Sample records for nanoparticulate ptru direct

  1. Ni2P Makes Application of the PtRu Catalyst Much Stronger in Direct Methanol Fuel Cells.

    PubMed

    Chang, Jinfa; Feng, Ligang; Liu, Changpeng; Xing, Wei

    2015-10-12

    PtRu is regarded as the best catalyst for direct methanol fuel cells, but the performance decay resulting from the loss of Ru seriously hinders commercial applications. Herein, we demonstrated that the presence of Ni2 P largely reduces Ru loss, which thus makes the application of PtRu much stronger in direct methanol fuel cells. Outstanding catalytic activity and stability were observed by cyclic voltammetry. Upon integrating the catalyst material into a practical direct methanol fuel cell, the highest maximum power density was achieved on the PtRu-Ni2P/C catalyst among the reference catalysts at different temperatures. A maximum power density of 69.9 mW cm(-2) at 30 °C was obtained on PtRu-Ni2P/C, which is even higher than the power density of the state-of-the-art commercial PtRu catalyst at 70 °C (63.1 mW cm(-2)). Moreover, decay in the performance resulting from Ru loss was greatly reduced owing to the presence of Ni2 P, which is indicative of very promising applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    NASA Astrophysics Data System (ADS)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  3. Facile and one-pot synthesis of uniform PtRu nanoparticles on polydopamine-modified multiwalled carbon nanotubes for direct methanol fuel cell application.

    PubMed

    Chen, Fengxia; Ren, Junkai; He, Qian; Liu, Jun; Song, Rui

    2017-07-01

    A facile, environment-friendly and one-pot synthesis method for the preparation of high performance PtRu electrocatalysts on the multiwalled carbon nanotubes (MWCNTs) is reported. Herein, bimetallic PtRu electrocatalysts are deposited onto polydopamine (Pdop) - functionalized MWCNTs by mildly stirring at room temperature. Without the use of expensive chemicals or corrosive acids, this noncovalent functionalization of MWCNTs by Pdop is simple, facile and eco-friendly, and thus preserving the integrity and electronic structure of MWCNTs. Due to the well improved dispersion and the decreased size of alloy nanoparticles, the PtRu electrocatalysts on Pdop-functionalized MWCNTs show much better dispersion, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells, compared with the conventional acid-treated MWCNTs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    PubMed

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  5. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    NASA Astrophysics Data System (ADS)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  6. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    PubMed

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  7. Comparative cytotoxicity assessments of some manufactured and anthropogenic nanoparticulate materials

    NASA Astrophysics Data System (ADS)

    Soto, Karla Fabiola

    toxicity evaluation, cytokine production, mitochondrial function (MTT assay), reactive oxygen species generation (ROS), were assessed after 48 and 336 hours under control and exposed conditions. A simple, direct-contact assay was developed to evaluate the toxicity of anthropogenic particulate matter (PM), without removing it from high volume filter collections and exposing collected PM by direct contact with the human epithelial (A549) cells in culture. The cell viability data revealed that the manufactured nanomaterials exhibit cytotoxic response for the murine alveolar and human macrophage cell line, but in particular to the human epithelial cell line. Assay results for the direct-contact of filter-collected carbonaceous nanoparticulate, showed toxicity for all PM, but with various natural gas combustion PM being the most toxic. Light optical microscopy examination of affected human epithelial cells confirmed quantitative results. These nanoparticulate soots also produced the most reactive oxygen species (ROS) on the A549 cell culture as well as along with the Fe2O3, MWCNT-N, and black carbon (BC). Comparison of polycyclic aromatic hydrocarbon (PAH) content and concentration for the carbonaceous PM showed no PAH correlation with relative cell viability after 48 h. In addition, there was no correlation of cytotoxic response with specific surface area in the manufactured nanoparticulate materials. In conclusion, the manufactured as well as the anthropogenic nanomaterials were observed to generate large amounts of ROS and cytokines. This study suggests that the mechanism of toxicity is likely due to the generation of reactive oxygen species (ROS). Also, the comparative assessments presented, should be viewed as a precaution when considering the inhalation of the corresponding nanoparticulate materials in concentrations approaching those identified to be dangerous for recognized pathogens such as silica, black carbon, and asbestos. Humans should avoid breathing these

  8. Pt and PtRu catalyst bilayers increase efficiencies for ethanol oxidation in proton exchange membrane electrolysis and fuel cells

    NASA Astrophysics Data System (ADS)

    Altarawneh, Rakan M.; Pickup, Peter G.

    2017-10-01

    Polarization curves, product distributions, and reaction stoichiometries have been measured for the oxidation of ethanol at anodes consisting of Pt and PtRu bilayers and a homogeneous mixture of the two catalysts. These anode structures all show synergies between the two catalysts that can be attributed to the oxidation of acetaldehyde produced at the PtRu catalyst by the Pt catalyst. The use of a PtRu layer over a Pt layer produces the strongest effect, with higher currents than a Pt on PtRu bilayer, mixed layer, or either catalyst alone, except for Pt at high potentials. Reaction stoichiometries (average number of electrons transferred per ethanol molecule) were closer to the values for Pt alone for both of the bilayer configurations but much lower for PtRu and mixed anodes. Although Pt alone would provide the highest overall fuel cell efficiency at low power densities, the PtRu on Pt bilayer would provide higher power densities without a significant loss of efficiency. The origin of the synergy between the Pt and PtRu catalysts was elucidated by separation of the total current into the individual components for generation of carbon dioxide and the acetaldehyde and acetic acid byproducts.

  9. Effect of the structural characteristics of binary Pt-Ru and ternary Pt-Ru-M fuel cell catalysts on the activity of ethanol electrooxidation in acid medium.

    PubMed

    Antolini, Ermete

    2013-06-01

    In view of their possible use as anode materials in acid direct ethanol fuel cells, the electrocatalytic activity of Pt-Ru and Pt-Ru-M catalysts for ethanol oxidation has been investigated. This minireview examines the effects of the structural characteristics of Pt-Ru, such as the degree of alloying and Ru oxidation state, on the electrocatalytic activity for ethanol oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Particle size dependence of CO tolerance of anode PtRu catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Takeguchi, Tatsuya; Wang, Guoxiong; Muhamad, Ernee Noryana; Ueda, Wataru

    An anode catalyst for a polymer electrolyte fuel cell must be CO-tolerant, that is, it must have the function of hydrogen oxidation in the presence of CO, because hydrogen fuel gas generated by the steam reforming process of natural gas contains a small amount of CO. In the present study, PtRu/C catalysts were prepared with control of the degree of Pt-Ru alloying and the size of PtRu particles. This control has become possible by a new method of heat treatment at the final step in the preparation of catalysts. The CO tolerances of PtRu/C catalysts with the same degree of Pt-Ru alloying and with different average sizes of PtRu particles were thus compared. Polarization curves were obtained with pure H 2 and CO/H 2 (CO concentrations of 500-2040 ppm). It was found that the CO tolerance of highly dispersed PtRu/C (high dispersion (HD)) with small PtRu particles was much higher than that of poorly dispersed PtRu/C (low dispersion (LD)) with large metal particles. The CO tolerance of PtRu/C (HD) was higher than that of any commercial PtRu/C. The high CO tolerance of PtRu/C (HD) is thought to be due to efficient concerted functions of Pt, Ru, and their alloy.

  11. Electrochemical oxidation of hydrolyzed poly oxymethylene-dimethyl ether by PtRu catalysts on Nb-doped SnO(2-δ) supports for direct oxidation fuel cells.

    PubMed

    Kakinuma, Katsuyoshi; Kim, In-Tae; Senoo, Yuichi; Yano, Hiroshi; Watanabe, Masahiro; Uchida, Makoto

    2014-12-24

    We synthesized Pt and PtRu catalysts supported on Nb-doped SnO(2-δ) (Pt/Sn0.99Nb0.01O(2-δ), PtRu/Sn0.99Nb0.01O(2-δ)) for direct oxidation fuel cells (DOFCs) using poly oxymethylene-dimethyl ether (POMMn, n = 2, 3) as a fuel. The onset potential for the oxidation of simulated fuels of POMMn (methanol-formaldehyde mixtures; n = 2, 3) for Pt/Sn0.99Nb0.01O(2-δ) and PtRu/Sn0.99Nb0.01O(2-δ) was less than 0.3 V vs RHE, which was much lower than those of two commercial catalysts (PtRu black and Pt2Ru3/carbon black). In particular, the onset potential of the oxidation reaction of simulated fuels of POMMn (n = 2, 3) for PtRu/Sn0.99Nb0.01O(2-δ) sintered at 800 °C in nitrogen atmosphere was less than 0.1 V vs RHE and is thus considered to be a promising anode catalyst for DOFCs. The mass activity (MA) of PtRu/Sn0.99Nb0.01O(2-δ) sintered at 800 °C was more than five times larger than those of the commercial catalysts in the measurement temperature range from 25 to 80 °C. Even though the MA for the methanol oxidation reaction was of the same order as those of the commercial catalysts, the MA for the formaldehyde oxidation reaction was more than five times larger than those of the commercial catalysts. Sn from the Sn0.99Nb0.01O(2-δ) support was found to have diffused into the Pt catalyst during the sintering process. The Sn on the top surface of the Pt catalyst accelerated the oxidation of carbon monoxide by a bifunctional mechanism, similar to that for Pt-Ru catalysts.

  12. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.

    PubMed

    La-Torre-Riveros, Lyda; Guzman-Blas, Rolando; Méndez-Torres, Adrián E; Prelas, Mark; Tryk, Donald A; Cabrera, Carlos R

    2012-02-01

    Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.

  13. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong; Zhang, Liang; Jin, Haibo; Agathopoulos, Simeon

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5 M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte.

  14. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    NASA Astrophysics Data System (ADS)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  15. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation

    PubMed Central

    Mills, Nicholas L.; Miller, Mark R.; Lucking, Andrew J.; Beveridge, Jon; Flint, Laura; Boere, A. John F.; Fokkens, Paul H.; Boon, Nicholas A.; Sandstrom, Thomas; Blomberg, Anders; Duffin, Rodger; Donaldson, Ken; Hadoke, Patrick W.F.; Cassee, Flemming R.; Newby, David E.

    2011-01-01

    Aim Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution. Methods and results To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study. Following each exposure, forearm blood flow was measured during intra-brachial bradykinin, acetylcholine, sodium nitroprusside, and verapamil infusions. Compared with filtered air, inhalation of diesel exhaust increased systolic blood pressure (145 ± 4 vs. 133 ± 3 mmHg, P< 0.05) and attenuated vasodilatation to bradykinin (P= 0.005), acetylcholine (P= 0.008), and sodium nitroprusside (P< 0.001). Exposure to pure carbon nanoparticulate or filtered exhaust had no effect on endothelium-dependent or -independent vasodilatation. To determine the direct vascular effects of nanoparticulate, isolated rat aortic rings (n= 6–9 per group) were assessed in vitro by wire myography and exposed to diesel exhaust particulate, pure carbon nanoparticulate and vehicle. Compared with vehicle, diesel exhaust particulate (but not pure carbon nanoparticulate) attenuated both acetylcholine (P< 0.001) and sodium-nitroprusside (P= 0.019)-induced vasorelaxation. These effects were partially attributable to both soluble and insoluble components of the particulate. Conclusion Combustion-derived nanoparticulate appears to predominately mediate the adverse vascular effects of diesel exhaust inhalation. This provides a rationale for testing environmental health interventions targeted at reducing traffic-derived particulate emissions. PMID:21753226

  16. Concepts and practices used to develop functional PLGA-based nanoparticulate systems.

    PubMed

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell-type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner.

  17. Concepts and practices used to develop functional PLGA-based nanoparticulate systems

    PubMed Central

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner. PMID:23459088

  18. Dielectrophoretic Isolation and Detection of cfc-DNA Nanoparticulate Biomarkers and Virus from Blood

    PubMed Central

    Sonnenberg, Avery; Marciniak, Jennifer Y.; McCanna, James; Krishnan, Rajaram; Rassenti, Laura; Kipps, Thomas J.; Heller, Michael J.

    2015-01-01

    Dielectrophoretic (DEP) microarray devices allow important cellular nanoparticulate biomarkers and virus to be rapidly isolated, concentrated and detected directly from clinical and biological samples. A variety of sub-micron nanoparticulate entities including cell free circulating (cfc) DNA, mitochondria and virus can be isolated into DEP high-field areas on microelectrodes, while blood cells and other micron-size entities become isolated into DEP low-field areas between the microelectrodes. The nanoparticulate entities are held in the DEP high-field areas while cells are washed away along with proteins and other small molecules which are not affected by the DEP electric fields. DEP carried out on 20 µL of whole blood obtained from Chronic Lymphocytic Leukemia (CLL) patients showed a considerable amount of SYBR Green stained DNA fluorescent material concentrated in the DEP high-field regions. Whole blood obtained from healthy individuals showed little or no fluorescent DNA materials in the DEP high-field regions. Fluorescent T7 bacteriophage virus could be isolated directly from blood samples, and fluorescently stained mitochondria could be isolated from biological buffer samples. Using newer DEP microarray devices, high molecular weight (hmw) DNA could be isolated from serum and detected at levels as low as 8–16 ng/mL. PMID:23436471

  19. CO2 electroreduction characteristics of Pt-Ru/C powder and Pt-Ru sputtered electrodes under acidic condition

    NASA Astrophysics Data System (ADS)

    Furukawa, Hiroto; Matsuda, Shofu; Tanaka, Shoji; Shironita, Sayoko; Umeda, Minoru

    2018-03-01

    The objective of this study was to overcome the issue about the underpotential adsorption of the CO2 electroreductant on the surface of the Pt electrocatalyst under acidic conditions by the alloying of Pt and Ru. As evaluation parameters, the CO2 reduction onset potential and CO2-reductant reoxidation onset potential were employed. We prepared a porous microelectrode filled with Pt-Ru/C powder and a Pt-Ru sputtered electrode. For the Pt-Ru/C powder electrocatalyst, the CO2 reduction onset potential as well as the CO2-reductant reoxidation onset potential shifted in the direction of the CO2/CO2-reductant standard redox potential dependent on the Ru content, which is indicative of a decrease in the underpotential-adsorption energy of the CO2 reductant. For the Pt-Ru sputtered electrode, only the CO2 reduction onset potential shifted in the direction of the redox potential. Consequently, we demonstrated that the Pt-Ru/C powder electrode improved the reactivity of the CO2/CO2-reductant when discussing the relationship between the CO2 reduction onset potential and the CO2-reductant reoxidation onset potential. Based on our findings, the Pt-Ru/C (1:9) powder is the most effective electrocatalyst for the CO2 reduction, which could minimize the underpotential adsorption.

  20. Bioinspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair.

    PubMed

    Lee, Yuhan; Xu, Chenjie; Sebastin, Monisha; Lee, Albert; Holwell, Nathan; Xu, Calvin; Miranda Nieves, David; Mu, Luye; Langer, Robert S; Lin, Charles; Karp, Jeffrey M

    2015-11-18

    Delivery of tissue glues through small-bore needles or trocars is critical for sealing holes, affixing medical devices, or attaching tissues together during minimally invasive surgeries. Inspired by the granule-packaged glue delivery system of sandcastle worms, a nanoparticulate formulation of a viscous hydrophobic light-activated adhesive based on poly(glycerol sebacate)-acrylate is developed. Negatively charged alginate is used to stabilize the nanoparticulate surface to significantly reduce its viscosity and to maximize injectability through small-bore needles. The nanoparticulate glues can be concentrated to ≈30 w/v% dispersions in water that remain localized following injection. With the trigger of a positively charged polymer (e.g., protamine), the nanoparticulate glues can quickly assemble into a viscous glue that exhibits rheological, mechanical, and adhesive properties resembling the native poly(glycerol sebacate)-acrylate based glues. This platform should be useful to enable the delivery of viscous glues to augment or replace sutures and staples during minimally invasive procedures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bio-inspired Nanoparticulate Medical Glues for Minimally Invasive Tissue Repair

    PubMed Central

    Lee, Yuhan; Xu, Chenjie; Sebastin, Monisha; Lee, Albert; Holwell, Nathan; Xu, Calvin; Miranda-Nieves, David; Mu, Luye; Lin, Charles

    2015-01-01

    Delivery of tissue glues through small-bore needles or trocars is critical for sealing holes, affixing medical devices, or attaching tissues together during minimally invasive surgeries. Inspired by the granule-packaged glue delivery system of sandcastle worms, we have developed a nanoparticulate formulation of a viscous hydrophobic light-activated adhesive based on poly(glycerol sebacate)-acrylate. Negatively charged alginate was used to stabilize the nanoparticulate surface to significantly reduce its viscosity and to maximize injectability through small-bore needles. The nanoparticulate glues can be concentrated to ~30w/v% dispersions in water that remain localized following injection. With the trigger of a positively charged polymer (e.g., protamine), the nanoparticulate glues can quickly assemble into a viscous glue that exhibits rheological, mechanical and adhesive properties resembling the native poly(glycerol sebacate)-acrylate based glues. This platform should be useful to enable the delivery of viscous glues to augment or replace sutures and staples during minimally invasive procedures. PMID:26227833

  2. Modeles numeriques de la stimulation optique de neurones assistee par nanoparticules plasmoniques

    NASA Astrophysics Data System (ADS)

    Le Hir, Nicolas

    La stimulation de neurones par laser emerge depuis plusieurs annees comme une alternative aux techniques plus traditionnelles de stimulation artificielle. Contrairement a celles-ci, la stimulation lumineuse ne necessite pas d'interagir directement avec le tissu organique, comme c'est le cas pour une stimulation par electrodes, et ne necessite pas de manipulation genetique comme c'est le cas pour les methodes optogenetiques. Plus recemment, la stimulation lumineuse de neurones assistee par nanoparticules a emerge comme un complement a la stimulation simplement lumineuse. L'utilisation de nanoparticules complementaires permet d'augmenter la precision spatiale du procede et de diminuer la fluence necessaire pour observer le phenomene. Ceci vient des proprietes d'interaction entre les nanoparticules et le faisceau laser, comme par exemple les proprietes d'absorption des nanoparticules. Deux phenomenes princpaux sont observes. Dans certains cas, il s'agit d'une depolarisation de la membrane, ou d'un potentiel d'action. Dans d'autres experiences, un influx de calcium vers l'interieur du neurone est detecte par une augmentation de la fluorescence d'une proteine sensible a la concentration calcique. Certaines stimulations sont globales, c'est a dire qu'une perturbation se propage a l'ensemble du neurone : c'est le cas d'un potentiel d'action. D'autres sont, au contraire, locales et ne se propagent pas a l'ensemble de la cellule. Si une stimulation lumineuse globale est rendue possible par des techniques relativement bien maitrisees a l'heure actuelle, comme l'optogenetique, une stimulation uniquement locale est plus difficile a realiser. Or, il semblerait que les methodes de stimulation lumineuse assistees par nanoparticules puissent, dans certaines conditions, offrir cette possibilite. Cela serait d'une grande aide pour conduire de nouvelles etudes sur le fonctionnement des neurones, en offrant de nouvelles possibilites experimentales en complement des possibilites

  3. Vapor Synthesis and Thermal Modification of Supportless Platinum–Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    DOE PAGES

    Atkinson III, Robert W.; Unocic, Raymond R.; Unocic, Kinga A.; ...

    2015-04-23

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relativelymore » high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.« less

  4. Multifunctional nanoparticulate polyelectrolyte complexes.

    PubMed

    Hartig, Sean M; Greene, Rachel R; DasGupta, Jayasri; Carlesso, Gianluca; Dikov, Mikhail M; Prokop, Ales; Davidson, Jeffrey M

    2007-12-01

    Water-soluble, biodegradable, polymeric, polyelectrolyte complex dispersions (PECs) have evolved because of the limitations, in terms of toxicity, of the currently available systems. These aqueous nanoparticulate architectures offer a significant advantage for products that may be used as drug delivery systems in humans. PECs are created by mixing oppositely charged polyions. Their hydrodynamic diameter, surface charge, and polydispersity are highly dependent on concentration, ionic strength, pH, and molecular parameters of the polymers that are used. In particular, the complexation between polyelectrolytes with significantly different molecular weights leads to the formation of water-insoluble aggregates. Several PEC characteristics are favorable for cellular uptake and colloidal stability, including hydrodynamic diameter less than 200 nm, surface charge of >30 mV or <-30 mV, spherical morphology, and polydispersity index (PDI) indicative of a homogeneous distribution. Maintenance of these properties is critical for a successful delivery vehicle. This review focuses on the development and potential applications of PECs as multi-functional, site-specific nanoparticulate drug/gene delivery and imaging devices.

  5. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.

    PubMed

    Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu

    2011-01-01

    Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.

  6. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction

    DOE PAGES

    Jung, Suho; McCrory, Charles C. L.; Ferrer, Ivonne M.; ...

    2016-11-27

    Nanoparticulate metal-oxide catalysts are among the most prevalent systems for alkaline water oxidation. However, comparisons of the electrochemical performance of these materials have been challenging due to the different methods of attachment, catalyst loadings, and electrochemical test conditions reported in the literature. Here in this paper, we have leveraged a conventional drop-casting method that allows for the successful adhesion of a wide range of nanoparticulate catalysts to glassy-carbon electrode surfaces. We have applied this adhesion method to prepare catalyst films from 16 crystalline metal-oxide nanoparticles with a constant loading of 0.8 mg cm -2, and evaluated the resulting nanoparticulate filmsmore » for the oxygen evolution reaction under conditions relevant to an integrated solar fuels device. In general, the activities of the adhered nanoparticulate films are similar to those of thin-film catalysts prepared by electrodeposition or sputtering, achieving 10 mA cm -2 current densities per geometric area at overpotentials of ~0.35–0.5 V.« less

  7. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    NASA Astrophysics Data System (ADS)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  8. Nanoparticulate drug delivery platforms for advancing bone infection therapies

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A

    2015-01-01

    Introduction The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition. Areas covered Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same. Expert opinion Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment. PMID:25109804

  9. The use of nanoparticulates to treat breast cancer.

    PubMed

    Tang, Xiaomeng; Loc, Welley S; Dong, Cheng; Matters, Gail L; Butler, Peter J; Kester, Mark; Meyers, Craig; Jiang, Yixing; Adair, James H

    2017-10-01

    Breast cancer is a major ongoing public health issue among women in both developing and developed countries. Significant progress has been made to improve the breast cancer treatment in the past decades. However, the current clinical approaches are invasive, of low specificity and can generate severe side effects. As a rapidly developing field, nanotechnology brings promising opportunities to human cancer diagnosis and treatment. The use of nanoparticulate-based platforms overcomes biological barriers and allows prolonged blood circulation time, simultaneous tumor targeting and enhanced accumulation of drugs in tumors. Currently available and clinically applicable innovative nanoparticulate-based systems for breast cancer nanotherapies are discussed in this review.

  10. Nanoparticulate delivery systems for antiviral drugs.

    PubMed

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  11. Nanoparticules d'or: De l'imagerie par resonance magnetique a la radiosensibilisation

    NASA Astrophysics Data System (ADS)

    Hebert, Etienne M.

    Cette thèse approfondit l'étude de nanoparticules d'or de 5 nm de diamètre recouvertes de diamideéthanethioldiethylènetriaminepentacétate de gadolinium (DTDTPA:Gd), un agent de contraste pour l'imagerie par résonance magnétique (IRM). En guise de ciblage passif, la taille des nanoparticules a été contrôlée afin d'utiliser le réseau de néovaisseaux poreux et perméable des tumeurs. De plus les tumeurs ont un drainage lymphatique déficient qui permet aux nanoparticules de demeurer plus longtemps dans le milieu interstitiel de la tumeur. Les expériences ont été effectuées sur des souris Balb/c femelles portant des tumeurs MC7-L1. La concentration de nanoparticules a pu être mesurée à l'IRM in vivo. La concentration maximale se retrouvait à la fin de l'infusion de 10 min. La concentration s'élevait à 0.3 mM dans la tumeur et de 0.12 mM dans le muscle environnant. Les nanoparticules étaient éliminées avec une demi-vie de 22 min pour les tumeurs et de 20 min pour le muscle environnant. Les nanoparticules ont été fonctionnalisées avec le peptide Tat afin de leur conférer des propriétés de ciblage actif La rétention de ces nanoparticules a ainsi été augmentée de 1600 %, passant d'une demi-vie d'élimination de 22 min à 350 min. La survie des souris a été mesurée à l'aide de courbes Kaplan-Meier et d'un modèle mathématique évalue l'efficacité de traitements. Le modèle nous permet, à l'aide de la vitesse de croissance des tumeurs et de l'efficacité des traitements, de calculer la courbe de survie des spécimens. Un effet antagoniste a été observé au lieu de l'effet synergétique attendu entre une infusion de Au@DTDTPA:Gd et l'irradiation aux rayons X. L'absence d'effet synergétique a été attribuée à l'épaisseur du recouvrement de DTDTPA:Gd qui fait écran aux électrons produits par l'or. De plus, le moyen d'ancrage du recouvrement utilise des thiols qui peuvent s'avérer être des capteurs de radicaux. De plus

  12. Saccharide-based graphitic carbon nanocoils as supports for PtRu nanoparticles for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Sevilla, Marta; Lota, Grzegorz; Fuertes, Antonio B.

    Highly graphitic carbon nanocoils were synthesised from the catalytic graphitization of carbon spherules obtained by the hydrothemal treatment of different saccharides (sucrose, glucose and starch). This nanostructured carbon was characterized by X-ray power diffraction, N 2 adsorption and microscopy techniques (SEM and TEM). The carbon nanocoils were used as a support for PtRu nanoparticles, which were well-dispersed over the carbon surface. This catalytic system was investigated for use as an electrocatalyst for methanol electrooxidation in an acid medium. The experiments were carried out at two working temperatures (25 °C and 60 °C). It was found that the carbon nanocoils supporting PtRu nanoparticles exhibit a high catalytic activity, which is even higher than that of conventional carbon supports (Vulcan XC-72R). We believe that the high electrocatalytic activity of the carbon nanocoils presented here is due to the combination of a good electrical conductivity, derived from their graphitic structure, and a wide porosity that allows the diffusional resistances of reactants/products to be minimized.

  13. PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells.

    PubMed

    Cui, Zhiming; Li, Chang Ming; Jiang, San Ping

    2011-09-28

    A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.

  14. Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun

    2014-06-01

    A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.

  15. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice

    PubMed Central

    Aslam, Mohamad F.; Frazer, David M.; Faria, Nuno; Bruggraber, Sylvaine F. A.; Wilkins, Sarah J.; Mirciov, Cornel; Powell, Jonathan J.; Anderson, Greg J.; Pereira, Dora I. A.

    2014-01-01

    The ferritin core is composed of fine nanoparticulate Fe3+ oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe3+ polyoxohydroxide (nanoFe3+). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe2+ sulfate (FeSO4), nanoFe3+, or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe3+ was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe3+ are equally bioavailable in WT mice, and at wk 8 the mean ± sem hemoglobin increase was 18 ± 7 g/L in the FeSO4 group and 30 ± 5 g/L in the nanoFe3+ group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe3+ is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.—Aslam, M. F., Frazer, D. M., Faria, N., Bruggraber, S. F. A., Wilkins, S. J., Mirciov, C., Powell, J. J., Anderson, G. J., Pereira, D. I. A. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. PMID:24776745

  16. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    PubMed

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was

  17. Enhanced electrochemical degradation of ibuprofen in aqueous solution by PtRu alloy catalyst.

    PubMed

    Chang, Chiung-Fen; Chen, Tsan-Yao; Chin, Ching-Ju Monica; Kuo, Yu-Tsun

    2017-05-01

    Electrochemical advanced oxidation processes (EAOPs) regarded as a green technology for aqueous ibuprofen treatment was investigated in this study. Multi-walled carbon nanotubes (MWCNTs), Pt nanoparticles (Pt NPs), and PtRu alloy, of which physicochemical properties were characterized by XRD and X-ray absorption spectroscopy, were used to synthesize three types of cheap and effective anodes based on commercial conductive glass. Furthermore, the operating parameters, such as the current densities, initial concentrations, and solution pH were also investigated. The intermediates determined by a UPLC-Q-TOF/MS system were used to evaluate the possible reaction pathway of ibuprofen (IBU). The results revealed that the usage of MWCNTs and PtRu alloy can effectively reduce the grain size of electrocatalysts and increase the surface activity from the XRD and XANES analysis. The results of CV analysis, degradation and mineralization efficiencies revealed that the EAOPs with PtRu-FTO anode were very effective due to advantages of the higher capacitance, CO tolerance, catalytic ability at less positive voltage and stability. The concentration trend of intermediates indicated that the potential cytotoxic to human caused by 1-(1-hydroxyenthyl)-4-isobutylbenzene was completely eliminated as the reaction time reaches 60 min. Therefore, EAOPs combined with synthesized anodes can be feasibly applied on the electrochemical degradation of ibuprofen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.

    PubMed

    Niazi, Nabeel Khan; Burton, Edward D

    2016-11-01

    Nanoparticulate mackinawite (FeS) can be an important host-phase for arsenic (As) in sulfidic, subsurface environments. Although not previously investigated, phosphate (PO 4 3- ) may compete with As for available sorption sites on FeS, thereby enhancing As mobility in FeS-bearing soils, sediments and groundwater systems. In this study, we examine the effect of PO 4 3- on sorption of arsenate (As(V)) and arsenite (As(III)) to nanoparticulate FeS at pH 6, 7 and 9. Results show that PO 4 3- (at 0.01-1.0 mM P) did not significantly affect sorption of either As(V) or As(III) to nanoparticulate FeS at initial aqueous As concentrations ranging from 0.01 to 1.0 mM. At pH 9 and 7, sorption of both As(III) and As(V) to nanoparticulate FeS was similar, with distribution coefficient (K d ) values spanning 0.76-15 L g -1 (which corresponds to removal of 87-98% of initial aqueous As(III) and As(V) concentrations). Conversely, at pH 6, the sorption of As(III) was characterized by substantially higher K d values (6.3-93.4 L g -1 ) than those for As(V) (K d  = 0.21-0.96 L g -1 ). Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that up to 52% of the added As(V) was reduced to As(III) in As(V) sorption experiments, as well as the formation of minor amounts of an As 2 S 3 -like species. In As(III) sorption experiments, XANES spectroscopy also demonstrated the formation of an As 2 S 3 -like species and the partial oxidation of As(III) to As(V) (despite the strictly O 2 -free experimental conditions). Overall, the XANES data indicate that As sorption to nanoparticulate FeS involves several redox transformations and various sorbed species, which display a complex dependency on pH and As loading but that are not influenced by the co-occurrence of PO 4 3- . This study shows that nanoparticulate FeS can help to immobilize As(III) and As(V) in sulfidic subsurface environments where As co-exists with PO 4 3- . Copyright © 2016 Elsevier Ltd. All

  19. Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Colby, Robert J.; Engelhard, Mark H.

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu alloy nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 x 104 ions µm-2 and that their average height is centered at 4 nm. Scanning transmission electron microscopy images obtained in themore » high-angle annular dark field mode (STEM-HAADF) further confirm that the soft-landed PtRu alloy nanoparticles are uniform in size and have a Ru core decorated with small regions of Pt on the surface. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in relative atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt4f and Ru3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the alloy nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 x 104 ions µm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the alloy nanoparticles supported on

  20. A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells.

    PubMed

    Shimazaki, Yuzuru; Hayasaka, Sho; Koyama, Tsubasa; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2010-11-15

    A methanol oxidation catalyst with improved durability in acidic environments is reported. The catalyst consists of PtRu alloy nanoparticles on a carbon support that were stabilized with a silane-coupling agent. The catalyst was prepared by reducing ions of Pt and Ru in the presence of a carbon support and the silane-coupling agent. The careful choice of preparatory conditions such as the concentration of the silane-coupling agent and solution pH resulted in the preparation of catalyst in which the PtRu nanoparticles were dispersively adsorbed onto the carbon support. The catalytic activity was similar to that of a commercial catalyst and was unchanged after immersion in sulfuric acid solution for 1000 h, suggesting the high durability of the PtRu catalyst for the anode of direct methanol fuel cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Direct Methanol Fuel Cell Battery Replacement Program

    DTIC Science & Technology

    2011-04-11

    Matthey PtRu in operating direct methanol fuel cells” Phys. Chem. Chem. Phys., 10, 6430-6437 (2008) 2. Harry Rivera, Jamie S. Lawton , David E. Budil and...Phys. Chem. B, 112, (29) 8542-8548 (2008) 3. Jamie S. Lawton , Eugene S. Smotkin and David E. Budil, “ESR Investigation of Microviscosity, Microscopic

  2. Novel anode catalyst for direct methanol fuel cells.

    PubMed

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  3. Ingenierie de nanoparticules plasmoniques robustes pour la generation de bulles par laser en vue d'applications biomedicales

    NASA Astrophysics Data System (ADS)

    Lachaine, Remi

    Les chirurgiens generent des bulles dans le corps humain a l'aide d'irradiation laser depuis plusieurs decennies. Ils utilisent ces bulles comme de petits scalpels, leur permettant de faire des incisions precises et localisees. Une des applications de cet outil chirurgical est la perforation cellulaire. Au lieu d'utiliser une aiguille pour perforer la membrane des cellules, il est possible de focaliser des impulsions laser en surface d'une cellule, formant un plasma au point focal du laser et generant une bulle qui perfore la membrane cellulaire. Toutefois, ce procede est assez lent et la perforation massive de cellules in-vivo n'est pas envisageable. Pour accelerer le processus, il est possible d'utiliser des nanoparticules plasmoniques. Ces dernieres agissent comme des nano-antennes qui permettent de concentrer la lumiere sur une echelle nanometrique. La possibilite d'irradier un grand nombre de nanoparticules simultanement a donne un nouvel elan a la generation de bulle comme outil de perforation cellulaire. L'utilisation de nanoparticules dans un contexte biomedical comporte toutefois certains risques. En particulier, la fragmentation de nanoparticules peut augmenter la toxicite du traitement. Dans un cas ideal, il est preferable d'utiliser des nanoparticules qui ne sont pas endommagees par l'irradiation laser. Cette these a pour but de developper une methode d'ingenierie de nanoparticules robustes permettant la generation efficace de bulles a des fins biomedicales. Il est tout d'abord demontre experimentalement que la formation de plasma est bel et bien le mecanisme physique principal menant a la generation de bulles lors de l'irradiation infrarouge (longueur d'onde de 800 nm) et ultrarapide (temps d'impulsion entre 45 fs et 1 ps) de nanoparticules d'or de 100 nm. Pour realiser cette demonstration, une methode pompe-sonde de detection de bulles d'environ 1 mum a ete elaboree. Cette methode a permis de mettre en evidence une difference de taille de 18% entre

  4. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts

    NASA Astrophysics Data System (ADS)

    Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.

    Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.

  5. Novel Anode Catalyst for Direct Methanol Fuel Cells

    PubMed Central

    Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406

  6. Study of an ultrasound-based process analytical tool for homogenization of nanoparticulate pharmaceutical vehicles.

    PubMed

    Cavegn, Martin; Douglas, Ryan; Akkermans, Guy; Kuentz, Martin

    2011-08-01

    There are currently no adequate process analyzers for nanoparticulate viscosity enhancers. This article aims to evaluate ultrasonic resonator technology as a monitoring tool for homogenization of nanoparticulate gels. Aqueous dispersions of colloidal microcrystalline cellulose (MCC) and a mixture of clay particles with xanthan gum were compared with colloidal silicon dioxide in oil. The processing was conducted using a laboratory-scale homogenizing vessel. The study investigated first the homogenization kinetics of the different systems to focus then on process factors in the case of colloidal MCC. Moreover, rheological properties were analyzed offline to assess the structure of the resulting gels. Results showed the suitability of ultrasound velocimetry to monitor the homogenization process. The obtained data were fitted using a novel heuristic model. It was possible to identify characteristic homogenization times for each formulation. The subsequent study of the process factors demonstrated that ultrasonic process analysis was equally sensitive as offline rheological measurements in detecting subtle manufacturing changes. It can be concluded that the ultrasonic method was able to successfully assess homogenization of nanoparticulate viscosity enhancers. This novel technique can become a vital tool for development and production of pharmaceutical suspensions in the future. Copyright © 2011 Wiley-Liss, Inc.

  7. Nanoparticulate strategies for effective delivery of poorly soluble therapeutics.

    PubMed

    Gokce, Evren H; Ozyazici, Mine; Souto, Eliana B

    2010-07-01

    The pharmacological activity of a drug molecule depends on its ability to dissolve and interact with its biological target, either through dissolution and absorption, or through dissolution and receptor interaction. The low bioavailability that characterizes poorly water-soluble drugs is usually attributed to the dissolution kinetic profile. Novel strategies to effectively deliver these drugs include nanoparticulate approaches that either increase the surface area of the drug or improve the solubility characteristics of the drug. Nanosizing approaches are based on the production of drug nanocrytals dispersed in an aqueous surfactant solution, whereas other possibilities include drug loading in nanoparticles. Promising nanoparticulate approaches include the development of lipid-based nanocarriers to increase drug solubility followed by enhanced bioavailability. To select the best approach there are, however, some critical considerations to take into account, for example the physicochemical properties of the drug, the possibility to scale-up the production process, the toxicological considerations of the use of solvents and cosolvents, the selection of an environmentally sustainable methodology and the development of a more patient-friendly dosage form. This article addresses these relevant questions and provides feasible examples of novel strategies with respect to relevant administration routes.

  8. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    PubMed Central

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with

  9. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  10. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  11. Combustion-Generated Nanoparticulates in the El Paso, TX, USA / Juarez, Mexico Metroplex: Their Comparative Characterization and Potential for Adverse Health Effects

    PubMed Central

    Murr, L. E.; Soto, K. F.; Garza, K. M.; Guerrero, P. A.; Martinez, F.; Esquivel, E. V.; Ramirez, D. A.; Shi, Y.; Bang, J. J.; Venzor, J.

    2006-01-01

    In this paper we report on the collection of fine (PM1) and ultrafine (PM0.1), or nanoparticulate, carbonaceous materials using thermophoretic precipitation onto silicon monoxide/formvar-coated 3 mm grids which were examined in the transmission electron microscope (TEM). We characterize and compare diesel particulate matter (DPM), tire particulate matter (TPM), wood burning particulate matter, and other soot (or black carbons (BC)) along with carbon nanotube and related fullerene nanoparticle aggregates in the outdoor air, as well as carbon nanotube aggregates in the indoor air; and with reference to specific gas combustion sources. These TEM investigations include detailed microstructural and microdiffraction observations and comparisons as they relate to the aggregate morphologies as well as their component (primary) nanoparticles. We have also conducted both clinical surveys regarding asthma incidence and the use of gas cooking stoves as well as random surveys by zip code throughout the city of El Paso. In addition, we report on short term (2 day) and longer term (2 week) in vitro assays for black carbon and a commercial multiwall carbon nanotube aggregate sample using a murine macrophage cell line, which demonstrate significant cytotoxicity; comparable to a chrysotile asbestos nanoparticulate reference. The multi-wall carbon nanotube aggregate material is identical to those collected in the indoor and outdoor air, and may serve as a surrogate. Taken together with the plethora of toxic responses reported for DPM, these findings prompt concerns for airborne carbonaceous nanoparticulates in general. The implications of these preliminary findings and their potential health effects, as well as directions for related studies addressing these complex issues, will also be examined. PMID:16823077

  12. SiO2 decoration dramatically enhanced the stability of PtRu electrocatalysts with undetectable deterioration in fuel cell performance.

    PubMed

    Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei

    2018-06-15

    Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO 2 , which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO 2 -decorated electrocatalysts originate from the SiO 2 coating, since Ru atoms are partially ionized during SiO 2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO 2 . The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.

  13. SiO2 decoration dramatically enhanced the stability of PtRu electrocatalysts with undetectable deterioration in fuel cell performance

    NASA Astrophysics Data System (ADS)

    Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei

    2018-06-01

    Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO2, which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO2-decorated electrocatalysts originate from the SiO2 coating, since Ru atoms are partially ionized during SiO2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO2. The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.

  14. Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Kandanapitiye, Murthi S.

    The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X

  15. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  16. Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field.

    PubMed

    Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik

    2008-02-01

    Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.

  17. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the

  18. Nanoparticulate-catalyzed oxygen transfer processes

    DOEpatents

    Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  19. Switchable Ionic Liquids: An Environmentally Friendly Medium to Synthesise Nanoparticulate Green Rust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, David; Kukkadapu, Ravi; Kovarik, Libor

    Under anoxic conditions, a novel nanoparticulate green rust with carbonate (nano GR) was synthesized by addition of methanol to degassed switchable ionic liquid (SWIL) solution comprised of 1-hexanol, diazabicycloundec-7-ene (DBU), CO2 and Fe(C2H3O2)2 (Fe(OAc)2). Variable temperature Mössbauer spectroscopy studies indicated the product to be predominantly GR while TEM-SAED method confirmed it be nanoparticulate in nature. Experiments with and without methanol in the SWIL medium suggest that methanol may be responsible for Fe(II) oxidation to Fe(III) necessary for GR formation. Studies with Ar instead of CO2 trigger gas indicated that CO2 is essential for GR formation. Conditions to generate CO32- anionmore » was most likely provided by basic environment of the medium. The nano GR suspension was very reactive and instantaneously oxidized completely to a reddish-brown precipitate upon exposure to ambient atmosphere. The nature of the oxidized sample is not certain. The oxidized product, however, appears to be a mix of ferric green rust- [GR(CO32-]*; major] and ferrihydrite-like minerals. To our knowledge, this is first report of use of environmentally-friendly SWIL reagents to synthesize very reactive nano GR materials.« less

  20. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel.

    PubMed

    Bansal, Amit; Wu, Xianfu; Olson, Victoria; D'Souza, Martin J

    2018-07-10

    Plasmid DNA (pDNA) vaccines have the potential for protection against a wide range of diseases including rabies but are rapid in degradation and poor in uptake by antigen-presenting cells. To overcome the limitations, we fabricated a pDNA nanoparticulate vaccine. The negatively charged pDNA was adsorbed onto the surface of cationic PLGA (poly (d, l-lactide-co-glycolide))-chitosan nanoparticles and were used as a delivery vehicle. To create a hydrogel for sustainable vaccine release, we dispersed the pDNA nanoparticles in poloxamer 407 gel which is liquid at 4 °C and turns into soft gels at 37 °C, providing ease of administration and preventing burst release of pDNA. Complete immobilization of pDNA to cationic nanoparticles was achieved at a pDNA to nanoparticles ratio (P/N) of 1/50. Cellular uptake of nanoparticles was both time and concentration dependent and followed a saturation kinetics with V max of 11.389 µg/mL h and K m of 139.48 µg/mL. The in vitro release studies showed the nanoparticulate vaccine has a sustained release for up to 24 days. In summary, pDNA PLGA-chitosan nanoparticles were non-cytotoxic, their buffering capacity and cell uptake were enhanced, and sustained the release of pDNA. We expect our pDNA vaccine's potency will be greatly improved in the animal studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems.

    PubMed

    Yan, Jing-Jun; Liao, Jia-Zhi; Lin, Ju-Sheng; He, Xing-Xing

    2015-01-01

    Patients with hepatocellular carcinoma (HCC) usually present at advanced stages and do not benefit from surgical resection, so drug therapy should deserve a prominent place in unresectable HCC treatment. But chemotherapy agents, such as doxorubicin, cisplatin, and paclitaxel, frequently encounter important problems such as low specificity and non-selective biodistribution. Recently, the development of nanotechnology led to significant breakthroughs to overcome these problems. Decorating the surfaces of nanoparticulate-based drug carriers with homing devices has demonstrated its potential in concentrating chemotherapy agents specifically to HCC cells. In this paper, we reviewed the current status of active targeting strategies for nanoparticulate systems based on various receptors such as asialoglycoprotein receptor, transferrin receptor, epidermal growth factor receptor, folate receptor, integrin, and CD44, which are abundantly expressed on the surfaces of hepatocytes or liver cancer cells. Furthermore, we pointed out their merits and defects and provided theoretical references for further research.

  2. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    NASA Astrophysics Data System (ADS)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  3. Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.

    PubMed

    Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur

    2017-01-01

    Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  5. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  6. Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects.

    PubMed

    Joseph, Emil; Reddi, Satish; Rinwa, Vibhu; Balwani, Garima; Saha, Ranendra

    2017-06-15

    The present paper discusses the design, characterization and in vivo evaluation of glyceryl monostearate nanoparticles of Olanzapine, an atypical antipsychotic drug for acute schizophrenia treatment, during which hospitalization is mandatory and adverse effects are at its peak. The solid lipid nanoparticulate system was obtained by emulsification-ultra sonication technique wherein three factors such as solid lipid content, concentration of surfactant and drug: solid lipid ratio were selected at three different levels in order to study their influence on significant characteristic responses such as particle size, encapsulation efficiency and drug content. A Box Behnken design with 17 runs involving whole factors at three levels was employed for the study. The optimized formulation was further coated with Polysorbate 80 in order to enhance its brain targeting potential through endocytosis transport process via blood brain barrier. The designed formulations were pre-clinically tested successfully in Wistar rat model for in vivo antipsychotic efficacy (apomorphine induced psychosis) and adverse effects (weight gain study for 28days). The results obtained indicated that solid lipid nanoparticles had very narrow size distribution (151.29±3.36nm) with very high encapsulation efficiency (74.51±1.75%). Morphological studies by SEM have shown that solid lipid nanoparticles were spherical in shape with smooth surface. Olanzapine-loaded nanoparticles prepared from solid lipid, extended the release of drug for 48h, as found by the in vitro release studies. The formulations also exhibited high redispersibility after freeze-drying and stability study results demonstrated good stability, with no significant change for a period of 6months. In vivo evaluation and adverse effects studies of Olanzapine-loaded nanoparticulate systems in animal model have demonstrated an improved therapeutic efficacy than pure Olanzapine. The antipsychotic effect of drug loaded nanoparticulate systems

  7. A TEM analysis of nanoparticulates in a Polar ice core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esquivel, E.V.; Murr, L.E

    2004-03-15

    This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar withmore » some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.« less

  8. Nanoparticulate mackinawite formation; a stopped and continuous flow XANES and EXAFS investigation

    NASA Astrophysics Data System (ADS)

    Butler, I. B.; Bell, A. M.; Charnock, J. M.; Rickard, D.; Vaughan, D. J.; Oldroyd, A.

    2009-12-01

    The sequestration of sulfur and iron within sedimentary iron sulfides, and ultimately as pyrite, is a major sink in global biogeochemical cycles of those elements and has impacts on global carbon and oxygen cycles. The formation of the metastable black iron (II) monosulfide mackinawite is a key process because mackinawite forms in aqueous solutions where the Fe(II) and S(-II) IAP exceeds mackinawite’s Ksp. Mackinawite is the first formed iron sulfide phase, a consequence of Ostwald’s step rule and is a reactant phase during the formation of thermodynamically stable sedimentary iron sulfide minerals such as pyrite. The reaction of dissolved Fe(II) and sulfide is extremely fast and reactions in the environmentally significant near-neutral pH range tend to completion in <1 second. We have combined stopped and continuous flow techniques with X-ray absorption spectroscopy to evaluate the products of the fast precipitation kinetics of mackinawite over millisecond timescales. EXAFS spectra and data collected during flow experiments were compared with those from a well characterised freeze-dried nanoparticulate mackinawite standard and with published data. Published work has used Rietveld crystal structure refinement to determine bond distances of 2.2558 and 2.5976Å for Fe-S and Fe-Fe respectively. In our experiments Fe K edge XANES is consistent with tetrahedrally coordinated Fe in the precipitated sulfide phase. EXAFS data show that local Fe-S and Fe-Fe coordination and interatomic distances (Fe-S = 2.24Å; Fe-Fe = 2.57Å) are consistent with those determined for the standard mackinawite and published data. The coordination and spacing are developed in the precipitated phase after <10ms reaction at pH5, and considerably faster in experiments at near neutral to alkaline pH. No evidence for phases structurally intermediate between hexaqua Fe(II) and precipitated mackinawite was observed. Aqueous FeS° cluster complexes previously identified as intermediates during

  9. Electrocatalytic properties of graphite nanofibers-supported platinum catalysts for direct methanol fuel cells.

    PubMed

    Park, Soo-Jin; Park, Jeong-Min; Seo, Min-Kang

    2009-09-01

    Graphite nanofibers (GNFs) treated at various temperatures were used as carbon supports to improve the efficiency of PtRu catalysts. The electrochemical properties of the PtRu/GNFs catalysts were then investigated to evaluate their potential for application in DMFCs. The results indicated that the particle size and dispersibility of PtRu in the catalysts were changed by heat treatment, and the electrochemical activity of the catalysts was improved. Consequently, it was found that heat treatments could have an influence on the surface and structural properties of GNFs, resulting in enhancing an electrocatalytic activity of the catalysts for DMFCs.

  10. Connexin 43 expression of foreign body giant cells after implantation of nanoparticulate hydroxyapatite.

    PubMed

    Herde, Katja; Hartmann, Sonja; Brehm, Ralph; Kilian, Olaf; Heiss, Christian; Hild, Anne; Alt, Volker; Bergmann, Martin; Schnettler, Reinhard; Wenisch, Sabine

    2007-11-01

    In bone a role of connexin 43 has been implicated with the fusion of mononuclear precursors of the monocyte/macrophage lineage into multinucleated cells. In order to investigate the putative role of connexin 43 in formation of bone osteoclast-like foreign body giant cells which are formed in response to implantation of biomaterials, nanoparticulate hydroxyapatite had been implanted into defects of minipig femura. After 20 days the defect areas were harvested and connexin 43 expression and synthesis were investigated by using immunohistochemistry, Western Blot, and in situ hybridization within macrophages and osteoclast-like foreign body giant cells. Morphological analysis of gap junctions is performed ultrastructurally. As shown on protein and mRNA level numerous connexin 43 positive macrophages and foreign body giant cells (FBGC) were localized within the granulation tissue and along the surfaces of the implanted hydroxyapatite (HA). Besides, the formation of FBGC by fusion of macrophages could be shown ultrastructurally. Connexin 43 labeling observed on the protein and mRNA level could be attributed to gap junctions identified ultrastructurally between macrophages, between FBGC, and between FBGC and macrophages. Annular gap junctions in the cytoplasm of FBGC pointed to degradation of the channels, and the ubiquination that had occurred in the course of degradation was confirmed by Western blot analysis. All in all, the presently observed pattern of connexin 43 labeling refers to an functional role of gap junctional communication in the formation of osteoclast-like foreign body giant cells formed in response to implantation of the nanoparticulate HA.

  11. Nanoparticulation improves bioavailability of Erlotinib.

    PubMed

    Yang, Kyung Mi; Shin, In Chul; Park, Joo Won; Kim, Kab-Sig; Kim, Dae Kyong; Park, Kyungmoon; Kim, Kunhong

    2017-09-01

    Nanoparticulation using fat and supercritical fluid (NUFS TM ) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva ® . In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva ® . The relative bioavailability of NUFS-Ert compared with that of Tarceva ® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva ® . NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva ® .

  12. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs.

    PubMed

    Choi, Jinhyang; Ko, Eunjung; Chung, Hye-Kyung; Lee, Jae Hee; Ju, Eun Jin; Lim, Hyun Kyung; Park, Intae; Kim, Kab-Sig; Lee, Joo-Hwan; Son, Woo-Chan; Lee, Jung Shin; Jung, Joohee; Jeong, Seong-Yun; Song, Si Yeol; Choi, Eun Kyung

    2015-01-01

    Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX), under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™) technology enabled successful nanoscale particulation of DTX (Nufs-DTX). Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR) effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in edema, paralysis, and paw-withdrawal latency on a hot plate analysis that are regarded as indicators of fluid retention, peripheral neuropathy, and thermal threshold, respectively, for toxicological tests. In summary, compared with Taxotere™, Nufs-DTX, which was generated by our new platform technology using lipid, supercritical fluid, and carbon dioxide (CO2), maintained its biochemical properties as a cytotoxic agent and had better tumor targeting ability, better in vivo therapeutic effect, and less toxicity, thereby overcoming the current hurdles of traditional drugs.

  13. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials

    PubMed Central

    Xie, Jingwei; Jiang, Jiang; Davoodi, Pooya; Srinivasan, M. P.; Wang, Chi-Hwa

    2014-01-01

    Electrohydrodynamic atomization (EHDA), also called electrospray technique, has been studied for more than one century. However, since 1990s it has begun to be used to produce and process micro-/nanostructured materials. Owing to the simplicity and flexibility in EHDA experimental setup, it has been successfully employed to generate particulate materials with controllable compositions, structures, sizes, morphologies, and shapes. EHDA has also been used to deposit micro- and nanoparticulate materials on surfaces in a well-controlled manner. All these attributes make EHDA a fascinating tool for preparing and assembling a wide range of micro- and nanostructured materials which have been exploited for use in pharmaceutics, food, and healthcare to name a few. Our goal is to review this field, which allows scientists and engineers to learn about the EHDA technique and how it might be used to create, process, and assemble micro-/nanoparticulate materials with unique and intriguing properties. We begin with a brief introduction to the mechanism and setup of EHDA technique. We then discuss issues critical to successful application of EHDA technique, including control of composition, size, shape, morphology, structure of particulate materials and their assembly. We also illustrate a few of the many potential applications of particulate materials, especially in the area of drug delivery and regenerative medicine. Next, we review the simulation and modeling of Taylor cone-jet formation for a single and co-axial nozzle. The mathematical modeling of particle transport and deposition is presented to provide a deeper understanding of the effective parameters in the preparation, collection and pattering processes. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25684778

  14. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  15. Use of a nanoparticulate carboxymethyl cellulose film containing sinigrin as an antimicrobial precursor to kill Escherichia coli O157:H7 on fresh beef.

    PubMed

    Herzallah, S; Holley, R

    2015-08-01

    Nanocomposite carboxymethyl cellulose films containing sinigrin (SNG) were prepared by stirring 2% (w/v) carboxymethyl cellulose (CMC) and 2% (w/v) glycerol (as a plasticizer) in distilled water with or without SNG (an antimicrobial precursor) as a 99% pure reagent (pSNG) or as a crude extract (cSNG). These films plus normal CMC film with or without SNG were tested on Escherichia coli O157:H7- inoculated beef for antimicrobial activity. Beef pieces measuring 6 × 5 × 2 cm(3) (L × W × H) were dipped in an E. coli O157:H7 broth suspension containing >8 log10 CFU ml(-1) and were drained for 3 min over a sterile cloth. They were wrapped in CMC or NCMC films, placed in a high oxygen barrier film (Deli *1), vacuum-packaged and stored at 8°C for 5, 8, 12 and 18 days. The CMC and NCMC films without SNG were not antimicrobial against E. coli O157:H7; however, NCMC and CMC films with SNG were highly antimicrobial. After 5 days at 8°C, E. coli O157:H7 was reduced more than 4 log10 by the NCMC•pSNG film and this reduction remained almost the same until 18 days at 8°C when E. coli O157:H7 was reduced >5 log10  CFU g(-1) meat. Transparent nanoparticulate carboxymethyl cellulose (CMC) films containing sinigrin (SNG), an antimicrobial precursor, controlled surface contamination of packaged fresh beef by the pathogen Escherichia coli O157:H7 when stored at 8°C. Films with nanoparticulation that carried pure SNG or the naturally occurring SNG in Oriental mustard were significantly more antimicrobial than similar films without nanoparticulation. As films without sinigrin were not antimicrobial, the combinations studied showed that nanoparticulation of the packaging film enhanced delivery of the antimicrobial incorporated within the film. © 2015 The Society for Applied Microbiology.

  16. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering.

    PubMed

    Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E

    2015-01-09

    Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.

  17. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    PubMed

    Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  18. Attachment of nanoparticulate drug-release systems on poly(ε-caprolactone) nanofibers via a graftpolymer as interlayer.

    PubMed

    de Cassan, Dominik; Sydow, Steffen; Schmidt, Nadeschda; Behrens, Peter; Roger, Yvonne; Hoffmann, Andrea; Hoheisel, Anna Lena; Glasmacher, Birgit; Hänsch, Robert; Menzel, Henning

    2018-03-01

    Electrospun poly(ε-caprolactone) (PCL) fiber mats are modified using a chitosan grafted with PCL (CS-g-PCL), to improve the biological performance and to enable further modifications. The graft copolymer is immobilized by the crystallization of the PCL grafts on the PCL fiber surface as binding mechanism. In this way, the surface of the fibers is covered with chitosan bearing cationic amino groups, which allow adsorption of oppositely charged nanoparticulate drug-delivery systems. The modification of the fiber mats and the attachment of the drug delivery systems are easy and scalable dip processes. The process is also versatile; it is possible to attach different polymeric and inorganic nanoparticulate drug-release systems of cationic or anionic nature. The modifications are verified using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). As proof of principle, the release of ciprofloxacin from silica nanoparticles attached to the modified fiber mats is shown; however, the method is also suited for other biologically active substances including growth factors. The initial cellular attachment and proliferation as well as vitality of the cells is improved by the modification with CS-g-PCL and is further influenced by the type of the drug delivery system attached. Hence, this method can be used to transfer PCL fiber mats into bioactive implants for in-situ tissue engineering applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakagawa, Nobuyoshi; Ito, Yudai; Tsujiguchi, Takuya; Ishitobi, Hirokazu

    2014-02-01

    The electro-oxidation of ethanol by the catalyst of PtRu nanoparticles supported on a TiO2-embedded carbon nanofiber (PtRu/TECNF), which has recently been proposed by the authors as a highly active catalyst for methanol oxidation, is investigated by cyclic voltammetry using a glassy carbon electrode and by operating a direct ethanol fuel cell (DEFC) with the catalyst. The mass activity obtained from the cyclic voltammogram for the ethanol oxidation is compared to that for the methanol oxidation reported in our recent paper. The mass activity for the ethanol oxidation is comparable or slightly higher than that for the methanol oxidation, and the relationship between the TECNF composition, i.e., the Ti/C mass ratio, and the activity are also similar to that for the methanol oxidation. A DEFC fabricated with the PtRu/TECNF shows a higher power output compared to that with the commercial PtRu/C catalyst. An analysis of the reaction products by a simple two-step reaction model reveals that the PtRu/TECNF increases the rate constant for the reaction steps from ethanol to acetaldehyde and subsequently to CO2, but decreases that from acetaldehyde to acetic acid. This means that the PtRu/TECNF improves not only the kinetics, but also the selectivity to acetaldehyde.

  20. Dynamique de nanobulles et nanoplasmas generes autour de nanoparticules plasmoniques irradiees par des impulsions ultracourtes

    NASA Astrophysics Data System (ADS)

    Dagallier, Adrien

    L'emergence des lasers a impulsion ultrabreves et des nanotechnologies a revolutionne notre perception et notre maniere d'interagir avec l'infiniment petit. Les gigantesques intensites generees par ces impulsions plus courtes que les temps de relaxation ou de diffusion du milieu irradie induisent de nombreux phenomenes non-lineaires, du doublement de frequence a l'ablation, dans des volumes de dimension caracteristique de l'ordre de la longueur d'onde du laser. En biologie et en medecine, ces phenomenes sont utilises a des fins d'imagerie multiphotonique ou pour detruire des tissus vivants. L'introduction de nanoparticules plasmoniques, qui concentrent le champ electromagnetique incident dans des regions de dimensions nanometriques, jusqu'a une fraction de la longueur d'onde, amplifie les phenomenes non-lineaires tout en offrant un controle beaucoup plus precis de la deposition d'energie, ouvrant la voie a la detection de molecules individuelles en solution et a la nanochirurgie. La nanochirurgie repose principalement sur la formation d'une bulle de vapeur a proximite d'une membrane cellulaire. Cette bulle de vapeur perce la membrane de maniere irreversible,entrainant la cellule a sa mort, ou la perturbe temporairement, ce qui permet d'envisager de faire penetrer dans la cellule des medicaments ou des brins d'ADN pour de la therapie genique. C'est principalement la taille de la bulle qui va decider de l'issue de l'irradiation laser. Il est donc necessaire de controler finement les parametres du laser et la geometrie de la nanoparticule afin d'atteindre l'objectif fixe. Le moyen le plus direct a l'heure actuelle de valider un ensemble de conditions experimentales est de realiser l'experience en laboratoire,ce qui est long et couteux. Les modeles de dynamique de bulle existants ne prennent pas en compte les parametres de l'irradiation et ajustent souvent leurs conditions initiales a partir de leurs mesures experimentales, ce qui limite la portee du modele au cas pour

  1. Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Pengfei; Pu, Tiancheng; Nie, Anmin

    Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less

  2. Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion

    DOE PAGES

    Xie, Pengfei; Pu, Tiancheng; Nie, Anmin; ...

    2018-04-03

    Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less

  3. Assessment of the removal of side nanoparticulated populations generated during one-pot synthesis by asymmetric flow field-flow fractionation coupled to elemental mass spectrometry.

    PubMed

    Bouzas-Ramos, Diego; García-Cortes, Marta; Sanz-Medel, Alfredo; Encinar, Jorge Ruiz; Costa-Fernández, José M

    2017-10-13

    Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.

  5. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, P.; Sengupta, D.; CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effectmore » of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.« less

  6. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.

    PubMed

    Sun, Zhenyu; Wang, Xiang; Liu, Zhimin; Zhang, Hongye; Yu, Ping; Mao, Lanqun

    2010-07-20

    Pt-Ru/CeO(2)/multiwalled carbon nanotube (MWNT) electrocatalysts were prepared using a rapid sonication-facilitated deposition method and were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. Morphological characterization by TEM revealed that CeO(2) nanoparticles (NPs) were in intimate contact with Pt-Ru NPs, and both were highly dispersed on the exteriors of nanotubes with a small size and a very narrow size distribution. Compared with the Pt-Ru/MWNT and Pt/MWNT electrocatalysts, the as-prepared Pt-Ru/CeO(2)/MWNT exhibited a significantly improved electrochemically active surface area (ECSA) and a remarkably enhanced activity toward methanol oxidation. The effects of the Pt-Ru loading and the Pt-to-Ru molar ratio on the electrocatalytic activity of Pt-Ru/CeO(2)/MWNT for methanol oxidation were investigated. We found that a maximum activity toward methanol oxidation reached at the 10 wt % of Pt-Ru loading and 1:1 of Pt-to-Ru ratio. Moreover, the role of CeO(2) in the catalysts for the enhancement of methanol oxidation was discussed in terms of both bifunctional mechanism and electronic effects.

  7. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications

    PubMed Central

    Zhao, Fuli; Yao, Dan; Guo, Ruiwei; Deng, Liandong; Dong, Anjie; Zhang, Jianhua

    2015-01-01

    Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed. PMID:28347111

  8. Probing the formation mechanism and chemical states of carbon-supported Pt-Ru nanoparticles by in situ X-ray absorption spectroscopy.

    PubMed

    Hwang, Bing Joe; Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jiun-Ming; Wang, Guo-Rung; Tang, Mau-Tsu; Liu, Din-Goa; Lee, Jyh-Fu

    2006-04-06

    The understanding of the formation mechanism of nanoparticles is essential for the successful particle design and scaling-up process. This paper reports findings of an X-ray absorption spectroscopy (XAS) investigation, comprised of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions, to understand the mechanism of the carbon-supported Pt-Ru nanoparticles (NPs) formation process. We have utilized Watanabe's colloidal reduction method to synthesize Pt-Ru/C NPs. We slightly modified the Watanabe method by introducing a mixing and heat treatment step of Pt and Ru oxidic species at 100 degrees C for 8 h with a view to enhance the mixing efficiency of the precursor species, thereby one can achieve improved homogeneity and atomic distribution in the resultant Pt-Ru/C NPs. During the reduction process, in situ XAS measurements allowed us to follow the evolution of Pt and Ru environments and their chemical states. The Pt LIII-edge XAS indicates that when H2PtCl6 is treated with NaHSO3, the platinum compound is found to be reduced to a Pt(II) form corresponding to the anionic complex [Pt(SO3)4]6-. Further oxidation of this anionic complex with hydrogen peroxide forms dispersed [Pt(OH)6]2- species. Analysis of Ru K-edge XAS results confirms the reduction of RuIIICl3 to [RuII(OH)4]2- species upon addition of NaHSO3. Addition of hydrogen peroxide to [RuII(OH)4]2- causes dehydrogenation and forms RuOx species. Mixing of [Pt(OH)6]2- and RuOx species and heat treatment at 100 degrees C for 8 h produced a colloidal sol containing both Pt and Ru metallic as well as ionic contributions. The reduction of this colloidal mixture at 300 degrees C in hydrogen atmosphere for 2 h forms Pt-Ru nanoparticles as indicated by the presence of Pt and Ru atoms in the first coordination shell. Determination of the alloying extent or atomic distribution of Pt and Ru atoms in the resulting Pt-Ru/C NPs reveals that the alloying extent of Ru (JRu) is

  9. Leishmaniasis: focus on the design of nanoparticulate vaccine delivery systems.

    PubMed

    Doroud, Delaram; Rafati, Sima

    2012-01-01

    Although mass vaccination of the entire population of an endemic area would be the most cost-effective tool to diminish Leishmania burden, an effective vaccine is not yet commercially available. Practically, vaccines have failed to achieve the required level of protection, possibly owing to the lack of an appropriate adjuvant and/or delivery system. Therefore, there is still an imperative demand for an improved, safe and efficient delivery system to enhance the immunogenicity of available vaccine candidates. Nanoparticles are proficient in boosting the quality and magnitude of immune responses in a predictable fashion. Herein, we discuss how nanoparticulate vaccine delivery systems can be used to induce appropriate immune responses against leishmaniasis by controlling physicochemical properties of the vaccine. Stability, production reproducibility, low cost per dose and low risk-benefit ratios are desirable characteristics of an ideal vaccine formulation and solid lipid nanoparticles may serve as one of the most promising practical strategies to help to achieve such a leishmanial vaccine, at least in canine species in the developing world.

  10. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  11. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  12. Effect of the thickness of the anode electrode catalyst layers on the performance in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya

    2017-06-01

    For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.

  13. Influence of polymolybdate adsorbates on electrooxidation of ethanol at PtRu nanoparticles: Combined electrochemical, mass spectrometric and X-ray photoelectron spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gralec, Barbara; Lewera, Adam; Kulesza, Pawel J.

    2016-05-01

    The role Keggin-type phosphomolybdate (PMo12O403-) ions (adsorbed on carbon-supported PtRu, PtRu/C) on electrooxidation of ethanol is addressed here. The combined results obtained using Differential Electrochemical Mass Spectrometry, X-ray Photoelectron Spectroscopy and Cyclic Voltammetry are consistent with the view that presence of the Keggin-type polyoxometallate, phosphomolybdate, ions (adsorbates) leads to enlargement of the current densities associated with electrooxidation of ethanol at potentials greater than 700 mV vs. RHE. This increase of the anodic currents is correlated with the higher acetaldehyde yield which is likely to reflect changes in the reaction kinetics (e.g. more dynamic dehydrogenation of ethanol leading to acetaldehyde) or in the reaction mechanism defined by the preferential surface modification resulting not only in faster kinetics but also in higher selectivity with respect to acetaldehyde production. It is apparent from the spectroscopic data that modification of PtRu/C nanoparticles with phosphomolybdate ions leads to suppression of the formation of Ru surface oxides.

  14. Nanoparticulate, sub-micron and micron sized particles emanating from hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Luther, G. W., III; Gartman, A.; Findlay, A.; Yucel, M.; Chan, C. S. Y.

    2015-12-01

    Recent data from Geotraces cruises over the MAR and SEPR indicate dissolved and particulate Fe enrichment in waters 1000 and 4000 km from their vent sources, respectively. Deep-sea hydrothermal vents and the waters in the reactive mixing zone above vent orifices have been suggested to be an important source of fine material that can pass through normal filters (0.2 and 0.4 μm). In this work, nanoparticles are defined operationally as that which can pass through a 0.2 μm filter. We investigated two vent sites (Lau Basin and the MAR). Chimneys from both vent sites have fluids that can be sulfide rich or metal rich. We also present chemical and physical chemical data (SEM-EDS, TEM, XRD, EELS) showing some of the materials found in these (nano)particulate phases including pyrite, metal sulfides, silicate and aluminosilicate material. Enrichment of Mg and K in the latter suggest that reverse weathering may occur in the waters within 1-2 meters of the vent orifice where vent waters mix with cold oxygenated bottom waters.

  15. Single-Nanoparticle Photoelectrochemistry at a Nanoparticulate TiO2 -Filmed Ultramicroelectrode.

    PubMed

    Peng, Yue-Yi; Ma, Hui; Ma, Wei; Long, Yi-Tao; Tian, He

    2018-03-26

    An ultrasensitive photoelectrochemical method for achieving real-time detection of single nanoparticle collision events is presented. Using a micrometer-thick nanoparticulate TiO 2 -filmed Au ultra-microelectrode (TiO 2 @Au UME), a sub-millisecond photocurrent transient was observed for an individual N719-tagged TiO 2 (N719@TiO 2 ) nanoparticle and is due to the instantaneous collision process. Owing to a trap-limited electron diffusion process as the rate-limiting step, a random three-dimensional diffusion model was developed to simulate electron transport dynamics in TiO 2 film. The combination of theoretical simulation and high-resolution photocurrent measurement allow electron-transfer information of a single N719@TiO 2 nanoparticle to be quantified at single-molecule accuracy and the electron diffusivity and the electron-collection efficiency of TiO 2 @Au UME to be estimated. This method provides a test for studies of photoinduced electron transfer at the single-nanoparticle level. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Direct writing of metal nanostructures: lithographic tools for nanoplasmonics research.

    PubMed

    Leggett, Graham J

    2011-03-22

    Continued progress in the fast-growing field of nanoplasmonics will require the development of new methods for the fabrication of metal nanostructures. Optical lithography provides a continually expanding tool box. Two-photon processes, as demonstrated by Shukla et al. (doi: 10.1021/nn103015g), enable the fabrication of gold nanostructures encapsulated in dielectric material in a simple, direct process and offer the prospect of three-dimensional fabrication. At higher resolution, scanning probe techniques enable nanoparticle particle placement by localized oxidation, and near-field sintering of nanoparticulate films enables direct writing of nanowires. Direct laser "printing" of single gold nanoparticles offers a remarkable capability for the controlled fabrication of model structures for fundamental studies, particle-by-particle. Optical methods continue to provide a powerful support for research into metamaterials.

  17. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  18. Absence of systemic toxicity in mouse model towards BaTiO3 nanoparticulate based eluate treatment.

    PubMed

    Dubey, Ashutosh Kumar; Thrivikraman, Greeshma; Basu, Bikramjit

    2015-02-01

    One of the existing issues in implant failure of orthopedic biomaterials is the toxicity induced by the fine particles released during long term use in vivo, leading to acute inflammatory response. In developing a new class of piezobiocomposite to mimic the integrated electrical and mechanical properties of bone, bone-mimicking physical properties as well as in vitro cytocompatibility properties have been achieved with spark plasma sintered hydroxyapatite (HA)-barium titanate (BaTiO3) composites. However, the presence of BaTiO3 remains a concern towards the potential toxicity effect. To address this issue, present work reports the first result to conclusively confirm the non-toxic effect of HA-BaTiO3 piezobiocomposite nanoparticulates, in vivo. Twenty BALB/c mice were intra-articularly injected at their right knee joints with different concentrations of HA-BaTiO3 composite of up to 25 mg/ml. The histopathological examination confirmed the absence of any trace of injected particles or any sign of inflammatory reaction in the vital organs, such as heart, spleen, kidney and liver at 7 days post-exposure period. Rather, the injected nanoparticulates were found to be agglomerated in the vicinity of the knee joint, surrounded by macrophages. Importantly, the absence of any systemic toxicity response in any of the vital organs in the treated mouse model, other than a mild local response at the site of delivery, was recorded. The serum biochemical analyses using proinflammatory cytokines (TNF-α and IL-1β) also complimented to the non-immunogenic response to injected particulates. Altogether, the absence of any inflammatory/adverse reaction will open up myriad of opportunities for BaTiO3 based piezoelectric implantable devices in biomedical applications.

  19. Effects of the addition of nanoparticulate calcium carbonate on setting time, dimensional change, compressive strength, solubility and pH of MTA.

    PubMed

    Bernardi, A; Bortoluzzi, E A; Felippe, W T; Felippe, M C S; Wan, W S; Teixeira, C S

    2017-01-01

    To evaluate nanoparticulate calcium carbonate (NPCC) using transmission electron microscopy and the effects of NPCC addition to MTA in regard to the setting time, dimensional change, compressive strength, solubility and pH. The experimental groups were G1 (MTA), G2 (MTA with 5% NPCC) and G3 (MTA with 10% NPCC). The tests followed ISO and ADA standards. The specimens in the dimensional change and compressive strength tests were measured immediately after setting, after 24 h and after 30 days. In the solubility test, rings filled with cement were weighed after setting and after 30 days. The pH was measured after 24 h and 30 days. The data were analysed with the ANOVA, Tukey's and Kruskal-Wallis tests (α = 5%). The setting time was reduced (P < 0.05) in samples from G2 and G3 compared to G1. After 24 h, the dimensional change was similar amongst the groups, and after 30 days, G2 was associated with less alteration than G1 and G3. There was a difference in the compressive strength (P < 0.001) after 24 h and 30 days (G1 > G2 > G3). The solubility test revealed a difference amongst the groups when the specimens were hydrated: G2 > G1 > G3 and dehydrated: G3 > G2 > G1. The pH of the groups was similar at 24 h with higher values in each group after 30 days (P < 0.05), and G2 and G3 had similar mean pH values but both were higher than G1. Nanoparticulate calcium carbonate had a cubic morphology with few impurities. The addition of nanoparticulate calcium carbonate to MTA accelerated the setting time, decreased compressive strength and, after 30 days, resulted in lower dimensional change (G2), higher solubility and a higher pH. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Nanoparticulate delivery of agents for induced elastogenesis in three-dimensional collagenous matrices.

    PubMed

    Venkataraman, Lavanya; Sivaraman, Balakrishnan; Vaidya, Pratik; Ramamurthi, Anand

    2016-12-01

    The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms. It is mediated by the chronic overexpression of matrix metalloprotease (MMP)-2 and MMP-9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting abdominal aortic aneurysm growth. Previous studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells and inhibition of MMPs, following exogenous delivery of elastogenic factors such as transforming growth factor (TGF)-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in two-dimensional culture, poly(lactide-co-glycolide) nanoparticles were developed for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic smooth muscle cells within a three-dimensional gels of type I collagen, which closely simulate the arterial tissue microenvironment. DOX and TGF-β1 released from these nanoparticles influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ~20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled and sustained delivery from nanoparticles embedded within a three-dimensional scaffold is an efficient strategy for directed elastogenesis. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Development and characterization of polymeric nanoparticulate delivery system for hydrophillic drug: Gemcitabine

    NASA Astrophysics Data System (ADS)

    Khurana, Jatin

    Gemcitabine is a nucleoside analogue, used in various carcinomas such as non small cell lung cancer, pancreatic cancer, ovarian cancer and breast cancer. The major setbacks to the conventional therapy with gemcitabine include its short half-life and highly hydrophilic nature. The objectives of this investigation were to develop and evaluate the physiochemical properties, drug loading and entrapment efficiency, in vitro release, cytotoxicity, and cellular uptake of polymeric nano-particulate formulations containing gemcitabine hydrochloride. The study also entailed development and validation of a high performance liquid chromatography (HPLC) method for the analysis of gemcitabine hydrochloride. A reverse phase HPLC method using a C18 Luna column was developed and validated. Alginate and Poly lactide co glycolide/Poly-epsilon-caprolactone (PLGA:PCL 80:20) nanoparticles were prepared by multiple emulsion-solvent evaporation methodology. An aqueous solution of low viscosity alginate containing gemcitabine was emulsified into 10% solution of dioctyl-sulfosuccinate in dichloro methane (DCM) by sonication. The primary emulsion was then emulsified in 0.5% (w/v) aqueous solution of polyvinyl alcohol (PVA). Calcium chloride solution (60% w/v) was used to cause cross linking of the polymer. For PLGA:PCL system, the polymer mix was dissolved in dichloromethane (DCM) and an aqueous gemcitabine (with and without sodium chloride) was emulsified under ultrasonic conditions (12-watts; 1-min). This primary emulsion was further emulsified in 2% (w/v) PVA under ultrasonic conditions (24-watts; 3-min) to prepare a multiple-emulsion (w/o/w). In both cases DCM, the organic solvent was evaporated (20- hours, magnetic-stirrer) prior to ultracentrifugation (10000-rpm for PLGA:PCL; 25000-rpm for alginate). The pellet obtained was washed thrice with de-ionized water to remove PVA and any free drug and re-centrifuged. The particles were re-suspended in de-ionized water and then lyophilized to

  2. Corrosion-Activated Chemotherapeutic Function of Nanoparticulate Platinum as a Cisplatin Resistance-Overcoming Prodrug with Limited Autophagy Induction.

    PubMed

    Cheng, Hsien-Jen; Wu, Te-Haw; Chien, Chih-Te; Tu, Hai-Wei; Cha, Ting-Shan; Lin, Shu-Yi

    2016-11-01

    Despite nanoparticulate platinum (nano-Pt) has been validated to be acting as a platinum-based prodrug for anticancer therapy, the key factor in controlling its cytotoxicity remains to be clarified. In this study, it is found that the corrosion susceptibility of nano-Pt can be triggered by inducing the oxidization of superficial Pt atoms, which can kill both cisplatin-sensitive/resistance cancer cells. Direct evidence in the oxidization of superficial Pt atoms is validated to observe the formation of platinum oxides by X-ray absorption spectroscopy. The cytotoxicity is originated from the dissolution of nano-Pt followed by the release of highly toxic Pt ions during the corrosion process. Additionally, the limiting autophagy induction by nano-Pt might prevent cancer cells from acquiring autophagy-related drug resistance. With such advantages, the possibility of further autophagy-related drug resistance could be substantially reduced or even eliminated in cancer cells treated with nano-Pt. Moreover, nano-Pt is demonstrated to kill cisplatin-resistant cancer cells not only by inducing apoptosis but also by inducing necrosis for pro-inflammatory/inflammatory responses. Thus, nano-Pt treatment might bring additional therapeutic benefits by regulating immunological responses in tumor microenvironment. These findings support the idea that utilizing nano-Pt for its cytotoxic effects might potentially benefit patients with cisplatin resistance in clinical chemotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigation of a new pH-responsive nanoparticulate pore former for controlled release enteric coating with improved processability and stability.

    PubMed

    Chen, Kuan; Chang, Hao Han R; Shalviri, Alireza; Li, Jason; Lugtu-Pe, Jamie Anne; Kane, Anil; Wu, Xiao Yu

    2017-11-01

    Water-soluble polymers are often used as pore formers to tailor permeability of film-forming hydrophobic polymers on coated dosage forms. However, their addition to a coating formulation could significantly increase the viscosity thus making the coating process difficult. Moreover, the dissolution of pore formers after oral administration could compromise film integrity resulting in undesirable, inconsistent release profiles. Therefore, a non-leaching, pH-responsive nanoparticulate pore former is proposed herein to preserve film integrity and maintain pH-dependent permeability. Poly(methacrylic acid)-polysorbate 80-grafted-starch terpolymer nanoparticles (TPNs) were incorporated within an ethylcellulose (EC) film (TPN-EC) by casting or spray coating. TPNs at 10%wt (pore former level) only increased viscosity of EC coating suspension slightly while conventional pore formers increased the viscosity by 490-11,700%. Negligible leaching of TPNs led to superior mechanical properties of TPN-EC films compared to Eudragit® L-EC films. As pH increased from 1.2 to 6.8, TPN-EC films with 10% pore former level exhibited an 8-fold higher diltiazem permeability compared to Eudragit® L-EC films. The pH-dependent drug release kinetics of diltiazem HCl beads coated with TPN-EC films was tunable by adjusting the pore former level. These results suggest that the TPNs are promising pH-sensitive nanoparticulate pore formers in EC-coated dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Barry, Louse; Copley, Mark; Holmes, Justin D.; Otway, David J.; Kazakova, Olga; Morris, Michael A.

    2007-12-01

    Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO 2:MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas.

  5. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.

    PubMed

    Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K

    2012-04-01

    Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. <0.45 μm) iron. Since coagulation and sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH < 4.4, activities of Fe(iii) are strongly and negatively correlated with pH. Geochemical modelling suggests that the activity of Fe(iii) is controlled by the solubility of hydrous ferric oxides and oxyhydroxysulfates, supported by scanning and transmission electron microscopic analysis of solids. Nevertheless, the waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete

  6. Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite.

    PubMed

    Kilian, Olaf; Wenisch, Sabine; Karnati, Srikanth; Baumgart-Vogt, Eveline; Hild, Anne; Fuhrmann, Rosemarie; Jonuleit, Tarja; Dingeldein, Elvira; Schnettler, Reinhard; Franke, Ralf-Peter

    2008-01-01

    The microvascularization of metaphyseal bone defects filled with nanoparticulate, biodegradable hydroxyapatite biomaterial with and without platelet factors enrichment was investigated in a minipig model. Results from morphological analysis and PECAM-1 immunohistochemistry showed the formation of new blood vessels into the bone defects by sprouting and intussusception of pre-existing ones. However, no significant differences were observed in the microvascularization of the different biomaterials applied (pure versus platelet factors-enriched hydroxyapatite), concerning the number of vessels and their morphological structure at day 20 after operation. The appearance of VEGFR-2 positive endothelial progenitor cells in the connective tissue between hydroxyapatite particles was also found to be independent from platelet factors enrichment of the hydroxyapatite bone substitute. In both groups formation of lymphatic vessels was detected with a podoplanin antibody. No differences were noted between HA/PLF- and HA/PLF+ implants with respect to the podoplanin expression level, the staining pattern or number of lymphatic vessels. In conclusion, the present study demonstrates different mechanisms of blood and lymphatic vessel formation in hydroxyapatite implants in minipigs.

  7. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  8. Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in vivo.

    PubMed

    Sieber, Sandro; Grossen, Philip; Detampel, Pascal; Siegfried, Salome; Witzigmann, Dominik; Huwyler, Jörg

    2017-10-28

    Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    PubMed

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.

  10. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema.

    PubMed

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol Lg; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William Ka; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-10-05

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c(+) lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers.

  11. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    PubMed

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-05-21

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  12. Three-dimensional anode engineering for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  13. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    PubMed

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants

    PubMed Central

    Hanson, Melissa C.; Crespo, Monica P.; Abraham, Wuhbet; Moynihan, Kelly D.; Szeto, Gregory L.; Chen, Stephanie H.; Melo, Mariane B.; Mueller, Stefanie; Irvine, Darrell J.

    2015-01-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy. PMID:25938786

  15. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants.

    PubMed

    Hanson, Melissa C; Crespo, Monica P; Abraham, Wuhbet; Moynihan, Kelly D; Szeto, Gregory L; Chen, Stephanie H; Melo, Mariane B; Mueller, Stefanie; Irvine, Darrell J

    2015-06-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy.

  16. Self-assembled Lyotropic Liquid Crystalline Phase Behavior of Monoolein-Capric Acid-Phospholipid Nanoparticulate Systems.

    PubMed

    Zhai, Jiali; Tran, Nhiem; Sarkar, Sampa; Fong, Celesta; Mulet, Xavier; Drummond, Calum J

    2017-03-14

    We report here the lyotropic liquid crystalline phase behavior of two lipid nanoparticulate systems containing mixtures of monoolein, capric acid, and saturated diacyl phosphatidylcholines dispersed by the Pluronic F127 block copolymer. Synchrotron small-angle X-ray scattering (SAXS) was used to screen the phase behavior of a library of lipid nanoparticles in a high-throughput manner. It was found that adding capric acid and phosphatidylcholines had opposing effects on the spontaneous membrane curvature of the monoolein lipid layer and hence the internal mesophase of the final nanoparticles. By varying the relative concentration of the three lipid components, we were able to establish a library of nanoparticles with a wide range of mesophases including at least the inverse bicontinuous primitive and double diamond cubic phases, the inverse hexagonal phase, the fluid lamellar phase, and possibly other phases. Furthermore, the in vitro cytotoxicity assay showed that the endogenous phospholipid-containing nanoparticles were less toxic to cultured cell lines compared to monoolein-based counterparts, improving the potential of the nonlamellar lipid nanoparticles for biomedical applications.

  17. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema

    PubMed Central

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol LG; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William KA; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-01-01

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c+ lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers. DOI: http://dx.doi.org/10.7554/eLife.09623.001 PMID:26437452

  18. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell.

    PubMed

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-22

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode.

  19. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

    PubMed Central

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-01

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode. PMID:24448514

  20. Next Generation Catalyst Engineering via Support Modification

    DTIC Science & Technology

    2016-01-21

    the effect of specific N functionalities on the stability of PtRu. DFT calculations show that N-defects such as pyrrolic and pyridinic N enhance the...stability of Pt in PtRu and that pyrrolic N improves the stability of PtRu by stabilizing both Pt and Ru. Hence, a balance between pyrrolic and

  1. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  2. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  3. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation.

    PubMed

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K; Mitra, Ashim K

    2011-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.

  4. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation

    PubMed Central

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K.; Mitra, Ashim K.

    2015-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine–valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins. PMID:20939702

  5. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    PubMed

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a

  7. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating

    PubMed Central

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2016-01-01

    The primary objective of this research was to evaluate the extent of mechanical degradation on TiO2 nanotubes on Ti with and without nano-particulate silver coating using two different lengths of TiO2 nanotubes- 300nm and ~ 1µm, which were fabricated on commercially pure Titanium (cp-Ti) rods using anodization method using two different electrolytic mediums - (1) deionized (DI) water with 1% HF, and (2) ethylene glycol with 1% HF, 0.5 wt%. NH4F and 10% DI water. Nanotubes fabricated rods were implanted into equine cadaver bone to evaluate mechanical damage at the surface. Silver was electrochemically deposited on these nanotubes and using a release study, silver ion concentrations were measured before and after implantation, followed by surface characterization using a Field Emission Scanning Electron Microscope (FESEM). In vitro cell-material interaction study was performed using human fetal osteoblast cells (hFOB) to understand the effect of silver coating using an MTT assay for proliferation and to determine any cytotoxic effect on the cells and to study its biocompatibility. No significant damage due to implantation was observed for nanotubes up to ~1 µm length under current experimental conditions. Cell-materials interaction showed no cytotoxic effects on the cells due to silver coating and anodization of samples. PMID:27017285

  8. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  9. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jie; Cullen, David A.; Forest, Robert V.

    2015-01-15

    The sluggish kinetics of methanol oxidation reaction (MOR) is a major barrier to the commercialization of direct methanol fuel cells (DMFCs). In this study, we report a facile synthesis of platinum–ruthenium nanotubes (PtRuNTs) and platinum–ruthenium-coated copper nanowires (PtRu/CuNWs) by galvanic displacement reaction using copper nanowires as a template. The PtRu compositional effect on MOR is investigated; the optimum Pt/Ru bulk atomic ratio is about 4 and surface atomic ratio about 1 for both PtRuNTs and PtRu/CuNWs. Enhanced specific MOR activities are observed on both PtRuNTs and PtRu/CuNWs compared with the benchmark commercial carbon-supported PtRu catalyst (PtRu/C, Hispec 12100). Finally, x-raymore » photoelectron spectroscopy (XPS) reveals a larger extent of electron transfer from Ru to Pt on PtRu/CuNWs, which may lead to a modification of the d-band center of Pt and consequently a weaker bonding of CO (the poisoning intermediate) on Pt and a higher MOR activity on PtRu/CuNWs.« less

  10. Cellular partitioning of nanoparticulate versus dissolved metals in marine phytoplankton.

    PubMed

    Bielmyer-Fraser, Gretchen K; Jarvis, Tayler A; Lenihan, Hunter S; Miller, Robert J

    2014-11-18

    Discharges of metal oxide nanoparticles into aquatic environments are increasing with their use in society, thereby increasing exposure risk for aquatic organisms. Separating the impacts of nanoparticle from dissolved metal pollution is critical for assessing the environmental risks of the rapidly growing nanomaterial industry, especially in terms of ecosystem effects. Metal oxides negatively affect several species of marine phytoplankton, which are responsible for most marine primary production. Whether such toxicity is generally due to nanoparticles or exposure to dissolved metals liberated from particles is uncertain. The type and severity of toxicity depends in part on whether phytoplankton cells take up and accumulate primarily nanoparticles or dissolved metal ions. We compared the responses of the marine diatom, Thalassiosira weissflogii, exposed to ZnO, AgO, and CuO nanoparticles with the responses of T. weissflogii cells exposed to the dissolved metals ZnCl2, AgNO3, and CuCl2 for 7 d. Cellular metal accumulation, metal distribution, and algal population growth were measured to elucidate differences in exposure to the different forms of metal. Concentration-dependent metal accumulation and reduced population growth were observed in T. weissflogii exposed to nanometal oxides, as well as dissolved metals. Significant effects on population growth were observed at the lowest concentrations tested for all metals, with similar toxicity for both dissolved and nanoparticulate metals. Cellular metal distribution, however, markedly differed between T. weissflogii exposed to nanometal oxides versus those exposed to dissolved metals. Metal concentrations were highest in the algal cell wall when cells were exposed to metal oxide nanoparticles, whereas algae exposed to dissolved metals had higher proportions of metal in the organelle and endoplasmic reticulum fractions. These results have implications for marine plankton communities as well as higher trophic levels, since

  11. Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals

    NASA Astrophysics Data System (ADS)

    Figueiredo, Marta C.; Sorsa, Olli; Doan, Nguyet; Pohjalainen, Elina; Hildebrand, Helga; Schmuki, Patrik; Wilson, Benjamin P.; Kallio, Tanja

    2015-02-01

    By using sp group metals as modifiers, the catalytic properties of Pt can be improved toward alcohols oxidation. In this work we report the performance increase of direct alcohol fuel cells (DAFC) fuelled with ethanol or 2-propanol with platinum based anode electrodes modified with Bi and Sb adatoms. For example, by simply adding Sb to the Pt/C based anode ink during membrane electrode assembly fabrication of a direct ethanol fuel cell (DEFC) its performance is improved three-fold, with more than 100 mV increase in the open circuit potential. For the fuel cell fuelled with 2-propanol high power densities are obtained at very high potentials with these catalyst materials suggesting a great improvement for practical applications. Particularly in the case of Pt/C-Bi, the improvement is such that within 0.6 V (from 0.7 to 0.1 V) the power densities are between 7 and 9 mW/cm2. The results obtained with these catalysts are in the same range as those obtained with other bimetallic catalysts comprising of PtRu and PtSn, which are currently considered to be the best for these type of fuel cells and that are obtained by more complicated (and consequently more expensive) methods.

  12. Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid

    In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low

  13. Performance of a passive direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Pereira, J. P.; Falcão, D. S.; Oliveira, V. B.; Pinto, A. M. F. R.

    2014-06-01

    Ethanol emerges as an attractive fuel since it is less toxic and has higher energy density than methanol and can be produced from biomass. Direct ethanol fuel cells (DEFCs) appear as a good choice for producing sustainable energy for portable applications. However, they are still far from attaining acceptable levels of power output, since their performance is affected by the slow electrochemical ethanol oxidation and water and ethanol crossover. In the present work, an experimental study on the performance of a passive DEFC is described. Tailored MEAs (membrane electrode assembly) with different catalyst loadings, anode diffusion layers and membranes were tested in order to select optimal working conditions at high ethanol concentrations and low ethanol crossover. The performance increased with an increase of membrane and anode diffusion layer thicknesses and anode catalyst loading. A maximum power density of 1.33 mW cm-2, was obtained using a Nafion 117 membrane, 4 mg cm-2 of Pt-Ru and 2 mg cm-2 of Pt on the anode and cathode catalyst layers, ELAT as anode diffusion layer, carbon cloth as cathode diffusion layer and an ethanol concentration of 2 M. As far as the authors are aware this is the first work reporting an experimental optimization of passive DEFCs.

  14. Fabrication and Characterization of New Composite Tio2 Carbon Nanofiber Anodic Catalyst Support for Direct Methanol Fuel Cell via Electrospinning Method.

    PubMed

    Abdullah, N; Kamarudin, S K; Shyuan, L K; Karim, N A

    2017-12-06

    Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO 2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr -1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg -1 and 226.75m 2  g -1 PtRu , respectively, compared with the other samples.

  15. Fabrication and Characterization of New Composite Tio2 Carbon Nanofiber Anodic Catalyst Support for Direct Methanol Fuel Cell via Electrospinning Method

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Kamarudin, S. K.; Shyuan, L. K.; Karim, N. A.

    2017-12-01

    Platinum (Pt) is the common catalyst used in a direct methanol fuel cell (DMFC). However, Pt can lead towards catalyst poisoning by carbonaceous species, thus reduces the performance of DMFC. Thus, this study focuses on the fabrication of a new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cells (DMFCs) via electrospinning technique. The distance between the tip and the collector (DTC) and the flow rate were examined as influencing parameters in the electrospinning technique. To ensure that the best catalytic material is fabricated, the nanofiber underwent several characterizations and electrochemical tests, including FTIR, XRD, FESEM, TEM, and cyclic voltammetry. The results show that D18, fabricated with a flow rate of 0.1 mLhr-1 and DTC of 18 cm, is an ultrafine nanofiber with the smallest average diameter, 136.73 ± 39.56 nm. It presented the highest catalyst activity and electrochemical active surface area value as 274.72 mAmg-1 and 226.75m2 g-1 PtRu, respectively, compared with the other samples.

  16. Generation of Oxidants From the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen for the use in Contaminant Remediation

    NASA Astrophysics Data System (ADS)

    Keenan, C. R.; Lee, C.; Sedlak, D. L.

    2007-12-01

    The reaction of zero-valent iron (ZVI) with oxygen can lead to the formation of oxidants, which may be used to transform recalcitrant contaminants including non-polar organics and certain metals. Nanoparticulate iron might provide a practical mechanism of remediating oxygen-containing groundwater and contaminated soil. To gain insight into the reaction mechanism and to quantify the yield of oxidants, experiments were performed with model organic compounds in the presence of nanoparticulate zero-valent iron and oxygen. At pH values below 5, ZVI nanoparticles were oxidized within 30 minutes with a stoichiometry of approximately two Fe0 oxidized per O2 consumed. Using the oxidation of methanol and ethanol to formaldehyde and acetaldehyde, respectively, we found that less than 2% of the consumed oxygen was converted to reactive oxidants under acidic conditions. The yield of aldehydes increased with pH up to pH 7, with maximum oxidant yields of around 5% relative to the mass of ZVI added. The increase of aldehyde yield with pH was attributable to changes in the processes responsible for oxidant production. At pH values below 5, the corrosion of ZVI by oxygen produces hydrogen peroxide, which subsequently reacts with ferrous iron [Fe(II)] via the Fenton reaction. At higher pH values, the aldehydes are produced when Fe(II), the initial product of ZVI oxidation, reacts with oxygen. The decrease in oxidant yield at pH values above 7 may be attributable to precipitation of Fe(II). The oxidation of benzoic acid and 2-propanol to para-hydroxybenzoic acid and acetone, respectively, followed a very different trend compared to the primary alcohols. In both cases, the highest product yields (approximately 2% with respect to ZVI added) were observed at pH 3. Yields decreased with increasing pH, with no oxidized product detected at neutral pH. These results suggest that two different oxidants may be produced by the system: hydroxyl radical (OH-·) at acidic pH and a more selective

  17. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    PubMed

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  18. Single wall carbon nanotube supports for portable direct methanol fuel cells.

    PubMed

    Girishkumar, G; Hall, Timothy D; Vinodgopal, K; Kamat, Prashant V

    2006-01-12

    Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.

  19. Mecanismes de deformation de nanoparticules d'Au par irradiation ionique

    NASA Astrophysics Data System (ADS)

    Harkati Kerbouah, Chahineze

    2011-12-01

    separate ion impacts leads to the anisotropic growth of the silica matrix which contracts in the direction of the beam and elongates in the perpendicular direction. The overlap model of the ionic tracks was used to validate this phenomenon. (3) The deformation of silica generates strains which act on the nanoparticles in the plane perpendicular to the ion trajectory. In order to accommodate these strains, the Au nanoparticles deform in the beam direction. (4) The deformation of nanoparticles occurs each time an ion traverses the gold particle and melts a cylinder around its trajectory. The mobility of the gold atoms was confirmed by a calculation of the equivalent temperature from the deposited energy in the material by incident ions. The scenario above is compatible with our experimental data obtained in the case of the Au/SiO2 nanocomposite. It is further supported by the fact that the Au nanoparticules do not deform when they are integrated in AlAs which is resistant to the deformation. Keywords: ion irradiation, nanoparticles, Au, electronic stopping power, surface plasmon resonance, elongation, silica, aluminum arsenide.

  20. Effects of Ti and TiB2 Nanoparticulates on Room Temperature Mechanical Properties and In Vitro Degradation of Pure Mg

    NASA Astrophysics Data System (ADS)

    Meenashisundaram, Ganesh Kumar; Nai, Mui Hoon; Gupta, Manoj

    Mg 1 vol.% Ti and Mg 1 vol.% TiB2 composites containing Ti (30-50 nm) and TiB2 ( 60 nm) nanoparticulates were successfully synthesized using disintegrated melt deposition technique followed by hot extrusion. In vitro degradation of synthesized pure magnesium and composites were assessed by immersion testing in Dulbecco's Modified Eagle's Medium (DMEM) + 10% Fetal Bovine Serum (FBS) solution for a maximum duration of 28 days. Determination of corrosion rates by weight loss technique reveals that after 28 days of immersion testing, Mg 1 vol.% Ti exhibited the best corrosion resistance followed by pure magnesium and finally by Mg 1 vol.% TiB2 composite. The room temperature mechanical properties of the synthesized composites were found to surpass those of pure magnesium. On tensile and compressive loading, substantial strengthening of pure magnesium was observed with 1 vol.% Ti addition whereas appreciable increase in tensile and compressive fracture strains of pure magnesium was observed with 1 vol.% TiB2 addition.

  1. Three-dimensional multiscale analysis of degradation of nano- and micro-structure in direct methanol fuel cell electrodes after methanol starvation

    NASA Astrophysics Data System (ADS)

    Netzeband, Christian; Arlt, Tobias; Wippermann, Klaus; Lehnert, Werner; Manke, Ingo

    2016-09-01

    This study investigates the ageing effects on the microstructure of the anode catalyst layer of direct methanol fuel cells (DMFC) after complete methanol starvation. To this end the samples of two methanol-depleted membrane electrode assemblies (MEA) have been compared with a pristine reference sample. A three-dimensional characterization of the anode catalyst layer (ACL) structure on a nanometer scale has been conducted by focused ion beam (FIB)/scanning electron microscope (SEM) tomography. The FIB/SEM tomography allows for a detailed analysis of statistic parameters of micro-structured materials, such as porosity, tortuosity and pore size distributions. Furthermore, the SEM images displayed a high material contrast between the heavy catalyst metals (Pt/Ru) and the relatively light carbon support, which made it possible to map the catalyst distribution in the acquired FIB/SEM tomographies. Additional synchrotron X-ray tomographies have been conducted in order to obtain an overview of the structural changes of all the components of a section of the MEAs after methanol depletion.

  2. Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers.

    PubMed

    Kuo, Yung-Chih; Kuo, Chan-Ying

    2008-03-03

    Transport of antiretroviral agents across the blood-brain barrier (BBB) is of key importance to the treatment for the acquired immunodeficiency syndrome (AIDS). In this study, impact of exposure to electromagnetic field (EMF) on the permeability of saquinavir (SQV) across BBB was investigated. The in vitro BBB model was based on human brain-microvascular endothelial cells (HBMEC), and the concentration of SQV in receiver chamber of the transport system was evaluated. Polybutylcyanoacrylate (PBCA), methylmethacrylate-sulfopropylmethacrylate (MMA-SPM), and solid lipid nanoparticle (SLN) were employed as carriers for the delivery systems. Cytotoxicity of SLN decreased as content of cacao butter increased. Power of 5mV was apposite for the study on HBMEC without obvious apoptosis. Square wave produced greater permeability than sine and triangle waves. The carrier order on permeability of SQV across HBMEC monolayer under exposure to EMF was SLN>PBCA>MMA-SPM. Also, a larger frequency, modulation or depth of amplitude modulation (AM), or modulation or deviation of frequency modulation (FM) yielded a greater permeability. Besides, enhancement of permeability by AM wave was more significant than that by FM wave. Transport behavior of SQV across BBB was strongly influenced by the combination of nanoparticulate PBCA, MMA-SPM, and SLN with EMF exposure. This combination would be beneficial to the clinical application to the therapy of AIDS and other brain-related diseases.

  3. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  4. The Production and Export of Bioavailable Iron from Ice Sheets - the Importance of Colloidal and Nanoparticulate Phases

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Wadham, J. L.; Tranter, M.; Raiswell, R.; Benning, L. G.; Statham, P. J.; Tedstone, A.; Nienow, P. W.; Telling, J.; Bagshaw, E.

    2013-12-01

    Glaciers cover approximately 10% of the world's land surface at present, but our knowledge of biogeochemical processes occurring beneath them is still limited, as is our understanding of their impact on downstream ecosystems via the export of nutrients in runoff. Recent work has suggested that glaciers are a primary source of nutrients to near coastal areas(1). For example, macronutrients, such as nitrogen and phosphorus, and micronutrients, such as iron, may support primary production(2,3). Nutrient limitation of primary producers is known to be prevalent in large sectors of the world's oceans and iron is a significant limiting nutrient in Polar waters(4,5). Significantly, large oceanic algal blooms have been observed in polar areas where glacial influence is large(6,7). Our knowledge of iron speciation, concentrations and export dynamics in glacial meltwater is limited due, in part, to problems associated with collecting trace measurements in remote field locations. For example, recent work has indicated large uncertainty in 'dissolved' meltwater iron concentrations (0.2 - 4000 μM(8,9)). There is currently a dearth of information about labile nanoparticulate iron in glacial meltwaters, as well as export dynamics from large ice sheet catchments. Existing research has focused on small catchment examples(8,10), which behave differently to larger catchments(11). Presented here is the first time series of daily variations in meltwater iron concentrations (dissolved, filterable colloidal/nanoparticulate and bioavailable suspended sediment bound) from two large contrasting glacial catchments in Greenland over the 2012 and 2013 summer melt seasons. We also present the first estimates of iron concentrations in Greenlandic icebergs, which have been identified as hot spots of biological activity in the open ocean(12,13). Budgets for ice sheets based on our data demonstrate the importance of glaciers in global nutrient cycles, and reveal a large and previously under

  5. Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: The role of extra Ru

    NASA Astrophysics Data System (ADS)

    Bai, Lei

    2018-03-01

    Platinum-ruthenium (PtRu) nanocubes and PtRu/Ru heterostructure via epitaxial growth were synthesized by varying the amount of Ru precursor. As model catalysts, the PtRu/Ru heterostructure demonstrated the highest catalytic performance in electrooxidation of methanol, which was possibly due to the more hydroxyl species produced from the extra Ru nanoparticles as well as enhanced adsorption of methanol of PtRu alloys in the PtRu/Ru heterostructure. The catalytic performance of the catalysts was closely related with the structure, which was well characterized by a series of methods. It was expected that the present work could provide a new insight for the synthesis of PtRu based nanocatalysts.

  6. Speciation and Health Risks of Atmospheric Nanoparticulates

    NASA Astrophysics Data System (ADS)

    Nguyen, Kennedy

    Exposure to air pollution causes several adverse health effects such as asthma, respiratory disease, cardiovascular disease, cancer, and premature death; and the San Joaquin Valley is one of the most heavily polluted regions in the US. The mountains that surround the valley allow air pollution, including particulate matter, to remain stagnant, prolonging the exposure of valley populations to it. The primary sources of particulate matter for this region are aluminosilicate dust from agricultural activities, and soot emissions from diesel trucks and vehicular traffic. A substantial fraction of emitted material is nanoparticulate matter (<100 nm), which contains trace iron and polycyclic aromatic hydrocarbons that can traverse into human organs via the lungs, initiate inflammation, and lead to disease. The traditional approach of reducing the total mass of emitted material is beginning to reach its limit of effectiveness for mitigating the negative health impacts of particulate matter. There is a need for chemical speciation of particulate matter that will allow the identification of the chemical and physical properties of particulates by source, the creation of well-controlled proxy particles with those properties for testing in cell culture studies, and correlation of particulate properties and sources with their negative health impacts. These results can help identify the sources of air pollution to prioritize for mitigation for the greatest health benefit. In addition, further chemical speciation can help monitor the results of such mitigation efforts. Here, natural particulate matter samples from Merced and Fresno, two cities in the San Joaquin Valley, were analyzed. Ultrafine particles present were 40 to 50 nm in diameter and mostly composed of aluminum, silicon, oxygen, and iron hydroxide. XAS data confirmed the presence of the aluminosilicate as smectite clay and the iron hydroxide as ferrihydrite. Furthermore, a chemical speciation study investigated

  7. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  8. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szebeni, Janos, E-mail: jszebeni2@gmail.com; Storm, Gert

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs.more » long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.« less

  9. Biocompatibility and safety of a hybrid core-shell nanoparticulate OP-1 delivery system intramuscularly administered in rats.

    PubMed

    Haidar, Ziyad S; Hamdy, Reggie C; Tabrizian, Maryam

    2010-04-01

    A hybrid, localized and release-controlled delivery system for bone growth factors consisting of a liposomal core incorporated into a shell of alternating layer-by-layer self-assembled natural polyelectrolytes has been formulated. Hydrophilic, monodisperse, spherical and stable cationic nanoparticles (< or =350 nm) with an extended shelf-life resulted. Cytocompatibility was previously assayed with MC3T3-E1.4 mouse preosteoblasts showing no adverse effects on cell viability. In this study, the in vivo biocompatibility of unloaded and loaded nanoparticles with osteogenic protein-1 or OP-1 was investigated. Young male Wistar rats were injected intramuscularly and monitored over a period of 10 weeks for signs of inflammation and/or adverse reactions. Blood samples (600 microL/collection) were withdrawn followed by hematological and biochemical analysis. Body weight changes over the treatment period were noted. Major organs were harvested, weighed and examined histologically for any pathological changes. Finally, the injection site was identified and examined immunohistochemically. Overall, all animals showed no obvious toxic health effects, immune responses and/or change in organ functions. This hybrid core-shell nanoparticulate delivery system localizes the effect of the released bioactive load within the site of injection in muscle with no significant tissue distress. Hence, a safe and promising carrier for therapeutic growth factors and possibly other biomolecules is presented. 2009 Elsevier Ltd. All rights reserved.

  10. Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters.

    PubMed

    Zhou, Xiao-Xia; Lai, Yu-Jian; Liu, Rui; Li, Sha-Sha; Xu, Jing-Wen; Liu, Jing-Fu

    2017-12-05

    Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag + , aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 μg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.

  11. Electrical enhancement of direct methanol fuel cells by metal-plasma ion implantation Pt-Ru/C multilayer catalysts.

    PubMed

    Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan

    2009-02-01

    Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.

  12. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions.

    PubMed

    Nesselberger, Markus; Ashton, Sean J; Wiberg, Gustav K H; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  13. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging

    PubMed Central

    Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H

    2013-01-01

    Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964

  14. Spray drying from organic solvents to prepare nanoporous/nanoparticulate microparticles of protein: excipient composites designed for oral inhalation.

    PubMed

    Ní Ógáin, Orla; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2012-09-01

    The aim of this study was to determine if spray-drying could successfully produce microparticles containing the model protein trypsin in a form suitable for inhalation. Trypsin was spray-dried with raffinose from a methanol : n-butyl acetate solvent system (MeOH : BA). The solvent system was then adjusted to include water, and trypsin was co-spray-dried with raffinose, trehalose or hydroxpropyl-β-cyclodextrin. The spray-dried products were characterised by SEM, XRD, DSC, TGA and FTIR. Protein biological activity and in-vitro deposition of trypsin : excipient nanoporous/nanoparticulate microparticles (NPMPs) was also assessed. The inclusion of water in a MeOH : BA solvent system allowed for the successful production of NPMPs of trypsin : excipient by spray-drying. Trypsin formulated as trypsin : excipient NPMPs retained biological activity on processing and showed no deterioration in activity or morphological characteristics when stored with desiccant at either 4 or 25°C. Hydroxpropyl-β-cyclodextrin showed advantages over the sugars in terms of producing powders with appropriate density and with greater physical stability under high-humidity conditions. Fine particle fractions of between 41 and 45% were determined for trypsin : excipient NPMPs. NPMPs of trypsin : excipient systems can be produced by spray-drying by adjustment of the solvent system to allow for adequate solubility of trypsin. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  15. Nano-structured Platinum-based Catalysts for the Complete Oxidation of Ethylene Glycol and Glycerol

    NASA Astrophysics Data System (ADS)

    Falase, Akinbayowa

    Direct alcohol fuel cells are a viable alternative to the traditional hydrogen PEM fuel cell. Fuel versatility, integration with existing distribution networks, and increased safety when handling these fuels increases their appeal for portable power applications. In order to maximize their utility, the liquid fuel must be fully oxidized to CO2 so as to harvest the full amount of energy. Methanol and ethanol are widely researched as potential fuels to power these devices, but methanol is a toxic substance, and ethanol has a much lower energy density than other liquids such as gasoline or glucose. Oxidation of complex fuels is difficult to realize, due to difficulty in breaking carbon-carbon bonding and poisoning of the catalysts by oxidative byproducts. In order to achieve the highest efficiency, an anode needs to be engineered in such a way as to maximize activity while minimizing poisoning effects of reaction byproducts. We have engineered an anode that uses platinum-based catalysts that is capable of completely oxidizing ethylene glycol and glycerol in neutral and alkaline media with little evidence of CO poisoning. We have constructed a hybrid anode consisting of a nano-structured PtRu electrocatayst with an NAD-dependent alcohol dehydrogenase for improved oxidation of complex molecules. A nano-structured PtRu catalyst was used to oxidize ethylene glycol and glycerol in neutral media. In situ infrared spectroscopy was used to verify complete oxidation via CO2 generation. There was no evidence of poisoning by CO species. A pH study was performed to determine the effect of pH on oxidative current. The peak currents did not trend at 60 mV/pH unit as would be expected from the Nernst equation, suggesting that adsorption of fuel to the surface of the electrode is not an electron-transfer step. We synthesized nano-structured PtRu, PtSn, and PtRuSn catalysts for oxidation of ethylene glycol and glycerol in alkaline media. The PtRu electrocatalyst the highest oxidative

  16. Formulation, stability and pharmacokinetics of sugar-based salmon calcitonin-loaded nanoporous/nanoparticulate microparticles (NPMPs) for inhalation.

    PubMed

    Amaro, Maria Inês; Tewes, Frederic; Gobbo, Oliviero; Tajber, Lidia; Corrigan, Owen I; Ehrhardt, Carsten; Healy, Anne Marie

    2015-04-10

    A challenge exists to produce dry powder inhaler (DPI) formulations with appropriate formulation stability, biological activity and suitable physicochemical and aerosolisation characteristics that provide a viable alternative to parenteral formulations. The present study aimed to produce sugar-based nanoporous/nanoparticulate microparticles (NPMPs) loaded with a therapeutic peptide - salmon calcitonin (sCT). The physicochemical properties of the powders and their suitability for pulmonary delivery of sCT were determined. Production of powders composed of sCT loaded into raffinose or trehalose with or without hydroxypropyl-β-cyclodextrin was carried out using a laboratory scale spray dryer. Spray dried microparticles were spherical, porous and of small geometric size (≤2 μm). Aerodynamic assessment showed that the fine particle fraction (FPF) less than 5 μm ranged from 45 to 86%, depending on the formulation. The mass median aerodynamic diameter (MMAD) varied between 1.9 and 4.7 μm. Compared to unprocessed sCT, sCT:raffinose composite systems presented a bioactivity of approximately 100% and sCT:trehalose composite systems between 70-90% after spray drying. Storage stability studies demonstrated composite systems with raffinose to be more stable than those containing trehalose. These sugar-based salmon calcitonin-loaded NPMPs retain reasonable sCT bioactivity and have micromeritic and physicochemical properties which indicate their suitability for pulmonary delivery. Formulations presented a similar pharmacokinetic profile to sCT solution. Hence the advantage of a dry powder formulation is its non-invasive delivery route and ease of administration of the sCT. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry.

    PubMed

    Uskoković, Vuk

    2013-10-01

    This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald-Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly.

  18. Observation of methanol behavior in fuel cells in situ by NMR spectroscopy.

    PubMed

    Han, Oc Hee; Han, Kee Sung; Shin, Chang Woo; Lee, Juhee; Kim, Seong-Soo; Um, Myung Sup; Joh, Han-Ik; Kim, Soo-Kil; Ha, Heung Yong

    2012-04-16

    The chemical conversion of methanol in direct methanol fuel cells was followed in situ by NMR spectroscopy. Comparing data of the methanol oxidation on Pt and PtRu anode catalysts allowed the role of Ru in both Faradaic and non-Faradaic reactions to be investigated. The spatial distributions of chemicals could also be determined. (Picture: T1-T4=inlet and outlet tubes.). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Investigations of direct methanol fuel cell (DMFC) fading mechanisms

    NASA Astrophysics Data System (ADS)

    Sarma, Loka Subramanyam; Chen, Ching-Hsiang; Wang, Guo-Rung; Hsueh, Kan-Lin; Huang, Chiou-Ping; Sheu, Hwo-Shuenn; Liu, Ding-Goa; Lee, Jyh-Fu; Hwang, Bing-Joe

    In this report, we present the microscopic investigations on various fading mechanisms of a direct methanol fuel cell (DMFC). High energy X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopic analysis were applied to a membrane-electrode-assembly (MEA) before and after fuel cell operation to figure out the various factors causing its fading. High energy XRD analysis of the fresh and faded MEA revealed that the agglomeration of the catalyst particles in the cathode layer of the faded MEA was more significant than in the anode layer of the faded MEA. The XAS analysis demonstrated that the alloying extent of Pt (J Pt) and Ru (J Ru) in the anode catalyst was increased and decreased, respectively, from the fresh to the faded MEA, indicating that the Ru environment in the anode catalyst was significantly changed after the fuel cell operation. Based on the X-ray absorption edge jump measurements at the Ru K-edge on the anode catalyst of the fresh and the faded MEA it was found that Ru was dissolved from the Pt-Ru catalyst after the fuel cell operation. Both the Ru K-edge XAS and EDX analysis on the cathode catalyst layer of the faded MEA confirms the presence of Ru environment in the cathode catalyst due to the Ru crossover from the anode to the cathode side. The changes in the membrane and the gas diffusion layer (GDL) after the fuel cell operation were observed from the Raman spectroscopy analysis.

  20. Micro-CT Based Experimental Liver Imaging Using a Nanoparticulate Contrast Agent: A Longitudinal Study in Mice

    PubMed Central

    Boll, Hanne; Nittka, Stefanie; Doyon, Fabian; Neumaier, Michael; Marx, Alexander; Kramer, Martin; Groden, Christoph; Brockmann, Marc A.

    2011-01-01

    Background Micro-CT imaging of liver disease in mice relies on high soft tissue contrast to detect small lesions like liver metastases. Purpose of this study was to characterize the localization and time course of contrast enhancement of a nanoparticular alkaline earth metal-based contrast agent (VISCOVER ExiTron nano) developed for small animal liver CT imaging. Methodology ExiTron nano 6000 and ExiTron nano 12000, formulated for liver/spleen imaging and angiography, respectively, were intravenously injected in C57BL/6J-mice. The distribution and time course of contrast enhancement were analysed by repeated micro-CT up to 6 months. Finally, mice developing liver metastases after intrasplenic injection of colon carcinoma cells underwent longitudinal micro-CT imaging after a single injection of ExiTron nano. Principal Findings After a single injection of ExiTron nano the contrast of liver and spleen peaked after 4–8 hours, lasted up to several months and was tolerated well by all mice. In addition, strong contrast enhancement of abdominal and mediastinal lymph nodes and the adrenal glands was observed. Within the first two hours after injection, particularly ExiTron nano 12000 provided pronounced contrast for imaging of vascular structures. ExiTron nano facilitated detection of liver metastases and provided sufficient contrast for longitudinal observation of tumor development over weeks. Conclusions The nanoparticulate contrast agents ExiTron nano 6000 and 12000 provide strong contrast of the liver, spleen, lymph nodes and adrenal glands up to weeks, hereby allowing longitudinal monitoring of pathological processes of these organs in small animals, with ExiTron nano 12000 being particularly optimized for angiography due to its very high initial vessel contrast. PMID:21984939

  1. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry1

    PubMed Central

    Uskoković, Vuk

    2013-01-01

    This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald–Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly. PMID:24490052

  2. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.

    PubMed

    Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang

    2013-10-01

    Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    NASA Astrophysics Data System (ADS)

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-10-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions.

  4. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    PubMed Central

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-01-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions. PMID:27759108

  5. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  6. Investigations on pharmacokinetics and biodistribution of polymeric and solid lipid nanoparticulate systems of atypical antipsychotic drug: effect of material used and surface modification.

    PubMed

    Joseph, Emil; Saha, Ranendra N

    2017-04-01

    The present study focuses on the effect of material used for the preparation of nanoparticulate (NP) systems and surface modification on the pharmacokinetics and biodistribution of atypical antipsychotic, olanzapine (OLN). NP carriers of OLN were prepared from two different materials such as polymer (polycaprolactone) and solid lipid (Glyceryl monostearate). These systems were further surface modified with surfactant, Polysorbate 80 and studied for pharmacokinetics-biodistribution in Wistar rats using in-house developed bioanalytical methods. The pharmacokinetics and biodistribution studies resulted in a modified and varied distribution of NP systems with higher area under curve (AUC) values along with prolonged residence time of OLN in the rat blood circulation. The distribution of OLN to the brain was significantly enhanced with surfactant surface-modified NP systems, followed by nonsurface-modified NP formulations as compared with pure OLN solution. Biodistribution study demonstrated a low uptake of obtained NP systems by kidney and heart, thereby decreasing the nephrotoxicity and adverse cardiovascular effects. By coating the NP with surfactant, uptake of macrophage was found to be reduced. Thus, our studies confirmed that the biodistribution OLN could be modified effectively by incorporating in NP drug delivery systems prepared from different materials and surface modifications. A judicious selection of materials used for the preparation of delivery carriers and surface modifications would help to design a most efficient drug delivery system with better therapeutic efficacy.

  7. Nanoparticulated heat-stable (STa) and heat-labile B subunit (LTB) recombinant toxin improves vaccine protection against enterotoxigenic Escherichia coli challenge in mouse.

    PubMed

    Deng, Guangcun; Zeng, Jin; Jian, Minjie; Liu, Wenmiao; Zhang, Zhong; Liu, Xiaoming; Wang, Yujiong

    2013-02-01

    Enterotoxigenic Escherichia coli (ETEC) remains a major cause of diarrheic disease in developing areas, for which there is no effective vaccine available. In this study, we genetically engineered a recombinant heat-stable enterotoxin (STa) coupled to the subunit B of heat-labile enterotoxin (LTB). This fusion protein, STa-LTB, possesses a single amino acid substitution at position 14 of STa. Our data demonstrates that the enterotoxicity of STa in STa-LTB was dramatically reduced. A gelatin nanovaccine candidate was prepared using the purified STa-LTB fusion protein characterized with an entrapment efficiency of 84.88 ± 6.37% and smooth spheres size ranges of 80-200 nm. Antigen-specific antibody responses against STa-LTB and STa in the sera and the intestinal mucus respectively were used to test the immunogenicity of the nanovaccine. This vaccine was further screened in mice by its ability to elicit neutralizing antibodies against STa and protect animals from the challenge with ETEC in mice. The STa-LTB nanoparticles delivered demonstrated a capacity to induce significantly higher and long-lasting antibody responses and increased immune protection against ETEC challenge relative to the control STa-LTB vaccine absorbed in conventional aluminum hydrate salt (p < 0.01). These results warrant the further studies of the development of a novel nanoparticulate vaccine as a broad-spectrum vaccine against ETEC infection. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-04-01

    The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.

  9. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  10. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    PubMed Central

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  11. Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance

    NASA Astrophysics Data System (ADS)

    Park, Jong Cheol; Choi, Chang Hyuck

    2017-08-01

    Non-precious metal catalysts (typically Fe(Co)-N-C catalysts) have been widely investigated for use as cost-effective cathode materials in low temperature fuel cells. Despite the high oxygen reduction activity and methanol-tolerance of graphene-based Fe(Co)-N-C catalysts in an acidic medium, their use in direct methanol fuel cells (DMFCs) has not yet been successfully implemented, and only a few studies have investigated this topic. Herein, we synthesized a nano-sized graphene-derived Fe/Co-N-C catalyst by physical ball-milling and a subsequent chemical modification of the graphene oxide. Twelve membrane-electrode-assemblies are fabricated with various cathode compositions to determine the effects of the methanol concentration, ionomer (i.e. Nafion) content, and catalyst loading on the DMFC performance. The results show that a graphene-based catalyst is capable of tolerating a highly-concentrated methanol feed up to 10.0 M. The optimized electrode composition has an ionomer content and catalyst loading of 66.7 wt% and 5.0 mg cm-2, respectively. The highest maximum power density is ca. 32 mW cm-2 with a relatively low PtRu content (2 mgPtRu cm-2). This study overcomes the drawbacks of conventional graphene-based electrodes using a nano-sized graphene-based catalyst and further shows the feasibility of their potential applications in DMFC systems.

  12. Synthesis and Characterization of Platinum-Ruthenium-Tin Catalysts

    NASA Astrophysics Data System (ADS)

    Uffalussy, Karen

    Magnesia-supported trimetallic Pt-Ru-Sn catalysts prepared through a cluster and a conventional synthetic route have been investigated in terms of their structural properties and their catalytic activity for the hydrogenation of citral and crotonaldehyde. FTIR results indicate that the majority of the stabilizing ligands remain attached to the PtRu5(μ-SnPh 2)(C)(CO)15 cluster used following impregnation onto the MgO support. Under H2 reduction conditions, partial and full ligand removal are both observed at 473 and 573 K, respectively. HRSTEM analysis shows that cluster-derived samples exhibit significantly smaller average metal particle sizes, as well as narrower particle size distributions than the corresponding conventionally prepared ones. EDX measurements show that in the cluster-derived catalysts, the majority of the metal particles present are trimetallic in nature, with metal compositions similar to those of the original cluster. In contrast, the conventionally prepared materials contain mostly bimetallic and monometallic particles with variable compositions. XPS was used to determine how the variation in method of Sn addition to bimetallic Pt-Ru affects the electronic state for the trimetallic Pt-Ru-Sn/MgO system prepared by impregnation using multimetallic clusters, metal-salts, and the combination of both precursor types. Results show that the PtRu5Sn/MgO material has a significantly higher percentage of Sn0 in comparison to Pt-Ru-Sn/MgO and PtRu5-Sn/MgO, and a corresponding shift in both Pt and Ru peaks can be correlated to this relative change in Sn oxidation state. The formation of smaller metal particles and electronic modification of Pt and Ru by Sn in the cluster-derived catalysts and the presence of the three metals in these particles in close proximity result in higher activity and selectivity to the unsaturated alcohols for the hydrogenation of both citral and crotonaldehyde.

  13. Application of Artificial Neural Networks in the Design and Optimization of a Nanoparticulate Fingolimod Delivery System Based on Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate).

    PubMed

    Shahsavari, Shadab; Rezaie Shirmard, Leila; Amini, Mohsen; Abedin Dokoosh, Farid

    2017-01-01

    Formulation of a nanoparticulate Fingolimod delivery system based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was optimized according to artificial neural networks (ANNs). Concentration of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVA and amount of Fingolimod is considered as the input value, and the particle size, polydispersity index, loading capacity, and entrapment efficacy as output data in experimental design study. In vitro release study was carried out for best formulation according to statistical analysis. ANNs are employed to generate the best model to determine the relationships between various values. In order to specify the model with the best accuracy and proficiency for the in vitro release, a multilayer percepteron with different training algorithm has been examined. Three training model formulations including Levenberg-Marquardt (LM), gradient descent, and Bayesian regularization were employed for training the ANN models. It is demonstrated that the predictive ability of each training algorithm is in the order of LM > gradient descent > Bayesian regularization. Also, optimum formulation was achieved by LM training function with 15 hidden layers and 20 neurons. The transfer function of the hidden layer for this formulation and the output layer were tansig and purlin, respectively. Also, the optimization process was developed by minimizing the error among the predicted and observed values of training algorithm (about 0.0341). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    PubMed

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study.

  15. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  16. Direct access to highly crystalline mesoporous nano TiO2 using sterically bulky organic acid templates

    NASA Astrophysics Data System (ADS)

    Bakre, Pratibha V.; Tilve, S. G.

    2018-05-01

    Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.

  17. An Overview on the Field of Micro- and Nanotechnologies for Synthetic Peptide-Based Vaccines

    PubMed Central

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa Maria; Pedraz, José Luis

    2011-01-01

    The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity. PMID:21773041

  18. Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio).

    PubMed

    Saffari, Sadegh; Keyvanshokooh, Saeed; Zakeri, Mohammad; Johari, Seyed Ali; Pasha-Zanoosi, Hossein; Mozanzadeh, Mansour Torfi

    2018-04-16

    An 8-week feeding trial was conducted to compare the effects of supplementing (0.7 mg kg -1 ) different dietary selenium (Se) sources including organic [selenomethionine (SeMet)], inorganic [sodium selenite (Na 2 SeO 3 )], and nanoparticulate Se (nano-Se) on physiological responses of common carp, Cyprinus carpio juveniles (9.7 ± 0.1 g). Basal diet without Se supplementation used as control. Fish fed nano-Se supplemented diet had the highest weight gain (97.2 ± 10.8%) and feed efficiency ratio (42.4 ± 0.8%). Intestinal villi height was significantly taller in fish fed nano-Se diet than in the control group in both foregut and midgut sections. Serum glutathione peroxidase and superoxide dismutase activities were significantly higher in nano-Se and SeMet groups than in control and sodium selenite groups. Fish fed Se-supplemented diets had greater red blood cell counts and hematocrit and hemoglobin values than the control group (P < 0.05). Nano-Se and SeMet groups showed a significant increase in white blood cell counts, neutrophil percentage, and serum lysozyme activity than the other groups. Fish fed nano-Se diet had the highest serum hemolytic activity, total immunoglobulin, and total protein and albumin contents, as well as the lowest serum total cholesterol and low density lipoprotein levels (P < 0.05). Overall, significant improvements in growth performance, feed utilization, intestinal morphology, and hemato-immunological and serum biochemical parameters of common carp juveniles suggest nano-Se as an efficient source for providing dietary Se in this species.

  19. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the

  20. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.

  1. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  2. The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants.

    PubMed

    Ma, Jinxing; He, Di; Collins, Richard N; He, Chuanshu; Waite, T David

    2016-11-15

    A comparative study of the ability of microparticulate zerovalent iron (mZVI) and nanoparticulate zerovalent iron (nZVI) to oxidize a target compound (in this study, 14 C-labelled formate) under aerobic conditions has been conducted with specific consideration given to differences in reaction mechanisms. Results of Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy showed that mZVI underwent a slow transformation to ferrihydrite while nZVI, in contrast, rapidly transformed into lepidocrocite. The behavior of mZVI (compared to nZVI) could be attributed to either (i) a lower reactivity with oxygen and/or water, (ii) surface passivation by ferrihydrite resulting in reduced electron conductivity, and/or (iii) the relatively low concentration of Fe(II) which, in the case of nZVI, catalyzed the transformation of ferrihydrite to lepidocrocite. The influence of these structural transformations on contaminant removal was profound with the ferrihydrite that formed on mZVI inducing rapid adsorption of formate and moderating reactions of mZVI with oxygen and/or water. Although surface passivation of mZVI was significant, the effectiveness of the ensuing heterogeneous redox reactions in the mZVI/O 2 system, as characterized by the molar ratio of oxidized formate to consumed Fe(0) (i.e., 13.7 ± 0.8 μM/M), was comparable to that for nZVI (16.5 ± 1.4 μM/M). The results of this study highlight the potential of mZVI for the oxidative degradation of target organics in preference to nZVI despite its lower intrinsic reactivity though some means (either natural or engineered) of inducing continual depassivation of the iron oxyhydroxide-coated mZVI would be required in order to maintain ongoing oxidant production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Exacerbation of innate immune response in mouse primary cultured sertoli cells caused by nanoparticulate TiO2 involves the TAM/TLR3 signal pathway.

    PubMed

    Wu, Nan; Hong, Fashui; Zhou, Yingjun; Wang, Yajing

    2017-01-01

    Sertoli cells provide appropriate mitogens, differentiation factors and sources of energy for developing germ cells throughout the lifetime of males, and protect these germ cells from harmful agents and from the host's own immune system. Therefore, reductions in the rate and quality of spermatogenesis caused by nanoparticulate titanium dioxide (nano-TiO 2 ) may be closely involved in the immunoregulation of Sertoli cells. However, the underlying mechanism of this response is still unclear. To address this issue, we used mouse primary cultured Sertoli cells to examine the toxic effects of nano-TiO 2 via alterations in morphology, cell viability, and activation of the TAM/TLR3 signal pathway. The results demonstrated that nano-TiO 2 could cross the cytomembrane into the cytoplasm or nucleus, decrease Sertoli cell viability, damage morphology (such as elongated fusiform, cellular and nuclear shrinkage) and induce the expression of various immune mediators and inflammatory cytokines, including TLR3(+0.31-fold to +0.81-fold), IL-lβ(+0.33-fold to +5.0-fold), NF-κB(+0.22-fold to +3.65-fold), IL-6(+0.47-fold to +3.53-fold), TNF-α(+0.14-fold to +2.44-fold), IFN-α(+0.17-fold to +2.27-fold), and IFN-β(+0.09-fold to +2.29-fold), and suppress the expression of Tyro3(-9.33% to -61.93%), Axl(-19.03% to -60.67%), Mer(-8.04% to -59.16%), and IκB(-34.35% to -86.59%) in primary cultured Sertoli cells. These results suggest that testicular innate immune responses to pathogens caused by nano-TiO 2 may be involved in the regulatory mechanisms of TAM/TLR3 signaling in testicular Sertoli cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 198-208, 2017. © 2016 Wiley Periodicals, Inc.

  4. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features.

    PubMed

    Stendahl, John C; Sinusas, Albert J

    2015-10-01

    Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts

    DOE PAGES

    Hunt, Sean T.; Milina, Maria; Alba-Rubio, Ana C.; ...

    2016-05-20

    Here, we demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti 0.1W 0.9C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading,more » enhance the activity, and increase the stability of noble metal catalysts.« less

  6. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can

  7. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV-phosphate

    NASA Astrophysics Data System (ADS)

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; Boyanov, Maxim I.

    2016-02-01

    The mobility of uranium in subsurface environments depends strongly on its redox state, with UIV phases being significantly less soluble than UVI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of UVI reduction in natural systems, a nanoparticulate UO2 phase and an amorphous UIV-Ca-PO4 analog to ningyoite (CaUIV(PO4)2·1-2H2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for UIVO2 and UIV-phosphate in solutions equilibrated with atmospheric O2 and CO2 at pH 7.0 (kobs,UO2 = 0.17 ± 0.075 h-1 vs. kobs,UIVPO4 = 0.30 ± 0.25 h-1). Addition of up to 400 μM Ca and PO4 decreased the oxidation rate constant by an order of magnitude for both UO2 and UIV-phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO4, the product of UO2 oxidation is Na-uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO4 and low carbonate concentration), resulting in low concentrations of dissolved UVI (<2.5 × 10-7 M). Oxidation of UIV-phosphate produced a Na-autunite phase (Na2(UO2)PO4·xH2O), resulting in similarly low dissolved U concentrations (<7.3 × 10-8 M). When Ca and PO4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO2 and UIV-phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca-UVI-PO4 layer on the UO2 surface and suggest a passivation layer mechanism for the decreased rate of UO2 oxidation in the presence of Ca and PO4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO2 solids, suggesting that oxidized U is distributed between

  8. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Origin of Multiple Peaks in the Potentiodynamic Oxidation of CO Adlayers on Pt and Ru-Modified Pt Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongsen; Abruña, Héctor D.

    2015-05-21

    The study of the electrooxidation mechanism of COad on Pt based catalysts is very important for designing more effective CO-tolerant electrocatalysts for fuel cells. We have studied the origin of multiple peaks in the cyclic voltammograms of CO stripping from polycrystalline Pt and Ru modified polycrystalline Pt (Pt/Ru) surfaces in both acidic and alkaline media by differential electrochemical mass spectrometry (DEMS), DFT calculations, and kinetic Monte Carlo (KMC) simulations. A new COad electrooxidation kinetic model on heterogeneous Pt and Pt/Ru catalysts is proposed to account for the multiple peaks experimentally observed. In this model, OH species prefer to adsorb atmore » low-coordination sites or Ru sites and, thus, suppress CO repopulation from high-coordination sites onto these sites. Therefore, COad oxidation occurs on different facets or regions, leading to multiplicity of CO stripping peaks. This work provides a new insight into the CO electrooxidation mechanism and kinetics on heterogeneous catalysts.« less

  10. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    PubMed

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.

  11. A model for treating avian aspergillosis: serum and lung tissue kinetics for Japanese quail (Coturnix japonica) following single and multiple aerosol exposures of a nanoparticulate itraconazole suspension.

    PubMed

    Rundfeldt, Chris; Wyska, Elżbieta; Steckel, Hartwig; Witkowski, Andrzej; Jeżewska-Witkowska, Grażyna; Wlaź, Piotr

    2013-11-01

    Aspergillosis is frequently reported in parrots, falcons and other birds held in captivity. Inhalation is the main route of infection for Aspergillus fumigatus, resulting in both acute and chronic disease conditions. Itraconazole (ITRA) is an antifungal commonly used in birds, but administration requires repeated oral dosing and the safety margin is narrow. We describe lung tissue and serum pharmacokinetics of a nanoparticulate ITRA suspension administered to Japanese quail by aerosol exposure. Aerosolized ITRA (1 and 10% suspension) administered over 30 min did not induce adverse clinical reactions in quail upon single or 5-day repeated doses. High lung concentrations, well above the inhibitory levels for A. fumigatus, of 4.14 ± 0.19 μg/g and 27.5 ± 4.58 μg/g (mean ± SEM, n = 3), were achieved following single-dose inhalation of 1% and 10% suspension, respectively. Upon multiple dose administration of 10% suspension, mean lung concentrations reached 104.9 ± 10.1 μg/g. Drug clearance from the lungs was slow with terminal half-lives of 19.7 h and 35.8 h following inhalation of 1% and 10% suspension, respectively. Data suggest that lung clearance is solubility driven. Lung concentrations of hydroxy-itraconazole reached 1-2% of the ITRA lung tissue concentration indicating metabolism in lung tissue. Steady, but low, serum concentrations of ITRA could be measured after multiple dose administration, reaching less than 0.1% of the lung tissue concentration. This formulation may represent a novel, easy to administer treatment modality for fungal lung infection, preventing high systemic exposure. It may also be useful as metaphylaxis to prevent the outbreak of aspergillosis in colonized animals.

  12. Nanotechnology: toxicologic pathology.

    PubMed

    Hubbs, Ann F; Sargent, Linda M; Porter, Dale W; Sager, Tina M; Chen, Bean T; Frazer, David G; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R; Reynolds, Steven H; Battelli, Lori A; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L; Mercer, Robert R

    2013-02-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.

  13. Nanotechnology: Toxicologic Pathology

    PubMed Central

    Hubbs, Ann F.; Sargent, Linda M.; Porter, Dale W.; Sager, Tina M.; Chen, Bean T.; Frazer, David G.; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R.; Reynolds, Steven H.; Battelli, Lori A.; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L.; Mercer, Robert R.

    2015-01-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies. PMID:23389777

  14. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine—a chemotherapy agent. Focus on nanoparticulate cubosomes™ of the oleyl analogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.

    2014-09-24

    A series of prodrug analogues based on the established chemotherapy agent, 5-fluorouracil, have been prepared and characterized. C18 alkyl and alkenyl chains with increasing degree of unsaturation were attached to the N 4 position of the 5-fluorocytosine (5-FC) base via a carbamate bond. Physicochemical characterization of the prodrug analogues was carried out using a combination of differential scanning calorimetry, cross-polarized optical microscopy, X-ray diffraction and small-angle X-ray scattering. The presence of a monounsaturated oleyl chain was found to promote lyotropic liquid crystalline phase formation in excess water with a fluid lamellar phase observed at room temperature and one or moremore » bicontinuous cubic phases at 37 °C. The bulk phase was successfully dispersed into liposomes or cubosomes at room and physiological temperature respectively. In vitro toxicity of the nanoparticulate 5-FCOle dispersions was evaluated against several normal and cancer cell types over a 48 h period and exhibited an IC 50 of -100 μM against all cell types. The in vivo efficacy of 5-FCOle cubosomes was assessed against the highly aggressive mouse 4T1 breast cancer model and compared to Capecitabine (a water-soluble commercially available 5-FU prodrug) delivered at the same dosages. After 21 days of treatment, the 0.5 mmol 5-FCOle treatment group exhibited a significantly smaller average tumour volume than all other treatment groups including Capecitabine at similar dosage. These results exemplify the potential of self-assembled amphiphile prodrugs for delivery of bioactives in vivo.« less

  15. In Vitro Analysis of Nanoparticulate Hydroxyapatite/Chitosan Composites as Potential Drug Delivery Platforms for the Sustained Release of Antibiotics in the Treatment of Osteomyelitis

    PubMed Central

    USKOKOVIĆ, VUK; DESAI, TEJAL A.

    2014-01-01

    Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic scale, surface charge, drug release properties, and combined antibacterial and osteogenic response. Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions the transition from the as-precipitated amorphous calcium phosphate phase to the most thermodynamically stable one—HAp. Embedment of 5–10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to HAp by physisorption, and promoted sustained-release kinetics throughout the 3 weeks of release time. The addition of chitosan to the particulate drug carrier formulation, however, reduced the antibacterial efficacy against S aureus. Excellent cell spreading and proliferation of osteoblastic MC3T3-E1 cells evidenced on microscopic conglomerates of HAp nanoparticles in vitro also markedly diminished on HAp/chitosan composites. Mitochondrial dehydrogenase activity exhibited normal values only for HAp/chitosan particle concentrations of up to 2 mg/cm2 and significantly dropped, by about 50%, at higher particle concentrations (4 and 8 mg/cm2). The gene expression of osteocalcin, a mineralization inductor, and the transcription factor Runx2 was downregulated in cells incubated in the presence of 3 mg/cm2 HAp/chitosan composite particles, whereas the expression of osteopontin, a potent mineralization inhibitor, was upregulated, further demonstrating the partially unfavorable osteoblastic cell response to the given particles. The peak in the expression of osteogenic markers paralleling the osteoblastic differentiation was also delayed most for the cell population incubated with HAp/chitosan particles

  16. Sulfur-Doping Templated Synthesis of Nanoporous Graphitic Nanocages and Its Supported Catalysts for Efficient Methanol Oxidation.

    PubMed

    Sheng, Zhao Min; Hong, Cheng Yang; Dai, Xian You; Chang, Cheng Kang; Chen, Jian Bin; Liu, Yan

    2015-04-01

    We demonstrate a new sulfur (S)-doping templated approach to fabricate highly nanoporous graphitic nanocages (GNCs) by air-oxidizing the templates in the graphitic shells to create nanopores. Sulfur can be introduced, when Fe@C core-shell nanoparticles are prepared and then S-doped GNCs can be obtained by removing their ferrous cores. Due to removing S-template, both the specific surface area (from 540 to 850 m2 g(-1)) and the mesopore volume (from 0.44 to 0.9 cm3 g(-1)) of the graphitic nanocages have sharply risen. Its high specific surface area improves catalyst loading to provide more reaction electro-active sites while its high mesopore volume pro- motes molecule diffusion across the nanocages, making it an excellent material to support Pt/Ru catalysts for direct methanol fuel cells.

  17. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.

    2017-10-01

    The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.

  18. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route.

    PubMed

    Mittal, Deepti; Md, Shadab; Hasan, Quamrul; Fazil, Mohammad; Ali, Asgar; Baboota, Sanjula; Ali, Javed

    2016-01-01

    The aim of the present study was to prepare and evaluate a rasagiline-loaded chitosan glutamate nanoparticles (RAS-CG-NPs) by ionic gelation of CG with tripolyphosphate anions (TPP). RAS-loaded CG-NPs were characterized for particle size, size distribution, encapsulation efficiency and in vitro drug release. The mean particles size, polydispersity index (PDI) and encapsulation efficiency was found to be 151.1 ± 10.31, 0.380 ± 0.01 and 96.43 ± 4.23, respectively. Biodistribution of RAS formulations in the brain and blood of mice following intranasal (i.n.) and intravenous (i.v.) administration was performed using HPLC analytical method. The drug concentrations in brain following the i.n. of CG-NPs were found to be significantly higher at all the time points compared to both drug (i.n.) and drug CG-NPs (i.v.). The Cmax (999.25 ng/ml) and AUC (2086.60 ng h/ml) of formulation CG-NPs (i.n) were found to be significantly higher than CG-NPs (i.v.) and RAS solution (i.n.). The direct transport percentage (DTP%) values of RAS-loaded CG-NPs (i.n.) as compared to drug solution (i.n.) increased from 66.27 ± 1.8 to 69.27 ± 2.1%. The results showed significant enhancement of bioavailability in brain, after administration of the RAS-loaded CG-NPs which could be a substantial achievement of direct nose to brain targeting in Parkinson's disease therapy.

  19. A Nanoparticulate Ferritin-Core Mimetic Is Well Taken Up by HuTu 80 Duodenal Cells and Its Absorption in Mice Is Regulated by Body Iron12

    PubMed Central

    Latunde-Dada, Gladys O; Pereira, Dora IA; Tempest, Bethan; Ilyas, Hibah; Flynn, Angela C; Aslam, Mohamad F; Simpson, Robert J; Powell, Jonathan J

    2014-01-01

    Background: Iron (Fe) deficiency anemia remains the largest nutritional deficiency disorder worldwide. How the gut acquires iron from nano Fe(III), especially at the apical surface, is incompletely understood. Objective: We developed a novel Fe supplement consisting of nanoparticulate tartrate-modified Fe(III) poly oxo-hydroxide [here termed nano Fe(III)], which mimics the Fe oxide core of ferritin and effectively treats iron deficiency anemia in rats. Methods: We determined transfer to the systemic circulation of nano Fe(III) in iron-deficient and iron-sufficient outbread Swiss mouse strain (CD1) mice with use of 59Fe-labeled material. Iron deficiency was induced before starting the Fe-supplementation period through reduction of Fe concentrations in the rodent diet. A control group of iron-sufficient mice were fed a diet with adequate Fe concentrations throughout the study. Furthermore, we conducted a hemoglobin repletion study in which iron-deficient CD1 mice were fed for 7 d a diet supplemented with ferrous sulfate (FeSO4) or nano Fe(III). Finally, we further probed the mechanism of cellular acquisition of nano Fe(III) by assessing ferritin formation, as a measure of Fe uptake and utilization, in HuTu 80 duodenal cancer cells with targeted inhibition of divalent metal transporter 1 (DMT1) and duodenal cytochrome b (DCYTB) before exposure to the supplemented iron sources. Differences in gene expression were assessed by quantitative polymerase chain reaction. Results: Absorption (means ± SEMs) of nano Fe(III) was significantly increased in iron-deficient mice (58 ± 19%) compared to iron-sufficient mice (18 ± 17%) (P = 0.0001). Supplementation of the diet with nano Fe(III) or FeSO4 significantly increased hemoglobin concentrations in iron-deficient mice (170 ± 20 g/L, P = 0.01 and 180 ± 20 g/L, P = 0.002, respectively). Hepatic hepcidin mRNA expression reflected the nonheme-iron concentrations of the liver and was also comparable for both nano Fe(III)– and

  20. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous U IV–phosphate

    DOE PAGES

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; ...

    2015-11-17

    The mobility of uranium in subsurface environments depends strongly on its redox state, with U IV phases being significantly less soluble than U VI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of U VI reduction in natural systems, a nanoparticulate UO 2 phase and an amorphous U IV–Ca–PO 4 analog to ningyoite (CaU IV(PO 4) 2·1–2H 2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for U IVO 2 and U IV–phosphate in solutions equilibrated with atmospheric O 2 and CO 2 at pH 7.0more » (k obs,UO2 = 0.17 ± 0.075 h -1 vs. k obs,U IV PO4 = 0.30 ± 0.25 h -1). Addition of up to 400 μM Ca and PO 4 decreased the oxidation rate constant by an order of magnitude for both UO 2 and U IV–phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO 4, the product of UO 2 oxidation is Na–uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO 4 and low carbonate concentration), resulting in low concentrations of dissolved U VI (<2.5 × 10 -7 M). Oxidation of U IV–phosphate produced a Na-autunite phase (Na 2(UO 2)PO 4·xH 2O), resulting in similarly low dissolved U concentrations (<7.3 × 10 -8 M). When Ca and PO 4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO 2 and UIV–phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca–UVI–PO 4 layer on the UO 2 surface and suggest a passivation layer mechanism for the decreased rate of UO 2 oxidation in the presence of Ca and PO 4. Interestingly, the extractions were unable to remove all of the oxidized U from partially

  1. Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization.

    PubMed

    Colzani, Barbara; Speranza, Giovanna; Dorati, Rossella; Conti, Bice; Modena, Tiziana; Bruni, Giovanna; Zagato, Elisa; Vermeulen, Lotte; Dakwar, George R; Braeckmans, Kevin; Genta, Ida

    2016-09-25

    Active drug targeting and controlled release of hydrophilic macromolecular drugs represent crucial points in designing efficient polymeric drug delivery nanoplatforms. In the present work EGFR-targeted polylactide-co-glycolide (PLGA) nanoparticles were made by a blend of two different PLGA-based polymers. The first, GE11-PLGA, in which PLGA was functionalized with GE11, a small peptide and EGFR allosteric ligand, able to give nanoparticles selective targeting features. The second polymer was a PEGylated PLGA (PEG-PLGA) aimed at improving nanoparticles hydrophilicity and stealth features. GE11 and GE11-PLGA were custom synthetized through a simple and inexpensive method. The nanoprecipitation technique was exploited for the preparation of polymeric nanoparticles composed by a 1:1weight ratio between GE11-PLGA and PEG-PLGA, obtaining smart nanoplatforms with proper size for parenteral administration (143.9±5.0nm). In vitro cellular uptake in EGFR-overexpressing cell line (A549) demonstrated an active internalization of GE11-functionalized nanoparticles. GE11-PLGA/PEG-PLGA blend nanoparticles were loaded with Myoglobin, a model hydrophilic macromolecule, reaching a good loading (2.42% respect to the theoretical 4.00% w/w) and a prolonged release over 60days. GE11-PLGA/PEG-PLGA blend nanoparticles showed good in vitro stability for 30days in physiological saline solution at 4°C and for 24h in pH 7.4 or pH 5.0 buffer at 37°C respectively, giving indications about potential storage and administration conditions. Furthermore ex vivo stability study in human plasma using fluorescence Single Particle Tracking (fSPT) assessed good GE11-PLGA/PEG-PLGA nanoparticles dimensional stability after 1 and 4h. Thanks to the versatility in polymeric composition and relative tunable nanoparticles features in terms of drug incorporation and release, GE11-PLGA/PEG-PLGA blend NPs can be considered highly promising as smart nanoparticulate platforms for the treatment of diseases

  2. Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof

    DOEpatents

    Tong, YuYe; Du, Bingchen

    2015-08-11

    A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.

  3. Comparative Toxicity of Nanoparticulate CuO and ZnO to Soil Bacterial Communities

    PubMed Central

    Rousk, Johannes; Ackermann, Kathrin; Curling, Simon F.; Jones, Davey L.

    2012-01-01

    The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO4 was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO4 addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity. PMID:22479561

  4. Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Jablonski, Andrzej; Kulesza, Pawel J.; Lewera, Adam

    2011-05-01

    We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.

  5. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells.

    PubMed

    O'Keefe, Sean J; Feltis, Bryce N; Piva, Terrence J; Turney, Terence W; Wright, Paul F A

    2016-11-01

    An important part of assessing the toxic potential of nanoparticles for specific applications should be the direct comparison of biological activities with those of alternative materials for the same application. Nanoparticulate inorganic ultraviolet (UV) filters, such as zinc oxide (ZnO), are commonly incorporated into transparent sunscreen and cosmetic formulations. However, concerns have been raised about potential unwanted effects, despite their negligible skin penetration and inherent advantages over organic chemical UV-filters. To provide useful application-relevant assessments of their potential hazard with/without UVA co-exposure, we directly compared cytotoxic and immune response profiles of human THP-1 monocytic cells to ZnO nanoparticles (30 nm) with bulk ZnO particulates (200 nm) and five conventional organic chemical UV-filters - butylmethoxydibenzoylmethane (avobenzone), octylmethoxycinnamate, octylsalicylate, homosalate and 4-methylbenzylidene camphor. High exposure concentrations of both organic and particulate UV-filters were required to cause cytotoxicity in monocyte and macrophage cultures after 24 h. Co-exposure with UVA (6.7 J/cm(2)) did not alter cytotoxicity profiles. Particle surface area-based dose responses showed that ZnO NPs were better tolerated than bulk ZnO. Organic and particulate UV-filters increased apoptosis at similar doses. Only particulates increased the generation of reactive oxygen species. Interleukin-8 (IL-8) release was increased by all particulates, avobenzone, homosalate and octylsalicylate. IL-1β release was only increased in macrophages by exposure to avobenzone and homosalate. In conclusion, direct effects were caused in monocytes and macrophages at similar concentrations of both organic UV-filters and ZnO nanoparticulates - indicating that their intrinsic cytotoxicity is similar. With their lower skin penetration, ZnO nanoparticles are expected to have lower bioactivity when used in sunscreens.

  6. Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Findlay, Alyssa J.; Gartman, Amy; MacDonald, Daniel J.; Hanson, Thomas E.; Shaw, Timothy J.; Luther, George W.

    2014-10-01

    Elemental sulfur is an important intermediate of sulfide oxidation and may be produced via abiotic and biotic pathways. In this study the concentration and size fractionation of elemental sulfur were measured in two different sulfidic marine environments: the Chesapeake Bay and buoyant hydrothermal vent plumes along the Mid-Atlantic Ridge. Nanoparticulate sulfur (<0.2 μm) was found to comprise up to 90% of the total elemental sulfur in anoxic deep waters of the Chesapeake Bay. These data were compared with previous studies of elemental sulfur, and represent one of the few reports of nanoparticulate elemental sulfur in the environment. Additionally, a strain of phototrophic sulfide oxidizing bacteria isolated from the Chesapeake Bay was shown to produce elemental sulfur as a product of sulfide oxidation. Elemental sulfur concentrations are also presented from buoyant hydrothermal vent plumes located along the Mid-Atlantic Ridge. In the Mid-Atlantic Ridge plume, S0 concentrations up to 33 μM were measured in the first meter of rising plumes at three different vent sites, and nanoparticulate S0 was up to 44% of total elemental sulfur present.

  7. Influence of Sulfide Nanoparticles on Dissolved Mercury and Zinc Quantification by Diffusive Gradient in Thin-Film Passive Samplers.

    PubMed

    Pham, Anh Le-Tuan; Johnson, Carol; Manley, Devon; Hsu-Kim, Heileen

    2015-11-03

    Diffusive gradient in thin-film (DGT) passive samplers are frequently used to monitor the concentrations of metals such as mercury and zinc in sediments and other aquatic environments. The application of these samplers generally presumes that they quantify only the dissolved fraction and not particle-bound metal species that are too large to migrate into the sampler. However, metals associated with very small nanoparticles (smaller than the pore size of DGT samplers) can be abundant in certain environments, yet the implications of these nanoparticles for DGT measurements are unclear. The objective of this study was to determine how the performance of the DGT sampler is affected by the presence of nanoparticulate species of Hg and Zn. DGT samplers were exposed to solutions containing known amounts of dissolved Hg(II) and nanoparticulate HgS (or dissolved Zn(II) and nanoparticulate ZnS). The amounts of Hg and Zn accumulated onto the DGT samplers were quantified over hours to days, and the rates of diffusion of the dissolved metal (i.e., the effective diffusion coefficient D) into the sampler's diffusion layer were calculated and compared for solutions containing varying concentrations of nanoparticles. The results suggested that the nanoparticles deposited on the surface of the samplers might have acted as sorbents, slowing the migration of the dissolved species into the samplers. The consequence was that the DGT sampler data underestimated the dissolved metal concentration in the solution. In addition, X-ray absorption spectroscopy was employed to determine the speciation of the Hg accumulated on the sampler binding layer, and the results indicated that HgS nanoparticles did not appear to directly contribute to the DGT measurement. Overall, our findings suggest that the deployment of DGT samplers in settings where nanoparticles are relevant (e.g., sediments) may result in DGT data that incorrectly estimated the dissolved metal concentrations. Models for metal uptake

  8. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    PubMed Central

    Machado, Brenda I.; Murr, Lawrence E.; Suro, Raquel M.; Gaytan, Sara M.; Ramirez, Diana A.; Garza, Kristine M.; Schuster, Brian E.

    2010-01-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified. PMID:20948926

  9. Effect of Zirconium Oxide and Zinc Oxide Nanoparticles on Physicochemical Properties and Antibiofilm Activity of a Calcium Silicate-Based Material

    PubMed Central

    Guerreiro-Tanomaru, Juliane Maria; Trindade-Junior, Adinael; Cesar Costa, Bernardo; da Silva, Guilherme Ferreira; Drullis Cifali, Leonardo; Basso Bernardi, Maria Inês

    2014-01-01

    The aim of the present study was to evaluate the antibiofilm activity against Enterococcus faecalis, compressive strength. and radiopacity of Portland cement (PC) added to zirconium oxide (ZrO2), as radiopacifier, with or without nanoparticulated zinc oxide (ZnO). The following experimental materials were evaluated: PC, PC + ZrO2, PC + ZrO2 + ZnO (5%), and PC + ZrO2 + ZnO (10%). Antibiofilm activity was analyzed by using direct contact test (DCT) on Enterococcus faecalis biofilm, for 5 h or 15 h. The analysis was conducted by using the number of colony-forming units (CFU/mL). The compressive strength was performed in a mechanical testing machine. For the radiopacity tests, the specimens were radiographed together with an aluminium stepwedge. The results were submitted to ANOVA and Tukey tests, with level of significance at 5%. The results showed that all materials presented similar antibiofilm activity (P > 0.05). The addition of nanoparticulated ZnO decreased the compressive strength of PC. All materials presented higher radiopacity than pure PC. It can be concluded that the addition of ZrO2 and ZnO does not interfere with the antibiofilm activity and provides radiopacity to Portland cement. However, the presence of ZnO (5% or 10%) significantly decreased the compressive strength of the materials. PMID:25431798

  10. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    PubMed

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified.

  11. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2.

    PubMed

    Kowal, A; Li, M; Shao, M; Sasaki, K; Vukmirovic, M B; Zhang, J; Marinkovic, N S; Liu, P; Frenkel, A I; Adzic, R R

    2009-04-01

    Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation even at the best electrocatalysts. We synthesized a ternary PtRhSnO(2)/C electrocatalyst by depositing platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles that is capable of oxidizing ethanol with high efficiency and holds great promise for resolving the impediments to developing practical direct ethanol fuel cells. This electrocatalyst effectively splits the C-C bond in ethanol at room temperature in acid solutions, facilitating its oxidation at low potentials to CO(2), which has not been achieved with existing catalysts. Our experiments and density functional theory calculations indicate that the electrocatalyst's activity is due to the specific property of each of its constituents, induced by their interactions. These findings help explain the high activity of Pt-Ru for methanol oxidation and the lack of it for ethanol oxidation, and point to the way to accomplishing the C-C bond splitting in other catalytic processes.

  12. Development and Exploration of Nanoparticle Decorated Carbon Supports (Graphene and Graphene Oxide) for Energy Collection, Storage, and Conversion

    DTIC Science & Technology

    2012-12-17

    hybrid films as an alternative to organic-based photoactive materials in flexible photodetectors and solar cells . Figure 3. Solution...a wide range of metal nanoparticle-decorated (Pt, Au, Ag, Pt/Ru) graphene oxide (GO) hybrids as well as inorganic particle-graphene ( TiO2 /PbSe/G... hybrids . These hybrids were then evaluated for their performance in energy conversion devices and two examples were chosen, namely stacked fuel cells

  13. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  14. Aggregate breakdown of nanoparticulate titania

    NASA Astrophysics Data System (ADS)

    Venugopal, Navin

    Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales. Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime. A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from compaction via dry pressing and tape casting secondary scale aggregates. Mercury porosimetry of tapes cast at 0.85 and 9.09 cm/sec exhibited pore sizes ranging from 200-500 nm suggesting packing of intact micron-sized primary aggregates. Porosimetry further showed that this peak was absent in pressed pellets corroborating arguments of ruptured primary aggregates during compaction to 750 MPa.

  15. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol.

    PubMed

    Ignjatović, Nenad; Uskoković, Vuk; Ajduković, Zorica; Uskoković, Dragan

    2013-03-01

    Cholecalciferol, vitamin D3, plays an important role in bonemetabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA). Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems.

  16. Evidence for Reduced, Carbon-rich Regions in the Solar Nebula from an Unusual Cometary Dust Particle

    NASA Astrophysics Data System (ADS)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Kilcoyne, A. L. David

    2017-10-01

    Geochemical indicators in meteorites imply that most formed under relatively oxidizing conditions. However, some planetary materials, such as the enstatite chondrites, aubrite achondrites, and Mercury, were produced in reduced nebular environments. Because of large-scale radial nebular mixing, comets and other Kuiper Belt objects likely contain some primitive material related to these reduced planetary bodies. Here, we describe an unusual assemblage in a dust particle from comet 81P/Wild 2 captured in silica aerogel by the NASA Stardust spacecraft. The bulk of this ˜20 μm particle is comprised of an aggregate of nanoparticulate Cr-rich magnetite, containing opaque sub-domains composed of poorly graphitized carbon (PGC). The PGC forms conformal shells around tiny 5-15 nm core grains of Fe carbide. The C, N, and O isotopic compositions of these components are identical within errors to terrestrial standards, indicating a formation inside the solar system. Magnetite compositions are consistent with oxidation of reduced metal, similar to that seen in enstatite chondrites. Similarly, the core-shell structure of the carbide + PGC inclusions suggests a formation via FTT reactions on the surface of metal or carbide grains in warm, reduced regions of the solar nebula. Together, the nanoscale assemblage in the cometary particle is most consistent with the alteration of primary solids condensed from a C-rich, reduced nebular gas. The nanoparticulate components in the cometary particle provide the first direct evidence from comets of reduced, carbon-rich regions that were present in the solar nebula.

  17. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures

    DOE PAGES

    Kucharzyk, Katarzyna H.; Deshusses, Marc A.; Porter, Kaitlyn A.; ...

    2015-01-01

    Net production of methylmercury correlated with sulfate reduction rates in cultures exposed to dissolved Hg, but was insensitive to sulfate reduction rates for cultures exposed to nanoparticulate HgS.

  18. NCL-02: Nanomedicine Pharmacokinetics in Rats Evaluated by SITUA | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory will evaluate the pharmacokinetics of a nanoparticulate formulation in rats using a novel stable isotope tracer ultrafiltration assay (SITUA) developed at thelaboratory. The SITUA is a method to fr

  19. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdemir, Ali

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne's research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaboratorsmore » in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over

  20. Small Molecules and Sum Frequency Generation Probes of Nanoparticulate TiO2

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane

    2006-03-01

    Anatase TiO2 is known to photo catalytically mineralize a wide variety of pollutants and pathogens, both airborne and in aqueous solution. One of the major benefits of basing water treatment systems on TiO2 is that it is environmentally benign and so non toxic that it is used as a colorant in creamy salad dressing. The primary impediment to wide spread implementation of a TiO2 based system for water decontamination is that the quantum efficiency in contact with condense phase water is less than 5%. Since the quantum efficiency for destruction of airborne materials is greater than 80%, the potential for increased efficiency is very real. To convert the potential to practice, the oxidation mechanism needs to be more fully understood. We will report on the results of using a nonlinear optical spectroscopy, sum frequency generation (SFG) as an in situ probe of interactions at the TiO2 surface. Results suggest that the dominant oxidation mechanism converts from a direct to an indirect mechanism as the water content (vapor pressure) increases. This presentation will discuss the probe technique as well as the results.

  1. Multi-Paradigm Multi-Scale Simulations for Fuel Cell Catalysts and Membranes

    DTIC Science & Technology

    2006-01-01

    transfer studies on model systems. . Applying newly developed density functionals QM ( X3LYP ) for estimating the thermodynamics and kinetic energy...Density functional theory methods We have used many QM methods to probe chemical reaction mechanisms and find that the B3LYP and X3LYP [6] flavors of DFT...carried out QM calculations on the surface reactivity of the Pt and PtRu anode catalysts. This QM uses a new ab initio DFT-GGA method ( X3LYP ) [6

  2. Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms

    PubMed Central

    Chan, Andrea C.; Townley, Helen E.

    2017-01-01

    Nanoparticulate delivery of biocides has the potential to decrease levels of exposure to non-target organisms, and miminize long-term exposure that can promote the development of resistance. Silica nanoparticles are an ideal vehicle since they are inert, biocompatible, biodegradable, and thermally and chemically stable. Encapsulation of biocides within nanoparticulates can improve their stability and longevity and maximize the biocidal potential of hydrophobic volatile compounds. Herein, we have shown that the plant secondary metabolites allyl isothiocyanate and cinnamaldehyde demonstrated increased antimicrobial activity against Escherichia coli in planktonic form, when packaged into mesoporous silica nanoparticles. Furthermore, the biocide-loaded nanoparticles showed activity against Pseudomonas aeruginosa biofilms that have inherent resistance to antimicrobial agents. The delivery platform can also be expanded to traditional biocides and other non-conventional antimicrobial agents. PMID:28077760

  3. Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol

    PubMed Central

    Ignjatović, Nenad; Uskoković, Vuk; Ajduković, Zorica; Uskoković, Dragan

    2013-01-01

    Cholecalciferol, vitamin D3, plays an important role in bone metabolism by regulating extracellular levels of calcium. Presented here is a study on the effects of the local delivery of cholecalciferol (D3) using nanoparticulate carriers composed of hydroxyapatite (HAp) and poly(D,L-lactide-co-glycolide) (PLGA). Multifunctional nanoparticulate HAp-based powders were prepared for the purpose of: (a) either fast or sustained, local delivery of cholecalciferol, and (b) the secondary, osteoconductive and defect-filling effect of the carrier itself. Two types of HAp-based powders with particles of narrowly dispersed sizes in the nano range were prepared and tested in this study: HAp nanoparticles as direct cholecalciferol delivery agents and HAp nanoparticles coated with cholecalciferol-loaded poly(D,L)-lactide-co-glycolide (HAp/D3/PLGA). Satisfying biocompatibility of particulate systems, when incubated in contact with MC3T3-E1 osteoblastic cells in vitro, was observed for HAp/D3/PLGA and pure HAp. In contrast, an extensively fast release of cholecalciferol from the system comprising HAp nanoparticles coated with cholecalciferol (HAp/D3) triggered necrosis of the osteoblastic cells in vitro. Artificial defects induced in the osteoporotic bone of the rat mandible were successfully reconstructed following implantation of cholecalciferol-coated HAp nanoparticles as well as those comprising HAp nanoparticles coated with cholecalciferol-loaded PLGA (HAp/D3/PLGA). The greatest levels of enhanced angiogenesis, vascularization, osteogenesis and bone structure differentiation were achieved upon the implementation of HAp/D3/PLGA systems. PMID:25382938

  4. Evidence for Reduced, Carbon-rich Regions in the Solar Nebula from an Unusual Cometary Dust Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.

    Geochemical indicators in meteorites imply that most formed under relatively oxidizing conditions. However, some planetary materials, such as the enstatite chondrites, aubrite achondrites, and Mercury, were produced in reduced nebular environments. Because of large-scale radial nebular mixing, comets and other Kuiper Belt objects likely contain some primitive material related to these reduced planetary bodies. Here, we describe an unusual assemblage in a dust particle from comet 81P/Wild 2 captured in silica aerogel by the NASA Stardust spacecraft. The bulk of this ∼20 μ m particle is comprised of an aggregate of nanoparticulate Cr-rich magnetite, containing opaque sub-domains composed of poorlymore » graphitized carbon (PGC). The PGC forms conformal shells around tiny 5–15 nm core grains of Fe carbide. The C, N, and O isotopic compositions of these components are identical within errors to terrestrial standards, indicating a formation inside the solar system. Magnetite compositions are consistent with oxidation of reduced metal, similar to that seen in enstatite chondrites. Similarly, the core–shell structure of the carbide + PGC inclusions suggests a formation via FTT reactions on the surface of metal or carbide grains in warm, reduced regions of the solar nebula. Together, the nanoscale assemblage in the cometary particle is most consistent with the alteration of primary solids condensed from a C-rich, reduced nebular gas. The nanoparticulate components in the cometary particle provide the first direct evidence from comets of reduced, carbon-rich regions that were present in the solar nebula.« less

  5. NCL-01: Nanomedicine Drug Release Study in Human Plasma Using Stable Isotope Tracer Ultrafiltration Assay (SITUA)  | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Nanotechnology Characterization Laboratory will evaluate drug release from a nanoparticulate formulation in vitro in human plasma, using a novel stable isotope tracer ultrafiltration assay (SITUA) developed at the laboratory. The SITUA is a metho

  6. Optical Properties of Silver Nanoparticulate Glasses

    NASA Astrophysics Data System (ADS)

    Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.

    The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.

  7. Potentially bioavailable ferrous iron nanoparticles in glacial sediments

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Benning, L. G.; Raiswell, R.; Kaulich, B.; Araki, T.; Abyaneh, M.; Koch-Müller, M.; Stockdale, A.; Tranter, M.; Wadham, J.

    2017-12-01

    Iron (Fe) is an essential nutrient for marine phytoplankton, the primary producers of the ocean. Despite it being the fourth most abundant element in the Earth's crust, it is highly insoluble, due in part to its rapid oxidation from ferric (Fe2+) to ferrous phases (Fe3+), which often leads to the formation of nanoparticulate iron oxyhydroxide phases1. The insoluble nature of Fe in oxygenated waters means Fe limitation of primary producers is prevalent in 30-50% of the world's oceans, including areas of high biological productivity proximal to significant glacial activity (e.g., the Southern Ocean). Glaciers and ice sheets are a significant source of nanoparticulate Fe, which may be important in sustaining the high productivity observed in the near coastal regions proximal to glacial coverage. The reactivity of particulate iron is poorly understood, despite its importance in the ocean Fe inventory. Here we combined geochemical extractions, high-resolution imaging and spectroscopy to investigate the abundance, morphology and valence state of reactive iron in glacial sediments. Our results document the widespread occurrence of amorphous and Fe(II)-rich nanoparticles in glacial meltwaters and icebergs. Fe(II) is thought to be highly bioavailable in marine environments. We argue that glaciers and ice sheets are therefore able to supply potentially bioavailable Fe(II)-containing nanoparticulate material for downstream ecosystems, including those in a marine setting. The flux of bioavailable particulate iron from Arctic glaciers may increase as rising air temperatures lead to higher meltwater export.

  8. Directed polymers versus directed percolation

    NASA Astrophysics Data System (ADS)

    Halpin-Healy, Timothy

    1998-10-01

    Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.

  9. Formulation of chitosan-TPP-pDNA nanocapsules for gene therapy applications

    NASA Astrophysics Data System (ADS)

    Gaspar, V. M.; Sousa, F.; Queiroz, J. A.; Correia, I. J.

    2011-01-01

    The encapsulation of DNA inside nanoparticles meant for gene delivery applications is a challenging process where several parameters need to be modulated in order to design nanocapsules with specific tailored characteristics. The purpose of this study was to investigate and improve the formulation parameters of plasmid DNA (pDNA) loaded in chitosan nanocapsules using tripolyphosphate (TPP) as polyanionic crosslinker. Nanocapsule morphology and encapsulation efficiency were analyzed as a function of chitosan degree of deacetylation and chitosan-TPP ratio. The manipulation of these parameters influenced not only the particle size but also the encapsulation and release of pDNA. Consequently the transfection efficiency of the nanoparticulated systems was also enhanced with the optimization of the particle characteristics. Overall, the differently formulated nanoparticulated systems possess singular properties that can be employed according to the desired gene delivery application.

  10. Contrasting emission behaviour of phenanthroimidazole with ZnO nanoparticles.

    PubMed

    Karunakaran, C; Jayabharathi, J; Sathishkumar, R; Jayamoorthy, K; Vimal, K

    2013-11-01

    A new fluorophore 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d]imidazole has been synthesized and characterized by spectroscopic techniques. Nanoparticulate ZnO enhances the fluorescence of the synthesised fluorophore. The absorption, fluorescence, lifetime, cyclic voltammetry and infrared studies reveal that fluorophore is attached to the surface of ZnO semiconductor. Photo-induced electron transfer (PET) explains the enhancement of fluorescence by nanoparticulate ZnO and the apparent binding constant has been obtained. Adsorption of the fluorophore on ZnO nanoparticle lowers the HOMO and LUMO energy levels of the fluorophore. The strong adsorption of the phenanthrimidazole derivative on the surface of ZnO nanocrystals is likely due to the chemical affinity of the nitrogen atom of the organic molecule to the zinc ion on the surface of nanocrystal. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Co-Doped ZnO nanoparticles: minireview.

    PubMed

    Djerdj, Igor; Jaglicić, Zvonko; Arcon, Denis; Niederberger, Markus

    2010-07-01

    Diluted magnetic semiconductors with a Curie temperature exceeding 300 K are promising candidates for spintronic devices and spin-based electronic technologies. We review recent achievements in the field of one of them: Co-doped ZnO at the nanoparticulate scale.

  12. 78 FR 32533 - Proposed Collection of Information: Direct Deposit, Go Direct, and Direct Express Sign-Up Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Deposit, Go Direct, and Direct Express Sign-Up Forms AGENCY: Bureau of the Fiscal Service, Fiscal Service... ``Direct Deposit Sign-Up Form'', Form 1200 ``Go Direct Sign-Up Form for Direct Deposit of Federal Benefit... information described below: Title: Direct Deposit Sign-Up Form, and Go Direct Sign-Up Form, and Direct...

  13. Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality

    EPA Science Inventory

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...

  14. Faconnage de la surface de nanoparticules pour la delivrance de genes

    NASA Astrophysics Data System (ADS)

    Fortier, Charles

    and erythrocytes aggregation. Thus, we exposed the complementarity of several relevant interfacial characteristics for the use of polyplexes in vivo, whereby broadening our understanding of the tailoring of the surface of polyplexes with a hydrophilic polyanion. Next, we envisioned the design of a transfection agent comprising of the E/Kcoil system together with a cationic peptide (RRRRRHHHHHC or R5H5) directly grafted on a dextran backbone. This approach was developed in order to take advantage of the growing collection of Ecoil-tagged polypeptides that were being developed and characterized in our group: especially one derived from the vascular endothelial growth factor (Ecoil-VEGF), and the other from the endosomolytic peptide GALA (Ecoil-GALA). In that endeavor, two dextran-peptides conjugates were prepared and characterized: Dextran-R5H5 and Dextran-R5H5,-Kcoil. Their abilities to encapsulate DNA and to form nanoparticles were confirmed. Subsequently, in vitro transfection assays demonstrated no significant gain from controls: Dextran-R5H5 could transfect cells with no greater efficacy than that of linear PEI. We then equipped our polyplexes with Ecoil-GALA in order to facilitate endosomal escape; however we could not evidence any additional gain regarding that latter point or with respect to overall reporter gene expression. In another side study, we evaluated the utility of polyanions such as CMD in transient gene expression (TGE) for the production of r-proteins in bioreactors. We had previously observed that one of the beneficial effects of polyplex coating with CMD was related to the complexation of excess polycation, which had been linked to the cytotoxicity observed during polyplex-mediated transfection. In parallel, we confirmed that the direct use of coated polyplexes did reduce toxicity during transfection, albeit with decreased r-protein yield. We thus conjectured that the addition of polyanion after transfection could attenuate excess polycation

  15. Comparative microstructures and cytotoxicity assays for ballistic aerosols composed of micrometals and nanometals: respiratory health implications

    PubMed Central

    Machado, Brenda I; Suro, Raquel M; Garza, Kristine M; Murr, Lawrence E

    2011-01-01

    Aerosol particulates collected on filters from ballistic penetration and erosion events for W–Ni–Co and W–Ni–Fe kinetic energy rod projectiles penetrating steel target plates were observed to be highly cytotoxic to human epithelial A549 lung cells in culture after 48 hours of exposure. The aerosol consisted of micron-sized Fe particulates and nanoparticulate aggregates consisting of W, Ni or W, Co, and some Fe, characterized by scanning electron microscopy and transmission electron microscopy, and using energy-dispersive (X-ray) spectrometry for elemental analysis and mapping. Cytotoxic assays of manufactured micron-sized and nanosized metal particulates of W, Ni, Fe, and Co demonstrated that, consistent with many studies in the literature, only the nanoparticulate elements demonstrated measurable cytotoxicity. These results suggest the potential for very severe, short-term, human toxicity, in particular to the respiratory system on inhaling ballistic aerosols. PMID:21499416

  16. Autogenic reaction synthesis of photocatalysts for solar fuel generation

    DOEpatents

    Ingram, Brian J.; Pol, Vilas G.; Cronauer, Donald C.; Ramanathan, Muruganathan

    2016-04-19

    In one preferred embodiment, a photocatalyst for conversion of carbon dioxide and water to a hydrocarbon and oxygen comprises at least one nanoparticulate metal or metal oxide material that is substantially free of a carbon coating, prepared by heating a metal-containing precursor compound in a sealed reactor under a pressure autogenically generated by dissociation of the precursor material in the sealed reactor at a temperature of at least about 600.degree. C. to form a nanoparticulate carbon-coated metal or metal oxide material, and subsequently substantially removing the carbon coating. The precursor material comprises a solid, solvent-free salt comprising a metal ion and at least one thermally decomposable carbon- and oxygen-containing counter-ion, and the metal of the salt is selected from the group consisting of Mn, Ti, Sn, V, Fe, Zn, Zr, Mo, Nb, W, Eu, La, Ce, In, and Si.

  17. State-Of-The-Science Review: Everything NanoSilver and More

    EPA Science Inventory

    Silver has been known to be a potent antibacterial, antifungal and antiviral agent, but in recent years, the use of silver as a biocide in solution, suspension, and especially in nano-particulate form has experienced a dramatic revival. Due to the properties of silver at the nano...

  18. Describing Directional Cell Migration with a Characteristic Directionality Time

    PubMed Central

    Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.

    2015-01-01

    Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908

  19. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu.

    PubMed

    Wakelin, Steven; Gerard, Emily; Black, Amanda; Hamonts, Kelly; Condron, Leo; Yuan, Tong; van Nostrand, Joy; Zhou, Jizhong; O'Callaghan, Maureen

    2014-07-01

    Pollution induced community tolerance (PICT) to Cu(2+), and co-tolerance to nanoparticulate Cu, ionic silver (Ag(+)), and vancomycin were measured in field soils treated with Cu(2+) 15 years previously. EC50 values were determined using substrate induced respiration and correlations made against soil physicochemical properties, microbial community structure, physiological status (qCO2; metabolic quotient), and abundances of genes associated with metal and antibiotic resistance. Previous level of exposure to copper was directly (P < 0.05) associated with tolerance to addition of new Cu(2+), and also of nanoparticle Cu. However, Cu-exposed communities had no co-tolerance to Ag(+) and had increased susceptibly to vancomycin. Increased tolerance to both Cu correlated (P < 0.05) with increased metabolic quotient, potentially indicating that the community directed more energy towards cellular maintenance rather than biomass production. Neither bacterial or fungal community composition nor changes in the abundance of genes involved with metal resistance were related to PICT or co-tolerance mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Therapeutic interventions in sepsis: current and anticipated pharmacological agents

    PubMed Central

    Shukla, Prashant; Rao, G Madhava; Pandey, Gitu; Sharma, Shweta; Mittapelly, Naresh; Shegokar, Ranjita; Mishra, Prabhat Ranjan

    2014-01-01

    Sepsis is a clinical syndrome characterized by a multisystem response to a pathogenic assault due to underlying infection that involves a combination of interconnected biochemical, cellular and organ–organ interactive networks. After the withdrawal of recombinant human-activated protein C (rAPC), researchers and physicians have continued to search for new therapeutic approaches and targets against sepsis, effective in both hypo- and hyperinflammatory states. Currently, statins are being evaluated as a viable option in clinical trials. Many agents that have shown favourable results in experimental sepsis are not clinically effective or have not been clinically evaluated. Apart from developing new therapeutic molecules, there is great scope for for developing a variety of drug delivery strategies, such as nanoparticulate carriers and phospholipid-based systems. These nanoparticulate carriers neutralize intracorporeal LPS as well as deliver therapeutic agents to targeted tissues and subcellular locations. Here, we review and critically discuss the present status and new experimental and clinical approaches for therapeutic intervention in sepsis. PMID:24977655

  1. Rapid synthesis of platinum-ruthenium bimetallic nanoparticles dispersed on carbon support as improved electrocatalysts for ethanol oxidation.

    PubMed

    Gu, Zhulan; Li, Shumin; Xiong, Zhiping; Xu, Hui; Gao, Fei; Du, Yukou

    2018-07-01

    Bimetallic nanocatalysts with small particle size benefit from markedly enhanced electrocatalytic activity and stability during small molecule oxidation. Herein, we report a facile method to synthesize binary Pt-Ru nanoparticles dispersed on a carbon support at an optimum temperature. Because of its monodispersed nanostructure, synergistic effects were observed between Pt and Ru and the PtRu/C electrocatalysts showed remarkably enhanced electrocatalytic activity towards ethanol oxidation. The peak current density of the Pt 1 Ru 1 /C electrocatalyst is 3731 mA mg -1 , which is 9.3 times higher than that of commercial Pt/C (401 mA mg -1 ). Furthermore, the synthesized Pt 1 Ru 1 /C catalyst exhibited higher stability during ethanol oxidation in an alkaline medium and maintained a significantly higher current density after successive cyclic voltammograms (CVs) of 500 cycles than commercial Pt/C. Our work highlights the significance of the reaction temperature during electrocatalyst synthesis, leading to enhanced catalytic performance towards ethanol oxidation. The Pt 1 Ru 1 /C electrocatalyst has great potential for application in direct ethanol fuel cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Hydrogen production from bio-fuels using precious metal catalysts

    NASA Astrophysics Data System (ADS)

    Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2017-11-01

    Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

  3. Direct measurements on imaging riometer antenna array beam directivities

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Nel, J. J.; Mathews, M. J.; Stoker, P. H.

    2001-01-01

    Spatial structures in enhanced ionization of the ionosphere are observed by absorption of cosmic radio waves. These structures are resolved by using theoretically derived imaging riometer antenna array directivities. These directivities are calculated from beam phasing of 64 crossed dipole elements of the 38.2-MHz antenna array at SANAE IV, Antarctica. In order to ensure that these derived directivities are representative of the actual viewing directions of the 64-beams, a radio transmitter was flown by helicopter across the antenna array. In this paper variations in the receiver signal strengths, recorded when flying across beam-viewing directions, are compared with the spatial and angular-dependent profiles of expected receiver output responses, derived theoretically from the directivities of the antenna array. A Global Positioning System (GPS) device on board the helicopter was used for positional recording. The derived and recorded profiles did coincide occasionally, but at other instances relative displacements and differences in magnitude of responses were observed. These displacements and differences could be attributed to degradation in position fixes imposed deliberately by selective availability on the GPS system. Excellent coincidence for a number of beam crossings proved that the viewing directions are accurate in all the beam directions, since the multi-dimensional Butler matrix produces 64 simultaneous beams.

  4. Metal-Enhanced Fluorescence from Nanoparticulate Zinc Films

    PubMed Central

    Aslan, Kadir; Previte, Michael J.R.; Zhang, Yongxia; Geddes, Chris D.

    2009-01-01

    A detailed study of metal-enhanced fluorescence (MEF) from fluorophores in the blue-to- red spectral region placed in close proximity to thermally evaporated zinc nanostructured films is reported. The zinc nanostructured films were deposited onto glass microscope slides as individual particles and were 1–10 nm in height and 20–100 nm in width, as characterized by Atomic Force Microscopy. The surface plasmon resonance peak of the zinc nanostructured films was ≈ 400 nm. Finite-difference time-domain calculations for single and multiple nanostructures organized in a staggered fashion on a solid support predict, as expected, that the electric fields are concentrated both around and between the nanostructures. Additionally, Mie scattering calculations show that the absorption and scattering components of the extinction spectrum are dominant in the UV and visible spectral ranges, respectively. Enhanced fluorescence emission accompanied by no significant changes in excited state lifetimes of fluorophores with emission wavelengths in the visible blue-to-red spectral range near-to zinc nanostructured films were observed, implying that MEF from zinc nanostructured films is mostly due to an electric field enhancement effect. PMID:19946356

  5. Task 1: Modeling Study of CO Effects on Polymer Electrolyte Fuel Cell Anodes Task 2: Study of Ac Impedance as Membrane/Electrode Manufacturing Diagnostic Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas E. Springer

    Carbon monoxide poisoning of polymer electrolyte fuel cell anodes is a key problem to be overcome when operating a polymer electrolyte fuel cell (PEFC) on reformed fuels. CO adsorbs preferentially on the precious metal surface leading to substantial performance losses. Some recent work has explored this problem, primarily using various Pt alloys in attempts to lower the degree of surface deactivation. In their studies of hydrogen oxidation on Pt and Pt alloy (Pt/Sn, Pt/Ru) rotating disk electrodes exposed to H{sub 2}/CO mixtures, Gasteiger et al. showed that a small hydrogen oxidation current is observed well before the onset of majormore » CO oxidative stripping (ca. 0.4 V) on Pt/Ru. However, these workers concluded that such current observed at low anode overpotentials was too low to be of practical value. Nonetheless, MST-11 researchers and others have found experimentally that it is possible to run a PEFC, e.g., with a Pt/Ru anode, in the presence of CO levels in the range 10--100 ppm with little voltage loss. Such experimental results suggest that, in fact, PEFC operation at significant current densities under low anode overpotentials is possible in the presence of such levels of CO, even before resorting to air bleeding into the anode feed stream. The latter approach has been shown to be effective in elimination of Pt anode catalyst poisoning effects at CO levels of 20--50 ppm for cells operating at 80 C with low Pt catalyst loading. The effect of oxygen bleeding is basically to lower P{sub CO} down to extremely low levels in the anode plenum thanks to the catalytic (chemical) oxidation of CO by dioxygen at the anode catalyst. In this modeling work the authors do not include specific description of oxygen bleeding effects and concentrate on the behavior of the anode with feed streams of H{sub 2} or reformate containing low levels of CO. The anode loss is treated in this work as a hydrogen and carbon monoxide electrode kinetics problem, but includes the

  6. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    USGS Publications Warehouse

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  7. Biogenesis of Mercury-Sulfur Nanoparticles in Plant Leaves from Atmospheric Gaseous Mercury.

    PubMed

    Manceau, Alain; Wang, Jianxu; Rovezzi, Mauro; Glatzel, Pieter; Feng, Xinbin

    2018-04-03

    Plant leaves serve both as a sink for gaseous elemental mercury (Hg) from the atmosphere and a source of toxic mercury to terrestrial ecosystems. Litterfall is the primary deposition pathway of atmospheric Hg to vegetated soils, yet the chemical form of this major Hg input remains elusive. We report the first observation of in vivo formation of mercury sulfur nanoparticles in intact leaves of 22 native plants from six different species across two sampling areas from China. The plants grew naturally in soils from a mercury sulfide mining and retorting region at ambient-air gaseous-Hg concentrations ranging from 131 ± 19 to 636 ± 186 ng m -3 and had foliar Hg concentration between 1.9 and 31.1 ng Hg mg -1 dry weight (ppm). High energy resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy shows that up to 57% of the acquired Hg is nanoparticulate, and the remainder speciated as a bis-thiolate complex (Hg(SR) 2 ). The fractional amount of nanoparticulate Hg is not correlated with Hg concentration. Variation likely depends on leaf age, plant physiology, and natural variability. Nanoparticulate Hg atoms are bonded to four sulfide or thiolate sulfur atoms arranged in a metacinnabar-type (β-HgS) coordination environment. The nanometer dimension of the mercury-sulfur clusters outmatches the known binding capacity of plant metalloproteins. These findings give rise to challenging questions on their exact nature, how they form, and their biogeochemical reactivity and fate in litterfall, whether this mercury pool is recycled or stored in soils. This study provides new evidence that metacinnabar-type nanoparticles are widespread in oxygenated environments.

  8. Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding

    USGS Publications Warehouse

    Poulin, Brett; Aiken, George R.; Nagy, Kathryn L.; Manceau, Alain; Krabbenhoft, David P.; Ryan, Joseph N.

    2016-01-01

    Riparian soils are an important environment in the transport of mercury in rivers and wetlands, but the biogeochemical factors controlling mercury dynamics under transient redox conditions in these soils are not well understood. Mercury release and transformations in the Oa and underlying A horizons of a contaminated riparian soil were characterized in microcosms and an intact soil core under saturation conditions. Pore water dynamics of total mercury (HgT), methylmercury (MeHg), and dissolved gaseous mercury (Hg0(aq)) along with selected anions, major elements, and trace metals were characterized across redox transitions during 36 d of flooding in microcosms. Next, HgT dynamics were characterized over successive flooding (17 d), drying (28 d), and flooding (36 d) periods in the intact core. The observed mercury dynamics exhibit depth and temporal variability. At the onset of flooding in microcosms (1–3 d), mercury in the Oa horizon soil, present as a combination of ionic mercury (Hg(II)) bound to thiol groups in the soil organic matter (SOM) and nanoparticulate metacinnabar (b-HgS), was mobilized with organic matter of high molecular weight. Subsequently, under anoxic conditions, pore water HgT declined coincident with sulfate (3–11 d) and the proportion of nanoparticulate b-HgS in the Oa horizon soil increased slightly. Redox oscillations in the intact Oa horizon soil exhausted the mobile mercury pool associated with organic matter. In contrast, mercury in the A horizon soil, present predominantly as nanoparticulate b-HgS, was mobilized primarily as Hg0(aq) under strongly reducing conditions (5–18 d). The concentration of Hg0(aq) under dark reducing conditions correlated positively with byproducts of dissimilatory metal reduction (P(Fe,Mn)). Mercury dynamics in intact A horizon soil were consistent over two periods of flooding, indicating that nanoparticulate b-HgS was an accessible pool of mobile mercury over recurrent reducing conditions. The

  9. Dark matter directional detection: comparison of the track direction determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couturier, C.; Zopounidis, J.P.; Sauzet, N.

    Several directional techniques have been proposed for a directional detection of Dark matter, among others anisotropic crystal detectors, nuclear emulsion plates, and low-pressure gaseous TPCs. The key point is to get access to the initial direction of the nucleus recoiling due to the elastic scattering by a WIMP. In this article, we aim at estimating, for each method, how the information of the recoil track initial direction is preserved in different detector materials. We use the SRIM simulation code to emulate the motion of the first recoiling nucleus in each material. We propose the use of a new observable, Dmore » , to quantify the preservation of the initial direction of the recoiling nucleus in the detector. We show that in an emulsion mix and an anisotropic crystal, the initial direction is lost very early, while in a typical TPC gas mix, the direction is well preserved.« less

  10. Synthesis and electrochemical study of PtIr and PtRu nanomaterials

    NASA Astrophysics Data System (ADS)

    Alammari, Walaa S.

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or buckypapers. This novel technique could construct CNT films with reproducible properties, which also had the potential to be scale-up for industrial mass production. Based on the microcombing approach, dispersion issue of the long, straight, and highly aligned CNTs was investigated by adding PVA matrix into the microcombed CNT sheets. It was found although microcombing promoted the formation of agglomerated strands of the long, straight, and aligned CNTs, this was not an adverse problem in impairing the composite performance. When matrix was added, those agglomerated strands were wrapped together which maintained a more stable and better contact between nanotubes than those in the dry films. The as-produced CNT/PVA composite films exhibit an electrical conductivity of 1.84x105 S/m, Young's modulus of 119 GPa, tensile strength of 2.9 GPa, and toughness of 52.4 J/cm3, which represent improvements over those of uncombed samples by 300%, 100%, 120%, and 200%, respectively, demonstrating the effectiveness and reliability of microcombing in producing high-performance CNT/polymer composite films.

  11. Verification of the directivity index and other measures of directivity in predicting directional benefit

    NASA Astrophysics Data System (ADS)

    Dittberner, Andrew; Bentler, Ruth

    2005-09-01

    The relationship between various directivity measures and subject performance with directional microphone hearing aids was determined. Test devices included first- and second-order directional microphones. Recordings of sentences and noise (Hearing in Noise Test, HINT) were made through each test device in simple, complex, and anisotropic background noise conditions. Twenty-six subjects, with normal hearing, were administered the HINT test recordings, and directional benefit was computed. These measures were correlated to theoretical, free-field, and KEMAR DI values, as well as front-to-back ratios, in situ SNRs, and a newly proposed Db-SNR, wherein a predictive value of the SNR improvement is calculated as a function of the noise source incidence. The different predictive scores showed high correlation to the measured directional benefit scores in the complex (diffuse-like) background noise condition (r=0.89-0.97, p<0.05) but not across all background noise conditions (r=0.45-0.97, p<0.05). The Db-SNR approach and the in situ SNR measures provided excellent prediction of subject performance in all background noise conditions (0.85-0.97, p<0.05) None of the predictive measures could account for the effects of reverberation on the speech signal (r=0.35-0.40, p<0.05).

  12. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials.

    PubMed

    Hao, Nanjing; Jayawardana, Kalana W; Chen, Xuan; Yan, Mingdi

    2015-01-21

    In this study, amine-functionalized hollow mesoporous silica nanoparticles with an average diameter of ∼100 nm and shell thickness of ∼20 nm were prepared by an one-step process. This new nanoparticulate system exhibited excellent killing efficiency against mycobacterial (M. smegmatis strain mc(2) 651) and cancer cells (A549).

  13. Co-clustering directed graphs to discover asymmetries and directional communities

    PubMed Central

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-01-01

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim. To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction. PMID:27791058

  14. Co-clustering directed graphs to discover asymmetries and directional communities.

    PubMed

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-10-21

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.

  15. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures

    DOE PAGES

    Kucharzyk, Katarzyna H.; Deshusses, Marc A.; Porter, Kaitlyn A.; ...

    2015-07-17

    Monomethylmercury (MeHg) is produced in many aquatic environments by anaerobic microorganisms that take up and methylate inorganic forms of Hg(II). Net methylation of Hg(II) appears to be correlated with factors that affect the activity of the anaerobic microbial community and factors that increase the bioavailability of Hg(II) to these organisms. However, the relative importance of one versus the other is difficult to elucidate even though this information can greatly assist remediation efforts and risk assessments. Here in this study, we investigated the effects of Hg speciation (dissolved Hg and nanoparticulate HgS) and microbial activity on the net production of MeHgmore » using two mixed microbial cultures that were enriched from marine sediments under sulfate reducing conditions. The cultures were amended with dissolved Hg (added as a dissolved nitrate salt) and nanoparticulate HgS, and grown under different carbon substrate concentrations. The results indicated that net mercury methylation was the highest for cultures incubated in the greatest carbon substrate concentration (60 mM) compared to incubations with less carbon (0.6 and 6 mM), regardless of the form of mercury amended. Net MeHg production in cultures exposed to HgS nanoparticles was significantly slower than in cultures exposed to dissolved Hg; however, the difference diminished with slower growing cultures with low carbon addition (0.6 mM). The net Hg methylation rate was found to correlate with sulfate reduction rate in cultures exposed to dissolved Hg, while methylation rate was roughly constant for cultures exposed to nanoparticulate HgS. These results indicated a potential threshold of microbial productivity: below this point net MeHg production was limited by microbial activity, regardless of Hg bioavailability. Lastly, above this threshold of productivity, Hg speciation became a contributing factor towards net MeHg production.« less

  16. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  17. Evidence of a kinetic isotope effect in nanoaluminum and water combustion.

    PubMed

    Tappan, Bryce C; Dirmyer, Matthew R; Risha, Grant A

    2014-08-25

    The normally innocuous combination of aluminum and water becomes violently reactive on the nanoscale. Research in the field of the combustion of nanoparticulate aluminum has important implications in the design of molecular aluminum clusters, hydrogen storage systems, as well as energetic formulations which could use extraterrestrial water for space propulsion. However, the mechanism that controls the reaction speed is poorly understood. While current models for micron-sized aluminum water combustion reactions place heavy emphasis on diffusional limitations, as reaction scales become commensurate with diffusion lengths (approaching the nanoscale) reaction rates have long been suspected to depend on chemical kinetics, but have never been definitely measured. The combustion analysis of nanoparticulate aluminum with H2O or D2O is presented. Different reaction rates resulting from the kinetic isotope effect are observed. The current study presents the first-ever observed kinetic isotope effect in a metal combustion reaction and verifies that chemical reaction kinetics play a major role in determining the global burning rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Application of Pharmacokinetic and Pharmacodynamic Analysis to the Development of Liposomal Formulations for Oncology

    PubMed Central

    Ait-Oudhia, Sihem; Mager, Donald E.; Straubinger, Robert M.

    2014-01-01

    Liposomal formulations of anticancer agents have been developed to prolong drug circulating lifetime, enhance anti-tumor efficacy by increasing tumor drug deposition, and reduce drug toxicity by avoiding critical normal tissues. Despite the clinical approval of numerous liposome-based chemotherapeutics, challenges remain in the development and clinical deployment of micro- and nano-particulate formulations, as well as combining these novel agents with conventional drugs and standard-of-care therapies. Factors requiring optimization include control of drug biodistribution, release rates of the encapsulated drug, and uptake by target cells. Quantitative mathematical modeling of formulation performance can provide an important tool for understanding drug transport, uptake, and disposition processes, as well as their role in therapeutic outcomes. This review identifies several relevant pharmacokinetic/pharmacodynamic models that incorporate key physical, biochemical, and physiological processes involved in delivery of oncology drugs by liposomal formulations. They capture observed data, lend insight into factors determining overall antitumor response, and in some cases, predict conditions for optimizing chemotherapy combinations that include nanoparticulate drug carriers. PMID:24647104

  19. Adsorption, desorption, and removal of polymeric nanomedicine on and from cellulose surfaces: effect of size.

    PubMed

    Zhang, Ming; Akbulut, Mustafa

    2011-10-18

    The increased production and commercial use of nanoparticulate drug delivery systems combined with a lack of regulation to govern their disposal may result in their introduction to soils and ultimately into groundwater systems. To better understand how such particles interact with environmentally significant interfaces, we study the adsorption, desorption, and removal behavior of poly(ethylene glycol)-based nanoparticulate drug delivery systems on and from cellulose, which is the most common organic compound on Earth. It is shown that such an adsorption process is only partially reversible, and most of the adsorbate particles do not desorb from the cellulose surface even upon rinsing with a large amount of water. The rate constant of adsorption decreases with increasing particle size. Furthermore, hydrodynamic forces acting parallel to the surfaces are found to be of great importance in the context of particle dynamics near the cellulose surface, and ultimately responsible for the removal of some fraction of particles via rolling or sliding. As the particle size increases, the removal rates of the particles increase for a given hydrodynamical condition. © 2011 American Chemical Society

  20. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt.

    PubMed

    Raiswell, Rob; Benning, Liane G; Tranter, Martyn; Tulaczyk, Slawek

    2008-05-30

    Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01-0.13 Tg yr(-1)) and icebergs (0.06-0.12 Tg yr(-1)) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions.

  1. Investigation of Voronoi diagram based direction choices using uni- and bi-directional trajectory data

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Chraibi, Mohcine; Qu, Yunchao; Tordeux, Antoine; Gao, Ziyou

    2018-05-01

    In a crowd, individuals make different motion choices such as "moving to destination," "following another pedestrian," and "making a detour." For the sake of convenience, the three direction choices are respectively called destination direction, following direction, and detour direction in this paper. Here, it is found that the featured direction choices could be inspired by the shape characteristics of the Voronoi diagram. To be specific, in the Voronoi cell of a pedestrian, the direction to a Voronoi node is regarded as a potential "detour" direction and the direction perpendicular to a Voronoi link is regarded as a potential "following" direction. A pedestrian generally owns several alternative Voronoi nodes and Voronoi links in a Voronoi cell, and the optimal detour and following direction are determined by considering related factors such as deviation. Plus the destination direction which is directly pointing to the destination, the three basic direction choices are defined in a Voronoi cell. In order to evaluate the Voronoi diagram based basic directions, the empirical trajectory data in both uni- and bi-directional flow experiments are extracted. A time series method considering the step frequency is used to reduce the original trajectories' swaying phenomena which might disturb the recognition of actual forward direction. The deviations between the empirical velocity direction and the basic directions are investigated, and each velocity direction is classified into a basic direction or regarded as an inexplicable direction according to the deviations. The analysis results show that each basic direction could be a potential direction choice for a pedestrian. The combination of the three basic directions could cover most empirical velocity direction choices in both uni- and bi-directional flow experiments.

  2. Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.

    PubMed

    Silas, Jonathan; Brandt, Karen R

    2016-03-11

    It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Lithographically defined microporous carbon-composite structures

    DOEpatents

    Burckel, David Bruce; Washburn, Cody M.; Lambert, Timothy N.; Finnegan, Patrick Sean; Wheeler, David R.

    2016-12-06

    A microporous carbon scaffold is produced by lithographically patterning a carbon-containing photoresist, followed by pyrolysis of the developed resist structure. Prior to exposure, the photoresist is loaded with a nanoparticulate material. After pyrolysis, the nanonparticulate material is dispersed in, and intimately mixed with, the carbonaceous material of the scaffold, thereby yielding a carbon composite structure.

  4. Direction Finding Using an Antenna with Direction Dependent Impulse Response

    NASA Technical Reports Server (NTRS)

    Foltz, Heinrich; Kegege, Obadiah

    2016-01-01

    Wideband antennas may be designed to have an impulse response that is direction dependent, not only in amplitude but also in waveform shape. This property can be used to perform direction finding using a single fixed antenna, without the need for an array or antenna rotation. In this paper direction finding is demonstrated using a simple candelabra-shaped monopole operating in the 1-3 GHz range. The method requires a known transmitted pulse shape and high signal-to-noise ratio, and is not as accurate or robust as conventional methods. However, it can add direction finding capability to a wideband communication system without the addition of any hardware.

  5. Harmonizing Self-Directed and Teacher-Directed Approaches to Learning.

    ERIC Educational Resources Information Center

    Bell, Deanne F.; Bell, Durward L.

    1983-01-01

    A combination of self-directed learning and teacher-directed learning provides a rich and flexible learning experience and accommodates various teaching styles. The key to a successful mixture is the appropriate use of criterion-referencing and normative-referencing for learner evaluation. (JOW)

  6. Directional output distance functions: endogenous directions based on exogenous normalization constraints

    USDA-ARS?s Scientific Manuscript database

    In this paper we develop a model for computing directional output distance functions with endogenously determined direction vectors. We show how this model is related to the slacks-based directional distance function introduced by Fare and Grosskopf and show how to use the slacks-based function to e...

  7. Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation

    NASA Astrophysics Data System (ADS)

    Grabow, Lars C.; Yuan, Qiuyi; Doan, Hieu A.; Brankovic, Stanko R.

    2015-10-01

    A single layer, bi-metallic RuPt catalyst on Au(111) is synthesized using surface limited red-ox replacement of underpotentially deposited Cu and Pb monolayers though a two-step process. The resulting 2D RuPt monolayer nanoclusters have a unique core-edge structure with a Ru core and Pt at the edge along the perimeter. The activity of this catalyst is evaluated using CO monolayer oxidation as the probe reaction. Cyclic voltammetry demonstrates that the 2D RuPt core-edge catalyst morphology is significantly more active than either Pt or Ru monolayer catalysts. Density functional theory calculations in combination with infra-red spectroscopy data point towards oscillating variations (ripples) in the adsorption energy landscape along the radial direction of the Ru core as the origin of the observed behavior. Both, CO and OH experience a thermodynamic driving force for surface migration towards the Ru-Pt interface, where they adsorb most strongly and react rapidly. We propose that the complex interplay between epitaxial strain, ligand and finite size effects is responsible for the formation of the rippled RuPt monolayer cluster, which provides optimal conditions for a quasi-ideal bi-functional mechanism for CO oxidation, in which CO is adsorbed mainly on Pt, and Ru provides OH to the active Pt-Ru interface.

  8. Are recent empirical directivity models sufficient in capturing near-fault directivity effect?

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Shin; Cotton, Fabrice; Pagani, Marco; Weatherill, Graeme; Reshi, Owais; Mai, Martin

    2017-04-01

    It has been widely observed that the ground motion variability in the near field can be significantly higher than that commonly reported in published GMPEs, and this has been suggested to be a consequence of directivity. To capture the spatial variation in ground motion amplitude and frequency caused by the near-fault directivity effect, several models for engineering applications have been developed using empirical or, more recently, the combination of empirical and simulation data. Many research works have indicated that the large velocity pulses mainly observed in the near-field are primarily related to slip heterogeneity (i.e., asperities), suggesting that the slip heterogeneity is a more dominant controlling factor than the rupture velocity or source rise time function. The first generation of broadband directivity models for application in ground motion prediction do not account for heterogeneity of slip and rupture speed. With the increased availability of strong motion recordings (e.g., NGA-West 2 database) in the near-fault region, the directivity models moved from broadband to narrowband models to include the magnitude dependence of the period of the rupture directivity pulses, wherein the pulses are believed to be closely related to the heterogeneity of slip distribution. After decades of directivity models development, does the latest generation of models - i.e. the one including narrowband directivity models - better capture the near-fault directivity effects, particularly in presence of strong slip heterogeneity? To address this question, a set of simulated motions for an earthquake rupture scenario, with various kinematic slip models and hypocenter locations, are used as a basis for a comparison with the directivity models proposed by the NGA-West 2 project for application with ground motion prediction equations incorporating a narrowband directivity model. The aim of this research is to gain better insights on the accuracy of narrowband directivity

  9. Future direction of direct writing

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Soo; Han, Kenneth N.

    2010-11-01

    Direct write technology using special inks consisting of finely dispersed metal nanoparticles in liquid is receiving an undivided attention in recent years for its wide range of applicability in modern electronic industry. The application of this technology covers radio frequency identification-tag (RFID-tag), flexible-electronics, organic light emitting diodes (OLED) display, e-paper, antenna, bumpers used in flip-chip, underfilling, frit, miniresistance applications and biological uses, artificial dental applications and many more. In this paper, the authors have reviewed various direct write technologies on the market and discussed their advantages and shortfalls. Emphasis has given on microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and ink-jet technologies. All of these technologies allow printing various patterns without employing a mask or a resist with an enhanced speed with the aid of computer. MDDW and M3D are capable of drawing patterns in three-dimension and MDDW, in particular, is capable of writing nanoinks with high viscosity. However, it is still far away for direct write to be fully implemented in the commercial arena. One of the hurdles to overcome is in manufacturing conductive inks which are chemically and physically stable, capable of drawing patterns with acceptable conductivity, and also capable of drawing patterns with acceptable adhesiveness with the substrates. The authors have briefly discussed problems involved in manufacturing nanometal inks to be used in various writing devices. There are numerous factors to be considered in manufacturing such inks. They are reducing agents, concentrations, oxidation, compact ability allowing good conductivity, and stability in suspension.

  10. A comparison of consumer-directed and agency-directed personal assistance services programmes.

    PubMed

    Hagglund, Kristofer; Clark, Mary; Farmer, Janet; Sherman, Ashley

    2004-05-06

    To compare a consumer-directed personal assistance services (PAS) programme with an agency-directed PAS programme. A convenience sample was used for this cross-sectional study with one data collection point. Outcomes were compared for consumer-directed and agency-directed PAS. Hierarchical regressions were also used to determine the predictors of outcomes across PAS programmes. In-home interviews were conducted by a trained data collector from April 2000 to December 2001. Participants in the consumer-directed programme reported more choices over PAS and satisfaction with PAS. Self-reported outcomes were primarily predicted by the following variables: service arrangement, type of provider, importance of directing PAS, health status, number of personal assistants used in past 12 months, sufficient PAS hours received, and social support. Consumer-directed PAS enhances outcomes for many persons with disabilities. Self-reported outcomes are affected by many factors that could be addressed in PAS programme development.

  11. Directing 101.

    ERIC Educational Resources Information Center

    Pintoff, Ernest

    Providing an introduction to anyone considering directing as a field of study or career, this book takes a broad look at the process of directing and encourages students and professionals alike to look outside of the movie industry for inspiration. Chapters in the book discuss selecting and acquiring material; budgeting and financing; casting and…

  12. Directed Energy Weapons

    DTIC Science & Technology

    2007-12-01

    future business . In defense systems, the key to future business is the existence of funded programs. Military commanders understand the lethality and...directed energp capabilities that can provide visibiliy into the likey futur business case for sustaining directed energy industry capabilities...the USD (I) staff to be afocalpointfor advocating improvement in all dimensions of directed energy intelligence. - The Director, Defense Inteligence

  13. Driving Directions

    Science.gov Websites

    close X Directions to the Automotive Research Center North Campus, University of Michigan W.E. Lay directions and a map of visitor parking lots. From I-94: Take Exit 180B onto US-23 North. Take Exit 41 to parking permit is displayed prominently. North Campus parking map close X

  14. Emotional consequences of collective action participation: differentiating self-directed and outgroup-directed emotions.

    PubMed

    Becker, Julia C; Tausch, Nicole; Wagner, Ulrich

    2011-12-01

    The present research examines the emotional and behavioral consequences of collective action participation. It demonstrates that "positive" and "negative" emotions can be experienced simultaneously as a result of collective action participation, yet it is important to distinguish outgroup-directed from self-directed emotions. Results of two experiments (N = 71 and N = 101) that manipulated participation in collective action illustrate that whereas collective action participants experience more outgroup-directed anger and contempt, they feel more self-directed positive affect. Furthermore, collective action participation predicted willingness to engage in moderate and radical collective actions in the future. These relations were mediated by outgroup-directed, but not by self-directed, emotions, suggesting that outgroup-directed rather than self-directed emotions play a crucial role in the maintenance of protest behavior. Theoretical and practical implications of these findings are discussed.

  15. Will nanotechnology influence targeted cancer therapy?

    PubMed Central

    Grimm, Jan; Scheinberg, David A.

    2011-01-01

    The rapid development of techniques that enable synthesis (and manipulation) of matter on the nanometer scale, as well as the development of new nano-materials, will play a large role in disease diagnosis and treatment, specifically in targeted cancer therapy. Targeted nanocarriers are an intriguing means to selectively deliver high concentrations of cytotoxic agents or imaging labels directly to the cancer site. Often solubility issues and an unfavorable biodistribution can result in a suboptimal response of novel agents even though they are very potent. New nanoparticulate formulations allow simultaneous imaging and therapy (“theranostics”), which can provide a realistic means for the clinical implementation of such otherwise suboptimal formulations. In this review we will not attempt to provide a complete overview of the rapidly enlarging field of nanotechnology in cancer; rather, we will present properties specific to nanoparticles, and examples of their uses, which demonstrate their importance for targeted cancer therapy. PMID:21356476

  16. Multi-Step Crystallization of Barium Carbonate: Rapid Interconversion of Amorphous and Crystalline Precursors.

    PubMed

    Whittaker, Michael L; Smeets, Paul J M; Asayesh-Ardakani, Hasti; Shahbazian-Yassar, Reza; Joester, Derk

    2017-12-11

    The direct observation of amorphous barium carbonate (ABC), which transforms into a previously unknown barium carbonate hydrate (herewith named gortatowskite) within a few hundred milliseconds of formation, is described. In situ X-ray scattering, cryo-, and low-dose electron microscopy were used to capture the transformation of nanoparticulate ABC into gortatowskite crystals, highly anisotropic sheets that are up to 1 μm in width, yet only about 10 nm in thickness. Recrystallization of gortatowskite to witherite starts within 30 seconds. We describe a bulk synthesis and report a first assessment of the composition, vibrational spectra, and structure of gortatowskite. Our findings indicate that transient amorphous and crystalline precursors can play a role in aqueous precipitation pathways that may often be overlooked owing to their extremely short lifetimes and small dimensions. However, such transient precursors may be integral to the formation of more stable phases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Topical nanoparticulate formulation of drugs for ocular keratitis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyan

    The primary objective of this project is to develop drug-loaded polymeric nanoparticles suspended in a biocompatible gel for topical delivery of therapeutic agents commonly employed in the treatment of ocular viral/bacterial keratitis. PART 1: Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) of dipeptide monoester prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV), D-Val-L-Val-GCV (DLGCV) were formulated and dispersed in thermosensitive PLGA-PEG-PLGA polymer gel for the treatment of herpes simplex virus type 1 (HSV-1) induced viral corneal keratitis. NP containing prodrugs of GCV were prepared by a double-emulsion solvent evaporation technique using various PLGA polymers with different drug/polymer ratios. Cytotoxicity studies suggested that all NP formulations are non-toxic. In vitro release of prodrugs from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels with near zero-order release kinetics. Prodrugs-loaded PLGA NP dispersed in thermosensitive gels can thus serve as a promising drug delivery system for the treatment of anterior eye diseases. Maximum uptake (around 60%) was noted at 3 h for NP. Cellular uptake and intracellular accumulation of prodrugs are significantly different among three stereoisomeric dipeptide prodrugs. The microscopic images show that NP are avidly internalized by HCEC cells and distributed throughout the cytoplasm instead of being localized on the cell surface. Following cellular uptake, prodrugs released from NP gradually bioreversed into parent drug GCV. LLGCV showed the highest degradation rate, followed by LDGCV and DLGCV. LLGCV, LDGCV and DLGCV released from NP exhibited superior uptake and bioreversion in corneal cells. PART 2: PLGA NP of hydrocortisone butyrate (HB) suspended in thermosensitive PLGA-PEG-PLGA gel were developed for the treatment of bacterial corneal keratitis. Experimental designs were employed in order to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. NP containing HB were prepared by an oil-in-water (O/W) emulsion evaporation technique with different surfactants including polyvinyl alcohol (PVA), pluronic F-108 and chitosan. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels and zero-order release kinetics was observed. Percentage of uptake in HCEC after 4 h was 59.09+/-6.21% for PVA-emulsified NP relative to 55.74+/-6.26% for pluronic-emulsified NP, and 62.54+/-3.30% for chitosan-emulsified NP, respectively. In HCEC cell line, chitosan-emulsified NP with chitosan showed highest cellular uptake efficiency over PVA- and pluronic-emulsified NP. However, NP with chitosan indicated significant cytotoxicity under 200 and 500 ?g/mL after 48 h, while NP with PVA and pluronic showed no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases.

  18. Directional radiation detectors

    DOEpatents

    Dowell, Jonathan L.

    2017-09-12

    Directional radiation detectors and systems, methods, and computer-readable media for using directional radiation detectors to locate a radiation source are provided herein. A directional radiation detector includes a radiation sensor. A radiation attenuator partially surrounds the radiation sensor and defines an aperture through which incident radiation is received by the radiation sensor. The aperture is positioned such that when incident radiation is received directly through the aperture and by the radiation sensor, a source of the incident radiation is located within a solid angle defined by the aperture. The radiation sensor senses at least one of alpha particles, beta particles, gamma particles, or neutrons.

  19. AMN-2: Second International Conference on Advanced Materials and Nanotechnology

    DTIC Science & Technology

    2005-02-11

    radiography 13:45 Geopolymers : nanoparticulate, nanoporous ceramics fabricated under ambient conditions 14:10 Smartening-up carbon: towards chemically...interpenetrating composites 16.15 Nanoscale surface properties of metals treated by electrochemical and physico- chemical methods 16.30 Atomistic strain...sulfonic acid for quantum dot and its characters 16.15 Characterization of photoluminescent CdTe/CdSe composite nanoparticles synthesized by the

  20. Directed network modules

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Farkas, Illés J.; Pollner, Péter; Derényi, Imre; Vicsek, Tamás

    2007-06-01

    A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Rényi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs.

  1. Biocompatibilite des complexes proteines-nanoparticules: Perspectives sur la reponse cellulaire aux nanoparticules d'oxyde de fer fonctionnalisees, revetues d'un corona

    NASA Astrophysics Data System (ADS)

    Mbeh, Doris Antoinette

    This thesis presents the study of the biocompatibility of nanoparticles (NPs) of iron oxide (Fe3O4) candidates for targeted delivery of therapeutic molecules. We especially devoted to study the impact of the surface composition of the NPs and protein adsorption at the surface thereof on the cellular responses. To do this, we first examined the toxic potential of magnetite with various functionalizations: one that is prepared with (1) a monolayer of oleic acid (Fe3O4@OA), which is then converted to (2) an envelope silane containing an amine (Fe3O4@NH 2), (3) a coating of silica (Fe3O4@SiO 2), and (4) an envelope containing a silane coating on amine silica (Fe3O4@SiO2@NH 2). The presence of these groups at the surface of the NPs was confirmed by XPS and transmission electron microscopy (TEM) analysis. We were able to prove that the toxic potential of NPs is dose-dependent and we determine the biocompatible doses for each surface functionalization. Microscopic observation of the morphology of the cells exposed to NPs, and their proinflammatory and mitochondrial activity showed that, in addition to surface features, the cell culture medium also affect the cytotoxicity of the NPs. These results clearly show that in order to use our NPs as pharmaceutical nanocarrier safely, we need to control the surface functionalization and the dynamic interaction between the NP and the physiological environment in which it is suspended. To understand the interaction between the NP and the culture medium, as a first step, we used three different culture media namely: DMEM, F-12K and DMEM / F12 (see Appendix A) and uncoated magnetite (Fe3O 4). These media were enriched with either fetal bovine serum (see Appendix B) or with a synthetic serum (SFMS). We have proved the presence of a protein corona on NPs suspended in culture media enriched with bovine serum. We also demonstrated that the formation of the corona depends on the composition of the culture medium and that the cytotoxic potential of the NPs is influenced by NP-protein interaction. In a second step, we used one culture medium (DMEM / F12) and the magnetite with three different surface compositions: uncoated SPIONs with hydroxyl groups (OH) on the surface; coated SPIONs with an amine group (NH2) on the surface and the last one with a carboxylic group (COOH) on the surface. The results show that the composition of the corona depends on the surface composition of the NP and cellular responses are also different from one surface to another. In fact, some proteins (e.g. albumin) are adsorbed on the coatings only positively charged (NH2), while others (e.g., fibrinogen) are adsorbed on the negatively charged coatings (OH and COOH). Cell proliferation is influenced by the surface chemistry and is dose-dependent. SPIONs coated with carboxylic groups are more biocompatible while those uncoated, having hydroxyl groups on the surface are the most cytotoxic. Exploring three possible mechanisms of cytotoxicity, i.e., the production of ions by the SPIONs in the culture media, reactive oxygen species and protein adsorption, we found that in our case, protein adsorption was behind the cytotoxicity of our NPs since oxidative stress have been proved non-existent and there are not enough ions in the culture media to be detected . From these results, we can make a first correlation between the chemical composition of the surface, the identity of the adsorbed proteins and cellular responses. But we must take into account many other parameters related either to the NPs such as the charge, the agglomeration status, or related to the culture medium as the density of each protein, or finally to the experimental conditions.

  2. Direct seeding

    Treesearch

    Richard M. Godman; G. A. Mattson

    1992-01-01

    At present, direct seeding of hardwoods in the Lake States is more of a supplemental than a primary means of artificial regeneration. Direct seeding may be used to augment a poor seed crop or increase the proportion of a preferred species. In the future, it will no doubt play a bigger role-in anticipation of this we need to collect and store the amounts of seed needed...

  3. Variable mode bi-directional and uni-directional computer communication system

    DOEpatents

    Cornett, Frank N.; Jenkins, Philip N.; Bowman, Terrance L.; Placek, Joseph M.; Thorson, Gregory M.

    2004-12-14

    A variable communication systems comprising a plurality of transceivers and a control circuit connected to the transceivers to configure the transceivers to operate in a bi-directional mode and a uni-directional mode at different times using different transfer methods to transfer data.

  4. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.

    PubMed

    Park, Kyung-Won; Sung, Yung-Eun

    2005-07-21

    Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state.

  5. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    NASA Astrophysics Data System (ADS)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  6. Directivity of singers

    NASA Astrophysics Data System (ADS)

    Jers, Harald

    2005-09-01

    Studies of acoustical balance between singers within a choir by means of room acoustical measurements have shown that the directional sound propagation of the source is important. For this reason the directivity of female and male singers for different vowels has been measured in this investigation. Measurements of a pilot study and some first measurements in 1998 have been supplemented with new measurements and an enhanced setup. A special measurement setup with reference and recording microphones was used to collect the directivity data. A resolution of 10 deg for azimuth and elevation angle was obtained. The results will be shown in 3D spherical plots with frequency adjustments in semitones from 80 to 8000 Hz. The measurements are compared to an artificial singer's directivity, and the influence of a sheet music binder in front of a singer will be shown. The results give information on the directivity of singers and are relevant for the prediction of self-to-other-ratios that result from placement and formation aspects within a choir.

  7. Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge

    NASA Astrophysics Data System (ADS)

    Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.

    The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.

  8. Short Wave Direction Finders

    DTIC Science & Technology

    1960-05-23

    or designing direction finders. In CIApter 1, written by candidate of technical sciences, lec- turer O.V.Belavin, are considered direction finding...direction finding methods. In the design of radio direction finders with long base, qustioons arise of the advantageous choice of an antenna system, of the...dieeoticfindors, and reoommadat4ons on the design of radio direetion finders from the point of view of reduting the asaratu errors. og-’eae re~.o dkitctlon

  9. Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films.

    PubMed

    Ehiasarian, A; Pulgarin, Cesar; Kiwi, John

    2012-11-01

    The Cu polyester thin-sputtered layers on textile fabrics show an acceptable bacterial inactivation kinetics using sputtering methods. Direct current magnetron sputtering (DCMS) for 40 s of Cu on cotton inactivated Escherichia coli within 30 min under visible light and within 120 min in the dark. For a longer DCMS time of 180 s, the Cu content was 0.294% w/w, but the bacterial inactivation kinetics under light was observed within 30 min, as was the case for the 40-s sputtered sample. This observation suggests that Cu ionic species play a key role in the E. coli inactivation and these species were further identified by X-ray photoelectron spectroscopy (XPS). The 40-s sputtered samples present the highest amount of Cu sites held in exposed positions interacting on the cotton with E. coli. Cu DC magnetron sputtering leads to thin metallic semi-transparent gray-brown Cu coating composed by Cu nanoparticulate in the nanometer range as found by electron microscopy (EM). Cu cotton fabrics were also functionalized by bipolar asymmetric DCMSP. Sputtering by DCMS and DCMSP for longer times lead to darker and more compact Cu films as detected by diffuse reflectance spectroscopy and EM. Cu is deposited on the polyester in the form of Cu(2)O and CuO as quantified by XPS. The redox interfacial reactions during bacterial inactivation involve changes in the Cu oxidation states and in the oxidation intermediates and were followed by XPS. High-power impulse magnetron sputtering (HIPIMS)-sputtered films show a low rugosity indicating that the texture of the Cu nanoparticulate films were smooth. The values of R (q) and R (a) were similar before and after the E. coli inactivation providing evidence for the stability of the HIPIMS-deposited Cu films. The Cu loading percentage required in the Cu films sputtered by HIPIMS to inactivate E. coli was about three times lower compared to DCMS films. This indicates a substantial Cu metal savings within the preparation of antibacterial

  10. Estimating directional epistasis

    PubMed Central

    Le Rouzic, Arnaud

    2014-01-01

    Epistasis, i.e., the fact that gene effects depend on the genetic background, is a direct consequence of the complexity of genetic architectures. Despite this, most of the models used in evolutionary and quantitative genetics pay scant attention to genetic interactions. For instance, the traditional decomposition of genetic effects models epistasis as noise around the evolutionarily-relevant additive effects. Such an approach is only valid if it is assumed that there is no general pattern among interactions—a highly speculative scenario. Systematic interactions generate directional epistasis, which has major evolutionary consequences. In spite of its importance, directional epistasis is rarely measured or reported by quantitative geneticists, not only because its relevance is generally ignored, but also due to the lack of simple, operational, and accessible methods for its estimation. This paper describes conceptual and statistical tools that can be used to estimate directional epistasis from various kinds of data, including QTL mapping results, phenotype measurements in mutants, and artificial selection responses. As an illustration, I measured directional epistasis from a real-life example. I then discuss the interpretation of the estimates, showing how they can be used to draw meaningful biological inferences. PMID:25071828

  11. The Influence of Directional Associations on Directed Forgetting and Interference

    ERIC Educational Resources Information Center

    Sahakyan, Lili; Goodmon, Leilani B.

    2007-01-01

    Two experiments examined how cross-list directional associations influenced list-method directed forgetting and the degree of interference observed on each list. Each List 1 item had a (a) bidirectionally related item on List 2 (chip ?? potato), (b) forward association with an item on List 2 (chip ? wood), (c) backward association from an item on…

  12. Direction-Dependence Analysis: A Confirmatory Approach for Testing Directional Theories

    ERIC Educational Resources Information Center

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    The concept of direction dependence has attracted growing attention due to its potential to help decide which of two competing linear regression models (X ? Y or Y ? X) is more likely to reflect the correct causal flow. Several tests have been proposed to evaluate hypotheses compatible with direction dependence. In this issue, Thoemmes (2015)…

  13. Directive sources in acoustic discrete-time domain simulations based on directivity diagrams.

    PubMed

    Escolano, José; López, José J; Pueo, Basilio

    2007-06-01

    Discrete-time domain methods provide a simple and flexible way to solve initial boundary value problems. With regard to the sources in such methods, only monopoles or dipoles can be considered. However, in many problems such as room acoustics, the radiation of realistic sources is directional-dependent and their directivity patterns have a clear influence on the total sound field. In this letter, a method to synthesize the directivity of sources is proposed, especially in cases where the knowledge is only based on discrete values of the directivity diagram. Some examples have been carried out in order to show the behavior and accuracy of the proposed method.

  14. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC.

    PubMed

    Gonzalez-Mira, E; Egea, M A; Garcia, M L; Souto, E B

    2010-12-01

    Packaging small drug molecules, such as non-steroidal anti-inflammatory drugs (NSAIDs) into nanoparticulate systems has been reported as a promising approach to improve the drug's bioavailability, biocompatibility and safety profiles. In the last 20 years, lipid nanoparticles (lipid dispersions) entered the nanoparticulate library as novel carrier systems due to their great potential as an alternative to other systems such as polymeric nanoparticles and liposomes for several administration routes. For ocular instillation nanoparticulate carriers are required to have a low mean particle size, with the lowest polydispersity as possible. The purpose of this work was to study the combined influence of 2-level, 4-factor variables on the formulation of flurbiprofen (FB), a lipophilic NSAID, in lipid carriers currently named as nanostructured lipid carriers (NLC). NLC were produced with stearic acid (SA) and castor oil (CO) stabilized by Tween® 80 (non-ionic surfactant) in aqueous dispersion. A 2(4) full factorial design based on 4 independent variables was used to plan the experiments, namely, the percentage of SA with regard to the total lipid, the FB concentration, the stabilizer concentration, and the storage conditions (i.e., storage temperature). The effects of these parameters on the mean particle size, polydispersity index (PI) and zeta potential (ZP) were investigated as dependent variables. The optimization process was achieved and the best formulation corresponded to the NLC formulation composed of 0.05 (wt%) FB, 1.6 (wt%) Tween® 80 and a 50:50 ratio of SA to CO, with an average diameter of 288 nm, PI 0.245 of and ZP of -29 mV. This factorial design study has proven to be a useful tool in optimizing FB-loaded NLC formulations. Stability of the optimized NLC was predicted using a TurbiScanLab® and the ocular tolerance was assessed in vitro and in vivo by the Eytex® and Draize test, respectively. The developed systems were shown physico-chemically stable with

  15. Protecting me from my Directive: Ensuring Appropriate Safeguards for Advance Directives in Dementia.

    PubMed

    Auckland, Cressida

    2018-02-01

    With one in six people over 80 now suffering from dementia, advance directives provide an important means of empowerment. Upholding directives in the context of dementia, however, raises extra challenges, given the potential for the directive to conflict with an assessment of what is in the person's current best interests. Given the profound harm that tying a person with dementia to their previous wishes can do, it is essential that we have sufficient safeguards in place to ensure that we only uphold such directives where we can be sure they are truly autonomous and are intended to apply to the situation at hand-safeguards which are at present, severely lacking. This article will consider various mechanisms by which safeguards can be built into the legal regime to ensure that the original decision is autonomous, including making it mandatory for the person to undergo a consultation with a healthcare professional, which would involve a contemporaneous capacity assessment. Clinicians must also be confident that the directive applies to the situation at hand. Introducing formalities, including a standardised (though not mandatory) proforma, may help to enhance specificity about when the directive is triggered, and to what treatments it relates, to enable clinicians to better assess the directive's applicability. A national registry for advance directives might also be beneficial. It will be argued that health care professionals will have to play a much greater role in the drafting and registering of advance directives, if we are to feel comfortable in upholding them.

  16. Directional Scanning as a Function of Stimulus Characteristics, Reading Habits, and Directional Set

    ERIC Educational Resources Information Center

    Nachshon, Israel; And Others

    1977-01-01

    "32 English readers and 32 Hebrew readers were shown stimuli with directional characteristics (English and Hebrew letters) and stimuli with no directional characteristics (arrays of different circles, bars, colors, and geometric figures) for scanning. The results showed that, while directional stimulus characteristics affected the direction…

  17. Rubber friction directional asymmetry

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Dorogin, L.; Steenwyk, B.; Warhadpande, A.; Motamedi, M.; Fortunato, G.; Ciaravola, V.; Persson, B. N. J.

    2016-12-01

    In rubber friction studies it is usually assumed that the friction force does not depend on the sliding direction, unless the substrate has anisotropic properties, like a steel surface grinded in one direction. Here we will present experimental results for rubber friction, where we observe a strong asymmetry between forward and backward sliding, where forward and backward refer to the run-in direction of the rubber block. The observed effect could be very important in tire applications, where directional properties of the rubber friction could be induced during braking.

  18. Direct current transformer

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  19. Self-Directed Workplace Learning.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on self-directed workplace learning. "Self-Directed Work Teams: Implementation and Performance" (Marcel van der Klink, Hilde ter Horst) discusses the results of a study examining the implementation and effects of self-directed work teams in a land register office and the role of the…

  20. Tactile pavement for guiding walking direction: An assessment of heading direction and gait stability.

    PubMed

    Pluijter, Nanda; de Wit, Lieke P W; Bruijn, Sjoerd M; Plaisier, Myrthe A

    2015-10-01

    For maintaining heading direction while walking we heavily rely on vision. Therefore, walking in the absence of vision or with visual attention directed elsewhere potentially leads to dangerous situations. Here we investigated whether tactile information from the feet can be used as a (partial) substitute for vision in maintaining a stable heading direction. If so, participants should be better able to keep a constant heading direction on tactile pavement that indicates directionality than on regular flat pavement. However, such a pavement may also be destabilizing. Thus we asked participants to walk straight ahead on regular pavement, and on tactile pavement (tiles with ridges along the walking direction) while varying the amount of vision. We assessed the effects of the type of pavement as well as the amount of vision on the variability of the heading direction as well as gait stability. Both of these measures were calculated from accelerations and angular velocities recorded from a smartphone attached to the participants trunk. Results showed that on tactile pavement participants had a less variations in their heading direction than on regular pavement. The drawback, however, was that the tactile pavement used in this study decreased gait stability. In sum, tactile pavement can be used as a partial substitute for vision in maintaining heading direction, but it can also decrease gait stability. Future work should focus on designing tactile pavement that does provided directional clues, but is less destabilizing. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Pu, Fang; Liu, Jianhua; Jiang, Liyan; Yuan, Qinghai; Li, Zhengqiang; Ren, Jinsong; Qu, Xiaogang

    2013-05-01

    Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material. Compared with routinely used Iobitridol in clinic, our PEG-Yb2O3:Gd nanoparticles could provide much significantly enhanced contrast upon various clinical voltages ranging from 80 kVp to 140 kVp owing to the high atomic number and well-positioned K-edge energy of ytterbium. By the doping of gadolinium, our nanoparticulate contrast agent could perform perfect MR imaging simultaneously, revealing similar organ enrichment and bio-distribution with the CT imaging results. The super improvement in imaging efficiency was mainly attributed to the high content of Yb and Gd in a single nanoparticle, thus making these nanoparticles suitable for dual-modal diagnostic imaging with a low single-injection dose. In addition, detailed toxicological study in vitro and in vivo indicated that uniformly sized PEG-Yb2O3:Gd nanoparticles possessed excellent biocompatibility and revealed overall safety.Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material

  2. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1991-01-01

    The long range goal of this program is to develop an improved understanding of phenomena of importance to directional solidification and to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.

  3. Reconfigurable Optical Directed-Logic Circuits

    DTIC Science & Technology

    2015-11-20

    AFRL-AFOSR-VA-TR-2016-0053 Reconfigurable Optical Directed-Logic Circuits Jacob Robinson WILLIAM MARSH RICE UNIV HOUSTON TX Final Report 11/20/2015...2015 Reconfigurable Optical Directed-Logic Circuits FA9550-12-1-0261 FA9550-12-1-0261 Robinson, Jacob Rice University 6100 Main Street Houston...Optical Directed-Logic Circuits Jacob T. Robinson and Qianfan Xu Rice University 1. Motivation for Directed-Logic Circuits Directed-logic is

  4. Multimode Directional Coupler

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2016-01-01

    A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.

  5. Modelling Directional Solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Zhou, Jian; Yuan, Weijun

    1992-01-01

    The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.

  6. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans

    PubMed Central

    Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.

    2014-01-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890

  7. DIRECTIONAL ANTENNA

    DOEpatents

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  8. The Shape of Direct Quotation

    ERIC Educational Resources Information Center

    Weber, Rose-Marie

    2008-01-01

    Direct quotation can be a source of meaning in storybook texts for beginning readers. The author of this article sketches the linguistic complexity of direct quotation and offers instructional strategies. Three aspects of direct quotation are examined: the cluster of print features and syntactic characteristics that direct quotation involves, the…

  9. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  10. Direct patterning of a cyclotriveratrylene derivative for directed self-assembly of C60

    NASA Astrophysics Data System (ADS)

    Osner, Zachary R.; Nyamjav, Dorjderem; Holz, Richard C.; Becker, Daniel P.

    2011-07-01

    A novel apex-modified cyclotriveratrylene (CTV) derivative with an attached thiolane-containing lipoic acid linker was directly patterned onto gold substrates via dip-pen nanolithography (DPN). The addition of a dithiolane-containing linker to the apex of CTV provides a molecule that can adhere to a gold surface with its bowl-shaped cavity directed away from the surface, thereby providing a surface-bound CTV host that can be used for the directed assembly of guest molecules. Subsequent exposure of these CTV microarrays to C60 in toluene resulted in the directed assembly of predesigned, spatially controlled, high-density microarrays of C60. The molecular recognition capabilities of this CTV template toward C60 provides proof-of-concept that supramolecular CTV scaffolds can be directly patterned onto surfaces providing a foundation for the development of organic electronic and optoelectronic materials.

  11. Adult-Directed and Peer-Directed Respect for Authority: Relationships With Aggressive and Manipulative Behavior.

    PubMed

    Clemans, Katherine H; Graber, Julia A; Bettencourt, Amie F

    2012-09-01

    This study investigated whether respect for adult and peer authority are separate attitudes which have distinct relationships with aggressive and manipulative behavior. Items assessing admiration for and obedience toward parents, teachers, popular students, and friend group leaders were administered to 286 middle school students (M age = 12.6 yrs). Factor analysis revealed two primary factors which corresponded to adult-directed and peer-directed respect orientations. Results suggested that adult-directed respect was associated with lower levels of aggression and social manipulation, whereas peer-directed respect was associated with higher levels of these behaviors. The role of peer-directed respect as a risk factor for negative social behavior in adolescence is discussed.

  12. Dark matter spin determination with directional direct detection experiments

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Conrad, Jan; Döring, Christian; Ferella, Alfredo Davide; Krauss, Martin B.

    2018-01-01

    If dark matter has spin 0, only two WIMP-nucleon interaction operators can arise as leading operators from the nonrelativistic reduction of renormalizable single-mediator models for dark matter-quark interactions. Based on this crucial observation, we show that about 100 signal events at next generation directional detection experiments can be enough to enable a 2 σ rejection of the spin 0 dark matter hypothesis in favor of alternative hypotheses where the dark matter particle has spin 1 /2 or 1. In this context, directional sensitivity is crucial since anisotropy patterns in the sphere of nuclear recoil directions depend on the spin of the dark matter particle. For comparison, about 100 signal events are expected in a CF4 detector operating at a pressure of 30 torr with an exposure of approximately 26,000 cubic-meter-detector days for WIMPs of 100 GeV mass and a WIMP-fluorine scattering cross section of 0.25 pb. Comparable exposures require an array of cubic meter time projection chamber detectors.

  13. Directionality of real world networks as predicted by path length in directed and undirected graphs

    NASA Astrophysics Data System (ADS)

    Rosen, Yonatan; Louzoun, Yoram

    2014-05-01

    Many real world networks either support ordered processes, or are actually representations of such processes. However, the same networks contain large strong connectivity components and long circles, which hide a possible inherent order, since each vertex can be reached from each vertex in a directed path. Thus, the presence of an inherent directionality in networks may be hidden. We here discuss a possible definition of such a directionality and propose a method to detect it. Several common algorithms, such as the betweenness centrality or the degree, measure various aspects of centrality in networks. However, they do not address directly the issue of inherent directionality. The goal of the algorithm discussed here is the detection of global directionality in directed networks. Such an algorithm is essential to detangle complex networks into ordered process. We show that indeed the vast majority of measured real world networks have a clear directionality. Moreover, this directionality can be used to classify vertices in these networks from sources to sinks. Such an algorithm can be highly useful in order to extract a meaning from large interaction networks assembled in many domains.

  14. Flight directions of passerine migrants in daylight and darkness: A radar and direct visual study

    NASA Technical Reports Server (NTRS)

    Gauthreaux, S. A., Jr.

    1972-01-01

    The application of radar and visual techniques to determine the migratory habits of passerine birds during daylight and darkness is discussed. The effects of wind on the direction of migration are examined. Scatter diagrams of daytime and nocturnal migration track directions correlated with wind direction are presented. It is concluded that migratory birds will fly at altitudes where wind direction and migratory direction are nearly the same. The effects of cloud cover and solar obscuration are considered negligible.

  15. Synthesis of noble metal/carbon nanotube composites in supercritical methanol.

    PubMed

    Sun, Zhenyu; Fu, Lei; Liu, Zhimin; Han, Buxing; Liu, Yunqi; Du, Jimin

    2006-03-01

    A simple and efficient route has been employed to deposit noble metal nanoparticles (Pt, Ru, Pt-Ru, Rh, Ru-Sn) onto carbon nanotubes (CNTs) in supercritical methanol solution. In this method, the inorganic metallic salts acted as metal precursors, and methanol as solvent as well as reductant for the precursors. The as-prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. It was demonstrated that the CNTs were decorated by crystalline metal nanoparticles with uniform sizes and a narrow particle size distribution. The size and loading content of the nanoparticles on CNTs could be tuned by manipulating reaction parameters. Furthermore, the formation mechanism of the composites was also discussed.

  16. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans.

    PubMed

    Pereira, Dora I A; Bruggraber, Sylvaine F A; Faria, Nuno; Poots, Lynsey K; Tagmount, Mani A; Aslam, Mohamad F; Frazer, David M; Vulpe, Chris D; Anderson, Gregory J; Powell, Jonathan J

    2014-11-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  17. Adult-Directed and Peer-Directed Respect for Authority: Relationships With Aggressive and Manipulative Behavior

    PubMed Central

    Clemans, Katherine H.; Graber, Julia A.; Bettencourt, Amie F.

    2012-01-01

    This study investigated whether respect for adult and peer authority are separate attitudes which have distinct relationships with aggressive and manipulative behavior. Items assessing admiration for and obedience toward parents, teachers, popular students, and friend group leaders were administered to 286 middle school students (M age = 12.6 yrs). Factor analysis revealed two primary factors which corresponded to adult-directed and peer-directed respect orientations. Results suggested that adult-directed respect was associated with lower levels of aggression and social manipulation, whereas peer-directed respect was associated with higher levels of these behaviors. The role of peer-directed respect as a risk factor for negative social behavior in adolescence is discussed. PMID:23329877

  18. Quasi-zero-dimensional cobalt-doped CeO2 dots on Pd catalysts for alcohol electro-oxidation with enhanced poisoning-tolerance.

    PubMed

    Tan, Qiang; Zhu, Haiyan; Guo, Shengwu; Chen, Yuanzhen; Jiang, Tao; Shu, Chengyong; Chong, Shaokun; Hultman, Benjamin; Liu, Yongning; Wu, Gang

    2017-08-31

    Deactivation of an anode catalyst resulting from the poisoning of CO ad -like intermediates is one of the major problems for methanol and ethanol electro-oxidation reactions (MOR & EOR), and remains a grand challenge towards achieving high performance for direct alcohol fuel cells (DAFCs). Herein, we report a new approach for the preparation of ultrafine cobalt-doped CeO 2 dots (Co-CeO 2 , d = 3.6 nm), which can be an effective anti-poisoning promoter for Pd catalysts towards MOR and EOR in alkaline media. Compared to Pd/CeO 2 and pure Pd, the hybrid Pd/Co-CeO 2 nanocomposite catalyst exhibited a much enhanced activity and remarkable anti-poisoning ability for both MOR and EOR. The nanocomposite catalyst showed much higher mass activity (4×) than a state-of-the-art PtRu catalyst. The promotional mechanism was elucidated using extensive characterization and density-functional theory (DFT). A bifunctional effect of the Co-CeO 2 dots was discovered to be due to (i) an enhanced electronic interaction between Co-CeO 2 and Pd dots and (ii) the increased oxygen storage capacity of Co-CeO 2 dots to facilitate the oxidation of CO ad . Therefore, the Pd/Co-CeO 2 nanocomposite appears to be a promising catalyst for advanced DAFCs with low cost and high performance.

  19. Effect of the relationship between particle size, inter-particle distance, and metal loading of carbon supported fuel cell catalysts on their catalytic activity

    NASA Astrophysics Data System (ADS)

    Corradini, Patricia Gon; Pires, Felipe I.; Paganin, Valdecir A.; Perez, Joelma; Antolini, Ermete

    2012-09-01

    The effect of the relationship between particle size ( d), inter-particle distance ( x i ), and metal loading ( y) of carbon supported fuel cell Pt or PtRu catalysts on their catalytic activity, based on the optimum d (2.5-3 nm) and x i / d (>5) values, was evaluated. It was found that for y < 30 wt%, the optimum values of both d and x i / d can be always obtained. For y ≥ 30 wt%, instead, the positive effect of a thinner catalyst layer of the fuel cell electrode than that using catalysts with y < 30 wt% is concomitant to a decrease of the effective catalyst surface area due to an increase of d and/or a decrease of x i / d compared to their optimum values, with in turns gives rise to a decrease in the catalytic activity. The effect of the x i / d ratio has been successfully verified by experimental results on ethanol oxidation on PtRu/C catalysts with same particle size and same degree of alloying but different metal loading. Tests in direct ethanol fuel cells showed that, compared to 20 wt% PtRu/C, the negative effect of the lower x i / d on the catalytic activity of 30 and 40 wt% PtRu/C catalysts was superior to the positive effect of the thinner catalyst layer.

  20. Development of materials for mini DMFC working at room temperature for portable applications

    NASA Astrophysics Data System (ADS)

    Coutanceau, C.; Koffi, R. K.; Léger, J.-M.; Marestin, K.; Mercier, R.; Nayoze, C.; Capron, P.

    Methanol permeability measurements and direct methanol fuel cell tests were performed at room temperature with different commercially available or recast Nafion ® membranes and sulfonated polyimide (SPI) membranes. Power densities as high as 20 mW cm -2 could be obtained with Nafion ® 115. However, in order to meet the technological requirements for portable applications, thinner membranes have to be considered. As the MeOH crossover increases greatly (from (7 to 20) × 10 -8 mol s -1 cm -2) while Nafion ® membranes thickness decreases, non-perfluorinated polymers having high IEC are promising candidates for DMFC working at room temperature. The development catalysts tolerant to methanol is also relevant for this application. In spite of the low permeability to MeOH of SPI membranes, the obtained electrical performance with E-TEK electrodes based MEAs was lower than that obtained with Nafion ® membranes. No significant increase of performances was neither evidenced by using homemade PtCr(7:3)/C and PtRu(4:1)/C catalysts instead of E-TEK electrodes with recast Nafion ® based MEAs. However, MEAs composed with thin SPI membranes (50 μm) and homemade PtCr/C catalysts gave very promising results (18 mW cm -2). Based on experimental observations, a speculative explanation of this result is given.

  1. Direct deposit of catalyst on the membrane of direct feed fuel cells

    NASA Technical Reports Server (NTRS)

    Chun, William (Inventor); Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor); Linke, Juergen (Inventor)

    2001-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Catalyst utilization and catalyst/membrane interface improvements are disclosed. Specifically, the catalyst layer is applied directly onto the membrane electrolyte.

  2. Applications of Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu

    2009-01-01

    Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'

  3. Consistency between direct and indirect trial evidence: is direct evidence always more reliable?

    PubMed

    Madan, Jason; Stevenson, Matt D; Cooper, Katy L; Ades, A E; Whyte, Sophie; Akehurst, Ron

    2011-01-01

    To present a case study involving the reduction in incidence of febrile neutropenia (FN) after chemotherapy with granulocyte colony-stimulating factors (G-CSFs), illustrating difficulties that may arise when following the common preference for direct evidence over indirect evidence. Evidence of the efficacy of treatments was identified from two previous systematic reviews. We used Bayesian evidence synthesis to estimate relative treatment effects based on direct evidence, indirect evidence, and both pooled together. We checked for inconsistency between direct and indirect evidence and explored the role of one specific trial using cross-validation. A subsequent review identified further studies not available at the time of the original analysis. We repeated the analyses on the enlarged evidence base. We found substantial inconsistency in the original evidence base. The median odds ratio of FN for primary pegfilgrastim versus no primary G-CSF was 0.06 (95% credible interval: 0.02-0.19) based on direct evidence, but 0.27 (95% credible interval: 0.13-0.53) based on indirect evidence (P value for consistency hypothesis 0.027). The additional trials were consistent with the earlier indirect, rather than the direct, evidence, and there was no inconsistency between direct and indirect estimates in the updated evidence. The earlier inconsistency was due to one trial comparing primary pegfilgrastim with no primary G-CSF. Predictive cross-validation showed that this study was inconsistent with the evidence as a whole and with other trials making this comparison. Both the Cochrane Handbook and the NICE Methods Guide express a preference for direct evidence. A more robust strategy, which is in line with the accepted principles of evidence synthesis, would be to combine all relevant and appropriate information, whether direct or indirect. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  4. Homeland Security Presidential Directives

    EPA Pesticide Factsheets

    Three of these directives directly affect EPA's role in the national emergency response system: HSPD-5 Management of Domestic Incidents; HSPD-7 Critical Infrastructure Identification, Prioritization, and Protection; and HSPD-8 National Preparedness.

  5. Exosomes: Nanoparticulate tools for RNA interference and drug delivery.

    PubMed

    Shahabipour, Fahimeh; Barati, Nastaran; Johnston, Thomas P; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-07-01

    Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell-cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules. © 2017 Wiley Periodicals, Inc.

  6. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    NASA Astrophysics Data System (ADS)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  7. Nanoparticulate gellants for metallized gelled liquid hydrogen with aluminum

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Starkovich, John; Adams, Scott

    1996-01-01

    Gelled liquid hydrogen was experimentally formulated using sol-gel technology. As a follow-on to work with cryogenic simulants, hydrogen was gelled with an alkoxide material: BTMSE. Initial results demonstrated that gellants with a specific surface area of 1000 m(exp 2)/g could be repeatably fabricated. Gelled hexane and metallized gelled hexane (with 13.8-wt% Al) were produced. Propellant settling testing was conducted for acceleration levels of 2 to 10 times normal gravity and a minimum gellant percentage was determined for stable gelled hexane and metalized gelled hexane. A cryogenic capillary rheometer was also designed, constructed, and used to determine the viscosity of gelled hydrogen. Small volumes of liquid hydrogen were gelled with a 7- to 8-wt% gellant level. The gelled H2 viscosity was 1.5 to 3.7 times that of liquid hydrogen: 0.048 to 0.116 mPa-s versus 0.03 mPa-s for liquid H2 (at 16 K and approximately 1 atm pressure).

  8. Nanoparticulate Tetrac Inhibits Growth and Vascularity of Glioblastoma Xenografts.

    PubMed

    Sudha, Thangirala; Bharali, Dhruba J; Sell, Stewart; Darwish, Noureldien H E; Davis, Paul J; Mousa, Shaker A

    2017-06-01

    Thyroid hormone as L-thyroxine (T 4 ) stimulates proliferation of glioma cells in vitro and medical induction of hypothyroidism slows clinical growth of glioblastoma multiforme (GBM). The proliferative action of T 4 on glioma cells is initiated nongenomically at a cell surface receptor for thyroid hormone on the extracellular domain of integrin αvβ3. Tetraiodothyroacetic acid (tetrac) is a thyroid hormone derivative that blocks T 4 action at αvβ3 and has anticancer and anti-angiogenic activity. Tetrac has been covalently bonded via a linker to a nanoparticle (Nanotetrac, Nano-diamino-tetrac, NDAT) that increases the potency of tetrac and broadens the anticancer properties of the drug. In the present studies of human GBM xenografts in immunodeficient mice, NDAT administered daily for 10 days subcutaneously as 1 mg tetrac equivalent/kg reduced tumor xenograft weight at animal sacrifice by 50%, compared to untreated control lesions (p < 0.01). Histopathological analysis of tumors revealed a 95% loss of the vascularity of treated tumors compared to controls at 10 days (p < 0.001), without intratumoral hemorrhage. Up to 80% of tumor cells were necrotic in various microscopic fields (p < 0.001 vs. control tumors), an effect attributable to devascularization. There was substantial evidence of apoptosis in other fields (p < 0.001 vs. control tumors). Induction of apoptosis in cancer cells is a well-described quality of NDAT. In summary, systemic NDAT has been shown to be effective by multiple mechanisms in treatment of GBM xenografts.

  9. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    and their composites . This grant was used to procure equipment to synthesize and characterize the nano- and meso-porous geopolymers , and study their...and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the PIs research group, which has...the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of nano-sized high

  10. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    working on tailoring the nano- and meso-porosity, and the microstructure of geopolymers and their composites . This grant was used to procure equipment...and tailor the nano and meso-porosity and microstructure of geopolymers and their composites is part of an ongoing research project in the Pis...purchased to improve the synthesis and processing of geopolymers and geopolymer composites . The attritor mill enables synthesis Technical Report of

  11. Self-replicating Replicon-RNA Delivery to Dendritic Cells by Chitosan-nanoparticles for Translation In Vitro and In Vivo

    PubMed Central

    McCullough, Kenneth C; Bassi, Isabelle; Milona, Panagiota; Suter, Rolf; Thomann-Harwood, Lisa; Englezou, Pavlos; Démoulins, Thomas; Ruggli, Nicolas

    2014-01-01

    Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements—slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein. PMID:25004099

  12. Biolabile ferrous iron bearing nanoparticles in glacial sediments

    NASA Astrophysics Data System (ADS)

    Hawkings, Jon R.; Benning, Liane G.; Raiswell, Rob; Kaulich, Burkhard; Araki, Tohru; Abyaneh, Majid; Stockdale, Anthony; Koch-Müller, Monika; Wadham, Jemma L.; Tranter, Martyn

    2018-07-01

    Glaciers and ice sheets are a significant source of nanoparticulate Fe, which is potentially important in sustaining the high productivity observed in the near-coastal regions proximal to terrestrial ice cover. However, the bioavailability of particulate iron is poorly understood, despite its importance in the ocean Fe inventory. We combined high-resolution imaging and spectroscopy to investigate the abundance, morphology and valence state of particulate iron in glacial sediments. Our results document the widespread occurrence of amorphous and Fe(II)-rich and Fe(II)-bearing nanoparticles in Arctic glacial meltwaters and iceberg debris, compared to Fe(III)-rich dominated particulates in an aeolian dust sample. Fe(II) is thought to be highly biolabile in marine environments. Our work shows that glacially derived Fe is more labile than previously assumed, and consequently that glaciers and ice sheets are therefore able to export potentially bioavailable Fe(II)-containing nanoparticulate material to downstream ecosystems, including those in a marine setting. Our findings provide further evidence that Greenland Ice Sheet meltwaters may provide biolabile particulate Fe that may fuel the large summer phytoplankton bloom in the Labrador Sea, and that Fe(II)-rich particulates from a region of very high productivity downstream of a polar ice sheet may be glacial in origin.

  13. Computer-Assisted Drug Formulation Design: Novel Approach in Drug Delivery.

    PubMed

    Metwally, Abdelkader A; Hathout, Rania M

    2015-08-03

    We hypothesize that, by using several chemo/bio informatics tools and statistical computational methods, we can study and then predict the behavior of several drugs in model nanoparticulate lipid and polymeric systems. Accordingly, two different matrices comprising tripalmitin, a core component of solid lipid nanoparticles (SLN), and PLGA were first modeled using molecular dynamics simulation, and then the interaction of drugs with these systems was studied by means of computing the free energy of binding using the molecular docking technique. These binding energies were hence correlated with the loadings of these drugs in the nanoparticles obtained experimentally from the available literature. The obtained relations were verified experimentally in our laboratory using curcumin as a model drug. Artificial neural networks were then used to establish the effect of the drugs' molecular descriptors on the binding energies and hence on the drug loading. The results showed that the used soft computing methods can provide an accurate method for in silico prediction of drug loading in tripalmitin-based and PLGA nanoparticulate systems. These results have the prospective of being applied to other nano drug-carrier systems, and this integrated statistical and chemo/bio informatics approach offers a new toolbox to the formulation science by proposing what we present as computer-assisted drug formulation design (CADFD).

  14. Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: a status review.

    PubMed

    Ghorpade, Uma; Suryawanshi, Mahesh; Shin, Seung Wook; Gurav, Kishor; Patil, Pramod; Pawar, Sambhaji; Hong, Chang Woo; Kim, Jin Hyeok; Kolekar, Sanjay

    2014-10-07

    With the earth's abundance of kesterite, recent progress in chalcogenide based Cu2ZnSn(Sx,Se1-x)4 (CZTSSe) thin films has drawn prime attention in thin film solar cells (TFSCs) research and development. This review is focused on the current developments in the synthesis of CZTS nanocrystals (NCs) using a hot injection (HI) technique and provides comprehensive discussions on the current status of CZTSSe TFSCs. This article begins with a description of the advantages of nanoparticulate based thin films, and then introduces the basics of this technique and the corresponding growth mechanism is also discussed. A brief overview further addresses a series of investigations on the developments in the HI based CZTSSe NCs using different solvents in terms of their high toxicity to environmentally benign materials. A variety of recipes and techniques for the NCs ink formulation and thereby the preparation of absorber layers using NC inks are outlined, respectively. The deposition of precursor thin films, post-deposition processes such as sulfurization or selenization treatments and the fabrication of CZTSSe NCs based solar cells and their performances are discussed. Finally, we discussed concluding remarks and the perspectives for further developments in the existing research on CZTSSe based nanoparticulate (NP) TFSCs towards future green technology.

  15. Valence band-edge engineering of nickel oxide nanoparticles via cobalt doping for application in p-type dye-sensitized solar cells.

    PubMed

    Natu, Gayatri; Hasin, Panitat; Huang, Zhongjie; Ji, Zhiqiang; He, Mingfu; Wu, Yiying

    2012-11-01

    We have systematically studied the effects of substitutional doping of p-type nanoparticulate NiO with cobalt ions. Thin films of pure and Co-doped NiO nanoparticles with nominal compositions Co(x)Ni(1-x)O(y) (0 ≤ x ≤ 0.1) were fabricated using sol-gel method. X-ray photoelectron spectroscopy revealed a surface enrichment of divalent cobalt ions in the Co(x)Ni(1-x)O(y) nanoparticles. Mott-Schottky analysis in aqueous solutions was used to determine the space charge capacitance values of the films against aqueous electrolytes, which yielded acceptor state densities (N(A)) and apparent flat-band potentials (E(fb)). Both N(A) and E(fb) values of the doped NiO were found to gradually increase with increasing amount of doping; thus the Fermi energy level of the charge carriers decreased with Co-doping. The photovoltage of p-DSCs constructed using the Co(x)Ni(1-x)O(y) films increased with increasing amount of cobalt, as expected from the trend in the E(fb). Co-doping increased both carrier lifetimes within the p-DSCs and the carrier transport times within the nanoparticulate semiconductor network. The nominal composition of Co₀.₀₆Ni₀.₉₄O(y) was found to be optimal for use in p-DSCs.

  16. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.

    PubMed

    Martins, João Pedro; Torrieri, Giulia; Santos, Hélder A

    2018-05-01

    Nanoparticles are anticipated to overcome persistent challenges in efficient drug delivery, but the limitations associated with conventional methods of preparation are resulting in slow translation from research to clinical applications. Due to their enormous potential, microfluidic technologies have emerged as an advanced approach for the development of drug delivery systems with well-defined physicochemical characteristics and in a reproducible manner. Areas covered: This review provides an overview of microfluidic devices and materials used for their manufacturing, together with the flow patterns and regimes commonly used for nanoparticle preparation. Additionally, the different geometries used in droplet microfluidics are reviewed, with particular attention to the co-flow geometry used for the production of nanoparticles. Finally, this review summarizes the main and most recent nanoparticulate systems prepared using microfluidics, including drug nanosuspensions, polymeric, lipid, structured, and theranostic nanoparticles. Expert opinion: The production of nanoparticles at industrial scale is still a challenge, but the microfluidic technologies bring exciting opportunities to develop drug delivery systems that can be engineered in an easy, cost-effective and reproducible manner. As a highly interdisciplinary research field, more efforts and general acceptance are needed to allow for the translation of nanoparticulate drug delivery systems from academic research to the clinical practice.

  17. How directional change in reading/writing habits relates to directional change in displayed pictures.

    PubMed

    Lee, Hachoung; Oh, Songjoo

    2016-01-01

    It has been suggested that reading/writing habits may influence the appreciation of pictures. For example, people who read and write in a rightward direction have an aesthetic preference for pictures that face rightward over pictures that face leftward, and vice versa. However, correlations for this phenomenon have only been found in cross-cultural studies. Will a directional change in reading/writing habits within a culture relate to changes in picture preference? Korea is a good place to research this question because the country underwent gradual changes in reading/writing direction habits, from leftward to rightward, during the 20th century. In this study, we analyzed the direction of drawings and photos published in the two oldest newspapers in Korea from 1920-2013. The results show that the direction of the drawings underwent a clear shift from the left to the right, but the direction of the photos did not change. This finding suggests a close psychological link between the habits of reading/writing and drawing that cannot be accounted for simply by an accidental correspondence across different cultures.

  18. Visual direction finding by fishes

    NASA Technical Reports Server (NTRS)

    Waterman, T. H.

    1972-01-01

    The use of visual orientation, in the absence of landmarks, for underwater direction finding exercises by fishes is reviewed. Celestial directional clues observed directly near the water surface or indirectly at an asymptatic depth are suggested as possible orientation aids.

  19. A photoacoustic imaging reconstruction method based on directional total variation with adaptive directivity.

    PubMed

    Wang, Jin; Zhang, Chen; Wang, Yuanyuan

    2017-05-30

    In photoacoustic tomography (PAT), total variation (TV) based iteration algorithm is reported to have a good performance in PAT image reconstruction. However, classical TV based algorithm fails to preserve the edges and texture details of the image because it is not sensitive to the direction of the image. Therefore, it is of great significance to develop a new PAT reconstruction algorithm to effectively solve the drawback of TV. In this paper, a directional total variation with adaptive directivity (DDTV) model-based PAT image reconstruction algorithm, which weightedly sums the image gradients based on the spatially varying directivity pattern of the image is proposed to overcome the shortcomings of TV. The orientation field of the image is adaptively estimated through a gradient-based approach. The image gradients are weighted at every pixel based on both its anisotropic direction and another parameter, which evaluates the estimated orientation field reliability. An efficient algorithm is derived to solve the iteration problem associated with DDTV and possessing directivity of the image adaptively updated for each iteration step. Several texture images with various directivity patterns are chosen as the phantoms for the numerical simulations. The 180-, 90- and 30-view circular scans are conducted. Results obtained show that the DDTV-based PAT reconstructed algorithm outperforms the filtered back-projection method (FBP) and TV algorithms in the quality of reconstructed images with the peak signal-to-noise rations (PSNR) exceeding those of TV and FBP by about 10 and 18 dB, respectively, for all cases. The Shepp-Logan phantom is studied with further discussion of multimode scanning, convergence speed, robustness and universality aspects. In-vitro experiments are performed for both the sparse-view circular scanning and linear scanning. The results further prove the effectiveness of the DDTV, which shows better results than that of the TV with sharper image edges and

  20. 75 FR 57217 - Direct Investment Surveys: BE-11, Annual Survey of U.S. Direct Investment Abroad

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ...] RIN 0691-AA74 Direct Investment Surveys: BE-11, Annual Survey of U.S. Direct Investment Abroad AGENCY... the reporting requirements for the BE-11, Annual Survey of U.S. Direct Investment Abroad. The survey.... Direct Investment Abroad. These amendments include changes in form design and reporting thresholds, as...

  1. Epidemic threshold in directed networks.

    PubMed

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τ(c) for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ(1) in directed networks, where λ(1), also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ(1), principal eigenvector x(1), spectral gap (λ(1)-|λ(2)|), and algebraic connectivity μ(N-1) is studied. Important findings are that the spectral radius λ(1) decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρ(D). Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  2. Epidemic threshold in directed networks

    NASA Astrophysics Data System (ADS)

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τc for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ1 in directed networks, where λ1, also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ1, principal eigenvector x1, spectral gap (λ1-λ2), and algebraic connectivity μN-1 is studied. Important findings are that the spectral radius λ1 decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρD. Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  3. Synthesis and Photophysical Properties of Sulfonamidophenyl Porphyrins as Models for Activatable Photosensitizers

    PubMed Central

    Bhaumik, Jayeeta; Weissleder, Ralph; McCarthy, Jason R.

    2009-01-01

    The ability to localize agents to specific anatomic sites remains an important aspect in designing more efficient therapeutics. Light-activated therapies, in particular, allow for the focal ablation of target tissues and cells. In order to increase the specificity of these agents, stimuli-activated systems have been developed, which are non-phototoxic in the absence of activation. To this end, we propose a novel paradigm for excited state quenching and activation based upon the direct conjugation of quenching moieties to the porphyrinic macrocycle. Model compounds, based upon meso-(p-aminophenyl)porphyrins were synthesized bearing 1 to 4 sulfonamide-linked 2,4-dinitrobenzene. The singlet oxygen and fluorescence quantum yields of these compounds were obtained and compared, as well as the kinetics of activation with relevant activating agents. In addition, methods were developed to further modify the porphyrin in order to modulate the polarity and effect conjugation to biomolecules or nanoparticulate scaffolds. These systems may prove useful in the treatment of a number of disease states, such as cancer and bacterial infection. PMID:19610602

  4. Potential Theory for Directed Networks

    PubMed Central

    Zhang, Qian-Ming; Lü, Linyuan; Wang, Wen-Qiang; Zhou, Tao

    2013-01-01

    Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i) We propose a new mechanism for the local organization of directed networks; (ii) We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation. PMID:23408979

  5. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  6. 75 FR 80294 - Direct Investment Surveys: BE-11, Annual Survey of U.S. Direct Investment Abroad

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ...] RIN 0691-AA74 Direct Investment Surveys: BE-11, Annual Survey of U.S. Direct Investment Abroad AGENCY... for the BE-11, Annual Survey of U.S. Direct Investment Abroad. BEA conducts the survey annually and.... Direct Investment Abroad. DATES: This final rule will be effective January 21, 2011. FOR FURTHER...

  7. Bi-directional transition nets

    NASA Astrophysics Data System (ADS)

    Staines, Anthony Spiteri

    2017-06-01

    Ordinary Petri nets are forward directed transition systems. Modern transition systems events and event flows are reversible. Hence modeling structures that reflect this are important. The creation of a bi-directional Petri net extends the modeling power of Petri nets. This work presents the successful implementation of a bi-directional transition net. Some toy examples in comparison to Petri nets are given showing the increased modeling power in a compacted form. The results show some interesting findings on how the expressive power of these structures has been increased.

  8. Modeling the directivity of parametric loudspeaker

    NASA Astrophysics Data System (ADS)

    Shi, Chuang; Gan, Woon-Seng

    2012-09-01

    The emerging applications of the parametric loudspeaker, such as 3D audio, demands accurate directivity control at the audible frequency (i.e. the difference frequency). Though the delay-and-sum beamforming has been proven adequate to adjust the steering angles of the parametric loudspeaker, accurate prediction of the mainlobe and sidelobes remains a challenging problem. It is mainly because of the approximations that are used to derive the directivity of the difference frequency from the directivity of the primary frequency, and the mismatches between the theoretical directivity and the measured directivity caused by system errors incurred at different stages of the implementation. In this paper, we propose a directivity model of the parametric loudspeaker. The directivity model consists of two tuning vectors corresponding to the spacing error and the weight error for the primary frequency. The directivity model adopts a modified form of the product directivity principle for the difference frequency to further improve the modeling accuracy.

  9. Determining wave direction using curvature parameters.

    PubMed

    de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista

    2016-01-01

    The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results.

  10. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method of making the same

    DOEpatents

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2011-02-15

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  11. Evaluation of safety of lipomer doxycycline hydrochloride (lipomer DH).

    PubMed

    Dhumal, Rohit; Soni, Mahesh; Devarajan, Padma; Samad, Abdul; Gaikwad, Rajiv; Vanage, Geeta

    2011-02-01

    The nanoparticulate formulation of lipomer doxycycline hydrochloride (lipomer DH) has been synthesized for the treatment of Brucellosis to increase efficacy of the drug. The present study was undertaken to determine the intravenous safety of blank lipomer and Lipomer DH in terms of maximum tolerated dose in rats. It was observed that blank lipomer and lipomer DH were safe when administered intravenously at doses 2000 mg/kg Bw and 18 mg/kg bw respectively.

  12. Solar paint: From synthesis to printing

    DOE PAGES

    Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul

    2014-11-13

    Water-based polymer nanoparticle dispersions (solar paint) offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic devices; namely, how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. We review progress in the field of nanoparticulate organic photovoltaic (NPOPV) devices and future prospects for large-scale manufacturing of solar cells based on this technology.

  13. Solar paint: From synthesis to printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul

    Water-based polymer nanoparticle dispersions (solar paint) offer the prospect of addressing two of the main challenges associated with printing large area organic photovoltaic devices; namely, how to control the nanoscale architecture of the active layer and eliminate the need for hazardous organic solvents during device fabrication. We review progress in the field of nanoparticulate organic photovoltaic (NPOPV) devices and future prospects for large-scale manufacturing of solar cells based on this technology.

  14. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  15. Directional excitation without breaking reciprocity

    DOE PAGES

    Ramezani, Hamidreza; Dubois, Marc; Wang, Yuan; ...

    2016-09-02

    Here, we propose a mechanism for directional excitation without breaking reciprocity. This is achieved by embedding an impedance matched parity-time symmetric potential in a three-port system. The amplitude distribution within the gain and loss regions is strongly influenced by the direction of the incoming field. Consequently, the excitation of the third port is contingent on the direction of incidence while transmission in the main channel is immune. This design improves the four-port directional coupler scheme, as there is no need to implement an anechoic termination to one of the ports.

  16. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  17. Directionality of dog vocalizations

    NASA Astrophysics Data System (ADS)

    Frommolt, Karl-Heinz; Gebler, Alban

    2004-07-01

    The directionality patterns of sound emission in domestic dogs were measured in an anechoic environment using a microphone array. Mainly long-distance signals from four dogs were investigated. The radiation pattern of the signals differed clearly from an omnidirectional one with average differences in sound-pressure level between the frontal and rear position of 3-7 dB depending from the individual. Frequency dependence of directionality was shown for the range from 250 to 3200 Hz. The results indicate that when studying acoustic communication in mammals, more attention should be paid to the directionality pattern of sound emission.

  18. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.

    1988-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.

  19. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning.

    PubMed

    Park, Silvia J H; Kim, In-Jung; Looger, Loren L; Demb, Jonathan B; Borghuis, Bart G

    2014-03-12

    Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.

  20. Expanding Horizons in Self-Directed Learning.

    ERIC Educational Resources Information Center

    Long, Huey B.; And Others

    The following papers are included: "Preface" (Huey B. Long); "Self-Directed Learning: Smoke and Mirrors?" (Huey B. Long); "From Self-Culture to Self-Direction: An Historical Analysis of Self-Directed Learning" (Amy D. Rose); "The Link between Self-Directed and Transformative Learning" (Jane Pilling-Cormick);…

  1. Determining Directional Dependency in Causal Associations

    PubMed Central

    Pornprasertmanit, Sunthud; Little, Todd D.

    2014-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of skewness and excessive kurtosis of both variables, discouraging the use of D’Agostino’s K2, and encouraging the use of directional dependency to compare variables only within time points. We offer improved steps for determining directional dependency that fix the problems we note. Next, we discuss how to integrate directional dependency into longitudinal data analysis with two variables. We also examine the accuracy of directional dependency evaluations when several regression assumptions are violated. Directional dependency can suggest the direction of a relation if (a) the regression error in population is normal, (b) an unobserved explanatory variable correlates with any variables equal to or less than .2, (c) a curvilinear relation between both variables is not strong (standardized regression coefficient ≤ .2), (d) there are no bivariate outliers, and (e) both variables are continuous. PMID:24683282

  2. Directive and Non-Directive Movement in Child Therapy.

    ERIC Educational Resources Information Center

    Krason, Katarzyna; Szafraniec, Grazyna

    1999-01-01

    Presents a new authorship method of child therapy based on visualization through motion. Maintains that this method stimulates motor development and musical receptiveness, and promotes personality development. Suggests that improvised movement to music facilitates the projection mechanism and that directed movement starts the channeling phase.…

  3. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated under...

  4. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated under...

  5. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated under...

  6. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated under...

  7. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated under...

  8. 31 CFR 357.26 - Direct Deposit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND BILLS HELD IN LEGACY TREASURY DIRECT Legacy Treasury Direct Book-Entry Securities System (Legacy... security shall be by direct deposit unless it is deemed necessary by the Department to make payment by... account. Where the Legacy Treasury Direct ® securities account is in the name of individual(s) in their...

  9. Directives préalables

    PubMed Central

    O’Sullivan, Rory; Mailo, Kevin; Angeles, Ricardo; Agarwal, Gina

    2015-01-01

    Résumé Objectif Établir la prévalence de patients dotés de directives préalables dans une pratique familiale et décrire les points de vue des patients quant au rôle du médecin de famille dans l’amorce de discussions à propos des directives préalables. Conception Un questionnaire auquel les patients ont répondu eux-mêmes. Contexte Une clinique d’enseignement en médecine familiale achalandée en milieu urbain, à Hamilton, en Ontario. Participants Un échantillon de commodité formé de patients adultes qui se sont présentés à la clinique durant une semaine de travail typique. Principaux paramètres à l’étude La prévalence des directives préalables dans une population de patients a été déterminée et les attentes à l’endroit du rôle de leur médecin de famille ont été sollicitées. Résultats Les répondants au sondage étaient au nombre de 800 (un taux de réponse de 72,5 %) et leurs groupes d’âges étaient bien répartis; 19,7 % d’entre eux avaient rédigé des directives préalables et 43,8 % avaient déjà discuté du sujet des directives préalables, mais seulement 4,3 % de ces discussions avaient eu lieu avec un médecin de famille. Dans 5,7 % des cas, un médecin de famille avait soulevé la question; 72,3 % des répondants croyaient que les patients devraient amorcer la discussion. Les patients qui considéraient les directives préalables d’une importance extrême étaient considérablement plus enclins à vouloir que leur médecin de famille commence la conversation (rapport de cotes de 3,98; p < ,05). Conclusion Les directives préalables n’étaient pas systématiquement abordées dans la pratique familiale. La plupart des patients préféraient amorcer la discussion des directives préalables. Toutefois, les patients qui considéraient le sujet d’une extrême importance voulaient que leur médecin de famille commence la discussion.

  10. Direct seeding of shortleaf pine

    Treesearch

    Corinne S. Mann; David Gwaze

    2007-01-01

    Direct seeding is a potentially viable method for regenerating shortleaf pine, but it has not been used extensively. In Missouri, an estimated 10,000 acres have been direct-seeded with shortleaf pine; half of which are at Mark Twain National Forest. Direct seeding offers a flexible and efficient alternative to planting as a way to restore shortleaf pine in the Ozarks....

  11. Direct Instruction News, 2001.

    ERIC Educational Resources Information Center

    Tarver, Sara, Ed.

    2001-01-01

    These three issues of a newsletter offer diverse kinds of information deemed to be of interest to Association for Direct Instruction (ADI) members--stories of successful implementations in different settings, write-ups of ADI awards, tips on "how to" deliver direct instruction (DI) more effectively, topical articles focused on particular…

  12. Decisions Concerning Directional Dependence

    ERIC Educational Resources Information Center

    von Eye, Alexander; DeShon, Richard P.

    2012-01-01

    In this rejoinder, von Eye and DeShon discuss the decision strategies proposed in their original article ("Directional Dependence in Developmental Research," this issue), as well as the ones proposed by the authors of the commentary (Pornprasertmanit and Little, "Determining Directional Dependency in Causal Associations," this issue). In addition,…

  13. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  14. Direct Support Workforce Development.

    ERIC Educational Resources Information Center

    Impact, 1998

    1998-01-01

    The fourteen brief articles in this theme issue all examine challenges in the development of direct support staff working with people who have developmental disabilities. The articles also include the views of direct support providers and people with developmental disabilities themselves, as well as examples of strategies used by provider agencies…

  15. Direct oral anticoagulants: An update.

    PubMed

    Franco Moreno, Ana Isabel; Martín Díaz, Rosa María; García Navarro, María José

    2017-12-30

    Vitamin K antagonists were the only choice for chronic oral anticoagulation for more than half a century. Over the past few years, direct oral anticoagulants have emerged, including one direct thrombin inhibitor (dabigatran etexilate) and three factor Xa inhibitors (apixaban, edoxaban and rivaroxaban). In randomised controlled trials comparing direct oral anticoagulants with traditional vitamin K antagonists, the direct oral anticoagulants all showed a favourable benefit-risk balance in their safety and efficacy profile, in prevention of thromboembolic events in patients with atrial fibrillation and in the prevention and treatment of venous thromboembolism and acute coronary syndrome. In 2008, dabigatran was the first direct oral anticoagulant approved by the European Medicine Agency. Subsequently, rivaroxaban, apixaban and edoxaban were also authorised. This article reviews the evidence related to the use of these drugs. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  16. NASA directives: Master list and index

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Handbook sets forth in two parts the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this Handbook. Chapter 2 is a complete master list of Agency-wide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office of Installation to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA Handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA management directives published in the code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 7. Part B contains an in-depth alphabetical index to all NASA management directives other than Handbooks.

  17. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  18. Clustering in complex directed networks

    NASA Astrophysics Data System (ADS)

    Fagiolo, Giorgio

    2007-08-01

    Many empirical networks display an inherent tendency to cluster, i.e., to form circles of connected nodes. This feature is typically measured by the clustering coefficient (CC). The CC, originally introduced for binary, undirected graphs, has been recently generalized to weighted, undirected networks. Here we extend the CC to the case of (binary and weighted) directed networks and we compute its expected value for random graphs. We distinguish between CCs that count all directed triangles in the graph (independently of the direction of their edges) and CCs that only consider particular types of directed triangles (e.g., cycles). The main concepts are illustrated by employing empirical data on world-trade flows.

  19. Combined direct and indirect bypass for moyamoya: quantitative assessment of direct bypass flow over time.

    PubMed

    Amin-Hanjani, Sepideh; Singh, Amritha; Rifai, Hashem; Thulborn, Keith R; Alaraj, Ali; Aletich, Victor; Charbel, Fady T

    2013-12-01

    The optimal revascularization strategy for symptomatic adult moyamoya remains controversial. Whereas direct bypass offers immediate revascularization, indirect bypass can effectively induce collaterals over time. Using angiography and quantitative magnetic resonance angiography, we examined the relative contributions of direct and indirect bypass in moyamoya patients after combined direct superficial temporal artery-to-middle cerebral artery (STA-MCA) bypass and indirect encephaloduroarteriosynangiosis (EDAS). A retrospective review of moyamoya patients undergoing combined STA-MCA bypass and EDAS was conducted, excluding pediatric patients and hemorrhagic presentation. Patients with quantitative magnetic resonance angiography measurements of the direct bypass immediately and > 6 months postoperatively were included. Angiographic follow-up, when available, was used to assess EDAS collaterals at similar time intervals. Of 16 hemispheres in 13 patients, 11 (69%) demonstrated a significant (> 50%) decline in direct bypass flow at > 6 months compared with baseline, averaging a drop from 99 ± 35 to 12 ± 7 mL/min. Conversely, angiography in these hemispheres demonstrated prominent indirect collaterals, in concert with shrinkage of the STA graft. Decline in flow was apparent at a median of 9 months but was evident as early as 2 to 3 months. In this small cohort, a reciprocal relationship between direct STA bypass flow and indirect EDAS collaterals frequently occurred. This substantiates the notion that combined direct/indirect bypass can provide temporally complementary revascularization.

  20. Multi-Directional Environmental Sensors

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.

  1. Highly directional thermal emitter

    DOEpatents

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  2. Chapter 1: Direct Normal Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Daryl R.

    2016-04-15

    This chapter addresses the quantitative and qualitative aspects of the solar resource, the direct solar radiation. It discusses the total or integrated broadband direct beam extraterrestrial radiation (ETR). This total integrated irradiance is comprised of photons of electromagnetic radiation. The chapter also discusses the impact of the atmosphere and its effect upon the direct normal irradiance (DNI) beam radiation. The gases and particulates present in the atmosphere traversed by the direct beam reflect, absorb, and scatter differing spectral regions and proportions of the direct beam, and act as a variable filter. Knowledge of the available broadband DNI beam radiation resourcemore » data is essential in designing a concentrating photovoltaic (CPV) system. Spectral variations in the DNI beam radiation affect the performance of a CPV system depending on the solar cell technology used. The chapter describes propagation and scattering processes of circumsolar radiation (CSR), which includes the Mie scattering from large particles.« less

  3. Aluminum oxyhydroxide based separator/electrolyte and battery system, and a method making the same

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2011-03-08

    The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.

  4. NASA directives master list and index

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This handbook sets forth in two parts, Master List of Management Directives and Index to NASA Management Directives, the following information for the guidance of users of the NASA Management Directives System. Chapter 1 contains introductory information material on how to use this handbook. Chapter 2 is a complete master list of agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or center to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA regulations published in the Code of Federal Regulations. Chapter 7 is a consolidated list of NASA regulations published in Title 14 of the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 8. The second part contains an in depth alphabetical index to all NASA management directives other than handbooks, most of which are indexed by titles only.

  5. Direct Problem-Based Learning (DPBL): A Framework for Integrating Direct Instruction and Problem-Based Learning Approach

    ERIC Educational Resources Information Center

    Winarno, Sri; Muthu, Kalaiarasi Sonai; Ling, Lew Sook

    2018-01-01

    Direct instruction approach has been widely used in higher education. Many studies revealed that direct instruction improved students' knowledge. The characteristics of direct instruction include the subject delivered through face-to-face interaction with the lecturers and materials that sequenced deliberately and taught explicitly. However,…

  6. NASA directives master list and index

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Handbook sets forth in two parts the following information for the guidance of users of the NASA Management Directives System. Part A is a master list of management directives in force as of March 31, 1993. Chapter 1 contains introductory informative material on how to use this Handbook. Chapter 2 is a complete master list of Agencywide management directives, describing each directive by type, number, effective date, expiration date, title, and organization code of the office responsible for the directive. Chapter 3 includes a consolidated numerical list of all delegations of authority and a breakdown of such delegation by the office or installation to which special authority is assigned. Chapter 4 sets forth a consolidated list of all NASA Handbooks (NHB's) and important footnotes covering the control and ordering of such documents. Chapter 5 is a consolidated list of NASA management directives applicable to the Jet Propulsion Laboratory. Chapter 6 is a consolidated list of NASA management directives published in the Code of Federal Regulations. Complementary manuals to the NASA Management Directives System are described in Chapter 7. Part B is the index to NASA management directives in force as of March 31, 1993. This part contains an in-depth alphabetical index to all NASA management directives other than Handbooks. NHB's 1610.6, 'NASA Personnel Security Handbook,' 1620.3, 'NASA Physical Security Handbook,' 1640.4, 'NASA Information Security Program,' 1900.1, 'Standards of Conduct for NASA Employees,' 5103.6, 'Source Evaluation Board Handbook,' and 7400.1, 'Budget Administration Manual,' are indexed in-depth. All other NHB's are indexed by titles only.

  7. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  8. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na 2IrO 3

    DOE PAGES

    Hwan Chun, Sae; Kim, Jong-Woo; Kim, Jungho; ...

    2015-05-11

    We show that heisenberg interactions are ubiquitous in magnetic materials and play a central role in modelling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid as its exact ground state. Honeycomb iridates, A 2IrO 3 (A = Na, Li), offer potential realizations of the Kitaev magnetic exchange coupling, and their reported magnetic behaviour may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions has so farmore » been indirect. Here we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na 2IrO 3 and show that they lead to strong magnetic frustration. Diffuse magnetic X-ray scattering reveals broken spin-rotational symmetry even above the Néel temperature, with the three spin components exhibiting short-range correlations along distinct crystallographic directions. Lastly, this spin- and real-space entanglement directly uncovers the bond-directional nature of these interactions, thus providing a direct connection between honeycomb iridates and Kitaev physics.« less

  9. Evolutionary trends in directional hearing

    PubMed Central

    Carr, Catherine E.; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850

  10. Law, autonomy and advance directives.

    PubMed

    Willmott, Lindy; White, Ben; Mathews, Ben

    2010-12-01

    The principle of autonomy underpins legal regulation of advance directives that refuse life-sustaining medical treatment. The primacy of autonomy in this domain is recognised expressly in the case law, through judicial pronouncement, and implicitly in most Australian jurisdictions, through enactment into statute of the right to make an advance directive. This article seeks to justify autonomy as an appropriate principle for regulating advance directives and relies on three arguments: the necessity of autonomy in a liberal democracy; the primacy of autonomy in medical ethics discourse; and the uncontested importance of autonomy in the law on contemporaneous refusal of medical treatment. This article also responds to key criticisms that autonomy is not an appropriate organising principle to underpin legal regulation of advance directives.

  11. Circular Data Images for Directional Data

    NASA Technical Reports Server (NTRS)

    Morpet, William J.

    2004-01-01

    Directional data includes vectors, points on a unit sphere, axis orientation, angular direction, and circular or periodic data. The theoretical statistics for circular data (random points on a unit circle) or spherical data (random points on a unit sphere) are a recent development. An overview of existing graphical methods for the display of directional data is given. Cross-over occurs when periodic data are measured on a scale for the measurement of linear variables. For example, if angle is represented by a linear color gradient changing uniformly from dark blue at -180 degrees to bright red at +180 degrees, the color image will be discontinuous at +180 degrees and -180 degrees, which are the same location. The resultant color would depend on the direction of approach to the cross-over point. A new graphical method for imaging directional data is described, which affords high resolution without color discontinuity from "cross-over". It is called the circular data image. The circular data image uses a circular color scale in which colors repeat periodically. Some examples of the circular data image include direction of earth winds on a global scale, rocket motor internal flow, earth global magnetic field direction, and rocket motor nozzle vector direction vs. time.

  12. Directionally solidified article with weld repair

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2003-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  13. Weld repair of directionally solidified articles

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Snyder, John H. (Inventor); Borne, Bruce L. (Inventor)

    2002-01-01

    A directionally solidified nickel-base superalloy article has a defect therein extending parallel to the solidification direction. The article is repaired by removing any foreign matter present in the defect, and then heating the article to a repair temperature of from about 60 to about 98 percent of the solidus temperature of the base material in a chamber containing a protective gas that inhibits oxidation of the base material. The defect is filled with a filler metal while maintaining the article at the repair temperature. The filling is accomplished by providing a source of the filler metal of substantially the same composition as the base material of the directionally solidified article, and melting the filler metal into the defect progressively while moving the source of the filler metal relative to the article in a direction parallel to the solidification direction. Optionally, additional artificial heat extraction is accomplished in a heat-flow direction that is within about 45 degrees of the solidification direction, as the filler metal solidifies within the defect. The article may thereafter be heat treated.

  14. 14 CFR 27.177 - Static directional stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 27.177... directional stability. (a) The directional controls must operate in such a manner that the sense and direction... sideslip angle versus directional control position curve may have a negative slope within a small range of...

  15. NASA directives master list and index

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Handbook sets forth in two parts the information for the guidance of users of the NASA Management Directives System. Complementary to this Handbook is the NASA Online Directives Information System (NODIS), an electronic computer text retrieval system. The first part contains the Master List of Management Directives in force as of 30 Sep. 1993. The second part contains an Index to NASA Management Directives in force as of 30 Sep. 1993.

  16. 76 FR 58420 - Direct Investment Surveys: BE-12, Benchmark Survey of Foreign Direct Investment in the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ...] RIN 0691-AA80 Direct Investment Surveys: BE-12, Benchmark Survey of Foreign Direct Investment in the... of Foreign Direct Investment in the United States. Benchmark surveys are conducted every five years; the prior survey covered 2007. The benchmark survey covers the universe of foreign direct investment...

  17. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region.

    PubMed

    Agrawal, Mukta; Saraf, Swarnlata; Saraf, Shailendra; Antimisiaris, Sophia G; Hamano, Nobuhito; Li, Shyh-Dar; Chougule, Mahavir; Shoyele, Sunday A; Gupta, Umesh; Ajazuddin; Alexander, Amit

    2018-06-01

    Brain is supposed to be the most complicated part of the body which is very far from the reach of drug moieties. The drug entry in to the brain region depends upon various factors, and among those, the blood-brain-barrier remains the most prominent one. This barrier restricts the entry of almost all the drug and most of the essential biological components like proteins, peptides, etc. and hinders treatment of the CNS disorders. Alzheimer Disease (AD) is one such brain disorder, more specifically a neurodegenerative disorder which primarily affects the older adults. Areas covered: From solubility enhancement to targeted delivery, the nanoparticulate system became the answer for almost all the criticality related to drug delivery. Hence, nanoparticulate drug carrier system has been widely utilizing to remove the hurdles of brain drug delivery. Keeping this in mind, we have underlined the proficiencies of the nanocarrier systems which claim to improve the drug efficacy for the treatment of the AD. Expert opinion: The nanotechnological approaches are highly exploited by the researchers to enhance the drug permeation across the BBB to improve its bioavailability and efficacy by protecting the drug from peripheral degradation. However, still in this area of drug targeting provides vast scope for discoveries towards the enhancement of drug efficacy through surface modifications, site specification, reduced toxicity of the nanocarrier system and so on.

  18. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

    PubMed Central

    2015-01-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269

  19. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation.

    PubMed

    Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F

    2014-04-02

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x).

  20. Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells

    PubMed Central

    Mastrofrancesco, A.; Alfè, M.; Rosato, E.; Gargiulo, V.; Beatrice, C.; Di Blasio, G.; Zhang, B.; Su, D. S.; Picardo, M.; Fiorito, S.

    2014-01-01

    Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP) of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc), in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5) and older (Euro 4) diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1α, IL-6, IL-8, and TNF-α) and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF). DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems. PMID:24982919

  1. Interactions of metal-based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge.

    PubMed

    Thwala, Melusi; Klaine, Stephen J; Musee, Ndeke

    2016-07-01

    The rising potential for the release of engineered nanoparticles (ENPs) into aquatic environments requires evaluation of risks to protect ecological health. The present review examines knowledge pertaining to the interactions of metal-based ENPs with aquatic higher plants, identifies information gaps, and raises considerations for future research to advance knowledge on the subject. The discussion focuses on ENPs' bioaccessibility; uptake, adsorption, translocation, and bioaccumulation; and toxicity effects on aquatic higher plants. An information deficit surrounds the uptake of ENPs and associated dynamics, because the influence of ENP characteristics and water quality conditions has not been well documented. Dissolution appears to be a key mechanism driving bioaccumulation of ENPs, whereas nanoparticulates often adsorb to plant surfaces with minimal internalization. However, few reports document the internalization of ENPs by plants; thus, the role of nanoparticulates' internalization in bioaccumulation and toxicity remains unclear, requiring further investigation. The toxicities of metal-based ENPs mainly have been associated with dissolution as a predominant mechanism, although nano toxicity has also been reported. To advance knowledge in this domain, future investigations need to integrate the influence of ENP characteristics and water physicochemical parameters, as their interplay determines ENP bioaccessibility and influences their risk to health of aquatic higher plants. Furthermore, harmonization of test protocols is recommended for fast tracking the generation of comparable data. Environ Toxicol Chem 2016;35:1677-1694. © 2016 SETAC. © 2016 SETAC.

  2. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1994-01-01

    This grant, NAG8-831, was a continuation of a previous grant, NAG8-541. The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis in the recently completed grant was on determining the influence of perturbations on directional solidification of InSb and InSb-GaSb alloys. In particular, the objective was to determine the influence of spin-up/spin-down (ACRT), electric current pulses and vibrations on compositional homogeneity and grain size.

  3. Entrance Counseling Guide for Direct Loan Borrowers

    ERIC Educational Resources Information Center

    Federal Student Aid, US Department of Education, 2010

    2010-01-01

    This guide describes the four types of loans offered by the Direct Loan Program[SM]: (1) Direct Subsidized Loans; (2) Direct Unsubsidized Loans; (3) Direct PLUS Loans; and (4) Direct Consolidation Loans. Among the topics covered in the guide are: Use of Your Loan Money, The Master Promissory Note, How Your Loans Will Be Disbursed (Paid Out),…

  4. Direct Broadcast Satellite: Radio Program

    NASA Astrophysics Data System (ADS)

    Hollansworth, James E.

    1992-10-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  5. 16 CFR 1000.13 - Directives System.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Directives System. 1000.13 Section 1000.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL COMMISSION ORGANIZATION AND FUNCTIONS § 1000.13 Directives System. The Commission maintains a Directives System which contains delegations of...

  6. 16 CFR 1000.13 - Directives System.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Directives System. 1000.13 Section 1000.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL COMMISSION ORGANIZATION AND FUNCTIONS § 1000.13 Directives System. The Commission maintains a Directives System which contains delegations of...

  7. Self-Directed Learning: Application and Research.

    ERIC Educational Resources Information Center

    Long, Huey B.; And Others

    These 23 papers provide as complete a picture as possible of the current efforts in self-directed learning application and research. The papers are: "Learning about Self-Directed Learning" (Long); "Philosophical, Psychological, and Practical Justifications for Studying Self-Direction in Learning" (Long); "In Search of…

  8. 16 CFR 1000.13 - Directives System.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Directives System. 1000.13 Section 1000.13 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL COMMISSION ORGANIZATION AND FUNCTIONS § 1000.13 Directives System. The Commission maintains a Directives System which contains delegations of...

  9. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump, speaks before signing Space Policy Directive - 1, directing NASA to return to the moon, in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  10. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Seiber, Larry E [Oak Ridge, TN; Marlino, Laura D [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  11. Rejuvenating direct modulation and direct detection for modern optical communications

    NASA Astrophysics Data System (ADS)

    Che, Di; Li, An; Chen, Xi; Hu, Qian; Shieh, William

    2018-02-01

    High-speed transoceanic optical fiber transmission using direct modulation (DM) and direct detection (DD) was one of the most stirring breakthroughs for telecommunication in 1990s, which drove the internet as a global phenomenon. However, the later evolution of optical coherent communications in 2000s gradually took over the long-haul applications, due to its superior optical spectral efficiency. Nowadays, DM-DD systems are dominant mainly in cost- and power-sensitive short-reach applications, because of its natural characteristics-the simplicity. This paper reviews the recent advances of DM-DD transceivers from both hardware and signal processing perspectives. It introduces a variety of modified DM and/or DD systems for 3 application scenarios: very-short-reach interconnect with little fiber channel impact; single or a few spans of fiber transmission up to several hundred km; and distance beyond the 2nd scenario. Besides the DM-DD and multi-dimension DM-DD with polarization diversity, this paper focuses on how to rejuvenate traditional DM and DD technologies in order to bridge the transmission application gap between DM-DD and coherent transceivers, using technologies such as dispersion compensation, signal field recovery from the intensity-only DD receiver, and complex direct modulation with coherent detection. More than 30 years since the birth, DM and DD still hold indispensable roles in modern optical communications.

  12. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  13. 19 CFR 351.509 - Direct taxes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Identification and Measurement of Countervailable Subsidies § 351.509 Direct taxes. (a) Benefit—(1) Exemption or... direct tax (e.g., an income tax), or a reduction in the base used to calculate a direct tax, a benefit...

  14. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed toward...

  15. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed toward...

  16. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. (a) Unless otherwise authorized upon specific... antenna adjusted with the center of the major lobe of radiation in the horizontal plane directed toward...

  17. The persistence of directivity in small earthquakes

    USGS Publications Warehouse

    Boatwright, J.

    2007-01-01

    We derive a simple inversion of peak ground acceleration (PGA) or peak ground velocity (PGV) for rupture direction and rupture velocity and then test this inversion on the peak motions obtained from seven 3.5 ??? M ??? 4.1 earthquakes that occurred in two clusters in November 2002 and February 2003 near San Ramon, California. These clusters were located on two orthogonal strike-slip faults so that the events share the same approximate focal mechanism but not the same fault plane. Three earthquakes exhibit strong directivity, but the other four earthquakes exhibit relatively weak directivity. We use the residual PGAs and PGVs from the other six events to determine station corrections for each earthquake. The inferred rupture directions unambiguously identify the fault plane for the three earthquakes with strong directivity and for three of the four earthquakes with weak directivity. The events with strong directivity have fast rupture velocities (0.63????? v ??? 0.87??); the events with weak directivity either rupture more slowly (0.17????? v ???0.35??) or bilaterally. The simple unilateral inversion cannot distinguish between slow and bilateral ruptures: adding a bilateral rupture component degrades the fit of the rupture directions to the fault planes. By comparing PGAs from the events with strong and weak directivity, we show how an up-dip rupture in small events can distort the attenuation of peak ground motion with distance. When we compare the rupture directions of the earthquakes to the location of aftershocks in the two clusters, we find than almost all the aftershocks of the three earthquakes with strong directivity occur within 70?? of the direction of rupture.

  18. Directional Cluster Analysis on a Sphere: Retrieval of Archean Magnetic Directions from Data with High Dispersion

    NASA Astrophysics Data System (ADS)

    Bono, R. K.; Dare, M. S.; Tarduno, J. A.; Cottrell, R. D.

    2016-12-01

    Magnetic directions from coarse clastic rocks are typically highly scattered, to the point that the null hypothesis that they are drawn from a random distribution, using the iconic test of Watson (1956), cannot be rejected at a high confidence level (e.g. 95%). Here, we use an alternative approach of searching for directional clusters on a sphere. When applied to a new data set of directions from quartzites from the Jack Hills of Western Australia, we find evidence for distinct and meaningful magnetic directions at low (200 to 300 degrees C) and intermediate ( 350 to 450 degrees C) unblocking temperatures, whereas the test of Watson (1956) fails to draw a distinction from random distributions for the ensemble of directions at these unblocking temperature ranges. The robustness of the directional groups identified by the cluster analysis is confirmed by non-parametric resampling tests. The lowest unblocking temperature directional mode appears related to the present day field, perhaps contaminated by viscous magnetizations. The intermediate temperature magnetization matches an overprint recorded by the secondary mineral fuchsite (Cottrell et al., 2016) acquired at ca. 2.65 Ga. These data thus indicate that the Jack Hills carry an overprint at intermediate unblocking temperatures of Archean age. We find no evidence for a 1 Ga remagnetization. In general, the application of cluster analysis on a sphere, with directions confirmed by nonparametric tests, represents a new approach that should be applied when evaluating data with high dispersion, such as those that typically come from weak coarse-grained clastic sedimentary rocks, and/or rocks that have seen several tectonic events that could have imparted multiple magnetic overprints.

  19. Platinum assisted by carbon quantum dots for methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Pan, Dan; Li, Xingwei; Zhang, Aofeng

    2018-01-01

    Various types of fuel cells as clean and portable power sources show a great attraction, especially direct methanol fuel cell (DMFC) having high energy density, low operating temperature and convenient fuel storage. However, the preparation of low-cost Pt-based catalysts with satisfactory catalytic performance still faces many challenges for its commercialization on large scale. Here, Pt catalysts assisted by carbon quantum dots (CQDs) are reported. The synergistic effect of carbon quantum dots and Pt metals is similar to a bi-component catalyst, such as PtRu. First, carbon quantum dots derived from Vulcan XC-72 carbon black are synthesized by mixed acid etching. Then, carbon black (Vulcan XC-72) is soaked in carbon quantum dots solution for several days to obtain carbon black modified by carbon quantum dots (XC-72-CQDs). Finally, Pt catalysts are supported on XC-72-CQDs (Pt/XC-72-CQDs) through a simple chemical reduction method. For methanol electro-oxidation reaction, the catalytic performance of Pt/XC-72-CQDs is compared with commercial PtRu/C (30% Pt + 15% Ru). Results show that a typical product (Pt/XC-72-CQDs5) exhibits a better catalytic activity than PtRu/C. In cyclic voltammetry test, the specific activity of Pt/XC-72-CQDs5 is 1.06 mA cm-2 Pt and 477.6 mA mg-1 Pt, while that of PtRu/C is 0.77 mA cm-2 Pt and 280.6 mA mg-1 Pt.

  20. Direct Loans: A Better Way To Borrow. William D. Ford Federal Direct Loan Program.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC. Student Financial Assistance.

    The Web site http://www.ed.gov/DirectLoan/ provides information on the William D. Ford Federal Direct Loan Program for both professionals and borrowers. For professionals, it provides information on conferences, promissory notes, regulations, laws, and relevant links, as well as technical assistance, and other publications and guides. For…

  1. Psychiatric Advance Directives: Getting Started

    MedlinePlus

    ... the United States View PDF Type of PADs Federal Law on Advance Directives View PDF “Introducing Psychiatric Advance ... Ph.D., M.L.S. View video (12:08) “Federal Law on Advance Directives: The Patient Self-Determination Act” ...

  2. Mixed oxide nanoparticles and method of making

    DOEpatents

    Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul

    2002-09-03

    Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.

  3. Potential Dimension Yields From Direct Processing

    Treesearch

    Wenjie Lin; D. Earl Kline; Philip A. Araman

    1994-01-01

    As the price of timber increases and environmental leigslation limits harvestable log volumes, the process of converting logs directly into dimension parts needs further exploration. Direct processing converts logs directly into rough green dimension parts without the intermediate steps of lumber manufacturing, grading, trading, shipping and drying. A major attraction...

  4. 30 CFR 256.71 - Directional drilling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Directional drilling. 256.71 Section 256.71..., and Extensions § 256.71 Directional drilling. In accordance with an approved exploration plan or development and production plan, a lease may be maintained in force by directional wells drilled under the...

  5. 10 CFR 35.40 - Written directives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Written directives. 35.40 Section 35.40 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Administrative Requirements § 35.40 Written directives. (a) A written directive must be dated and signed by an authorized user before the administration...

  6. Medium Access Control in Ad Hoc Networks With Omni-Directional and Directional Antennas

    DTIC Science & Technology

    2004-06-01

    Carvalho, Marc, Hong, Long, Yong, Zhenjiang, Lei, Ravi, Saro, Hari, Ramesh, Brad, Renato and Radhika) in the Computer Communication Research Group (CCRG...which we call directional collision avoidance protocols. Ko et al. [35] propose two schemes. One scheme consists of nodes using directional RTS...different from the model assumed by Ko et al. [35] where antennas are always active for re- ceiving and thus transmissions to different antennas

  7. Distinguishing between direct and indirect directional couplings in large oscillator networks: Partial or non-partial phase analyses?

    NASA Astrophysics Data System (ADS)

    Rings, Thorsten; Lehnertz, Klaus

    2016-09-01

    We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.

  8. Ionization based multi-directional flow sensor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Casleton, Kent H [Morgantown, WV

    2009-04-28

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  9. Directional and Non-directional Hypothesis Testing: A Survey of SIG Members, Journals, and Textbooks.

    ERIC Educational Resources Information Center

    McNeil, Keith

    The use of directional and nondirectional hypothesis testing was examined from the perspectives of textbooks, journal articles, and members of editorial boards. Three widely used statistical texts were reviewed in terms of how directional and nondirectional tests of significance were presented. Texts reviewed were written by: (1) D. E. Hinkle, W.…

  10. 24 CFR 203.5 - Direct Endorsement process.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Direct Endorsement process. 203.5... SINGLE FAMILY MORTGAGE INSURANCE Eligibility Requirements and Underwriting Procedures Direct Endorsement, Lender Insurance, and Commitments § 203.5 Direct Endorsement process. (a) General. Under the Direct...

  11. Personalized direct marketing using digital publishing

    NASA Astrophysics Data System (ADS)

    Kutty, Cheeniyil L.; Prabhakaran, Jayasree K.

    2006-02-01

    In today's cost-conscious business climate, marketing and customer service decision makers are increasingly concerned with how to increase customer response and retention rates. Companies spend large amounts of money on Customer Relationship Management (CRM) solutions and data acquisition but they don't know how to use the information stored in these systems to improve the effectiveness of their direct marketing campaigns. By leveraging the customer information they already have, companies can create personalized, printed direct mail programs that generate high response rates, greater returns, and stronger customer loyalty, while gaining a significant edge over their competitors. To reach the promised land of one-to-one direct marketing (personalized direct marketing - PDM), companies need an end-to-end solution for creating, managing, printing, and distributing personalized direct mail "on demand." Having access to digital printing is just one piece of the solution. A more complete approach includes leveraging personalization technology into a useful direct marketing tool that provides true one-to-one marketing, allowing variable images and text in a personalized direct mail. This paper discusses integration of CRM with a Print-on-Demand solution so as to create truly personalized printed marketing campaigns for one or many individuals based on the profile information, preferences and purchase history stored in the CRM.

  12. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  13. Z-direction fiber orientation in paperboard

    Treesearch

    John M. Considine; David W. Vahey; Roland Gleisner; Alan Rudie; Sabine Rolland du Roscoat; Jean-Francis Bloch

    2010-01-01

    This work evaluated the use of conventional tests to show beneficial attributes of z-direction fiber orientation (ZDFO) for structural paperboards. A survey of commercial linerboards indicated the presence of ZDFO in one material that had higher Taber stiffness, out-of-plane shear strength, directional dependence of Scott internal bond strength and directional...

  14. Empirical Evaluation of Directional-Dependence Tests

    ERIC Educational Resources Information Center

    Thoemmes, Felix

    2015-01-01

    Testing of directional dependence is a method to infer causal direction that recently has attracted some attention. Previous examples by e.g. von Eye and DeShon (2012a) and extensive simulation studies by Pornprasertmanit and Little (2012) have demonstrated that under specific assumptions, directional-dependence tests can recover the true causal…

  15. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. Link to an amendment published at 76 FR 59572... authorized under the rules of this part must employ a directional antenna adjusted with the center of the...

  16. 47 CFR 101.115 - Directional antennas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Directional antennas. 101.115 Section 101.115... SERVICES Technical Standards § 101.115 Directional antennas. Link to an amendment published at 77 FR 54432... authorized under the rules of this part must employ a directional antenna adjusted with the center of the...

  17. Direct Marketing Goes to College.

    ERIC Educational Resources Information Center

    Merante, Joseph A.

    1980-01-01

    The only form of marketing important to an admissions department, direct marketing, whose principal vehicle is direct mail, is identified as an organized method for sharing and distributing information to prospective students. Target audiences, marketing administration, and effective mailings are discussed. (MLW)

  18. 14 CFR 212.7 - Direct sales.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Direct sales. 212.7 Section 212.7... REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.7 Direct sales. (a) Certificated and foreign air carriers may sell or offer for sale, and operate, as principal, Public Charter flights under...

  19. 14 CFR 212.7 - Direct sales.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Direct sales. 212.7 Section 212.7... REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.7 Direct sales. (a) Certificated and foreign air carriers may sell or offer for sale, and operate, as principal, Public Charter flights under...

  20. 14 CFR 212.7 - Direct sales.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Direct sales. 212.7 Section 212.7... REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.7 Direct sales. (a) Certificated and foreign air carriers may sell or offer for sale, and operate, as principal, Public Charter flights under...

  1. 14 CFR 212.7 - Direct sales.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Direct sales. 212.7 Section 212.7... REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.7 Direct sales. (a) Certificated and foreign air carriers may sell or offer for sale, and operate, as principal, Public Charter flights under...

  2. 14 CFR 212.7 - Direct sales.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Direct sales. 212.7 Section 212.7... REGULATIONS CHARTER RULES FOR U.S. AND FOREIGN DIRECT AIR CARRIERS § 212.7 Direct sales. (a) Certificated and foreign air carriers may sell or offer for sale, and operate, as principal, Public Charter flights under...

  3. 7 CFR 1710.51 - Direct loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Direct loans. 1710.51 Section 1710.51 Agriculture... GENERAL AND PRE-LOAN POLICIES AND PROCEDURES COMMON TO ELECTRIC LOANS AND GUARANTEES Types of Loans and Loan Guarantees § 1710.51 Direct loans. RUS makes direct loans under section 4 of the RE Act. (a...

  4. 47 CFR 69.112 - Direct-trunked transport.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Direct-trunked transport. 69.112 Section 69.112... Computation of Charges § 69.112 Direct-trunked transport. (a) A flat-rated direct-trunked transport charge... other persons that use telephone company direct-trunked transport facilities. (b)(1) For telephone...

  5. [Advance directives in clinical practice : Living will, healthcare power of attorney and care directive].

    PubMed

    Hack, J; Buecking, B; Lopez, C L; Ruchholtz, S; Kühne, C A

    2017-06-01

    In clinical practice, situations continuously occur in which medical professionals and family members are confronted with decisions on whether to extend or limit treatment for severely ill patients in end of life treatment decisions. In these situations, advance directives are helpful tools in decision making according to the wishes of the patient; however, not every patient has made an advance directive and in our experience medical staff as well as patients are often not familiar with these documents. The purpose of this article is therefore to explain the currently available documents (e.g. living will, healthcare power of attorney and care directive) and the possible (legal) applications and limitations in the routine clinical practice.

  6. [Advance directives in clinical practice : Living will, healthcare power of attorney and care directive].

    PubMed

    Hack, J; Buecking, B; Lopez, C L; Ruchholtz, S; Kühne, C A

    2017-02-01

    In clinical practice, situations continuously occur in which medical professionals and family members are confronted with decisions on whether to extend or limit treatment for severely ill patients in end of life treatment decisions. In these situations, advance directives are helpful tools in decision making according to the wishes of the patient; however, not every patient has made an advance directive and in our experience medical staff as well as patients are often not familiar with these documents. The purpose of this article is therefore to explain the currently available documents (e.g. living will, healthcare power of attorney and care directive) and the possible (legal) applications and limitations in the routine clinical practice.

  7. [Advance directives in clinical practice : Living will, healthcare power of attorney and care directive].

    PubMed

    Hack, J; Buecking, B; Lopez, C L; Ruchholtz, S; Kühne, C A

    2017-12-01

    In clinical practice, situations continuously occur in which medical professionals and family members are confronted with decisions on whether to extend or limit treatment for severely ill patients in end of life treatment decisions. In these situations, advance directives are helpful tools in decision making according to the wishes of the patient; however, not every patient has made an advance directive and in our experience medical staff as well as patients are often not familiar with these documents. The purpose of this article is therefore to explain the currently available documents (e.g. living will, healthcare power of attorney and care directive) and the possible (legal) applications and limitations in the routine clinical practice.

  8. [Advance directives in clinical practice : Living will, healthcare power of attorney and care directive].

    PubMed

    Hack, J; Buecking, B; Lopez, C L; Ruchholtz, S; Kühne, C A

    2017-04-01

    In clinical practice, situations continuously occur in which medical professionals and family members are confronted with decisions on whether to extend or limit treatment for severely ill patients in end of life treatment decisions. In these situations, advance directives are helpful tools in decision making according to the wishes of the patient; however, not every patient has made an advance directive and in our experience medical staff as well as patients are often not familiar with these documents. The purpose of this article is therefore to explain the currently available documents (e.g. living will, healthcare power of attorney and care directive) and the possible (legal) applications and limitations in the routine clinical practice.

  9. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump signs Space Policy Directive - 1, directing NASA to return to the moon, alongside members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  10. Direction Counts: A Comparative Study of Spatially Directional Counting Biases in Cultures with Different Reading Directions

    ERIC Educational Resources Information Center

    Shaki, Samuel; Fischer, Martin H.; Gobel, Silke M.

    2012-01-01

    Western adults associate small numbers with left space and large numbers with right space. Where does this pervasive spatial-numerical association come from? In this study, we first recorded directional counting preferences in adults with different reading experiences (left to right, right to left, mixed, and illiterate) and observed a clear…

  11. Determining Directional Dependency in Causal Associations

    ERIC Educational Resources Information Center

    Pornprasertmanit, Sunthud; Little, Todd D.

    2012-01-01

    Directional dependency is a method to determine the likely causal direction of effect between two variables. This article aims to critique and improve upon the use of directional dependency as a technique to infer causal associations. We comment on several issues raised by von Eye and DeShon (2012), including: encouraging the use of the signs of…

  12. Directional Communication in Evolved Multiagent Teams

    DTIC Science & Technology

    2013-06-10

    decentralized localization proposed by Franchi et al. [9]. Overall, the significant advantage of directional communication over non- directional...reception benefits the evolution of communicating autonomous agents because it simplifies the language required to express positional information, which...systems. This paper hypothesizes that such directional reception benefits the evolution of communicating autonomous agents because it simplifies the

  13. A Directional Dogbone Flextensional Sonar Transducer

    DTIC Science & Technology

    2010-10-01

    A Directional Dogbone Flextensional Sonar Transducer Stephen C. Butler Naval Undersea Warfare Center, Newport, RI 02841 Abstract: In order to...transmit energy in one direction, sonar flextensional transducers are combined into arrays of elements that are spaced a 1/4 wavelength apart. The...electroacoustic performance and compared with an experimental data. Keywords: Transducer, Flextensional, Sonar , Piezoelectric, Directional, Cardioid

  14. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    DOE PAGES

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; ...

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  15. Effects of Nanoparticulate Additives on Acoustically Coupled Fuel Droplet Combustion

    NASA Astrophysics Data System (ADS)

    Vargas, Andres; Plascencia, Miguel; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann

    2017-11-01

    The present study investigates interactions between applied acoustic perturbations and burning ethanol droplets containing nano particulate additives. Reactive nanoscale aluminum (nAl) as well as inert silica (nSiO2), each with an 80 nm average diameter. Continuously-fed fuel droplet combustion experiments were conducted in the vicinity of a pressure node created in a closed acoustic waveguide, with a range of applied forcing frequencies, pressure or velocity perturbation amplitudes, and particle loading concentrations. Simultaneous phase-locked OH* chemiluminescence and high-speed visible imaging enabled quantification of the influences of nanoparticle concentration on burning rate constant K and combustion-acoustic coupling. Results indicated that nAl particles in ethanol yielded measurable increases in K with increasing applied perturbation amplitudes, as compared to pure ethanol in the presence of acoustic excitation. Droplets with nAl exposed to moderate acoustic excitation exhibited sustained combustion for much longer periods of time than for unforced conditions. Post analysis of particulate matter collected from residue via electron microscopy aids in interpreting these trends and findings. Supported by AFOSR Grant FA9550-15-1-0339.

  16. Improving oral bioavailability of acyclovir using nanoparticulates of thiolated xyloglucan.

    PubMed

    Madgulkar, Ashwini; Bhalekar, Mangesh R; Dikpati, Amrita A

    2016-08-01

    Acyclovir a BCS class III drug exhibits poor bioavailability due to limited permeability. The intention of this research work was to formulate and characterize thiolated xyloglucan polysaccharide nanoparticles (TH-NPs) of acyclovir with the purpose of increasing its oral bioavailability. Acyclovir-loaded TH-NPs were prepared using a cross-linking agent. Interactions of formulation excipients were reconnoitered using Fourier transform infrared spectroscopy (FT-IR). The formulated nanoparticles were lyophilised by the addition of a cryoprotectant and characterized for its particle size, morphology and stability and optimized using Box Behnken Design.The optimized TH-NP formulation exhibited particle size of 474.4±2.01 and an entrapment efficiency of 81.57%. A marked enhancement in the mucoadhesion was also observed. In-vivo study in a rat model proved that relative bioavailability of acyclovir TH-NPs is ∼2.575 fold greater than that of the marketed acyclovir drug suspension. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunny, S; Vogel, N; Howell, C

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  18. Polymeric nanoparticulate system augmented the anticancer therapeutic efficacy of gemcitabine.

    PubMed

    Arias, José L; Reddy, L Harivardhan; Couvreur, Patrick

    2009-09-01

    Gemcitabine hydrochloride is an anticancer nucleoside analogue indicated in clinic for the treatment of various solid tumors. Although this drug has been demonstrated to display anticancer activity against a wide variety of tumors, it is needed to be administered at high doses to elicit the required therapeutic response, simultaneously leading to severe adverse effects. We hypothesized that the efficient delivery of gemcitabine to tumors using a biodegradable carrier system could reduce the dose required to elicit sufficient therapeutic response. Thus, we have developed a nanoparticle formulation of gemcitabine suitable for parenteral administration based on the biodegradable polymer poly(octylcyanoacrylate) (POCA). The nanoparticles were synthesized by anionic polymerization of the corresponding monomer. Two drug loading methods were analyzed: the first one based on gemcitabine surface adsorption onto the preformed nanoparticles, and the second method being gemcitabine addition before the polymerization process leading to drug entrapment in the polymeric network. A detailed investigation of the capabilities of the polymer particles to load this drug is described. Gemcitabine entrapment into the polymer matrix yielded a higher drug loading and a slower drug release profile as compared with drug adsorption procedure. The main factors determining the gemcitabine incorporation to the polymer network were the nanoparticles preparation procedure, the monomer concentration, the surfactant concentration, the pH, and the drug concentration. The release kinetic of gemcitabine was found to be controlled by the pH and the type of drug incorporation. The cytotoxicity studies performed on L1210 tumor cells revealed a similar anticancer activity of the gemcitabine-loaded POCA (GPOCA) nanoparticle as free gemcitabine. Following intravenous administration into the mice bearing L1210 wt subcutaneous tumor, the GPOCA nanoparticles displayed significantly greater anticancer activity compared to free gemcitabine; this has been additionally confirmed by histology and immunohistochemistry studies, suggesting the potential of GPOCA for the efficient treatment of cancer.

  19. NOVEL NANOPARTICULATE CATALYSTS FOR IMPROVED VOC TREATMENT DEVICES - PHASE I

    EPA Science Inventory

    Catalytic oxidation of VOCs is increasingly used for treatment of large-volume emissions at relatively dilute VOC levels. The best performing catalytic oxidation devices for attainment of very high VOC destruction levels employ precious metal catalysts, the costs of which a...

  20. Anticancer Activity of Small Molecule and Nanoparticulate Arsenic(III) Complexes

    PubMed Central

    Swindell, Elden P.; Hankins, Patrick L.; Chen, Haimei; Miodragović, Ðenana U.; O'Halloran, Thomas V.

    2014-01-01

    Starting in ancient China and Greece, arsenic-containing compounds have been used in the treatment of disease for over 3000 years. They were used for a variety of diseases in the 20th century, including parasitic and sexually transmitted illnesses. A resurgence of interest in the therapeutic application of arsenicals has been driven by the discovery that low doses of a 1% aqueous solution of arsenic trioxide (i.e. arsenous acid) leads to complete remission of certain types of leukemia. Since FDA approval of arsenic trioxide (As2O3) for treatment of acute promyelocytic leukemia (APL) in 2000, it has become a front line therapy in this indication. There are currently over 100 active clinical trials involving inorganic arsenic or organoarsenic compounds registered with the FDA for the treatment of cancers. New generations of inorganic and organometallic arsenic compounds with enhanced activity or targeted cytotoxicity are being developed to overcome some of the shortcomings of arsenic therapeutics, namely short plasma half-lives and narrow therapeutic window. PMID:24147771

  1. Thick film magnetic nanoparticulate composites and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Ge, Shihui (Inventor); Yan, Dajing (Inventor); Xiao, Danny T. (Inventor); Ma, Xinqing (Inventor); Zhang, Yide (Inventor); Zhang, Zongtao (Inventor)

    2009-01-01

    Thick film magnetic/insulating nanocomposite materials, with significantly reduced core loss, and their manufacture are described. The insulator coated magnetic nanocomposite comprises one or more magnetic components, and an insulating component. The magnetic component comprises nanometer scale particles (about 1 to about 100 nanometers) coated by a thin-layered insulating phase. While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase provides the desired soft magnetic properties, the insulating material provides high resistivity, which reduces eddy current loss.

  2. 14 CFR 29.177 - Static directional stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 29.177... Static directional stability. (a) The directional controls must operate in such a manner that the sense... versus directional control position curve may have a negative slope within a small range of angles around...

  3. Experience and convergence in spiritual direction.

    PubMed

    Evans, Jean

    2015-02-01

    The practice of spiritual direction concerns the human experience of God. As praxis, spiritual direction has a long tradition in Western Christianity. It is a process rooted in spirituality with theology as its foundation. This paper explores the convergences between aspects of philosophy (contemplative awareness), psychology (Rogerian client-centered approach) and phenomenology. There are significant points of convergence between phenomenology and spiritual direction: first, in Ignatius of Loyola's phenomenological approach to his religious experience; second, in the appropriation by spiritual directors of concepts of epochē and empathy; third, in the process of "unpacking" religious experience within a spiritual direction interview.

  4. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump prepares to sign Space Policy Directive - 1, directing NASA to return to the moon, alongside members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  5. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1987-01-01

    An improved understanding of the phenomena of importance to directional solidification is attempted to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis is now on experimentally determining the influence of convection and freezing rate fluctuations on compositional homogeneity and crystalline perfection. A correlation is sought between heater temperature profiles, buoyancy-driven convection, and doping inhomogeneities using naphthalene doped with anthracene. The influence of spin-up/spin-down is determined on compositional homogeneity and microstructure of indium gallium antimonide. The effect is determined of imposed melting - freezing cycles on indium gallium antimonide. The mechanism behind the increase of grain size caused by using spin-up/spin-down in directional solidification of mercury cadimum telluride is sought.

  6. Laterality and Directional Preferences in Preschool Children.

    ERIC Educational Resources Information Center

    Tan, Lesley E.

    1982-01-01

    Directional preference for horizontal hand movements was investigated in 49 right- and 49 left-handed four-year-olds using three drawing tests. Directionality for more complex perceptual-motor tasks has a different basis than directionality for simple tasks; such directionality is established at a later age but only for the right hand. (Author/CM)

  7. Direct nuclear-powered lasers

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1983-01-01

    The development of direct nuclear pumped lasers is reviewed. Theoretical and experimental investigations of various methods of converting the energy of nuclear fission fragments to laser power are summarized. The development of direct nuclear pumped lasers was achieved. The basic processes involved in the production of a plasma by nuclear radiation were studied. Significant progress was accomplished in this area and a large amount of basic data on plasma formation and atomic and molecular processes leading to population inversions is available.

  8. Rodent Depredation -- A Direct Seeding Problem

    Treesearch

    O. Gordon Langdon; William P. LeGrande

    1965-01-01

    Foresters have known for a long time that seed-eating rodents, birds, and insects must be circumvented before direct seeding can be successful. Advances have been made in reducing losses in the direct seeding of pine by the use of chemical repellents, and in several areas of the South recommended concentrations have been satisfactory. Direct seeding is now on an...

  9. 77 FR 66190 - Submission for Review: It's Time To Sign Up for Direct Deposit or Direct Express, RI 38-128

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... OFFICE OF PERSONNEL MANAGEMENT Submission for Review: It's Time To Sign Up for Direct Deposit or... request (ICR) 3206-0226, It's Time To Sign up for Direct Deposit or Direct Express. As required by the..., Retirement Services, Office of Personnel Management. Title: It's Time To Sign Up for Direct Deposit or Direct...

  10. Directivity measurements of the violin during performance

    NASA Astrophysics Data System (ADS)

    Hardy, Jean-François; Migneron, Jean-Gabriel

    2005-04-01

    Many studies have shown that directivity of musical instruments is significant for the perceived sound within the hall and for performer's ease of hearing each other. The directivity patterns explain in part the differences between many common or special orchestral stage plots. Measurements of the violin's directivity have been performed using an acoustical intensimetry procedure. The precise directivity characteristics of isolated tones have been compared with the mean directivity resulting from performance of four extracts chosen among the orchestral repertoire. Results, which were measured in both horizontal and vertical planes, show interesting differences between the average directivity of each test. They lead to links with few important distinctions in the traditional violin's positions inside the orchestra.

  11. 78 FR 11141 - BE-577: Quarterly Survey of U.S. Direct Investment Abroad- Direct Transactions of U.S. Reporter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... BE-577: Quarterly Survey of U.S. Direct Investment Abroad-- Direct Transactions of U.S. Reporter With... that it is conducting the mandatory surveys titled BE-577, Quarterly Survey of U.S. Direct Investment Abroad--Direct Transactions of U.S. Reporter with Foreign Affiliate. This survey is authorized by the...

  12. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump holds up Space Policy Directive - 1 after signing it, directing NASA to return to the moon, alongside members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  13. Photosensitized Reduction of Carbon Dioxide in Solution Using Noble-Metal Clusters for Electron Transfer

    NASA Astrophysics Data System (ADS)

    Toshima, Naoki; Yamaji, Yumi; Teranishi, Toshiharu; Yonezawa, Tetsu

    1995-03-01

    Carbon dioxide was reduced to methane by visible-light irradiation of a solution composed of tris(bipyridine)ruthenium(III) as photosensitizer, ethylenediaminetetraacetic acid disodium salt as sacrificial reagent, methyl viologen as electron relay, and a colloidal dispersion of polymer-protected noble-metal clusters, prepared by alcohol-reduction, as catalyst. Among the noble-metal clusters examined, Pt clusters showed the highest activity for the formation of methane as well as hydrogen. In order to improve the activity, oxidized clusters and bimetallic clusters were also applied. For example, the CH4 yield in 3-h irradiation increased from 51 x 10-3 μmol with unoxidized Pt clusters to 72 x 10-3 μmol with partially oxidized ones. In the case of Pt/Ru bimetalic systems, the improvement of the catalytic activity by air treatment was much greater than in case of monometallic clusters.

  14. Enhancement of catalytic activity of platinum-based nanoparticles towards electrooxidation of ethanol through interfacial modification with heteropolymolybdates

    NASA Astrophysics Data System (ADS)

    Barczuk, Piotr J.; Lewera, Adam; Miecznikowski, Krzysztof; Zurowski, Artur; Kulesza, Pawel J.

    As evidenced from the increase of electrocatalytic currents measured under voltammetric and chronoamperometric conditions, the activity of bimetallic Pt-Ru and Pt-Sn nanoparticles towards oxidation of ethanol is increased by modification of their surfaces with ultra-thin films of phosphododecamolybdic acid (H 3PMo 12O 40). The enhancement effect has been most pronounced in a case of heteropolymolybdate-modified carbon-supported Pt-Sn catalysts. Independent high-resolution XPS measurements indicate the ability of heteropolymolybdates to stabilize tin (in bimetallic Pt-Sn particles) at higher oxidation states (presumably as tin oxo species). The overall activation effect may also be ascribed to changes in the morphology of catalytic films following modification with heteropolymolybdates. Presence of the polyoxometallate is also likely to increase of the interfacial population of reactive oxo groups in the vicinity of platinum centers.

  15. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  16. Direct-to-consumer advertising of pharmaceuticals.

    PubMed

    Gellad, Ziad F; Lyles, Kenneth W

    2007-06-01

    Since the US Food and Drug Administration (FDA) released new guidelines on broadcast direct-to-consumer advertising in 1997, the prevalence of direct-to-consumer advertising of prescription drugs has increased exponentially. The impact on providers, patients, and the health care system is varied and dynamic, and the rapid changes in the last several years have markedly altered the health care landscape. To continue providing optimal medical care, physicians and other health care providers must be able to manage this influence on their practice, and a more thorough understanding of this phenomenon is an integral step toward this goal. This review will summarize the history of direct-to-consumer drug advertisements and the current regulations governing them. It will summarize the evidence concerning the impact of direct-to-consumer advertising on the public, providers, and the health care system, and conclude with observations regarding the future of direct-to-consumer advertising.

  17. Direct-to-Consumer Advertising of Pharmaceuticals

    PubMed Central

    Gellad, Ziad F.; Lyles, Kenneth W.

    2014-01-01

    Since the FDA released new guidelines on broadcast direct-to-consumer advertising in 1997, the prevalence of direct-to-consumer advertising of prescription drugs has increased exponentially. The impact on providers, patients and the health care system is varied and dynamic, and the rapid changes in the last several years have markedly altered the health care landscape. To continue providing optimal medical care, physicians and other health-care providers must be able to manage this influence on their practice, and a more thorough understanding of this phenomenon is an integral step toward this goal. This review will summarize the history of direct-to-consumer drug advertisements and the current regulations governing them. It will summarize the evidence concerning the impact of direct-to-consumer advertising on the public, providers and the health care system and conclude with observations regarding the future of direct-to-consumer advertising. PMID:17524744

  18. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    President Donald Trump, speaks before signing Space Policy Directive - 1, directing NASA to return to the moon, alongside Vice President Mike Pence, members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  19. Space Policy Directive - 1 Signing

    NASA Image and Video Library

    2017-12-11

    Vice President Mike Pence speaks before President Donald Trump signs Space Policy Directive - 1, directing NASA to return to the moon, alongside members of the Senate, Congress, NASA, and commercial space companies in the Roosevelt room of the White House in Washington, Monday, Dec. 11, 2017. Photo Credit: (NASA/Aubrey Gemignani)

  20. Case study: Comparison of motivation for achieving higher performance between self-directed and manager-directed aerospace engineering teams

    NASA Astrophysics Data System (ADS)

    Erlick, Katherine

    "The stereotype of engineers is that they are not people oriented; the stereotype implies that engineers would not work well in teams---that their task emphasis is a solo venture and does not encourage social aspects of collaboration" (Miner & Beyerlein, 1999, p. 16). The problem is determining the best method of providing a motivating environment where design engineers may contribute within a team in order to achieve higher performance in the organization. Theoretically, self-directed work teams perform at higher levels. But, allowing a design engineer to contribute to the team while still maintaining his or her anonymity is the key to success. Therefore, a motivating environment must be established to encourage greater self-actualization in design engineers. The purpose of this study is to determine the favorable motivational environment for design engineers and describe the comparison between two aerospace design-engineering teams: one self-directed and the other manager directed. Following the comparison, this study identified whether self-direction or manager-direction provides the favorable motivational environment for operating as a team in pursuit of achieving higher performance. The methodology used in this research was the case study focusing on the team's levels of job satisfaction and potential for higher performance. The collection of data came from three sources, (a) surveys, (b) researcher observer journal and (c) collection of artifacts. The surveys provided information regarding personal behavior characteristics, potentiality for higher performance and motivational attributes. The researcher journal provided information regarding team dynamics, individual interaction, conflict and conflict resolution. The milestone for performance was based on the collection of artifacts from the two teams. The findings from this study illustrated that whether the team was manager-directed or self-directed does not appear to influence the needs and wants of the

  1. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  2. Nonconsensus opinion model on directed networks

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Li, Qian; Havlin, Shlomo; Stanley, H. Eugene; Wang, Huijuan

    2014-11-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009), 10.1103/PhysRevLett.103.018701] on directed networks. We define directionality ξ as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ρ between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ξ and linear correlation coefficient ρ and to study how ξ and ρ impact opinion competitions. We find that, as the directionality ξ or the in-degree and out-degree correlation ρ increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered.

  3. EDExpress, 2000-2001: Direct Loan.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC. Student Financial Assistance.

    This workbook covers all the processes needed to administer the federal direct loan program in schools; it requires familiarity with the basic concepts found in the "Direct Loan School Guide." The eight units of instruction include: Unit 1: an overview; Unit 2: processing loan records, including the EDExpress setup, the processing cycle,…

  4. Advance directives and living wills.

    PubMed Central

    Stewart, K.; Bowker, L.

    1998-01-01

    Under certain circumstances, living wills or advance directives may carry legal force in the UK. This paper traces the development of advance directives, clarifies their current legal position and discusses potential problems with their use. Case histories are used to illustrate some of the common dilemmas which doctors may face. PMID:9640440

  5. 21 CFR 1230.14 - Directions for treatment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... word “Poison,” directions for treatment in the case of internal personal injury; in addition, if the substance may cause external injury, directions for appropriate treatment shall be given. The directions...

  6. Apparent directional selection by biased pleiotropic mutation.

    PubMed

    Tanaka, Yoshinari

    2010-07-01

    Pleiotropic effects of deleterious mutations are considered to be among the factors responsible for genetic constraints on evolution by long-term directional selection acting on a quantitative trait. If pleiotropic phenotypic effects are biased in a particular direction, mutations generate apparent directional selection, which refers to the covariance between fitness and the trait owing to a linear association between the number of mutations possessed by individuals and the genotypic values of the trait. The present analysis has shown how the equilibrium mean value of the trait is determined by a balance between directional selection and biased pleiotropic mutations. Assuming that genes act additively both on the trait and on fitness, the total variance-standardized directional selection gradient was decomposed into apparent and true components. Experimental data on mutation bias from the bristle traits of Drosophila and life history traits of Daphnia suggest that apparent selection explains a small but significant fraction of directional selection pressure that is observed in nature; the data suggest that changes induced in a trait by biased pleiotropic mutation (i.e., by apparent directional selection) are easily compensated for by (true) directional selection.

  7. From Nonradiating Sources to Directionally Invisible Objects

    NASA Astrophysics Data System (ADS)

    Hurwitz, Elisa

    The goal of this dissertation is to extend the understanding of invisible objects, in particular nonradiating sources and directional nonscattering scatterers. First, variations of null-field nonradiating sources are derived from Maxwell's equations. Next, it is shown how to design a nonscattering scatterer by applying the boundary conditions for nonradiating sources to the scalar wave equation, referred to here as the "field cloak method". This technique is used to demonstrate directionally invisible scatterers for an incident field with one direction of incidence, and the influence of symmetry on the directionality is explored. This technique, when applied to the scalar wave equation, is extended to show that a directionally invisible object may be invisible for multiple directions of incidence simultaneously. This opens the door to the creation of optically switchable, directionally invisible objects which could be implemented in couplers and other novel optical devices. Next, a version of the "field cloak method" is extended to the Maxwell's electro-magnetic vector equations, allowing more flexibility in the variety of directionally invisible objects that can be designed. This thesis concludes with examples of such objects and future applications.

  8. A Randomized Controlled Trial Comparing the Letter Project Advance Directive to Traditional Advance Directive.

    PubMed

    Periyakoil, Vyjeyanthi S; Neri, Eric; Kraemer, Helena

    2017-09-01

    Simpler alternatives to traditional advance directives that are easy to understand and available in multiple formats and can be initiated by patients and families will help facilitate advance care planning. The goal of this study was to compare the acceptability of the letter advance directive (LAD) to the traditional advance directive (TAD) of the state of California. A web-based, randomized controlled trial was conducted, in which the participants were randomized to one of two types of advance directives (ADs): the LAD (intervention) or the TAD (control). Primary outcomes were participant ratings of the ease, value, and their level of comfort in the AD document they completed. A total of 400 participants completed the study, with 216 randomized to the LAD and 184 to the TAD by a computerized algorithm. Overall, participants preferred the LAD to the TAD (success rate difference [SRD] = 0.46, 95th percentile confidence interval [CI]: 0.36-0.56, p < 0.001). The participants felt that, compared to the TAD, the LAD was easier to read and understand (SRD = 0.56, CI: 0.47-0.65, p < 0.001); better reflected what matters most to them (SRD = 0.39, CI: 0.29-0.48, p < 0.001); helped stimulate their thinking about the types of treatments they wanted at the end of life (SRD = 0.32, CI: 0.23-0.42, p < 0.001); allowed them to describe how they made medical decisions in their family (SRD = 0.31, CI: 0.21-0.40, p < 0.001); and could help their doctor(s) (SRD = 0.24, CI: 0.13-0.34, p < 0.001) and their families (SRD = 0.19, CI: 0.08-0.28, p < 0.001) understand their end-of-life treatment preferences. Patients reported the letter advance directive to be a better alternative to the traditional advance directive form.

  9. Research on laser direct metal deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzhong; Shi, Likai

    2003-03-01

    Laser direct deposition of metallic parts is a new manufacturing technology, which combines with computer-aided design, laser cladding and rapid prototyping. Fully dense metallic parts can be directly obtained through melting the coaxially fed powders with a high-power laser in a layer-by-layer manner. The process characteristics, system composition as well as some research and advancement on laser direct deposition are presented here. The microstructure and properties observation of laser direct formed 663 copper alloy, 316L stainless steel and Rene'95 nickel super alloy samples indicate that, the as-deposited microstructure is similar to rapidly solidified materials, with homogenous composition and free of defects. Under certain conditions, directionally solidified microstructure can be obtained. The as-formed mechanical properties are equal to or exceed those for casting and wrought annealed materials. At the same time, some sample parts with complicate shape are presented for technology demonstration. The formed parts show good surface quality and dimensional accuracy.

  10. Directional control-response relationships for mining equipment.

    PubMed

    Burgess-Limerick, R; Krupenia, V; Wallis, G; Pratim-Bannerjee, A; Steiner, L

    2010-06-01

    A variety of directional control-response relationships are currently found in mining equipment. Two experiments were conducted in a virtual environment to determine optimal direction control-response relationships in a wide variety of circumstances. Direction errors were measured as a function of control orientation (horizontal or vertical), location (left, front, right) and directional control-response relationships. The results confirm that the principles of consistent direction and visual field compatibility are applicable to the majority of situations. An exception is that fewer direction errors were observed when an upward movement of a horizontal lever or movement of a vertical lever away from the participants caused extension (lengthening) of the controlled device, regardless of whether the direction of movement of the control is consistent with the direction in which the extension occurs. Further, both the control of slew by horizontally oriented controls and the control of device movements in a frontal plane by the perpendicular movements of vertical levers were associated with relatively high rates of directional errors, regardless of the directional control-response relationship, and these situations should be avoided. STATEMENT OF RELEVANCE: The results are particularly applicable to the design of mining equipment such as drilling and bolting machines, and have been incorporated into MDG35.1 Guideline for bolting & drilling plant in mines (Industry & Investment NSW, 2010). The results are also relevant to the design of any equipment where vertical or horizontal levers are used to control the movement of equipment appendages, e.g. cranes mounted to mobile equipment and the like.

  11. Golgi polarization plays a role in the directional migration of neonatal dermal fibroblasts induced by the direct current electric fields.

    PubMed

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul

    2015-05-01

    Directional cell migration requires cell polarization. The reorganization of the Golgi apparatus is an important phenomenon in the polarization and migration of many types of cells. Direct current electric fields (dc (EF) induced directional cell migration in a wide variety of cells. Here nHDFs migrated toward cathode under 1 V/cm dc EF, however 1 μM of brefeldin A (BFA) inhibited the dc EF induced directional migration. BFA (1 μM) did not cause the complete Golgi dispersal for 2 h. When the Golgi polarization maintained their direction of polarity, the direction of cell migration also kept toward the same direction of the Golgi polarization even though the dc EF was reversed. In this study, the importance of the Golgi polarization in the directional migration of nHDf under dc EF was identified. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. FAA Directives System

    DOT National Transportation Integrated Search

    1992-08-26

    Consistent with the Federal Aviation Administration's mission to foster a safe, : secure, and efficient aviation system is the need for an effective and efficient : process for communitcating policy and procedures. The FAA Directives System : provide...

  13. Direct purchase contracts carry risks, benefits.

    PubMed

    Fine, A

    1991-05-01

    To better control their purchasing of healthcare services, some employers are seeking direct managed care contracts with healthcare facilities. Along with evaluating potential markets introduced by a proposed contract, a provider should develop a pricing strategy, a monitoring system, and a process for internal audit before entering into a direct purchase contract. With the proper checks in place, direct purchase contracts can be mutually beneficial to providers and purchasers.

  14. Microsegregation during directional solidification

    NASA Technical Reports Server (NTRS)

    Coriell, S. R.; Mcfadden, G. B.

    1984-01-01

    During the directional solidification of alloys, solute inhomogeneities transverse to the growth direction arise due to morphological instabilities (leading to cellular or dendritic growth) and/or due to convection in the melt. In the absence of convection, the conditions for the onset of morphological instability are given by the linear stability analysis of Mullins and Sekerka. For ordinary solidification rates, the predictions of linear stability analysis are similar to the constitutional supercooling criterion. However, at very rapid solidification rates, linear stability analysis predicts a vast increase in stabilization in comparison to constitutional supercooling.

  15. Artemisinin nanoformulation suitable for intravenous injection: Preparation, characterization and antimalarial activities.

    PubMed

    Ibrahim, Nehal; Ibrahim, Hany; Sabater, Alicia Moreno; Mazier, Dominique; Valentin, Alexis; Nepveu, Françoise

    2015-11-30

    More than 40 years after its discovery, artemisinin has become the most promising antimalarial agent. However, no intravenous formulation is available due to its poor aqueous solubility. Here, we report the preparation, characterization, and in vitro and in vivo biological evaluation of biodegradable albumin-bound artemisinin nanoparticles. The nanoparticles were prepared by a combination of a bottom-up and a top-down processes and characterized by different spectroscopic techniques. The preparation process was optimized to develop a nanoformulation with the smallest possible diameter and good homogeneity suitable for intravenous injection enabling direct contact of artemisinin with infected erythrocytes. Chemically and physically stable artemisinin nanoparticles were obtained with excellent entrapment efficiency. In in vitro experiments, the artemisinin nanoformulation was interestingly more effective than non-formulated artemisinin. In Plasmodiumm falciparum-infected 'humanized' mice, the nanoparticles proved to be highly effective with 96% parasitemia inhibition at 10mg/kg/day, prolonging mean survival time without recrudescence. This nanoparticulate albumin-bound system allows the intravenous administration of artemisinin for the first time without harsh organic solvents or cosolvents with 100% bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Alternative Manufacturing Concepts for Solid Oral Dosage Forms From Drug Nanosuspensions Using Fluid Dispensing and Forced Drying Technology.

    PubMed

    Bonhoeffer, Bastian; Kwade, Arno; Juhnke, Michael

    2018-03-01

    Flexible manufacturing technologies for solid oral dosage forms with a continuous adjustability of the manufactured dose strength are of interest for applications in personalized medicine. This study explored the feasibility of using microvalve technology for the manufacturing of different solid oral dosage form concepts. Hard gelatin capsules filled with excipients, placebo tablets, and polymer films, placed in hard gelatin capsules after drying, were considered as substrates. For each concept, a basic understanding of relevant formulation parameters and their impact on dissolution behavior has been established. Suitable matrix formers, present either on the substrate or directly in the drug nanosuspension, proved to be essential to prevent nanoparticle agglomeration of the drug nanoparticles and to ensure a fast dissolution behavior. Furthermore, convection and radiation drying methods were investigated for the fast drying of drug nanosuspensions dispensed onto polymer films, which were then placed in hard gelatin capsules. Changes in morphology and in drug and matrix former distribution were observed for increasing drying intensity. However, even fast drying times below 1 min could be realized, while maintaining the nanoparticulate drug structure and a good dissolution behavior. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.

    PubMed

    Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L

    2013-05-01

    Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bio-Inspired Micromechanical Directional Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  19. Cantonese versus Canadian Evaluation of Directive and Non-Directive Therapy.

    ERIC Educational Resources Information Center

    Waxer, Peter H.

    1989-01-01

    Examined differences between Canadian and Cantonese university students who read transcripts of Carl Rogers and Albert Ellis counseling sessions and rated these counselors on directiveness, forcefulness, repetitiveness, sensitivity, politeness, and willingness to see either Ellis or Rogers. Found Canadians more willing to see Rogers than Chinese…

  20. High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial

    PubMed Central

    Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun

    2014-01-01

    A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems. PMID:25034268