked and elements are stored contiguously in memory.« less

  20. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different.

    PubMed

    Ogden, Nick H; Lindsay, L Robbin

    2016-08-01

    There has been considerable debate as to whether global risk from vector-borne diseases will be impacted by climate change. This has focussed on important mosquito-borne diseases that are transmitted by the vectors from infected to uninfected humans. However, this debate has mostly ignored the biological diversity of vectors and vector-borne diseases. Here, we review how climate and climate change may impact those most divergent of arthropod disease vector groups: multivoltine insects and hard-bodied (ixodid) ticks. We contrast features of the life cycles and behaviour of these arthropods, and how weather, climate, and climate change may have very different impacts on the spatiotemporal occurrence and abundance of vectors, and the pathogens they transmit. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Production methodologies of polymeric and hydrogel particles for drug delivery applications.

    PubMed

    Lima, Ana Catarina; Sher, Praveen; Mano, João F

    2012-02-01

    Polymeric particles are ideal vehicles for controlled delivery applications due to their ability to encapsulate a variety of substances, namely low- and high-molecular mass therapeutics, antigens or DNA. Micro and nano scale spherical materials have been developed as carriers for therapies, using appropriated methodologies, in order to achieve a prolonged and controlled drug administration. This paper reviews the methodologies used for the production of polymeric micro/nanoparticles. Emulsions, phase separation, spray drying, ionic gelation, polyelectrolyte complexation and supercritical fluids precipitation are all widely used processes for polymeric micro/nanoencapsulation. This paper also discusses the recent developments and patents reported in this field. Other less conventional methodologies are also described, such as the use of superhydrophobic substrates to produce hydrogel and polymeric particulate biomaterials. Polymeric drug delivery systems have gained increased importance due to the need for improving the efficiency and versatility of existing therapies. This allows the development of innovative concepts that could create more efficient systems, which in turn may address many healthcare needs worldwide. The existing methods to produce polymeric release systems have some critical drawbacks, which compromise the efficiency of these techniques. Improvements and development of new methodologies could be achieved by using multidisciplinary approaches and tools taken from other subjects, including nanotechnologies, biomimetics, tissue engineering, polymer science or microfluidics.

  2. Nano Polymeric Carrier Fabrication Technologies for Advanced Antitumor Therapy

    PubMed Central

    Li, Wei; Zhao, Mengxin; Ke, Changhong; Zhang, Ge; Zhang, Li; Li, Huafei; Zhang, Fulei; Sun, Yun; Dai, Jianxin; Wang, Hao; Guo, Yajun

    2013-01-01

    Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning. In addition, this fine nanocarrier's engineering can also provide practical solution to solve the problems in traditional cancer immunotherapy. In this paper, we review the latest development in nanomedicine, cancer therapy, and nanoimmunotherapy. We then give an explanation why fine nanocanrrie's engineering with special focus on the unique pathology of tumor microenvironments and properties of immunocells can obviously promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy. PMID:24369011

  3. Nano polymeric carrier fabrication technologies for advanced antitumor therapy.

    PubMed

    Li, Wei; Zhao, Mengxin; Ke, Changhong; Zhang, Ge; Zhang, Li; Li, Huafei; Zhang, Fulei; Sun, Yun; Dai, Jianxin; Wang, Hao; Guo, Yajun

    2013-01-01

    Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning. In addition, this fine nanocarrier's engineering can also provide practical solution to solve the problems in traditional cancer immunotherapy. In this paper, we review the latest development in nanomedicine, cancer therapy, and nanoimmunotherapy. We then give an explanation why fine nanocanrrie's engineering with special focus on the unique pathology of tumor microenvironments and properties of immunocells can obviously promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy.

  4. Integral transformation solution of free-space cylindrical vector beams and prediction of modified Bessel-Gaussian vector beams.

    PubMed

    Li, Chun-Fang

    2007-12-15

    A unified description of free-space cylindrical vector beams is presented that is an integral transformation solution to the vector Helmholtz equation and the transversality condition. In the paraxial condition, this solution not only includes the known J(1) Bessel-Gaussian vector beam and the axisymmetric Laguerre-Gaussian vector beam that were obtained by solving the paraxial wave equations but also predicts two kinds of vector beam, called a modified Bessel-Gaussian vector beam.

  5. Reduced Order Model Basis Vector Generation: Generates Basis Vectors fro ROMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrighi, Bill

    2016-03-03

    libROM is a library that implements order reduction via singular value decomposition (SVD) of sampled state vectors. It implements 2 parallel, incremental SVD algorithms and one serial, non-incremental algorithm. It also provides a mechanism for adaptive sampling of basis vectors.

  6. Coherent X-ray diffraction imaging of nanoengineered polymeric capsules

    NASA Astrophysics Data System (ADS)

    Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.

    2017-10-01

    For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.

  7. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    PubMed

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field.

  8. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  9. Deuterium isotope effects in polymerization of benzene under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weizhao; Dunuwille, Mihindra; He, Jiangang

    The enormous versatility in the properties of carbon materials depends on the content of the sp 2 and sp 3 covalent bonds. Under compression, if intermolecular distances cross a critical threshold, then unsaturated hydrocarbons gradually transform to saturated carbon polymers. However, the mechanism of polymerization, even for benzene, the simplest aromatic hydrocarbon, is still not understood. We used high-pressure synchrotron X-ray, neutron diffraction, and micro-Raman spectroscopy together with density functional calculations to investigate the isotope effects in benzene isotopologues C 6H 6 and C 6D 6 up to 46.0 GPa. Raman spectra of polymeric products recovered from comparable pressures showmore » the progression of polymerization exhibiting a pronounced kinetic isotope effect. Kinetically retarded reactions in C 6D 6 shed light on the mechanism of polymerization of benzene. Lastly, we find that C 6D 6-derived products recovered from P < 35 GPa actively react with moisture, forming polymers with higher sp 3 hydrogen contents. Significant isotopic shift (≥7 GPa) in persistence of Bragg reflections of C 6D 6 is observed.« less

  10. Deuterium isotope effects in polymerization of benzene under pressure

    DOE PAGES

    Cai, Weizhao; Dunuwille, Mihindra; He, Jiangang; ...

    2017-04-10

    The enormous versatility in the properties of carbon materials depends on the content of the sp 2 and sp 3 covalent bonds. Under compression, if intermolecular distances cross a critical threshold, then unsaturated hydrocarbons gradually transform to saturated carbon polymers. However, the mechanism of polymerization, even for benzene, the simplest aromatic hydrocarbon, is still not understood. We used high-pressure synchrotron X-ray, neutron diffraction, and micro-Raman spectroscopy together with density functional calculations to investigate the isotope effects in benzene isotopologues C 6H 6 and C 6D 6 up to 46.0 GPa. Raman spectra of polymeric products recovered from comparable pressures showmore » the progression of polymerization exhibiting a pronounced kinetic isotope effect. Kinetically retarded reactions in C 6D 6 shed light on the mechanism of polymerization of benzene. Lastly, we find that C 6D 6-derived products recovered from P < 35 GPa actively react with moisture, forming polymers with higher sp 3 hydrogen contents. Significant isotopic shift (≥7 GPa) in persistence of Bragg reflections of C 6D 6 is observed.« less

  11. Allosteric Models for Cooperative Polymerization of Linear Polymers

    PubMed Central

    Miraldi, Emily R.; Thomas, Peter J.; Romberg, Laura

    2008-01-01

    In the cytoskeleton, unfavorable nucleation steps allow cells to regulate where, when, and how many polymers assemble. Nucleated polymerization is traditionally explained by a model in which multistranded polymers assemble cooperatively, whereas linear, single-stranded polymers do not. Recent data on the assembly of FtsZ, the bacterial homolog of tubulin, do not fit either category. FtsZ can polymerize into single-stranded protofilaments that are stable in the absence of lateral interactions, but that assemble cooperatively. We developed a model for cooperative polymerization that does not require polymers to be multistranded. Instead, a conformational change allows subunits in oligomers to associate with high affinity, whereas a lower-affinity conformation is favored in monomers. We derive equations for calculating polymer concentrations, subunit conformations, and the apparent affinity of subunits for polymer ends. Certain combinations of equilibrium constants produce the sharp critical concentrations characteristic of cooperative polymerization. In these cases, the low-affinity conformation predominates in monomers, whereas virtually all polymers are composed of high-affinity subunits. Our model predicts that the three routes to forming HH dimers all involve unstable intermediates, limiting nucleation. The mathematical framework developed here can represent allosteric assembly systems with a variety of biochemical interpretations, some of which can show cooperativity, and others of which cannot. PMID:18502809

  12. Prevalence of pesticides in postconsumer agrochemical polymeric packaging.

    PubMed

    Eras, J; Costa, J; Vilaró, F; Pelacho, A M; Canela-Garayoa, R; Martin-Closas, L

    2017-02-15

    Pesticide remains contained in agrochemical packaging waste are a source of uncontrolled risk for human health; they are also a quality feedstock for the plastic recycling industry. Many governments have recently started to establish laws and regulations to develop systems for recovering and recycling the polymeric packages used for pesticides. There is also a demand in having a procedure to control the suitability of the pesticide packages to be reused. We have developed a two-step operation process to assess the pesticide residues in agricultural containers made of a variety of polymeric matrices. The procedure is based on an extraction with a solvent mixture followed by UPLC-MS/MS determination. Solvents for neutral pesticides were selected considering the Hildebrand solubility (δ) of solvents and polymers together with those estimated for the pesticides. The proposed technique is effective in recovering imbibed pesticides in polymeric matrices. Also, a simplified extraction procedure has been tested to become a routine method for these wastes. We have found that in many cases a significant amount of pesticides remain into the polymeric matrix, even after a standardized cleaning; the impact of releasing these hazardous compounds into the environment is to be of further consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    PubMed Central

    Kadokawa, Jun-ichi

    2013-01-01

    This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether), and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran) (PTHF) in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactide)s, also appeared in the vine-twining polymerization. PMID:24970172

  14. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives.

    PubMed

    Lin, Xiaojie; Ishihara, Kazuhiko

    2014-01-01

    Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.

  15. Analysis of beer volatiles by polymeric imidazolium-solid phase microextraction coatings: Synthesis and characterization of polymeric imidazolium ionic liquids.

    PubMed

    González-Álvarez, Jaime; Blanco-Gomis, Domingo; Arias-Abrodo, Pilar; Pello-Palma, Jairo; Ríos-Lombardía, Nicolás; Busto, Eduardo; Gotor-Fernández, Vicente; Gutiérrez-Álvarez, María Dolores

    2013-08-30

    Two polymeric ionic liquids, 3-(but-3″-en-1″-yl)-1-[2'-hydroxycyclohexyl]-1H-imidazol-3-ium bis(trifluoromethanesulfonyl)imide (IL-1) and 1-(2'-hydroxycyclohexyl)-3-(4″-vinylbenzyl)-1H-imidazol-3-ium bis(trifluoromethylsulfonyl)imide (IL-2), have been synthesized by a free radical polymerization reaction and used as coatings for solid-phase microextraction (SPME). These new fibers exhibit good film stability, high thermal stability (270-290°C) and long lifetimes, and are used for the extraction of volatile compounds in lemon beer using gas chromatography separation and flame ionization detection. The scanning electron micrographs of the fiber surface revealed a polymeric ionic liquid (PIL) film, which is distributed homogeneously on the fiber. The developed PIL fiber showed good linearity between 50 and 2000μg/L with regression coefficients in the range of 0.996-0.999. The relative standard deviations (RSD) obtained in the peak area were found to vary between 1% and 12%, which assured that adequate repeatability was achieved. The spiked recoveries for three beer samples ranged from 78.4% to 123.6%. Experimental design has been employed in the optimization of extraction factors and robustness assessment. The polymeric IL-1 butenyl fiber showed a greater efficiency compared to the PDMS-DVB (65μm) and CAR-PDMS (75μm) for the extraction of all of the analytes studied. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  16. Polymerization-Incompetent Uromodulin in the Pregnant Stroke-Prone Spontaneously Hypertensive Rat

    PubMed Central

    Mary, Sheon; Small, Heather Yvonne; Siwy, Justyna; Mullen, William; Giri, Ashok

    2017-01-01

    The kidney is centrally involved in blood pressure regulation and undergoes extensive changes during pregnancy. Hypertension during pregnancy may result in an altered urinary peptidome that could be used to indicate new targets of therapeutic or diagnostic interest. The stroke-prone spontaneously hypertensive rat (SHRSP) is a model of maternal chronic hypertension. Capillary electrophoresis-mass spectrometry was conducted to interrogate the urinary peptidome in SHRSP and the control Wistar–Kyoto strain at three time points: prepregnancy and gestational days 12 and 18. The comparison within and between the Wistar–Kyoto and SHRSP peptidome at all time points detected 123 differentially expressed peptides (fold change >1.5; P<0.05). Sequencing of these peptides identified fragments of collagen α-chains, albumin, prothrombin, actin, serpin A3K, proepidermal growth factor, and uromodulin. Uromodulin peptides showed a pregnancy-specific alteration in SHRSP with a 7.8-fold (P<0.01) and 8.8-fold (P<0.05) increase at gestational days 12 and 18, respectively, relative to the Wistar–Kyoto. Further investigation revealed that these peptides belonged to the polymerization-inhibitory region of uromodulin. Two forms of uromodulin (polymerization competent and polymerization incompetent) were found in urine from both Wistar–Kyoto and SHRSP, where the polymerization-incompetent form was increased in a pregnancy-specific manner in SHRSP. Nifedipine-treated pregnant SHRSP showed only polymerization-competent uromodulin, indicating that calcium may be mechanistically involved in uromodulin polymerization. This study highlights, for the first time, a potential role of uromodulin and its polymerization in hypertensive pregnancy. PMID:28348009

  17. Reducing vector-borne disease by empowering farmers in integrated vector management.

    PubMed

    van den Berg, Henk; von Hildebrand, Alexander; Ragunathan, Vaithilingam; Das, Pradeep K

    2007-07-01

    Irrigated agriculture exposes rural people to health risks associated with vector-borne diseases and pesticides used in agriculture and for public health protection. Most developing countries lack collaboration between the agricultural and health sectors to jointly address these problems. We present an evaluation of a project that uses the "farmer field school" method to teach farmers how to manage vector-borne diseases and how to improve rice yields. Teaching farmers about these two concepts together is known as "integrated pest and vector management". An intersectoral project targeting rice irrigation systems in Sri Lanka. Project partners developed a new curriculum for the field school that included a component on vector-borne diseases. Rice farmers in intervention villages who graduated from the field school took vector-control actions as well as improving environmental sanitation and their personal protection measures against disease transmission. They also reduced their use of agricultural pesticides, especially insecticides. The intervention motivated and enabled rural people to take part in vector-management activities and to reduce several environmental health risks. There is scope for expanding the curriculum to include information on the harmful effects of pesticides on human health and to address other public health concerns. Benefits of this approach for community-based health programmes have not yet been optimally assessed. Also, the institutional basis of the integrated management approach needs to be broadened so that people from a wider range of organizations take part. A monitoring and evaluation system needs to be established to measure the performance of integrated management initiatives.

  18. Speciation and Health Risks of Atmospheric Nanoparticulates

    NASA Astrophysics Data System (ADS)

    Nguyen, Kennedy

    Exposure to air pollution causes several adverse health effects such as asthma, respiratory disease, cardiovascular disease, cancer, and premature death; and the San Joaquin Valley is one of the most heavily polluted regions in the US. The mountains that surround the valley allow air pollution, including particulate matter, to remain stagnant, prolonging the exposure of valley populations to it. The primary sources of particulate matter for this region are aluminosilicate dust from agricultural activities, and soot emissions from diesel trucks and vehicular traffic. A substantial fraction of emitted material is nanoparticulate matter (<100 nm), which contains trace iron and polycyclic aromatic hydrocarbons that can traverse into human organs via the lungs, initiate inflammation, and lead to disease. The traditional approach of reducing the total mass of emitted material is beginning to reach its limit of effectiveness for mitigating the negative health impacts of particulate matter. There is a need for chemical speciation of particulate matter that will allow the identification of the chemical and physical properties of particulates by source, the creation of well-controlled proxy particles with those properties for testing in cell culture studies, and correlation of particulate properties and sources with their negative health impacts. These results can help identify the sources of air pollution to prioritize for mitigation for the greatest health benefit. In addition, further chemical speciation can help monitor the results of such mitigation efforts. Here, natural particulate matter samples from Merced and Fresno, two cities in the San Joaquin Valley, were analyzed. Ultrafine particles present were 40 to 50 nm in diameter and mostly composed of aluminum, silicon, oxygen, and iron hydroxide. XAS data confirmed the presence of the aluminosilicate as smectite clay and the iron hydroxide as ferrihydrite. Furthermore, a chemical speciation study investigated

  19. Tensor calculus: unlearning vector calculus

    NASA Astrophysics Data System (ADS)

    Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita

    2018-02-01

    Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can serve as a bridge for vector calculus into tensor calculus.

  20. HIV-1 vaccine strategies utilizing viral vectors including antigen- displayed inoviral vectors.

    PubMed

    Hassapis, Kyriakos A; Kostrikis, Leondios G

    2013-12-01

    Antigen-presenting viral vectors have been extensively used as vehicles for the presentation of antigens to the immune system in numerous vaccine strategies. Particularly in HIV vaccine development efforts, two main viral vectors have been used as antigen carriers: (a) live attenuated vectors and (b) virus-like particles (VLPs); the former, although highly effective in animal studies, cannot be clinically tested in humans due to safety concerns and the latter have failed to induce broadly neutralizing anti-HIV antibodies. For more than two decades, Inoviruses (non-lytic bacterial phages) have also been utilized as antigen carriers in several vaccine studies. Inoviral vectors are important antigen-carriers in vaccine development due to their ability to present an antigen on their outer architecture in many copies and to their natural high immunogenicity. Numerous fundamental studies have been conducted, which have established the unique properties of antigen-displayed inoviral vectors in HIV vaccine efforts. The recent isolation of new, potent anti-HIV broadly neutralizing monoclonal antibodies provides a new momentum in this emerging technology.

  1. Test of understanding of vectors: A reliable multiple-choice vector concept test

    NASA Astrophysics Data System (ADS)

    Barniol, Pablo; Zavala, Genaro

    2014-06-01

    In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended problems in which a total of 2067 students participated. Using this taxonomy, we then designed a 20-item multiple-choice test [Test of understanding of vectors (TUV)] and administered it in English to 423 students who were completing the required sequence of introductory physics courses at a large private Mexican university. We evaluated the test's content validity, reliability, and discriminatory power. The results indicate that the TUV is a reliable assessment tool. We also conducted a detailed analysis of the students' understanding of the vector concepts evaluated in the test. The TUV is included in the Supplemental Material as a resource for other researchers studying vector learning, as well as instructors teaching the material.

  2. Surface-induced polymerization of actin.

    PubMed Central

    Renault, A; Lenne, P F; Zakri, C; Aradian, A; Vénien-Bryan, C; Amblard, F

    1999-01-01

    Living cells contain a very large amount of membrane surface area, which potentially influences the direction, the kinetics, and the localization of biochemical reactions. This paper quantitatively evaluates the possibility that a lipid monolayer can adsorb actin from a nonpolymerizing solution, induce its polymerization, and form a 2D network of individual actin filaments, in conditions that forbid bulk polymerization. G- and F-actin solutions were studied beneath saturated Langmuir monolayers containing phosphatidylcholine (PC, neutral) and stearylamine (SA, a positively charged surfactant) at PC:SA = 3:1 molar ratio. Ellipsometry, tensiometry, shear elastic measurements, electron microscopy, and dark-field light microscopy were used to characterize the adsorption kinetics and the interfacial polymerization of actin. In all cases studied, actin follows a monoexponential reaction-limited adsorption with similar time constants (approximately 10(3) s). At a longer time scale the shear elasticity of the monomeric actin adsorbate increases only in the presence of lipids, to a 2D shear elastic modulus of mu approximately 30 mN/m, indicating the formation of a structure coupled to the monolayer. Electron microscopy shows the formation of a 2D network of actin filaments at the PC:SA surface, and several arguments strongly suggest that this network is indeed causing the observed elasticity. Adsorption of F-actin to PC:SA leads more quickly to a slightly more rigid interface with a modulus of mu approximately 50 mN/m. PMID:10049338

  3. Polymerization Behavior of Hydrophilic-Rich Phase of Dentin Adhesive

    PubMed Central

    Abedin, F.; Parthasarathy, R.; Misra, A.; Spencer, P.

    2015-01-01

    The 2-fold objectives of this study were 1) to understand whether model hydrophobic- and hydrophilic-rich phase mimics of dentin adhesive polymerize similarly and 2) to determine which factor, the dimethacrylate component, bisphenol A glycerolate dimethacrylate (BisGMA) or photoinitiator concentration, has greater influence on the polymerization of the hydrophilic-rich phase mimic. Current dentin adhesives are sensitive to moisture, as evidenced by nanoleakage in the hybrid layer and phase separation into hydrophobic- and hydrophilic-rich phases. Phase separation leads to limited availability of the cross-linkable dimethacrylate monomer and hydrophobic photoinitiators within the hydrophilic-rich phase. Model hydrophobic-rich phase was prepared as a single-phase solution by adding maximum wt% deuterium oxide (D2O) to HEMA/BisGMA neat resins containing 45 wt% 2-hydroxyethyl methacrylate (HEMA). Mimics of the hydrophilic-rich phase were prepared similarly but using HEMA/BisGMA neat resins containing 95, 99, 99.5, and 100 wt% HEMA. The hydrophilic-rich mimics were prepared with standard or reduced photoinitiator content. The photoinitiator systems were camphorquinone (CQ)/ethyl 4-(dimethylamino)benzoate (EDMAB) with or without [3-(3, 4-dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-2-hydroxypropyl]trimethylammonium chloride (QTX). The polymerization kinetics was monitored using a Fourier transform infrared spectrophotometer with a time-resolved collection mode. The hydrophobic-rich phase exhibited a significantly higher polymerization rate compared with the hydrophilic-rich phase. Postpolymerization resulting in the secondary rate maxima was observed for the hydrophilic-rich mimic. The hydrophilic-rich mimics with standard photoinitiator concentration but varying cross-linker (BisGMA) content showed postpolymerization and a substantial degree of conversion. In contrast, the corresponding formulations with reduced photoinitiator concentrations exhibited lower polymerization and

  4. Self-folding micropatterned polymeric containers.

    PubMed

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  5. End-Functionalized Palladium SCS Pincer Polymers via Controlled Radical Polymerizations.

    PubMed

    Lye, Diane S; Cohen, Aaron E; Wong, Madeleine Z; Weck, Marcus

    2017-07-01

    A direct and facile route toward semitelechelic polymers, end-functionalized with palladated sulfur-carbon-sulfur pincer (Pd II -pincer) complexes is reported that avoids any post-polymerization step. Key to our methodology is the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization with functionalized chain-transfer agents. This strategy yields Pd end-group-functionalized materials with monomodal molar mass dispersities (Đ) of 1.18-1.44. The RAFT polymerization is investigated using a Pd II -pincer chain-transfer agent for three classes of monomers: styrene, tert-butyl acrylate, and N-isopropylacrylamide. The ensuing Pd II -pincer end-functionalized polymers are analyzed using 1 H NMR spectroscopy, gel-permeation chromatography, and elemental analysis. The RAFT polymerization methodology provides a direct pathway for the fabrication of Pd II -pincer functionalized polymers with complete end-group functionalization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Reciprocating sliding wear evaluation of a polymeric/coating tribological system

    NASA Astrophysics Data System (ADS)

    Braza, J. F.; Furst, R. E.

    1993-04-01

    Reciprocating screening tests aimed at simulating a control bearing in a contaminated environment to discern the optimum polymeric/coating combination are described. The polymeric/coating systems were compared with the wear of a baseline phenolic impregnated polytetrafluoroethylene (PTFE) polyester woven fabric composite against an uncoated stainless steel substrate. The polymeric composites under consideration include a polyamide-imide (PAI), a polybenzimidazole, and an injection-moldable PEEK. Results indicate that the system of either PEEK or PAI with an E-Ni-PTFE- or TiN-coated substrate produced the best tribological system. These two composites also exhibited a significant improvement over the baseline fabric when tested against the high-velocity oxygen-fuel thermal spray coating. To discern better the optimum polymeric composite/coating system, full-scale testing must be conducted to study system dynamics, vibrations, counterface hardness and roughness, temperature, external environment and application specific conditions.

  7. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  8. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  9. A model for shrinkage strain in photo polymerization of dental composites.

    PubMed

    Petrovic, Ljubomir M; Atanackovic, Teodor M

    2008-04-01

    We formulate a new model for the shrinkage strain developed during photo polymerization in dental composites. The model is based on the diffusion type fractional order equation, since it has been proved that polymerization reaction is diffusion controlled (Atai M, Watts DC. A new kinetic model for the photo polymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater 2006;22:785-91). Our model strongly confirms the observation by Atai and Watts (see reference details above) and their experimental results. The shrinkage strain is modeled by a nonlinear differential equation in (see reference details above) and that equation must be solved numerically. In our approach, we use the linear fractional order differential equation to describe the strain rate due to photo polymerization. This equation is solved exactly. As shrinkage is a consequence of the polymerization reaction and polymerization reaction is diffusion controlled, we postulate that shrinkage strain rate is described by a diffusion type equation. We find explicit form of solution to this equation and determine the strain in the resin monomers. Also by using equations of linear viscoelasticity, we determine stresses in the polymer due to the shrinkage. The time evolution of stresses implies that the maximal stresses are developed at the very beginning of the polymerization process. The stress in a dental composite that is light treated has the largest value short time after the treatment starts. The strain settles at the constant value in the time of about 100s (for the cases treated in Atai and Watts). From the model developed here, the shrinkage strain of dental composites and resin monomers is analytically determined. The maximal value of stresses is important, since this value must be smaller than the adhesive bond strength at cavo-restoration interface. The maximum stress determined here depends on the diffusivity coefficient. Since diffusivity coefficient increases as

  10. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    PubMed

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  11. Mapping Polymerization and Allostery of Hemoglobin S Using Point Mutations

    PubMed Central

    Weinkam, Patrick; Sali, Andrej

    2014-01-01

    Hemoglobin is a complex system that undergoes conformational changes in response to oxygen, allosteric effectors, mutations, and environmental changes. Here, we study allostery and polymerization of hemoglobin and its variants by application of two previously described methods: (i) AllosMod for simulating allostery dynamics given two allosterically related input structures and (ii) a machine-learning method for dynamics- and structure-based prediction of the mutation impact on allostery (Weinkam et al. J. Mol. Biol. 2013), now applicable to systems with multiple coupled binding sites such as hemoglobin. First, we predict the relative stabilities of substates and microstates of hemoglobin, which are determined primarily by entropy within our model. Next, we predict the impact of 866 annotated mutations on hemoglobin’s oxygen binding equilibrium. We then discuss a subset of 30 mutations that occur in the presence of the sickle cell mutation and whose effects on polymerization have been measured. Seven of these HbS mutations occur in three predicted druggable binding pockets that might be exploited to directly inhibit polymerization; one of these binding pockets is not apparent in the crystal structure but only in structures generated by AllosMod. For the 30 mutations, we predict that mutation-induced conformational changes within a single tetramer tend not to significantly impact polymerization; instead, these mutations more likely impact polymerization by directly perturbing a polymerization interface. Finally, our analysis of allostery allows us to hypothesize why hemoglobin evolved to have multiple subunits and a persistent low frequency sickle cell mutation. PMID:23957820

  12. Metallocene-Containing Homopolymers and Heterobimetallic Block Copolymers via Photoinduced RAFT Polymerization

    PubMed Central

    Yang, Peng; Pageni, Parasmani; Kabir, Mohammad Pabel; Zhu, Tianyu; Tang, Chuanbing

    2017-01-01

    We report the synthesis of cationic cobaltocenium and neutral ferrocene containing homopolymers mediated by photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization with a photocatalyst fac-[Ir(ppy)3]. The homopolymers were further used as macromolecular chain transfer agents to synthesize diblock copolymers via chain extension. Controlled/“living” feature of photoinduced RAFT polymerization was confirmed by kinetic studies even without prior deoxygenation. A light switch between ON and OFF provided a spatiotemporal control of polymerization. PMID:29276651

  13. An exactly solvable model of polymerization

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.

    2017-08-01

    This paper considers the evolution of a polydisperse polymerizing system comprising g1,g2 … - mers carrying ϕ1,ϕ2 … functional groups reacting with one another and binding the g-mers together. In addition, the g-mers are assumed to be added at random by one at a time with a known rate depending on their mass g and functionality ϕ . Assuming that the rate of binding of two g-mers is proportional to the product of the numbers of nonreacted functional groups the kinetic equation for the distribution of clusters (g-mers) over their mass and functionalities is formulated and then solved by applying the generating function method. In contrast to existing approaches this kinetic equation operates with the efficiencies proportional to the product of the numbers of active functional groups in the clusters rather than to the product of their masses. The evolution process is shown to reveal a phase transition: the emergence of a giant linked cluster (the gel) whose mass is comparable to the total mass of the whole polymerizing system. The time dependence of the moments of the distribution of linked components over their masses and functionalities is investigated. The polymerization process terminates by forming a residual spectrum of sol particles in addition to the gel.

  14. Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2009-01-01

    Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.

  15. Polymeric drugs: Advances in the development of pharmacologically active polymers

    PubMed Central

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  16. Self-folding polymeric containers for encapsulation and delivery of drugs

    PubMed Central

    Fernandes, Rohan; Gracias, David H.

    2012-01-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2 nm and fold polyhedra as small as 100 nm, with a surface patterning resolution of 15 nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. PMID:22425612

  17. Self-folding polymeric containers for encapsulation and delivery of drugs.

    PubMed

    Fernandes, Rohan; Gracias, David H

    2012-11-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2nm and fold polyhedra as small as 100nm, with a surface patterning resolution of 15nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Effects of Cucumber mosaic virus infection on vector and non-vector herbivores of squash.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-11-01

    Plant chemicals mediating interactions with insect herbivores seem a likely target for manipulation by insectvectored plant pathogens. Yet, little is currently known about the chemical ecology of insect-vectored diseases or their effects on the ecology of vector and nonvector insects. We recently reported that a widespread plant pathogen, Cucumber mosaic virus (CMV), greatly reduces the quality of host-plants (squash) for aphid vectors, but that aphids are nevertheless attracted to the odors of infected plants-which exhibit elevated emissions of a volatile blend otherwise similar to the odor of healthy plants. This finding suggests that exaggerating existing host-location cues can be a viable vector attraction strategy for pathogens that otherwise reduce host quality for vectors. Here we report additional data regarding the effects of CMV infection on plant interactions with a common nonvector herbivore, the squash bug, Anasa tristis, which is a pest in this system. We found that adult A. tristis females preferred to oviposit on healthy plants in the field, and that healthy plants supported higher populations of nymphs. Collectively, our recent findings suggest that CMV-induced changes in host plant chemistry influence the behavior of both vector and non-vector herbivores, with significant implications both for disease spread and for broader community-level interactions.

  19. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    PubMed

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Learning with LOGO: Logo and Vectors.

    ERIC Educational Resources Information Center

    Lough, Tom; Tipps, Steve

    1986-01-01

    This is the first of a two-part series on the general concept of vector space. Provides tool procedures to allow investigation of vector properties, vector addition and subtraction, and X and Y components. Lists several sources of additional vector ideas. (JM)

  1. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szebeni, Janos, E-mail: jszebeni2@gmail.com; Storm, Gert

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs.more » long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.« less

  2. Biocompatibility and safety of a hybrid core-shell nanoparticulate OP-1 delivery system intramuscularly administered in rats.

    PubMed

    Haidar, Ziyad S; Hamdy, Reggie C; Tabrizian, Maryam

    2010-04-01

    A hybrid, localized and release-controlled delivery system for bone growth factors consisting of a liposomal core incorporated into a shell of alternating layer-by-layer self-assembled natural polyelectrolytes has been formulated. Hydrophilic, monodisperse, spherical and stable cationic nanoparticles (< or =350 nm) with an extended shelf-life resulted. Cytocompatibility was previously assayed with MC3T3-E1.4 mouse preosteoblasts showing no adverse effects on cell viability. In this study, the in vivo biocompatibility of unloaded and loaded nanoparticles with osteogenic protein-1 or OP-1 was investigated. Young male Wistar rats were injected intramuscularly and monitored over a period of 10 weeks for signs of inflammation and/or adverse reactions. Blood samples (600 microL/collection) were withdrawn followed by hematological and biochemical analysis. Body weight changes over the treatment period were noted. Major organs were harvested, weighed and examined histologically for any pathological changes. Finally, the injection site was identified and examined immunohistochemically. Overall, all animals showed no obvious toxic health effects, immune responses and/or change in organ functions. This hybrid core-shell nanoparticulate delivery system localizes the effect of the released bioactive load within the site of injection in muscle with no significant tissue distress. Hence, a safe and promising carrier for therapeutic growth factors and possibly other biomolecules is presented. 2009 Elsevier Ltd. All rights reserved.

  3. Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters.

    PubMed

    Zhou, Xiao-Xia; Lai, Yu-Jian; Liu, Rui; Li, Sha-Sha; Xu, Jing-Wen; Liu, Jing-Fu

    2017-12-05

    Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag + , aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 μg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.

  4. Corrosion-Activated Chemotherapeutic Function of Nanoparticulate Platinum as a Cisplatin Resistance-Overcoming Prodrug with Limited Autophagy Induction.

    PubMed

    Cheng, Hsien-Jen; Wu, Te-Haw; Chien, Chih-Te; Tu, Hai-Wei; Cha, Ting-Shan; Lin, Shu-Yi

    2016-11-01

    Despite nanoparticulate platinum (nano-Pt) has been validated to be acting as a platinum-based prodrug for anticancer therapy, the key factor in controlling its cytotoxicity remains to be clarified. In this study, it is found that the corrosion susceptibility of nano-Pt can be triggered by inducing the oxidization of superficial Pt atoms, which can kill both cisplatin-sensitive/resistance cancer cells. Direct evidence in the oxidization of superficial Pt atoms is validated to observe the formation of platinum oxides by X-ray absorption spectroscopy. The cytotoxicity is originated from the dissolution of nano-Pt followed by the release of highly toxic Pt ions during the corrosion process. Additionally, the limiting autophagy induction by nano-Pt might prevent cancer cells from acquiring autophagy-related drug resistance. With such advantages, the possibility of further autophagy-related drug resistance could be substantially reduced or even eliminated in cancer cells treated with nano-Pt. Moreover, nano-Pt is demonstrated to kill cisplatin-resistant cancer cells not only by inducing apoptosis but also by inducing necrosis for pro-inflammatory/inflammatory responses. Thus, nano-Pt treatment might bring additional therapeutic benefits by regulating immunological responses in tumor microenvironment. These findings support the idea that utilizing nano-Pt for its cytotoxic effects might potentially benefit patients with cisplatin resistance in clinical chemotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Research regarding biodegradable properties of food polymeric products under microorganism activity

    NASA Astrophysics Data System (ADS)

    Opran, Constantin; Lazar, Veronica; Fierascu, Radu Claudiu; Ditu, Lia Mara

    2018-02-01

    Aim of this research is the structural analysis by comparison of the biodegradable properties of two polymeric products made by non-biodegradable polymeric material (polypropylene TIPPLEN H949 A) and biodegradable polymeric material (ECOVIO IS 1335), under microorganism activity in order to give the best solution for the manufacture of food packaging biodegradable products. It presents the results of experimental determinations on comparative analysis of tensile strength for the two types of polymers. The sample weight variations after fungal biodegradation activity revealed that, after 3 months, there are no significant changes in polymeric substratum for non-biodegradable polymeric. The microscopically analysis showed that the fungal filaments did not strongly adhered on the non-biodegradable polymeric material, instead, both filamentous fungi strains adhered and covered the surface of the biodegradable sample with germinated filamentous conidia. The spectral analysis of polymer composition revealed that non-biodegradable polymer polypropylene spectra are identical for control and for samples that were exposed to fungal activity, suggesting that this type of sample was not degraded by the fungi strains. Instead, for biodegradable polymer sample, it was observed significant structural changes across multiple absorption bands, suggesting enzyme activity manifested mainly by Aspergillus niger strain. Structural analysis of interdisciplinary research results, lead, to achieving optimal injection molded technology emphasizing technological parameters, in order to obtain food packaging biodegradable products.

  6. L-Lactide Ring-Opening Polymerization with Tris(acetylacetonate)Titanium(IV) for Renewable Material.

    PubMed

    Kim, Da Hee; Yoo, Ji Yun; Ko, Young Soo

    2016-05-01

    A new Ti-type of catalyst for L-lactide polymerization was synthesized by reaction of titanium(IV) isopropoxide (TTIP) with acetylacetone (AA). Moreover, PLA was prepared by the bulk ring-opening polymerization using synthesized Ti catalyst. Polymerization behaviors were examined depending on monomer/catalyst molar ratio, polymerization temperature and time. The structure of synthesized catalysts was verified with FT-IR and 1H NMR and the properties of poly(L-lactide) (PLLA) were examined by GPC, DSC and FT-IR. There existed about 30 minutes of induction time at the monomer/catalyst molar ratio of 300. The molecular weight (MW) increased as monomer/catalyst molar ratio increased. The MW increased almost linearly as polymerization progressed. Increasing polymerization temperature increased the molecular weight of PLLA as well as monomer/catalyst molar ratio. The melting point (T(m)) of polymers was in the range of 142 to 167 degrees C. Lower T(m) was expected to be resulted from relatively lower molecular weight.

  7. [What makes an insect a vector?].

    PubMed

    Kampen, Helge

    2009-01-01

    Blood-feeding insects transmit numerous viruses, bacteria, protozoans and helminths to vertebrates. The developmental cycles of the microorganisms in their vectors and the mechanisms of transmission are generally extremely complex and the result of a long-lasting coevolution of vector and vectored pathogen based on mutual adaptation. The conditions necessary for an insect to become a vector are multiple but require an innate vector competence as a genetic basis. Next to the vector competence plenty of entomological, ecological and pathogen-related factors are decisive, given the availability of infection sources. The various modes of pathogen transmission by vectors are connected to the developmental routes of the microorganisms in their vectors. In particular, pathogens transmitted by saliva encounter a lot of cellular and acellular barriers during their migration from the insect's midgut through the hemocele into the salivary fluid, including components of the insect's immune system. With regard to intracellular development, receptor-mediated invasion mechanisms are of relevance. As an environmental factor, the temperature has a paramount impact on the vectorial roles of hematophagous insects. Not only has it a considerable influence on the duration of a pathogen's development in its vector (extrinsic incubation period) but it can render putatively vector-incompetent insects to vectors ("leaky gut" phenomenon). Equally crucial are behavioural aspects of both the insect and the pathogen such as blood host preferences, seasonal appearance and circadian biting activity on the vector's side and diurnal/nocturnal periodicity on the pathogen's side which facilitate a contact in the first place.

  8. Evaluation of metal-polymeric fixed partial prosthesis using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, C.; Negrutiu, M. L.; Duma, V. F.; Marcauteanu, C.; Topala, F. I.; Rominu, M.; Bradu, A.; Podoleanu, A. Gh.

    2013-11-01

    Metal-Polymeric fixed partial prosthesis is the usual prosthetic treatment for many dental patients. However, during the mastication the polymeric component of the prosthesis is fractured and will be lost. This fracture is caused by the material defects or by the fracture lines trapped inside the esthetic components of the prosthesis. This will finally lead to the failure of the prosthetic treatment. Nowadays, there is no method of identification and forecast for the materials defects of the polymeric materials. The aim of this paper is to demonstrate the capability of Optical Coherence Tomography (OCT) as a non-invasive clinical method that can be used for the evaluation of metal-polymeric fixed partial prostheses. Twenty metal-polymeric fixed partial prostheses were used for this study. The esthetic component of the prostheses has been Adoro (Ivoclar). Optical investigations of the metal prostheses have revealed no material defects or fracture lines. All the prostheses were temporary cemented in the oral cavities of the patients for six month. The non-invasive method used for the investigations was OCT working in Time Domain mode at 1300 nm. The evaluations of the prostheses were performed before and after their cementation in the patient mouths. All the imagistic results were performed in 2D and than in 3D, after the reconstruction. The results obtained after the OCT evaluation allowed for the identification of 4 metal-polymeric fixed partial prostheses with material defects immediately after finishing the technological procedures. After 6 month in the oral environment other 3 fixed partial prostheses revealed fracture lines. In conclusion, OCT proved to be a valuable tool for the noninvasive evaluation of the metal-polymeric fixed partial prostheses.

  9. Surface functionalization of polyamide fiber via dopamine polymerization

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Hui; Guan, Jin-Ping; Tang, Ren-Cheng; Chen, Guo-Qiang

    2017-09-01

    The oxidative polymerization of dopamine for the functional surface modification of textile fibers has drawn great attention. In this work, the functionalization of polyamide fiber via dopamine polymerization was studied with the aim of the fabrication of hydrophilic and antistatic surface. The conditions of dopamine application were first discussed in the absence of specific oxidants in terms of the apparent color depth of polyamide fiber. Dopamine concentration, pH and time were found to exert great impact on color depth. The highest color depth was achieved at pH 8.5. In the process of modification, polydopamine was deposited onto the surface of polyamide fiber. The modified polyamide fiber displayed a yellowish brown color with excellent wash and light color fastness, and exhibited good hydrophilic, UV protection and antistatic effects. A disadvantage of the present approach was the slow rate of dopamine polymerization and functionalization.

  10. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert

    2017-03-01

    Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces.

  11. Quantum Chemical Calculations of Amine-Catalyzed Polymerization of Silanol

    NASA Astrophysics Data System (ADS)

    Gu, Hongyu; Xu, Wenbin; Zhang, Jinlin; Qi, Zhenyi; Zhang, Tao; Song, Lixin

    2018-03-01

    Because of the technical importance of organosilicon materials, insight into the related synthetic processes is significantly essential. In this paper, the amine-catalyzed polymerization of silanol has been investigated by the density functional theory (DFT) method. Our data have shown that amines can catalytically promote the hydrogen transfer process by substantially reducing the energy barrier. The activation barrier via hydrogen transfer with catalysis is 38.32 kJ/mol, much lower than that of catalysis-free process (120.88 kJ/mol). The lower energy barrier is in agreement with the much more intense polymerization of silanols with amine catalysts. Based on the above results, amines and other catalysts capable of assisting hydrogen transfer are expected to be used as catalysts for silanol polymerization.

  12. Lasing properties of polymerized chiral nematic Bragg onion microlasers.

    PubMed

    Humar, Matjaž; Araoka, Fumito; Takezoe, Hideo; Muševič, Igor

    2016-08-22

    Dye doped photocurable cholesteric liquid crystal was used to produce solid Bragg onion omnidirectional lasers. The lasers were produced by dispersing and polymerizing chiral nematic LC with parallel surface anchoring of LC molecules at the interface, extracted and transferred into another medium. Lasing characteristics were studied in carrier medium with different refractive index. The lasing in spherical cholesteric liquid crystal was attributed to two mechanisms, photonic bandedge lasing and lasing of whispering-gallery modes. The latter can be suppressed by using a higher index carrier fluid to prevent total internal reflection on the interface of the spheres. Pulse-to-pulse stability and threshold characteristics were also studied and compared to non-polymerized lasers. The polymerization process greatly increases the lasing stability.

  13. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    PubMed

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw < 4000 g/mol) was carried out in the same solvent system. Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  14. The unusual dynamics of parasite actin result from isodesmic polymerization

    PubMed Central

    Skillman, Kristen M.; Ma, Christopher I.; Fremont, Daved H.; Diraviyam, Karthikeyan; Cooper, John A.; Sept, David; Sibley, L. David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here, we re-examine the polymerization properties of actin in Toxoplasma gondii (TgACTI), unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. TgACTI polymerization kinetics lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly, and the size distribution of TgACTI filaments in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers. PMID:23921463

  15. Polymerization model for hydrogen peroxide initiated synthesis of polypyrrole nanoparticles.

    PubMed

    Leonavicius, Karolis; Ramanaviciene, Almira; Ramanavicius, Arunas

    2011-09-06

    A very simple, environmentally friendly, one-step oxidative polymerization route to fabricate polypyrrole (Ppy) nanoparticles of fixed size and morphology was developed and investigated. The herein proposed method is based on the application of sodium dodecyl sulfate and hydrogen peroxide, both easily degradable and cheap materials. The polymerization reaction is performed on 24 h time scale under standard conditions. We monitored a polaronic peak at 465 nm and estimated nanoparticle concentration during various stages of the reaction. Using this data we proposed a mechanism for Ppy nanoparticle formation in accordance with earlier emulsion polymerization mechanisms. Rates of various steps in the polymerization mechanism were accounted for and the resulting particles identified using atomic force microscopy. Application of Ppy nanoparticles prepared by the route presented here seems very promising for biomedical applications where biocompatibility is paramount. In addition, this kind of synthesis could be suitable for the development of solar cells, where very pure and low-cost conducting polymers are required. © 2011 American Chemical Society

  16. In vitro comparison of autoclave polymerization on the transverse strength of denture base resins.

    PubMed

    Durkan, Rukiye; Ozel, Mehmet Birol; Bağiş, Bora; Usanmaz, Ali

    2008-07-01

    The aim of this study was to determine the effect of autoclave polymerization on the transverse strength of denture base polymers. To this end, 30 rectangular test specimens were fabricated of two heat-polymerized denture base polymers. The test groups were: (I) control, i.e., conventional water bath to polymerize resins by heat at 100 degrees C for 30 minutes; (II) autoclave polymerization at 60 degrees C for 30 minutes followed by 130 degrees C for 10 minutes; and (III) autoclave polymerization at 60 degrees C for 30 minutes followed by 130 degrees C for 20 minutes. The specimens were tested with three-point bending test at a crosshead speed of 5 mm/min. It was revealed that the transverse strength of specimens increased with statistical significance when the autoclave was used for polymerization.

  17. Noncovalent assembly. A rational strategy for the realization of chain-growth supramolecular polymerization.

    PubMed

    Kang, Jiheong; Miyajima, Daigo; Mori, Tadashi; Inoue, Yoshihisa; Itoh, Yoshimitsu; Aida, Takuzo

    2015-02-06

    Over the past decade, major progress in supramolecular polymerization has had a substantial effect on the design of functional soft materials. However, despite recent advances, most studies are still based on a preconceived notion that supramolecular polymerization follows a step-growth mechanism, which precludes control over chain length, sequence, and stereochemical structure. Here we report the realization of chain-growth polymerization by designing metastable monomers with a shape-promoted intramolecular hydrogen-bonding network. The monomers are conformationally restricted from spontaneous polymerization at ambient temperatures but begin to polymerize with characteristics typical of a living mechanism upon mixing with tailored initiators. The chain growth occurs stereoselectively and therefore enables optical resolution of a racemic monomer. Copyright © 2015, American Association for the Advancement of Science.

  18. Anionic polymerization of p-(2,2'-diphenylethyl)styrene and applications to graft copolymers.

    PubMed

    Huang, Minglu; Han, Bingyong; Lu, Jianmin; Yang, Wantai; Fu, Zhifeng

    2017-01-01

    Well-controlled anionic polymerization of an initiator-functionalized monomer, p -(2,2'-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n -BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES- b -PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.

  19. Polymeric carbon nitride for solar hydrogen production.

    PubMed

    Li, Xiaobo; Masters, Anthony F; Maschmeyer, Thomas

    2017-07-04

    If solar hydrogen production from water is to be a realistic candidate for industrial hydrogen production, the development of photocatalysts, which avoid the use of expensive and/or toxic elements is highly desirable from a scalability, cost and environmental perspective. Metal-free polymeric carbon nitride is an attractive material that can absorb visible light and produce hydrogen from water. This article reviews recent developments in polymeric carbon nitride as used in photocatalysis and then develops the discussion focusing on the three primary processes of a photocatalytic reaction: light-harvesting, carrier generation/separation/transportation and surface reactions.

  20. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution

    NASA Technical Reports Server (NTRS)

    Kolb, V.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1994-01-01

    We have prepared a [32P]-labled oligonucleotide probe carrying a free primary amine at its 3'-terminus. This probe is used to initiate polymerization of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques. We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates that we studied. The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They should greatly simplify the screening of potentially prebiotic polymerization reactions.

  1. Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan.

    PubMed

    Chanda, Emmanuel; Govere, John M; Macdonald, Michael B; Lako, Richard L; Haque, Ubydul; Baba, Samson P; Mnzava, Abraham

    2013-10-25

    Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial.

  2. Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan

    PubMed Central

    2013-01-01

    Background Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. Case description A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. Discussion South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. Conclusion The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial. PMID:24156749

  3. Major vectors and vector-borne diseases in small ruminants in Ethiopia: A systematic review.

    PubMed

    Asmare, Kassahun; Abayneh, Takele; Sibhat, Berhanu; Shiferaw, Dessie; Szonyi, Barbara; Krontveit, Randi I; Skjerve, Eystein; Wieland, Barbara

    2017-06-01

    Vector-borne diseases are among major health constraints of small ruminant in Ethiopia. While various studies on single vector-borne diseases or presence of vectors have been conducted, no summarized evidence is available on the occurrence of these diseases and the related vectors. This systematic literature review provides a comprehensive summary on major vectors and vector-borne diseases in small ruminants in Ethiopia. Search for published and unpublished literature was conducted between 8th of January and 25th of June 2015. The search was both manual and electronic. The databases used in electronic search were PubMed, Web of Science, CAB Direct and AJOL. For most of the vector-borne diseases, the summary was limited to narrative synthesis due to lack of sufficient data. Meta-analysis was computed for trypanosomosis and dermatophilosis while meta-regression and sensitivity analysis was done only for trypanososmosis due to lack of sufficient reports on dermatophilosis. Owing emphasis to their vector role, ticks and flies were summarized narratively at genera/species level. In line with inclusion criteria, out of 106 initially identified research reports 43 peer-reviewed articles passed the quality assessment. Data on 7 vector-borne diseases were extracted at species and region level from each source. Accordingly, the pooled prevalence estimate of trypanosomosis was 3.7% with 95% confidence interval (CI) 2.8, 4.9), while that of dermatophilosis was 3.1% (95% CI: 1.6, 6.0). The in-between study variance noted for trypanosomosis was statistically significant (p<0.05). Among the three covariates considered for meta-regression, only one (species) fitted the final model significantly (p<0.05) and explained 65.44% of the between studies variance (R 2 ). The prevalence in sheep (5.5%) increased nearly by 34% compared to goats (2.9%). The parasitic presence in blood was documented for babesiosis (3.7% in goats); and anaplasmosis (3.9% in sheep). Serological evidence was

  4. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  5. Stoichiometry of Nck-dependent actin polymerization in living cells

    PubMed Central

    Ditlev, Jonathon A.; Michalski, Paul J.; Huber, Greg; Rivera, Gonzalo M.; Mohler, William A.

    2012-01-01

    Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott–Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation. PMID:22613834

  6. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    PubMed

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vector and axial-vector decomposition of Einstein's gravitational action

    NASA Astrophysics Data System (ADS)

    Soh, Kwang S.

    1991-08-01

    Vector and axial-vector gravitational fields are introduced to express the Einstein action in the manner of electromagnetism. Their conformal scaling properties are examined, and the resemblance between the general coordinate and electromagnetic gauge transformation is elucidated. The chiral formulation of the gravitational action is constructed. I am deeply grateful to Professor S. Hawking, and Professor G. Lloyd for warm hospitality at DAMTP, and Darwin College, University of Cambridge, respectively. I also appreciate much help received from Dr. Q.-H. Park.

  8. Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.

    1993-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.

  9. Does Topology Drive Fiber Polymerization?

    PubMed Central

    2015-01-01

    We have developed new procedures to examine the early steps in fibrin polymerization. First, we isolated fibrinogen monomers from plasma fibrinogen by gel filtration. Polymerization of fibrinogen monomers differed from that of plasma fibrinogen. The formation of protofibrils was slower and the transformation of protofibrils to fibers faster for the fibrinogen monomers. Second, we used formaldehyde to terminate the polymerization reactions. The formaldehyde-fixed products obtained at each time point were examined by dynamic light scattering and transmission electron microscopy (TEM). The data showed the formaldehyde-fixed products were stable and representative of the reaction intermediates. TEM images showed monomers, short oligomers, protofibrils, and thin fibers. The amount and length of these species varied with time. Short oligomers were less than 5% of the molecules at all times. Third, we developed models that recapitulate the TEM images. Fibrin monomer models were assembled into protofibrils, and protofibrils were assembled into two-strand fibers using Chimera software. Monomers were based on fibrinogen crystal structures, and the end-to-end interactions between monomers were based on D-dimer crystal structures. Protofibrils assembled from S-shaped monomers through asymmetric D:D interactions were ordered helical structures. Fibers were modeled by duplicating a protofibril and rotating the duplicate 120° around its long axis. No specific interactions were presumed. The two protofibrils simply twisted around one another to form a fiber. This model suggests that the conformation of the protofibril per se promotes the assembly into fibers. These findings introduce a novel mechanism for fibrin assembly that may be relevant to other biopolymers. PMID:25419972

  10. Morphology of poly-p-xylylene crystallized during polymerization.

    NASA Technical Reports Server (NTRS)

    Kubo, S.; Wunderlich, B.

    1971-01-01

    The morphology of as-polymerized poly-p-xylylene grown between -17 and 30 C is found to consist of lame llar alpha crystals oriented with the (010) plane parallel to the support surface. The crystallinity decreases with decreasing polymerization temperature. Spherulitic and nonspherulitic portions of the polymer film consist of folded chain lamellas with the chain axis parallel to the support surface. The results were obtained by small- and wide-angle X-ray measurements, electron and optical microscopy, and differential thermal analysis.

  11. In situ electron-beam polymerization stabilized quantum dot micelles.

    PubMed

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  12. Design and testing of tubular polymeric capsules for self-healing of concrete

    NASA Astrophysics Data System (ADS)

    Araújo, M.; Van Tittelboom, K.; Feiteira, J.; Gruyaert, E.; Chatrabhuti, S.; Raquez, J.-M.; Šavija, B.; Alderete, N.; Schlangen, E.; De Belie, N.

    2017-10-01

    Polymeric healing agents have proven their efficiency to heal cracks in concrete in an autonomous way. However, the bottleneck for valorisation of self-healing concrete with polymeric healing agents is their encapsulation. In the present work, the suitability of polymeric materials such as poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(lactic acid) (PLA) as carriers for healing agents in self-healing concrete has been evaluated. The durability of the polymeric capsules in different environments (demineralized water, salt water and simulated concrete pore solution) and their compatibility with various healing agents have been assessed. Next, a numerical model was used to simulate capsule rupture when intersected by a crack in concrete and validated experimentally. Finally, two real-scale self-healing concrete beams were made, containing the selected polymeric capsules (with the best properties regarding resistance to concrete mixing and breakage upon crack formation) or glass capsules and a reference beam without capsules. The self-healing efficiency was determined after crack creation by 3-point-bending tests.

  13. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    PubMed

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives. 2013 Published by Elsevier Inc.

  14. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  15. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    ERIC Educational Resources Information Center

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  16. Vectors a Fortran 90 module for 3-dimensional vector and dyadic arithmetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, B.C.

    1998-02-01

    A major advance contained in the new Fortran 90 language standard is the ability to define new data types and the operators associated with them. Writing computer code to implement computations with real and complex three-dimensional vectors and dyadics is greatly simplified if the equations can be implemented directly, without the need to code the vector arithmetic explicitly. The Fortran 90 module described here defines new data types for real and complex 3-dimensional vectors and dyadics, along with the common operations needed to work with these objects. Routines to allow convenient initialization and output of the new types are alsomore » included. In keeping with the philosophy of data abstraction, the details of the implementation of the data types are maintained private, and the functions and operators are made generic to simplify the combining of real, complex, single- and double-precision vectors and dyadics.« less

  17. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    PubMed

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  18. Pressure-Induced Polymerization of LiN(CN) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, Derek W.; Gou, Huiyang; Purdy, Andrew P.

    The high-pressure behavior of lithium dicyanamide (LiN(CN) 2) was studied with in situ Raman and infrared (IR) spectroscopies, and synchrotron angle-dispersive powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) to 22 GPa. The fundamental vibrational modes associated with molecular units were assigned using a combination of experimental data and density functional perturbation theory. Some low-frequency modes were observed for the first time. On the basis of spectroscopic and diffraction data, we suggest a polymorphic phase transformation at ~8 GPa, wherein dicyanamide ions remain as discrete molecular species. Above ca. 18 GPa, dicyanamide units polymerize, forming a largely disorderedmore » network, and the extent of polymerization may be increased by annealing at elevated temperature. The polymerized product consists of tricyanomelaminate-like groups containing sp 2-hybidized carbon–nitrogen bonds and exhibits a visible absorption edge near 540 nm. The product is recoverable to ambient conditions but is not stable in air/moisture.« less

  19. Various aspects of ultrasound assisted emulsion polymerization process.

    PubMed

    Korkut, Ibrahim; Bayramoglu, Mahmut

    2014-07-01

    In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Modular in situ-Functionalization Strategy: Multicomponent Polymerization via Palladium/Norbornene Cooperative Catalysis.

    PubMed

    Yoon, Ki-Young; Dong, Guangbin

    2018-05-23

    Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies.

    PubMed

    Ohlfest, John R; Freese, Andrew B; Largaespada, David A

    2005-12-01

    Gene therapy has the potential to improve the clinical outcome of many cancers by transferring therapeutic genes into tumor cells or normal host tissue. Gene transfer into tumor cells or tumor-associated stroma is being employed to induce tumor cell death, stimulate anti-tumor immune response, inhibit angiogenesis, and control tumor cell growth. Viral vectors have been used to achieve this proof of principle in animal models and, in select cases, in human clinical trials. Nevertheless, there has been considerable interest in developing nonviral vectors for cancer gene therapy. Nonviral vectors are simpler, more amenable to large-scale manufacture, and potentially safer for clinical use. Nonviral vectors were once limited by low gene transfer efficiency and transient or steadily declining gene expression. However, recent improvements in plasmid-based vectors and delivery methods are showing promise in circumventing these obstacles. This article reviews the current status of nonviral cancer gene therapy, with an emphasis on combination strategies, long-term gene transfer using transposons and bacteriophage integrases, and future directions.

  2. Effect of hemoglobin polymerization on oxygen transport in hemoglobin solutions.

    PubMed

    Budhiraja, Vikas; Hellums, J David

    2002-09-01

    The effect of hemoglobin (Hb) polymerization on facilitated transport of oxygen in a bovine hemoglobin-based oxygen carrier was studied using a diffusion cell. In high oxygen tension gradient experiments (HOTG) at 37 degrees C the diffusion of dissolved oxygen in polymerized Hb samples was similar to that in unpolymerized Hb solutions during oxygen uptake. However, in the oxygen release experiments, the transport by diffusion of dissolved oxygen was augmented by diffusion of oxyhemoglobin over a range of oxygen saturations. The augmentation was up to 30% in the case of polymerized Hb and up to 100% in the case of unpolymerized Hb solution. In experiments performed at constant, low oxygen tension gradients in the range of physiological significance, the augmentation effect was less than that in the HOTG experiments. Oxygen transport in polymerized Hb samples was approximately the same as that in unpolymerized samples over a wide range of oxygen tensions. However, at oxygen tensions lower than 30 mm Hg, there were more significant augmentation effects in unpolymerized bovine Hb samples than in polymerized Hb. The results presented here are the first accurate, quantitative measurements of effective diffusion coefficients for oxygen transport in hemoglobin-based oxygen carriers of the type being evaluated to replace red cells in transfusions. In all cases the oxygen carrier was found to have higher effective oxygen diffusion coefficients than blood.

  3. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor); Rembaum, Alan (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  4. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    PubMed

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  5. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  6. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs--A Review.

    PubMed

    Reddy, B Pavan Kumar; Yadav, Hemant K S; Nagesha, Dattatri K; Raizaday, Abhay; Karim, Abdul

    2015-06-01

    Polymeric micelles are used as 'smart drug carriers' for targeting certain areas of the body by making them stimuli-sensitive or by attachment of a specific ligand molecule onto their surface. The main aim of using polymeric micelles is to deliver the poorly water soluble drugs. Now-a-days they are used especially in the areas of cancer therapy also. In this article we have reviewed several aspects of polymeric micelles concerning their mechanism of formation, chemical nature, preparation and characterization techniques, and their applications in the areas of drug delivery.

  7. Rotor vibration reduction with polymeric sectors

    NASA Astrophysics Data System (ADS)

    Dutt, J. K.; Toi, T.

    2003-05-01

    This work has been undertaken principally with an idea to improving the dynamic performance of rotor-shaft systems, which often suffer from two major problems (a) resonance and (b) loss of stability, resulting in excessive vibration of such systems. Polymeric material in the form of sectors has been considered in this work as bearing supports. Polymeric material has been considered in this work as both stiffness and loss factor of such materials varies with the frequency of excitation. Stiffness and loss factor have been found out for the proposed support system comprising of polymeric sectors. Depending upon the frequency of excitation the system matrix, in this case, changes and dynamic performance of the rotor-shaft system also changes accordingly. Here in this work avoidance of resonance and application of optimum damping in the support have been investigated by finding out the optimum dimension, i.e., the optimum thickness and optimum length of the sectors. It has been theoretically found that use of such sectors reduces the rotor unbalanced response, increases the stability limit speed for simple rotor-shaft systems and thus improves the dynamic characteristics. Parameters of the system have been presented in terms of non-dimensional quantities. Many examples have been presented in support of the conclusion. The life of such supports, particularly in the presence of chemicals and other reagents has not been investigated.

  8. Project Physics Programmed Instruction, Vectors 1.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    This programmed instruction booklet is an interim version of instructional materials being developed by Harvard Project Physics. It is the first in a series of three booklets on vectors and covers the definitions of vectors and scalars, drawing vector quantities to scale, and negative vectors. For others in this series, see SE 015 550 and SE 015…

  9. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.

    PubMed

    Sun, Baoshan; de Sá, Marta; Leandro, Conceição; Caldeira, Ilda; Duarte, Filomena L; Spranger, Isabel

    2013-01-30

    Recent studies have indicated the presence of significant amount of highly polymerized and soluble proanthocyanidins in red wine and such compounds interacted readily with proteins, suggesting that they might be particularly astringent. Thus, the objective of this work was to verify the astringency of polymeric proanthocyanidins and their contribution to red wine astringency. The precipitation reactions of the purified oligomeric procyanidins (degree of polymerization ranging from 2 to 12-15) and polymeric procyanidins (degree of polymerization ranging from 12-15 to 32-34) with human salivary proteins were studied; salivary proteins composition changes before and after the reaction was verified by SDS-PAGE and procyanidins composition changes by spectrometric, direct HPLC and thiolysis-HPLC methods. The astringency intensity of these two procyanidin fractions was evaluated by a sensory analysis panel. For verifying the correlation between polymeric proanthocyanidins and young red wine astringency, the levels of total oligomeric and total polymeric proanthocyanidins and other phenolic composition in various young red wines were quantified and the astringency intensities of these wines were evaluated by a sensory panel. The results showed that polymeric proanthocyanidins had much higher reactivity toward human salivary proteins and higher astringency intensity than the oligomeric ones. Furthermore, young red wine astringency intensities were highly correlated to levels of polymeric proanthocyanidins, particularly at low concentration range (correlation coefficient r = 0.9840) but not significant correlated to total polyphenols (r = 0.2343) or other individual phenolic compounds (generally r < 0.3). These results indicate the important contribution of polymeric proanthocyanidins to red wine astringency and the levels of polymeric polyphenols in red wines may be used as an indicator for its astringency.

  10. In Situ Forming Polymeric Drug Delivery Systems

    PubMed Central

    Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J. A.

    2009-01-01

    In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. PMID:20490289

  11. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  12. Performance of selected polymeric materials on LDEF

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.

  13. Insecticide resistance in disease vectors from Mayotte: an opportunity for integrated vector management

    PubMed Central

    2014-01-01

    Background Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Methods Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Results Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. Conclusions The low resistance observed in Mayotte’s main disease vectors is particularly interesting, because it leaves a

  14. Insecticide resistance in disease vectors from Mayotte: an opportunity for integrated vector management.

    PubMed

    Pocquet, Nicolas; Darriet, Frédéric; Zumbo, Betty; Milesi, Pascal; Thiria, Julien; Bernard, Vincent; Toty, Céline; Labbé, Pierrick; Chandre, Fabrice

    2014-07-01

    Mayotte, a small island in the Indian Ocean, has been affected for many years by vector-borne diseases. Malaria, Bancroftian filariasis, dengue, chikungunya and Rift Valley fever have circulated or still circulate on the island. They are all transmitted by Culicidae mosquitoes. To limit the impact of these diseases on human health, vector control has been implemented for more than 60 years on Mayotte. In this study, we assessed the resistance levels of four major vector species (Anopheles gambiae, Culex pipiens quinquefasciatus, Aedes aegypti and Aedes albopictus) to two types of insecticides: i) the locally currently-used insecticides (organophosphates, pyrethroids) and ii) alternative molecules that are promising for vector control and come from different insecticide families (bacterial toxins or insect growth regulators). When some resistance was found to one of these insecticides, we characterized the mechanisms involved. Larval and adult bioassays were used to evaluate the level of resistance. When resistance was found, we tested for the presence of metabolic resistance through detoxifying enzyme activity assays, or for target-site mutations through molecular identification of known resistance alleles. Resistance to currently-used insecticides varied greatly between the four vector species. While no resistance to any insecticides was found in the two Aedes species, bioassays confirmed multiple resistance in Cx. p. quinquefasciatus (temephos: ~ 20 fold and deltamethrin: only 10% mortality after 24 hours). In An. gambiae, resistance was scarce: only a moderate resistance to temephos was found (~5 fold). This resistance appears to be due only to carboxyl-esterase overexpression and not to target modification. Finally, and comfortingly, none of the four species showed resistance to any of the new insecticides. The low resistance observed in Mayotte's main disease vectors is particularly interesting, because it leaves a range of tools useable by vector control

  15. Convective instabilities in traveling fronts of addition polymerization

    NASA Technical Reports Server (NTRS)

    Pojman, John A.; Jones, Chris E.; Khan, Akhtar M.

    1993-01-01

    An autocatalytic reaction in an unstirred vessel can support a constant velocity wavefront resulting from the coupling of diffusion to the chemical reaction. A flare front is a common example in which heat is the autocatalytic species that diffuses into unreacted regions stimulating a reaction that produces more heat. Traveling fronts were studied in synthetic polymerization reactions under high pressure by workers in the former USSR. More recently, propagating fronts of methacrylic acid polymerization were studied under ambient conditions, both with video techniques and by NMR.

  16. Novel polymeric materials from triglycerides

    USDA-ARS?s Scientific Manuscript database

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  17. Rate determination from vector observations

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.

    1993-01-01

    Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.

  18. Technique for the polymerization of monomers for PPQ/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D.

    1973-01-01

    Impregnation of fiber prior to appreciable polymerization completely eliminates impregnation problems encountered with use of high viscosity high molecular weight polyphenylquinoxalines (PPQ) solutions. Major part of polymerization of reactant mixture is conducted on fiber during solvent removal and final curing stages.

  19. Will integrated surveillance systems for vectors and vector-borne diseases be the future of controlling vector-borne diseases? A practical example from China.

    PubMed

    Wu, Y; Ling, F; Hou, J; Guo, S; Wang, J; Gong, Z

    2016-07-01

    Vector-borne diseases are one of the world's major public health threats and annually responsible for 30-50% of deaths reported to the national notifiable disease system in China. To control vector-borne diseases, a unified, effective and economic surveillance system is urgently needed; all of the current surveillance systems in China waste resources and/or information. Here, we review some current surveillance systems and present a concept for an integrated surveillance system combining existing vector and vector-borne disease monitoring systems. The integrated surveillance system has been tested in pilot programmes in China and led to a 21·6% cost saving in rodent-borne disease surveillance. We share some experiences gained from these programmes.

  20. Autocatalytic polymerization generates persistent random walk of crawling cells.

    PubMed

    Sambeth, R; Baumgaertner, A

    2001-05-28

    The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.

  1. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  2. Glucose Oxidase-Mediated Polymerization as a Platform for Dual-Mode Signal Amplification and Biodetection

    PubMed Central

    Berron, Brad J; Johnson, Leah M; Ba, Xiao; McCall, Joshua D; Alvey, Nicholas J; Anseth, Kristi S; Bowman, Christopher N

    2011-01-01

    We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)–avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 µg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta. Biotechnol. Bioeng. 2011; 108:1521–1528. © 2011 Wiley Periodicals, Inc. PMID:21337335

  3. Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer

    NASA Astrophysics Data System (ADS)

    Jallapuram, Raghavendra; Naydenova, Izabela; Byrne, Hugh J.; Martin, Suzanne; Howard, Robert; Toal, Vincent

    2008-01-01

    Investigations of polymerization rates in an acrylamide-based photopolymer are presented. The polymerization rate for acrylamide and methylenebisacrylamide was determined by monitoring the changes in the characteristic vibrational peaks at 1284 and 1607 cm-1 corresponding to the bending mode of the CH bond and CC double bonds of acrylamide and in the characteristic peak at 1629 cm-1 corresponding to the carbon-carbon double bond of methylenebisacrylamide using Raman spectroscopy. To study the dependence of the polymerization rate on intensity and to find the dependence parameter, the polymerization rate constant is measured at different intensities. A comparison with a commercially available photopolymer shows that the polymerization rate in this photopolymer is much faster.

  4. Quantitative property-structural relation modeling on polymeric dielectric materials

    NASA Astrophysics Data System (ADS)

    Wu, Ke

    Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix

  5. Tensor Calculus: Unlearning Vector Calculus

    ERIC Educational Resources Information Center

    Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita

    2018-01-01

    Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…

  6. Comparative Effect of Different Polymerization Techniques on the Flexural and Surface Properties of Acrylic Denture Bases.

    PubMed

    Gad, Mohammed M; Fouda, Shaimaa M; ArRejaie, Aws S; Al-Thobity, Ahmad M

    2017-05-22

    Polymerization techniques have been modified to improve physical and mechanical properties of polymethylmethacrylate (PMMA) denture base, as have the laboratory procedures that facilitate denture construction techniques. The purpose of the present study was to investigate the effect of autoclave polymerization on flexural strength, elastic modulus, surface roughness, and the hardness of PMMA denture base resins. Major Base and Vertex Implacryl heat-polymerized acrylic resins were used to fabricate 180 specimens. According to the polymerization technique, tested groups were divided into: group I (water-bath polymerization), group II (short autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 10 minutes), and group III (long autoclave polymerization cycle, 60°C for 30 minutes, then 130°C for 20 minutes). Each group was divided into two subgroups based on the materials used. Flexural strength and elastic modulus were determined by a three-point bending test. Surface roughness and hardness were evaluated with a profilometer and Vickers hardness (VH) test, respectively. One-way ANOVA and the Tukey-Kramer multiple-comparison test were used for results analysis, which were statistically significant at p ≤ 0.05. Autoclave polymerization showed a significant increase in flexural strength and hardness of the two resins (p < 0.05). The elastic modulus showed a significant increase in the major base resin, while a significant decrease was seen for Vertex Implacryl in all groups (p < 0.05); however, there was no significant difference in surface roughness between autoclave polymerization and water-bath polymerization (p > 0.05). Autoclave polymerization significantly increased the flexural properties and hardness of PMMA denture bases, while the surface roughness was within acceptable clinical limits. For a long autoclave polymerization cycle, it could be used as an alternative to water-bath polymerization. © 2017 by the American College of Prosthodontists.

  7. Project Physics Programmed Instruction, Vectors 2.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    This is the second of a series of three programmed instruction booklets on vectors developed by Harvard Project Physics. It covers adding two or more vectors together, and finding a third vector that could be added to two given vectors to make a sum of zero. For other booklets in this series, see SE 015 549 and SE 015 551. (DT)

  8. Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of 4-Vinylbenzaldehyde

    PubMed Central

    Sun, Guorong; Cheng, Chong; Wooley, Karen L.

    2008-01-01

    The direct reversible addition fragmentation chain transfer (RAFT) polymerization of 4-vinylbenzaldehyde (VBA) was established as a new synthetic method for the preparation of well-defined poly(vinylbenzaldehyde) (PVBA), a polymer having reactive aldehyde side chain substiuents. RAFT polymerization of VBA was investigated using S-1-dodecyl-S’-(α,α’-dimethyl-α”-acetic acid)trithiocarbonate (DDMAT) as chain transfer agent (CTA) and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator in 1,4-dioxane or 2-butanone at 70-75 °C for 7.5-22.5 h. With 45-76% of monomer conversion, the resulting PVBA had well controlled number-average molecular weight (Mn) and low polydispersity (PDI < 1.17). The living characteristic of the RAFT polymerization process was confirmed by the linearity between the Mn values of PVBA and monomer conversions. Well-defined PVBA was further used as a macromolecular chain transfer agent (macro-CTA) in RAFT polymerization of styrene (St), and a block copolymer PVBA-b-PSt with relatively low polydispersity (PDI = 1.20) was successfully synthesized. PMID:19066633

  9. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation.

    PubMed

    Sosnik, Alejandro; Menaker Raskin, Maya

    2015-11-01

    Polymeric micelles are nanostructures formed by the self-aggregation of copolymeric amphiphiles above the critical micellar concentration. Due to the flexibility to tailor different molecular features, they have been exploited to encapsulate motley poorly-water soluble therapeutic agents. Moreover, the possibility to combine different amphiphiles in one single aggregate and produce mixed micelles that capitalize on the features of the different components substantially expands the therapeutic potential of these nanocarriers. Despite their proven versatility, polymeric micelles remain elusive to the market and only a few products are currently undergoing advanced clinical trials or reached clinical application, all of them for the therapy of different types of cancer and administration by the intravenous route. At the same time, they emerge as a nanotechnology platform with great potential for non-parenteral mucosal administration. However, for this, the interaction of polymeric micelles with mucus needs to be strengthened. The present review describes the different attempts to develop mucoadhesive polymeric micelles and discusses the challenges faced in the near future for a successful bench-to-bedside translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. An adaptive vector quantization scheme

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.

    1990-01-01

    Vector quantization is known to be an effective compression scheme to achieve a low bit rate so as to minimize communication channel bandwidth and also to reduce digital memory storage while maintaining the necessary fidelity of the data. However, the large number of computations required in vector quantizers has been a handicap in using vector quantization for low-rate source coding. An adaptive vector quantization algorithm is introduced that is inherently suitable for simple hardware implementation because it has a simple architecture. It allows fast encoding and decoding because it requires only addition and subtraction operations.

  11. Light-harvesting organic photoinitiators of polymerization.

    PubMed

    Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre

    2013-02-12

    Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. [The influence of polymerization time on physicochemical properties of the acrylic resin Vertex RS].

    PubMed

    Fraczak, Bogumiła; Sobolewska, Ewa; Ey-Chmielewska, Halina; Skowronek, Maria; Błazewicz, Stanisław

    2009-01-01

    A good denture can only be produced through proper actions during the clinical and laboratory stages of the production process. The aim of this study was to determine if a change in polymerization time affects the physicochemical properties of polymethacrylate material used for dentures. We examined the acrylic resin Vertex R.S. polymerized for 15, 25, 40, or 60 minutes. Palapress Vario was taken as reference material. Static bending, microhardness, surface wettability, and susceptibility to abrasion were determined. The microhardness test showed that most of the samples had similar Vickers hardness (VS) values, except for the sample polymerized for 25 min. which demonstrated a significantly higher value. Grindability was affected by a change in polymerization time. Mass loss was greatest for samples polymerized for 15, 25, and 60 min. and smallest for Vertex 40 and Palapress Vario. We also observed differences in the wetting angle. Vertex 40 and 60 had a relatively low wetting angle signifying that longer polymerization time results in lower hydrophobicity of the material. The present study has demonstrated that polymerization time has a significant effect on the hardness and some mechanical properties of the acrylic resin.

  13. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.

    PubMed

    Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A

    2016-02-10

    The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.

  14. Segmentation of discrete vector fields.

    PubMed

    Li, Hongyu; Chen, Wenbin; Shen, I-Fan

    2006-01-01

    In this paper, we propose an approach for 2D discrete vector field segmentation based on the Green function and normalized cut. The method is inspired by discrete Hodge Decomposition such that a discrete vector field can be broken down into three simpler components, namely, curl-free, divergence-free, and harmonic components. We show that the Green Function Method (GFM) can be used to approximate the curl-free and the divergence-free components to achieve our goal of the vector field segmentation. The final segmentation curves that represent the boundaries of the influence region of singularities are obtained from the optimal vector field segmentations. These curves are composed of piecewise smooth contours or streamlines. Our method is applicable to both linear and nonlinear discrete vector fields. Experiments show that the segmentations obtained using our approach essentially agree with human perceptual judgement.

  15. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  16. Polymeric Micelles and Alternative Nanonized Delivery Vehicles for Poorly Soluble Drugs

    PubMed Central

    Lu, Ying; Park, Kinam

    2013-01-01

    Poorly soluble drugs often encounter low bioavailability and erratic absorption patterns in the clinical setting. Due to the rising number of compounds having solubility issues, finding ways to enhance the solubility of drugs is one of the major challenges in the pharmaceutical industry today. Polymeric micelles, which form upon self-assembly of amphiphilic macromolecules, can act as solubilizing agents for delivery of poorly soluble drugs. This manuscript examines the fundamentals of polymeric micelles through reviews of representative literature and demonstrates possible applications through recent examples of clinical trial developments. In particular, the potential of polymeric micelles for delivery of poorly water-soluble drugs, especially in the areas of oral delivery and in cancer therapy, is discussed. Key considerations in utilizing polymeric micelles’ advantages and overcoming potential disadvantages have been highlighted. Lastly, other possible strategies related to particle size reduction for enhancing solubilization of poorly water-soluble drugs are introduced. PMID:22944304

  17. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermes, Robert E.

    2017-08-15

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  18. Glucose-sensitive QCM-sensors via direct surface RAFT polymerization.

    PubMed

    Sugnaux, Caroline; Klok, H-A

    2014-08-01

    Thin, phenylboronic acid-containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose-sensitive polymer brushes obtained via surface RAFT polymerization of 3-methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post-polymerization modification or deprotection steps. QCM-D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  20. Imaging nanowire plasmon modes with two-photon polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruber, Christian; Trügler, Andreas; Hohenester, Ulrich

    2015-02-23

    Metal nanowires sustain propagating surface plasmons that are strongly confined to the wire surface. Plasmon reflection at the wire end faces and interference lead to standing plasmon modes. We demonstrate that these modes can be imaged via two-photon (plasmon) polymerization of a thin film resist covering the wires and subsequent electron microscopy. Thereby, the plasmon wavelength and the phase shift of the nanowire mode picked up upon reflection can be directly retrieved. In general terms, polymerization imaging is a promising tool for the imaging of propagating plasmon modes from the nano- to micro-scale.