Science.gov

Sample records for nanoparticulate polymeric vectors

  1. Development of a polymeric nanoparticulate delivery system for indocyanine green

    NASA Astrophysics Data System (ADS)

    Saxena, Vishal

    Purpose. The objective of this project was to develop an intravenously administrable poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticulate delivery system for Indocyanine Green (ICG), to enhance the potential for ICG use in tumor imaging and therapy. Methods. For this purpose PLGA nanoparticles entrapping ICG were engineered by spontaneous emulsification solvent diffusion method. ICG entrapment in nanoparticles was determined and physicochemical characterization of nanoparticles was performed. The stability of ICG in nanoparticles formulation under various conditions was determined. The intracellular uptake of ICG in nanoparticles by B16-F10 and C-33A cancer cell lines was studied in comparison with the free ICG solution. Anti-proliferation studies against cancer cells were performed to prove the photodynamic activity of ICG in nanoparticles. Biodistribution of ICG when delivered through nanoparticles and solution were evaluated in mice after tail vein injection. Results. PLGA nanoparticles with a mean diameter of 350 nm and 74% ICG entrapment were obtained. The nanoparticles were nearly spherical in shape with zeta potential of -16 mV. The nanoparticles formulation provided overall stability to ICG with degradation half-lives of 2.5--3.5 days as compared to 10--20 hr of free ICG solutions. The intracellular uptake of ICG through nanoparticles was directly proportional to time and extracellular nanoparticle concentration. The intracellular uptake of ICG was enhanced about 100-fold by nanoparticles formulation as compared to the free ICG solution. Nanoparticles formulation showed significant photodynamic effect at nano-molar ICG concentrations and very low light dose (fluence: 0.22 W/cm2 and energy density: 1.1 J/cm2). In-vivo, the blood circulation-time and retention-time of ICG in various organs was enhanced 2--5 times by nanoparticles formulation as compared to the free ICG solution. Conclusions. A PLGA nanoparticlute delivery system was developed for ICG

  2. Effect of adsorbed extracellular polymeric substances (EPS) on colloidal mobility of nanoparticulate iron oxides

    NASA Astrophysics Data System (ADS)

    Pradip Narvekar, Sneha; Totsche, Kai Uwe

    2013-04-01

    Solubility and transport of nutrients and pollutants is affected by the presence of colloidal nanoparticles (CNP) which may act as mobile geosorbents. In soils and aquifers, pure and organically modified Fe- and Mn-oxy-hydroxides are of particular importance due to their ubiquitous presence and also due to their progressive use for environmental cleanup. Stability and aggregation behavior control the mobility of CNP and depend on pH, ionic strength, and the presence of monovalent or divalent anions. In natural environments, however, iron oxides are usually covered by organic matter. Such coverage will completely change the colloidal surface properties and impose additional control on the colloidal mobility. Important sources for natural organic coatings are extracellular polymeric substances (EPS), i.e., complex mixtures of biopolymers consisting of polysaccharides and proteins and variable amounts of lipids and nucleic acids. The objective of our study was to quantify the effect of EPS coatings on the colloidal stability, mobility and reactivity of hematite by column experiments. Columns (10 cm × 5 cm) were filled with glass beads (0.25 mm ø) as porous medium and operated in sterile closed flow conditions. Nanoparticulate hematite was coated to different degrees by extracellular polymeric substances (EPS) extracted from, liquid cultures of Bacillus subtillis. The pH was kept constant at 7. The hematite particles exhibited increasing colloidal stability with increasing amounts of EPS. Critical colloidal concentration (CCC) of the particles increased from 95 mM NaCl for uncoated particles to 250 mM NaCl for coated particles. EPS coated hematite did not react with the porous medium and stayed mobile while the uncoated hematite was immobile due to adsorption to the glass beads. Also colloidally unstable hematite particles did not show any mobility. Thus the organic coatings enhanced the colloidal stability, which consecutively increased the mobility of the particles

  3. Development and characterization of polymeric nanoparticulate delivery system for hydrophillic drug: Gemcitabine

    NASA Astrophysics Data System (ADS)

    Khurana, Jatin

    Gemcitabine is a nucleoside analogue, used in various carcinomas such as non small cell lung cancer, pancreatic cancer, ovarian cancer and breast cancer. The major setbacks to the conventional therapy with gemcitabine include its short half-life and highly hydrophilic nature. The objectives of this investigation were to develop and evaluate the physiochemical properties, drug loading and entrapment efficiency, in vitro release, cytotoxicity, and cellular uptake of polymeric nano-particulate formulations containing gemcitabine hydrochloride. The study also entailed development and validation of a high performance liquid chromatography (HPLC) method for the analysis of gemcitabine hydrochloride. A reverse phase HPLC method using a C18 Luna column was developed and validated. Alginate and Poly lactide co glycolide/Poly-epsilon-caprolactone (PLGA:PCL 80:20) nanoparticles were prepared by multiple emulsion-solvent evaporation methodology. An aqueous solution of low viscosity alginate containing gemcitabine was emulsified into 10% solution of dioctyl-sulfosuccinate in dichloro methane (DCM) by sonication. The primary emulsion was then emulsified in 0.5% (w/v) aqueous solution of polyvinyl alcohol (PVA). Calcium chloride solution (60% w/v) was used to cause cross linking of the polymer. For PLGA:PCL system, the polymer mix was dissolved in dichloromethane (DCM) and an aqueous gemcitabine (with and without sodium chloride) was emulsified under ultrasonic conditions (12-watts; 1-min). This primary emulsion was further emulsified in 2% (w/v) PVA under ultrasonic conditions (24-watts; 3-min) to prepare a multiple-emulsion (w/o/w). In both cases DCM, the organic solvent was evaporated (20- hours, magnetic-stirrer) prior to ultracentrifugation (10000-rpm for PLGA:PCL; 25000-rpm for alginate). The pellet obtained was washed thrice with de-ionized water to remove PVA and any free drug and re-centrifuged. The particles were re-suspended in de-ionized water and then lyophilized to

  4. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    PubMed Central

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with

  5. Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    PubMed Central

    2009-01-01

    Background Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy. Methods Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOSR2, U-2OS, and U-2OSR2 cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed. Results Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone. Conclusion Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma. PMID:19917123

  6. Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice.

    PubMed

    Saxena, Vishal; Sadoqi, Mostafa; Shao, Jun

    2006-02-01

    The objective of this study is to investigate the biodistribution of Indocyanine green (ICG) in healthy mice, when delivered through polymeric nanoparticles. The poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles entrapping ICG were engineered and characterized. The extraction method for ICG recovery from biological samples was developed. The biodistribution of ICG was determined in healthy C57BL/6 mice (female, 10-week old) when delivered through PLGA nanoparticles in comparison to free ICG solution, using a fluorometric assay method. The extraction method for ICG shows efficiency above 80% for various organs and plasma. When nanoparticles were used to deliver ICG, 2-8 times higher concentrations of ICG was deposited in various organs, with 5-10 times higher plasma levels till 4 h, after an i.v. dose as compared to free ICG solution. In conclusion, the nanoparticle formulation significantly increased the ICG concentration and circulation time in plasma as well as the ICG uptake, accumulation and retention in various organs. Overall, this study represents the first step in exploring and establishing the potential of nanoparticles as an ICG-delivery system for use in tumor-diagnosis and photodynamic therapy.

  7. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate.

    PubMed

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation. PMID:19433871

  8. Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems.

    PubMed

    Saxena, Vishal; Sadoqi, Mostafa; Shao, Jun

    2004-03-19

    Photo-degradation, thermal-degradation and aqueous-instability of indocyanine green (ICG) limits its application as a fluorescence contrast agent for imaging purposes. Thus, the objective of this study is to develop polymeric nanoparticles entrapping ICG and to establish its effectiveness in providing photo-stability, thermal stability and aqueous stability to ICG. Nanoparticles entrapping ICG were engineered, characterized and the degradation kinetics of ICG in the nanoparticles was investigated in aqueous media. The entrapment of ICG in the nanoparticles causes a shift in its wavelength of peak fluorescence and a decrease in its peak fluorescence intensity. The degradation of ICG in aqueous nanoparticle suspension followed first-order kinetics for the time period studied. ICG entrapment in the nanoparticles enhanced aqueous-stability of ICG (half-life, t(1/2) was 72.2+/-6.1 h for ICG in the nanoparticles as compared to 16.8+/-1.5 h for free ICG solution), photo-stability of ICG (t(1/2) was 73.7+/-7.5 h for ICG in the nanoparticles as compared to 14.4+/-2.4 h for free ICG solution when exposed to room light from two 32 W normal fluorescent tubes) and thermal-stability of ICG (t(1/2) of ICG at 42 degrees C was 62.4+/-1.7 h for ICG in the nanoparticles as compared to 10.1+/-0.6 h for free ICG solution).

  9. Nanoparticulate systems for polynucleotide delivery

    PubMed Central

    Basarkar, Ashwin; Singh, Jagdish

    2007-01-01

    Nanotechnology has tremendously influenced gene therapy research in recent years. Nanometer-size systems have been extensively investigated for delivering genes at both local and systemic levels. These systems offer several advantages in terms of tissue penetrability, cellular uptake, systemic circulation, and cell targeting as compared to larger systems. They can protect the polynucleotide from a variety of degradative and destabilizing factors and enhance delivery efficiency to the cells. A variety of polymeric and non-polymeric nanoparticles have been investigated in an effort to maximize the delivery efficiency while minimizing the toxic effects. This article provides a review on the most commonly used nanoparticulate systems for gene delivery. We have discussed frequently used polymers, such as, polyethyleneimine, poly (lactide-co-glycolide), chitosan, as well as non-polymeric materials such as cationic lipids and metallic nanoparticles. The advantages and limitations of each system have been elaborated. PMID:18019834

  10. Advances in polymeric and inorganic vectors for nonviral nucleic acid delivery

    PubMed Central

    Sunshine, Joel C; Bishop, Corey J; Green, Jordan J

    2014-01-01

    Nonviral systems for nucleic acid delivery offer a host of potential advantages compared with viruses, including reduced toxicity and immunogenicity, increased ease of production and less stringent vector size limitations, but remain far less efficient than their viral counterparts. In this article we review recent advances in the delivery of nucleic acids using polymeric and inorganic vectors. We discuss the wide range of materials being designed and evaluated for these purposes while considering the physical requirements and barriers to entry that these agents face and reviewing recent novel approaches towards improving delivery with respect to each of these barriers. Furthermore, we provide a brief overview of past and ongoing nonviral gene therapy clinical trials. We conclude with a discussion of multifunctional nucleic acid carriers and future directions. PMID:22826857

  11. Three-dimensional X-ray micro-computed tomography analysis of polymerization shrinkage vectors in flowable composite.

    PubMed

    Takemura, Yukihiko; Hanaoka, Koji; Kawamata, Ryota; Sakurai, Takashi; Teranaka, Toshio

    2014-01-01

    The polymerization shrinkage of flowable resin composites was evaluated using air bubbles as traceable markers. Three different surface treatments i.e. an adhesive silane coupling agent, a separating silane coupling agent, and a combination of both, were applied to standard cavities. Before and after polymerization, X-ray micro-computed tomography images were recorded. Their superimposition and comparison allowed position changes of the markers to be visualized as vectors. The movement of the markers in the resin composite was, therefore, quantitatively evaluated from the tomographic images. Adhesion was found to significantly influence shrinkage patterns. The method used here could be employed to visualize shrinkage vectors and shrinkage volume. PMID:24988881

  12. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection.

    PubMed

    Shao, Kun; Wu, Jiqin; Chen, Zhongqing; Huang, Shixian; Li, Jianfeng; Ye, Liya; Lou, Jinning; Zhu, Liping; Jiang, Chen

    2012-10-01

    One of the most common life-threatening infections in immunosuppressive patients, like AIDs patients, is cryptococcal meningitis or meningoencephalitis. Current therapeutic options are mostly ineffective and mortality rates remain high. Hydrophobic antifungal drug Amphotericin B (AmB), has become a golden standard in severe systemic fungal infection therapy. However, most AmB commercial formulations, including deoxycholate AmB and lipid formulations of AmB, show poor penetration into the CNS and difficulty to reach the therapeutic levels. To improve the CNS permeability of AmB, we have successfully developed an effective brain-targeting polymeric micellar system with angiopep-2 modified, named Angiopep-PEG-PE/AmB polymeric micelles. An immunosuppressive murine model with Cryptococcus neoformans meningoencephalitis (CNME) was established to evaluate the CNS penetration efficiency and antifungal treatment efficacy of the AmB-incorporated brain-vectored polymeric micellar formulation, compared with the AmB commercial formulations. After three consecutive days of i.v. administration, the results showed that the group treated with Angiopep-PEG-PE/AmB achieved the greatest treatment efficacy, which reached the highest AmB level in brain, reduced the brain fungal burden significantly, decreased histopathological severity and prolonged the median survival time. The increased treatment efficacy could be attributed to the brain-targeting delivery system promoted AmB crossing the BBB and penetrating into the brain to reach the therapeutic concentration. The underlying mechanism was also explored in this work. Therefore, the brain-targeting delivery system could have potential and promising implications for treatment of intracerebral fungal infection. PMID:22789719

  13. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers.

    PubMed

    Souto, Eliana B; Severino, Patrícia; Basso, Rafael; Santana, Maria Helena A

    2013-01-01

    Reactive oxygen species (ROS) are known to cause several human pathologies. For this reason, antioxidants have gained utmost importance because of their potential as prophylactic and therapeutic agents in many diseases. Examples of their application include their use in diabetic patients, as aging drugs, in cancer diseases, Parkinson's, Alzheimer's, autoimmune disorders, and also in inflammation. Antioxidants have limited absorption profiles, therefore low bioavailability and low concentrations at the target site. Efforts have been done towards loading antioxidant molecules in advanced nanoparticulate carriers, e.g., liposomes, polymeric nanoparticles, solid lipid nanoparticles, self-emulsifying drug delivery system. Examples of -successful achievements include the encapsulation of drugs and other active ingredients, e.g., coenzyme Q10, vitamin E and vitamin A, resveratrol and polyphenols, curcumin, lycopene, silymarin, and superoxide dismutase. This review focuses on the comprehensive analysis of using nanoparticulate carriers for loading these molecules for oral administration.

  14. Polymeric controlled release formulations of niclosamide for control of Biomphalaria alexandrina, the vector snail of schistosomiasis.

    PubMed

    Kenawy, El-Refaie; Rizk, El-Sayed

    2004-02-20

    Schistosomiasis is one of the most important public health problems in many developing countries. The present study was conducted to investigate the effect of the polymeric niclosamide formulations against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni in Egypt. Three new polymeric formulations were prepared for the molluscicide niclosamide. The formulations were prepared either by the chemical modifications of poly(glycidyl methacrylate) or by physical entrapment of the niclosamide in calcium alginate beads. The release of the niclosamide from the polymeric formulations was investigated. The activity of the prepared formulations against Biomphalaria alexandrina was investigated. The results obtained revealed higher potency for polymerized niclosamide B3 than B1; the lowest potency was revealed for B2. After an exposure period of 24 hours, LC(50) values were 0.073, 0.098 and 1.09 ppm for B3, B1 and B2, respectively. In addition, the molluscicidal potency of the test polymeric niclosamide was age-dependent, where old snails were more tolerant to the test solutions than young and newly hatched snails. The results also indicated that the molluscicidal activity of B3 was extended for 21 days and 17 days for B1, compared with 5 days for free niclosamide. However, the molluscicidal potency of the polymerized niclosamide was increased after boiling for one hour, and was increased with increasing the pH of the medium to pH 9. In addition, their potency was increased with decreasing the water hardness concentrations (CaCO(3)).Molluscicidal activity of free niclosamide and its polymeric formulations vs. exposure time.

  15. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  16. Self-assembled polymeric vectors mixtures: characterization of the polymorphism and existence of synergistic effects in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Till, Ugo; Gibot, Laure; Mingotaud, Christophe; Vicendo, Patricia; Rols, Marie-Pierre; Gaucher, Mireille; Violleau, Frédéric; Mingotaud, Anne-Françoise

    2016-08-01

    The objective of this work was to assess the relation between the purity of polymeric self-assemblies vectors solution and their photodynamic therapeutic efficiency. For this, several amphiphilic block copolymers of poly(ethyleneoxide-b-ε-caprolactone) have been used to form self-assemblies with different morphologies (micelles, worm-like micelles or vesicles). In a first step, controlled mixtures of preformed micelles and vesicles have been characterized both by dynamic light scattering and asymmetrical flow field flow fractionation (AsFlFFF). For this, a custom-made program, STORMS, was developed to analyze DLS data in a thorough manner by providing a large set of fitting parameters. This showed that DLS only sensed the larger vesicles when the micelles/vesicles ratio was 80/20 w/w. On the other hand, AsFlFFF allowed clear detection of the presence of micelles when this same ratio was as low as 10/90. Subsequently, the photodynamic therapy efficiency of various controlled mixtures was assessed using multicellular spheroids when a photosensitizer, pheophorbide a, was encapsulated in the polymer self-assemblies. Some mixtures were shown to be as efficient as monomorphous systems. In some cases, mixtures were found to exhibit a higher PDT efficiency compared to the individual nano-objects, revealing a synergistic effect for the efficient delivery of the photosensitizer. Polymorphous vectors can therefore be superior in therapeutic applications.

  17. Self-assembled polymeric vectors mixtures: characterization of the polymorphism and existence of synergistic effects in photodynamic therapy.

    PubMed

    Till, Ugo; Gibot, Laure; Mingotaud, Christophe; Vicendo, Patricia; Rols, Marie-Pierre; Gaucher, Mireille; Violleau, Frédéric; Mingotaud, Anne-Françoise

    2016-08-01

    The objective of this work was to assess the relation between the purity of polymeric self-assemblies vectors solution and their photodynamic therapeutic efficiency. For this, several amphiphilic block copolymers of poly(ethyleneoxide-b-ε-caprolactone) have been used to form self-assemblies with different morphologies (micelles, worm-like micelles or vesicles). In a first step, controlled mixtures of preformed micelles and vesicles have been characterized both by dynamic light scattering and asymmetrical flow field flow fractionation (AsFlFFF). For this, a custom-made program, STORMS, was developed to analyze DLS data in a thorough manner by providing a large set of fitting parameters. This showed that DLS only sensed the larger vesicles when the micelles/vesicles ratio was 80/20 w/w. On the other hand, AsFlFFF allowed clear detection of the presence of micelles when this same ratio was as low as 10/90. Subsequently, the photodynamic therapy efficiency of various controlled mixtures was assessed using multicellular spheroids when a photosensitizer, pheophorbide a, was encapsulated in the polymer self-assemblies. Some mixtures were shown to be as efficient as monomorphous systems. In some cases, mixtures were found to exhibit a higher PDT efficiency compared to the individual nano-objects, revealing a synergistic effect for the efficient delivery of the photosensitizer. Polymorphous vectors can therefore be superior in therapeutic applications.

  18. Nanoparticulate drug delivery platforms for advancing bone infection therapies

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A

    2015-01-01

    Introduction The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition. Areas covered Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same. Expert opinion Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment. PMID:25109804

  19. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  20. Nanoparticulate devices for brain drug delivery.

    PubMed

    Celia, Christian; Cosco, Donato; Paolino, Donatella; Fresta, Massimo

    2011-09-01

    The blood-brain barrier (BBB) limits the transport of therapeutic molecules from the blood compartment into the brain, thus greatly reducing the species of therapeutic compounds that can be efficiently accumulated in the central nervous system (CNS). Various strategies have been proposed for improving the delivery of drugs to this tissue, and numerous invasive and noninvasive methods have been proposed by different scientists in an attempt to circumvent the BBB and to increase the delivery of drug compounds into the brain. An interesting alternative, in the solution of this problem and also that of reaching a suitable target in the CNS, has recently been provided through the use of nanoparticulate colloidal devices as a noninvasive technique for brain drug delivery. These systems offer diverse advantages over invasive strategies, because (1) they are designed using biocompatible and biodegradable materials; (2) they avoid the disruption and/or modification of the BBB; and (3) they modulate the biopharmaceutical properties of the entrapped drugs. Moreover, the possibility of targeting specific brain tissue, thanks to ligands linked to the surface of the nanoparticulate colloidal devices, confers the necessary characteristics for the treatment of CNS pathologies to these drug carriers. The aim of this review is to focus on describing the main strategies in use for designing nanoparticulate colloidal devices for CNS delivery, their potentiality as noninvasive strategies in the delivery of drugs to the cerebral tissues, and their biological and clinical applications in cerebral drug delivery.

  1. Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control.

    PubMed

    Balaji, A P B; Mishra, Prabhakar; Suresh Kumar, R S; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-04-01

    The utilization of increased dosage of insect repellents to overcome mosquito resistance has raised environmental concerns globally. In accord to this, we have formulated an efficacious, water-dispersive, nanometric formulation of a poor water-soluble insect repellent, diethylphenylacetamide (DEPA) by poly(ethylene glycol) (PEG) polymerization followed by PIT emulsification method. The critical micelle concentration of PEG in the spontaneously emulsified conventional DEPA droplets was determined, based on the droplets physical stability. Subjecting them to PIT emulsification yielded monodispersed polymeric nanomicelles of DEPA (Nano DEPA) with hydrodynamic mean diameter of 153.74 nm. The high-resolution scanning and transmission electron microscopic studies revealed the characteristic core-shell structure of micelle. The comparative efficacy of Bulk DEPA and Nano DEPA was evaluated by larvicidal and WHO cone bioassay against the Japanese encephalitis vector Culex tritaeniorhynchus. The median lethal concentrations (48 h) for 3rd instars C. tritaeniorhynchus larvae were found to be 0.416 mg/L for Bulk DEPA and 0.052 mg/L for Nano DEPA, respectively. The median knockdown concentrations (60 min) for the two to three-day-old, sucrose-fed, female adult mosquitoes were 5.372% (v/v) and 3.471% (v/v) for Bulk and Nano DEPA, respectively. Further investigation by histopathological and biochemical studies propound that Nano DEPA exerted better bioefficacy as comparative to its bulk form even at minimal exposure concentrations. Hence, Nano DEPA will serve as an effective alternate in controlling the vector expansion with reduced dosage. PMID:25766922

  2. Extracellular stability of nanoparticulate drug carriers

    PubMed Central

    Liu, Karen C.; Yeo, Yoon

    2014-01-01

    Nanoparticulate (NP) drug carrier systems are attractive vehicles for selective drug delivery to solid tumors. Ideally, NPs should evade clearance by the reticuloendothelial system while maintaining the ability to interact with tumor cells and facilitate cellular uptake. Great effort has been made to fulfill these design criteria, yielding various types of functionalized NPs. Another important consideration in NP design is the physical and functional stability during circulation, which, if ignored, can significantly undermine the promise of intelligently designed NP drug carriers. This commentary reviews several NP examples with stability issues and their consequences, ending in a discussion of experimental methods for reliable prediction of NP stability. PMID:24214175

  3. Intratumoral Drug Delivery with Nanoparticulate Carriers

    PubMed Central

    Holback, Hillary

    2011-01-01

    Stiff extracellular matrix, elevated interstitial fluid pressure, and the affinity for the tumor cells in the peripheral region of a solid tumor mass have long been recognized as significant barriers to diffusion of small-molecular-weight drugs and antibodies. However, their impacts on nanoparticle-based drug delivery have begun to receive due attention only recently. This article reviews biological features of many solid tumors that influence transport of drugs and nanoparticles and properties of nanoparticles relevant to their intratumoral transport, studied in various tumor models. We also discuss several experimental approaches employed to date for enhancement of intratumoral nanoparticle penetration. The impact of nanoparticle distribution on the effectiveness of chemotherapy remains to be investigated and should be considered in the design of new nanoparticulate drug carriers. PMID:21213021

  4. Polymeric vector-mediated gene transfection of MSCs for dual bioluminescent and MRI tracking in vivo.

    PubMed

    Wu, Chun; Li, Jingguo; Pang, Pengfei; Liu, Jingjing; Zhu, Kangshun; Li, Dan; Cheng, Du; Chen, Junwei; Shuai, Xintao; Shan, Hong

    2014-09-01

    MSC's transplantation is a promising cell-based therapy for injuries in regenerative medicine, and in vivo visualization of transplanted MSCs with noninvasive technique is essential for the tracking of cell infusion and homing. A new cationic polymer, poly(ethylene glycol)-block-poly(l-aspartic acid)-grafted polyethylenimine functionalized with superparamagnetic iron oxide nanoparticles (PAI/SPION), was constructed as a magnetic resonance imaging (MRI)-visible non-viral vector for the delivery of plasmids DNA (pDNA) encoding for luciferase and red fluorescence protein (RFP) as reporter genes into MSCs. As a result, the MSCs were labeled with SPION and reporter genes. The PAI/SPION complexes exhibited high transfection efficiency in transferring pDNA into MSCs, which resulted in efficient luciferase and RFP co-expression. Furthermore, the complexes did not significantly affect the viability and multilineage differentiation capacity of MSCs. After the labeled MSCs were transplanted into the rats with acute liver injury via the superior mesenteric vein (SMV) injection, the migration behavior and organ-specific accumulation of the cells could be effectively monitored using the in vivo imaging system (IVIS) and MRI, respectively. The immunohistochemical analysis further confirmed that the transplanted MSCs were predominantly distributed in the liver parenchyma. Our results indicate that the PAI/SPION is a MRI-visible gene delivery agent which can effectively label MSCs to provide the basis for bimodal bioluminescence and MRI tracking in vivo. PMID:24976241

  5. Zn Sorption Mechanisms onto Sheathed Leptothrix Discophora and the Impact of the Nanoparticulate Biogenic Mn Oxide Coating

    SciTech Connect

    Boonfueng, T.; Axe, L; Yee, N; Hahn, D; Ndiba, P

    2009-01-01

    Zinc sorption on sheathed Leptothrix discophora bacterium, the isolated extracellular polymeric substances (EPS) sheath, and Mn oxide-coated bacteria was investigated with macroscopic and spectroscopic techniques. Complexation with L. discophora was dominated by the outer membrane phosphoryl groups of the phospholipid bilayer while sorption to isolated EPS was dominated by carboxyl groups. Precipitation of nanoparticulate Mn oxide coatings on the cell surface increased site capacity by over twenty times with significant increase in metal sorption. XAS analysis of Zn sorption in the coated system showed Mn oxide phase contributions of 18 to 43% through mononuclear inner-sphere complexes. The coordination environments in coprecipitation samples were identical to those of sorption samples, indicating that, even in coprecipitation, Zn is not incorporated into the Mn oxide structure. Rather, through enzymatic oxidation by L. discophora, Mn(II) is oxidized and precipitated onto the biofilm providing a large surface for metal sequestration. The nanoparticulate Mn oxide coating exhibited significant microporosity (75%) suggesting contributions from intraparticle diffusion. Transient studies conducted over 7 months revealed a 170% increase in Zn loading. However, the intraparticle diffusivity of 10{sup -19} cm{sup 2} s{sup -1} is two orders of magnitude smaller than that for abiotic Mn oxide which we attribute to morphological changes such as reduced pore sizes in the nanoparticulate oxide. Our results demonstrate that the cell-bound Mn oxide particles can sorb significant amounts of Zn over long periods of time representing an important surface for sequestration of metal contaminants.

  6. Zn sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nanoparticulate biogenic Mn oxide coating.

    PubMed

    Boonfueng, Thipnakarin; Axe, Lisa; Yee, Nathan; Hahn, Dittmar; Ndiba, Peter K

    2009-05-15

    Zinc sorption on sheathed Leptothrix discophora bacterium, the isolated extracellular polymeric substances (EPS) sheath, and Mn oxide-coated bacteria was investigated with macroscopic and spectroscopic techniques. Complexation with L. discophora was dominated by the outer membrane phosphoryl groups of the phospholipid bilayer while sorption to isolated EPS was dominated by carboxyl groups. Precipitation of nanoparticulate Mn oxide coatings on the cell surface increased site capacity by over twenty times with significant increase in metal sorption. XAS analysis of Zn sorption in the coated system showed Mn oxide phase contributions of 18 to 43% through mononuclear inner-sphere complexes. The coordination environments in coprecipitation samples were identical to those of sorption samples, indicating that, even in coprecipitation, Zn is not incorporated into the Mn oxide structure. Rather, through enzymatic oxidation by L. discophora, Mn(II) is oxidized and precipitated onto the biofilm providing a large surface for metal sequestration. The nanoparticulate Mn oxide coating exhibited significant microporosity (75%) suggesting contributions from intraparticle diffusion. Transient studies conducted over 7 months revealed a 170% increase in Zn loading. However, the intraparticle diffusivity of 10(-19) cm(2) s(-1) is two orders of magnitude smaller than that for abiotic Mn oxide which we attribute to morphological changes such as reduced pore sizes in the nanoparticulate oxide. Our results demonstrate that the cell-bound Mn oxide particles can sorb significant amounts of Zn over long periods of time representing an important surface for sequestration of metal contaminants. PMID:19268965

  7. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation

    PubMed Central

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K.; Mitra, Ashim K.

    2015-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine–valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins. PMID:20939702

  8. Nanoparticulate-catalyzed oxygen transfer processes

    SciTech Connect

    Hunt, Andrew T.; Breitkopf, Richard C.

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  9. Comparative cytotoxicity assessments of some manufactured and anthropogenic nanoparticulate materials

    NASA Astrophysics Data System (ADS)

    Soto, Karla Fabiola

    Due to increasing diversity of newly engineered nanoparticles, it is important to consider the hazards of these materials. Very little is known regarding the potential toxicity of relatively new nanomaterials. However, beginning with several historical accounts of nanomaterials applications---chrysotile asbestos and silver---it was assumed that these examples would provide some awareness and guidelines for future nanomaterial and nanotechnology applications, especially health effects. In this study in vitro assays were performed on a murine alveolar macrophage cell line (RAW 264.7), human alveolar macrophage cell line (THB-1), and human epithelial lung cell line (A549) to assess the comparative cytotoxicity of a wide range of manufactured (Ag, TiO2, Fe2O3, Al2O3, ZrO2, black carbon, two different types of multiwall structures and chrysotile asbestos as the toxicity standard) and anthropogenic nanoparticulates. There are several parameters of nanoparticulates that are considered to trigger an inflammatory response (particularly respiratory) or cause toxicity. These parameters include: particle size, shape, specific surface area, transition metals in particulates, and organic compounds. Therefore, a wide variety of manufactured and anthropogenic nanoparticulates having different morphologies, sizes, specific surface area and chemistries as noted were tested. To determine the nanoparticulates' size and morphology, they were characterized by transmission electron microscopy, where it was observed that the commercial multiwall carbon nanotube aggregate had an identical morphology to chrysotile asbestos and combustion-formed carbon nanotubes, i.e.; those that form from natural gas combustion. Light optical microscopy was used to determine cell morphology upon exposure to nanoparticulates as an indication of cell death. Also, the polycyclic aromatic hydrocarbon (PAH) content of the collected nanoparticulates was analyzed and correlated with cytotoxic responses. For

  10. A New Hyaluronic Acid Derivative Obtained from Atom Transfer Radical Polymerization as a siRNA Vector for CD44 Receptor Tumor Targeting.

    PubMed

    Palumbo, Fabio Salvatore; Bavuso Volpe, Antonella; Bongiovì, Flavia; Pitarresi, Giovanna; Giammona, Gaetano

    2015-11-01

    Two derivatives of hyaluronic acid (HA) have been synthesized by atom transfer radical polymerization (ATRP), starting from an ethylenediamino HA derivative (HA-EDA) and by using diethylaminoethyl methacrylate (DEAEMA) as a monomer for polymerization. Both samples, indicated as HA-EDA-pDEAEMA a and b, are able to condense siRNA, as determined by gel retardation assay and resulting complexes show a size and a zeta potential value dependent on polymerization number, as determined by dynamic light scattering measurements. In vitro studies performed on HCT 116 cell line, that over express CD44 receptor, demonstrate a receptor mediated uptake of complexes, regardless of their surface charge. PMID:26136372

  11. Bioinspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair.

    PubMed

    Lee, Yuhan; Xu, Chenjie; Sebastin, Monisha; Lee, Albert; Holwell, Nathan; Xu, Calvin; Miranda Nieves, David; Mu, Luye; Langer, Robert S; Lin, Charles; Karp, Jeffrey M

    2015-11-18

    Delivery of tissue glues through small-bore needles or trocars is critical for sealing holes, affixing medical devices, or attaching tissues together during minimally invasive surgeries. Inspired by the granule-packaged glue delivery system of sandcastle worms, a nanoparticulate formulation of a viscous hydrophobic light-activated adhesive based on poly(glycerol sebacate)-acrylate is developed. Negatively charged alginate is used to stabilize the nanoparticulate surface to significantly reduce its viscosity and to maximize injectability through small-bore needles. The nanoparticulate glues can be concentrated to ≈30 w/v% dispersions in water that remain localized following injection. With the trigger of a positively charged polymer (e.g., protamine), the nanoparticulate glues can quickly assemble into a viscous glue that exhibits rheological, mechanical, and adhesive properties resembling the native poly(glycerol sebacate)-acrylate based glues. This platform should be useful to enable the delivery of viscous glues to augment or replace sutures and staples during minimally invasive procedures.

  12. siRNA Therapy, Challenges and Underlying Perspectives of Dendrimer as Delivery Vector.

    PubMed

    Tekade, Rakesh Kumar; Maheshwari, Rahul G S; Sharma, Piyoosh A; Tekade, Muktika; Chauhan, Abhay Singh

    2015-01-01

    siRNA technology presents a helpful means of gene silencing in mammalian cells. Advancement in the field includes enhanced attentiveness in the characterization of target and off-target effects employing suitable controls and gene expression microarrays. These will permit expansion in the measurement of single and multiple target combinations and also permit comprehensive efforts to understand mammalian cell processes. Another fact is that the delivery of siRNA requires the creation of a nanoparticulate vector with controlled structural geometry and surface modalities inside the targeted cells. On the other hand, dendrimers represent the class of carrier system where massive control over size, shape and physicochemical properties makes this delivery vector exceptional and favorable in genetic transfection applications. The siRNA therapeutics may be incorporated inside the geometry of the density controlled dendrimers with the option of engineering the structure to the specific needs of the genetic material and its indication. The existing reports on the siRNA carrying and deliverance potential of dendrimers clearly suggest the significance of this novel class of polymeric architecture and certainly elevate the futuristic use of this highly branched vector as genetic material delivery system.

  13. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  14. Monolithic precolumns as efficient tools for guiding the design of nanoparticulate drug-delivery formulations.

    PubMed

    Gatschelhofer, Christina; Prasch, Agnes; Buchmeiser, Michael R; Zimmer, Andreas; Wernig, Karin; Griesbacher, Martin; Pieber, Thomas R; Sinner, Frank M

    2012-09-01

    The development of nanomedicines for improved diagnosis and treatment of diseases is pushing current analytical methods to their limits. More efficient, quantitative high-throughput screening methods are needed to guide the optimization of promising nanoparticulate drug delivery formulations. In response to this need, we present herein a novel approach using monolithic separation media. The unique porosity of our capillary monolithic precolumns allows the direct injection and online removal of protamine-oligonucleotide nanoparticles ("proticles") without column clogging, thus avoiding the need for time-consuming off-line sample workup. Furthermore, ring-opening metathesis polymerization (ROMP)-derived monoliths show equivalent preconcentration efficiency for the target drug vasoactive intestinal peptide (VIP) as conventional particle-packed precolumns. The performance of the ROMP-derived monolithic precolumns was constant over at least 100 injections of crude proticle-containing and 300 injections of highly acidic samples. Applying a validated LC-MS/MS capillary monolithic column switching method, we demonstrate the rapid determination of both drug load and in vitro drug release kinetics of proticles within the critical first 2 h and investigate the stability of VIP-loaded proticles in aqueous storage medium intended for inhalation therapy.

  15. Vesicular (liposomal and nanoparticulated) delivery of curcumin: a comparative study on carbon tetrachloride–mediated oxidative hepatocellular damage in rat model

    PubMed Central

    Choudhury, Somsubhra Thakur; Das, Nirmalendu; Ghosh, Swarupa; Ghosh, Debasree; Chakraborty, Somsuta; Ali, Nahid

    2016-01-01

    The liver plays a vital role in biotransforming and extricating xenobiotics and is thus prone to their toxicities. Short-term administration of carbon tetrachloride (CCl4) causes hepatic inflammation by enhancing cellular reactive oxygen species (ROS) level, promoting mitochondrial dysfunction, and inducing cellular apoptosis. Curcumin is well accepted for its antioxidative and anti-inflammatory properties and can be considered as an effective therapeutic agent against hepatotoxicity. However, its therapeutic efficacy is compromised due to its insolubility in water. Vesicular delivery of curcumin can address this limitation and thereby enhance its effectiveness. In this study, it was observed that both liposomal and nanoparticulated formulations of curcumin could increase its efficacy significantly against hepatotoxicity by preventing cellular oxidative stress. However, the best protection could be obtained through the polymeric nanoparticle-mediated delivery of curcumin. Mitochondria have a pivotal role in ROS homeostasis and cell survivability. Along with the maintenance of cellular ROS levels, nanoparticulated curcumin also significantly (P<0.0001) increased cellular antioxidant enzymes, averted excessive mitochondrial destruction, and prevented total liver damage in CCl4-treated rats. The therapy not only prevented cells from oxidative damage but also arrested the intrinsic apoptotic pathway. In addition, it also decreased the fatty changes in hepatocytes, centrizonal necrosis, and portal inflammation evident from the histopathological analysis. To conclude, curcumin-loaded polymeric nanoparticles are more effective in comparison to liposomal curcumin in preventing CCl4-induced oxidative stress–mediated hepatocellular damage and thereby can be considered as an effective therapeutic strategy. PMID:27274242

  16. A review of research on nanoparticulate flow undergoing coagulation

    NASA Astrophysics Data System (ADS)

    Lin, Jianzhong; Huo, Linlin

    2015-06-01

    Nanoparticulate flows occur in a wide range of natural phenomena and engineering applications and, hence, have attracted much attention. The purpose of the present paper is to provide a review of the research conducted over the last decade. The research covered relates to the Brownian coagulation of monodisperse and polydisperse particles, the Taylor-series expansion method of moment, and nanoparticle distributions due to coagulation in pipe and channel flow, jet flow, and the mixing layer and in the process of flame synthesis and deposition.

  17. Concepts and practices used to develop functional PLGA-based nanoparticulate systems

    PubMed Central

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner. PMID:23459088

  18. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery

    PubMed Central

    Torchilin, Vladimir P.

    2015-01-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases. PMID:25287120

  19. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.

    PubMed

    Torchilin, Vladimir P

    2014-11-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases. PMID:25287120

  20. A TEM analysis of nanoparticulates in a Polar ice core

    SciTech Connect

    Esquivel, E.V.; Murr, L.E

    2004-03-15

    This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar with some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.

  1. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  2. Dynamics of discontinuous coating and drying of nanoparticulate films.

    SciTech Connect

    Schunk, Peter Randall; Dunphy, Darren Robert; Brinker, C. Jeffrey; Tjiptowidjojo, Kristianto

    2010-09-01

    Heightened interest in micro-scale and nano-scale patterning by imprinting, embossing, and nano-particulate suspension coating stems from a recent surge in development of higher-throughput manufacturing methods for integrated devices. Energy-applications addressing alternative, renewable energy sources offer many examples of the need for improved manufacturing technology for micro and nano-structured films. In this presentation we address one approach to micro- and nano-pattering coating using film deposition and differential wetting of nanoparticles suspensions. Rather than print nanoparticle or colloidal inks in discontinuous patches, which typically employs ink jet printing technology, patterns can be formed with controlled dewetting of a continuously coated film. Here we report the dynamics of a volatile organic solvent laden with nanoparticles dispensed on the surfaces of water droplets, whose contact angles (surface energy) and perimeters are defined by lithographic patterning of initially (super)hydrophobic surfaces.. The lubrication flow equation together with averaged particle transport equation are employed to predict the film thickness and particle average concentration profiles during subsequent drying of the organic and water solvents. The predictions are validated by contact angle measurements, in situ grazing incidence small angle x-ray scattering experiments, and TEM images of the final nanoparticle assemblies.

  3. Nanoparticulate carriers (NPC) for oral pharmaceutics and nutraceutics.

    PubMed

    Lopes, C M; Martins-Lopes, P; Souto, E B

    2010-02-01

    The introduction of nanoparticulate carriers (NPC) in the pharmaceutic and nutraceutic fields has changed the definitions of disease management and treatment, diagnosis, as well as the supply food chain in the agri-food sector. NPC composed of synthetic polymers, proteins or polysaccharides gather interesting properties to be used for oral administration of pharmaceutics and nutraceutics. Oral administration remains the most convenient way of delivering drugs (e.g. peptides, proteins and nucleic acids) since these suffer similar metabolic pathways as food supply. Recent advances in biotechnology have produced highly potent new molecules however with low oral bioavailability. A suitable and promising approach to overcome their sensitivity to chemical and enzymatic hydrolysis as well as the poor cellular uptake, would be their entrapment within suitable gastrointestinal (GI) resistant NPC. Increasing attention has been paid to the potential use of NPC for peptides, proteins, antioxidants (carotenoids, omega fatty acids, coenzyme Q10), vitamins, probiotics, for oral administration. This review focuses on the most important materials to produce NPC for oral administration, and the most recent achievements in the production techniques and bioactives successfully delivered by these means. PMID:20225647

  4. The distribution of absorptive power dissipation in irradiated nanoparticulate system

    NASA Astrophysics Data System (ADS)

    Li, Jiayu; Yang, Jian; Gu, Xiaobing

    2016-10-01

    The knowledge of local radiant absorption is important to the nanostructure optimization, it is beneficial to the applications in energy harvesting, optical heating, photocatalysis, etc. In this paper, FDTD model is constructed for the distribution of absorptive power dissipation in irradiated nanoparticulate system. The theoretical model extended from Mie theory is used to examine the FDTD model, the parameters and conditions set for FDTD simulation are confirmed based on the comparison. Then, the influence of Ag nanoparticle on the absorptive properties of nearby TiO2 nanoparticle is investigated by FDTD simulation at the wavelength of 0.25 μm. It is indicated that suitable distance between TiO2 and Ag particles is beneficial to the spectral radiant absorption of TiO2 particle. Considering the agglomeration of nanoparticles and the oxidation at the TiO2-Ag interface, the Ag core coated with Al2O3 shell is suggested, and the simulated results indicated that the shell thickness and the Ag core size need to be optimized for enhancing the radiant absorption of TiO2 particle.

  5. Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems.

    PubMed

    Doroud, Delaram; Rafati, Sima

    2012-01-01

    Although mass vaccination of the entire population of an endemic area would be the most cost-effective tool to diminish Leishmania burden, an effective vaccine is not yet commercially available. Practically, vaccines have failed to achieve the required level of protection, possibly owing to the lack of an appropriate adjuvant and/or delivery system. Therefore, there is still an imperative demand for an improved, safe and efficient delivery system to enhance the immunogenicity of available vaccine candidates. Nanoparticles are proficient in boosting the quality and magnitude of immune responses in a predictable fashion. Herein, we discuss how nanoparticulate vaccine delivery systems can be used to induce appropriate immune responses against leishmaniasis by controlling physicochemical properties of the vaccine. Stability, production reproducibility, low cost per dose and low risk-benefit ratios are desirable characteristics of an ideal vaccine formulation and solid lipid nanoparticles may serve as one of the most promising practical strategies to help to achieve such a leishmanial vaccine, at least in canine species in the developing world.

  6. Nucleic Acids Bind to Nanoparticulate iron (II) Monosulphide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Hatton, Bryan; Rickard, David

    2008-06-01

    In the hydrothermal FeS-world origin of life scenarios nucleic acids are suggested to bind to iron (II) monosulphide precipitated from the reaction between hydrothermal sulphidic vent solutions and iron-bearing oceanic water. In lower temperature systems, the first precipitate from this process is nanoparticulate, metastable FeSm with a mackinawite structure. Although the interactions between bulk crystalline iron sulphide minerals and nucleic acids have been reported, their reaction with nanoparticulate FeSm has not previously been investigated. We investigated the binding of different nucleic acids, and their constituents, to freshly precipitated, nanoparticulate FeSm. The degree to which the organic molecules interacted with FeSm is chromosomal DNA > RNA > oligomeric DNA > deoxadenosine monophosphate ≈ deoxyadenosine ≈ adenine. Although we found that FeSm does not fluoresce within the visible spectrum and there is no quantum confinement effect seen in the absorption, the mechanism of linkage of the FeSm to these biomolecules appears to be primarily electrostatic and similar to that found for the attachment of ZnS quantum dots. The results of a preliminary study of similar reactions with nanoparticulate CuS further supported the suggestion that the interaction mechanism was generic for nanoparticulate transition metal sulphides. In terms of the FeS-world hypothesis, the results of this study further support the idea that sulphide minerals precipitated at hydrothermal vents interact with biomolecules and could have assisted in the formation and polymerisation of nucleic acids.

  7. Lipoic acid nanoparticles: effect of polymeric stabilizer on appetite suppression.

    PubMed

    Park, Chul Ho; Lee, Ki-Up; Park, Joong-Yeol; Koh, Eun-Hee; Kim, Hyoun-Sik; Lee, Jonghwi

    2010-08-01

    Alpha-lipoic acid (ALA), which is common in the human body, is efficacious in appetite suppression. However, its typical formulations of salt or micronized crystals cannot satisfy the desired bioavailability requirements for appetite suppression due to low absorption and a short plasma half-life. Herein, we describe a new ALA nanoparticulate formulation produced by nano-comminution using polymeric stabilizers, such as hydroxypropyl cellulose, Pluronic F127, and polyvinylpyrrolidone. Nanoparticles of similar sizes did not show any remarkable differences in the in vitro release profiles. However, the in vivo results from food intake studies in mice demonstrated that the hydroxypropyl cellulose case had the largest improved efficacy among the three polymeric stabilizer cases. Compared to the nanosuspension formulations, the powder formulations of nanoparticles had improved efficacy in reducing food intake for six hours, possibly because of the delayed release kinetics. Therefore, the ALA powder formulation of nanoparticles is a candidate to replace the current formulations to achieve proper appetite suppression.

  8. Structurally inhomogeneous nanoparticulate catalysts in cobalt-catalyzed carbon nanotube growth

    SciTech Connect

    Kohigashi, Y.; Yoshida, H.; Takeda, S.; Homma, Y.

    2014-08-18

    The structure of nanoparticulate catalysts involved in cobalt-catalyzed chemical vapor deposition growth of carbon nanotubes (CNTs) was investigated by in situ environmental transmission electron microscopy (ETEM). In contrast to previous studies, the analyses of ETEM images showed that the nanoparticulate catalysts were structurally inhomogeneous during CNT growth in the source gas of acetylene at a rate of pressure increase of about 3 Pa/h and at 550 °C. The lattice fringes observed in the nanoparticulate catalysts can be accounted for by not a single crystalline structure but by several possible pairs of structures including pure Co and cobalt carbides. The inhomogeneous structures were unstable with time. The possible origin of the inhomogeneous structures is discussed.

  9. Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems.

    PubMed

    Narang, Ajit S; Chang, Rong-Kun; Hussain, Munir A

    2013-11-01

    Pharmaceutical nanomaterials (NMs) encompass a wide variety of materials including drug nanoparticles (NPs), which can be amorphous or crystalline; or nanoparticulate drug delivery systems, such as micelles, microemulsions, liposomes, drug-polymer conjugates, and antibody-drug conjugates. These NMs are either transient or persistent-depending on whether the integrity of their structure and size is maintained until reaching the site of drug action. Examples of several approved drug products are included as pharmaceutical nanoparticulate systems along with a commentary on the current development issues and paradigms for various categories of NPs. This commentary discusses the preparation of nanoparticulate systems for commercial development, and the biopharmaceutical and pharmacokinetic advantages of these systems. A criterion of criticality is defined that incorporates the structure, in addition to size requirement of pharmaceutical NPs to identify systems that may require special development and regulatory considerations. PMID:24037829

  10. Chemical components, pharmacological properties, and nanoparticulate delivery systems of Brucea javanica

    PubMed Central

    Chen, Meiwan; Chen, Ruie; Wang, Shengpeng; Tan, Wen; Hu, Yangyang; Peng, Xinsheng; Wang, Yitao

    2013-01-01

    Brucea javanica has demonstrated a variety of antitumoral, antimalarial, and anti- inflammatory properties. As a Chinese herbal medicine, Brucea javanica is mainly used in the treatment of lung and gastrointestinal cancers. Pharmacological research has identified the main antitumor components are tetracyclic triterpene quassinoids. However, most of these active components have poor water solubility and low bioavailability, which greatly limit their clinical application. Nanoparticulate delivery systems are urgently needed to improve the bioavailability of Brucea javanica. This paper mainly focuses on the chemical components in Brucea javanica and its pharmacological properties and nanoparticulate formulations, in an attempt to encourage further research on its active components and nanoparticulate drug delivery systems to expand its clinical applications. It is expected to improve the level of pharmaceutical research and provide a strong scientific foundation for further study on the medicinal properties of this plant. PMID:23319860

  11. Structure evolution of nanoparticulate Fe2O3.

    PubMed

    Erlebach, Andreas; Kurland, Heinz-Dieter; Grabow, Janet; Müller, Frank A; Sierka, Marek

    2015-02-21

    The atomic structure and properties of nanoparticulate Fe2O3 are characterized starting from its smallest Fe2O3 building unit through (Fe2O3)n clusters to nanometer-sized Fe2O3 particles. This is achieved by combining global structure optimizations at the density functional theory level, molecular dynamics simulations by employing tailored, ab initio parameterized interatomic potential functions and experiments. With the exception of nearly tetrahedral, adamantane-like (Fe2O3)2 small (Fe2O3)n clusters assume compact, virtually amorphous structures with little or no symmetry. For n = 2-5 (Fe2O3)n clusters consist mainly of two- and three-membered Fe-O rings. Starting from n = 5 they increasingly assume tetrahedral shape with the adamantane-like (Fe2O3)2 unit as the main building block. However, the small energy differences between different isomers of the same cluster-size make precise structural assignment for larger (Fe2O3)n clusters difficult. The tetrahedral morphology persists for Fe2O3 nanoparticles with up to 3 nm in diameter. Simulated crystallization of larger nanoparticles with diameters of about 5 nm demonstrates pronounced melting point depression and leads to formation of ε-Fe2O3 single crystals with hexagonal morphology. This finding is in excellent agreement with the results obtained for Fe2O3 nanopowders generated by laser vaporization and provides the first direct indication that ε-Fe2O3 may be thermodynamically the most stable phase in this size regime. PMID:25587689

  12. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  13. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  14. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation

    PubMed Central

    Mills, Nicholas L.; Miller, Mark R.; Lucking, Andrew J.; Beveridge, Jon; Flint, Laura; Boere, A. John F.; Fokkens, Paul H.; Boon, Nicholas A.; Sandstrom, Thomas; Blomberg, Anders; Duffin, Rodger; Donaldson, Ken; Hadoke, Patrick W.F.; Cassee, Flemming R.; Newby, David E.

    2011-01-01

    Aim Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions. PMID:21753226

  15. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  16. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  17. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  18. Targeted polymeric nanoparticles for cancer gene therapy.

    PubMed

    Kim, Jayoung; Wilson, David R; Zamboni, Camila G; Green, Jordan J

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.

  19. Nanoparticules d'or: De l'imagerie par resonance magnetique a la radiosensibilisation

    NASA Astrophysics Data System (ADS)

    Hebert, Etienne M.

    Cette thèse approfondit l'étude de nanoparticules d'or de 5 nm de diamètre recouvertes de diamideéthanethioldiethylènetriaminepentacétate de gadolinium (DTDTPA:Gd), un agent de contraste pour l'imagerie par résonance magnétique (IRM). En guise de ciblage passif, la taille des nanoparticules a été contrôlée afin d'utiliser le réseau de néovaisseaux poreux et perméable des tumeurs. De plus les tumeurs ont un drainage lymphatique déficient qui permet aux nanoparticules de demeurer plus longtemps dans le milieu interstitiel de la tumeur. Les expériences ont été effectuées sur des souris Balb/c femelles portant des tumeurs MC7-L1. La concentration de nanoparticules a pu être mesurée à l'IRM in vivo. La concentration maximale se retrouvait à la fin de l'infusion de 10 min. La concentration s'élevait à 0.3 mM dans la tumeur et de 0.12 mM dans le muscle environnant. Les nanoparticules étaient éliminées avec une demi-vie de 22 min pour les tumeurs et de 20 min pour le muscle environnant. Les nanoparticules ont été fonctionnalisées avec le peptide Tat afin de leur conférer des propriétés de ciblage actif La rétention de ces nanoparticules a ainsi été augmentée de 1600 %, passant d'une demi-vie d'élimination de 22 min à 350 min. La survie des souris a été mesurée à l'aide de courbes Kaplan-Meier et d'un modèle mathématique évalue l'efficacité de traitements. Le modèle nous permet, à l'aide de la vitesse de croissance des tumeurs et de l'efficacité des traitements, de calculer la courbe de survie des spécimens. Un effet antagoniste a été observé au lieu de l'effet synergétique attendu entre une infusion de Au@DTDTPA:Gd et l'irradiation aux rayons X. L'absence d'effet synergétique a été attribuée à l'épaisseur du recouvrement de DTDTPA:Gd qui fait écran aux électrons produits par l'or. De plus, le moyen d'ancrage du recouvrement utilise des thiols qui peuvent s'avérer être des capteurs de radicaux. De plus

  20. X-ray phase computed tomography for nanoparticulated imaging probes and therapeutics: preliminary feasibility study

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2011-03-01

    With the scientific progress in cancer biology, pharmacology and biomedical engineering, the nano-biotechnology based imaging probes and therapeutical agents (namely probes/agents) - a form of theranostics - are among the strategic solutions bearing the hope for the cure of cancer. The key feature distinguishing the nanoparticulated probes/agents from their conventional counterparts is their targeting capability. A large surface-to-volume ratio in nanoparticulated probes/agents enables the accommodation of multiple targeting, imaging and therapeutic components to cope with the intra- and inter-tumor heterogeneity. Most nanoparticulated probes/agents are synthesized with low atomic number materials and thus their x-ray attenuation are very similar to biological tissues. However, their microscopic structures are very different, which may result in significant differences in their refractive properties. Recently, the investigation in the x-ray grating-based differential phase contrast (DPC) CT has demonstrated its advantages in differentiating low-atomic materials over the conventional attenuation-based CT. We believe that a synergy of x-ray grating-based DPC CT and nanoparticulated imaging probes and therapeutic agents may play a significant role in extensive preclinical and clinical applications, or even become a modality for molecular imaging. Hence, we propose to image the refractive property of nanoparticulated imaging probes and therapeutical agents using x-ray grating-based DPC CT. In this work, we conduct a preliminary feasibility study with a focus to characterize the contrast-to-noise ratio (CNR) and contrast-detail behavior of the x-ray grating-based DPC CT. The obtained data may be instructive to the architecture design and performance optimization of the x-ray grating-based DPC CT for imaging biomarker-targeted imaging probes and therapeutic agents, and even informative to the translation of preclinical research in theranostics into clinical applications.

  1. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity.

    PubMed

    Ma, Linglan; Liu, Jie; Li, Na; Wang, Jue; Duan, Yanmei; Yan, Jinying; Liu, Huiting; Wang, Han; Hong, Fashui

    2010-01-01

    In order to study the mechanisms underlying the effects of TiO(2) nanoparticles on the brain, ICR mice were injected with nanoparticulate anatase TiO(2) (5 nm) of various doses into the abdominal cavity daily for 14 days. We then examined the coefficient of the brain, the brain pathological changes and oxidative stress-mediated responses, and the accumulation of nanoparticulate anatase TiO(2) and levels of neurochemicals in the brain. The results showed that high-dose nanoparticulate anatase TiO(2) could induce some neurons to turn into filamentous shapes and others into inflammatory cells. The concentration of nanoparticulate anatase TiO(2) in the brain was increased as increases in nanoparticulate anatase TiO(2) dosages used. The oxidative stress and injury of the brain occurred as nanoparticulate anatase TiO(2) appeared to trigger a cascade of reactions such as lipid peroxidation, the decreases of the total anti-oxidation capacity and activities of antioxidative enzymes, the excessive release of nitric oxide, the reduction of glutamic acid, and the downregulated level of acetylcholinesterase activities. We concluded that TiO(2) nanoparticles injected at the abdominal cavity could be translocated into the brain and in turn caused the brain injury.

  2. Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.).

    PubMed

    Subbaiah, Layam Venkata; Prasad, Tollamadugu Naga Venkata Krishna Vara; Krishna, Thimmavajjula Giridhara; Sudhakar, Palagiri; Reddy, Balam Ravindra; Pradeep, Thalappil

    2016-05-18

    In the present investigation, nanoscale zinc oxide particulates (ZnO-nanoparticulates) were prepared using a modified oxalate decomposition method. Prepared ZnO-nanoparticulates (mean size = 25 nm) were characterized using techniques such as transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and zeta potential analyzer. Different concentrations (50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 ppm) of ZnO-nanoparticulates were examined to reveal their effects on maize crop on overall growth and translocation of zinc along with bulk ZnSO4 and control. Highest germination percentage (80%) and seedling vigor index (1923.20) were observed at 1500 ppm of ZnO-nanoparticulates. The yield was 42% more compared to control and 15% higher compared to 2000 ppm of ZnSO4. Higher accumulation of zinc (35.96 ppm) in grains was recorded with application of 100 ppm followed by 400 ppm (31.05 ppm) of ZnO-nanoparticulates. These results indicate that ZnO-nanoparticulates have significant effects on growth, yield, and zinc content of maize grains, which is an important feature in terms of human health. PMID:27089102

  3. Seeded growth of robust SERS-active 2D Au@Ag nanoparticulate films

    SciTech Connect

    Baker, Gary A; Dai, Sheng; Hagaman, Edward {Ed} W; Mahurin, Shannon Mark; Zhu, Haoguo; Bao, Lili

    2008-01-01

    We demonstrate herein a novel and versatile solution-based methodology for fabricating self-organized two-dimensional (2D) Au nanoparticle arrays on glass using in situ nucleation at an aminosilane monolayer followed by seeded, electroless growth; subsequent deposition of Ag produced Au{at}Ag core-shell nanoparticulate films which proved highly promising as surface-enhanced Raman scattering (SERS) platforms.

  4. Preparation and characterization of silica nanoparticulate polyacrylonitrile composite and porous nanofibers

    NASA Astrophysics Data System (ADS)

    Ji, Liwen; Saquing, Carl; Khan, Saad A.; Zhang, Xiangwu

    2008-02-01

    In this study, polyacrylonitrile (PAN) composite nanofibers containing different amounts of silica nanoparticulates have been obtained via electrospinning. The surface morphology, thermal properties and crystal structure of PAN/silica nanofibers are characterized using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, wide-angle x-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results indicate that the addition of silica nanoparticulates affects the structure and properties of the nanofibers. In addition to PAN/silica composite nanofibers, porous PAN nanofibers have been prepared by selective removal of the silica component from PAN/silica composite nanofibers using hydrofluoric (HF) acid. ATR-FTIR and thermal gravimetric analysis (TGA) experiments validate the removal of silica nanoparticulates by HF acid, whereas SEM and TEM results reveal that the porous nanofibers obtained from composite fibers with higher silica contents exhibited more nonuniform surface morphology. The Brunauer-Emmett-Teller (BET) surface area of porous PAN nanofibers made from PAN/silica (5 wt%) composite precursors is higher than that of pure nonporous PAN nanofibers.

  5. Evaluation of various adjuvant nanoparticulate formulations for meningococcal capsular polysaccharide-based vaccine.

    PubMed

    Gala, Rikhav P; D'Souza, Martin; Zughaier, Susu M

    2016-06-14

    Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and preventive vaccines. We have formulated a novel meningococcal nanoparticulate vaccine formulation that does not require chemical conjugation, but encapsulates meningococcal CPS polymers in a biodegradable material that slowly release antigens, thereby has antigen depot effect to enhance antigenicity. The novel vaccine formulation is inexpensive and can be stored as a dry powder with extended shelf life that does not require the cold-chain which facilitates storage and distribution. In order to enhance the antigenicity of meningococcal nanoparticulate vaccine, we screened various adjuvants formulated in nanoparticles, for their ability to potentiate antigen presentation by dendritic cells. Here, we report that MF59 and Alum are superior to TLR-based adjuvants in enhancing dendritic cell maturation and antigen presentation markers MHC I, MHC II, CD40, CD80 and CD86 in dendritic cells pulsed with meningococcal CPS nanoparticulate vaccine. PMID:27177946

  6. A new x-ray adhesive system with embedded nanoparticulate silver markers for dental applications

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Venig, Sergey B.; Atkin, Vsevolod S.; Zacharevich, Andrey M.

    2013-02-01

    In the present study a new adhesive system with embedded PVP-stabilized nano-particulate silver markers has been designed. Nanosized silver was used as a radio-opaque contrast material in SEM examination of adhesive system in dentine. It was studied the impact of nano-particulate silver fillers on rheological properties of adhesive system and its penetration in dentine volume. A SEM comparative evaluation of resin replicas produced using adhesive system with embedded silver nanoparticles and that without ones was carried out. It was shown that embedding of silver nanoparticles into adhesive system did not make its penetration worse. It was established that embedding of nanosized silver changed adhesive system morphology. The methodology that allows visualizing interfaces and intermediate layers between dentine, adhesive system and restorative material using silver nano-particulate markers was developed and approved. Silver nanoparticles were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine with differently oriented dentinal tubules, bonding resin delivery and gravity.

  7. Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer.

    PubMed

    Vaughan, Ben; Williams, Evan L; Holmes, Natalie P; Sonar, Prashant; Dodabalapur, Ananth; Dastoor, Paul C; Belcher, Warwick J

    2014-02-14

    Organic photovoltaic devices with either bulk heterojunction (BHJ) or nanoparticulate (NP) active layers have been prepared from a 1 : 2 blend of (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene}) (PDPP-TNT) and the fullerene acceptor, ([6,6]-phenyl C71-butyric acid methyl ester) (PC70BM). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to investigate the morphology of the active layers of the two approaches. Mild thermal treatment of the NP film is required to promote initial joining of the NPs in order for the devices to function, however the NP structure is retained. Consequently, whereas gross phase segregation of the active layer occurs in the BHJ device spin cast from chloroform, the nanoparticulate approach retains control of the material domain sizes on the length scale of exciton diffusion in the materials. As a result, NP devices are found to generate more than twice the current density of BHJ devices and have a substantially greater overall efficiency. The use of aqueous nanoparticulate dispersions offers a promising approach to control the donor acceptor morphology on the nanoscale with the benefit of environmentally-friendly, solution-based fabrication.

  8. Study of an ultrasound-based process analytical tool for homogenization of nanoparticulate pharmaceutical vehicles.

    PubMed

    Cavegn, Martin; Douglas, Ryan; Akkermans, Guy; Kuentz, Martin

    2011-08-01

    There are currently no adequate process analyzers for nanoparticulate viscosity enhancers. This article aims to evaluate ultrasonic resonator technology as a monitoring tool for homogenization of nanoparticulate gels. Aqueous dispersions of colloidal microcrystalline cellulose (MCC) and a mixture of clay particles with xanthan gum were compared with colloidal silicon dioxide in oil. The processing was conducted using a laboratory-scale homogenizing vessel. The study investigated first the homogenization kinetics of the different systems to focus then on process factors in the case of colloidal MCC. Moreover, rheological properties were analyzed offline to assess the structure of the resulting gels. Results showed the suitability of ultrasound velocimetry to monitor the homogenization process. The obtained data were fitted using a novel heuristic model. It was possible to identify characteristic homogenization times for each formulation. The subsequent study of the process factors demonstrated that ultrasonic process analysis was equally sensitive as offline rheological measurements in detecting subtle manufacturing changes. It can be concluded that the ultrasonic method was able to successfully assess homogenization of nanoparticulate viscosity enhancers. This novel technique can become a vital tool for development and production of pharmaceutical suspensions in the future.

  9. Nanoparticulate Adjuvants and Delivery Systems for Allergen Immunotherapy

    PubMed Central

    De Souza Rebouças, Juliana; Esparza, Irene; Ferrer, Marta; Sanz, María Luisa; Irache, Juan Manuel; Gamazo, Carlos

    2012-01-01

    In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants. Nevertheless, the use of adjuvants still has several disadvantages, which limits its use in human vaccines. In this context, several novel adjuvants for allergen immunotherapy are currently being investigated and developed. Currently, nanoparticles-based allergen-delivery systems have received much interest as potential adjuvants for allergen immunotherapy. It has been demonstrated that the incorporation of allergens into a delivery system plays an important role in the efficacy of allergy vaccines. Several nanoparticles-based delivery systems have been described, including biodegradable and nondegradable polymeric carriers. Therefore, this paper provides an overview of the current adjuvants used for allergen immunotherapy. Furthermore, nanoparticles-based allergen-delivery systems are focused as a novel and promising strategy for allergy vaccines. PMID:22496608

  10. Nanoparticulate adjuvants and delivery systems for allergen immunotherapy.

    PubMed

    De Souza Rebouças, Juliana; Esparza, Irene; Ferrer, Marta; Sanz, María Luisa; Irache, Juan Manuel; Gamazo, Carlos

    2012-01-01

    In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants. Nevertheless, the use of adjuvants still has several disadvantages, which limits its use in human vaccines. In this context, several novel adjuvants for allergen immunotherapy are currently being investigated and developed. Currently, nanoparticles-based allergen-delivery systems have received much interest as potential adjuvants for allergen immunotherapy. It has been demonstrated that the incorporation of allergens into a delivery system plays an important role in the efficacy of allergy vaccines. Several nanoparticles-based delivery systems have been described, including biodegradable and nondegradable polymeric carriers. Therefore, this paper provides an overview of the current adjuvants used for allergen immunotherapy. Furthermore, nanoparticles-based allergen-delivery systems are focused as a novel and promising strategy for allergy vaccines.

  11. On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae.

    PubMed

    Angel, Brad M; Vallotton, Pascal; Apte, Simon C

    2015-11-01

    The factors affecting the chronic (72-h) toxicity of three nanoparticulate (10-34nm) and one micron-sized form of CeO2 to the green alga, Pseudokirchneriella subcapitata were investigated. To characterise transformations in solution, hydrodynamic diameters (HDD) were measured by dynamic light scatter, zeta potential values by electrophoretic mobility, and dissolution by equilibrium dialysis. The protective effects of humic and fulvic dissolved organic carbon (DOC) on toxicity were also assessed. To investigate the mechanisms of algal toxicity, the CytoViva hyperspectral imaging system was used to visualise algal-CeO2 interactions in the presence and absence of DOC, and the role of reactive oxygen species (ROS) was investigated by 'switching off' ROS production using UV-filtered lighting conditions. The nanoparticulate CeO2 immediately aggregated in solution to HDDs measured in the range 113-193nm, whereas the HDD and zeta potential values were significantly lower in the presence of DOC. Negligible CeO2 dissolution over the time course of the bioassay ruled out potential toxicity from dissolved cerium. The nanoparticulate CeO2 concentration that caused 50% inhibition of algal growth rate (IC50) was in the range 7.6-28mg/L compared with 59mg/L for micron-sized ceria, indicating that smaller particles were more toxic. The presence of DOC mitigated toxicity, with IC50s increasing to greater than 100mg/L. Significant ROS were generated in the nanoparticulate CeO2 bioassays under normal light conditions. However, 'switching off' ROS under UV-filtered light conditions resulted in a similar IC50, indicating that ROS generation was not the toxic mechanism. The CytoViva imaging showed negligible sorption of nanoparticulate CeO2 to algal cells in the presence of DOC, and strong sorption in its absence, suggesting that this was the toxic mechanism. The results suggest that DOC in natural waters will coat CeO2 particles and mitigate toxicity to algal cells.

  12. Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: behavioral and biochemical assessment.

    PubMed

    Kaur, Prabhjot; Garg, Tarun; Vaidya, Bhuvaneshwar; Prakash, Atish; Rath, Goutam; Goyal, Amit K

    2015-04-01

    This study was aimed for brain delivery of Tramadol HCl (centrally acting synthetic opioid) following intranasal administration for treatment of depression. Chitosan nanoparticles (NPs) were prepared by ionic gelation method followed by the addition of developed NPs with in the Pluronic and HPMC-based mucoadhesive thermo-reversible gel. Developed formulation optimized based on the various parameters such as particle size, entrapment efficiency, in vitro release study. Depression induction was done by forced swim test and evaluated by various behavioral and biochemical parameters. Furthermore, results showed significantly increased in locomotors activity, body weight as compared to control group. It also showed alteration in biochemical parameters such glutathione level and catalase levels significantly increased other than lipid peroxidation and nitrite level was found to be decreased after intranasal administration of formulation. Thus, intranasal TRM HCl NP-loaded in situ gel was found to be a promising formulation for the treatment of depression.

  13. Polymerization of perfluorobutadiene

    NASA Technical Reports Server (NTRS)

    Newman, J.; Toy, M. S.

    1970-01-01

    Diisopropyl peroxydicarbonate dissolved in liquid perfluorobutadiene is conducted in a sealed vessel at the autogenous pressure of polymerization. Reaction temperature, ratio of catalyst to monomer, and amount of agitation determine degree of polymerization and product yield.

  14. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  15. Topical nanoparticulate formulation of drugs for ocular keratitis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyan

    The primary objective of this project is to develop drug-loaded polymeric nanoparticles suspended in a biocompatible gel for topical delivery of therapeutic agents commonly employed in the treatment of ocular viral/bacterial keratitis. PART 1: Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) of dipeptide monoester prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV), D-Val-L-Val-GCV (DLGCV) were formulated and dispersed in thermosensitive PLGA-PEG-PLGA polymer gel for the treatment of herpes simplex virus type 1 (HSV-1) induced viral corneal keratitis. NP containing prodrugs of GCV were prepared by a double-emulsion solvent evaporation technique using various PLGA polymers with different drug/polymer ratios. Cytotoxicity studies suggested that all NP formulations are non-toxic. In vitro release of prodrugs from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels with near zero-order release kinetics. Prodrugs-loaded PLGA NP dispersed in thermosensitive gels can thus serve as a promising drug delivery system for the treatment of anterior eye diseases. Maximum uptake (around 60%) was noted at 3 h for NP. Cellular uptake and intracellular accumulation of prodrugs are significantly different among three stereoisomeric dipeptide prodrugs. The microscopic images show that NP are avidly internalized by HCEC cells and distributed throughout the cytoplasm instead of being localized on the cell surface. Following cellular uptake, prodrugs released from NP gradually bioreversed into parent drug GCV. LLGCV showed the highest degradation rate, followed by LDGCV and DLGCV. LLGCV, LDGCV and DLGCV released from NP exhibited superior uptake and bioreversion in corneal cells. PART 2: PLGA NP of hydrocortisone butyrate (HB) suspended in thermosensitive PLGA-PEG-PLGA gel were developed for the treatment of

  16. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles

    PubMed Central

    Hwang, Tsong-Long; Aljuffali, Ibrahim A; Lin, Chwan-Fwu; Chang, Yuan-Ting; Fang, Jia-You

    2015-01-01

    This report compares the effect of lipid and polymeric nanoparticles upon human neutrophils in the presence of cationic surfactants. Nanostructured lipid carriers and poly(lactic-co-glycolic) acid nanoparticles were manufactured as lipid and polymeric systems, respectively. Some cytotoxic and proinflammatory mediators such as lactate dehydrogenase (LDH), elastase, O2•−, and intracellular Ca2+ were examined. The nanoparticles showed a size of 170–225 nm. Incorporation of cetyltrimethylammonium bromide or soyaethyl morpholinium ethosulfate, the cationic surfactant, converted zeta potential from a negative to a positive charge. Nanoparticles without cationic surfactants revealed a negligible change on immune and inflammatory responses. Cationic surfactants in both nanoparticulate and free forms induced cell death and the release of mediators. Lipid nanoparticles generally demonstrated a greater response compared to polymeric nanoparticles. The neutrophil morphology observed by electron microscopy confirmed this trend. Cetyltrimethylammonium bromide as the coating material showed more significant activation of neutrophils than soyaethyl morpholinium ethosulfate. Confocal microscope imaging displayed a limited internalization of nanoparticles into neutrophils. It is proposed that cationic nanoparticles interact with the cell membrane, triggering membrane disruption and the following Ca2+ influx. The elevation of intracellular Ca2+ induces degranulation and oxidative stress. The consequence of these effects is cytotoxicity and cell death. Caution should be taken when selecting feasible nanoparticulate formulations and cationic additives for consideration of applicability and toxicity. PMID:25609950

  17. Smart Polymeric Nanoparticles for Cancer Gene Delivery

    PubMed Central

    2015-01-01

    The massive amount of human genetic information already available has accelerated the identification of target genes, making gene and nucleic acid therapy the next generation of medicine. Nanoparticle (NP)-based anticancer gene therapy treatment has received significant interest in this evolving field. Recent advances in vector technology have improved gene transfection efficiencies of nonviral vectors to a level similar to viruses. This review serves as an introduction to surface modifications of NPs based on polymeric structural improvements and target moieties. A discussion regarding the future perspective of multifunctional NPs in cancer therapy is also included. PMID:25531409

  18. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-11-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)—nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  19. Sweating liquid micro-marbles: dropwise condensation on hydrophobic nanoparticulate materials.

    PubMed

    Bhosale, Prasad S; Panchagnula, Mahesh V

    2012-10-23

    Liquid marbles have opened up several potential applications including biochemical batch reaction engineering and gas sensing. To be successful candidates in these applications, the ability to prepare liquid marbles of controlled sizes and in a continuous process is crucial. This has been the missing link in the science leading to these applications. In the current study, we present a remarkably simple process driven by condensation on a nanoparticulate matrix to continuously produce liquid marbles whose mean size can be controlled in the range of diameters from 3 to 1000 μm, while the distribution width is also controllable independently. We experimentally demonstrate the physics involved in this condensation-driven marble formation process using two fluids-glycerol and ethylene glycol-which span an order of magnitude in viscosity. Hydrophobic fumed silica nanoparticulate material is used as the encapsulating medium owing to its intertwined agglomerate nature. We show that the primary mechanism causing the formation of liquid marbles is droplet nucleation followed by growth driven by condensation. Drop coalescence in dense droplet ensembles is the secondary mechanism, which attempts to destroy the distribution width controllability. From a physics perspective, it will be demonstrated that strong coalescence dominated growth gives rise to a hitherto unreported, significantly higher rate of growth.

  20. Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Garza, K. M.

    A wide range of environmental particulate matter (PM) both indoor and outdoor and consisting of natural and anthropogenic PM was collected by high volume air filters, electrostatic precipitation, and thermophoretic precipitation directly onto transmission electron microscope (TEM) coated grid platforms. These collected PM have been systematically characterized by TEM, energy-dispersive X-ray spectrometry (EDS) and scanning electron microscopy (SEM). In the El Paso, TX, USA/Juarez, Mexico metroplex 93% of outdoor PM 1 is crystalline while 40% of PM 1 is carbonaceous soot (including multiwall carbon nanotubes (MWCNTs) and multiconcentric fullerenes) PM. Multiply-replicated cytotoxicity ( in vitro) assays utilizing a human epithelial (lung model) cell line (A549) consistently demonstrated varying degrees of cell death for essentially all PM which was characterized as aggregates of nanoparticulates or primary nanoparticles. Cytokine release was detected for Fe 2O 3, chrysotile asbestos, BC, and MWCNT PM while reactive oxygen species (ROS) production has been detected for Fe 2O 3, asbestos, BC, and MWCNT aggregate PM as well as natural gas combustion PM. Nanoparticulate materials in the indoor and outdoor environments appear to be variously cytotoxic, especially carbonaceous nano-PM such as multiwall carbon nanotubes, black carbon, and soot nano-PM produced by natural gas combustion.

  1. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice.

    PubMed

    Aslam, Mohamad F; Frazer, David M; Faria, Nuno; Bruggraber, Sylvaine F A; Wilkins, Sarah J; Mirciov, Cornel; Powell, Jonathan J; Anderson, Greg J; Pereira, Dora I A

    2014-08-01

    The ferritin core is composed of fine nanoparticulate Fe(3+) oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe(3+) polyoxohydroxide (nanoFe(3+)). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe(2+) sulfate (FeSO4), nanoFe(3+), or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe(3+) was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe(3+) are equally bioavailable in WT mice, and at wk 8 the mean ± SEM hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe(3+) group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe(3+) is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.

  2. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    NASA Astrophysics Data System (ADS)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  3. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  4. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  5. The Science Behind Nanosun-Screens: Learning about Nanoparticulate Ingredients Used to Block the Sun's Ultraviolet Rays

    ERIC Educational Resources Information Center

    Wise, Alyssa; Schank, Patricia; Stanford, Tina; Horsma, Geri

    2009-01-01

    In this article, the authors provide a brief overview of the emerging field of nanoscience and why it is an important area of education. They next explain the science behind the new nanoparticulate sunscreens, describe the different elements of the unit, and reflect on some of the opportunities and challenges of teaching nanoscience at the high…

  6. Development and in vivo evaluation of a new oral nanoparticulate dosage form for leuprolide based on polyacrylic acid.

    PubMed

    Iqbal, Javed; Vigl, Claudia; Moser, Gernot; Gasteiger, Markus; Perera, Glen; Bernkop-Schnürch, Andreas

    2011-08-01

    It was the aim of this study to develop a nanoparticulate oral drug delivery system for leuprolide based on polyacrylic acid (PAA). In order to achieve formation of nanoparticles in a mild, aqueous environment, two different techniques were combined, namely hydrophobic ion pairing between leuprolide and sodium dodecyl sulphate in a first step, followed by encapsulation into nanoparticles gained by interpolymer complexation between polyacrylic acid and Pluronic F68. The obtained nanoparticles were characterized regarding particle size distribution, drug encapsulation efficiency and in vitro release profile. Additionally, the pharmacokinetic profiles of leuprolide after oral administration of PAA-nanoparticulate and PAA-control tablets to male Sprague-Dawley rats were assessed and compared. It could be shown, that hydrophobic ion pairing increased encapsulation efficacy of leuprolide and leads to a slowed drug release of nanoparticulate suspensions. Relative oral bioavailability of leuprolide could be increased by nanoparticulate tablets up to 4.2-fold. Results verify that the suggested approach is a promising strategy for the design of oral delivery systems for oral administration of peptide drugs.

  7. Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization.

    PubMed

    Colzani, Barbara; Speranza, Giovanna; Dorati, Rossella; Conti, Bice; Modena, Tiziana; Bruni, Giovanna; Zagato, Elisa; Vermeulen, Lotte; Dakwar, George R; Braeckmans, Kevin; Genta, Ida

    2016-09-25

    Active drug targeting and controlled release of hydrophilic macromolecular drugs represent crucial points in designing efficient polymeric drug delivery nanoplatforms. In the present work EGFR-targeted polylactide-co-glycolide (PLGA) nanoparticles were made by a blend of two different PLGA-based polymers. The first, GE11-PLGA, in which PLGA was functionalized with GE11, a small peptide and EGFR allosteric ligand, able to give nanoparticles selective targeting features. The second polymer was a PEGylated PLGA (PEG-PLGA) aimed at improving nanoparticles hydrophilicity and stealth features. GE11 and GE11-PLGA were custom synthetized through a simple and inexpensive method. The nanoprecipitation technique was exploited for the preparation of polymeric nanoparticles composed by a 1:1weight ratio between GE11-PLGA and PEG-PLGA, obtaining smart nanoplatforms with proper size for parenteral administration (143.9±5.0nm). In vitro cellular uptake in EGFR-overexpressing cell line (A549) demonstrated an active internalization of GE11-functionalized nanoparticles. GE11-PLGA/PEG-PLGA blend nanoparticles were loaded with Myoglobin, a model hydrophilic macromolecule, reaching a good loading (2.42% respect to the theoretical 4.00% w/w) and a prolonged release over 60days. GE11-PLGA/PEG-PLGA blend nanoparticles showed good in vitro stability for 30days in physiological saline solution at 4°C and for 24h in pH 7.4 or pH 5.0 buffer at 37°C respectively, giving indications about potential storage and administration conditions. Furthermore ex vivo stability study in human plasma using fluorescence Single Particle Tracking (fSPT) assessed good GE11-PLGA/PEG-PLGA nanoparticles dimensional stability after 1 and 4h. Thanks to the versatility in polymeric composition and relative tunable nanoparticles features in terms of drug incorporation and release, GE11-PLGA/PEG-PLGA blend NPs can be considered highly promising as smart nanoparticulate platforms for the treatment of diseases

  8. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  9. Halley's polymeric organic molecules

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.; Boice, D. C.; Korth, A.

    1989-01-01

    The detection of polymeric organic compounds in the mass spectrum of Comet Halley obtained with the Positive Ion Cluster Composition analyzer on Giotto are examined. It is found that, in addition to polyoxymethylene, other polymers and complex molecules may exist in the comet. It is suggested that polymerized hydrogen cyanide may be a source for the observed CN and NH2 jets.

  10. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  11. Polymeric Carbon Dioxide

    SciTech Connect

    Yoo, C-S.

    1999-11-02

    Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO{sub 2}-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO{sub 2}-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. CO{sub 2}-V is made of CO{sub 4} tetrahedra, analogous to SiO{sub 2} polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO{sub 2}-V. We also present some implications of polymeric CO{sub 2} for high-pressure chemistry and new materials synthesis.

  12. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    PubMed

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-01-01

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  13. In vitro and in vivo evaluation of a nanoparticulate bioceramic paste for dental pulp repair.

    PubMed

    Zhu, Lingxin; Yang, Jingwen; Zhang, Jie; Lei, Dongqi; Xiao, Lan; Cheng, Xue; Lin, Ying; Peng, Bin

    2014-12-01

    Bioactive materials play an important role in facilitating dental pulp repair when living dental pulp is exposed after injuries. Mineral trioxide aggregate is the currently recommended material of choice for pulp repair procedures though has several disadvantages, especially the inconvenience of handling. Little information is yet available about the early events and molecular mechanisms involved in bioceramic-mediated dental pulp repair. We aimed to characterize and determine the apatite-forming ability of the novel ready-to-use nanoparticulate bioceramic iRoot BP Plus, and investigate its effects on the in vitro recruitment of human dental pulp stem cells (DPSCs), as well as its capacity to induce dentin bridge formation in an in vivo model of pulp repair. It was found that iRoot BP Plus was nanosized and had excellent apatite-forming ability in vitro. Treatment with iRoot BP Plus extracts promoted the adhesion, migration and attachment of DPSCs, and optimized focal adhesion formation (Vinculin, p-Paxillin and p-Focal adhesion kinase) and stress fibre assembly. Consistent with the in vitro results, we observed the formation of a homogeneous dentin bridge and the expression of odontogenic (dentin sialoprotein, dentin matrix protein 1) and focal adhesion molecules (Vinculin, p-Paxillin) at the injury site of pulp repair model by iRoot BP Plus. Our findings provide valuable insights into the mechanism of bioceramic-mediated dental pulp repair, and the novel revolutionary ready-to-use nanoparticulate bioceramic paste shows promising therapeutic potential in dental pulp repair application. PMID:25182220

  14. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials

    PubMed Central

    Xie, Jingwei; Jiang, Jiang; Davoodi, Pooya; Srinivasan, M. P.; Wang, Chi-Hwa

    2014-01-01

    Electrohydrodynamic atomization (EHDA), also called electrospray technique, has been studied for more than one century. However, since 1990s it has begun to be used to produce and process micro-/nanostructured materials. Owing to the simplicity and flexibility in EHDA experimental setup, it has been successfully employed to generate particulate materials with controllable compositions, structures, sizes, morphologies, and shapes. EHDA has also been used to deposit micro- and nanoparticulate materials on surfaces in a well-controlled manner. All these attributes make EHDA a fascinating tool for preparing and assembling a wide range of micro- and nanostructured materials which have been exploited for use in pharmaceutics, food, and healthcare to name a few. Our goal is to review this field, which allows scientists and engineers to learn about the EHDA technique and how it might be used to create, process, and assemble micro-/nanoparticulate materials with unique and intriguing properties. We begin with a brief introduction to the mechanism and setup of EHDA technique. We then discuss issues critical to successful application of EHDA technique, including control of composition, size, shape, morphology, structure of particulate materials and their assembly. We also illustrate a few of the many potential applications of particulate materials, especially in the area of drug delivery and regenerative medicine. Next, we review the simulation and modeling of Taylor cone-jet formation for a single and co-axial nozzle. The mathematical modeling of particle transport and deposition is presented to provide a deeper understanding of the effective parameters in the preparation, collection and pattering processes. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25684778

  15. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs

    PubMed Central

    Choi, Jinhyang; Ko, Eunjung; Chung, Hye-Kyung; Lee, Jae Hee; Ju, Eun Jin; Lim, Hyun Kyung; Park, Intae; Kim, Kab-Sig; Lee, Joo-Hwan; Son, Woo-Chan; Lee, Jung Shin; Jung, Joohee; Jeong, Seong-Yun; Song, Si Yeol; Choi, Eun Kyung

    2015-01-01

    Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX), under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™) technology enabled successful nanoscale particulation of DTX (Nufs-DTX). Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR) effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in edema, paralysis, and paw-withdrawal latency on a hot plate analysis that are regarded as indicators of fluid retention, peripheral neuropathy, and thermal threshold, respectively, for toxicological tests. In summary, compared with Taxotere™, Nufs-DTX, which was generated by our new platform technology using lipid, supercritical fluid, and carbon dioxide (CO2), maintained its biochemical properties as a cytotoxic agent and had better tumor targeting ability, better in vivo therapeutic effect, and less toxicity, thereby overcoming the current hurdles of traditional drugs. PMID:26457052

  16. Lentiviral vectors.

    PubMed

    Giry-Laterrière, Marc; Verhoeyen, Els; Salmon, Patrick

    2011-01-01

    Lentiviral vectors have evolved over the last decade as powerful, reliable, and safe tools for stable gene transfer in a wide variety of mammalian cells. Contrary to other vectors derived from oncoretroviruses, they allow for stable gene delivery into most nondividing primary cells. In particular, lentivectors (LVs) derived from HIV-1 have gradually evolved to display many desirable features aimed at increasing both their safety and their versatility. This is why lentiviral vectors are becoming the most useful and promising tools for genetic engineering, to generate cells that can be used for research, diagnosis, and therapy. This chapter describes protocols and guidelines, for production and titration of LVs, which can be implemented in a research laboratory setting, with an emphasis on standardization in order to improve transposability of results between laboratories. We also discuss latest designs in LV technology.

  17. Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Kandanapitiye, Murthi S.

    The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X

  18. Concise polymeric materials encyclopedia

    SciTech Connect

    Salamone, J.C.

    1999-01-01

    This comprehensive, accessible resource abridges the ``Polymeric Materials Encyclopedia'', presenting more than 1,100 articles and featuring contributions from more than 1,800 scientists from all over the world. The text discusses a vast array of subjects related to the: (1) synthesis, properties, and applications of polymeric materials; (2) development of modern catalysts in preparing new or modified polymers; (3) modification of existing polymers by chemical and physical processes; and (4) biologically oriented polymers.

  19. Radical-Mediated Enzymatic Polymerizations.

    PubMed

    Zavada, Scott R; Battsengel, Tsatsral; Scott, Timothy F

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes--catalytic proteins--owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol-ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  20. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  1. Novel low voltage and solution processable organic thin film transistors based on water dispersed polymer semiconductor nanoparticulates.

    PubMed

    Darwis, Darmawati; Elkington, Daniel; Ulum, Syahrul; Bryant, Glenn; Belcher, Warwick; Dastoor, Paul; Zhou, Xiaojing

    2013-07-01

    Two novel organic thin film transistor structures that combine a hygroscopic insulator with the use of water-dispersed polymer nanoparticles as the active layer are presented. In the first device structure, the semiconducting layer was fabricated from a nanoparticulate suspension of poly-(3-hexylthiophene) prepared through a mini-emulsion process using sodium dodecyl sulfate as the surfactant whereas a surfactant-free precipitation method has been used for the second device structure. In both cases, fully solution processable transistors have been fabricated in a top gate configuration with hygroscopic poly(4-vinylphenol) as the dielectric layer. Both device structures operate at low voltages (0 to -4V) but exhibit contrasting output characteristics. A systematic study is presented on the effect of surfactant on the synthesis of semiconducting nanoparticles, the formation of thin nanoparticulate films and, consequently, on device performance.

  2. Polymerization shrinkage assessment of dental resin composites: a literature review.

    PubMed

    Kaisarly, Dalia; Gezawi, Moataz El

    2016-09-01

    Composite restorations are widely used worldwide, but the polymerization shrinkage is their main disadvantage that may lead to clinical failures and adverse consequences. This review reports, currently available in vitro techniques and methods used for assessing the polymerization shrinkage. The focus lies on recent methods employing three-dimensional micro-CT data for the evaluation of polymerization shrinkage: volumetric measurement and the shrinkage vector evaluation through tracing particles before and after polymerization. Original research articles reporting in vitro shrinkage measurements and shrinkage stresses were included in electronic and hand-search. Earlier methods are easier, faster and less expensive. The procedures of scanning the samples in the micro-CT and performing the shrinkage vector evaluation are time consuming and complicated. Moreover, the respective software is not commercially available and the various methods for shrinkage vector evaluation are based on different mathematical principles. Nevertheless, these methods provide clinically relevant information and give insight into the internal shrinkage behavior of composite applied in cavities and how boundary conditions affect the shrinkage vectors. The traditional methods give comparative information on polymerization shrinkage of resin composites, whereas using three-dimensional micro-CT data for volumetric shrinkage measurement and the shrinkage vector evaluation is a highly accurate method. The methods employing micro-CT data give the researchers knowledge related to the application method and the boundary conditions of restorations for visualizing the shrinkage effects that could not be seen otherwise. Consequently, this knowledge can be transferred to the clinical situation to optimize the material manipulation and application techniques for improved outcomes. PMID:27540733

  3. Polymerization shrinkage assessment of dental resin composites: a literature review.

    PubMed

    Kaisarly, Dalia; Gezawi, Moataz El

    2016-09-01

    Composite restorations are widely used worldwide, but the polymerization shrinkage is their main disadvantage that may lead to clinical failures and adverse consequences. This review reports, currently available in vitro techniques and methods used for assessing the polymerization shrinkage. The focus lies on recent methods employing three-dimensional micro-CT data for the evaluation of polymerization shrinkage: volumetric measurement and the shrinkage vector evaluation through tracing particles before and after polymerization. Original research articles reporting in vitro shrinkage measurements and shrinkage stresses were included in electronic and hand-search. Earlier methods are easier, faster and less expensive. The procedures of scanning the samples in the micro-CT and performing the shrinkage vector evaluation are time consuming and complicated. Moreover, the respective software is not commercially available and the various methods for shrinkage vector evaluation are based on different mathematical principles. Nevertheless, these methods provide clinically relevant information and give insight into the internal shrinkage behavior of composite applied in cavities and how boundary conditions affect the shrinkage vectors. The traditional methods give comparative information on polymerization shrinkage of resin composites, whereas using three-dimensional micro-CT data for volumetric shrinkage measurement and the shrinkage vector evaluation is a highly accurate method. The methods employing micro-CT data give the researchers knowledge related to the application method and the boundary conditions of restorations for visualizing the shrinkage effects that could not be seen otherwise. Consequently, this knowledge can be transferred to the clinical situation to optimize the material manipulation and application techniques for improved outcomes.

  4. Organocatalyzed Group Transfer Polymerization.

    PubMed

    Chen, Yougen; Kakuchi, Toyoji

    2016-08-01

    In contrast to the conventional group transfer polymerization (GTP) using a catalyst of either an anionic nucleophile or a transition-metal compound, the organocatalyzed GTP has to a great extent improved the living characteristics of the polymerization from the viewpoints of synthesizing structurally well-defined acrylic polymers and constructing defect-free polymer architectures. In this article, we describe the organocatalyzed GTP from a relatively personal perspective to provide our colleagues with a perspicuous and systematic overview on its recent progress as well as a reply to the curiosity of how excellently the organocatalysts have performed in this field. The stated perspectives of this review mainly cover five aspects, in terms of the assessment of the livingness of the polymerization, limit and scope of applicable monomers, mechanistic studies, control of the polymer structure, and a new GTP methodology involving the use of tris(pentafluorophenyl)borane and hydrosilane. PMID:27427399

  5. Polymerization of vegetable oils

    SciTech Connect

    Korus, R.A.; Mousetis, T.L.; Lloyd, L.

    1982-01-01

    The addition of antioxidants and dispersants is not sufficient to eliminate gum formation in vegetable oils. Even with relatively unsaturated oils like rapeseed the extent of unsaturation overwhelms these additives. Fuel deterioration during storage will be minimized in an anaerobic storage environment and, to a lesser extent, with a lower degree of oil unsaturation. Gum formation and carbon coking can also occur immediately preceding and during combustion. Thermal polymerization may be the dominant gum forming reaction under combustion conditions since thermal polymerization has a higher activation energy than oxidative polymerization and anaerobic conditions can occur within atomized fuel droplets. Carbon coking can be reduced with a lower degree of oil unsaturation and with better atomization of the fuel. 4 figures, 1 table.

  6. Novel Polymeric Nanoparticles Intended for Ophthalmic Administration of Acetazolamide.

    PubMed

    Quinteros, Daniela A; Ferreira, Luana M; Schaffazick, Scheila Rezende; Palma, Santiago D; Allemandi, Daniel A; Cruz, Letícia

    2016-10-01

    Glaucoma is characterized by increased intraocular pressure (IOP) that results in blindness if it remains untreated. Acetazolamide (AZM) is a carbonic anhydrase inhibitor, mainly used to reduce IOP in the treatment of glaucoma. However, the potential of topical treatment is limited, due to its low permeability across the ocular epithelium. An alternative to overcome this limitation is the incorporation of AZM in nanoparticulate systems, such as polymeric nanocapsules (NCs). In this way, the aim of this work was to prepare and characterize NC formulations containing AZM, using ethylcellulose (EC) and Eudragit(®) RS100 (EUD) as encapsulating polymers. The formulations showed high encapsulation efficiency. Particle size measurements showed that NCs are in the nanometric range. Comparing both groups of formulations, the NCEC proved to be smaller than those prepared with EUD. The formulations prepared with EC showed negative zeta potentials, while NCs of EUD were positively charged. For both groups of formulations, no more than 30% of drug was released in 120 min. Ex vivo and in vivo studies evidenced that the NCEC formulations were the most efficient, because an increased amount of permeated drug was observed, along with a greater IOP decrease and longer duration of the effect in normotensive rabbits.

  7. Novel Polymeric Nanoparticles Intended for Ophthalmic Administration of Acetazolamide.

    PubMed

    Quinteros, Daniela A; Ferreira, Luana M; Schaffazick, Scheila Rezende; Palma, Santiago D; Allemandi, Daniel A; Cruz, Letícia

    2016-10-01

    Glaucoma is characterized by increased intraocular pressure (IOP) that results in blindness if it remains untreated. Acetazolamide (AZM) is a carbonic anhydrase inhibitor, mainly used to reduce IOP in the treatment of glaucoma. However, the potential of topical treatment is limited, due to its low permeability across the ocular epithelium. An alternative to overcome this limitation is the incorporation of AZM in nanoparticulate systems, such as polymeric nanocapsules (NCs). In this way, the aim of this work was to prepare and characterize NC formulations containing AZM, using ethylcellulose (EC) and Eudragit(®) RS100 (EUD) as encapsulating polymers. The formulations showed high encapsulation efficiency. Particle size measurements showed that NCs are in the nanometric range. Comparing both groups of formulations, the NCEC proved to be smaller than those prepared with EUD. The formulations prepared with EC showed negative zeta potentials, while NCs of EUD were positively charged. For both groups of formulations, no more than 30% of drug was released in 120 min. Ex vivo and in vivo studies evidenced that the NCEC formulations were the most efficient, because an increased amount of permeated drug was observed, along with a greater IOP decrease and longer duration of the effect in normotensive rabbits. PMID:27519647

  8. Application of Controlled Radical Polymerization for Nucleic Acid Delivery

    PubMed Central

    CHU, DAVID S.H.; SCHELLINGER, JOAN G.; SHI, JULIE; CONVERTINE, ANTHONY J.; STAYTON, PATRICK S.; PUN, SUZIE H.

    2012-01-01

    CONSPECTUS Nucleic acid-based therapeutics can potentially address otherwise untreatable genetic disorders and have significant potential for a wide range of diseases. Therapeutic gene delivery can restore protein function by replacing defunct genes to restore cellular health while RNA interference (RNAi) can mask mutated and harmful genes. Cationic polymers have been extensively studied for nucleic acid delivery applications due to their self-assembly with nucleic acids into virus-sized nanoparticles and high transfection efficiency in vitro, but toxicity and particle stability have limited their clinical applications. The advent of controlled radical polymerization has improved the quality, control and reproducibility of synthesized materials. Controlled radical polymerization yields well-defined, narrowly disperse materials of designable architectures and molecular weight, allowing study of the effects of polymer architecture and molecular weight on transfection efficiency and cytotoxicity for improved design of next-generation vectors. Robust methods such as atom transfer radical polymerization (ATRP), reverse addition-fragmentation chain transfer polymerization (RAFT), and ring-opening metastasis polymerization (ROMP) have been used to engineer materials that specifically enhance extracellular stability, cellular specificity, and decrease toxicity. This Account reviews findings from structure-function studies that have elucidated key design motifs necessary for the development of effective nucleic acid vectors. In addition, polymers that are biodegradable, form supramolecular structures, target specific cells, or facilitate endosomal release are also discussed. Finally, promising materials with in vivo applications ranging from pulmonary gene delivery to DNA vaccines are described. PMID:22242774

  9. Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release

    PubMed Central

    Sun, Huanli; Cheng, Ru; Deng, Chao

    2014-01-01

    Abstract Significance: The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. Recent Advances: Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. Critical Issues: Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. Future Directions: Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo. Antioxid. Redox Signal. 21, 755–767. PMID:24279980

  10. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema.

    PubMed

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol Lg; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William Ka; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-10-05

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c(+) lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers.

  11. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole.

    PubMed

    Alai, Milind Sadashiv; Lin, Wen Jen

    2013-11-01

    In the present study, an effort was made to develop the Eudragit RS100 based nanoparticulate system for sustained delivery of an acid-labile drug, lansoprazole (LPZ). LPZ-loaded Eudragit RS100 nanoparticles (ERSNPs) were prepared by oil-in-water emulsion-solvent evaporation method. The effects of various formulation variables such as polymer concentration, drug amount and solvent composition on physicochemical performance of nanoparticles and in vitro drug release were investigated. All nanoparticles were spherical with particle size 198.9 ± 8.6-376.9 ± 5.6 nm and zeta potential +35.1 ± 1.7 to +40.2 ± 0.8 mV. The yield of nanoparticles was unaffected by change of these three variables. However, the drug loading and encapsulation efficiency were affected by polymer concentration and drug amount. On the other hand, the particle size of nanoparticles was significantly affected by polymer concentration and internal phase composition due to influence of droplet size during emulsification process. All nanoparticles prolonged drug release for 24h which was dominated by a combination of drug diffusion and polymer chain relaxation. The fastest and the slowest release rates were observed in C2-1002-10/0 and C8-4001-10/0, respectively, based on the release rate constant (k). Thus, the developed nanoparticles possessed a potential as a nano-carrier to sustain drug delivery for treatment of acid related disorders.

  12. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema

    PubMed Central

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol LG; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William KA; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-01-01

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c+ lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers. DOI: http://dx.doi.org/10.7554/eLife.09623.001 PMID:26437452

  13. Core-shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering.

    PubMed

    Olmos Buitrago, Jennifer; Perez, Roman A; El-Fiqi, Ahmed; Singh, Rajendra K; Kim, Joong-Hyun; Kim, Hae-Won

    2015-12-01

    Moldable hydrogels that incorporate stem cells hold great promise for tissue engineering. They secure the encapsulated cells for required periods while allowing a permeable exchange of nutrients and gas with the surroundings. Core-shell fibrous structured hydrogel system represents these properties relevant to stem cell delivery and defect-adjustable tissue engineering. A designed dual concentric nozzle is used to simultaneously deposit collagen and alginate with a core-shell structured continuous fiber form in the ionic calcium bath. We aimed to impart extrinsic osteogenic cues in the nanoparticulate form, i.e., bioactive glass nanoparticles (BGn), inside the alginate shell, while encapsulating rat mesenchymal stem cells in the collagen core. Ionic measurement in aqueous solution indicated a continuous release of calcium ions from the BGn-added and -free scaffolds, whereas silicon was only released from the BGn-containing scaffolds. The presence of BGn allowed higher number of cells to migrate into the scaffolds when implanted in subcutaneous tissues of rat. Cell viability was preserved in the presence of the BGn, with no significant differences noticed from the control. The presence of BGn enhanced the osteogenic differentiation of the encapsulated rat mesenchymal stem cells, presenting higher levels of alkaline phosphatase activity as well as bone related genes, including collagen type I, bone sialoprotein and osteocalcin. Taken together, the incorporated BGn potentiated the capacity of the core-shell fibrous hydrogel system to deliver stem cells targeting bone tissue engineering.

  14. Nanoparticulate, sub-micron and micron sized particles emanating from hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Gartman, A.; Findlay, A.; Yucel, M.; Chan, C. S. Y.

    2015-12-01

    Recent data from Geotraces cruises over the MAR and SEPR indicate dissolved and particulate Fe enrichment in waters 1000 and 4000 km from their vent sources, respectively. Deep-sea hydrothermal vents and the waters in the reactive mixing zone above vent orifices have been suggested to be an important source of fine material that can pass through normal filters (0.2 and 0.4 μm). In this work, nanoparticles are defined operationally as that which can pass through a 0.2 μm filter. We investigated two vent sites (Lau Basin and the MAR). Chimneys from both vent sites have fluids that can be sulfide rich or metal rich. We also present chemical and physical chemical data (SEM-EDS, TEM, XRD, EELS) showing some of the materials found in these (nano)particulate phases including pyrite, metal sulfides, silicate and aluminosilicate material. Enrichment of Mg and K in the latter suggest that reverse weathering may occur in the waters within 1-2 meters of the vent orifice where vent waters mix with cold oxygenated bottom waters.

  15. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites

    PubMed Central

    Misra, Superb K.; Ansari, Tahera; Mohn, Dirk; Valappil, Sabeel P.; Brunner, Tobias J.; Stark, Wendelin J.; Roy, Ipsita; Knowles, Jonathan C.; Sibbons, Paul D.; Jones, Eugenia Valsami; Boccaccini, Aldo R.; Salih, Vehid

    2010-01-01

    This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation. PMID:19640877

  16. Kinetically Controlled Formation of a Novel Nanoparticulate ZnS with Mixed Cubic and Hexagonal Stacking

    SciTech Connect

    Zhang,H.; Chen, B.; Gilbert, B.; Banfield, J.

    2006-01-01

    Nanoparticulate ZnS with mixed cubic and hexagonal close packed stacking was synthesized by reaction of zinc acetate with thioacetamide in weakly acidic solutions. The influences of temperature, reaction time, amounts of reagents and solution pH on the nanoparticle size and phase constitution were investigated. Experimental results suggest that the stacking in the nano-ZnS is controlled primarily by the precipitation kinetics. Factors that slow the precipitation rate favor the growth of nanoparticles with mixed stacking, probably because the probabilities of forming wurtzite-like layers and sphalerite-like layers under these conditions are approximately equal. Under conditions of rapid precipitation, the growth of sphalerite is favored, probably due to the aggregation of molecular clusters with sphalerite-like structure. UV-vis spectroscopy reveals that twins and stacking faults in nano-ZnS result in an electronic structure that differs from those of nano-scale sphalerite and wurtzite. New vibrational modes present in IR spectra of the nano-ZnS with mixed stacking indicate that the materials have novel optical properties. Control of defect microstructure may allow use of nano-ZnS in new technological applications.

  17. Effects of ZnO nanoparticulate addition on the properties of PMNT ceramics

    PubMed Central

    2012-01-01

    This research was conducted in order to study the effect of ZnO nanoparticulate addition on the properties of 0.9 Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 [PMNT] ceramics. The PMNT ceramics were prepared by a solid-state reaction. The ZnO nanoparticles were added into PMNT ceramics to form PMNT/xZnO (x = 0, 0.05, 0.1, 0.5, and 1.0 wt.%). The PMNT/xZnO ceramics were investigated in terms of phase, microstructure, and mechanical and electrical properties. It was found that the density and grain size of PMNT ceramics tended to increase with an increasing amount of ZnO content. Moreover, a transgranular fracture was observed for the samples containing ZnO, while pure PMNT ceramics showed only a intergranular fracture. An addition of only 0.05 wt.% of ZnO was also found to enhance the hardness and dielectric and ferroelectric properties of the PMNT ceramics. PMID:22222049

  18. Infrared studies of propene and propene oxide adsorption on nanoparticulate Au/TiO2

    NASA Astrophysics Data System (ADS)

    Panayotov, Dimitar; McEntee, Monica; Burrows, Steve; Driscoll, Darren; Tang, Wenjie; Neurock, Matthew; Morris, John

    2016-10-01

    Direct gas-phase epoxidation of propene to propene oxide over a heterogeneous catalyst holds the potential to revolutionize production of one of the world's major commodity chemicals. New research into fundamental aspects of propene chemistry on nanoparticulate catalysts will help guide strategies for materials development. In the current study, Fourier transform infrared (FTIR) spectroscopy and density functional theory (DFT) have been employed to explore the molecular-level details of propene and propene oxide binding at a Au/TiO2 catalyst. Competitive binding studies for propene and carbon monoxide reveal that propene readily displaces CO from: first, interfacial Au ||TiO2 sites, then low coordinated Au sites at particulate corners and edges, and finally terrace regions of the particles. DFT calculations show that the Cdbnd C bond of propene weakens upon coordination to Au, which suggests that these sites may activate the molecule for epoxidation. Like propene, propene oxide adsorbs on both Au sites and Ti sites. In addition, Ti-OH sites also readily bind the oxide. However, competitive binding experiments show that the propene oxide adsorption is favored relative to propene on all sites, which would likely passivate the catalyst at room temperature.

  19. Characterization and ecological risk assessment of nanoparticulate CeO2 as a diesel fuel catalyst.

    PubMed

    Batley, Graeme E; Halliburton, Brendan; Kirby, Jason K; Doolette, Casey L; Navarro, Divina; McLaughlin, Mike J; Veitch, Colin

    2013-08-01

    Nanoparticulate cerium dioxide (nano-CeO2 ), when combusted as an additive to diesel fuel, was transformed from 6 nm to 14 nm sizes into particles near 43 nm, with no obvious change in the unit cell dimensions or crystalline form. Cerium sulfate, if formed during combustion, was below detection limits. Ceria nanoparticles were agglomerated within the soot matrix, with a mean aerodynamic diameter near 100 nm. The dissolution of cerium from the dried ceria catalyst in synthetic soft water was extremely small (<0.0006% or <0.2 µg Ce/L), with particles being highly agglomerated (<450 nm). Agglomeration was reduced in the presence of humic acid. In the combusted samples, soot was dominant, and the solubility of cerium in soft water showed an almost 100-fold increase in the <1 nm fraction compared to that before combustion. It appeared that the nano-CeO2 remained agglomerated within the soot matrix and would not be present as dispersed nanoparticles in aquatic or soil environments. Despite the increased dissolution, the solubility was not sufficient for the combusted ceria to represent a risk in aquatic ecosystems. The predicted environmental concentrations were still orders of magnitude below the predicted no effects concentration of near 1 mg/L. In the soil environment, any cerium released from soot materials would interact with natural colloids, decreasing cerium concentrations in soil solutions and further minimizing the potential risk to soil organisms.

  20. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    PubMed

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  1. Variable Effect during Polymerization

    ERIC Educational Resources Information Center

    Lunsford, S. K.

    2005-01-01

    An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.

  2. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  3. Programmable Supramolecular Polymerizations.

    PubMed

    van der Zwaag, Daan; de Greef, Tom F A; Meijer, E W

    2015-07-13

    Living large: Rational design of self-assembly pathways has been demonstrated in supramolecular polymers. By controlling the concentration of an aggregation-competent monomer through intramolecular interactions, living supramolecular polymerization conditions were achieved. This universal approach can be used to obtain aggregates of well-defined length and narrow dispersity, and allows access to new supramolecular polymer architectures. PMID:26095705

  4. Effective integrative supramolecular polymerization.

    PubMed

    Zhang, Qiwei; Tian, He

    2014-09-26

    Exercise control: By taking advantage of self-sorting processes among host-guest components, a controlled supramolecular polymerization can be realized, as demonstrated recently with the preparation of a cucurbit[n]uril-based supramolecular polymer. This method may be used for the design of more ordered supramolecular polymers from complex and discrete components. PMID:25080388

  5. Polymerized and functionalized triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  6. Cytotoxic responses and potential respiratory health effects of carbon and carbonaceous nanoparticulates in the Paso del Norte airshed environment.

    PubMed

    Soto, K F; Murr, L E; Garza, K M

    2008-03-01

    We have utilized a range of manufactured or commercial nanoparticulate materials, including surrogate carbon nano-PM along with combustion-generated carbonaceous (soot) nano-PM characteristic of environmental nano- PM (both indoor and outdoor) to investigate and compare their cytotoxic response in vitro with an immortalized human epithelial (lung model) cell line (A549). These have included nano-Ag, Al2O3, TiO2, Fe2O3, ZrO2, Si3N4, chrysotile asbestos, BC, 2 types of MWCNT-aggregate PM (MWCNT-R and MWCNT-N), and high-volume glass fiber collected soots: candle, wood, diesel (truck), tire, and 3-types of natural gas kitchen burner-generated soots: yellow (fuel-rich) flame, low-flow blue flame, and normal flow blue flame soot PM. These carbonaceous nano-PM species can be found in either the indoor and outdoor environments or microenvironments. Two-day and two-week in-vitro cultures of A549 showed cell death (or decreased cell viability) for all nanoparticulate materials, but especially significant for all but the TiO2 and candle, wood, and diesel PM. The natural gas kitchen burner combustion PM cell death response was characteristic of BC and MWCNT PM. There was no correlation with total PAH content of the soot PM. Cytokine release (IL-6, IL-8) was detected for the Ag, Fe2 O3, asbestos, BC and the MWCNT PM. Reactive oxygen species (ROS) production was also detected for Ag, Fe2 O3, ZrO2, asbestos, BC, and the MWCNT aggregate PM, as well as the natural gas kitchen burner combustion PM. TEM, FESEM, and optical microscopy examination of these nanomaterials illustrate the wide range in PM morphologies and crystallinities as well as cell morphologies. Taken together, these results illustrate proinflammatory and related respiratory health issues in relation to environmental nanoparticulates.

  7. Cytotoxic Responses and Potential Respiratory Health Effects of Carbon and Carbonaceous Nanoparticulates in the Paso del Norte Airshed Environment

    PubMed Central

    Soto, K. F.; Murr, L. E.; Garza, K. M.

    2008-01-01

    We have utilized a range of manufactured or commercial nanoparticulate materials, including surrogate carbon nano-PM along with combustion-generated carbonaceous (soot) nano-PM characteristic of environmental nano-PM (both indoor and outdoor) to investigate and compare their cytotoxic response in vitro with an immortalized human epithelial (lung model) cell line (A549). These have included nano-Ag, Al2O3, TiO2, Fe2O3, ZrO2, Si3N4, chrysotile asbestos, BC, 2 types of MWCNT-aggregate PM (MWCNT-R and MWCNT-N), and high-volume glass fiber collected soots: candle, wood, diesel (truck), tire, and 3-types of natural gas kitchen burner-generated soots: yellow (fuel-rich) flame, low-flow blue flame, and normal flow blue flame soot PM. These carbonaceous nano-PM species can be found in either the indoor and outdoor environments or microenvironments. Two-day and two-week in-vitro cultures of A549 showed cell death (or decreased cell viability) for all nanoparticulate materials, but especially significant for all but the TiO2 and candle, wood, and diesel PM. The natural gas kitchen burner combustion PM cell death response was characteristic of BC and MWCNT PM. There was no correlation with total PAH content of the soot PM. Cytokine release (IL-6, IL-8) was detected for the Ag, Fe2 O3, asbestos, BC and the MWCNT PM. Reactive oxygen species (ROS) production was also detected for Ag, Fe2 O3, ZrO2, asbestos, BC, and the MWCNT aggregate PM, as well as the natural gas kitchen burner combustion PM. TEM, FESEM, and optical microscopy examination of these nanomaterials illustrate the wide range in PM morphologies and crystallinities as well as cell morphologies. Taken together, these results illustrate proinflammatory and related respiratory health issues in relation to environmental nanoparticulates. PMID:18441401

  8. Cytotoxic responses and potential respiratory health effects of carbon and carbonaceous nanoparticulates in the Paso del Norte airshed environment.

    PubMed

    Soto, K F; Murr, L E; Garza, K M

    2008-03-01

    We have utilized a range of manufactured or commercial nanoparticulate materials, including surrogate carbon nano-PM along with combustion-generated carbonaceous (soot) nano-PM characteristic of environmental nano- PM (both indoor and outdoor) to investigate and compare their cytotoxic response in vitro with an immortalized human epithelial (lung model) cell line (A549). These have included nano-Ag, Al2O3, TiO2, Fe2O3, ZrO2, Si3N4, chrysotile asbestos, BC, 2 types of MWCNT-aggregate PM (MWCNT-R and MWCNT-N), and high-volume glass fiber collected soots: candle, wood, diesel (truck), tire, and 3-types of natural gas kitchen burner-generated soots: yellow (fuel-rich) flame, low-flow blue flame, and normal flow blue flame soot PM. These carbonaceous nano-PM species can be found in either the indoor and outdoor environments or microenvironments. Two-day and two-week in-vitro cultures of A549 showed cell death (or decreased cell viability) for all nanoparticulate materials, but especially significant for all but the TiO2 and candle, wood, and diesel PM. The natural gas kitchen burner combustion PM cell death response was characteristic of BC and MWCNT PM. There was no correlation with total PAH content of the soot PM. Cytokine release (IL-6, IL-8) was detected for the Ag, Fe2 O3, asbestos, BC and the MWCNT PM. Reactive oxygen species (ROS) production was also detected for Ag, Fe2 O3, ZrO2, asbestos, BC, and the MWCNT aggregate PM, as well as the natural gas kitchen burner combustion PM. TEM, FESEM, and optical microscopy examination of these nanomaterials illustrate the wide range in PM morphologies and crystallinities as well as cell morphologies. Taken together, these results illustrate proinflammatory and related respiratory health issues in relation to environmental nanoparticulates. PMID:18441401

  9. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing.

    PubMed

    De Cicco, Felicetta; Porta, Amalia; Sansone, Francesca; Aquino, Rita P; Del Gaudio, Pasquale

    2014-10-01

    In the current study the feasibility of the novel nano spray drying technique for the production of stable nanoparticulate dry powder, able to gel when administered locally on a wound, is explored. Gentamicin sulphate (GS) was loaded into alginate/pectin nanoparticles as highly soluble (hygroscopic) model drug with wide range antibacterial agent for wound dressing. The influence of process variables, mainly spray mesh size and feed concentration, on particle size and morphology, powder wound fluid uptake ability and gelling rate, as well as hydrogel water vapour transmission at wound site were studied. Particles morphology was spherical with few exceptions as slightly corrugated particles when the larger nozzle was used. Production of spherical nanoparticles (d50 ∼ 350 nm) in good yield (82-92%) required 4 μm spray mesh whereas 7 μm mesh produced larger wrinkled particles. Nano spray-dried particles showed high encapsulation efficiency (∼ 80%), good flowability, high fluid uptake, fast gel formation (15 min) and proper adhesiveness to fill the wound site and to remove easily the formulation after use. Moreover, moisture transmission of the in situ formed hydrogel was between 95 and 90 g/m(2)/h, an optimum range to avoid wound dehydration or occlusion phenomena. Release of the encapsulated GS, monitored as permeation rate using Franz cells in simulated wound fluid (SWF) was related to particle size and gelling rate. Sustained permeation profiles were obtained achieving total permeation of the drug between 3 and 6 days. However, all nano spray-dried formulations presented a burst effect, suitable to prevent infection spreading at the beginning of the therapy. Antimicrobial tests against Staphylococcus aureus and Pseudomonas aeruginosa showed stronger and prolonged antimicrobial effect of the nanoparticles compared to pure GS both shortly after administration and over time (till 12 days).

  10. Anticancer efficacy and toxicokinetics of a novel paclitaxel-clofazimine nanoparticulate co-formulation.

    PubMed

    Koot, Dwayne; Cromarty, Duncan

    2015-06-01

    Contemporary chemotherapy is limited by disseminated, resistant cancer. Targeting nanoparticulate drug delivery systems that encapsulate synergistic drug combinations are a rational means to increase the therapeutic index of chemotherapeutics. A lipopolymeric micelle co-encapsulating an in vitro optimized, synergistic fixed-ratio combination of paclitaxel (PTX) and clofazimine (B663) has been developed and called Riminocelles™. The present pre-clinical study investigated the acute toxicity, systemic exposure, repeat dose toxicity and efficacy of Riminocelles in parallel to Taxol® at an equivalent PTX dose of 10 mg/kg. Daily and weekly dosing schedules were evaluated against Pgp-expressing human colon adenocarcinoma (HCT-15) xenografts implanted subcutaneously in athymic mice. Riminocelles produced statistically significant (p <  .05) tumor growth delays of 3.2 and 2.7 days for the respective schedules in contrast to Taxol delaying growth by 0.5 and 0.6 days. Using the control tumor doubling time of 4.2 days, tumor-cell-kill values of 0.23 for Riminocelles and 0.04 for Taxol following daily schedules were calculated. A significant weight loss of 5.7% after 14 days (p < 0.05) relative to the control group (n = 8) was observed for the daily Taxol group whereas Riminocelles did not incur significant weight loss neither were blood markers of toxicity elevated after acute administration (n = 3). The safety and efficacy of Riminocelles is statistically superior to Taxol. However, passive tumor targeting was not achieved and the tumor burden progressed quickly. Prior to further animal studies, the in vivo thermodynamic instability of the simple lipopolymeric micellular delivery system requires improvement so as to maintain and selectively deliver the fixed-ratio drug combination.

  11. Nanoparticulate Delivery of Agents for Induced Elastogenesis in 3-Dimensional Collagenous Matrices

    PubMed Central

    Venkataraman, Lavanya; Sivaraman, Balakrishnan; Vaidya, Pratik; Ramamurthi, Anand

    2014-01-01

    The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms (AAAs). It is mediated by the chronic overexpression of matrix metalloproteases (MMPs) -2 and -9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting AAA growth. Our prior studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells (SMCs) and inhibition of MMPs, following exogenous delivery of elastogenic factors such as TGF-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional (2-D) culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in 2-D culture, we have developed poly(lactide-co-glycolide) nanoparticles for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic SMCs (HASMCs) within a three-dimensional (3-D) gels of type-I collagen gel, which closely evoke the arterial tissue microenvironment. DOX and TGF-β1 released from these NPs influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ∼20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled, and sustained delivery from NPs embedded within a 3-D scaffold is an efficient strategy for directed elastogenesis. PMID:24737693

  12. Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: Evaluation of physicochemical and biological properties.

    PubMed

    Silva, Guilherme F; Bosso, Roberta; Ferino, Rafael V; Tanomaru-Filho, Mário; Bernardi, Maria I B; Guerreiro-Tanomaru, Juliane M; Cerri, Paulo S

    2014-12-01

    The physicochemical and biological properties of calcium silicate-based cement (CS) associated to microparticulated (micro) or nanoparticulated (nano) zirconium oxide (ZrO2 ) were compared with CS and bismuth oxide (BO) with CS. The pH, release of calcium ions, radiopacity, setting time, and compression strength of the materials were evaluated. The tissue reaction promoted by these materials in the subcutaneous was also investigated by morphological, immunohistochemical, and quantitative analyses. For this purpose, polyethylene tubes filled with materials were implanted into rat subcutaneous. After 7, 15, 30, and 60 days, the tubes surrounded by capsules were fixed and embedded in paraffin. In the H&E-stained sections, the number of inflammatory cells (ICs) in the capsule was obtained. Moreover, detection of interleukin-6 (IL-6) by immunohistochemistry and number of IL-6 immunolabeled cells were carried out. von Kossa method was also performed. The differences among the groups were subjected to Tukey test (p ≤ 0.05). The solutions containing the materials presented an alkaline pH and released calcium ions. The addition of radiopacifiers increased setting time and radiopacity of CS. A higher compressive strength in the CS + ZrO2 (micro and nano) was found compared with CS + BO. The number of IC and IL-6 positive cells in the materials with ZrO2 was significantly reduced in comparison with CS + BO. von Kossa-positive structures were observed adjacent to implanted materials. The ZrO2 associated to the CS provides satisfactory physicochemical properties and better biological response than BO. Thus, ZrO2 may be a good alternative for use as radiopacifying agent in substitution to BO.

  13. A nanoparticulate liquid binding phase based DGT device for aquatic arsenic measurement.

    PubMed

    Liu, Shengwen; Qin, Nannan; Song, Jieyao; Zhang, Ya; Cai, Weiping; Zhang, Haimin; Wang, Guozhong; Zhao, Huijun

    2016-11-01

    A nanomaterials-based DGT device constructed with commercial dialysis membrane as diffusive layer and nanoparticulate Fe3O4 aqueous suspension as binding phase is developed and validated for in situ aquatic arsenic measurement. The Fe3O4NPs binding phase is capable of quantitatively accumulated both As(III) and As(V) species. As(III) and As(V) species coexist in the vast majority of environmental water samples. The large difference in diffusion coefficients of As(III) (DAs(III)=3.05×10(-7)cm(2)s(-1)) and As(V) (DAs(V)=1.63×10(-7)cm(2)s(-1)) makes the accurate DGT determination of total arsenic concentration of samples containing both species difficult. An effective diffusion coefficient (DAs¯=DAs(III)[1/(1+x)]+DAs(V)[x/(1+x)],where,x=As(V)/As(III)) approach is therefore proposed and validated for accurate DGT determination of total arsenic when As(III) and As(V) coexist. The experimental results demonstrate that for samples having As(V)/As(III) ratios between 0.1 and 0.9, the DGT determined total arsenic concentrations using DAs¯are within ±93-99% of that determined by ICP-MS. The general principle demonstrated in this work opens up a new avenue of utilizing functional nanomaterials as DGT binding phase, paving a way for developing new generation nanomaterials-based DGT devices that can be readily produced in massive numbers at low costs, facilitating the widespread use of DGT for large-scale environmental assessment and other applications. PMID:27591608

  14. A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies

    PubMed Central

    Johnson, Gary A.; Maulhardt, Holly A.; Moore, Kathleen M.; McMeekin, D. S.; Schulz, Thomas K.; Reed, Gregory A.; Roby, Katherine F.; Mackay, Christine B.; Smith, Holly J.; Weir, Scott J.; Wick, Jo A.; Markman, Maurie; diZerega, Gere S.; Baltezor, Michael J.; Espinosa, Jahna; Decedue, Charles J.

    2015-01-01

    Purpose This multicenter, open-label, dose-escalating, phase I study evaluated the safety, tolerability, pharmacokinetics and preliminary tumor response of a nanoparticulate formulation of paclitaxel (Nanotax®) administered intraperitoneally for multiple treatment cycles in patients with solid tumors predominantly confined to the peritoneal cavity for whom no other curative systemic therapy treatment options were available. Methods Twenty-one patients with peritoneal malignancies received Nanotax® in a modified dose-escalation approach utilizing an accelerated titration method. All patients enrolled had previously received chemotherapeutics and undergone surgical procedures, including 33 % with optimal debulking. Six doses (50–275 mg/m2) of Cremophor-free Nanotax® were administered intraperitoneally for one to six cycles (every 28 days). Results Intraperitoneal (IP) administration of Nanotax® did not lead to increases in toxicity over that typically associated with intravenous (IV) paclitaxel. No patient reported ≥Grade 2 neutropenia and/or ≥Grade 3 neurologic toxicities. Grade 3 thrombocytopenia unlikely related to study medication occurred in one patient. The peritoneal concentration–time profile of paclitaxel rose during the 2 days after dosing to peritoneal fluid concentrations 450–2900 times greater than peak plasma drug concentrations and remained elevated through the entire dose cycle. Best response assessments were made in 16/21 patients: Four patients were assessed as stable or had no response and twelve patients had increasing disease. Five of 21 patients with advanced cancers survived longer than 400 days after initiation of Nanotax® IP treatment. Conclusions Compared to IV paclitaxel administration, Cremophor-free IP administration of Nanotax® provides higher and prolonged peritoneal paclitaxel levels with minimal systemic exposure and reduced toxicity. PMID:25898813

  15. [Molecular/polymeric magnetism

    SciTech Connect

    Not Available

    1993-01-01

    New materials were synthesized to test the generality of magnetism in molecular/polymeric systems. The first room temperature molecular based magnet V(TCNE)[sub x][center dot]y(solvent) (1) is disclosed. The ferromagnetic and related transitions were studied in decamethylferrocenium tetracyanoethanide (TCNE), (1), and related materials. Our and others' models were tested for ferromagnetic and antiferromagnetic exchange between local sites; models for control of [Tc] were also tested.

  16. Surface polymerization agents

    SciTech Connect

    Taylor, C.; Wilkerson, C.

    1996-12-01

    This is the final report of a 1-year, Laboratory-Directed R&D project at LANL. A joint technical demonstration was proposed between US Army Missile Command (Redstone Arsenal) and LANL. Objective was to demonstrate that an unmanned vehicle or missile could be used as a platform to deliver a surface polymerization agent in such a manner as to obstruct the filters of an air-breathing mechanism, resulting in operational failure.

  17. Polymeric Bicontinuous Microemulsions

    NASA Astrophysics Data System (ADS)

    Bates, Frank S.; Maurer, Wayne W.; Lipic, Paul M.; Hillmyer, Marc A.; Almdal, Kristoffer; Mortensen, Kell; Fredrickson, Glenn H.; Lodge, Timothy P.

    1997-08-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in mixtures containing a model diblock copolymer and two homopolymers. Although we attribute development of this equilibrium morphology to the effects of fluctuations, mean-field theory provides a quantitative strategy for preparing the bicontinuous state at blend compositions near an isotropic Lifshitz point.

  18. In Vitro Analysis of Nanoparticulate Hydroxyapatite/Chitosan Composites as Potential Drug Delivery Platforms for the Sustained Release of Antibiotics in the Treatment of Osteomyelitis

    PubMed Central

    USKOKOVIĆ, VUK; DESAI, TEJAL A.

    2014-01-01

    Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic scale, surface charge, drug release properties, and combined antibacterial and osteogenic response. Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions the transition from the as-precipitated amorphous calcium phosphate phase to the most thermodynamically stable one—HAp. Embedment of 5–10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to HAp by physisorption, and promoted sustained-release kinetics throughout the 3 weeks of release time. The addition of chitosan to the particulate drug carrier formulation, however, reduced the antibacterial efficacy against S aureus. Excellent cell spreading and proliferation of osteoblastic MC3T3-E1 cells evidenced on microscopic conglomerates of HAp nanoparticles in vitro also markedly diminished on HAp/chitosan composites. Mitochondrial dehydrogenase activity exhibited normal values only for HAp/chitosan particle concentrations of up to 2 mg/cm2 and significantly dropped, by about 50%, at higher particle concentrations (4 and 8 mg/cm2). The gene expression of osteocalcin, a mineralization inductor, and the transcription factor Runx2 was downregulated in cells incubated in the presence of 3 mg/cm2 HAp/chitosan composite particles, whereas the expression of osteopontin, a potent mineralization inhibitor, was upregulated, further demonstrating the partially unfavorable osteoblastic cell response to the given particles. The peak in the expression of osteogenic markers paralleling the osteoblastic differentiation was also delayed most for the cell population incubated with HAp/chitosan particles

  19. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  20. Electrodeposited nanoporous versus nanoparticulate ZnO films of similar roughness for dye-sensitized solar cell applications.

    PubMed

    Guerin, V M; Magne, C; Pauporté, Th; Le Bahers, T; Rathousky, J

    2010-12-01

    We present a comparative study of two different ZnO porous film morphologies for dye-sensitized solar cell (DSSC) fabrications. Nanoparticulate ZnO was prepared by the doctor-blade technique starting from a paste containing ZnO nanoparticles. Nanoporous ZnO films were grown by a soft template-assisted electrochemical growth technique. The film thicknesses were adjusted at similar roughness of about 300 in order to permit a worthy comparison. The effects on the cell performances of sensitization by dyes belonging to three different families, namely, xanthene (eosin Y) and indoline (D102, D131, D149 and D205) organic dyes as well as a ruthenium polypyridine complex (N719), have been investigated. The mesoporous electrodeposited matrix exhibits significant morphological changes upon the photoanode preparation, especially upon the dye sensitization, that yield to a dramatic change of the inner layer morphology and increase in the layer internal specific surface area. In the case of indoline dyes, better efficiencies were found with the electrodeposited ZnO porous matrixes compared to the nanoparticulate ones, in spite of significantly shorter electron lifetimes measured by impedance spectroscopy. The observation is interpreted in terms of much shorter transfer time in the oxide in the case of the electrodeposited ZnO films. Among the tested dyes, the D149 and D205 indoline organic dyes with a strong acceptor group were found the most efficient with the best cell over 4.6% of overall conversion efficiency.

  1. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    PubMed

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. PMID:24763438

  2. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  3. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  4. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  5. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  6. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  7. Structure-Based Rational Design of Prodrugs To Enable Their Combination with Polymeric Nanoparticle Delivery Platforms for Enhanced Antitumor Efficacy**

    PubMed Central

    Wang, Hangxiang; Xie, Haiyang; Wu, Jiaping; Wei, Xuyong; Zhou, Lin; Xu, Xiao; Zheng, Shusen

    2014-01-01

    Drug-loaded nanoparticles (NPs) are of particular interest for efficient cancer therapy due to their improved drug delivery and therapeutic index in various types of cancer. However, the encapsulation of many chemotherapeutics into delivery NPs is often hampered by their unfavorable physicochemical properties. Here, we employed a drug reform strategy to construct a small library of SN-38 (7-ethyl-10-hydroxycamptothecin)-derived prodrugs, in which the phenolate group was modified with a variety of hydrophobic moieties. This esterification fine-tuned the polarity of the SN-38 molecule and enhanced the lipophilicity of the formed prodrugs, thereby inducing their self-assembly into biodegradable poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-PLA) nanoparticulate structures. Our strategy combining the rational engineering of prodrugs with the pre-eminent features of conventionally used polymeric materials should open new avenues for designing more potent drug delivery systems as a therapeutic modality. PMID:25196427

  8. Design and evaluation of a novel nanoparticulate-based formulation encapsulating a HIP complex of lysozyme.

    PubMed

    Gaudana, Ripal; Gokulgandhi, Mitan; Khurana, Varun; Kwatra, Deep; Mitra, Ashim K

    2013-01-01

    Formulation development of protein therapeutics using polymeric nanoparticles has found very little success in recent years. Major formulation challenges include rapid denaturation, susceptibility to lose bioactivity in presence of organic solvents and poor encapsulation in polymeric matrix. In the present study, we have prepared hydrophobic ion pairing (HIP) complex of lysozyme, a model protein, using dextran sulfate (DS) as a complexing polymer. We have optimized the process of formation and dissociation of HIP complex between lysozyme and DS. The effect of HIP complexation on enzymatic activity of lysozyme was also studied. Nanoparticles were prepared and characterized using spontaneous emulsion solvent diffusion method. Furthermore, we have also investigated release of lysozyme from nanoparticles along with its enzymatic activity. Results of this study indicate that nanoparticles can sustain the release of lysozyme without compromising its enzymatic activity. HIP complexation using a polymer may also be employed to formulate sustained release dosage forms of other macromolecules with enhanced encapsulation efficiency.

  9. Sustainable polymerizations in recoverable microemulsions.

    PubMed

    Chen, Zhenzhen; Yan, Feng; Qiu, Lihua; Lu, Jianmei; Zhou, Yinxia; Chen, Jiaxin; Tang, Yishan; Texter, John

    2010-03-16

    Free radical and atom-transfer radical polymerizations were conducted in monomer/ionic liquid microemulsions. After the polymerization and isolation of the resultant polymers, the mixture of the catalyst and ionic liquids (surfactant and continuous phase) can be recovered and reused, thereby dramatically improving the environmental sustainability of such chemical processing. The addition of monomer to recovered ionic liquid mixtures regenerates transparent, stable microemulsions that are ready for the next polymerization cycle upon addition of initiator. The method combines the advantages of IL recycling and microemulsion polymerization and minimizes environmental disposable effects from surfactants and heavy metal ions. PMID:20170175

  10. Polymerization Evaluation by Spectrophotometric Measurements.

    ERIC Educational Resources Information Center

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  11. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging.

    PubMed

    Mulder, Willem J M; Strijkers, Gustav J; van Tilborg, Geralda A F; Cormode, David P; Fayad, Zahi A; Nicolay, Klaas

    2009-07-21

    Modern medicine has greatly benefited from recent dramatic improvements in imaging techniques. The observation of physiological events through interactions manipulated at the molecular level offers unique insight into the function (and dysfunction) of the living organism. The tremendous advances in the development of nanoparticulate molecular imaging agents over the past decade have made it possible to noninvasively image the specificity, pharmacokinetic profiles, biodistribution, and therapeutic efficacy of many novel compounds. Several types of nanoparticles have demonstrated utility for biomedical purposes, including inorganic nanocrystals, such as iron oxide, gold, and quantum dots. Moreover, natural nanoparticles, such as viruses, lipoproteins, or apoferritin, as well as hybrid nanostructures composed of inorganic and natural nanoparticles, have been applied broadly. However, among the most investigated nanoparticle platforms for biomedical purposes are lipidic aggregates, such as liposomal nanoparticles, micelles, and microemulsions. Their relative ease of preparation and functionalization, as well as the ready synthetic ability to combine multiple amphiphilic moieties, are the most important reasons for their popularity. Lipid-based nanoparticle platforms allow the inclusion of a variety of imaging agents, ranging from fluorescent molecules to chelated metals and nanocrystals. In recent years, we have created a variety of multifunctional lipid-based nanoparticles for molecular imaging; many are capable of being used with more than one imaging technique (that is, with multimodal imaging ability). These nanoparticles differ in size, morphology, and specificity for biological markers. In this Account, we discuss the development and characterization of five different particles: liposomes, micelles, nanocrystal micelles, lipid-coated silica, and nanocrystal high-density lipoprotein (HDL). We also demonstrate their application for multimodal molecular imaging

  12. Particulate Emissions from the Combustion of Diesel Fuel with a Fuel-Borne Nanoparticulate Cerium Catalyst

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Willis, R. D.; Weinstein, J. P.; Krantz, T.; King, C.

    2013-12-01

    To address the adverse impacts on health and climate from the use of diesel-fueled vehicles, a number of technological solutions have been developed for reducing diesel soot emissions and to improve fuel economy. One such solution is the use fuel-borne metal oxide catalysts. Of current interest are commercially-available fuel additives consisting of nanoparticulate cerium oxide (CeO2). In response to the possible use of CeO2-containing fuels in on-road vehicles in the U.S., the Environmental Protection Agency is conducting research to address the potential toxicity and environmental effects of particulate CeO2 emitted with diesel soot. In this study, emissions from a diesel-fueled electric generator were size-segregated on polished silicon wafers in a nanoparticle cascade impactor. The diesel fuel contained 10 ppm Ce by weight in the form of crystalline CeO2 nanoparticles 4 nm to 7.5 nm in size. Primary CeO2 nanoparticles were observed in the diesel emissions as well as CeO2 aggregates encompassing a broad range of sizes up to at least 200 nm. We report the characterization of individual particles from the size-resolved samples with focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy. Results show a dependency between the impactor size range and CeO2 agglomeration state: in the larger size fractions of the impactor (e.g., 560 nm to 1000 nm) CeO2 nanoparticles were predominantly attached to soot particles. In the smaller size fractions of the impactor (e.g., 100 nm to 320 nm), CeO2 aggregates tended to be larger and unattached to soot. The result is important because the deposition of CeO2 nanoparticles attached to soot particles in the lung or on environmental surfaces such as plant tissue will likely present different consequences than the deposition of unagglomerated CeO2 particles. Disclaimer The U.S. Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described

  13. Inkjet-printed gold nanoparticulate patterns for surface finish in electronic package

    NASA Astrophysics Data System (ADS)

    Jang, Seonhee; Cho, Hyejin; Kang, Seongkoo; Oh, Sungil; Kim, Donghoon

    2011-11-01

    Gold (Au) pads for surface finish in electronic package were developed by the inkjet printing method. The Au ink for printing was prepared by Au nanoparticles (NPs) coated with capping molecules of dodecylamine (C12H25NH2). The microstructures of the inkjet-printed Au films were characterized after sintering in various gas flows. The film sintered in air showed that bonding between NPs was not enough for further grain growth due to the incomplete decomposition of the capping layer. The film sintered under nitrogen (N2) had NPs existing on the surface and the bottom which did not participate in sintering. When the film was sintered under N2-bubbled through formic acid (FA/N2), a large portion of the pores were observed to make a holey pancake-like structure of the film. The microstructures of the inkjet-printed Au film became denser with grain growth when Au NPs were sintered under mixed gas flows of FA/N2 and N2. The resistivity of film was 4.79 μΩ cm, about twice the bulk value. Organic analysis showed that about 0.43% of residual organics was left in the film. Therefore, this Au film was chosen for solder ball shear test because the microstructure was denser compared to the films sintered under other gasses such as N2 or FA/N2 and less organic residue was found from organic analyses. Even though the film sintered under N2 showed the best electrical property (4.35 μΩ cm), it was not adopted in the shear test because NPs remaining on the bottom of the film could lead to the poor adhesion between the film and substrate and show low shear strength. The shear force was 8.04 newton (N) on average and the strength was 64 MPa. This shear strength is good enough to substitute the inkjet-printed Au nanoparticulate film for electroplating in electronic package.

  14. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  15. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  16. Amplification of actin polymerization forces

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2016-01-01

    The actin cytoskeleton drives many essential processes in vivo, using molecular motors and actin assembly as force generators. We discuss here the propagation of forces caused by actin polymerization, highlighting simple configurations where the force developed by the network can exceed the sum of the polymerization forces from all filaments. PMID:27002174

  17. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  18. Gold-promoted styrene polymerization.

    PubMed

    Urbano, Juan; Hormigo, A Jesús; de Frémont, Pierre; Nolan, Steven P; Díaz-Requejo, M Mar; Pérez, Pedro J

    2008-02-14

    Styrene can be polymerized at room temperature in the presence of equimolar mixtures of the gold(III) complexes (NHC)AuBr3 (NHC = N-heterocyclic carbene ligand) and NaBAr'4, in the first example of a gold-induced olefin polymerization reaction.

  19. Degradation of nanoparticulate-coated and uncoated sulfide-based cathodoluminescent phosphors.

    SciTech Connect

    Abrams, Billie Lynn; Bang, Jungsik S.; Thomes, William Joseph, Jr.; Holloway, Paul H.

    2003-07-01

    Changes in the cathodoluminescent (CL) brightness and in the surface chemistry of nanoparticulate SiO{sub 2}-coated and uncoated ZnS:Ag, Cl powder phosphor have been investigated using a PHI 545 scanning Auger electron spectrometer (AES), an Oriel optical spectrometer and a JEOL 6400 scanning electron microscope (SEM). The data were collected in a stainless steel UHV chamber with residual gas pressures between 1 x 10{sup -8} and 1 x 10{sup -6} Torr as measured by a Dycor LC residual gas analyzer (RGA). The primary electron current density was 272 {micro}A/cm{sup 2}, while the primary beam energy was varied bwteen 2 and 5 keV. In the presence of a 2keV primary electron beam in 1 x 10{sup -6} Torr of water for both the SiO{sub 2}-coated and the uncoated cases, the amounts of C and S on the surface decreased, that of O increased and the CL intensity decreased with electron dose. This surface chemistry change lead to the development of a surface dead layer and is explained by the electron beam stimulated surface chemical reaction model (ESSCR). The penetration range of the impinging low energy primary electrons is on the order of 10-100 nm creating a reaction region very close to the surface. The ESSCR takes this into account postulating that primary and secondary electrons dissociate physisorbed molecules to form reactive atomic species. These atomic species remove surface S as volatile SO{sub x} or H{sub 2}S. In the case of an oxidizing ambient (i.e. high partial pressure of water), a non-luminescent ZnO layer is formed. this oxide layer has been measured to be on the order of 3-30 nm. In the case where the vacuum of 1 x 10{sup -8} Torr was dominated by hydrogen and had a low water content, there was a small increase in the S signal, no rise in the O Auger signal, but the CL intensity still decreased. This is explained by the ESSCR whereby H removes S as H{sub 2}S leaving elemental Zn, which evaporates due to a high vapor pressure. In the case of ZnS:Ag,Cl coated

  20. Impact of dissolved silica on arsenite removal by nano-particulate FeS and FeS-coated sand.

    PubMed

    Han, Young-Soo; Demond, Avery H; Hayes, Kim F

    2013-07-01

    This work evaluated the inhibitory effect of dissolved silica on arsenite adsorption to nanoparticulate FeS (NP-FeS) or mackinawite and FeS-coated sand (CS-FeS) sorbents. Arsenite retention by the NP-FeS solid was not affected by dissolved silicate over a wide range in pH, in contrast to the known inhibitory effect of dissolved silica on As(III) uptake by Fe-(hydr)oxide systems. However, some inhibition was observed in CS-FeS system at pH 9. This latter result is attributed to the co-existence of both FeS and small amounts of Fe-(hydr)oxide phases on the sand surface. Given the ubiquitous presence of dissolved Si in groundwater, FeS-based sorbents may have an advantage for As retention compared to those based on Fe-(hydr)oxides in reducing subsurface environments.

  1. Photoelectrocatalytic hydrogen production using nanoparticulate titania and a novel Pt/carbon electrocatalyst: The concept of the "Photoelectrocatalytic Leaf"

    NASA Astrophysics Data System (ADS)

    Pop, Lucian-Cristian; Dracopoulos, Vassilios; Lianos, Panagiotis

    2015-04-01

    Photoelectrocatalytic hydrogen production was realized my means of a double electrode carrying photocatalyst and electrocatalyst, deposited side by side on an FTO electrode, acting as a "Photoelectrocatalytic Leaf". As photocatalyst we used plain commercial nanoparticulate titania and as electrocatalyst a conductive carbon film made by a commercial carbon paste enriched with a small quantity of Pt nanoparticles (0.0134 mg/cm2). This quantity of Pt is much smaller than used in other applications and it may be further optimized. Hydrogen was produced in an alkaline environment in the presence of ethanol acting as sacrificial agent. A few variants of electrode geometry were studied in order to set the basic terms for efficient hydrogen production. It was found that optimal electrode geometry necessitates a much larger area for photocatalyst coverage than electrocatalyst and that it is preferable to divide photocatalyst and electrocatalyst areas in alternating zones.

  2. Urate crystal degradation for treatment of gout: a nanoparticulate combination therapy approach.

    PubMed

    Tiwari, Sanjay; Dwivedi, Harinath; Kymonil, Koshy M; Saraf, Shubhini A

    2015-06-01

    The objective of the present work was to develop polymeric nanoparticles of uricase and aceclofenac (NSAID) and to incorporate them into gel, for delivering drugs to synovial joints, for effective treatment of Gout. Nanoparticles containing uricase and aceclofenac were prepared by double emulsion solvent evaporation method and emulsion solvent evaporation, using PLGA (50:50) as carrier, respectively. Process parameters were optimized using Taguchi L4 orthogonal array and L9 array, respectively. The formulations were characterized for particle size, entrapment efficiency, surface charge, in vitro drug release, ex vivo drug permeation, and urate crystal degradation activity. The particle size and entrapment efficiency for optimized batch was found to be 228.8 nm and 81.26% for uricase nanoparticles and 288.5 nm and 85.36% for aceclofenac nanoparticles, respectively. The developed nanoparticles formulations displayed zero order and Higuchi release kinetics with non-Fickian diffusion, respectively. The in vivo studies were performed in rabbit model. Topical application of gel containing polymeric uricase nanoparticles alone and a combination of both, uricase nanoparticles and aceclofenac nanoparticles in rabbit model test groups, provided complete removal of urate crystals and inflammation within 40 and 25 days of treatment, respectively. The combination treatment therapy resulted in effective treatment of gout due to degradation of crystals and anti-inflammatory response.

  3. Production of monodisperse, polymeric microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chang, Manchium (Inventor)

    1990-01-01

    Very small, individual polymeric microspheres with very precise size and a wide variation in monomer type and properties are produced by deploying a precisely formed liquid monomer droplet, suitably an acrylic compound such as hydroxyethyl methacrylate into a containerless environment. The droplet which assumes a spheroid shape is subjected to polymerizing radiation such as ultraviolet or gamma radiation as it travels through the environment. Polymeric microspheres having precise diameters varying no more than plus or minus 5 percent from an average size are recovered. Many types of fillers including magnetic fillers may be dispersed in the liquid droplet.

  4. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  5. High temperature structural, polymeric foams from high internal emulsion polymerization

    SciTech Connect

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  6. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  7. Kinetics of silica polymerization

    SciTech Connect

    Weres, O.; Yee, A.; Tsao, L.

    1980-05-01

    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  8. Some novel polymeric nanocomposites.

    PubMed

    Mark, James E

    2006-12-01

    The nanocomposites described here all involve polymers and were chosen because they are already of commercial importance, show some promise of becoming so, or simply seem interesting. The field is so broad that some topics are mentioned only very briefly, and there is considerable emphasis on the polysiloxane nanocomposites studied by the author's research group. Some are typically prepared using techniques very similar to those used in the new sol-gel approach to ceramics, with either the polymer or the ceramic being the continuous phase. Other dispersed phases include particles responsive to an applied magnetic field, intercalated or exfoliated platelets obtained from clays, mica, or graphite, silsesquioxane nanocages, nanotubes, dual fillers, porous particles, spherical and ellipsoidal polymeric particles, and nanocatalysts. Also described are some typical studies involving theory or simulations on such particle reinforcement. Experiments on ceramics modified by dispersed polymers are equally interesting, but there is less relevant theory. Many of the fields mentioned have become so vast that the approach taken here is simply to describe general approaches and characteristics of the composites, list some specific examples, and provide leading references (with some emphasis on studies that are relatively recent or in the nature of reviews).

  9. Was Mineral Surface Complexity and Toxicity an Impetus for Evolution of Microbial Extracellular Polymeric Substances?

    NASA Astrophysics Data System (ADS)

    Sahai, N.; Xu, J.; Zhu, C.; Campbell, J.; Hickey, W.; Zhang, N.

    2011-12-01

    Modern ecological niches are teeming with an astonishing diversity of microbial life closely associated with mineral surfaces, highlighting the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral-water interface. Such community-living is enabled by an extracellular, polymeric, biofilm matrix developed at cell surfaces. Despite the energetic penalties, biofilm formation capability likely evolved on early Earth because of crucial cell survival functions, of which recognized roles include facilitating cell-attachment at mineral surfaces, intercellular signaling and lateral gene transfer, protection from dessication in tidal pools, and screening toxic UV light and toxic soluble metals. Cell-attachment to mineral surfaces was likely critical for cell survival and function, but the potential toxicity of mineral surfaces towards cells and the complexities of the mineral-water-cell interface in promoting biofilm formation, have not been fully appreciated. We examined the effects of nanoparticulate oxides (amorphous SiO2, anatase β-TiO2, and γ-Al2O3) on EPS- and biofilm-producing wild-type strains and their isogenic knock-out mutants which are defective in EPS-producing ability. In detail, we used Gram-negative wild-type Pseudomonas aeruginosa PAO1 and its EPS knock-out mutant Δ-psl, and the Gram-positive wild-type Bacillus subtilis NCIB3610 and its EPS-knock-out mutant yhxBΔ. We conducted bacterial growth experiments in the presence of each oxide in order to determine the viability of each cell type relative to oxide-free controls. The amount of EPS generated in the presence of oxides was also quantified and qualitatively analyzed by fluorescent stains. The results indicated a previously unrecognized role for microbial extracellular polymeric substances (EPS) in shielding both Gram-negative and Gram-positive cells against the toxic effects of mineral surfaces. This role is distinct from the

  10. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  11. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  12. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  13. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  14. Mecanismes de deformation de nanoparticules d'Au par irradiation ionique

    NASA Astrophysics Data System (ADS)

    Harkati Kerbouah, Chahineze

    2011-12-01

    separate ion impacts leads to the anisotropic growth of the silica matrix which contracts in the direction of the beam and elongates in the perpendicular direction. The overlap model of the ionic tracks was used to validate this phenomenon. (3) The deformation of silica generates strains which act on the nanoparticles in the plane perpendicular to the ion trajectory. In order to accommodate these strains, the Au nanoparticles deform in the beam direction. (4) The deformation of nanoparticles occurs each time an ion traverses the gold particle and melts a cylinder around its trajectory. The mobility of the gold atoms was confirmed by a calculation of the equivalent temperature from the deposited energy in the material by incident ions. The scenario above is compatible with our experimental data obtained in the case of the Au/SiO2 nanocomposite. It is further supported by the fact that the Au nanoparticules do not deform when they are integrated in AlAs which is resistant to the deformation. Keywords: ion irradiation, nanoparticles, Au, electronic stopping power, surface plasmon resonance, elongation, silica, aluminum arsenide.

  15. Polymeric materials in Space

    NASA Astrophysics Data System (ADS)

    Skurat, Vladimir

    Paper of short review type. It is the continuation of and addition to previous review papers "V. E. Skurat. Polymers in Space. In: Encyclopedia of aerospace engineering, vol. 4, Wiley and sons, 2010; Ibid., 2012 (on line)". Following topics are considered: (1) Destruction of polymers by solar radiation with various wavelengths in different spectral regions (visible-UV, vacuum UV (VUV), deep UV, soft and hard X-rays) are discussed. In difference with common polymer photochemistry induced by UV radiation, directions of various routs of polymer phototransformations and their relative yields are greatly dependent on wavelength of light (photon energy) during illuminations in VUV, deep UV and X-ray regions. During last twenty years, intensive spacecraft investigations of solar spectrum show great periodic and spontaneous variations of radiation intensities in short-wavelengths regions - up to one - two decimal orders of magnitude for X-rays. As a result, during solar flares the absorbed dose on the polymer surfaces from X-rays can be compared with absorbed dose from VUV radiation. (2) Some new approaches to predictions of reaction efficiencies of fast orbital atomic oxygen in their interaction with polymeric materials are considered. (3) Some aspects of photocatalitic destruction of polymers in vacuum conditions by full-spectrum solar radiation are discussed. This process can take place in enamels containing semiconducting particles (TiO2, ZnO) as pigments. (4) Contamination of spacecraft surfaces from intrinsic outer atmosphere play important role not only from the point of view of deterioration of optical and thermophysical properties. Layers of SiO2 contaminations with nanometer thicknesses can greatly diminish mass losses from perfluorinated polymers under VUV irradiation.

  16. Polymeric materials for neovascularization

    NASA Astrophysics Data System (ADS)

    DeVolder, Ross John

    Revascularization therapies have emerged as a promising strategy to treat various acute and chronic wounds, cardiovascular diseases, and tissue defects. It is common to either administer proangiogenic growth factors, such as vascular endothelial growth factor (VEGF), or transplant cells that endogenously express multiple proangiogenic factors. Additionally, these strategies utilize a wide variety of polymeric systems, including hydrogels and biodegradable plastics, to deliver proangiogenic factors in a sophisticated manner to maintain a sustained proangiogenic environment. Despite some impressive results in rebuilding vascular networks, it is still a challenging task to engineer mature and functional neovessels in target tissues, because of the increasing complexities involved with neovascularization applications. To resolve these challenges, this work aims to design a wide variety of proangiogenic biomaterial systems with tunable properties used for neovascularization therapies. This thesis describes the design of several biomaterial systems used for the delivery of proangiogenic factors in neovascularization therapies, including: an electrospun/electrosprayed biodegradable plastic patch used for directional blood vessel growth (Chapter 2), an alginate-g-pyrrole hydrogel system that biochemically stimulates cellular endogenous proangiogenic factor expression (Chapter 3), an enzyme-catalyzed alginate-g-pyrrole hydrogel system for VEGF delivery (Chapter 4), an enzyme-activated alginate-g-pyrrole hydrogel system with systematically controllable electrical and mechanical properties (Chapter 5), and an alginate-g-pyrrole hydrogel that enables the decoupled control of electrical conductivity and mechanical rigidity and is use to electrically stimulate cellular endogenous proangiogenic factor expression (Chapter 6). Overall, the biomaterial systems developed in this thesis will be broadly useful for improving the quality of a wide array of molecular and cellular based

  17. X-ray absorption and photoelectron spectroscopic study of the association of As(III) with nanoparticulate FeS and FeS-coated sand.

    PubMed

    Han, Young-Soo; Jeong, Hoon Y; Demond, Avery H; Hayes, Kim F

    2011-11-01

    Iron sulfide (FeS) has been demonstrated to have a high removal capacity for arsenic (As) in reducing environments. However, FeS may be present as a coating, rather than in nanoparticulate form, in both natural and engineered systems. Frequently, the removal capacity of coatings may be different than that of nanoparticulates in batch systems. To assess the differences in removal mechanisms between nanoparticulate FeS and FeS present as a coating, the solid phase products from the reaction of As(III) with FeS-coated sand and with suspensions of nanoparticulate (NP) FeS were determined using x-ray absorption spectroscopy and x-ray photoelectron spectroscopy. In reaction with NP FeS at pH 5, As(III) was reduced to As(II) to form realgar (AsS), while at pH 9, As(III) adsorbed as an As(III) thioarsenite species. In contrast, in the FeS-coated sand system, As(III) formed the solid phase orpiment (As(2)S(3)) at pH 5, but adsorbed as an As(III) arsenite species at pH 9. These different solid reaction products are attributed to differences in FeS concentration and the resultant redox (pe) differences in the FeS-coated sand system versus suspensions of NP FeS. These results point to the importance of accounting for differences in concentration and redox when making inferences for coatings based on batch suspension studies.

  18. Mechanochemical solid-state polymerization. VIII. Novel composite polymeric prodrugs prepared by mechanochemical polymerization in the presence of pharmaceutical aids.

    PubMed

    Kondo, S; Hosaka, S; Kuzuya, M

    1998-04-01

    We carried out the mechanochemical polymerization of methacryloyl derivatives of acetoaminophen and 5-fluorouracil in the presence of lactose. The reaction proceeded readily and the polymeric prodrugs were quantitatively produced. This method produces powdered polymeric prodrugs in which fine particles of lactose are homogeneously dispersed, since the reaction proceeds quantitatively through a totally dry process. It is difficult to prepare such a powdered polymeric prodrug by conventional solution polymerization. The rate of drug release of polymeric prodrugs increases with increasing content of lactose, as is shown to be true of the specific surface of polymeric prodrugs. These results suggest that lactose is homogeneously dispersed in powdered polymeric prodrugs. The present method seems applicable to a wide variety of pharmaceutical aids. If one takes the physiochemical property of pharmaceutical aids into consideration, novel polymeric prodrugs with a variety of drug release rates can be synthesized simultaneously with mixing. PMID:9579043

  19. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  20. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  1. Polymeric bicontinuous microemulsions

    NASA Astrophysics Data System (ADS)

    Krishnan, Kasiraman

    Rheology of complex fluids has been a topic of considerable interest recently. Bicontinuous microemulsions (BmuE), made by mixing appropriate amounts of oil, water and a surfactant, form a unique class of complex fluids. They possess a characteristic nanostructure consisting of undulating surfaces with vanishingly small interfacial curvature. BmuEs can also be generated in polymers by mixing appropriate amounts of two homopolymers and their corresponding diblock copolymer. The main objective of the present research is to study effects of shear on a model polymeric BmuE. Scattering is used as a predominant tool with in situ flow devices, along with optical microscopy and rheology. The model BmuE consists of a ternary blend of poly(ethyl ethylene) (PEE), poly(dimethyl siloxane) (PDMS) and a PEE-PDMS diblock copolymer. Steady shear experiments reveal four regimes as a function of shear rate. At low shear rates (regime I), Newtonian behavior is observed; there is onset of shear thinning at higher rates (regime II). In regime III, the stress is independent of shear rate, whereas it increases with shear rate once again in regime IV. Morphological characterization was carried out for each of these four regimes using scattering and microscopy, the key result being the evidence for flow-induced phase separation in regime III. Transient rheological measurements were conducted for startup and step changes in shear rate, and the BmuE exhibits features similar to worm-like micellar colloidal systems. Time-resolved light scattering and microscopy also reveal interesting characteristics. Dynamic mechanical spectroscopy indicates similarities with neat block copolymers near the order-disorder transition. The equilibrium rheological behavior is intriguing and detailed comparisons are made with Landau-Ginzburg theoretical models. Other areas of research as a part of this thesis include study of structural dynamics of BmuEs with dynamic light scattering, and the rheological

  2. Transport of nanoparticulate material in self-assembled block copolymer micelle solutions and crystals.

    PubMed

    Cheng, Vicki A; Walker, Lynn M

    2016-01-01

    Water soluble poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) [PEO-PPO-PEO] triblock copolymers self-assemble into thermoreversible micellar crystals comprised of periodically spaced micelles. The micelles have PPO cores surrounded by hydrated PEO coronas and the dimensions of the unit cell of the organized micelles is on the order of several to tens of nanometers. Fluorescence recovery after photobleaching (FRAP) is used to quantify nanoparticle transport in these nanostructured polymer micelle systems. Diffusivity of bovine serum albumin (BSA, Dh ∼ 7 nm) is quantified across a wide range of polymer, or micelle, concentrations covering both the disordered fluid as well as the structured micellar crystal to understand the effects of nanoscale structure on particle transport. Measured particle diffusivity in these micellar systems is reduced by as much as four orders of magnitude when compared to diffusivity in free solution. Diffusivity in the disordered micellar fluid is best understood in terms of diffusion through a polymeric solution, while transport in the structured micellar phase is possibly due to hopping between interstitial sites. These results not only show that the nanoscale structures of the micelles have a measureable impact on particle diffusivity, but also demonstrate the ability to tune nanoscale transport in self-assembled materials.

  3. Index Sets and Vectorization

    SciTech Connect

    Keasler, J A

    2012-03-27

    Vectorization is data parallelism (SIMD, SIMT, etc.) - extension of ISA enabling the same instruction to be performed on multiple data items simultaeously. Many/most CPUs support vectorization in some form. Vectorization is difficult to enable, but can yield large efficiency gains. Extra programmer effort is required because: (1) not all algorithms can be vectorized (regular algorithm structure and fine-grain parallelism must be used); (2) most CPUs have data alignment restrictions for load/store operations (obey or risk incorrect code); (3) special directives are often needed to enable vectorization; and (4) vector instructions are architecture-specific. Vectorization is the best way to optimize for power and performance due to reduced clock cycles. When data is organized properly, a vector load instruction (i.e. movaps) can replace 'normal' load instructions (i.e. movsd). Vector operations can potentially have a smaller footprint in the instruction cache when fewer instructions need to be executed. Hybrid index sets insulate users from architecture specific details. We have applied hybrid index sets to achieve optimal vectorization. We can extend this concept to handle other programming models.

  4. Retroviral vector production.

    PubMed

    Miller, A Dusty

    2014-01-01

    In this unit, the basic protocol generates stable cell lines that produce retroviral vectors that carry selectable markers. Also included are an alternate protocol that applies when the retroviral vector does not carry a selectable marker, and another alternate protocol for rapidly generating retroviral vector preparations by transient transfection. A support protocol describes construction of the retroviral vectors. The methods for generating virus from retroviral vector plasmids rely on the use of packaging cells that synthesize all of the retroviral proteins but do not produce replication-competent virus. Additional protocols detail plasmid transfection, virus titration, assay for replication-competent virus, and histochemical staining to detect transfer of a vector encoding alkaline phosphatase.

  5. Vectorization of a Treecode

    NASA Astrophysics Data System (ADS)

    Makino, Junichiro

    1990-03-01

    Vectorized algorithms for the force calculation and tree construction in the Barnes-Hut tree algorithm are described. The basic idea for the vectorization of the force calculation is to vectorize the tree traversal across particles, so that all particles in the system traverse the tree simultaneously. The tree construction algorithm also makes use of the fact that particles can be treated in parallel. Thus these algorithms take advantage of the internal parallelism in the N-body system and the tree algorithm most effectively. As a natural result, these algorithms can be used on a wide range of vector/parallel architectures, including current supercomputers and highly parallel architectures such as the Connection Machine. The vectorized code runs about five times faster than the non-vector code on a Cyber 205 for an N-body system with N = 8192.

  6. Support vector tracking.

    PubMed

    Avidan, Shai

    2004-08-01

    Support Vector Tracking (SVT) integrates the Support Vector Machine (SVM) classifier into an optic-flow-based tracker. Instead of minimizing an intensity difference function between successive frames, SVT maximizes the SVM classification score. To account for large motions between successive frames, we build pyramids from the support vectors and use a coarse-to-fine approach in the classification stage. We show results of using SVT for vehicle tracking in image sequences.

  7. On-demand photoinitiated polymerization

    SciTech Connect

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  8. On-demand photoinitiated polymerization

    SciTech Connect

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2015-01-13

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  9. Vectorized Monte Carlo

    SciTech Connect

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes.

  10. A novel approach for the intravenous delivery of leuprolide using core-cross-linked polymeric micelles.

    PubMed

    Hu, Qizhi; van Gaal, Ethlinn V B; Brundel, Paul; Ippel, Hans; Hackeng, Tilman; Rijcken, Cristianne J F; Storm, Gert; Hennink, Wim E; Prakash, Jai

    2015-05-10

    Therapeutic peptides are highly attractive drugs for the treatment of various diseases. However, their poor pharmacokinetics due to rapid renal elimination limits their clinical applications. In this study, a model hormone peptide, leuprolide, was covalently linked to core-cross-linked polymeric micelles (CCL-PMs) via two different hydrolysable ester linkages, thereby yielding a nanoparticulate system with tuneable drug release kinetics. The ester linkage that provided the slowest peptide release kinetics was selected for in vivo evaluation. Compared to the soluble peptide, the leuprolide-entrapped CCL-PMs showed a prolonged circulation half-life (14.4h) following a single intravenous injection in healthy rats and the released leuprolide was detected in blood for 3days. In addition, the area under the plasma concentration-time curve (AUC) value was >100-fold higher for leuprolide-entrapped CCL-PMs than for soluble leuprolide. Importantly, the released peptide remained biologically active as demonstrated by increased and long-lasting plasma testosterone levels. This study shows that covalent linkage of peptides to CCL-PMs via hydrolytically sensitive ester bonds is a promising approach to achieving sustained systemic levels of peptides after intravenous administration.

  11. Comparative toxicity of nanoparticulate/bulk Yb₂O₃ and YbCl₃ to cucumber (Cucumis sativus).

    PubMed

    Zhang, Peng; Ma, Yuhui; Zhang, Zhiyong; He, Xiao; Guo, Zhi; Tai, Renzhong; Ding, Yayun; Zhao, Yuliang; Chai, Zhifang

    2012-02-01

    With the increasing utilization of nanomaterials, there is a growing concern for the potential environmental and health effects of them. To assess the environmental risks of nanomaterials, better knowledge about their fate and toxicity in plants are required. In this work, we compared the phytotoxicity of nanoparticulate Yb(2)O(3), bulk Yb(2)O(3), and YbCl(3)·6H(2)O to cucumber plants. The distribution and biotransformation of the three materials in plant roots were investigated in situ by TEM, EDS, as well as synchrotron radiation based methods: STXM and NEXAFS. The decrease of biomass was evident at the lowest concentration (0.32 mg/L) when exposed to nano-Yb(2)O(3), while at the highest concentration, the most severe inhibition was from YbCl(3). The inhibition was dependent on the actual amount of toxic Yb uptake by the cucumber plants. In the intercellular regions of the roots, Yb(2)O(3) particles and YbCl(3) were all transformed to YbPO(4). We speculate that the dissolution of Yb(2)O(3) particles induced by the organic acids exuded from roots played an important role in the phytotoxicity. Only under the nano-Yb(2)O(3) treatment, YbPO(4) deposits were found in the cytoplasm of root cells, so the phytotoxicity might also be attributed to the Yb internalized into the cells.

  12. Effect of Ni precursor solution concentration on the magnetic properties and exchange bias of Ni-NiO nanoparticulate systems

    NASA Astrophysics Data System (ADS)

    Roy, Aparna; De Toro, J. A.; Amaral, V. S.; Marques, D. P.; Ferreira, J. M. F.

    2014-09-01

    We report on a comparative study of the exchange bias effect and magnetic properties of Ni-NiO nanoparticulate systems synthesized by the chemical reduction of NiCl2 solution of two different molar concentrations—1 M (high) and 0.05 M (low)—followed by annealing of the dried precipitate in the temperature range 400-600 °C in air. Interestingly, the samples derived from the low molarity solution have higher Ni content and larger crystallite size than those prepared from their high molarity counterparts. These molarity dependent features subsequently modulate the magnitude of the exchange bias field in the samples, which is found to be absent or small in the 0.05 M series, but of moderate value in the 1 M samples. The different physical attributes of the particles derived from different concentrations of Ni-precursor solution are explained by invoking different nucleation kinetics and supersaturation degrees surrounding the viable growing nucleus. Furthermore, an observed increase of exchange bias with increasing annealing temperature, in contrast to the reported agglomeration of particles on annealing and subsequent reduction in bias magnitude, has been explained in correlation to the Ni-NiO interface density.

  13. Using a modified shepards method for optimization of a nanoparticulate cyclosporine a formulation prepared by a static mixer technique.

    PubMed

    Douroumis, Dionysios; Scheler, Stefan; Fahr, Alfred

    2008-02-01

    An innovative methodology has been used for the formulation development of Cyclosporine A (CyA) nanoparticles. In the present study the static mixer technique, which is a novel method for producing nanoparticles, was employed. The formulation optimum was calculated by the modified Shepard's method (MSM), an advanced data analysis technique not adopted so far in pharmaceutical applications. Controlled precipitation was achieved injecting the organic CyA solution rapidly into an aqueous protective solution by means of a static mixer. Furthermore the computer based MSM was implemented for data analysis, visualization, and application development. For the optimization studies, the gelatin/lipoid S75 amounts and the organic/aqueous phase were selected as independent variables while the obtained particle size as a dependent variable. The optimum predicted formulation was characterized by cryo-TEM microscopy, particle size measurements, stability, and in vitro release. The produced nanoparticles contain drug in amorphous state and decreased amounts of stabilizing agents. The dissolution rate of the lyophilized powder was significantly enhanced in the first 2 h. MSM was proved capable to interpret in detail and to predict with high accuracy the optimum formulation. The mixer technique was proved capable to develop CyA nanoparticulate formulations. PMID:17853428

  14. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  15. Physicochemical characterization and toxicological evaluation of plant-based anionic polymers and their nanoparticulated system for ocular delivery.

    PubMed

    Pathak, Deepa; Kumar, Prashant; Kuppusamy, Gowthamarajan; Gupta, Ankur; Kamble, Bhagyashree; Wadhwani, Ashish

    2014-12-01

    The water-soluble fractions of mucilages and gum from the seeds of fenugreek, isphagula and mango bark exudate were isolated, purified and characterized using X-ray diffraction (XRD) spectrometry, Fourier transform infrared spectroscopy (FT-IR), maldi/GC-MS, elemental analysis, 1D ((1)H and (13)C) and 2D (HMQC, COSY) nuclear magnetic resonance spectroscopy (NMR). The fenugreek mucilage was identified to be a galactomannan chain consisting of 4 units of galactose attached to the backbone of 6 mannose units in 1:1.5 ratio. The isphagula mucilage was identified to be an arabinoxylan polysaccharide chain consisting of 4 units of arabinofuranose attached to the backbone of 9 xylopyrannose units in 1:3 ratio. The mango gum showed the presence of amylose, α-arabinofuranosyl and β-galactopyranosyl, respectively. The characterized mucilages and gum were individually formulated into nanoparticulate system using their complementarily charged polymer chitosan. The particles were observed to be spherical in shape in the range of 61.5-90 nm having zetapotential between 31 and 34 mV and PDI of 0.097-0.241. The prepared nanoparticles were observed to be nonirritant and nontoxic in vitro and in vivo upto 2000 μg/ml. Therefore, these mucilages and gum can be the alternatives of anionic polymers for the ocular drug delivery system. PMID:23952497

  16. Anti-biofouling polymer-decorated lutetium-based nanoparticulate contrast agents for in vivo high-resolution trimodal imaging.

    PubMed

    Liu, Zhen; Dong, Kai; Liu, Jianhua; Han, Xueli; Ren, Jinsong; Qu, Xiaogang

    2014-06-25

    Nanomaterials have gained considerable attention and interest in the development of novel and high-resolution contrast agents for medical diagnosis and prognosis in clinic. A classical urea-based homogeneous precipitation route that combines the merits of in situ thermal decomposition and surface modification is introduced to construct polyethylene glycol molecule (PEG)-decorated hybrid lutetium oxide nanoparticles (PEG-UCNPs). By utilizing the admirable optical and magnetic properties of the yielded PEG-UCNPs, in vivo up-conversion luminescence and T1 -enhanced magnetic resonance imaging of small animals are conducted, revealing obvious signals after subcutaneous and intravenous injection, respectively. Due to the strong X-ray absorption and high atomic number of lanthanide elements, X-ray computed-tomography imaging based on PEG-UCNPs is then designed and carried out, achieving excellent imaging outcome in animal experiments. This is the first example of the usage of hybrid lutetium oxide nanoparticles as effective nanoprobes. Furthermore, biodistribution, clearance route, as well as long-term toxicity are investigated in detail after intravenous injection in a murine model, indicating the overall safety of PEG-UCNPs. Compared with previous lanthanide fluorides, our nanoprobes exhibit more advantages, such as facile construction process and nearly total excretion from the animal body within a month. Taken together, these results promise the use of PEG-UCNPs as a safe and efficient nanoparticulate contrast agent for potential application in multimodal imaging.

  17. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry1

    PubMed Central

    Uskoković, Vuk

    2013-01-01

    This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald–Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly. PMID:24490052

  18. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  19. Novel polymeric materials from triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  20. Supramolecular polymerization: Living it up

    NASA Astrophysics Data System (ADS)

    Würthner, Frank

    2014-03-01

    Protein fibril formation is involved in many human diseases and thus has been mechanistically elucidated in the context of understanding -- and in turn treating -- them. This biological phenomenon has now also inspired the design of a supramolecular system that undergoes living polymerization.

  1. The absorption of polymeric composites

    NASA Astrophysics Data System (ADS)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.

    2016-06-01

    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  2. The Viscosity of Polymeric Fluids.

    ERIC Educational Resources Information Center

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  3. Buckling of polymerized monomolecular films

    NASA Astrophysics Data System (ADS)

    Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.

    1994-03-01

    The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.

  4. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  5. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1993-10-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl.sub.5 or W(CO).sub.6 /hv.

  6. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsooodi, S; Yi Pang.

    1993-10-19

    A polymeric material is described which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6].

  7. Nonlinear optical and conductive polymeric material

    DOEpatents

    Barton, T.J.; Ijadi-Maghsoodi, S.; Pang, Y.

    1992-05-19

    A polymeric material which exhibits nonlinear optical properties if undoped and conductive properties if doped. The polymer is prepared by polymerizing diethynylsilane compositions, the resulting polymeric material having a weight average molecular weight between about 20,000 and about 200,000 grams per mole. The polymer is prepared and catalytically polymerized by exposure to a catalyst, such as MoCl[sub 5] or W(CO)[sub 6]/hv.

  8. Serotype-specific Binding Properties and Nanoparticle Characteristics Contribute to the Immunogenicity of rAAV1 Vectors.

    PubMed

    Ferrand, Maxime; Da Rocha, Sylvie; Corre, Guillaume; Galy, Anne; Boisgerault, Florence

    2015-06-01

    The immunogenic properties of recombinant adeno-associated virus (rAAV) gene transfer vectors remain incompletely characterized in spite of their usage as gene therapy vectors or as vaccines. Molecular interactions between rAAV and various types of antigen-presenting cells (APCs), as well as the impact of these interactions on transgene or capsid-specific immunization remain unclear. We herein show that binding motifs recognized by the capsid and which determine the vector tissue tropism are also critical for key immune activation processes. Using rAAV capsid serotype 1 (rAAV1) vectors which primary receptors on target cells are α2,3 and α2,6 N-linked sialic acids, we show that sialic acid-dependent binding of rAAV1 on APCs is essential to trigger CD4(+) T-cell responses by increasing rAAV1 uptake and contributing to antigenic presentation of both the capsid and transgene product although this involves different APCs. In addition, the nanoparticulate structure of the vector in itself appears to be sufficient to trigger mobilization and activation of some APCs. Therefore, combinations of structural and of serotype-specific cell-targeting properties of rAAV1 determine its complex immunogenicity. These findings may be useful to guide a selection of rAAV variants depending on the intended level of immunogenicity for either gene therapy or vaccination applications.

  9. Chondroitin sulphate decorated nanoparticulate carriers of 5-fluorouracil: development and in vitro characterization.

    PubMed

    Yadav, Awesh K; Agarwal, Abhinav; Jain, Sanyog; Mishra, Anil K; Bid, Hemant; Rai, Gopal; Agrawal, Hirnanshu; Agrawal, Govind P

    2010-08-01

    The present study investigates prospective of tailored nanoparticles as vectors to provide improved therapeutic efficacy of encapsulated anti-cancer drug 5-FU. Condritin Sulphate (CS) conjugated PLGA nanoparticles were prepared using PEG-bis-amine and adipic dihydrazide as spacers and loaded with an anti-cancer drug 5-FU (CS-PEG-PLGA-FU and CS-ADH-PLGA-FU). The formulations were then compared with non CS-anchored monomethoxy(polyethylene glycol) (MPEG-PLGA-FU) nanoparticles. Nanoparticlulate systems were further characterized by FTIR, NMR, TEM studies and particle size/polydispersity index (PDI) analysis. DSC and XRD were also performed to assess the nature of 5-FU inside the nanoparticles. The nanoparticles prepared using amphiphilic block copolymer CS-PEG-PLGA were able to sustain the release of 5-FU up to 48 h whereas those of CS-ADH-PLGA and MPEG-PLGA released the drug up to 24 h. The CS-PEG-PLGA-FU nanoparticles were found to be least haemolytic when compared to free drug, CS-ADH-PLGA-FU and MPEG-PLGA-FU nanoparticles. Cytotoxicity studies were performed on MCF-7/MDA-MD 231 breast cancer cells. PLGA nanoparticles exhibited more potent cytotoxic effect on MCF-7/MDA-MD 231 cells than free doxorubicin. Further, enhanced cytotoxicity and lower hemolytic potential of CS-PEG-PLGA-FU nanoparticles suggest a potential application in cancer chemotherapy. PMID:21323107

  10. Vector processing unit

    SciTech Connect

    Garcia, L.C.; Tjon-Pian-Gi, D.C.; Tucker, S.G.; Zajac, M.W.

    1988-12-13

    This patent describes a data processing system comprising: memory means for storing instruction words of operands; a central processing unit (CPU) connected to the memory means for fetching and decoding instructions and controlling execution of instructions, including transfer of operands to and from the memory means, the control of execution of instructions is effected by a CPU clock and microprogram control means connected to the CPU clock for generating periodic execution control signals in synchronism with the CPU clock; vector processing means tightly coupled to the CPU for effecting data processing on vector data; and interconnection means, connecting the CPU and the vector processing means, including operand transfer lines for transfer of vector data between the CPU and the vector processing means, control lines, status lines for signalling conditions of the vector processor means to the CPU, and a vector timing signal line connected to one of the execution control signals from the microprogram control means, whereby the vector processing means receives periodic execution control signals at the clock rate and is synchronized with the CPU clock on a clock pulse by clock pulse basis during execution of instructions.

  11. Biodegradable Long-Circulating Polymeric Nanospheres

    NASA Astrophysics Data System (ADS)

    Gref, Ruxandra; Minamitake, Yoshiharu; Peracchia, Maria Teresa; Trubetskoy, Vladimir; Torchilin, Vladimir; Langer, Robert

    1994-03-01

    Injectable nanoparticulate carriers have important potential applications such as site-specific drug delivery or medical imaging. Conventional carriers, however, cannot generally be used because they are eliminated by the reticulo-endothelial system within seconds or minutes after intravenous injection. To address these limitations, monodisperse biodegradable nanospheres were developed from amphiphilic copolymers composed of two biocompatible blocks. The nanospheres exhibited dramatically increased blood circulation times and reduced liver accumulation in mice. Furthermore, they entrapped up to 45 percent by weight of the drug in the dense core in a one-step procedure and could be freeze-dried and easily redispersed without additives in aqueous solutions.

  12. Biodegradable long-circulating polymeric nanospheres.

    PubMed

    Gref, R; Minamitake, Y; Peracchia, M T; Trubetskoy, V; Torchilin, V; Langer, R

    1994-03-18

    Injectable nanoparticulate carriers have important potential applications such as site-specific drug delivery or medical imaging. Conventional carriers, however, cannot generally be used because they are eliminated by the reticulo-endothelial system within seconds or minutes after intravenous injection. To address these limitations, monodisperse biodegradable nanospheres were developed from amphiphilic copolymers composed of two biocompatible blocks. The nanospheres exhibited dramatically increased blood circulation times and reduced liver accumulation in mice. Furthermore, they entrapped up to 45 percent by weight of the drug in the dense core in a one-step procedure and could be freeze-dried and easily redispersed without additives in aqueous solutions.

  13. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  14. Vector generator scan converter

    DOEpatents

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  15. Vector generator scan converter

    DOEpatents

    Moore, James M.; Leighton, James F.

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  16. Vector theories in cosmology

    SciTech Connect

    Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe

    2010-03-15

    This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.

  17. Vector generator scan converter

    SciTech Connect

    Moore, J.M.; Leighton, J.F.

    1990-04-17

    This patent describes high printing speeds for graphics data that are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  18. Line Integral of a Vector.

    ERIC Educational Resources Information Center

    Balabanian, Norman

    This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…

  19. Polycistronic viral vectors.

    PubMed

    de Felipe, P

    2002-09-01

    Traditionally, vectors for gene transfer/therapy experiments were mono- or bicistronic. In the latter case, vectors express the gene of interest coupled with a marker gene. An increasing demand for more complex polycistronic vectors has arisen in recent years to obtain complex gene transfer/therapy effects. In particular, this demand is stimulated by the hope of a more powerful effect from combined gene therapy than from single gene therapy in a process whose parallels lie in the multi-drug combined therapies for cancer or AIDS. In the 1980's we had only splicing signals and internal promoters to construct such vectors: now a new set of biotechnological tools enables us to design new and more reliable bicistronic and polycistronic vectors. This article focuses on the description and comparison of the strategies for co-expression of two genes in bicistronic vectors, from the oldest to the more recently described: internal promoters, splicing, reinitiation, IRES, self-processing peptides (e.g. foot-and-mouth disease virus 2A), proteolytic cleavable sites (e.g. fusagen) and fusion of genes. I propose a classification of these strategies based upon either the use of multiple transcripts (with transcriptional mechanisms), or single transcripts (using translational/post-translational mechanisms). I also examine the different attempts to utilize these strategies in the construction of polycistronic vectors and the main problems encountered. Several potential uses of these polycistronic vectors, both in basic research and in therapy-focused applications, are discussed. The importance of the study of viral gene expression strategies and the need to transfer this knowledge to vector design is highlighted.

  20. The Production and Export of Bioavailable Iron from Ice Sheets - the Importance of Colloidal and Nanoparticulate Phases

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Wadham, J. L.; Tranter, M.; Raiswell, R.; Benning, L. G.; Statham, P. J.; Tedstone, A.; Nienow, P. W.; Telling, J.; Bagshaw, E.

    2013-12-01

    Glaciers cover approximately 10% of the world's land surface at present, but our knowledge of biogeochemical processes occurring beneath them is still limited, as is our understanding of their impact on downstream ecosystems via the export of nutrients in runoff. Recent work has suggested that glaciers are a primary source of nutrients to near coastal areas(1). For example, macronutrients, such as nitrogen and phosphorus, and micronutrients, such as iron, may support primary production(2,3). Nutrient limitation of primary producers is known to be prevalent in large sectors of the world's oceans and iron is a significant limiting nutrient in Polar waters(4,5). Significantly, large oceanic algal blooms have been observed in polar areas where glacial influence is large(6,7). Our knowledge of iron speciation, concentrations and export dynamics in glacial meltwater is limited due, in part, to problems associated with collecting trace measurements in remote field locations. For example, recent work has indicated large uncertainty in 'dissolved' meltwater iron concentrations (0.2 - 4000 μM(8,9)). There is currently a dearth of information about labile nanoparticulate iron in glacial meltwaters, as well as export dynamics from large ice sheet catchments. Existing research has focused on small catchment examples(8,10), which behave differently to larger catchments(11). Presented here is the first time series of daily variations in meltwater iron concentrations (dissolved, filterable colloidal/nanoparticulate and bioavailable suspended sediment bound) from two large contrasting glacial catchments in Greenland over the 2012 and 2013 summer melt seasons. We also present the first estimates of iron concentrations in Greenlandic icebergs, which have been identified as hot spots of biological activity in the open ocean(12,13). Budgets for ice sheets based on our data demonstrate the importance of glaciers in global nutrient cycles, and reveal a large and previously under

  1. Generation of Oxidants From the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen for the use in Contaminant Remediation

    NASA Astrophysics Data System (ADS)

    Keenan, C. R.; Lee, C.; Sedlak, D. L.

    2007-12-01

    The reaction of zero-valent iron (ZVI) with oxygen can lead to the formation of oxidants, which may be used to transform recalcitrant contaminants including non-polar organics and certain metals. Nanoparticulate iron might provide a practical mechanism of remediating oxygen-containing groundwater and contaminated soil. To gain insight into the reaction mechanism and to quantify the yield of oxidants, experiments were performed with model organic compounds in the presence of nanoparticulate zero-valent iron and oxygen. At pH values below 5, ZVI nanoparticles were oxidized within 30 minutes with a stoichiometry of approximately two Fe0 oxidized per O2 consumed. Using the oxidation of methanol and ethanol to formaldehyde and acetaldehyde, respectively, we found that less than 2% of the consumed oxygen was converted to reactive oxidants under acidic conditions. The yield of aldehydes increased with pH up to pH 7, with maximum oxidant yields of around 5% relative to the mass of ZVI added. The increase of aldehyde yield with pH was attributable to changes in the processes responsible for oxidant production. At pH values below 5, the corrosion of ZVI by oxygen produces hydrogen peroxide, which subsequently reacts with ferrous iron [Fe(II)] via the Fenton reaction. At higher pH values, the aldehydes are produced when Fe(II), the initial product of ZVI oxidation, reacts with oxygen. The decrease in oxidant yield at pH values above 7 may be attributable to precipitation of Fe(II). The oxidation of benzoic acid and 2-propanol to para-hydroxybenzoic acid and acetone, respectively, followed a very different trend compared to the primary alcohols. In both cases, the highest product yields (approximately 2% with respect to ZVI added) were observed at pH 3. Yields decreased with increasing pH, with no oxidized product detected at neutral pH. These results suggest that two different oxidants may be produced by the system: hydroxyl radical (OH-·) at acidic pH and a more selective

  2. Fractal vector optical fields.

    PubMed

    Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2016-07-15

    We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485

  3. Combustion-generated nanoparticulates in the El Paso, TX, USA / Juarez, Mexico Metroplex: their comparative characterization and potential for adverse health effects.

    PubMed

    Murr, L E; Soto, K F; Garza, K M; Guerrero, P A; Martinez, F; Esquivel, E V; Ramirez, D A; Shi, Y; Bang, J J; Venzor, J

    2006-03-01

    In this paper we report on the collection of fine (PM1) and ultrafine (PM0.1), or nanoparticulate, carbonaceous materials using thermophoretic precipitation onto silicon monoxide/formvar-coated 3 mm grids which were examined in the transmission electron microscope (TEM). We characterize and compare diesel particulate matter (DPM), tire particulate matter (TPM), wood burning particulate matter, and other soot (or black carbons (BC)) along with carbon nanotube and related fullerene nanoparticle aggregates in the outdoor air, as well as carbon nanotube aggregates in the indoor air; and with reference to specific gas combustion sources. These TEM investigations include detailed microstructural and microdiffraction observations and comparisons as they relate to the aggregate morphologies as well as their component (primary) nanoparticles. We have also conducted both clinical surveys regarding asthma incidence and the use of gas cooking stoves as well as random surveys by zip code throughout the city of El Paso. In addition, we report on short term (2 day) and longer term (2 week) in vitro assays for black carbon and a commercial multiwall carbon nanotube aggregate sample using a murine macrophage cell line, which demonstrate significant cytotoxicity; comparable to a chrysotile asbestos nanoparticulate reference. The multi-wall carbon nanotube aggregate material is identical to those collected in the indoor and outdoor air, and may serve as a surrogate. Taken together with the plethora of toxic responses reported for DPM, these findings prompt concerns for airborne carbonaceous nanoparticulates in general. The implications of these preliminary findings and their potential health effects, as well as directions for related studies addressing these complex issues, will also be examined.

  4. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    SciTech Connect

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  5. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive - a case study.

    PubMed

    Park, Barry; Donaldson, Kenneth; Duffin, Rodger; Tran, Lang; Kelly, Frank; Mudway, Ian; Morin, Jean-Paul; Guest, Robert; Jenkinson, Peter; Samaras, Zissis; Giannouli, Myrsini; Kouridis, Haris; Martin, Patricia

    2008-04-01

    Envirox is a scientifically and commercially proven diesel fuel combustion catalyst based on nanoparticulate cerium oxide and has been demonstrated to reduce fuel consumption, greenhouse gas emissions (CO(2)), and particulate emissions when added to diesel at levels of 5 mg/L. Studies have confirmed the adverse effects of particulates on respiratory and cardiac health, and while the use of Envirox contributes to a reduction in the particulate content in the air, it is necessary to demonstrate that the addition of Envirox does not alter the intrinsic toxicity of particles emitted in the exhaust. The purpose of this study was to evaluate the safety in use of Envirox by addressing the classical risk paradigm. Hazard assessment has been addressed by examining a range of in vitro cell and cell-free endpoints to assess the toxicity of cerium oxide nanoparticles as well as particulates emitted from engines using Envirox. Exposure assessment has taken data from modeling studies and from airborne monitoring sites in London and Newcastle adjacent to routes where vehicles using Envirox passed. Data have demonstrated that for the exposure levels measured, the estimated internal dose for a referential human in a chronic exposure situation is much lower than the no-observed-effect level (NOEL) in the in vitro toxicity studies. Exposure to nano-size cerium oxide as a result of the addition of Envirox to diesel fuel at the current levels of exposure in ambient air is therefore unlikely to lead to pulmonary oxidative stress and inflammation, which are the precursors for respiratory and cardiac health problems. PMID:18444008

  6. Preparation and imaging performance of nanoparticulated LuPO4:Eu semitransparent films under x-ray radiation

    NASA Astrophysics Data System (ADS)

    Seferis, I. E.; Zeler, J.; Michail, C.; Valais, I.; Fountos, G.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Panayiotakis, G. S.; Zych, E.

    2015-12-01

    The aim of the present work was to demonstrate the fabrication technique for semitransparent layers of nanoparticulated (~50 nm) LuPO4:15%Eu phosphors. Furthermore, to present their basic luminescent properties and provide results regarding their performance in a planar imaging system incorporating a CMOS photodetector. Parameters such as the Detective Quantum Efficiency (DQE), the Normalized Noise Power Spectrum (NNPS) and the Modulation Transfer Function (MTF), were investigated. The NNPS was found to present significantly higher values near the zero frequency for the 67 μm, 100 μm films, pointing on their higher non uniformities compared to the 220 and 460 μm films For the two thickest films (460 μm and 220 μm) the MTF curves practically do not differ, while MTFs for the thinner layers of 100 μm and 67 μm are higher as the layer's thickness decreases. The higher DQE values observed for the 220 μm and 460 μm films up to medium frequencies, while at high frequencies the DQE values are comparable. Although the MTF values of these films are much lower than the thinner screens, the capability of the higher x-ray absorption, in conjunction with the low noise properties, lead to higher DQE values. The LuPO4:Eu semitransparent films seems to be a very promising scintillator for stationary x-ray imaging. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains, and thus without sacrificing their translucent character.

  7. Polymeric cationic substituted acrylamide surfactants

    SciTech Connect

    Nieh, E.C.Y.

    1983-11-15

    A new composition of matter comprises a copolymer of a surface active quaternary ammonium monomer salt and from 50 to 97% by wt of acrylamide. The new copolymers can have molecular weights substantially greater than 10,000 and still remain water soluble and surface active. Copolymers are prepared by polymerization techniques known in the art. The quaternary ammonium monomer is dispersed under inert atmosphere in aqueous solution which may additionally contain dissolved therein a low molecular weight alcohol such as ethanol, isopropanol, and the like. Acidic polymerization initiator such as the azo initiators, organic peroxides, or redox initiators such as the sulfite- persulfate system is then added in an amount calculated to yield a polymer product of desired molecular weight. (14 claims.

  8. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  9. Radiation-hardened polymeric films

    DOEpatents

    Arnold, C. Jr.; Hughes, R.C.; Kepler, R.G.; Kurtz, S.R.

    1984-07-16

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10/sup 15/ to 10/sup 21/ molecules of dopant/cm/sup 3/. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  10. Radiation-hardened polymeric films

    DOEpatents

    Arnold, Jr., Charles; Hughes, Robert C.; Kepler, R. Glen; Kurtz, Steven R.

    1986-01-01

    The radiation-induced conductivity of polymeric dielectrics with low electronic mobility is reduced by doping with electron donor or electron acceptor compounds at a level of 10.sup.15 to 10.sup.21 molecules of dopant/cm.sup.3. Polyesters, polyolefins, perfluoropolyolefins, vinyl polymers, vinylidene polymers, polycarbonates, polysulfones and polyimides can benefit from such a treatment. Usable dopants include 2,4,7-trinitro-9-fluorenone, tetracyanethylene, 7,7,8,8-tetracyanoquinodimethane, m-dinitrobenzene, 2-isopropylcarbazole, and triphenylamine.

  11. Two Photon Polymerization of Ormosils

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Jipa, F.; Luculescu, C.; Dinescu, M.; Buruiana, E. C.; Buruiana, T.; Sima, L. E.; Petrescu, S. M.

    2010-10-01

    In this work, 3D structures of hybrid polymers—ORMOSILS (organically modified silicates) were produced via Two Photon Polymerization (2PP) of hybrid methacrylates based on silane derivates. Synthetic routes have been used to obtain series of hybrid monomers, their structure and purity being checked by NMR Spectroscopy and Fourier Transform Infrared Spectroscopy. Two photon polymerization method (a relatively new technology which allows fast micro and nano processing of three-dimensional structures with application in medical devices, tissue scaffolds, photonic crystals etc) was used for monomers processing. As laser a Ti: Sapphire laser was used, with 200 fs pulse duration and 2 kHz repetition rate, emitting at 775 nm. A parametric study on the influence of the processing parameters (laser fluence, laser scanning velocity, photo initiator) on the written structures was carried out. The as prepared polymeric scaffolds were tested in mesenchymal stem cells and fibroblasts cell cultures, with the aim of further obtaining bone and dermal grafts. Cells morphology, proliferation, adhesion and alignment were analyzed for different experimental conditions.

  12. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  13. Poynting-vector filter

    SciTech Connect

    Carrigan, Charles R.

    2011-08-02

    A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.

  14. Hyperbranched polysiloxysilane nanoparticles for nonviral gene delivery vectors and nanoprobes

    NASA Astrophysics Data System (ADS)

    Kim, Won Jin; Bonoiu, Adela C.; Lee, Kwang-Sup; Hayakawa, Teruaki; Xia, Cheng; Kakimoto, Masa-aki; Pudavar, Haridas E.; Prasad, Paras N.

    2009-08-01

    We report an approach to produce predefined surface charge tunable gene delivery vectors using siloxysilsane-based polymer for gene delivery studies. To obtain nonviral vectors, new series of hyperbranched polysiloxysilane (HBPS) were synthesized, and the end groups in polymer structures have modified with hydrophilic molecules; in other words, carboxylic acid and quaternary ammonium groups were employed into terminal structures to give the amphiphilicity. The novelty of these amphiphilic HBPS polymers lies in the fact that nanoparticles with different zeta potential (surface charge density) can be easily tailored and functionalized. These polymeric nanoparticles which containing various chemical groups on the surface indicated altered surface charge distributions (from -40 to +64mV). Finally, the use of these nanoparticles as efficient gene delivery vectors was demonstrated by means of in vitro transfection study using β- galactosidase plasmid and pEGFP-N1 plasmid, and the most efficient combination was obtained using HBPS-CN30:70.

  15. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  16. Syngeneic AAV pseudo-vectors potentiates full vector transduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An excessive amount of empty capsids are generated during regular AAV vector production process. These pseudo-vectors often remain in final vectors used for animal studies or clinical trials. The potential effects of these pseudo-vectors on AAV transduction have been a major concern. In the current ...

  17. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2011-10-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  18. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  19. Structural insights into de novo actin polymerization

    PubMed Central

    Dominguez, Roberto

    2010-01-01

    Summary Many cellular functions depend on rapid and localized actin polymerization/depolymerization. Yet, the de novo polymerization of actin in cells is kinetically unfavorable because of the instability of polymerization intermediates (small actin oligomers) and the actions of actin monomer binding proteins. Cells use filament nucleation and elongation factors to initiate and sustain polymerization. Structural biology is beginning to shed light on the diverse mechanisms by which these unrelated proteins initiate polymerization, undergo regulation, and mediate the transition of monomeric actin onto actin filaments. A prominent role is played by the W domain, which in some of these proteins occurs in tandem repeats that recruit multiple actin subunits. Pro-rich regions are also abundant and mediate the binding of profilin-actin complexes, which are the main source of polymerization competent actin in cells. Filament nucleation and elongation factors frequently interact with Rho family GTPases, which relay signals from membrane receptors to regulate actin cytoskeleton remodeling. PMID:20096561

  20. Vector and Axial Vector Pion Form Factors

    NASA Astrophysics Data System (ADS)

    Vitz, Michael; PEN Collaboration

    2015-04-01

    Radiative pion decay π+ -->e+ νγ (RPD) provides critical input to chiral perturbation theory (χPT). Aside from the uninteresting ``inner bremsstrahlung'' contribution from QED, the RPD rate contains ``structure dependent'' terms given by FV and FA, the vector and axial-vector pion form factors, respectively. The two appear in the decay rate in combinations FV -FA and FV +FA , i.e., in the so-called SD- and SD+ terms, respectively. The latter has been measured to high precision by the PIBETA collaboration. We report on the analysis of new data, measured by the PEN collaboration in runs between 2008 and 2010 at the Paul Scherrer Institute, Switzerland. We particularly focus on the possibility of improvement in the determination of the SD- term. Precise determinations of FV and FA test the validity of the CVC hypothesis, provide numerical input for the l9 +l10 terms in the χPT lagrangian, and constrain potential non-(V - A) terms, such as a possible tensor term FT. NSF grants PHY-0970013, 1307328, and others.

  1. Bunyavirus-vector interactions.

    PubMed

    Beaty, B J; Bishop, D H

    1988-06-01

    Recent advances in the genetics and molecular biology of bunyaviruses have been applied to understanding bunyavirus-vector interactions. Such approaches have revealed which virus gene and gene products are important in establishing infections in vectors and in transmission of viruses. However, much more information is required to understand the molecular mechanisms of persistent infections of vectors which are lifelong but apparently exert no untoward effect. In fact, it seems remarkable that LAC viral antigen can be detected in almost every cell in an ovarian follicle, yet no untoward effect on fecundity and no teratology is seen. Similarly the lifelong infection of the vector would seem to provide ample opportunity for bunyavirus evolution by genetic drift and, under the appropriate circumstances, by segment reassortment. The potential for bunyavirus evolution by segment reassortment in vectors certainly exists. For example the Group C viruses in a small forest in Brazil seem to constitute a gene pool, with the 6 viruses related alternately by HI/NT and CF reactions, which assay respectively M RNA and S RNA gene products (Casals and Whitman, 1960; Shope and Causey, 1962). Direct evidence for naturally occurring reassortant bunyaviruses has also been obtained. Oligonucleotide fingerprint analyses of field isolates of LAC virus and members of the Patois serogroup of bunyaviruses have demonstrated that reassortment does occur in nature (El Said et al., 1979; Klimas et al., 1981; Ushijima et al., 1981). Determination of the genotypic frequencies of viruses selected by the biological interactions of viruses and vectors after dual infection and segment reassortment is an important issue. Should a virus result that efficiently interacts with alternate vector species, the virus could be expressed in different circumstances with serious epidemiologic consequences. Dual infection of vectors with different viruses is not unlikely, because many bunyaviruses are sympatric in

  2. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle.

    PubMed

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N

    2015-11-28

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A(®) Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 ± 1.1% vs. 0.4 ± 0.1% and 7.5 ± 0.8% vs. 0.8 ± 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm(®) (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A(®) Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A(®) Micro in terms of delivery efficiency to PSU presenting human skin (10.4 ± 3.2% vs. 0.6 ± 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU

  3. Ionene modified small polymeric beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Linear ionene polyquaternary cationic polymeric segments are bonded by means of the Menshutkin reaction (quaternization) to biocompatible, extremely small, porous particles containing halide or tertiary amine sites which are centers for attachment of the segments. The modified beads in the form of emulsions or suspensions offer a large, positively-charged surface area capable of irreversibly binding polyanions such as heparin, DNA, RNA or bile acids to remove them from solution or of reversibly binding monoanions such as penicillin, pesticides, sex attractants and the like for slow release from the suspension.

  4. Marketing NASA Langley Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Flynn, Diane M.

    1995-01-01

    A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.

  5. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  6. Computational studies of polymeric systems

    NASA Astrophysics Data System (ADS)

    Carrillo, Jan-Michael Y.

    Polymeric systems involving polyelectrolytes in surfaces and interfaces, semiflexible polyelectrolytes and biopolymers in solution, complex polymeric systems that had applications in nanotechnology were modeled using coarse grained molecular dynamics simulation. In the area of polyelectrolytes in surfaces and interfaces, the phenomena of polyelectrolyte adsorption at oppositely charge surface was investigated. Simulations found that short range van der Waals interaction was a major factor in determining morphology and thickness of the adsorbed layer. Hydrophobic polyelectrolytes adsorbed in hydrophobic surfaces tend to be the most effective in forming multi-layers because short range attraction enhances the adsorption process. Adsorbed polyelectrolytes could move freely along the surface which was in contrast to polyelectrolyte brushes. The morphologies of hydrophobic polyelectrolyte brushes were investigated and simulations found that brushes had different morphologies depending on the strength of the short range monomer-monomer attraction, electrostatic interaction and counterion condensation. Planar polyelectrolyte brushes formed: (1) vertically oriented cylindrical aggregates, (2) maze-like aggregate structures, or (3) thin polymeric layer covering a substrate. While, the spherical polyelectrolyte brushes could be in any of the previous morphologies or be in a micelle-like conformation with a dense core and charged corona. In the area of biopolymers and semiflexible polyelectrolytes in solution, simulations demonstrated that the bending rigidity of these polymers was scale-dependent. The bond-bond correlation function describing a chain's orientational memory could be approximated by a sum of two exponential functions manifesting the existence of the two characteristic length scales. The existence of the two length scales challenged the current practice of describing chain stretching experiments using a single length scale. In the field of nanotechnology

  7. Multicomponent diffusion in polymeric liquids.

    PubMed Central

    Curtiss, C F; Bird, R B

    1996-01-01

    It is shown how the phase-space kinetic theory of polymeric liquid mixtures leads to a set of extended Maxwell-Stefan equations describing multicomponent diffusion. This expression reduces to standard results for dilute solutions and for undiluted polymers. The polymer molecules are modeled as flexible bead-spring structures. To obtain the Maxwell-Stefan equations, the usual expression for the hydrodynamic drag force on a bead, used in previous kinetic theories, must be replaced by a new expression that accounts explicitly for bead-bead interactions between different molecules. PMID:11607693

  8. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  9. Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model

    PubMed Central

    2013-01-01

    Introduction The amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of Alzheimer’s disease (AD), the most common neurodegenerative disorder affecting the elderly. Over the past years, several approaches and compounds developed for the treatment of AD have failed in clinical studies, likely in part due to their low penetration of the blood–brain barrier (BBB). Since nanotechnology-based strategies offer new possibilities for the delivery of drugs to the brain, this technique is studied intensively for the treatment of AD and other neurological disorders. Methods The Aβ42 lowering drug flurbiprofen was embedded in polylactide (PLA) nanoparticles by emulsification-diffusion technique and their potential as drug carriers in an in vitro BBB model was examined. First, the cytotoxic potential of the PLA-flurbiprofen nanoparticles on endothelial cells and the cellular binding and uptake by endothelial cells was studied. Furthermore, the biological activity of the nanoparticulate flurbiprofen on γ-secretase modulation as well as its in vitro release was examined. Furthermore, the protein corona of the nanoparticles was studied as well as their ability to transport flurbiprofen across an in vitro BBB model. Results PLA-flurbiprofen nanoparticles were endocytosed by endothelial cells and neither affected the vitality nor barrier function of the endothelial cell monolayer. The exposure of the PLA-flurbiprofen nanoparticles to human plasma occurred in a rapid protein corona formation, resulting in their decoration with bioactive proteins, including apolipoprotein E. Furthermore, luminally administered PLA-flurbiprofen nanoparticles in contrast to free flurbiprofen were able to modulate γ-secretase activity by selectively decreasing Aβ42 levels in the abluminal compartment of the BBB model. Conclusions In this study, we were able to show that flurbiprofen can be transported by PLA nanoparticles across an in vitro BBB model and most importantly, the

  10. Ketoprofen as a photoinitiator for anionic polymerization.

    PubMed

    Wang, Yu-Hsuan; Wan, Peter

    2015-06-01

    A new photoinitiating system for anionic polymerization of acrylates based on the efficient photodecarboxylation of Ketoprofen (1) and the related derivatives 3 and 4 that generate the corresponding carbanion intermediates is presented. Carbanion intermediates are confirmed by deuterium incorporation in the trapped Michael adducts and by spectroscopic detection using laser flash photolysis (LFP). This novel anionic initiating system features excitation in the near UV and visible regions, potential characteristics of photocontrolled living polymerization, and metal-free photoinitiators generated from photoexcitation, different from typical anionic polymerization where the polymerizations are initiated by heat and strong base containing alkali metals.

  11. Vector financial rogue waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  12. Vectorized garbage collection

    SciTech Connect

    Appel, A.W.; Bendiksen, A.

    1988-01-01

    Garbage collection can be done in vector mode on supercomputers like the Cray-2 and the Cyber 205. Both copying collection and mark-and-sweep can be expressed as breadth-first searches in which the queue can be processed in parallel. The authors have designed a copying garbage collector whose inner loop works entirely in vector mode. The only significant limitation of the algorithm is that if the size of the records is not constant, the implementation becomes much more complicated. The authors give performance measurements of the algorithm as implemented for Lisp CONS cells on the Cyber 205. Vector-mode garbage collection performs up to 9 times faster than scalar-mode collection.

  13. Bunyavirus-Vector Interactions

    PubMed Central

    Horne, Kate McElroy; Vanlandingham, Dana L.

    2014-01-01

    The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172

  14. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  15. Vector potential methods

    NASA Technical Reports Server (NTRS)

    Hafez, M.

    1989-01-01

    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.

  16. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  17. Production of lentiviral vectors

    PubMed Central

    Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara

    2016-01-01

    Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581

  18. Gene transfer vector

    SciTech Connect

    Puhler, A.; Simon, R.

    1987-08-11

    A Tn-Mob vector is described comprising: (a) A replicon functional E. coli; and (b) A Tn-Mob element comprising a transposon containing (i) a functional selection marker, and (ii) a Mob-site and oriT located in a region of the transposon that is not essential to transposability.

  19. Redshifts and Killing vectors

    NASA Astrophysics Data System (ADS)

    Harvey, Alex; Schucking, Engelbert; Surowitz, Eugene J.

    2006-11-01

    Current approaches to physics stress the importance of conservation laws due to spacetime and internal symmetries. In special and general relativity the generators of these symmetries are known as Killing vectors. We use them for the rigorous determination of gravitational and cosmological redshifts.

  20. Vector-borne diseases.

    PubMed

    Gubler, D J

    2009-08-01

    Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years. PMID:20128467

  1. Vector-borne diseases.

    PubMed

    Gubler, D J

    2009-08-01

    Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years.

  2. Singular Vectors' Subtle Secrets

    ERIC Educational Resources Information Center

    James, David; Lachance, Michael; Remski, Joan

    2011-01-01

    Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.

  3. Detecting polymeric nanoparticles with coherent anti-stokes Raman scattering microscopy in tissues exhibiting fixative-induced autofluorescence

    NASA Astrophysics Data System (ADS)

    Garrett, N. L.; Godfrey, L.; Lalatsa, A.; Serrano, D. R.; Uchegbu, I. F.; Schatzlein, A.; Moger, J.

    2015-03-01

    Recent advances in pharmaceutical nanotechnology have enabled the development of nano-particulate medicines with enhanced drug performance. Although the fate of these nano-particles can be macroscopically tracked in the body (e.g. using radio-labeling techniques), there is little information about the sub-cellular scale mechanistic processes underlying the particle-tissue interactions, or how these interactions may correlate with pharmaceutical efficacy. To rationally engineer these nano-particles and thus optimize their performance, these mechanistic interactions must be fully understood. Coherent Anti-Stokes Raman scattering (CARS) microscopy provides a label-free means for visualizing biological samples, but can suffer from a strong non-resonant background in samples that are prepared using aldehyde-based fixatives. We demonstrate how formalin fixative affects the detection of polymeric nanoparticles within kidneys following oral administration using CARS microscopy, compared with samples that were snap-frozen. These findings have implications for clinical applications of CARS for probing nanoparticle distribution in tissue biopsies.

  4. An understanding of enhanced osteoblast adhesion on various nanostructured polymeric and metallic materials prepared by ionic plasma deposition.

    PubMed

    Pareta, Rajesh A; Reising, Alexander B; Miller, Tiffany; Storey, Dan; Webster, Thomas J

    2010-03-01

    The development of new materials through novel surface modification techniques to enhance orthopedic implant lifetimes (hence, decreasing the need for revision surgery) is of great interest to the medical community. The purpose of this in vitro study was to treat common metallic implant materials [such as titanium (Ti) and a titanium alloy (Ti6Al4V)] and traditional polymeric materials (like polyethylene terephthalate, polyvinyl chloride, polyurethane, polytetrafluoroethylene, ultra-high molecular weight polyethylene (UHMWPE) and nylon) with either nanoparticulate alumina or titanium using novel (i) ionic plasma deposition (IPD) and (ii) nitrogen ion immersion plasma deposition (NIIPD) techniques. The treated surfaces were characterized by scanning electron microscopy, atomic force microscopy and surface energy, demonstrating greater nanoscale roughness on the modified surfaces regardless of the underlying material or coating applied. These surface-modified substrates were also tested for cytocompatibility properties with osteoblasts (or bone-forming cells). Results showed increased osteoblast adhesion on modified compared to control (traditional or untreated) materials. Since the adhesion of osteoblasts is the first crucial step for new bone synthesis, these results are very promising and suggest that the plasma deposition processes used in this study should be further investigated to improve the longevity of orthopedic implants.

  5. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  6. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  7. Radiation polymerization of diethyl fumarate [rapid communication

    NASA Astrophysics Data System (ADS)

    Alkassiri, Haroun

    2005-05-01

    Diethyl fumarate (DEF) has been polymerized by gamma irradiation using doses in the range 50-300 kGy, and in this dose range the polymerization yield increased almost linearly. The polymer has a glass transition temperature of about -20 °C, softening point about 15 °C, and decomposition temperature 300 °C.

  8. Molecular recognition driven catalysis using polymeric nanoreactors.

    PubMed

    Cotanda, Pepa; O'Reilly, Rachel K

    2012-10-25

    The concept of using polymeric micelles to catalyze organic reactions in water is presented and compared to surfactant based micelles in the context of molecular recognition. We report for the first time enzyme-like specific catalysis by tethering the catalyst in the well-defined hydrophobic core of a polymeric micelle.

  9. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  10. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  11. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  12. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.

    PubMed

    Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K

    2012-04-01

    Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. <0.45 μm) iron. Since coagulation and sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH < 4.4, activities of Fe(iii) are strongly and negatively correlated with pH. Geochemical modelling suggests that the activity of Fe(iii) is controlled by the solubility of hydrous ferric oxides and oxyhydroxysulfates, supported by scanning and transmission electron microscopic analysis of solids. Nevertheless, the waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete

  13. The reconstitution of actin polymerization on liposomes.

    PubMed

    Stamnes, Mark; Xu, Weidong

    2010-01-01

    Membrane-associated actin polymerization is of considerable interest due to its role in cell migration and the motility of intracellular organelles. Intensive research efforts are underway to investigate the physiological role of membrane-associated actin as well as the regulation and mechanics of actin assembly. Branched actin polymerization on membranes is catalyzed by the Arp2/3 complex. Signaling events leading to the activation of the guanosine triphosphate (GTP)-binding protein Cdc42 stimulate Arp2/3-dependent actin polymerization. We have studied the role of Cdc42 at the Golgi apparatus in part by reconstituting actin polymerization on isolated Golgi membranes and on liposomes. In this manner, we showed that cytosolic proteins are sufficient for actin assembly on a phospholipid bilayer. Here we describe methods for the cell-free reconstitution of membrane-associated actin polymerization using liposomes and brain cytosol.

  14. Photoacoustic analysis of dental resin polymerization

    NASA Astrophysics Data System (ADS)

    Coloiano, E. C. R.; Rocha, R.; Martin, A. A.; da Silva, M. D.; Acosta-Avalos, D.; Barja, P. R.

    2005-06-01

    In this work, we use the photoacoustic technique to monitor the curing process of diverse dental materials, as the resins chemically activated (RCA). The results obtained reveal that the composition of a determined RCA significantly alters its activation kinetics. Photoacoustic data also show that temperature is a significant parameter in the activation kinetics of resins. The photoacoustic technique was also applied to evaluate the polymerization kinetics of photoactivated resins. Such resins are photoactivated by incidence of continuous light from a photodiode. This leads to the polymerization of the resin, modifying its thermal properties and, consequently, the level of the photoacoustic signal. Measurements show that the polymerization of the resin changes the photoacoustic signal amplitude, indicating that photoacoustic measurements can be utilized to monitor the polymerization kinetic and the degree of polymerization of photoactivated dental resins.

  15. Polymeric nanoparticles modified with fatty acids encapsulating betamethasone for anti-inflammatory treatment.

    PubMed

    Silva, Catarina Oliveira; Rijo, Patrícia; Molpeceres, Jesús; Figueiredo, Isabel Vitória; Ascensão, Lia; Fernandes, Ana Sofia; Roberto, Amílcar; Reis, Catarina Pinto

    2015-09-30

    Topical glucocorticosteroids were incorporated into nanocarrier-based formulations, to overcome side effects of conventional formulations and to achieve maximum skin deposition. Nanoparticulate carriers have the potential to prolong the anti-inflammatory effect and provide higher local concentration of drugs, offering a better solution for treating dermatological conditions and improving patient compliance. Nanoparticles were formulated with poly-ϵ-caprolactone as the polymeric core along with stearic acid as the fatty acid, for incorporation of betamethasone-21-acetate. Oleic acid was applied as the coating fatty acid. Improvement of the drug efficacy, and reduction in drug degradation with time in the encapsulated form was examined, while administering it locally through controlled release. Nanoparticles were spherical with mean size of 300 nm and negatively charged surface. Encapsulation efficiency was 90%. Physicochemical stability in aqueous media of the empty and loaded nanoparticles was evaluated for six months. Drug degradation was reduced compared to free drug, after encapsulation into nanoparticles, avoiding the potency decline and promoting a controlled drug release over one month. Fourier transform infrared spectroscopy and thermal analysis confirmed drug entrapment, while cytotoxicity studies performed in vitro on human keratinocytes, Saccharomyces cerevisiae models and Artemia salina, showed a dose-response relationship for nanoparticles and free drug. In all models, drug loaded nanoparticles had a greater inhibitory effect. Nanoparticles increased drug permeation into lipid membranes in vitro. Preliminary safety and permeation studies conducted on rats, showed betamethasone-21-acetate in serum after 48 h application of a gel containing nanoparticles. No skin reactions were observed. In conclusion, the developed nanoparticles may be applied as topical treatment, after encapsulation of betamethasone-21-acetate, as nanoparticles promote prolonged drug

  16. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  17. Polymeric materials from renewable resources

    NASA Astrophysics Data System (ADS)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  18. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can

  19. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV-phosphate

    NASA Astrophysics Data System (ADS)

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; Boyanov, Maxim I.

    2016-02-01

    The mobility of uranium in subsurface environments depends strongly on its redox state, with UIV phases being significantly less soluble than UVI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of UVI reduction in natural systems, a nanoparticulate UO2 phase and an amorphous UIV-Ca-PO4 analog to ningyoite (CaUIV(PO4)2·1-2H2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for UIVO2 and UIV-phosphate in solutions equilibrated with atmospheric O2 and CO2 at pH 7.0 (kobs,UO2 = 0.17 ± 0.075 h-1 vs. kobs,UIVPO4 = 0.30 ± 0.25 h-1). Addition of up to 400 μM Ca and PO4 decreased the oxidation rate constant by an order of magnitude for both UO2 and UIV-phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO4, the product of UO2 oxidation is Na-uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO4 and low carbonate concentration), resulting in low concentrations of dissolved UVI (<2.5 × 10-7 M). Oxidation of UIV-phosphate produced a Na-autunite phase (Na2(UO2)PO4·xH2O), resulting in similarly low dissolved U concentrations (<7.3 × 10-8 M). When Ca and PO4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO2 and UIV-phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca-UVI-PO4 layer on the UO2 surface and suggest a passivation layer mechanism for the decreased rate of UO2 oxidation in the presence of Ca and PO4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO2 solids, suggesting that oxidized U is distributed between

  20. [Vector control and malaria control].

    PubMed

    Carnevale, P; Mouchet, J

    1990-01-01

    Vector control is an integral part of malaria control. Limiting parasite transmission vector control must be considered as one of the main preventive measure. Indeed it prevents transmission of Plasmodium from man to vector and from vector to man. But vector control must be adapted to local situation to be efficient and feasible. Targets of vector control can be larval and/or adults stages. In both cases 3 main methods are currently available: physical (source reduction), chemical (insecticides) and biological tolls. Antilarval control is useful only in some particular circumstances (unstable malaria, island, oasis...) Antiadult control is mainly based upon house-spraying while pyrethroid treated bed nets is advocated regarding efficiency, simple technique and cheap price. Vector control measures could seem restricted but can be very efficient if political will is added to a right choice of adapted measures, a good training of involved personal and a large information of the population concerned with vector control.

  1. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle

    NASA Astrophysics Data System (ADS)

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N.

    2015-11-01

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU

  2. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle

    NASA Astrophysics Data System (ADS)

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N.

    2015-11-01

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU

  3. Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites

    SciTech Connect

    Doeff, Marca M; Chen, Jiajun; Conry, Thomas E.; Wang, Ruigang; Wilcox, James; Aumentado, Albert

    2009-12-14

    A combustion synthesis technique was used to prepare nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1,0.2)/carbon composites. Powders consisted of carbon-coated particles about 30 nm in diameter, which were partly agglomerated into larger secondary particles. The utilization of the active materials in lithium cells depended most strongly upon the post-treatment and the Mg content, and was not influenced by the amount of carbon. Best results were achieved with a hydrothermally treated LiMg0.2Mn0.8PO4/C composite, which exhibited close to 50percent utilization of the theoretical capacity at a C/2 discharge rate.

  4. Elusive vector glueball

    SciTech Connect

    Suzuki, Mahiko

    2002-05-01

    If the vector glueball {Omicron} exists in the mass range that theory suggests, its resonant production cross section can be detected in e{sup +}e{sup -} annihilation only if the decay width is very narrow ({le} a few MeV). Otherwise {Omicron} will be observed only indirectly through its mixing with {psi}{prime}. We propose a few tests of the {Omicron}-{psi}{prime} mixing for future charm factories.

  5. Vector soliton fission.

    PubMed

    Lu, F; Lin, Q; Knox, W H; Agrawal, Govind P

    2004-10-29

    We investigate the vectorial nature of soliton fission in an isotropic nonlinear medium both theoretically and experimentally. As a specific example, we show that supercontinuum generation in a tapered fiber is extremely sensitive to the input state of polarization. Multiple vector solitons generated through soliton fission exhibit different states of elliptical polarization while emitting nonsolitonic radiation with complicated polarization features. Experiments performed with a tapered fiber agree with our theoretical description.

  6. Vector Magnetograph Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1996-01-01

    This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.

  7. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2011-11-01

    Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  8. Polymerized nanotips via two-photon photopolymerization

    NASA Astrophysics Data System (ADS)

    Qi, Fengjie; Li, Yan; Tan, Dengfeng; Yang, Hong; Gong, Qihuang

    2007-02-01

    We present new methods to produce polymerized nanotips via two-photon photopolymerization. By gradually changing the laser power, we fabricate a single polymerized tip with the size of 120nm. When two rectangle anchors with protuberances are close enough, lines with the slimmest part of about 20-30nm and tips with the widths of about 35nm are produced between anchors, which are the best resolution obtained with the resin SCR-500 to our knowledge. As the tips are adhered to larger polymerized structures, they can survive post processing in spite of their small sizes.

  9. Method for forming polymerized microfluidic devices

    SciTech Connect

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  10. Polymeric MST - high precision at low cost

    NASA Astrophysics Data System (ADS)

    Elderstig, Håkan; Larsson, Olle

    1997-09-01

    A low-cost production process for fabrication of polymeric microstructures from micromachined silicon is demonstrated in a splice for the splicing of optical fibers and an optical motherboard. Measurements on splices showed less than 0.5 dB insertion losses. The prototype polymeric motherboard concisted of an optical receiver module. The detector that was mounted on the polymeric optical motherboard detected about 70% of the transferred light. Measurements with modulated light indicates an optical bandwidth of 5 GHz at 2 V reverse current on the pin-diode.

  11. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  12. Vector representation of tourmaline compositions

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1989-01-01

    The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.

  13. Polymeric Coatings for Electrodynamic Tethers

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Schuler, Peter

    2000-01-01

    Two polymeric coatings have been developed for the Propulsive Small Expendable Deployer System (ProSEDS) mission. ProSEDS is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster scheduled for launch in August 2000. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the spent stage. The conductive tether is attached to a 10-km non-conductive tether, the other end of which is attached to an endmass containing several scientific instruments. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven strands of 28 AWG aluminum wire individually coated with 8.7 micrometers (0.35 mil) of an atomic oxygen-resistant conductive polymer composed of a mixture of 87% Clear Oxygen-Resistant polymer (COR) and 13% polyanaline (PANi), wrapped around a braided Kevlar (TM) 49 core. Extensive testing has been performed at the Marshall Space Flight Center (MSFC) to qualify this material for flight on ProSEDS. Atomic oxygen exposure was performed, with solar absorptance and infrared emittance measured before and after exposure. Conductivity was measured before and after atomic oxygen exposure. High voltage tests, up to 1500 V, of the current collecting ability of the COR/PANi have been completed. Approximately 160 meters of the conductive tether closest to the Delta 11 second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulation is composed of polyimide overcoated with TOR-BP, another polymeric coating developed by Triton for this mission. TOR-BP acts as both insulator

  14. A selective and sensitive stability-indicating HPLC method for the validated assay of etoposide from commercial dosage form and polymeric tubular nanocarriers.

    PubMed

    Algan, Aslihan Hilal; Gumustas, Mehmet; Karatas, Aysegul; Ozkan, Sibel A

    2016-05-30

    Etoposide is a topoisomerase II enzyme inhibitor type chemotherapeutic agent which is widely used in the therapy of various cancers. Its short half-life and toxicity to normal tissues are the major drawbacks in its clinical applications. Polymeric nanoparticulate drug delivery systems are rational carriers to deliver etoposide with higher efficiency and fewer side effects. In addition tubular shaped drug carriers are found to show a great potential for drug delivery on the basis of promising results regarding particle shape and cellular uptake. In this study, etoposide loaded polymeric tubular nanocarriers have been developed by template wetting method using porous anodic aluminum oxide membranes as templates. The developed poly(methyl methacrylate) nanocarriers were evaluated for structural analysis, in vitro drug release studies and drug release kinetics. Accurate and reliable determination of the drug release from newly developed nanocarriers, is of great importance. For this reason a selective and sensitive reversed phase liquid chromatography method was developed and fully validated from the point of system suitability, specificity, linearity and range, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and robustness for the reliable determination of etoposide. Stability indicating capability was shown with forced degradation studies and the chromatographic conditions were optimized on ACE 5C18 (150 mm × 4.6mm I.D., 5 μm) analytical column. Related to the calibration results ETP was found linear in the range between 0.2 from 100 μg mL(-1) with the LOD as 0.015 μg.mL(-1). The resultant conditions were applied for the selective and sensitive determination of etoposide from its commercial dosage form with the high accuracy values (99.82-100.65%). The method was successfully detected assay of etoposide release from newly developed polymeric tubular nanocarriers, which was found as 72.2% at the end of 24h. PMID:26971031

  15. Vector ecology of equine piroplasmosis.

    PubMed

    Scoles, Glen A; Ueti, Massaro W

    2015-01-01

    Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread.

  16. Radiation effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    1988-01-01

    It is important to study changes in properties of polymeres after irradiation with charged particles, with ultraviolet radiation, and with combinations of both. An apparatus for this purpose has been built at the NASA Langley Research Center. It consists of a chamber 9 inches in diameter and 9 inches high with a port for an electron gun, another port for a mass spectrometer, and a quartz window through which an ultraviolet lamp can be focused. The chamber, including the electron gun and the mass spectrometer, can be evacuated to a pressure of 10 to the 8th power torr. A sample placed in the chamber can be irradiated with electrons and ultraviolet radiation separately, sequentially, or simultaneously, while volatile products can be monitored during all irradiations with the mass spectrometer. The apparatus described above has been used to study three different polymer films: lexan; a polycarbonate; P1700, a polysulfone; and mylar, a polyethylene terephthalate. All three polymers had been studied extensively with both electrons and ultraviolet radiation separately, but not simultaneously. Also, volatile products had not been monitored during irradiation for the materials. A high electron dose rate of 530 Mrads/hr was used so that a sufficient concentration of volatile products would be formed to yield a reasonable mass spectrum.

  17. Highly elastic conductive polymeric MEMS

    NASA Astrophysics Data System (ADS)

    Ruhhammer, J.; Zens, M.; Goldschmidtboeing, F.; Seifert, A.; Woias, P.

    2015-02-01

    Polymeric structures with integrated, functional microelectrical mechanical systems (MEMS) elements are increasingly important in various applications such as biomedical systems or wearable smart devices. These applications require highly flexible and elastic polymers with good conductivity, which can be embedded into a matrix that undergoes large deformations. Conductive polydimethylsiloxane (PDMS) is a suitable candidate but is still challenging to fabricate. Conductivity is achieved by filling a nonconductive PDMS matrix with conductive particles. In this work, we present an approach that uses new mixing techniques to fabricate conductive PDMS with different fillers such as carbon black, silver particles, and multiwalled carbon nanotubes. Additionally, the electrical properties of all three composites are examined under continuous mechanical stress. Furthermore, we present a novel, low-cost, simple three-step molding process that transfers a micro patterned silicon master into a polystyrene (PS) polytetrafluoroethylene (PTFE) replica with improved release features. This PS/PTFE mold is used for subsequent structuring of conductive PDMS with high accuracy. The non sticking characteristics enable the fabrication of delicate structures using a very soft PDMS, which is usually hard to release from conventional molds. Moreover, the process can also be applied to polyurethanes and various other material combinations.

  18. Polymeric conjugates for drug delivery

    PubMed Central

    Larson, Nate; Ghandehari, Hamidreza

    2012-01-01

    The field of polymer therapeutics has evolved over the past decade and has resulted in the development of polymer-drug conjugates with a wide variety of architectures and chemical properties. Whereas traditional non-degradable polymeric carriers such as poly(ethylene glycol) (PEG) and N-(2-hydroxypropyl methacrylamide) (HPMA) copolymers have been translated to use in the clinic, functionalized polymer-drug conjugates are increasingly being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems in an attempt to further enhance localized drug delivery and ease of elimination. In addition, the study of conjugates bearing both therapeutic and diagnostic agents has resulted in multifunctional carriers with the potential to both “see and treat” patients. In this paper, the rational design of polymer-drug conjugates will be discussed followed by a review of different classes of conjugates currently under investigation. The design and chemistry used for the synthesis of various conjugates will be presented with additional comments on their potential applications and current developmental status. PMID:22707853

  19. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  20. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  1. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  2. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    PubMed

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  3. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  4. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  5. Thrust vectoring systems

    NASA Technical Reports Server (NTRS)

    King, H. J.; Schnelker, D.; Ward, J. W.; Dulgeroff, C.; Vahrenkamp, R.

    1972-01-01

    The design, fabrication, and testing of thrust vectorable ion optical systems capable of controlling the thrust direction from both 5- and 30-cm diameter ion thrusters is described. Both systems are capable of greater than 10 deg thrust deflection in any azimuthal direction. The 5-cm system is electrostatic and hence has a short response time and minimal power consumption. It has recently been tested for more than 7500 hours on an operational thruster. The 30-cm system is mechanical, has a response time of the order of 1 min, and consumes less than 0.3% of the total system input power at full deflection angle.

  6. Vector potential photoelectron microscopy

    SciTech Connect

    Browning, R.

    2011-10-15

    A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.

  7. DNA detection with a polymeric nanochannel device.

    PubMed

    Fanzio, Paola; Mussi, Valentina; Manneschi, Chiara; Angeli, Elena; Firpo, Giuseppe; Repetto, Luca; Valbusa, Ugo

    2011-09-01

    We present the development and the electrical characterization of a polymeric nanochannel device. Standard microfabrication coupled to Focused Ion Beam (FIB) nanofabrication is used to fabricate a silicon master, which can be then replicated in a polymeric material by soft lithography. Such an elastomeric nanochannel device is used to study DNA translocation events during electrophoresis experiments. Our results demonstrate that an easy and low cost fabrication technique allows creation of a low noise device for single molecule analysis.

  8. Biaxially oriented film on flexible polymeric substrate

    DOEpatents

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  9. Post polymerization cure shape memory polymers

    SciTech Connect

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  10. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  11. Catalytic living ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Nagarkar, Amit A.; Kilbinger, Andreas F. M.

    2015-09-01

    In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

  12. Equilibrium polymerization of cyclic carbonate oligomers

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Jones, R. O.

    2001-08-01

    A model of the polymerization of ring oligomers of bisphenol A polycarbonate (BPA-PC) is used to investigate the influence of dimensionality (2D or 3D), density and temperature on the size distribution of the polymer chains. The polymerization step is catalyzed by a single active particle, conserves the number and type of the chemical bonds, and occurs without a significant gain in either potential energy or configurational entropy. Monte Carlo and molecular dynamics simulations show that polymerization of cyclic oligomers occurs readily at high density and is driven by the entropy associated with the distribution of interparticle bonds. Polymerization competes at lower densities with long range diffusion, which favors small molecular species, and is prevented if the system is sufficiently dilute. Polymerization occurs in 2D via a weakly first order transition as a function of density and is characterized by low hysteresis and large fluctuations in the size of polymer chains. Polymerization occurs more readily in 3D than in 2D, and is favored by increasing temperature, as expected for an entropy-driven process.

  13. Polymeric micelles for acyclovir drug delivery.

    PubMed

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  14. Photoacoustic FT-IR depth imaging of polymeric surfaces: overcoming IR diffraction limits.

    PubMed

    Zhang, Ping; Urban, Marek W

    2004-11-23

    It is well established that the photoacoustic effect based on absorption of electromagnetic radiation into thermal waves allows surface depth profiling. However, limited knowledge exists concerning its spatial resolution. The spiral-stepwise (SSW) approach combined with phase rotational analysis is utilized to determine surface depth profiling of homogeneous and nonhomogeneous multilayered polymeric surfaces in a step-scan photoacoustic FT-IR experiment. In this approach, the thermal wave propagating to the surface is represented as the integral of all heat wave vectors propagating across the sampling depth xn, and the spiral function K'beta(lambda)e(-beta)(lambda)xne(-x)n/mu(th)e(i)(omegat-(xn/mu(th))) represents the amplitude and phase of the heat wave vector propagating to the surface. The SSW approach can be applied to heterogeneous surfaces by representing thermal waves propagating to the surface as the sum of the thermal waves propagating through homogeneous layers that are integrals of all heat vectors from a given sampling depth. The proposed model is tested on multilayered polymeric surfaces and shows that the SSW approach allows semiquantitative surface imaging with the spatial resolution ranging from micrometer to 500 nm levels, and the spatial resolution is a function of the penetration depth.

  15. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles.

    PubMed

    Bishop, Corey J; Kozielski, Kristen L; Green, Jordan J

    2015-12-10

    Intracellular nucleic acid delivery has the potential to treat many genetically-based diseases, however, gene delivery safety and efficacy remains a challenging obstacle. One promising approach is the use of polymers to form polymeric nanoparticles with nucleic acids that have led to exciting advances in non-viral gene delivery. Understanding the successes and failures of gene delivery polymers and structures is the key to engineering optimal polymers for gene delivery in the future. This article discusses the polymer structural features that enable effective intracellular delivery of DNA and RNA, including protection of nucleic acid cargo, cellular uptake, endosomal escape, vector unpacking, and delivery to the intracellular site of activity. The chemical properties that aid in each step of intracellular nucleic acid delivery are described and specific structures of note are highlighted. Understanding the chemical design parameters of polymeric nucleic acid delivery nanoparticles is important to achieving the goal of safe and effective non-viral genetic nanomedicine.

  16. Polymerization in emulsion microdroplet reactors

    NASA Astrophysics Data System (ADS)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  17. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  18. Covariant Lyapunov vectors

    NASA Astrophysics Data System (ADS)

    Ginelli, Francesco; Chaté, Hugues; Livi, Roberto; Politi, Antonio

    2013-06-01

    Recent years have witnessed a growing interest in covariant Lyapunov vectors (CLVs) which span local intrinsic directions in the phase space of chaotic systems. Here, we review the basic results of ergodic theory, with a specific reference to the implications of Oseledets’ theorem for the properties of the CLVs. We then present a detailed description of a ‘dynamical’ algorithm to compute the CLVs and show that it generically converges exponentially in time. We also discuss its numerical performance and compare it with other algorithms presented in the literature. We finally illustrate how CLVs can be used to quantify deviations from hyperbolicity with reference to a dissipative system (a chain of Hénon maps) and a Hamiltonian model (a Fermi-Pasta-Ulam chain). This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.

  19. Solar imaging vector magnetograph

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.

    1993-01-01

    This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the

  20. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect

    Erdemir, Ali

    2013-09-26

    environmental objectives of DOE and our nation. In this project, most of the boron-based materials with known and potential anti-friction and -wear properties have been manufactured as colloidal additives and tested for their effectiveness in controlling friction and wear. Unlike other anti-friction and -wear additives, which consist of zinc, molybdenum, sulfur, phosphorus, and even chlorine, lubricious boron compounds considered in this project are made of boron, oxygen, nitrogen, and hydrogen, which are more environmentally benign. Among others, boric acid is a natural mineral (known in mineralogy as "sassolite"). Based on our earlier exploratory research, it was found to offer the best overall prospect in terms of performance improvements, environmental friendliness, and ease of manufacturing and, hence, cost effectiveness. Hexagonal boron nitride and borax also offered good prospects for improving the tribological properties of lubricated sliding surfaces. Boron oxide particles were found to be rather hard and somewhat abrasive and, hence, were not considered beyond the initial screening studies. In our bench-top tribological evaluation, we also demonstrated that those additives which worked well with engine oils could work equally well with very common gear oils. When added at appropriate concentrations, such gear oils were found to provide significant resistance to micropitting and scuffing failures in bench-top tribological test systems. Their traction coefficients were also reduced substantially and their scuffing limits were improved considerably. Such impressive tribological behavior of boron-based additives may have been due to their high chemical affinities to interact with sliding contact surfaces and to form slick and protective boundary films. Indeed, our surface studies have confirmed that most of the boron-based nanoparticulate additives prepared in our project possess a strong tendency to form a boron-rich boundary film on sliding contact surfaces. It is

  1. Mixing in polymeric microfluidic devices.

    SciTech Connect

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H.; Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  2. Fire-Retardant Polymeric Additives

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    component forms polybenzoxazole (PBO) in a reaction that absorbs heat from its surroundings. PBO under thermal stress cross-links, forming a protective char layer, which thermally insulates the polymer. Thus, the formation of the char layer further assists to extinguish the fire by preventing vaporization of the polymeric fuel.

  3. Delivery of antibiotics with polymeric particles.

    PubMed

    Xiong, Meng-Hua; Bao, Yan; Yang, Xian-Zhu; Zhu, Yan-Hua; Wang, Jun

    2014-11-30

    Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.

  4. Polymerization of Actin from Maize Pollen.

    PubMed Central

    Yen, L. F.; Liu, X.; Cai, S.

    1995-01-01

    Here we describe the in vitro polymerization of actin from maize (Zea mays) pollen. The purified actin from maize pollen reported in our previous paper (X. Liu, L.F. Yen [1992] Plant Physiol 99: 1151-1155) is biologically active. In the presence of ATP, KCl, and MgCl2 the purified pollen actin polymerized into filaments. During polymerization the spectra of absorbance at 232 nm increased gradually. Polymerization of pollen actin was evidently accompanied by an increase in viscosity of the pollen actin solution. Also, the specific viscosity of pollen F-actin increased in a concentration-dependent manner. The ultraviolet difference spectrum of pollen actin is very similar to that of rabbit muscle actin. The activity of myosin ATPase from rabbit muscle was activated 7-fold by the polymerized pollen actin (F-actin). The actin filaments were visualized under the electron microscope as doubly wound strands of 7 nm diameter. If cytochalasin B was added before staining, no actin filaments were observed. When actin filaments were treated with rabbit heavy meromyosin, the actin filaments were decorated with an arrowhead structure. These results imply that there is much similarity between pollen and muscle actin. PMID:12228343

  5. How do polymeric micelles cross epithelial barriers?

    PubMed

    Pepić, Ivan; Lovrić, Jasmina; Filipović-Grčić, Jelena

    2013-09-27

    Non-parenteral delivery of drugs using nanotechnology-based delivery systems is a promising non-invasive way to achieve effective local or systemic drug delivery. The efficacy of drugs administered non-parenterally is limited by their ability to cross biological barriers, and epithelial tissues particularly present challenges. Polymeric micelles can achieve transepithelial drug delivery because of their ability to be internalized into cells and/or cross epithelial barriers, thereby delivering drugs either locally or systematically following non-parenteral administration. This review discusses the particular characteristics of various epithelial barriers and assesses their potential as non-parenteral routes of delivery. The material characteristics of polymeric micelles (e.g., size, surface charge, and surface decoration) and of unimers dissociated from polymeric micelles determine their interactions (non-specific and/or specific) with mucus and epithelial cells as well as their intracellular fate. This paper outlines the mechanisms governing the major modes of internalization of polymeric micelles into epithelial cells, with an emphasis on specific recent examples of the transport of drug-loaded polymeric micelles across epithelial barriers.

  6. Colchicine activates actin polymerization by microtubule depolymerization.

    PubMed

    Jung, H I; Shin, I; Park, Y M; Kang, K W; Ha, K S

    1997-06-30

    Swiss 3T3 fibroblasts were treated with the microtubule-disrupting agent colchicine to study any interaction between microtubule dynamics and actin polymerization. Colchicine increased the amount of filamentous actin (F-actin), in a dose- and time-dependent manner with a significant increase at 1 h by about 130% over control level. Confocal microscopic observation showed that colchicine increased F-actin contents by stress fiber formation without inducing membrane ruffling. Colchicine did not activate phospholipase C and phospholipase D, whereas lysophosphatidic acid did, indicating that colchicine may have a different mechanism of actin polymerization regulation from LPA. A variety of microtubule-disrupting agents stimulated actin polymerization in Swiss 3T3 and Rat-2 fibroblasts as did colchicine, but the microtubule-stabilizing agent taxol inhibited actin polymerization induced by the above microtubule-disrupting agents. In addition, colchicine-induced actin polymerization was blocked by two protein phosphatase inhibitors, okadaic acid and calyculin A. These results suggest that microtubule depolymerization activates stress fiber formation by serine/threonine dephosphorylation in fibroblasts. PMID:9264034

  7. Volatilization of alachlor from polymeric formulations.

    PubMed

    Dailey, Oliver D

    2004-11-01

    Pesticides may be dispersed throughout the environment by several means, including groundwater contamination, surface water contamination, and volatilization with subsequent atmospheric transport and deposition. In earlier research primarily directed at reducing the potential for groundwater contamination, a number of herbicides were microencapsulated within several different polymers. These polymeric formulations were evaluated for efficacy in the greenhouse. In the studies described in this paper, three polymeric alachlor formulations that were the most effective in the greenhouse were evaluated in laboratory volatility studies using pure alachlor and a commercial formulation (Lasso 4EC) for comparison purposes. In a given experiment, technical alachlor, Lasso 4EC, and two polymeric formulations were applied to soil and evaluated in a contained system under 53% humidity with a fixed flow rate. Evolved alachlor was collected in ethylene glycol, recovered with C18 solid phase extraction cartridges, and analyzed by reverse-phase high-performance thin-layer chromatography with densitometry. Duration of the studies ranged from 32 to 39 days. In studies in which all formulations were uniformly incorporated in the soil, total alachlor volatilization from the polymeric microcapsules was consistently lower than that from the alachlor and Lasso 4EC formulations. In studies in which the polymeric formulations were sprinkled on the surface of the soil, microcapsules prepared with the polymer cellulose acetate butyrate released the smallest quantity of volatilized alachlor.

  8. Self-assembly of DNA-polymer complexes using template polymerization.

    PubMed Central

    Trubetskoy, V S; Budker, V G; Hanson, L J; Slattum, P M; Wolff, J A; Hagstrom, J E

    1998-01-01

    The self-assembly of supramolecular complexes of nucleic acids and polymers is of relevance to several biological processes including viral and chromatin formation as well as gene therapy vector design. We now show that template polymerization facilitates condensation of DNA into particles that are <150 nm in diameter. Inclusion of a poly(ethylene glycol)-containing monomer prevents aggregation of these particles. The DNA within the particles remains biologically active and can express foreign genes in cells. The formation or breakage of covalent bonds has until now not been employed to compact DNA into artificial particles. PMID:9722638

  9. Self-assembly of DNA-polymer complexes using template polymerization.

    PubMed

    Trubetskoy, V S; Budker, V G; Hanson, L J; Slattum, P M; Wolff, J A; Hagstrom, J E

    1998-09-15

    The self-assembly of supramolecular complexes of nucleic acids and polymers is of relevance to several biological processes including viral and chromatin formation as well as gene therapy vector design. We now show that template polymerization facilitates condensation of DNA into particles that are <150 nm in diameter. Inclusion of a poly(ethylene glycol)-containing monomer prevents aggregation of these particles. The DNA within the particles remains biologically active and can express foreign genes in cells. The formation or breakage of covalent bonds has until now not been employed to compact DNA into artificial particles.

  10. Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma.

    PubMed

    Xie, Yuran; Merkel, Olivia M

    2015-10-01

    Asthma is a chronic inflammatory disease. Despite the fact that current therapies, such as the combination of inhaled corticosteroids and β2-agonists, can control the symptoms of asthma in most patients, there is still an urgent need for an alternative anti-inflammatory therapy for patients who suffer from severe asthma but lack acceptable response to conventional therapies. Many molecular factors are involved in the inflammatory process in asthma, and thus blocking the function of these factors could efficiently alleviate airway inflammation. RNA interference (RNAi) is often thought to be the answer in the search for more efficient and biocompatible treatments. However, difficulties of efficient delivery of small interference RNA (siRNA), the key factor in RNAi, to target cells and tissues have limited its clinical application. In this review, we summarize cytokines and chemokines, transcription factors, tyrosine kinases, and costimulatory factors that have been reported as targets of siRNA-mediated treatment in experimental asthma. Additionally, we conclude several targeted delivery systems of siRNA to specific cells such as T cells, macrophages, and dendritic cells, which could potentially be applied in asthma therapy.

  11. GPU Accelerated Vector Median Filter

    NASA Technical Reports Server (NTRS)

    Aras, Rifat; Shen, Yuzhong

    2011-01-01

    Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .

  12. Bubble vector in automatic merging

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Butler, T. G.

    1987-01-01

    It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained.

  13. Vectors on the Basketball Court

    ERIC Educational Resources Information Center

    Bergman, Daniel

    2010-01-01

    An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…

  14. Supramolecular Polymerization Engineered with Molecular Recognition.

    PubMed

    Haino, Takeharu

    2015-10-01

    Supramolecular polymeric assemblies represent an emerging, promising class of molecular assemblies with enormous versatility compared with their covalent polymeric counterparts. Although a large number of host-guest motifs have been produced over the history of supramolecular chemistry, only a limited number of recognition motifs have been utilized as supramolecular connections in polymeric assemblies. This account describes the molecular recognition of host molecules based on calix[5]arene and bisporphyrin that demonstrate unique guest encapsulations; subsequently, these host-guest motifs are applied to the synthesis of supramolecular polymers that display polymer-like properties in solution and solid states. In addition, new bisresorcinarenes are developed to form supramolecular polymers that are connected via a rim-to-rim hydrogen-bonded dimeric structure, which is composed of two resorcinarene moieties. PMID:26178364

  15. Self-Healing of biocompatible polymeric nanocomposities

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  16. Immobilization of Polymeric Luminophor on Nanoparticles Surface

    NASA Astrophysics Data System (ADS)

    Bolbukh, Yuliia; Podkoscielna, Beata; Lipke, Agnieszka; Bartnicki, Andrzej; Gawdzik, Barbara; Tertykh, Valentin

    2016-04-01

    Polymeric luminophors with reduced toxicity are of the priorities in the production of lighting devices, sensors, detectors, bioassays or diagnostic systems. The aim of this study was to develop a method of immobilization of the new luminophor on a surface of nanoparticles and investigation of the structure of the grafted layer. Monomer 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene (2,7-NAF.DM) with luminophoric properties was immobilized on silica and carbon nanotubes in two ways: mechanical mixing with previously obtained polymer and by in situ oligomerization with chemisorption after carrier's modification with vinyl groups. The attached polymeric (or oligomeric) surface layer was studied using thermal and spectral techniques. Obtained results confirm the chemisorption of luminophor on the nanotubes and silica nanoparticles at the elaborated synthesis techniques. The microstructure of 2,7-NAF.DM molecules after chemisorption was found to be not changed. The elaborated modification approach allows one to obtain nanoparticles uniformly covered with polymeric luminophor.

  17. Universal metastability of sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Weng, Weijun

    Sickle hemoglobin (HbS) is a natural mutation of the normal hemoglobin (HbA) found in the red blood cells of human body. Polymerization of HbS occurs when the concentration of deoxyHbS exceeds a well-defined solubility, which is the underlying cause of the Sickle Cell Disease. It has long been assumed that thermodynamic equilibrium is reached when polymerization comes to an end. However, in this thesis we demonstrate that in confined volume as well as in bulk solution, HbS polymerization terminates prematurely, leaving the solution in a metastable state. A newly developed Reservoir method as well as modulated excitation method were adopted for the study. This discovery of universal metastability gives us new insights into understanding the mechanism of sickle cell disease.

  18. Reversible addition-fragmentation chain transfer polymerization in microemulsion.

    PubMed

    O'Donnell, Jennifer M

    2012-04-21

    This tutorial review first details the uncontrolled microemulsion polymerization mechanism, and the RAFT polymerization mechanism to provide the necessary background for examining the RAFT microemulsion polymerization mechanism. The effect of the chain transfer agent per micelle ratio and the chain transfer agent aqueous solubility on the RAFT microemulsion polymerization kinetics, polymer molecular weight and polydispersity, and polymer nanoparticle size are discussed with a focus on oil-in-water microemulsions. Modeling of RAFT microemulsion polymerization kinetics and the resulting final polymer molecular weight are presented to assist with the analysis of observed experimental trends. Lastly, the current significance of RAFT microemulsion polymerization and the future directions are discussed. PMID:22246214

  19. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  20. A neural support vector machine.

    PubMed

    Jändel, Magnus

    2010-06-01

    Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support vectors and sensory input. Downstream temporal integration generates the classification. Instant learning of surprising events and off-line tuning of support vector weights trains the system. Emotion-based learning, forgetting trivia, sleep and brain oscillations are phenomena that agree with the Bio-SVM model. A mapping to the olfactory system is suggested.

  1. Thrombin interaction with fibrin polymerization sites.

    PubMed

    Hsieh, K

    1997-05-15

    Thrombin is central to hemostasis, and postclotting fibrinolysis and wound healing. During clotting, thrombin transforms plasma fibrinogen into polymerizing fibrin, which selectively adsorbs the enzyme into the clot. This protects thrombin from heparin-antithrombin inactivation, thus preserving the enzyme for postclotting events. To determine how the fibrin N-terminal polymerization sites of A alpha 17-23 (GPRVVER) and B beta 15-25 (GHRPLDKKREE) and their analogs may interact with thrombin, amidolysis vs. plasma- and fibrinogen-clotting assays were used to differentiate blockade of catalytic site vs. other thrombin domains. Amidolysis studies suggest GPRVVER inhibition of thrombin catalytic site through hydrophobic interaction, and GPRVVER inhibited clotting. Neither GPRP nor VVER nor the B beta 15-25 homologs inhibited amidolysis. Contrary to heparin, acyl-DKKREE promoted plasma-clotting, but inhibited fibrinogen-clotting. In addition, acyl-DKKREE reversed the anticoagulant effect of heparin (0.1 U/ml) in plasma. The results suggest fibrin B beta 15-25 interaction with thrombin, possibly by blocking the heparin-binding site. Together with the reported fibrin A alpha 27-50 binding to thrombin, polymerizing fibrin appears to initially bind to thrombin catalytic site and exosite-1 through A alpha 17-50, and to another thrombin site through B beta 15-25. As these fibrin sites are also involved in polymerization, competition of the polymerization process with thrombin-binding could subsequently dislodge thrombin from fibrin alpha-chain. This may re-expose the catalytic site and exosite-1, thus explaining the thrombogenicity of clot-bound thrombin. The implications of these findings in polymerization mechanism and anticoagulant design are discussed.

  2. Convection enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma

    PubMed Central

    Mansour, Nassir; Pytel, Peter; Cahill, Kirk E; Voce, David J; Kang, Shijun; Spretz, Ruben; Welp, Ulrich; Noriega, Sandra E; Nunez, Luis; Larsen, Gustavo F; Weichselbaum, Ralph R.; Yamini, Bakhtiar

    2013-01-01

    A major obstacle to the management of malignant glioma is the inability to effectively deliver therapeutic agent to the tumor. In this study, we describe a polymeric nanoparticle vector that not only delivers viable therapeutic, but can also be tracked in vivo using MRI. Nanoparticles, produced by a non-emulsion technique, were fabricated to carry iron oxide within the shell and the chemotherapeutic agent, temozolomide (TMZ), as the payload. Nanoparticle properties were characterized and subsequently their endocytosis-mediated uptake by glioma cells demonstrated. Convection enhanced delivery (CED) can disperse nanoparticles through the rodent brain and their distribution is accurately visualized by MRI. Infusion of nanoparticles does not result in observable animal toxicity relative to control. CED of TMZ bearing nanoparticles prolongs the survival of animals with intracranial xenografts compared to control. In conclusion, the described nanoparticle vector represents a unique multifunctional platform that can be used for image-guided treatment of malignant glioma. PMID:23891990

  3. Polymeric matrix materials for infrared metamaterials

    DOEpatents

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  4. Possible mediators of the ``living'' radical polymerization

    NASA Astrophysics Data System (ADS)

    Motyakin, M. V.; Wasserman, A. M.; Stott, P. E.; Zaikov, G. E.

    2006-03-01

    The stable radicals derived from different compounds were detected in process of styrene autopolymerization. The nitroxide radicals are produced from nitrosocompound, hindered hydroxylamine, nitrophenols and nitroanisoles. The phenoxyl radicals are formed from quinine methides, and naphtoxyl radicals are generated from 2-nitro-1-naphtol. The radicals are identified, the kinetics of their formation and follow-up evolution are studied. These radicals can participate in process of living radical polymerization as the mediators and can effect significantly on kinetics of polymerization and structure of the resulting polymer.

  5. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  6. Molecular diffusion in plasma-polymerized tetrafluoroethylene

    SciTech Connect

    Butler, M.A.; Buss, R.J. )

    1992-11-01

    Diffusion of an array of molecules in micrometer-thick films of plasma-polymerized tetrafluoroethylene has been measured using an optical interferometric technique. The diffusivity is approximately independent of molecular size up to a molar volume of about 100 cm{sup 3} and drops rapidly for larger molecules. For much larger molecules no penetration of the films is observed. These results suggest that plasma-polymerized tetrafluoroethylene films are heavily cross linked and that this limits the size of the molecules that can penetrate the polymer. The temperature dependence and the molecular size dependence of the diffusivities are discussed in the context of free-volume theory.

  7. Flat phase of quantum polymerized membranes

    NASA Astrophysics Data System (ADS)

    Coquand, O.; Mouhanna, D.

    2016-09-01

    We investigate the flat phase of quantum polymerized phantom membranes by means of a nonperturbative renormalization group approach. We first implement this formalism for general quantum polymerized membranes and derive the flow equations that encompass both quantum and thermal fluctuations. We then deduce and analyze the flow equations relevant to study the flat phase and discuss their salient features: quantum to classical crossover and, in each of these regimes, strong to weak coupling crossover. We finally illustrate these features in the context of free-standing graphene physics.

  8. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  9. Polymerization Initiated by Organic Electron Donors.

    PubMed

    Broggi, Julie; Rollet, Marion; Clément, Jean-Louis; Canard, Gabriel; Terme, Thierry; Gigmes, Didier; Vanelle, Patrice

    2016-05-10

    Polymerization reactions with organic electron donors (OED) as initiators are presented herein. The metal-free polymerization of various activated alkene and cyclic ester monomers was performed in short reaction times, under mild conditions, with small amounts of organic reducing agents, and without the need for co-initiators or activation by photochemical, electrochemical, or other methods. Hence, OED initiators enabled the development of an efficient, rapid, room-temperature process that meets the technical standards expected for industrial processes, such as energy savings, cost-effectiveness and safety. Mechanistic investigations support an electron-transfer initiation pathway that leads to the reduction of the monomer. PMID:27061743

  10. A Fluidic Device with Polymeric Textured Ratchets

    PubMed Central

    Sekeroglu, Koray; Demirel, Melik C.

    2014-01-01

    Nanotextured surfaces are widely used throughout nature for adhesion, wetting, and transport. Chemistry, geometry, and morphology are important factors for creating tunable textured surfaces, in which directionality of droplets can be controlled. Here, we fabricated nano textured polymeric surfaces, and studied the effect of tilting on the mobility of frequency modulated water droplet transported on asymmetric nano-PPX tracks. Plastically-deformed tracks guided water droplets for sorting, gating, and merging them as a function on their volume. Polymeric ratchets open up new avenues for the fields of digital fluidics and flexible device fabrication. PMID:25641987

  11. Vector Network Analysis

    1997-10-20

    Vector network analyzers are a convenient way to measure scattering parameters of a variety of microwave devices. However, these instruments, unlike oscilloscopes for example, require a relatively high degree of user knowledge and expertise. Due to the complexity of the instrument and of the calibration process, there are many ways in which an incorrect measurement may be produced. The Microwave Project, which is part of Sandia National Laboratories Primary Standards Laboratory, routinely uses check standardsmore » to verify that the network analyzer is operating properly. In the past, these measurements were recorded manually and, sometimes, interpretation of the results was problematic. To aid our measurement assurance process, a software program was developed to automatically measure a check standard and compare the new measurements with an historical database of measurements of the same device. The program acquires new measurement data from selected check standards, plots the new data against the mean and standard deviation of prior data for the same check standard, and updates the database files for the check standard. The program is entirely menu-driven requiring little additional work by the user.« less

  12. Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate.

    PubMed

    Wijesekara, S S R M D H R; Basnayake, B F A; Vithanage, Meththika

    2014-01-01

    The use of nanoparticulate zero valent iron (NZVI) in the treatment of inorganic contaminants in landfill leachate and polluted plumes has been the subject of many studies, especially in temperate, developed countries. However, NZVI's potential for reduction of chemical oxygen demand (COD) and treatment of metal ion mixtures has not been explored in detail. We investigated the efficiency of NZVI synthesized in the presence of starch, mercaptoacetic, mercaptosuccinic, or mercaptopropenoic acid for the reduction of COD, nutrients, and metal ions from landfill leachate in tropical Sri Lanka. Synthesized NZVI were characterized with X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR) and Brunauer-Emmett-Teller. Of the samples tested, Starch-NZVI (S-NZVI) and mercaptoacetic-NZVI (MA-NZVI) performed well for treatment both COD and metal mixture. The removal percentages for COD, nitrate-nitrogen, and phosphate from S-NZVI were 50, 88, and 99 %, respectively. Heavy metal removal was higher in S-NZVI (>95 %) than others. MA-NZVI, its oxidation products, and functional groups of its coating showed the maximum removal amounts for both Cu (56.27 mg g(-1)) and Zn (28.38 mg g(-1)). All mercapto-NZVI showed well-stabilized nature under FTIR and XRD investigations. Therefore, we suggest mercapto acids as better agents to enhance the air stability for NZVI since chemically bonded thiol and carbonyl groups actively participation for stabilization process.

  13. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen.

    PubMed

    Lee, Changha; Keenan, Christina R; Sedlak, David L

    2008-07-01

    In the presence of oxygen, organic compounds can be oxidized by zerovalent iron or dissolved Fe(II). However, this process is not a very effective means of degrading contaminants because the yields of oxidants are usually low (i.e., typically less than 5% of the iron added is converted into oxidants capable of transforming organic compounds). The addition of polyoxometalate (POM) greatly increases the yield of oxidants in both systems. The mechanism of POM enhancement depends on the solution pH. Under acidic conditions, POM mediates the electron transfer from nanoparticulate zerovalent iron (nZVI) or Fe(II) to oxygen, increasing the production of hydrogen peroxide, which is subsequently converted to hydroxyl radical through the Fenton reaction. At neutral pH values, iron forms a complex with POM, preventing iron precipitation on the nZVI surface and in bulk solution. At pH 7, the yield of oxidant approaches the theoretical maximum in the nZVI/O2 and the Fe(II)/O2 systems when POM is present, suggesting that coordination of iron by POM alters the mechanism of the Fenton reaction by converting the active oxidant from ferryl ion to hydroxyl radical. Comparable enhancements in oxidant yields are also observed when nZVI or Fe(II) is exposed to oxygen in the presence of silica-immobilized POM. PMID:18678027

  14. Nanoparticulated heat-stable (STa) and heat-labile B subunit (LTB) recombinant toxin improves vaccine protection against enterotoxigenic Escherichia coli challenge in mouse.

    PubMed

    Deng, Guangcun; Zeng, Jin; Jian, Minjie; Liu, Wenmiao; Zhang, Zhong; Liu, Xiaoming; Wang, Yujiong

    2013-02-01

    Enterotoxigenic Escherichia coli (ETEC) remains a major cause of diarrheic disease in developing areas, for which there is no effective vaccine available. In this study, we genetically engineered a recombinant heat-stable enterotoxin (STa) coupled to the subunit B of heat-labile enterotoxin (LTB). This fusion protein, STa-LTB, possesses a single amino acid substitution at position 14 of STa. Our data demonstrates that the enterotoxicity of STa in STa-LTB was dramatically reduced. A gelatin nanovaccine candidate was prepared using the purified STa-LTB fusion protein characterized with an entrapment efficiency of 84.88 ± 6.37% and smooth spheres size ranges of 80-200 nm. Antigen-specific antibody responses against STa-LTB and STa in the sera and the intestinal mucus respectively were used to test the immunogenicity of the nanovaccine. This vaccine was further screened in mice by its ability to elicit neutralizing antibodies against STa and protect animals from the challenge with ETEC in mice. The STa-LTB nanoparticles delivered demonstrated a capacity to induce significantly higher and long-lasting antibody responses and increased immune protection against ETEC challenge relative to the control STa-LTB vaccine absorbed in conventional aluminum hydrate salt (p < 0.01). These results warrant the further studies of the development of a novel nanoparticulate vaccine as a broad-spectrum vaccine against ETEC infection.

  15. Norfloxacin Loaded pH Triggered Nanoparticulate in-situ Gel for Extraocular Bacterial Infections: Optimization, Ocular Irritancy and Corneal Toxicity

    PubMed Central

    Upadhayay, Preeti; Kumar, Manish; Pathak, Kamla

    2016-01-01

    In order to achieve prolong corneal contact time of norfloxacin (NFX) for treatment of extra ocular diseases, a pH triggered nanoparticulate in-situ gelling system was designed to explore dual advantage of nanoparticles and in-situ gelling system, for its ocular delivery. NFX loaded nanocarriers were developed by ionotropic gelation technique using chitosan as a matrix forming polymer, cross-linked by an anionic crosslinker sodium tripolyphosphate (TPP). Optimization of nanoformulations was done by 32 full factorial design using chitosan and TPP concentration(s) as the independent variables and particle size, % entrapment efficiency and % cumulative drug release as the responses. The experimental design was validated by extra design check point formulation (N10). The optimized formulation (N4) selected on the basis of highest desirability factor (0.895) was developed as in-situ gelling system using carbapol934 and evaluated. The best in-situ gelling formulation (N4G5) was sufficiently mucoadhesive, corneal toxicity, antibacterial activity and free from ocular irritancy. PMID:27610144

  16. Norfloxacin Loaded pH Triggered Nanoparticulate in-situ Gel for Extraocular Bacterial Infections: Optimization, Ocular Irritancy and Corneal Toxicity.

    PubMed

    Upadhayay, Preeti; Kumar, Manish; Pathak, Kamla

    2016-01-01

    In order to achieve prolong corneal contact time of norfloxacin (NFX) for treatment of extra ocular diseases, a pH triggered nanoparticulate in-situ gelling system was designed to explore dual advantage of nanoparticles and in-situ gelling system, for its ocular delivery. NFX loaded nanocarriers were developed by ionotropic gelation technique using chitosan as a matrix forming polymer, cross-linked by an anionic crosslinker sodium tripolyphosphate (TPP). Optimization of nanoformulations was done by 3(2) full factorial design using chitosan and TPP concentration(s) as the independent variables and particle size, % entrapment efficiency and % cumulative drug release as the responses. The experimental design was validated by extra design check point formulation (N10). The optimized formulation (N4) selected on the basis of highest desirability factor (0.895) was developed as in-situ gelling system using carbapol934 and evaluated. The best in-situ gelling formulation (N4G5) was sufficiently mucoadhesive, corneal toxicity, antibacterial activity and free from ocular irritancy. PMID:27610144

  17. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.

    PubMed

    Kim, Hak-Hyeon; Lee, Hongshin; Kim, Hyung-Eun; Seo, Jiwon; Hong, Seok Won; Lee, Jeong-Yong; Lee, Changha

    2015-12-01

    The production of reactive oxidants from nanoparticulate zero-valent iron (nZVI) and ferrous ion (Fe(II)) in the presence of oxygen was greatly enhanced by the addition of tetrapolyphosphate (TPP) as an iron-chelating agent. Compared to other ligands, TPP exhibited superior activity in improving the oxidant yields. The nZVI/TPP/O2 and the Fe(II)/TPP/O2 systems showed similar oxidant yields with respect to the iron consumed, indicating that nZVI only serves as a source of Fe(II). The degradation efficacies of selected organic compounds were also similar in the two systems. It appeared that both hydroxyl radical (OH) and ferryl ion (Fe(IV)) are produced, and OH dominates at acidic pH. However, at pH > 6, little occurrence of hydroxylated oxidation products suggests that Fe(IV) is a dominant oxidant. The degradation rates of selected organic compounds by the Fe(II)/TPP/O2 system had two optimum points at pH 6 and 9, and these pH-dependent trends are likely attributed to the speciation of Fe(IV) with different reactivities.

  18. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    PubMed Central

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-01-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions. PMID:27759108

  19. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.

    PubMed

    Ma, Feng; Yuan, Anbao; Xu, Jiaqiang

    2014-10-22

    In this work, highly conductive vapor grown carbon fiber (VGCF) was applied as an electrically conductive agent for facile synthesis of a nanoparticulate Mn3O4/VGCF composite material. This material exhibits super high specific capacity and excellent rate capability as a conversion-anode for lithium ion batteries. Rate performance test result demonstrates that at the discharge/charge current density of 0.2 A g(-1) a reversible capacity of ca. 950 mAh g(-1) is delivered, and when the current rate is increased to a high current density of 5 A g(-1), a reversible capacity of ca. 390 mAh g(-1) is retained. Cyclic performance examination conducted at the current density of 0.5 A g(-1) reveals that in the initial 20 cycles the reversible capacity decreases gradually from 855 to 747 mAh g(-1). However, since then, it increases gradually with cycle number increasing, and after 200 cycles an extraordinarily high reversible capacity of 1391 mAh g(-1) is achieved.

  20. Development of new catalysts for living polymerizations: From interesting reaction mechanisms to new polymeric materials

    NASA Astrophysics Data System (ADS)

    Hustad, Phillip Dene

    Synthetic polymers have revolutionized the modern world. The synthesis of these new materials has relied heavily on the development of new catalytic methods. Remarkable advances have been reported over the past twenty years concerning development of homogeneous olefin polymerization catalysts. Single-site catalysts are now available that are unparalleled in all of polymer chemistry concerning the detailed control of macromolecular stereochemistry. Despite years of fervent research, very few catalytic systems are available for living/controlled polymerization of olefins. While various methods for living anionic, cationic, and radical-based polymerizations have been exploited for the synthesis of complex polymer architectures, the lack of methodology concerning olefin polymerization has limited the development of new polyolefin-based materials. As part of an ongoing effort in the development of new methods for controlled polymerization reactions, a catalyst for the highly stereospecific and living polymerization of propylene was discovered. The complex, a titanium chloride bearing two perfluorinated phenoxyimine ligands, was originally designed for isospecific propylene polymerization. However, the activated catalyst gave highly syndiotactic polypropylene with a narrow molecular weight distribution. The living nature of the polymerization was demonstrated by the synthesis of a series of new ethylene/propylene block copolymers. Mechanistic studies, including a new propagation-based approach, determined that this unexpected microstructure was the result of chain-end control enhanced by an unusual secondary monomer insertion. This mechanism was exploited for the synthesis of vinyl-functional polyolefins, and these polymers were transformed to a series of functional polymers through chemical modification. Although polyolefins are currently indispensable materials, the search for degradable polymeric materials derived from renewable resources is critical for

  1. Chikungunya Virus–Vector Interactions

    PubMed Central

    Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.

    2014-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891

  2. Successive refinement lattice vector quantization.

    PubMed

    Mukherjee, Debargha; Mitra, Sanjit K

    2002-01-01

    Lattice Vector quantization (LVQ) solves the complexity problem of LBG based vector quantizers, yielding very general codebooks. However, a single stage LVQ, when applied to high resolution quantization of a vector, may result in very large and unwieldy indices, making it unsuitable for applications requiring successive refinement. The goal of this work is to develop a unified framework for progressive uniform quantization of vectors without having to sacrifice the mean- squared-error advantage of lattice quantization. A successive refinement uniform vector quantization methodology is developed, where the codebooks in successive stages are all lattice codebooks, each in the shape of the Voronoi regions of the lattice at the previous stage. Such Voronoi shaped geometric lattice codebooks are named Voronoi lattice VQs (VLVQ). Measures of efficiency of successive refinement are developed based on the entropy of the indices transmitted by the VLVQs. Additionally, a constructive method for asymptotically optimal uniform quantization is developed using tree-structured subset VLVQs in conjunction with entropy coding. The methodology developed here essentially yields the optimal vector counterpart of scalar "bitplane-wise" refinement. Unfortunately it is not as trivial to implement as in the scalar case. Furthermore, the benefits of asymptotic optimality in tree-structured subset VLVQs remain elusive in practical nonasymptotic situations. Nevertheless, because scalar bitplane- wise refinement is extensively used in modern wavelet image coders, we have applied the VLVQ techniques to successively refine vectors of wavelet coefficients in the vector set-partitioning (VSPIHT) framework. The results are compared against SPIHT and the previous successive approximation wavelet vector quantization (SA-W-VQ) results of Sampson, da Silva and Ghanbari.

  3. Vector and Axial-Vector Structures of the Θ+

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chul; Ledwig, Tim; Goeke, Klaus

    We present in this talk recent results of the vector and axial-vector transitions of the nucleon to the pentaquark baryon Θ+, based on the SU(3) chiral quark-soliton model. The results are summarized as follows: K*NΘ vector and tensor coupling constants turn out to be gK*NΘ ≃ 0.81 and fK*NΘ ≃ 0.84, respectively, and the KNΘ axial-vector coupling constant to be g*A ˜= 0.05. As a result, the total decay width for Θ+ → NK becomes very small: ΓΘ→NK ≃ 0.71 MeV, which is consistent with the DIANA result ΓΘ→NK = 0.36 ± 0.11 MeV.

  4. Nuclear-targeting TAT-PEG-Asp8-doxorubicin polymeric nanoassembly to overcome drug-resistant colon cancer

    PubMed Central

    Pan, Zhen-zhen; Wang, Hui-yuan; Zhang, Meng; Lin, Ting-ting; Zhang, Wen-yuan; Zhao, Peng-fei; Tang, Yi-si; Xiong, Yong; Zeng, Yuan-er; Huang, Yong-zhuo

    2016-01-01

    Aim: Drug efflux-associated multidrug resistance (MDR) is a main obstacle to effective cancer chemotherapy. Large molecule drugs are not the substrates of P-glycoprotein, and can circumvent drug efflux and be retained inside cells. In this article we report a polymer-drug conjugate nanoparticulate system that can overcome MDR based on size-related exclusion effect. Methods: Doxorubicin was coupled with the triblock polymeric material cell-penetrating TAT-PEG-poly(aspartic acid). The amphiphilic macromolecules (termed TAT-PEG-Asp8-Dox) could self-assemble into nanoparticles (NPs) in water. The antitumor activity was evaluated in drug-resistant human colon cancer HCT8/ADR cells in vitro and in nude mice bearing HCT8/ADR tumor. Results: The self-assembling TAT-PEG-Asp8-Dox NPs were approximately 150 nm with a narrow particle size distribution, which not only increased the cellular uptake efficiency, but also bypassed P-glycoprotein-mediated drug efflux and improved the intracellular drug retention, thus yielding an enhanced efficacy for killing drug-resistant HCT8/ADR colon cancer cells in vitro. Importantly, the TAT-PEG-Asp8-Dox NPs enhanced the intranuclear disposition of drugs for grater inhibition of DNA/RNA biosynthesis. In nude mice bearing xenografted HCT8/ADR colon cancers, intravenous or peritumoral injection of TAT-PEG-Asp8-Dox NPs for 22 d effectively inhibited tumor growth. Conclusion: TAT-PEG-Asp8-Dox NPs can increase cellular drug uptake and intranuclear drug delivery and retain effective drug accumulation inside the cells, thus exhibiting enhanced anticancer activity toward the drug-resistant human colon cancer HCT8/ADR cells. PMID:27292613

  5. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation.

    PubMed

    Rahimian, Sima; Fransen, Marieke F; Kleinovink, Jan Willem; Christensen, Jonatan Riis; Amidi, Maryam; Hennink, Wim E; Ossendorp, Ferry

    2015-04-10

    The aim of the current study was to develop a cancer vaccine formulation for treatment of human papillomavirus (HPV)-induced malignancies. Synthetic long peptides (SLPs) derived from HPV16 E6 and E7 oncoproteins have been used for therapeutic vaccination in clinical trials with promising results. In preclinical and clinical studies adjuvants based on mineral oils (such as incomplete Freund's adjuvant (IFA) and Montanide) are used to create a sustained release depot at the injection site. While the depot effect of mineral oils is important for induction of robust immune responses, their administration is accompanied with severe adverse and long lasting side effects. In order to develop an alternative for IFA family of adjuvants, polymeric nanoparticles (NPs) based on hydrophilic polyester (poly(d,l lactic-co-hydroxymethyl glycolic acid) (pLHMGA)) were prepared. These NPs were loaded with a synthetic long peptide (SLP) derived from HPV16 E7 oncoprotein and a toll like receptor 3 (TLR3) ligand (poly IC) by double emulsion solvent evaporation technique. The therapeutic efficacy of the nanoparticulate formulations was compared to that of HPV SLP+poly IC formulated in IFA. Encapsulation of HPV SLP antigen in NPs substantially enhanced the population of HPV-specific CD8+ T cells when combined with poly IC either co-encapsulated with the antigen or in its soluble form. The therapeutic efficacy of NPs containing poly IC in tumor eradication was equivalent to that of the IFA formulation. Importantly, administration of pLHMGA nanoparticles was not associated with adverse effects and therefore these biodegradable nanoparticles are excellent substitutes for IFA in cancer vaccines. PMID:25660830

  6. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  7. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  8. Colliders and brane vector phenomenology

    SciTech Connect

    Clark, T. E.; Love, S. T.; Xiong, C.; Nitta, Muneto; Veldhuis, T. ter

    2008-12-01

    Brane world oscillations manifest themselves as massive vector gauge fields. Their coupling to the standard model is deduced using the method of nonlinear realizations of the spontaneously broken higher dimensional space-time symmetries. Brane vectors are stable and weakly interacting and therefore escape particle detectors unnoticed. LEP and Tevatron data on the production of a single photon in conjunction with missing energy are used to delineate experimentally excluded regions of brane vector parameter space. The additional region of parameter space accessible to the LHC as well as a future lepton linear collider is also determined by means of this process.

  9. Initial conditions for vector inflation

    SciTech Connect

    Chiba, Takeshi

    2008-08-15

    Recently, a model of inflation using non-minimally coupled massive vector fields has been proposed. For a particular choice of non-minimal coupling parameter and for a flat Friedmann-Robertson-Walker model, the model is reduced to the model of chaotic inflation with massive scalar field. We study the effect of non-zero curvature of the universe on the onset of vector inflation. We find that in a curved universe the dynamics of vector inflation can be different from the dynamics of chaotic inflation, and the fraction of the initial conditions leading to inflationary solutions is reduced as compared with the chaotic inflation case.

  10. Biocompatibility of Experimental Polymeric Tracheal Matrices.

    PubMed

    Kiselevskii, M V; Chikileva, I O; Vlasenko, R Ya; Sitdikova, S M; Tenchurin, T Kh; Mamagulashvili, V G; Shepelev, A D; Grigoriev, T A; Chvalun, S N

    2016-08-01

    Biocompatibility of a new tracheal matrix is studied. The new matrix is based on polymeric ultra-fiber material colonized by mesenchymal multipotent stromal cells. The experiments demonstrate cytoconductivity of the synthetic matrices and no signs of their degradation within 2 months after their implantation to recipient mice. These data suggest further studies of the synthetic tracheal matrices on large laboratory animals. PMID:27591876

  11. The morphology of emulsion polymerized latex particles

    SciTech Connect

    Wignall, G.D.; Ramakrishnan, V.R.; Linne, M.A.; Klein, A.; Sperling, L.H.; Wai, M.P.; Gelman, R.A.; Fatica, M.G.; Hoerl, R.H.; Fisher, L.W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structre as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10/sup 4/ < M < 6 x 10/sup 6/ g/mol. For M > 10/sup 6/ the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10/sup 6/ g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights. 25 refs., 6 figs., 3 tabs.

  12. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  13. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1978-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  14. The Morphology of Emulsion Polymerized Latex Particles

    DOE R&D Accomplishments Database

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.

    1987-11-01

    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  15. Polymeric Electrolytic Hygrometer For Harsh Environments

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; Shakkottai, Parthasarathy; Venkateshan, Shakkottai P.

    1989-01-01

    Design of polymeric electrolytic hygrometer improved to meet need for reliable measurements of relative humidity in harsh environments of pulpmills and papermills. Redesigned sensor head features shorter, more-rigidly-held sensing element, less vulnerable than previous version to swell and loss of electrical contact. Useful for control of batch dryers in food and pharmaceutical industries.

  16. Hot-embossed polymeric optical waveguides

    NASA Astrophysics Data System (ADS)

    Choi, Choon-Gi; Kim, Jin-Tae; Han, Sang-Pil; Ahn, Seung-Ho

    2004-10-01

    Polymer waveguides have attracted a great deal of attention for their potential applications as optical components in optical communications, optical interconnections and optical sensors because they are easy to manufacture at a low temperature, and they have a low processing cost. Hot embossing is powerful and effective tools to produce a large volume of waveguides and structure high-precision micro/nano patterns of thin polymer films using a stamp for optical applications. In this work, fabrication techniques of hot embossed polymeric optical waveguides for parallel optical interconnection module, multi-channel variable optical attenuator and optical printed circuit boards are demonstrated. The single- and multi-mode waveguides are produced by core filling and UV curing processes. New approaches to fabricating single-mode polymeric waveguides with the high thermal stability in thermosetting polymers and two-dimensional multi-mode polymeric waveguides for high-density parallel optical interconnections as well as a simultaneous fabrication of single-mode polymeric waveguides with micro pedestals for passive fiber alignment are also reported.

  17. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  18. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  19. Free heme and sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  20. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  1. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  2. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  3. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold...

  4. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  5. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  6. 21 CFR 177.2250 - Filters, microporous polymeric.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Filters, microporous polymeric. 177.2250 Section... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to...

  7. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  8. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  9. 40 CFR 721.10299 - Polymeric MDI based polyurethanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymeric MDI based polyurethanes... Specific Chemical Substances § 721.10299 Polymeric MDI based polyurethanes (generic). (a) Chemical... as polymeric MDI based polyurethanes (PMNs P-00-2, P-00-5, and P-00-6) are subject to reporting...

  10. On a possible methodology for identifying the initiation of damage of a class of polymeric materials

    NASA Astrophysics Data System (ADS)

    Alagappan, P.; Kannan, K.; Rajagopal, K. R.

    2016-08-01

    In this paper, we provide a possible methodology for identifying the initiation of damage in a class of polymeric solids. Unlike most approaches to damage that introduce a damage parameter, which might be a scalar, vector or tensor, that depends on the stress or strain (that requires knowledge of an appropriate reference configuration in which the body was stress free and/or without any strain), we exploit knowledge of the fact that damage is invariably a consequence of the inhomogeneity of the body that makes the body locally `weak' and the fact that the material properties of a body invariably depend on the density, among other variables that can be defined in the current configuration, of the body. This allows us to use density, for a class of polymeric materials, as a means to identify incipient damage in the body. The calculations that are carried out for the biaxial stretch of an inhomogeneous multi-network polymeric solid bears out the appropriateness of the thesis that the density of the body can be used to forecast the occurrence of damage, with the predictions of the theory agreeing well with experimental results. The study also suggests a meaningful damage criterion for the class of bodies being considered.

  11. Experiments With Magnetic Vector Potential

    ERIC Educational Resources Information Center

    Skinner, J. W.

    1975-01-01

    Describes the experimental apparatus and method for the study of magnetic vector potential (MVP). Includes a discussion of inherent errors in the calculations involved, precision of the results, and further applications of MVP. (GS)

  12. Electromagnetic structure of vector mesons

    NASA Astrophysics Data System (ADS)

    Adamuščín, C.; Dubnička, S.; Dubničková, A. Z.

    2014-11-01

    Electromagnetic structure of the complete nonet of vector mesons (ρ0, ρ+, ρ-, ω, ϕ, K*0, K*+, K¯*0, K*-) is investigated in the framework of the Unitary and Analytic model and insufficient experimental information on it is discussed.

  13. Polynomial interpretation of multipole vectors

    NASA Astrophysics Data System (ADS)

    Katz, Gabriel; Weeks, Jeff

    2004-09-01

    Copi, Huterer, Starkman, and Schwarz introduced multipole vectors in a tensor context and used them to demonstrate that the first-year Wilkinson microwave anisotropy probe (WMAP) quadrupole and octopole planes align at roughly the 99.9% confidence level. In the present article, the language of polynomials provides a new and independent derivation of the multipole vector concept. Bézout’s theorem supports an elementary proof that the multipole vectors exist and are unique (up to rescaling). The constructive nature of the proof leads to a fast, practical algorithm for computing multipole vectors. We illustrate the algorithm by finding exact solutions for some simple toy examples and numerical solutions for the first-year WMAP quadrupole and octopole. We then apply our algorithm to Monte Carlo skies to independently reconfirm the estimate that the WMAP quadrupole and octopole planes align at the 99.9% level.

  14. Brief history of vector Doppler

    NASA Astrophysics Data System (ADS)

    Dunmire, Barbrina; Beach, Kirk W.

    2001-05-01

    Since the development of the directional Doppler by McLeod in 1967, methods of acquiring, analyzing, and displaying blood velocity information have been under constant exploration. These efforts are motivated by a variety of interest and objectives including, to: a) simplify clinical examination, examiner training, and study interpretation, b) provide more hemodynamic information, and c) reduce examination variability and improve accuracy. The vector Doppler technique has been proposed as one potential avenue to achieve these objects. Vector Doppler systems are those that determine the true 2D or 3D blood flow velocity by combining multiple independent velocity component measurements. Most instruments can be divided into two broad categories: 1) cross-beam and 2) time-domain. This paper provides a brief synopsis of the progression of vector Doppler techniques, from its onset in 1970 to present, as well as possible avenues for future work. This is not intended to be a comprehensive review of all vector Doppler systems.

  15. Unsupervised learning of binary vectors

    NASA Astrophysics Data System (ADS)

    Copelli Lopes da Silva, Mauro

    In this thesis, unsupervised learning of binary vectors from data is studied using methods from Statistical Mechanics of disordered systems. In the model, data vectors are distributed according to a single symmetry-breaking direction. The aim of unsupervised learning is to provide a good approximation to this direction. The difference with respect to previous studies is the knowledge that this preferential direction has binary components. It is shown that sampling from the posterior distribution (Gibbs learning) leads, for general smooth distributions, to an exponentially fast approach to perfect learning in the asymptotic limit of large number of examples. If the distribution is non-smooth, then first order phase transitions to perfect learning are expected. In the limit of poor performance, a second order phase transition ("retarded learning") is predicted to occur if the data distribution is not biased. Using concepts from Bayesian inference, the center of mass of the Gibbs ensemble is shown to have maximal average (Bayes-optimal) performance. This upper bound for continuous vectors is extended to a discrete space, resulting in the clipped center of mass of the Gibbs ensemble having maximal average performance among the binary vectors. To calculate the performance of this best binary vector, the geometric properties of the center of mass of binary vectors are studied. The surprising result is found that the center of mass of infinite binary vectors which obey some simple constraints, is again a binary vector. When disorder is taken into account in the calculation, however, a vector with continuous components is obtained. The performance of the best binary vector is calculated and shown to always lie above that of Gibbs learning and below the Bayes-optimal performance. Making use of a variational approach under the replica symmetric ansatz, an optimal potential is constructed in the limits of zero temperature and mutual overlap 1. Minimization of this potential

  16. Effective Masses of Vector Polarons

    NASA Astrophysics Data System (ADS)

    Foell, Charles; Clougherty, Dennis

    2006-03-01

    We consider the vector polarons of a one-dimensional model of an electron in a doubly (or nearly) degenerate band that couples to two elastic distortions, as described previously by Clougherty and Foell [1]. A variational approach is used to analytically and numerically calculate effective masses of the three types of vector polarons. [1] D. P. Clougherty and C. A. Foell, Phys. Rev. B 70, 052301 (2004).

  17. Axisymmetric Coanda-assisted vectoring

    NASA Astrophysics Data System (ADS)

    Allen, Dustin; Smith, Barton L.

    2009-01-01

    An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.

  18. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  19. Sustained expression from DNA vectors.

    PubMed

    Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P

    2015-01-01

    DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.

  20. Are Bred Vectors The Same As Lyapunov Vectors?

    NASA Astrophysics Data System (ADS)

    Kalnay, E.; Corazza, M.; Cai, M.

    Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the

  1. Mechanisms of Drug Diffusion from Polymeric Devices.

    NASA Astrophysics Data System (ADS)

    Sharma, Kuldeepak

    1987-09-01

    A detailed mechanistic study of drug diffusion and the factors which influence drug diffusion through polymeric controlled release systems was undertaken to understand drug diffusion through hydrophilic and hydrophobic polymeric systems. The effect of improved aqueous solubility of the salt form (ionizable form) of selected drugs on diffusion through hydrophilic and hydrophobic polymeric membranes was compared to diffusion of the less soluble (unionizable form) of the drugs. Model drugs chosen for these studies were prednisolone, prednisolone phosphate sodium (prednisolone phosphoric acid disodium salt), pilocarpine, pilocarpine hydrochloride, sulfacetamide and sodium sulfacetamide. The hydrophilic polymers were hydrogels of hydroxyethylmethacrylate (PHEMA) and hydrophobic polymers were copolyether-urethane -urea (Biomer) and polydimethylsiloxane (PDMS). Salt forms of the drugs permeated faster than the free forms through the hydrophilic polymers because of higher aqueous solubility. The free forms of the drugs had higher diffusion rates than the salt forms due to increased solubility in the hydrophobic polymers. Drug solubility in polymers and the water fraction of the polymeric membrane were determined to be the primary factors in diffusion through polymeric membranes. Drug aqueous solubility was of secondary importance. Two controlled release systems were then designed to further study drug release. The Biomer and copolymers of polystyrene and PHEMA were chosen as the polymers for the fabrication of the devices. These copolymers incorporated the favorable attributes of hydrophobic and hydrophilic homopolymers into single polymers. Prednisolone was used as a model drug for these studies. The effects of initial drug load, drug loading solvents and the drug polymer interactions on drug release from the devices were then studied. The drug release from these devices increased as the initial drug load increased. Drug loading solvents had a marked effect on drug

  2. Novel silicon and tin alloy nano-particulate materials via spark erosion for high performance and high capacity anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    White, Emma Marie Hamilton

    The advent and popularity of portable electronics, as well as the need to reduce carbon-based fuel dependence for environmental and economic reasons, has led to the search for higher energy density portable power storage methods. Lithium ion batteries offer the highest energy density of any portable energy storage technology, but their potential is limited by the currently used materials. Theoretical capacities of silicon (3580 mAh/g) and tin (990 mAh/g) are significantly higher than existing graphitic anodes (372 mAh/g). However, silicon and tin must be scaled down to the nano-level to mitigate the pulverization from drastic volume changes in the anode structure during lithium ion insertion/extraction. The available synthesis techniques for silicon and tin nano-particles are complicated and scale-up is costly. A unique one-step process for synthesizing Si-Sn alloy and Sn nano-particles via spark plasma erosion has been developed to achieve the ideal nano-particulate size and carbon coating architecture. Spark erosion produces crystalline and amorphous spherical nano-particles, averaging 5-500nm in diameter. Several tin and silicon alloys have been spark eroded and thoroughly characterized using SEM, TEM, EDS, XPS, Auger spectroscopy, NMR spectroscopy and TGA. The resulting nano-particles show improved performance as anodes over commercialized materials. In particular, pure sparked Sn particles show stable reversible capacity at ˜460 mAh/g with >99.5% coulombic efficiency for over 100 cycles. These particles are drop-in ready for existing commercial anode processing techniques and by only adding 10% of the sparked Sn particles the total current cell capacity will increase by ˜13%.

  3. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    PubMed

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study. PMID:26699928

  4. On the response of semitransparent nanoparticulated films of LuPO4:Eu in poly-energetic X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Seferis, I. E.; Zeler, J.; Michail, C.; Valais, I.; Fountos, G.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Zych, E.

    2016-05-01

    In the present work, we demonstrate the fabrication technique of highly translucent layers of nanoparticulated (~50 nm) LuPO4:Eu phosphor, present their basic luminescent properties and give results of their performance in a planar imaging system coupled to a CMOS photodetector. For comparison, the imaging performance of an opaque Gd2O2S:Eu phosphor screen prepared by sedimentation is also shown. The X-ray detection parameters as well as the luminescence efficiency of the investigated films were discussed. Results show that the in-line transmittance at ~600-700 nm, in the range of the phosphor luminescence, varies with respect to the thickness of the films from 40 to 50 % for a film of 67 μm thick to 4-12 % when the thickness increases to 460 μm. Yet, X-ray detection parameters get enhanced as the thickness of the films increases. Those results affect the luminescence efficiency curves of the films under poly-energetic X-ray radiation of various tube energies. The normalized noise power spectrum values were found similar for LuPO4:Eu films and a phosphor screen made using commercial Gd2O2S:Eu powder. The detective quantum efficiency of our films is clearly lower compared to the Gd2O2S:Eu screen from 2 to 10 cycles mm-1 frequency range while the modulation transfer function is lower from 0 to 5.5 cycles mm-1 frequency range. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains and thus without sacrificing their translucent character.

  5. Black holes with vector hair

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2016-09-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.

  6. VectorBase: a home for invertebrate vectors of human pathogens.

    PubMed

    Lawson, Daniel; Arensburger, Peter; Atkinson, Peter; Besansky, Nora J; Bruggner, Robert V; Butler, Ryan; Campbell, Kathryn S; Christophides, George K; Christley, Scott; Dialynas, Emmanuel; Emmert, David; Hammond, Martin; Hill, Catherine A; Kennedy, Ryan C; Lobo, Neil F; MacCallum, M Robert; Madey, Greg; Megy, Karine; Redmond, Seth; Russo, Susan; Severson, David W; Stinson, Eric O; Topalis, Pantelis; Zdobnov, Evgeny M; Birney, Ewan; Gelbart, William M; Kafatos, Fotis C; Louis, Christos; Collins, Frank H

    2007-01-01

    VectorBase (http://www.vectorbase.org/) is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever.

  7. Enzymatic polymerization of dihydroquercetin using bilirubin oxidase.

    PubMed

    Khlupova, M E; Vasil'eva, I S; Shumakovich, G P; Morozova, O V; Chertkov, V A; Shestakova, A K; Kisin, A V; Yaropolov, A I

    2015-02-01

    Dihydroquercetin (or taxifolin) is one of the most famous flavonoids and is abundant in Siberian larch (Larix sibirica). The oxidative polymerization of dihydroquercetin (DHQ) using bilirubin oxidase as a biocatalyst was investigated and some physicochemical properties of the products were studied. DHQ oligomers (oligoDHQ) with molecular mass of 2800 and polydispersity of 8.6 were obtained by enzymatic reaction under optimal conditions. The oligomers appeared to be soluble in dimethylsulfoxide, dimethylformamide, and methanol. UV-visible spectra of oligoDHQ in dimethylsulfoxide indicated the presence of highly conjugated bonds. The synthesized oligoDHQ was also characterized by FTIR and (1)H and (13)C NMR spectroscopy. Comparison of NMR spectra of oligoDHQ with DHQ monomer and the parent flavonoids revealed irregular structure of a polymer formed via the enzymatic oxidation of DHQ followed by nonselective radical polymerization. As compared with the monomer, oligoDHQ demonstrated higher thermal stability and high antioxidant activity.

  8. Orthogonal gradient networks via post polymerization reaction

    NASA Astrophysics Data System (ADS)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    2015-03-01

    We report a novel synthetic route to generate orthogonal gradient networks through post polymerization reaction using pentaflurophenylmethacrylate (PFPMAc) active ester chemistry. These chemoselective monomers were successfully copolymerized with 5 mole% of the photo (methacryloyloxybenzophenone) and thermal (styrenesulfonylazide) crosslinkers. Subsequently, the copolymers were modified by a series of amines having various alkyl chain lengths. The conversion of post polymerization reaction was monitored using Fourier Transform Infrared Spectroscopy (FT-IR) and noticed that almost all pentaflurophenyl moieties are substituted by amines within in an hour without affecting the crosslinkers. In addition, the incorporation of photo and thermal crosslinkers in the polymer enabled us to achieve stable and covalently surface-bound polymer gradient networks (PGN) in an orthogonal manner, i.e. complete control over the crosslink density of the network in two opposite directions (i.e. heat vs photo). The network properties such as wettability, swelling and tensile modulus of the gradient coatings are studied and revealed in the paper.

  9. Cooperative polymerization of one-patch colloids

    SciTech Connect

    Vissers, Teun; Smallenburg, Frank; Munaò, Gianmarco; Preisler, Zdeněk; Sciortino, Francesco

    2014-04-14

    We numerically investigate cooperative polymerization in an off-lattice model based on a pairwise additive potential using particles with a single attractive patch that covers 30% of the colloid surface. Upon cooling, these particles self-assemble into small clusters which, below a density-dependent temperature, spontaneously reorganize into long straight tubes. We evaluate the partition functions of clusters of all sizes to provide an accurate description of the chemical reaction constants governing this process. Our calculations show that, for intermediate sizes, the partition functions retain contributions from two different structures, differing in both energy and entropy. We illustrate the microscopic mechanism behind the complex polymerization process in this system and provide a detailed evaluation of its thermodynamics.

  10. Hierarchical Nanowires Synthesized by Supramolecular Stepwise Polymerization.

    PubMed

    Zhuang, Zeliang; Jiang, Tao; Lin, Jiaping; Gao, Liang; Yang, Chaoying; Wang, Liquan; Cai, Chunhua

    2016-09-26

    The self-organization of pre-assembled aggregates is an efficient stepwise strategy for fabricating nanostructures with a second level of hierarchy. Herein, we report that anisotropic spindle-like micelles, self-assembled from polypeptide graft copolymers with rigid backbones, can serve as ideal pre-assembled subunits for constructing one-dimensional materials with hierarchical structures. By adding organic solvents and dialyzing against water, reactive points can be generated at the ends of the spindle-like micelles, which subsequently drive the anisotropic micelles to grow as rods in a chain and eventually self-assemble into hierarchical nanowires in a stepwise manner. The second self-assembly step is a hierarchical process that resembles step polymerization. Hierarchical structures can be precisely synthesized by this new type of polymerization. These nanostructures can be tailored by the activity of the reactive points, which depends on the nature of the solvent and the molecular architecture. PMID:27604499

  11. Polymeric synthesis of silicon carbide with microwaves.

    PubMed

    Aguilar, Juan; Urueta, Luis; Valdez, Zarel

    2007-01-01

    The aim of this work is conducting polymeric synthesis with microwaves for producing beta-SiC. A polymeric precursor was prepared by means of hydrolysis and condensation reactions from pheniltrimethoxysilane, water, methanol, ammonium hydroxide and chloride acid. The precursor was placed into a quartz tube in vacuum; pyrolysis was carried out conventionally in a tube furnace, and by microwaves at 2.45 GHz in a multimode cavity. Conventional tests took place in a scheme where temperature was up to 1500 degrees C for 120 minutes. Microwave heating rate was not controlled and tests lasted 60 and 90 minutes, temperature was around 900 degrees C. Products of the pyrolysis were analyzed by means of x-ray diffraction; in the microwave case the diffraction patterns showed a strong background of either very fine particles or amorphous material, then infrared spectroscopy was also employed for confirming carbon bonds. In both processes beta-SiC was found as the only produced carbide.

  12. Polymeric multilayer capsules in drug delivery.

    PubMed

    De Cock, Liesbeth J; De Koker, Stefaan; De Geest, Bruno G; Grooten, Johan; Vervaet, Chris; Remon, Jean Paul; Sukhorukov, Gleb B; Antipina, Maria N

    2010-09-17

    Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be "intelligent", such that they can deliver their payload at a well-defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer-by-layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.

  13. All-polymeric control of nanoferronics

    PubMed Central

    Xu, Beibei; Li, Huashan; Hall, Asha; Gao, Wenxiu; Gong, Maogang; Yuan, Guoliang; Grossman, Jeffrey; Ren, Shenqiang

    2015-01-01

    In the search for light and flexible nanoferronics, significant research effort is geared toward discovering the coexisting magnetic and electric orders in crystalline charge-transfer complexes. We report the first example of multiferroicity in centimeter-sized crystalline polymeric charge-transfer superstructures that grow at the liquid-air interface and are controlled by the regioregularity of the polymeric chain. The charge order–driven ferroic mechanism reveals spontaneous and hysteretic polarization and magnetization at the donor-acceptor interface. The charge transfer and ordering in the ferroic assemblies depend critically on the self-organizing and molecular packing of electron donors and acceptors. The invention described here not only represents a new coupling mechanism of magnetic and electric ordering but also creates a new class of emerging all-organic nanoferronics. PMID:26824068

  14. Polymeric Gel Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Morita, Masayuki; Qiao, Jin-Li; Ohsumi, Naoki; Yoshimoto, Nobuko; Egashira, Minato

    2006-06-01

    Three kinds of the polymer matrix, poly(ethylene oxide)-grafted polymethacrylate (PEO-PMA), poly(vinyldene fluoride) (PVdF) and poly(vinyldene-co-hexafluoropripylene) (PVdF-HFP), were used for gel preparation. A proper amount of organic salts or acids were dissolved in the polymer matrix together with organic plasticizers, dimethylformamide (DMF) and/or poly-(efhylene glycol)-dimethylether (PEGDE), without water. Thin films of the polymeric gel were obtained by either direct polymerization of the mixed monomer solution or a thermal casting method. The composition of the polymer-electrolyte complex system is optimized to obtain good capacitor performances of the electrochemical capacitor (ECC) system.

  15. Simultaneous covalent and noncovalent hybrid polymerizations

    NASA Astrophysics Data System (ADS)

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C.; Schatz, George C.; Stupp, Samuel I.

    2016-01-01

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

  16. Simultaneous covalent and noncovalent hybrid polymerizations.

    PubMed

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C; Schatz, George C; Stupp, Samuel I

    2016-01-29

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions. PMID:26823427

  17. Therapeutic strategies based on polymeric microparticles.

    PubMed

    Vilos, C; Velasquez, L A

    2012-01-01

    The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.

  18. Living anionic polymerization using a microfluidic reactor

    SciTech Connect

    Iida, Kazunori; Chastek, Thomas Q.; Beers, Kathryn L.; Cavicchi, Kevin A.; Chun, Jaehun; Fasolka, Michael J.

    2009-02-01

    Living anionic polymerizations were conducted within aluminum-polyimide microfluidic devices. Polymerizations of styrene in cyclohexane were carried out at various conditions, including elevated temperature (60 °C) and high monomer concentration (42%, by volume). The reactions were safely maintained at a controlled temperature at all points in the reactor. Conducting these reactions in a batch reactor results in uncontrolled heat generation with potentially dangerous rises in pressure. Moreover, the microfluidic nature of these devices allows for flexible 2D designing of the flow channel. Four flow designs were examined (straight, periodically pinched, obtuse zigzag, and acute zigzag channels). The ability to use the channel pattern to increase the level of mixing throughout the reactor was evaluated. When moderately high molecular mass polymers with increased viscosity were made, the patterned channels produced polymers with narrower PDI, indicating that passive mixing arising from the channel design is improving the reaction conditions.

  19. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  20. Formation of Micro Lens by Laser Polymerization

    NASA Astrophysics Data System (ADS)

    Mori, Akira; Horiuchi, Takashi; Mizumachi, Manabu; Seino, Satoshi; Nakagawa, Takuya; Suzuki, Kaoru

    Recently, a micro lens has been demanded in uniting a laser device and an optical fiber. We have fabricated a new type of plastic micro lens by laser polymerization. The amount of the resin polymerized by exposing laser light, namely light-curing, depends on the laser power and exposing time. The shape of the lens can be controlled by changing the condition of laser irradiation. In this paper, the characteristic of the lens formed by this method was examined. Moreover, the relation between the lens shape and the condition of laser irradiation was investigated, and the condition to reducing a transverse spherical aberration was examined. As the result, the lens of 390μm in diameter was formed. The area which can be used for light coupling from a laser diode to a multimode fiber will be 81 % in the total lens area.

  1. The biological control of disease vectors.

    PubMed

    Okamoto, Kenichi W; Amarasekare, Priyanga

    2012-09-21

    Vector-borne diseases are common in nature and can have a large impact on humans, livestock and crops. Biological control of vectors using natural enemies or competitors can reduce vector density and hence disease transmission. However, the indirect interactions inherent in host-vector disease systems make it difficult to use traditional pest control theory to guide biological control of disease vectors. This necessitates a conceptual framework that explicitly considers a range of indirect interactions between the host-vector disease system and the vector's biological control agent. Here we conduct a comparative analysis of the efficacy of different types of biological control agents in controlling vector-borne diseases. We report three key findings. First, highly efficient predators and parasitoids of the vector prove to be effective biological control agents, but highly virulent pathogens of the vector also require a high transmission rate to be effective. Second, biocontrol agents can successfully reduce long-term host disease incidence even though they may fail to reduce long-term vector densities. Third, inundating a host-vector disease system with a natural enemy of the vector has little or no effect on reducing disease incidence, but inundating the system with a competitor of the vector has a large effect on reducing disease incidence. The comparative framework yields predictions that are useful in developing biological control strategies for vector-borne diseases. We discuss how these predictions can inform ongoing biological control efforts for host-vector disease systems.

  2. Learning with LOGO: Logo and Vectors.

    ERIC Educational Resources Information Center

    Lough, Tom; Tipps, Steve

    1986-01-01

    This is the first of a two-part series on the general concept of vector space. Provides tool procedures to allow investigation of vector properties, vector addition and subtraction, and X and Y components. Lists several sources of additional vector ideas. (JM)

  3. Versatile functionalization of gene vectors via different types of zwitterionic betaine species for serum-tolerant transfection.

    PubMed

    Xiu, Ke-Mao; Zhao, Na-Na; Yang, Wan-Tai; Xu, Fu-Jian

    2013-07-01

    For ideal polymeric gene vectors, their serum stability is of crucial importance. Polycation vectors usually suffer from colloidal aggregation, which makes them easily cleared from the bloodstream. Recently, we reported a comb-shaped vector (DPD) consisting of a dextran backbone and disulfide-linked cationic poly((2-dimethyl amino)ethyl methacrylate) side chains for efficient gene delivery. In this work, versatile functionalization of DPD (as a model gene vector) was proposed via the introduction of different types of zwitterionic carboxybetaine and sulfobetaine species for improving biophysical properties. The incorporation of zwitterionic betaine did not destroy the DNA condensation capability of vectors. All the zwitterionic betaine-functionalized DPD vectors exhibited lower cytotoxicities than the pristine DPD. The DPD-b-polycarboxybetaine block copolymer (DPDbPC) exhibited better gene delivery abilities than the corresponding DPD-r-polycarboxybetaine random copolymer (DPDrPC). Moreover, in the serum case with a high concentration (30%) of fetal bovine serum, the DPD-b-polysulfobetaine block copolymer (DPDbPS) produced much higher gene transfection efficiencies than DPDbPC. Cellular internalization results indicated that the incorporation of zwitterionic betaine could benefit serum stabilities of vectors and enhance cellular uptake. The present study demonstrated that proper incorporation of zwitterionic betaine into gene carriers was an effective method to produce serum-tolerant transfection vectors. PMID:23571001

  4. [Molecular/polymeric magnetism]. Progress report

    SciTech Connect

    Not Available

    1993-03-01

    New materials were synthesized to test the generality of magnetism in molecular/polymeric systems. The first room temperature molecular based magnet V(TCNE){sub x}{center_dot}y(solvent) (1) is disclosed. The ferromagnetic and related transitions were studied in decamethylferrocenium tetracyanoethanide (TCNE), (1), and related materials. Our and others` models were tested for ferromagnetic and antiferromagnetic exchange between local sites; models for control of {Tc} were also tested.

  5. INHIBITING THE POLYMERIZATION OF NUCLEAR COOLANTS

    DOEpatents

    Colichman, E.L.

    1959-10-20

    >The formation of new reactor coolants which contain an additive tbat suppresses polymerization of the primary dissoclation free radical products of the pyrolytic and radiation decomposition of the organic coolants is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to 5% of a powdered metal hydride chosen from the group consisting of the group IIA and IVA dispersed in the hydrocarbon.

  6. Biologically produced acid precipitable polymeric lignin

    DOEpatents

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  7. Bimetallic complexes and polymerization catalysts therefrom

    DOEpatents

    Patton, Jasson T.; Marks, Tobin J.; Li, Liting

    2000-11-28

    Group 3-6 or Lanthanide metal complexes possessing two metal centers, catalysts derived therefrom by combining the same with strong Lewis acids, Bronsted acid salts, salts containing a cationic oxidizing agent or subjected to bulk electrolysis in the presence of compatible, inert non-coordinating anions and the use of such catalysts for polymerizing olefins, diolefins and/or acetylenically unsaturated monomers are disclosed.

  8. Biologically responsive polymeric nanoparticles for drug delivery.

    PubMed

    Colson, Yolonda L; Grinstaff, Mark W

    2012-07-24

    Responsive nanoparticles that release their drug cargo in accordance with a change in pH or oxidative stress are of significant clinical interest as this approach offers the opportunity to link drug delivery to a specific location or disease state. This research news article reviews the current state of this field by examining a series of published articles that highlight the novelty and benefits of using responsive polymeric particles to achieve functionally-targeted drug delivery. PMID:22988558

  9. Polymeric assemblies for sensitive colorimetric assays

    DOEpatents

    Charych, Deborah

    2000-01-01

    The presently claimed invention relates to polymeric assemblies which visibly change color in the presence of analyte. In particular, the presently claimed invention relates to liposomes comprising a plurality of lipid monomers, which comprises a polymerizable group, a hydrophilic head group and a hydrophobic tail group, and one or more ligands. Overall carbon chain length, and polymerizable group positioning on the monomer influence color change sensitivity to analyte concentrations.

  10. Supported polymeric liquid membranes for wastewater treatment

    SciTech Connect

    Ho, S.V.

    1997-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. A class of membrane has been developed called supported polymeric liquid membranes capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. These membranes are prepared by filling the pores of microfiltration or ultrafiltration membranes with polymeric (oligomeric) liquids having affinity for the organic compounds of interest. With this approach, membrane`s separation characteristics are decoupled from its mechanical stability and depend primarily on the chemical properties of the liquid polymer used. As a result, membranes of diverse separation capabilities can be conveniently prepared using liquid polymers possessing the appropriate functional groups. Physical properties typical of polymeric liquids such as high viscosity, extremely low volatility and insolubility in water contribute to the observed stability of the membranes under broad operating conditions. This membrane process has been successfully applied to several aqueous waste streams. This paper describes the early development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids. Feasibility testings were initially carried out with flat sheet membranes in a small stirred cell. Scaleup was then conducted using hollow fiber membranes, first with small modules prepared in the laboratory, then with a much larger commercial module. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid.

  11. Vector Encoding in Biochemical Networks

    NASA Astrophysics Data System (ADS)

    Potter, Garrett; Sun, Bo

    Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.

  12. A generalized nonlocal vector calculus

    NASA Astrophysics Data System (ADS)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  13. Generalized Selection Weighted Vector Filters

    NASA Astrophysics Data System (ADS)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2004-12-01

    This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03) in Grado, Italy.

  14. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers.

  15. Preparation, development and in vitro release evaluation of amphotericin B-loaded amphiphilic block copolymer vectors.

    PubMed

    Pippa, Natassa; Mariaki, Maria; Pispas, Stergios; Demetzos, Costas

    2014-10-01

    The aim of this work is to design and develop a suitable polymeric formulation incorporating amphotericin B (Ampho B) in order to overcome its water insolubility problem. To this end, we have chosen the poly(isoprene-b-ethylene oxide) amphiphilic block copolymer (IEO) family. We investigate the self assembly behavior and the stability kinetics of IEO copolymer based nanostructures formed in HPLC grade water and in phosphate buffer saline (PBS). The IEO block copolymer samples investigated have different molecular weights and compositions. A gamut of light scattering techniques (static, dynamic and electrophoretic) were used in order to extract information on the size, ζ-potential and morphological characteristics of the structures formed, as a function of the molar ratio of incorporated lipophilic drug Ampho B. The amphiphilic character and the colloidal stability of the particular polymeric drug vectors indicate that these nanostructures can be utilized as effective containers for the particular hydrophobic drug. The incorporation of Ampho B led to alteration of the physicochemical and morphological characteristics of the pure polymeric carriers. It is observed that the in vitro release of Ampho B from the prepared vectors IEO-b:Ampho B was quite slow, while the IEO-a carriers did not release Ampho B.

  16. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  17. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  18. Performance of selected polymeric materials on LDEF

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.

  19. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  20. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  1. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  2. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  3. Extrapolation methods for vector sequences

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Ford, William F.; Sidi, Avram

    1987-01-01

    This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.

  4. Helper-Dependent Adenoviral Vectors

    PubMed Central

    Rosewell, Amanda; Vetrini, Francesco; Ng, Philip

    2012-01-01

    Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227

  5. Requirements for airborne vector gravimetry

    NASA Technical Reports Server (NTRS)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  6. Anisotropic inflation from vector impurity

    SciTech Connect

    Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp

    2008-08-15

    We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.

  7. Complexity of vector spin glasses.

    PubMed

    Yeo, J; Moore, M A

    2004-08-13

    We study the annealed complexity of the m-vector spin glasses in the Sherrington-Kirkpatrick limit. The eigenvalue spectrum of the Hessian matrix of the Thouless-Anderson-Palmer free energy is found to consist of a continuous band of positive eigenvalues in addition to an isolated eigenvalue and (m-1) null eigenvalues due to rotational invariance. Rather surprisingly, the band does not extend to zero at any finite temperature. The isolated eigenvalue becomes zero in the thermodynamic limit, as in the Ising case (m=1), indicating that the same supersymmetry breaking recently found in Ising spin glasses occurs in vector spin glasses.

  8. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho

    2016-01-01

    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  9. Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2009-12-01

    The degree and depth of curing due to photopolymerization in a commercial dental resin have been studied using photothermal radiometry. The sample consisted of a thick layer of resin on which a thin metallic gold layer was deposited, thus guaranteeing full opacity. Purely thermal-wave inverse problem techniques without the interference of optical profiles were used. Thermal depth profiles were obtained by heating the gold coating with a modulated laser beam and by performing a frequency scan. Prior to each frequency scan, photopolymerization was induced using a high power blue light emitted diode (LED). Due to the highly light dispersive nature of dental resins, the polymerization process depends strongly on optical absorption of the blue light, thereby inducing a depth dependent thermal diffusivity profile in the sample. A robust depth profilometric method for reconstructing the thermal diffusivity depth dependence on degree and depth of polymerization has been developed. The thermal diffusivity depth profile was linked to the polymerization kinetics.

  10. Quantitative property-structural relation modeling on polymeric dielectric materials

    NASA Astrophysics Data System (ADS)

    Wu, Ke

    Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix

  11. Primer vector theory and applications

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1975-01-01

    A method developed to compute two-body, optimal, N-impulse trajectories was presented. The necessary conditions established define the gradient structure of the primer vector and its derivative for any set of boundary conditions and any number of impulses. Inequality constraints, a conjugate gradient iterator technique, and the use of a penalty function were also discussed.

  12. Interframe vector wavelet coding technique

    NASA Astrophysics Data System (ADS)

    Wus, John P.; Li, Weiping

    1997-01-01

    Wavelet coding is often used to divide an image into multi- resolution wavelet coefficients which are quantized and coded. By 'vectorizing' scalar wavelet coding and combining this with vector quantization (VQ), vector wavelet coding (VWC) can be implemented. Using a finite number of states, finite-state vector quantization (FSVQ) takes advantage of the similarity between frames by incorporating memory into the video coding system. Lattice VQ eliminates the potential mismatch that could occur using pre-trained VQ codebooks. It also eliminates the need for codebook storage in the VQ process, thereby creating a more robust coding system. Therefore, by using the VWC coding method in conjunction with the FSVQ system and lattice VQ, the formulation of a high quality very low bit rate coding systems is proposed. A coding system using a simple FSVQ system where the current state is determined by the previous channel symbol only is developed. To achieve a higher degree of compression, a tree-like FSVQ system is implemented. The groupings are done in this tree-like structure from the lower subbands to the higher subbands in order to exploit the nature of subband analysis in terms of the parent-child relationship. Class A and Class B video sequences from the MPEG-IV testing evaluations are used in the evaluation of this coding method.

  13. [Vector control, perspectives and realities].

    PubMed

    Carnevale, P

    1995-01-01

    In the WHO Global Strategy for Malaria Control, selective and sustainable vector control is one of the measures to be implemented to complement case management and for the control of epidemics. Vector control can be targeted against larvae and adults, but two elements must be recognized: -vector control measures must be selected according to the existing eco-epidemiological diversity, which has to be well understood before embarking upon any extensive action; -efficient tools are currently available, both for large scale and household use. House spraying is still the method of choice for epidemic control but must be carefully considered and used selectively in endemic countries for various well known reasons. The promotion of personal protection measures for malaria prevention is advocated because insecticide-impregnated mosquito nets and other materials have proved to be effective in different situations. Implementation, sustainability and large scale use of impregnated nets implies a strong community participation supported by well motivated community health workers, the availability of suitable materials (insecticide, mosquito nets), intersectorial collaboration at all levels, well trained health workers from central to the most peripheral level and appropriate educational messages (Knowledge, Attitude and Practices) adapted and elaborated after surveys. It has to be kept in mind that the evaluation of the impact of vector control activities will be made in epidemiological terms such as the reduction of malaria morbidity and mortality.

  14. Hydrogen as an energy vector

    NASA Technical Reports Server (NTRS)

    Powers, W. D.

    1975-01-01

    The feasibility of utilizing hydrogen as an energy vector is considered, with special attention given to means of hydrogen production. The state-of-the-art in thermochemical processes is reviewed, and criteria for the technical and economic feasibility of large-scale thermochemical water splitting processes are presented. The production of hydrogen from coal and from photolysis of water is discussed.

  15. Transcriptomics and disease vector control.

    PubMed

    Vontas, John; Ranson, Hilary; Alphey, Luke

    2010-01-01

    Next-generation sequencing can be used to compare transcriptomes under different conditions. A study in BMC Genomics applies this approach to investigating the effects of exposure to a range of xenobiotics on changes in gene expression in the larvae of Aedes aegypti, the mosquito vector of dengue fever.

  16. Vector ecology of equine piroplasmosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Equine piroplasmosis (EP) is a disease of equidae including horses, donkeys, mules and zebras caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick-vectors and although they have inherent differences, they ...

  17. Portfolio Analysis for Vector Calculus

    ERIC Educational Resources Information Center

    Kaplan, Samuel R.

    2015-01-01

    Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…

  18. Spatial control of actin polymerization during neutrophil chemotaxis

    PubMed Central

    Weiner, Orion D.; Servant, Guy; Welch, Matthew D.; Mitchison, Timothy J.; Sedat, John W.; Bourne, Henry R.

    2010-01-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients. PMID:10559877

  19. Targeting intracellular compartments by magnetic polymeric nanoparticles.

    PubMed

    Kocbek, Petra; Kralj, Slavko; Kreft, Mateja Erdani; Kristl, Julijana

    2013-09-27

    Superparamagnetic iron oxide nanoparticles (SPIONs) show a great promise for a wide specter of bioapplications, due to their characteristic magnetic properties exhibited only in the presence of magnetic field. Their advantages in the fields of magnetic drug targeting and imaging are well established and their safety is assumed, since iron oxide nanoparticles have already been approved for in vivo application, however, according to many literature reports the bare metal oxide nanoparticles may cause toxic effects on treated cells. Therefore, it is reasonable to prevent the direct interactions between metal oxide core and surrounding environment. In the current research ricinoleic acid coated maghemite nanoparticles were successfully synthesized, characterized and incorporated in the polymeric matrix, resulting in nanosized magnetic polymeric particles. The carrier system was shown to exhibit superparamagnetic properties and was therefore responsive towards external magnetic field. Bioevaluation using T47-D breast cancer cells confirmed internalization of magnetic polymeric nanoparticles (MNPs) and their intracellular localization in various subcellular compartments, depending on presence/absence of external magnetic field. However, the number of internalized MNPs observed by fluorescent and transmission electron microscopy was relatively low, making such way of targeting effective only for delivery of highly potent drugs. The scanning electron microscopy of treated cells revealed that MNPs influenced the cell adhesion, when external magnetic field was applied, and that treatment resulted in damaged apical plasma membrane right after exposure to the magnetic carrier. On the other hand, MNPs showed only reversibly reduced cellular metabolic activity in concentrations up to 200 μg/ml and, in the tested concentration the cell cycle distribution was within the normal range, indicating safety of the established magnetic carrier system for the treated cells.

  20. Uptake of Nitroaromatic Compounds by Polymeric Tubing

    SciTech Connect

    BOUNKEUA, VIENGNGEUN; RODACY, PHILIP J.

    2001-04-01

    The type of polymeric material used in the manufacturing of tubing determines its strength, elasticity, and durability. Tubing made of polymeric material is commonly used for analytical work because it is readily available, inexpensive and can be relatively inert. Polymeric tubing is used in many sampling applications for explosive compounds. A major concern is the uptake of the explosive compounds into or onto the tubing during sampling. Because of the reactive nature of explosives, it is important that as little of the detectable explosive as possible is lost by tubing uptake. It is also important that nothing leaches out of the tubing to interfere with the detection of explosives. High Performance Liquid Chromatography (HPLC) is commonly used for the analysis of trace levels of explosive compounds in the range of parts per billion (ppb) to parts per million (ppm). This study attempts to determine which types of polymers are most conducive to sampling applications where large volumes of dilute explosive solutions are collected through a length of tubing for analysis. This was determined by analyzing the amount of explosive lost from solution per cm{sup 2} of tubing in solution. It was determined that tubing made of polyethylene, teflon, polypropylene, or KYNAR{reg_sign} is recommended for dilute trinitrotoluene (TNT) solution analyses. Tubing made of polypropylene, PHARMED{reg_sign}, KYNAR{reg_sign}, or polyethylene is recommended for analyses involving dilute explosive solutions of RDX. Tubing made from polyurethane, TYGON{reg_sign}, nylon, vinyl, gum rubber, or reinforced PVC are not recommended because they leach contaminants into solution that may interfere with HPLC analysis of explosive peaks.

  1. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  2. Diacetylene mixed Langmuir monolayers for interfacial polymerization.

    PubMed

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2015-05-19

    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  3. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  4. Space environmental effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1988-01-01

    Polymer-matrix composites have considerable potential for use in the construction of orbiting structures such as the space station and space antennas because of their light weight, high strength, and low thermal expansion. However, they can suffer surface erosion by interaction with atomic oxygen in low-Earth orbit and degradation and/or embrittlement by electrons and ultraviolet radiation especially in geosynchronous orbit. Thus, a study of the effect of these environmental hazards on polymeric materials is an important step in the assessment of such materials for future use in space.

  5. Novel hybrid polymeric materials for barrier coatings

    NASA Astrophysics Data System (ADS)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  6. Fiberoptic microphone using a polymeric cavity

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Soetanto, William; Gu, Kebin

    2011-04-01

    The fabrication and experimental investigation of a fiberoptic microphone is described. The sensing element is a silicon diaphragm with gold thin film coating that is positioned inside a silicone rubber mold at the end of a single mode optical fiber. Thus, a Fabry-Perot interferometer is formed between the inner fiber and the diaphragm. An acoustic pressure change is detected by using the developed microphone. The polymeric cavity and silicon diaphragm-based system exhibits excellent physicochemical properties with a small, simple, low cost, and lightweight design. The system is also electromagnetic interference / radio frequency interference immunity due to the use of fiberoptics.

  7. Polymeric precursors for fibers and matrices

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1992-01-01

    Candidate polymeric precursors for ceramic fiber and matrix processing are discussed, with a view to the advantages and disadvantages of this approach relative to existing alternatives. The properties of ceramic products thus derived are noted to strongly depend on the molecular weight and structure of the starting polymer; in particular, the ceramic's composition and morphology are dependent on the character and extent of crosslinking, as well as on the path of pyrolysis. While large and complex structural ceramic components may ultimately be obtainable by these means, the polymer-precursor method is still in its developmental infancy.

  8. Polymer microcantilevers fabricated via multiphoton absorption polymerization

    NASA Astrophysics Data System (ADS)

    Bayindir, Z.; Sun, Y.; Naughton, M. J.; LaFratta, C. N.; Baldacchini, T.; Fourkas, J. T.; Stewart, J.; Saleh, B. E. A.; Teich, M. C.

    2005-02-01

    We have used multiphoton absorption polymerization to fabricate a series of microscale polymer cantilevers. Atomic force microscopy has been used to characterize the mechanical properties of microcantilevers with spring constants that were found to span more than four decades. From these data, we extracted a Young's modulus of E =0.44GPa for these microscale cantilevers. The wide stiffness range and relatively low elastic modulus of the microstructures make them attractive candidates for a range of microcantilever applications, including measurements on soft matter.

  9. Polysaccharide-Modified Synthetic Polymeric Biomaterials

    PubMed Central

    Baldwin, Aaron D.; Kiick, Kristi L.

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  10. Frontal Polymerization in Microgravity Summary of Research

    NASA Technical Reports Server (NTRS)

    Pojman, John A.

    2002-01-01

    The project began with frontal polymerization (FP). We studied many aspects of FP on the ground and performed two successful weeks of flying on the KC-135. The project evolved into the current flight investigation, Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS), as we recognized that an essential question could best be studied using a non-frontal approach. We present detailed results from our ground-based work on FP, KC-135 results and the background, justification and numerical work for the TIPMPS project.

  11. Functional Lactide Monomers: Methodology and Polymerization

    PubMed Central

    Gerhardt, Warren W.; Noga, David E.; Hardcastle, Kenneth I.; García, Andrés J.; M. Collard, David; Weck, Marcus

    2008-01-01

    Side-chain functionalized lactide analogues have been synthesized from commercially available amino acids and polymerized using stannous octoate as a catalyst. The synthetic strategy presented allows for the incorporation of any protected amino acid for the preparation of functionalized diastereomerically pure lactide monomers. The resulting functionalized cyclic monomers can be homopolymerized, and copolymerized with lactides, then quantitatively deprotected forming new functional poly(lactide)-based materials. This strategy allows for the introduction of functional groups along a poly(lactide) (PLA) backbone that after deprotection can be viewed as chemical handles for further functionalization of PLA, yielding improved biomaterials for a variety of applications. PMID:16768392

  12. Polysaccharide-modified synthetic polymeric biomaterials.

    PubMed

    Baldwin, Aaron D; Kiick, Kristi L

    2010-01-01

    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. PMID:20091875

  13. Swelling of plasma-polymerized tetrafluoroethylene films

    SciTech Connect

    Butler, M.A.; Buss, R.J.; Seager, C.H. )

    1991-11-25

    Swelling of micrometer thick-films of plasma-polymerized tetrafluoroethylene has been measured for a range of solvents using an optical-interferometric technique. For low gas-phase concentrations of the solvent, the swelling is found to correlate with the ionization potential of the solvent. Photo-thermal deflection spectroscopy of the films shows optical absorption in the infrared, which changes with exposure to different solvents. Both of these results suggest weak electron transfer from the solvent to the polymer as the dominant interaction mechanism.

  14. Multiphoton polymerization using optical trap assisted nanopatterning

    NASA Astrophysics Data System (ADS)

    Leitz, Karl-Heinz; Tsai, Yu-Cheng; Flad, Florian; Schäffer, Eike; Quentin, Ulf; Alexeev, Ilya; Fardel, Romain; Arnold, Craig B.; Schmidt, Michael

    2013-06-01

    In this letter, we show the combination of multiphoton polymerization and optical trap assisted nanopatterning (OTAN) for the additive manufacturing of structures with nanometer resolution. User-defined patterns of polymer nanostructures are deposited on a glass substrate by a 3.5 μm polystyrene sphere focusing IR femtosecond laser pulses, showing minimum feature sizes of λ/10. Feature size depends on the applied laser fluence and the bead surface spacing. A finite element model describes the intensity enhancement in the microbead focus. The results presented suggest that OTAN in combination with multiphoton processing is a viable technique for additive nanomanufacturing with sub-diffraction-limited resolution.

  15. Diffusive transport in modern polymeric materials

    SciTech Connect

    Doering, C.; Bier, M.; Christodoulou, K.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymers, composites, and synthetic modern materials are replacing traditional materials in many older scientific, engineering, commercial, and military applications. This project sought to focus on the new polymeric materials, deriving and analyzing models that predict their seemingly mysterious transport properties. It sought to identify the dominant physical mechanisms and the pertinent dimensionless parameters, produce viable theoretical models, and devise asymptotic and numerical methods for use in specific problems.

  16. Polymeric micelles as carriers of diagnostic agents.

    PubMed

    Trubetskoy

    1999-04-01

    This review deals with diagnostic applications of polymeric micelles composed of amphiphilic block-copolymers. In aqueous solutions these polymers spontaneously form particles with diameter 20-100 nm. A variety of diagnostic moieties can be incorporated covalently or non-covalently into the particulates with high loads. Resulting particles can be used as particulate agents for diagnostic imaging using three major imaging modalities: gamma-scintigraphy, magnetic resonance imaging and computed tomography. The use of polyethyleneoxide-diacyllipid micelles loaded with chelated (111)In/Gd(3+) as well as iodine-containing amphiphilic copolymer in percutaneous lymphography and blood pool/liver imaging are discussed as specific examples.

  17. A polymeric flame retardant additive for rubbers

    SciTech Connect

    Ghosh, S.N.; Maiti, S.

    1993-12-31

    Synthesis of a polyphosphonate by the interfacial polymerization of bisphenol-A (BPA) and dichloro-phenyl phosphine oxide (DCPO) using cetyltrimethyl ammonium chloride (TMAC) as phase transfer catalyst (PTC) was reported. The polyphosphonate was characterized by elemental analysis, IR, TGA, DSC and 1H-NMR spectroscopy. The flame retardancy of the polymer was done by OI study. The polymer was used as a fire retardant additive to rubbers such as natural rubber (NR), styrene-butadiene rubber(SBR), nitrile rubber (NBR) and chloroprene rubber (CR). The efficiency of the fire retardant property of this additive was determined by LOI measurements of the various rubber samples.

  18. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  19. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  20. Sorption of organics from aqueous solution onto polymeric resins

    SciTech Connect

    Gusler, G.M.; Browne, T.E.; Cohen, Y. . Dept. of Chemical Engineering)

    1993-11-01

    The uptake of phenol, toluene, chlorobenzene, and benzoic acid by several polymeric resins and activated carbon was investigated experimentally. Presentation of the sorption data in terms of the number of sorbed monolayers and fractional pore volume filled indicated that, for the polymeric resins, solute uptake cannot be viewed as only a surface adsorption phenomenon. It is suggested that the aqueous phase uptake of phenol, toluene, chlorobenzene, and benzoic acid by the polymeric resins is attributable, in part, to solute absorption. The present study also suggests that solute uptake is affected by the swelling of some of the polymeric resins in water.

  1. Free Radical Polymerization of Styrene: A Radiotracer Experiment

    ERIC Educational Resources Information Center

    Mazza, R. J.

    1975-01-01

    Describes an experiment designed to acquaint the chemistry student with polymerization reactions, vacuum techniques, liquid scintillation counting, gas-liquid chromatography, and the handling of radioactive materials. (MLH)

  2. Nanostructured polymeric systems as nanoreactors for nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Bronstein, Lyudmila M.; Sidorov, Stanislav N.; Valetsky, Petr M.

    2004-05-01

    The review concerns the syntheses of polymeric nanocomposites containing encapsulated nanoparticles formed in nanostructured polymeric systems including block copolymers, dendrimers, nanoporous polymers, polyelectrolyte gel-surfactant complexes and multilayered films. Nanostructures in amphiphilic block copolymers can form spontaneously both in the bulk (block microsegregation) and in solution (block copolymer micelle). In polymeric systems, nanostructures play the role of nanoreactors for the growing nanoparticles. The nanoparticle size, shape and size distribution are controlled by the nanostructure characteristics and synthesis conditions. The catalytic, magnetic and optical properties of these nanostructured polymeric nanocomposites are discussed.

  3. Interfacial polymerization of conductive polymers: Generation of polymeric nanostructures in a 2-D space.

    PubMed

    Dallas, Panagiotis; Georgakilas, Vasilios

    2015-10-01

    In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented. PMID:26272721

  4. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro; Sato, Nobuhiro; Matsuyama, Tomochika

    2011-08-01

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through γ-ray-induced graft polymerization were investigated with 1H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of 1H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of γ-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  5. Interfacial polymerization of conductive polymers: Generation of polymeric nanostructures in a 2-D space.

    PubMed

    Dallas, Panagiotis; Georgakilas, Vasilios

    2015-10-01

    In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented.

  6. Present status of vectorized Monte Carlo

    SciTech Connect

    Brown, F.B.

    1987-01-01

    Monte Carlo applications have traditionally been limited by the large amounts of computer time required to produce acceptably small statistical uncertainties, so the immediate benefit of vectorization is an increase in either the number of jobs completed or the number of particles processed per job, typically by one order of magnitude or more. This results directly in improved engineering design analyses, since Monte Carlo methods are used as standards for correcting more approximate methods. The relatively small number of vectorized programs is a consequence of the newness of vectorized Monte Carlo, the difficulties of nonportability, and the very large development effort required to rewrite or restructure Monte Carlo codes for vectorization. Based on the successful efforts to date, it may be concluded that Monte Carlo vectorization will spread to increasing numbers of codes and applications. The possibility of multitasking provides even further motivation for vectorizing Monte Carlo, since the step from vector to multitasked vector is relatively straightforward.

  7. Symbolic Vector Analysis in Plasma Physics

    SciTech Connect

    Qin, H.; Rewoldt, G.; Tang, W.M.

    1997-10-01

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  8. Symbolic Vector Analysis in Plasma Physics

    SciTech Connect

    Qin, H.; Tang, W.M.; Rewoldt, G.

    1997-10-09

    Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, General Vector Analysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.

  9. Advances in lentiviral vectors: a patent review.

    PubMed

    Picanco-Castro, Virginia; de Sousa Russo-Carbolante, Elisa Maria; Tadeu Covas, Dimas

    2012-08-01

    Lentiviral vectors are at the forefront of gene delivery systems for research and clinical applications. These vectors have the ability to efficiently transduce nondividing and dividing cells, to insert large genetic segment in the host chromatin, and to sustain stable long-term transgene expression. Most of lentiviral vectors systems in use are derived from HIV-1. Numerous modifications in the basic HIV structure have been made to ensure safety and to promote efficiency to vectors. Lentiviral vectors can be pseudotyped with distinct viral envelopes that influence vector tropism and transduction efficiency. Moreover, these vectors can be used to reprogram cells and generate induced pluripotent stem cells. This review aims to show the patents that resulted in improved safety and efficacy of lentiviral vector with important implications for clinical trials.

  10. Space environmental effects on polymeric materials

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Orwoll, Robert A.

    1988-01-01

    Two of the major environmental hazards in the Geosynchronous Earth Orbit (GEO) are energetic charged particles and ultraviolet radiation. The charged particles, electrons and protons, range in energy from 0.1 to 4 MeV and each have a flux of 10 to the 8th sq cm/sec. Over a 30 year lifetime, materials in the GEO will have an absorbed dose from this radiation of 10 to the 10th rads. The ultraviolet radiation comes uninhibited from the sun with an irradiance of 1.4 kw/sq m. Radiation is known to initiate chain sission and crosslinking in polymeric materials, both of which affect their structural properties. The 30-year dose level from the combined radiation in the GEO exceeds the threshold for measurable damage in most polymer systems studied. Of further concern is possible synergistic effects from the simultaneous irradiation with charged particles and ultraviolet radiation. Most studies on radiation effects on polymeric materials use either electrons or ultraviolet radiation alone, or in a sequential combination.

  11. Impact of Carbon Nanomaterials on Actin Polymerization.

    PubMed

    Dong, Ying; Sun, Haiyan; Li, Xu; Li, Xin; Zhao, Lina

    2016-03-01

    Many nanomaterials have entered people's daily lives and impact the normal process of biological entities consequently. As one kind of the important nanomaterials, carbon based nanomaterials have invoked a lot of concerns from scientific researches because of their unique physicochemical properties. In eukaryotes, actin is the most abundantly distributed protein in both cytoplasm and cell nucleus, and closely controls the cell proliferation and mobility. Recently, many investigations have found some carbon based nanomaterials can affect actin cytoskeleton remarkably, including fullerenes derivatives, carbon nanotubes, graphene and its derivatives. However, these interaction processes are complicated and the underlying mechanism is far from being understood clearly. In this review, we discussed the different mechanisms of carbon nanomaterials impact on actin polymerization into three pathways, as triggering the signaling pathways from carbon nanomaterials outside of cells, increasing the production of reactive oxygen species from carbon nanomaterials inside of cells and direct interaction from carbon nanomaterials inside of cells. As a result, the dimension and size of carbon nanomaterials play a key role in regulation of actin cytoskeleton. Furthermore, we forecasted the possible investigation strategy for meeting the challenges of the future study on this topic. We hope the findings are helpful in understanding the molecular mechanism in carbon nanomaterials regulating actin polymerization, and provide new insight in novel nanomedicine development for inhibition tumor cell migration. PMID:27455649

  12. Predicting polymeric crystal structures by evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

    2014-10-01

    The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

  13. Stochastic model of profilin-actin polymerization

    NASA Astrophysics Data System (ADS)

    Horan, Brandon; Vavylonis, Dimitrios

    A driving factor in cell motility and other processes that involve changes of cell shape is the rapid polymerization of actin subunits into long filaments. This process is regulated by profilin, a protein which binds to actin subunits and regulates elongation of actin filaments. Whether profilin stimulates polymerization by coupling to hydrolysis of ATP-bound actin is debated. Previous studies have proposed indirect coupling to ATP hydrolysis using rate equations, but did not include the effects of fluctuations that are important near the critical concentration. We developed stochastic simulations using the Gillespie algorithm to study single filament elongation at the barbed end in the presence of profilin. We used recently measured rate constants and estimated the rate of profilin binding to the barbed end such that detailed balance is satisfied. Fast phosphate release at the tip of the filament was accounted for. The elongation rate and length diffusivity as functions of profilin and actin concentration were calculated and used to extract the critical concentrations of free actin and of total actin. We show under what conditions profilin leads to an increase in the critical concentration of total actin but a decrease in the critical concentration of free actin.

  14. Protein encapsulation in polymeric microneedles by photolithography

    PubMed Central

    Kochhar, Jaspreet Singh; Zou, Shui; Chan, Sui Yung; Kang, Lifeng

    2012-01-01

    Background Recent interest in biocompatible polymeric microneedles for the delivery of biomolecules has propelled considerable interest in fabrication of microneedles. It is important that the fabrication process is feasible for drug encapsulation and compatible with the stability of the drug in question. Moreover, drug encapsulation may offer the advantage of higher drug loading compared with other technologies, such as drug coating. Methods and results In this study, we encapsulated a model protein drug, namely, bovine serum albumin, in polymeric microneedles by photolithography. Drug distribution within the microneedle array was found to be uniform. The encapsulated protein retained its primary, secondary, and tertiary structural characteristics. In vitro release of the encapsulated protein showed that almost all of the drug was released into phosphate buffered saline within 6 hours. The in vitro permeation profile of encapsulated bovine serum albumin through rat skin was also tested and shown to resemble the in vitro release profile, with an initial release burst followed by a slow release phase. The cytotoxicity of the microneedles without bovine serum albumin was tested in three different cell lines. High cell viabilities were observed, demonstrating the innocuous nature of the microneedles. Conclusion The microneedle array can potentially serve as a useful drug carrier for proteins, peptides, and vaccines. PMID:22787403

  15. Strong liquid-crystalline polymeric compositions

    DOEpatents

    Dowell, Flonnie

    1993-01-01

    Strong liquid-crystalline polymeric (LCP) compositions of matter. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment.

  16. Strong liquid-crystalline polymeric compositions

    DOEpatents

    Dowell, F.

    1993-12-07

    Strong liquid-crystalline polymeric (LCP) compositions of matter are described. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment. 27 figures.

  17. Metallophilic interactions in polymeric group 11 thiols

    NASA Astrophysics Data System (ADS)

    Kolari, Kalle; Sahamies, Joona; Kalenius, Elina; Novikov, Alexander S.; Kukushkin, Vadim Yu.; Haukka, Matti

    2016-10-01

    Three polymeric group 11 transition metal polymers featuring metallophilic interactions were obtained directly via self-assembly of metal ions and 4-pyridinethiol ligands. In the cationic [Cu2(S-pyH)4]n2+ with [ZnCl4]n2- counterion (1) and in the neutral [Ag(S-py) (S-pyH)]n (2) 4-pyridinethiol (S-pyH) and its deprotonated form (S-py) are coordinated through the sulfur atom. Both ligands are acting as bridging ligands linking the metal centers together. In the solid state, the gold(I) polymer [Au(S-pyH)2]Cl (3) consists of the repeating cationic [Au(S-pyH)2]+ units held together by aurophilic interactions. Compound 1 is a zig-zag chain, whereas the metal chains in the structures of 2 and 3 are linear. The protonation level of the thiol ligand had an impact on the crystallization of polymers. Both nature of the metal center and reaction conditions affected the polymerization. QTAIM analysis confirmed direct metal-metal contacts only in polymers 1 and 3. In polymer 2, no theoretical evidence of argentophilic contacts was obtained even though the AgṡṡṡAg distance was found to be less than sum of the Bondi's van der Waals radius of silver.

  18. Sulfonated Polymerized Ionic Liquid Block Copolymers.

    PubMed

    Meek, Kelly M; Elabd, Yossef A

    2016-07-01

    The successful synthesis of a new diblock copolymer, referred to as sulfonated polymerized ionic liquid (PIL) block copolymer, poly(SS-Li-b-AEBIm-TFSI), is reported, which contains both sulfonated blocks (sulfonated styrene: SS) and PIL blocks (1-[(2-acryloyloxy)ethyl]-3-butylimidazolium: AEBIm) with both mobile cations (lithium: Li(+) ) and mobile anions (bis(trifluoromethylsulfonyl)imide: TFSI(-) ). Synthesis consists of polymerization via reversible addition-fragmentation chain transfer, followed by post-functionalization reactions to covalently attach the imidazolium cations and sulfonic acid anions to their respective blocks, followed by ion exchange metathesis resulting in mobile Li(+) cations and mobile TFSI(-) anions. Solid-state films containing 1 m Li-TFSI salt dissolved in ionic liquid result in an ion conductivity of >1.5 mS cm(-1) at 70 °C, where small-angle X-ray scattering data indicate a weakly ordered microphase-separated morphology. These results demonstrate a new ion-conducting block copolymer containing both mobile cations and mobile anions. PMID:27125600

  19. Metastable Polymerization of Sickle Hemoglobin in Droplets

    PubMed Central

    Aprelev, Alexey; Weng, Weijun; Zakharov, Mikhail; Rotter, Maria; Yosmanovich, Donna; Kwong, Suzanna; Briehl, Robin W.; Ferrone, Frank A.

    2007-01-01

    Sickle cell disease arises from a genetic mutation of one amino acid in each of the two hemoglobin β chains, leading to the polymerization of hemoglobin in the red cell upon deoxygenation, and is characterized by vascular crises and tissue damage due to the obstruction of small vessels by sickled cells. It has been an untested assumption that, in red cells that sickle, the growing polymer mass would consume monomers until the thermodynamically well-described monomer solubility was reached. By photolyzing droplets of sickle hemoglobin suspended in oil we find that polymerization does not exhaust the available store of monomers, but stops prematurely, leaving the solutions in a supersaturated, metastable state typically 20% above solubility at 37°C, though the particular values depend on the details of the experiment. We propose that polymer growth stops because the growing ends reach the droplet edge, whereas new polymer formation is thwarted by long nucleation times, since the hemoglobin concentration is lowered by depletion of monomers into the polymers that have formed. This finding suggests a new aspect to the pathophysiology of sickle cell disease, namely, that cells deoxygenated in the microcirculation are not merely undeformable, but will actively wedge themselves tightly against the walls of the microvasculature by a ratchet-like mechanism driven by the supersaturated solution. PMID:17493634

  20. Effect of primers on bonding agent polymerization.

    PubMed

    Hotta, M; Kondoh, K; Kamemizu, H

    1998-10-01

    The aim of the present study was to evaluate the effect of primers on the polymerization of bonding agent. We measured the degree of conversion (radical production) and mechanical properties (surface hardness and direct tensile strength) of various adhesives/primers mixed at different ratios and the effect of varying the visible-light curing time. With and without primer treatment, the tensile bond strength of adhesive resin to micacious glass ceramic and human enamel was measured. After the tensile bond test, using the Image Capture System, the failure patterns of adhesive resin bonded to micacious glass-ceramic were analysed. The results show that the mixtures containing the higher amounts of primer yielded a lower degree of conversion and inferior mechanical properties when compared with the mixtures containing a lower proportion of primer, except in the experimental bonding system. The adhesive/primer mixtures inhibited free radical polymerization. The value for the Knoop hardness number and the direct tensile strength of the adhesive/primer mixtures were significantly decreased compared with those of the adhesive bonding agent alone with no primer added. The tensile bond strength of adhesive resin bonded to micacious glass-ceramic or human enamel without primer treatment was significantly greater than that of adhesive resin with primer treatment in certain cases. Most of the fractures of ceramic surfaces were cohesive (within resins) and/or interface (at the ceramic surface) failure.